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Abstract. We consider the uncapacitated facility location problem. In this problem, there is a
set of locations at which facilities can be built; a fixed cost fi is incurred if a facility is opened at
location i. Furthermore, there is a set of demand locations to be serviced by the opened facilities; if
the demand location j is assigned to a facility at location i, then there is an associated service cost
proportional to the distance between i and j, cij . The objective is to determine which facilities to
open and an assignment of demand points to the opened facilities, so as to minimize the total cost.
We assume that the distance function c is symmetric and satisfies the triangle inequality. For this
problem we obtain a (1+2/e)-approximation algorithm, where 1+2/e ≈ 1.736, which is a significant
improvement on the previously known approximation guarantees.

The algorithm works by rounding an optimal fractional solution to a linear programming re-
laxation. Our techniques use properties of optimal solutions to the linear program, randomized
rounding, as well as a generalization of the decomposition techniques of Shmoys, Tardos, and Aardal
[Proceedings of the 29th ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 265–274].
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1. Introduction. The study of the location of facilities to serve clients at
minimum cost has been one of the most studied themes in the field of operations
research (see, e.g., the textbook edited by Mirchandani and Francis [MF90]). In this
paper, we focus on one of its simplest variants, the uncapacitated facility location
problem, also known as the simple plant location problem, which has been extensively
treated in the literature (see, e.g., the survey by Cornuéjols, Nemhauser, and Wolsey
[CNW90]). This problem can be described as follows. There is a set of potential
facility locations F ; building a facility at location i ∈ F has an associated nonnega-
tive fixed cost fi, and any open facility can provide an unlimited amount of a certain
commodity. There also is a set of clients or demand points D that require service;
client j ∈ D has a positive demand of commodity dj that must be shipped from one
of the open facilities. If a facility at location i ∈ F is used to satisfy the demand
of client j ∈ D, the service or transportation cost incurred per unit is proportional
to the distance from i to j, cij . The goal is to determine a subset of the set of
potential facility locations at which to open facilities and an assignment of clients
to these facilities so as to minimize the overall total cost, that is, the fixed costs of
opening the facilities plus the total service cost. We will consider only the metric
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variant of the problem in which the distance function c is nonnegative, symmetric,
and satisfies the triangle inequality. Throughout this paper, a ρ-approximation algo-
rithm is a polynomial-time algorithm that delivers a feasible solution within a factor
of ρ of optimum. Our main result is a 1.736-approximation algorithm for the metric
uncapacitated facility location problem.

In contrast to the uncapacitated facility location problem, Cornuéjols, Fisher,
and Nemhauser [CFN77] studied the problem in which the objective is to maximize
the difference between assignment and facility costs. They showed that with this
objective, the problem can be thought of as a bank account location problem as
follows. A company seeks to maximize its available funds by paying bills using checks
drawn on banks at different locations. More precisely, if a bill is incurred in location
j and is paid with a check from location i, there is delay in the clearing time that
generates a profit, such as interest, cij . On the other hand, maintaining an account
at location i has a fixed cost fi. Thus the company would like to choose a subset
of locations at which to open accounts so as to maximize the difference between the
total profit from clearing times minus the total fixed cost of maintaining the accounts.
Notice that even though the maximization and minimization problems are equivalent
from the point of view of optimization, they are not equivalent from the point of
view of approximation: the maximization problem can be approximated within a
constant factor, whereas the minimization problem with an arbitrary distance function
is as hard as the set cover problem, and thus a c-approximation algorithm with c =
o(log |D|) is unlikely to exist (see [Fei98] for details). Interestingly, Cornuéjols, Fisher,
and Nemhauser showed that for the maximization problem, the greedy procedure that
iteratively tries to open the facility that most improves the objective function yields a
solution of value within a constant factor of optimum. In contrast, Hochbaum [Hoc82]
showed that the greedy algorithm is an Θ(log |D|)-approximation algorithm for the
minimization problem with an arbitrary distance function.

By filtering a linear programming relaxation, Lin and Vitter [LV92b] also ob-
tained an O(log |D|)-approximation algorithm for the uncapacitated facility location
problem when the distance function c is arbitrary. In addition, they also considered
the k-median problem, in which only k facilities can be opened, but there are no fixed
costs in the objective function. They showed how to find a solution with objective
function value within (1+ε) of optimum, but that opens (1+1/ε)O(log |D|) k facilities.
Under the assumption that the distance function is a metric, they have also shown
(see [LV92a]) how to find a solution of cost no more than 2(1+ε) of optimum, opening
at most (1 + 1/ε)k facilities. This latter result was the starting point of most recent
work on metric facility location problems; although limited to the k-median prob-
lem, it essentially contains the core ideas needed to obtain a constant approximation
algorithm for the metric uncapacitated facility location problem.

The metric uncapacitated facility location problem is known to be NP-hard (see
[CNW90]). Very recently, Guha and Khuller [GK99] and Sviridenko [Svi98] have
shown that it is MAX-SNP-hard. In fact, Guha and Khuller have also shown that
the existence of a ρ-approximation algorithm for ρ < 1.463 implies that NP ⊆
TIME(nO(log log n)) (see also Feige [Fei98]), and combined with an observation of Sviri-
denko [Svi98] such an algorithm would also imply that P=NP.

We briefly review previous work on approximation algorithms for the metric un-
capacitated facility location problem. The first constant-factor approximation algo-
rithm was given by Shmoys, Tardos, and Aardal [STA97], who presented a 3.16-
approximation algorithm, based on rounding an optimal solution of a classical lin-
ear programming relaxation for the problem, due to Balinski [Bal65]. This bound
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was subsequently improved by Guha and Khuller [GK99], who provided a 2.408-
approximation algorithm. Guha and Khuller’s algorithm requires a stronger linear
programming relaxation, in which they add to the relaxation a facility budget con-
straint that separately bounds the total facility cost incurred. After running the
algorithms of [STA97], they use a greedy procedure (as in [CFN77] and [Hoc82]) to
improve the quality of the solution: iteratively, open one facility at a time if it im-
proves the cost of the solution. However, since the optimal facility cost is unknown,
they instead consider all reasonable values of the form (1 + ε)k for some integer k
and ε > 0. As a consequence, they must solve a weakly polynomial number of linear
programs, round the optimal solution to each, and then select the best solution found.
In contrast, the 1.736-approximation algorithm presented in this paper requires the
solution of just one linear program, the one introduced by Balinski [Bal65], providing
as a by-product further evidence of the strength of this linear programming relaxation.

In a different line of work, Korupolu, Plaxton, and Rajaraman [KPR00] showed
that a simple local improvement heuristic produces a solution within a constant factor
of optimum, though the best constant they obtain is 5. Very recently, Arora, Ragha-
van, and Rao [ARR98] have presented a quasi-polynomial approximation scheme for
the case in which demand and facility points are in R

d, where the dimension d is fixed,
and the distance function is the usual Euclidean distance. If d = 2, then they obtain a
polynomial approximation scheme. Their method is similar to the one used by Arora
[Aro98] to produce approximation schemes for the traveling salesman problem. Thus,
in contrast with the algorithm presented here, it appears to have only theoretical
relevance due to the inefficiency of this approach.

Without loss of generality we shall assume that the set of potential facility loca-
tions F and the set of demand points D are disjoint; let N = F ∪ D, n = |N |. Even
though all our results hold for the case of arbitrary nonnegative demands, for the sake
of simplicity of the exposition we will assume that each demand dj is 1 (j ∈ D); thus,
the cost of assigning a client j to an open facility at location i is cij . The distance
between any two points k, � ∈ N is ck�. We assume that the n × n distance matrix
(ck�) is nonnegative, symmetric (that is, ck� = c�k for all k, � ∈ N ), and satisfies the
triangle inequality (that is, cij ≤ cik + ckj for all i, j, k ∈ N ). The simplest linear
programming relaxation (from [Bal65]), which we will refer to as P, is as follows:

Minimize
∑
j∈D

∑
i∈F

cijxij +
∑
i∈F

fiyi

(P) subject to
∑
i∈F

xij = 1 for each j ∈ D ,(1)

xij ≤ yi for each i ∈ F , j ∈ D ,(2)

xij ≥ 0 for each i ∈ F , j ∈ D.(3)

Any 0-1 feasible solution corresponds to a feasible solution to the uncapacitated facility
location problem: yi = 1 indicates that a facility at location i ∈ F is open, whereas
xij = 1 means that client j ∈ D is serviced by the facility built at location i ∈ F .
Inequalities (1) state that each demand point j ∈ D must be assigned to some facility,
whereas inequalities (2) say that clients can be assigned only to open facilities. Thus
the linear program P is indeed a relaxation of the problem. Given a feasible fractional
solution (x, y), we will say that

∑
i∈F fiyi and

∑
j∈D

∑
i∈F cijxij are, respectively,

its fractional facility and service cost.
Given a feasible solution to the linear programming relaxation P, the algorithm

of Shmoys, Tardos, and Aardal first partitions the demand points into clusters and
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then for each cluster opens exactly one facility, which services all of the points in
it. In their analysis, they show that the resulting solution has the property that the
total facility cost is within a constant factor of the fractional facility cost, and the
total service cost is within a constant factor of the fractional service cost. The main
drawback of this approach is that most of the time the solution is unbalanced, in the
sense that the first constant is approximately three times smaller than the second.

One of the simplest ways to round an optimal solution (x∗, y∗) to the linear
program P is to use the randomized rounding technique of Raghavan and Thompson
[RT87] as proposed by Sviridenko [Svi97] for the special case in which all of the
distances are 1 or 2. The 1.2785-approximation algorithm of [Svi97] essentially opens
a facility at location i ∈ F with probability y∗i and then assigns each demand point
to its nearest facility. Guha and Khuller [GK99] also considered this special case
and proved a matching lower bound; that is, no better guarantee is possible unless
P = NP . Ageev and Sviridenko [AS97] have recently shown that the randomized
rounding analysis for the maximum satisfiability problem of Goemans and Williamson
[GW94] can be adapted to obtain improved bounds for the maximization version of
the problem studied by [CFN77].

The following simple ideas enable us to develop a rounding procedure for the linear
programming relaxation P with an improved performance guarantee. We explicitly
exploit optimality conditions of the linear program, and, in particular, we use prop-
erties of the optimal dual solution and complementary slackness. A key element to
our improvement is the use of randomized rounding in conjunction with the approach
of Shmoys, Tardos, and Aardal. To understand the essence of our approach, suppose
that for each location i ∈ F , independently, we open a facility at i with probability
y∗i . The difficulty arises when attempting to estimate the expected service cost: the
distance from a given demand point to the closest open facility might be too large.
However, we could always use the routing of the algorithm of Shmoys, Tardos, and
Aardal if we knew that each cluster has a facility open. Rather than opening each
facility independently with probability y∗i , we instead open one facility in each cluster
with probability y∗i . The precise algorithm is not much more complicated, but the
most refined analysis of it is not quite so simple. Our algorithms are randomized and
can be easily derandomized using the method of conditional expectations. Our main
result is the following.

Theorem 1.1. There is a polynomial-time algorithm that rounds an optimal
solution to the linear programming relaxation P to a feasible integer solution whose
value is within (1 + 2/e) ≈ 1.736 of the optimal value of the linear programming
relaxation P.

Since the optimal linear programming value is a lower bound on the integer op-
timal value, the theorem yields a 1.736-approximation algorithm. The running time
of the algorithm is dominated by the time required to solve the linear programming
relaxation P.

Since the appearance of the preliminary version of this paper [Chu98], there have
been significant strides forward on research on approximation algorithms for this
problem. Most notably, Jain and Vazirani [JV01] gave a primal-dual 3-approximation
algorithm for this problem, which, by virtue of no longer needing to solve the linear
programming relaxation, yields a substantially more efficient algorithm. The starting
point of our algorithm is the graph defined by positive fractional primal assignment
variables for which complementary slackness conditions are then invoked to yield tight
dual constraints; the method of Jain and Vazirani first constructs a dual solution, and
this serves to define an analogous graph in which the edges have the corresponding
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dual constraints hold with equality.
Subsequent algorithmic results have touched on several different paradigms. Sviri-

denko [Svi02] has provided a more sophisticated analysis of the approach used here,
also incorporating a more clever use of the so-called pipeage rounding technique. An-
other significant contribution of this paper is a much simpler technique for proving
one of the crucial probabilistic lemmas of our paper (as well as a generalization needed
for this subsequent improvement).

A number of papers have given analyses that are primal-dual in flavor. Results
of Jain, Mahdian, and Saberi [JMS02] and Mahdian, Markakis, Saberi, and Vazirani
[MMSV01] gave a primal-dual based analysis of greedy-style algorithms. Mettu and
Plaxton [MP00] gave an algorithm that, at first consideration, does not appear to be
a primal-dual algorithm at all, but, by defining “radii” for amortizing the fixed cost
needed to open a facility at a particular location, is merely doing so implicitly. At
this writing, the best known performance guarantee follows from an analysis of this
type: Mahdian, Ye, and Zhang have given a 1.52-approximation algorithm [MYZ02].

Further work has also been done on local search algorithms; most notably, Charikar
and Guha [CG99] have given a more sophisticated neighborhood structure that is
amenable to analysis to yield stronger bounds than those obtained by Korupolu,
Plaxton, and Rajaraman. Kolliopoulos and Rao [KR99] have also improved on the
state of the art in constructing polynomial approximation schemes for these prob-
lems; most notably, they showed that a polynomial approximation scheme could be
obtained in Euclidean metric spaces of constant dimension.

2. A simple 4-approximation algorithm. In this section we present a new
simple 4-approximation algorithm. Even though the guarantees we will prove in the
next section are substantially better, we will use most of the ideas presented here.
After stating a few definitions and simple facts, we review the work of Shmoys, Tardos,
and Aardal [STA97] and introduce the dual of the linear programming relaxation P
and properties of primal and dual solutions that will be useful throughout the paper.
First we define the neighborhood of a demand point k ∈ D.

Definition 2.1. If (x, y) is a feasible solution to the linear programming relax-
ation P and j ∈ D is any demand point, the neighborhood of j, N(j), is the set of
facilities that fractionally service j, that is, N(j) = {i ∈ F : xij > 0}.

The following fact is a simple consequence of the previous definition and inequality
(1).

Fact 1. For each demand point j ∈ D, ∑i∈N(j) xij = 1.
The following definition was crucial for the algorithm of Shmoys, Tardos, and

Aardal [STA97].
Definition 2.2. Suppose that (x, y) is a feasible solution to the linear program-

ming relaxation P, and let gj ≥ 0 for each j ∈ D. Then (x, y) is g-close if xij > 0
implies that cij ≤ gj (j ∈ D, i ∈ F).

Notice that if (x, y) is g-close and j ∈ D is any demand point, all the neighbors
of j, that is, the facilities that fractionally service j, are inside the ball of radius gj
centered at j. The following lemma is from [STA97].

Lemma 2.3. Given a feasible g-close solution (x, y), we can find, in polynomial
time, a feasible integer 3g-close solution (x̂, ŷ) such that∑

i∈F
fiŷi ≤

∑
i∈F

fiyi.

We briefly sketch the proof below. The algorithm can be divided into two steps:
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a clustering step and a facility opening step. The clustering step works as follows
(see Table 1). Let S be the set of demand points that have not yet been assigned
to any cluster; initially, S = D. Find the unassigned demand point j◦ with smallest
gj-value and create a new cluster centered at j◦. Then all of the unassigned demand
points that are fractionally serviced by facilities in the neighborhood of j◦ (that is,
all of the demand points k ∈ S with N(k) ∩ N(j◦) �= ∅) are assigned to the cluster
centered at j◦; the set S is updated accordingly. Repeat the procedure until all of the
demand points are assigned to some cluster (i.e., S = ∅). We will use C to denote
the set of centers of the clusters.

Table 1
The clustering construction of Shmoys, Tardos, and Aardal.

1. S ← D, C ← ∅

2. while S �= ∅

3. choose j◦ ∈ S with smallest gj value (j ∈ S)
4. create a new cluster Q centered at j◦, C ← C ∪ {j◦}
5. Q ← {k ∈ S : N(k) ∩ N(j◦) �= ∅}
6. S ← S −Q

The following fact follows easily from the clustering construction and the definition
of neighborhood, and is essential for the success of the algorithm.

Fact 2. Suppose that we run the clustering algorithm of Table 1, using any g-
close solution (x, y). Then the neighborhoods of distinct centers are disjoint; that is,
if j and k are centers, j �= k ∈ C, then N(j) ∩ N(k) = ∅.

After the clustering step, the algorithm of [STA97] opens exactly one facility per
cluster. For each center j ∈ C we open the facility i◦ in the neighborhood of j,
N(j), with smallest fixed cost fi and assign all the demand points in the cluster of
j to facility i◦. Observe that by inequalities (2) and Fact 1,

∑
i∈N(j) yi ≥ 1; thus

fi◦ ≤
∑

i∈N(j) fiyi. Using Fact 2, the total facility cost incurred by the algorithm is

never more than the total fractional facility cost
∑

i∈F fiyi.

Next consider any demand point k ∈ D, and suppose it belongs to the cluster
centered at j◦; let � ∈ N(k) ∩ N(j◦) be a common neighbor, and let i◦ be the open
facility in the neighborhood of j◦ (see Figure 1). Then the distance from k to i◦ can
be bounded by the distance from k to � (which is at most gk) plus the distance from
� to j◦ (which is at most gj◦) plus the distance from j◦ to i◦ (which is at most gj◦).
Thus, the distance from k to an opened facility is at most 2gj◦ + gk, which is at most
3gk, since j◦ was the remaining demand point with minimum g-value. Hence the total
service cost can be bounded by 3

∑
k∈D gk.

Shmoys, Tardos, and Aardal used the filtering technique of Lin and Vitter [LV92b]
to obtain g-close solutions (as we will describe in section 5) and then applied Lemma
2.3 to obtain the first constant factor approximation algorithm for the problem. How-
ever, a simpler g-close solution is directly obtained by using the optimal solution to the
dual linear program of P. More precisely, the dual of the linear program P is given by

Maximize
∑
j∈D

vj

(D) subject to
∑
j∈D

wij ≤ fi for each i ∈ F ,(4)

vj − wij ≤ cij for each i ∈ F , j ∈ D,(5)

wij ≥ 0 for each i ∈ F , j ∈ D.(6)
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i◦
≤ gj◦

≤ gj◦

j◦

�

k

N(k)N(j)

≤ gk

Fig. 1. Bounding the service cost of k (4-approximation algorithm). The circles (•) are
demand points, whereas the squares (�) are facility locations.

Fix an optimal primal solution (x∗, y∗) and an optimal dual solution (v∗, w∗), and
let LP∗ be the optimal linear programming value. Complementary slackness gives that
x∗
ij > 0 implies v∗j − w∗

ij = cij ; since w∗
ij ≥ 0, we get the following lemma.

Lemma 2.4. If (x∗, y∗) is an optimal solution to the primal linear program P and
(v∗, w∗) is an optimal solution to the dual linear program D, then (x∗, y∗) is v∗-close.

By applying Lemma 2.3 to the optimal v∗-close solution (x∗, y∗), we obtain a
feasible solution for the problem with total facility cost at most

∑
i∈F fiy

∗
i and with

total service cost bounded by 3
∑

j∈D v∗j = 3 LP∗. We can bound the sum of these by

4 LP∗; thus we have a 4-approximation algorithm. Note the imbalance in bounding
facility and service costs.

3. A randomized algorithm. After solving the linear program P, a very sim-
ple randomized algorithm is the following: open a facility at location i ∈ F with
probability y∗i independently for every i ∈ F and then assign each demand point to
its closest open facility. Notice that the expected facility cost is just

∑
i∈F fiy

∗
i , the

same bound as in the algorithm of section 2. Focus on a demand point k ∈ D. If it
happens that one of its neighbors has been opened, then the service cost of k would
be bounded by the optimal dual variable v∗k. However, if we are unlucky and this is
not the case (an event that, as we will see, can easily be shown to occur with prob-
ability at most 1/e ≈ 0.368, where the bound is tight), the service cost of k could
be very large. On the other hand, suppose that we knew, for instance, that, for the
clustering computed in section 2, k belongs to a cluster centered at j and that one of
the facilities in N(j) has been opened. Then in this unlucky case we could bound the
service cost of k using the routing cost of the 4-approximation algorithm.

Our algorithm is also based on randomized rounding, and the expected facility
cost is

∑
i∈F fiy

∗. However, we weaken the randomized rounding step and do not
open facilities independently with probability y∗i , but rather in a dependent way, to
ensure that each cluster center has one of its neighboring facilities opened.

Even though the algorithms presented in this section work for any g-close feasible
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solution, for the sake of simplicity of the exposition we will assume as in the end of
section 2 that we have a fixed optimal primal solution (x∗, y∗) and a fixed optimal
dual solution (v∗, w∗), so that (x∗, y∗) is v∗-close. It is easy to see that we can assume
that y∗i ≤ 1 for each potential facility location i ∈ F .

To motivate the following definition, fix a demand location j ∈ D, and suppose
without loss of generality that the neighborhood of j (that is, the facilities i for which
x∗
ij > 0) is {1, . . . , d}, with c1j ≤ c2j ≤ · · · ≤ cdj . Then it is clear that we can assume

that j is assigned “as much as possible” to facility 1, then to facility 2, and so on;
that is, x∗

1j = y∗1 , x
∗
2j = y∗2 , . . . , x

∗
d−1,j = y∗d−1 (but maybe x∗

dj < y∗d).
Definition 3.1. A feasible solution (x, y) to the linear programming relaxation

P is complete if xij > 0 implies that xij = yi for every i ∈ F , j ∈ D.
Thus the optimal solution (x∗, y∗) is “almost” complete, in the sense that for

every j ∈ D there is at most one i ∈ F with 0 < x∗
ij < y∗i . We point out that the

notion of completeness will be helpful to highlight the main ideas of the proofs and
simplify the derandomization of the algorithm, although it is not essential. Next we
show that any feasible solution to P can be made complete for an equivalent instance
of the problem. Recall that for a feasible solution (x, y), its fractional facility and
service costs are given by, respectively,

∑
i∈F fiyi and

∑
j∈D

∑
i∈F cijxij .

Lemma 3.2. Suppose that (x, y) is a feasible solution to the linear program P for
a given instance of the uncapacitated facility location problem I. Then we can find,
in polynomial time, an equivalent instance Ĩ and a complete feasible solution (x̃, ỹ) to
its linear programming relaxation with the same fractional facility and service costs as
(x, y). The new instance Ĩ differs only by replacing each facility location by at most
|D|+1 copies of the same location; furthermore, if (x, y) is g-close, then so is (x̃, ỹ).

Proof. Pick any facility i ∈ F for which there is a demand point j ∈ D with
0 < xij < yi (if there is no such facility, the original solution (x, y) is complete, and
we are done). Among the demand points j ∈ D for which xij > 0, let j◦ be the
one with smallest xij value. Next create a new facility location i′ which is an exact
copy of i (i.e., the same fixed cost and in the same location), and set ỹi′ = yi − xij◦
and set ỹi equal to xij◦ . Next for every j ∈ D with xij > 0, set x̃ij = xij◦ = ỹi,
and set x̃i′j = xij − xij◦ (which is nonnegative by the choice of j◦). All of the other
components of x and y remain unchanged. Clearly, (x̃, ỹ) is a feasible solution to the
linear programming relaxation of the new instance; if (x, y) is g-close, so is (x̃, ỹ). It
is straightforward to verify that the new instance is equivalent to the old one and that
the fractional facility and service costs of the solutions (x, y) and (x̃, ỹ) are the same.
Since the number of pairs (k, j) for which 0 < xkj < yk has decreased at least by
one, and initially there can be at most |D||F| ≤ n2 such pairs, n2 iterations suffice to
construct a new instance with the desired complete solution.

By Lemma 3.2, we can assume that (x∗, y∗) is complete. To understand some
of the crucial points of our improved algorithm we will first consider the following
randomized rounding with clustering. Suppose that we run the clustering
procedure exactly as in Table 1, and let C be the set of cluster centers. We partition the
facility locations into two classes, according to whether they are in the neighborhood
of a cluster center or not.

Definition 3.3. The set of central facility locations L is the set of facility
locations that are in the neighborhood of some cluster center, that is, L = ∪j∈CN(j);
the remaining set of facility locations R = F − L are noncentral facility locations.

The algorithm opens facilities in a slightly more complicated way than the simplest
randomized rounding algorithm described in the beginning of the section. First we
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open exactly one central facility per cluster as follows: independently for each center
j ∈ C, open neighboring facility i ∈ N(j) at random with probability x∗

ij (recall Fact
1). Next, we independently open each noncentral facility i ∈ R with probability y∗i .
The algorithm then simply assigns each demand point to its closest open facility.

Lemma 3.4. For each facility location i ∈ F , the probability that a facility at
location i is open is y∗i .

Proof. If i is a noncentral facility (i ∈ R), we open a facility at i with probability
y∗i . Suppose next that i is a central facility (i ∈ L), and assume that i ∈ N(j) for
a center j ∈ C. A facility will be opened at location i only if the center j chooses it
with probability x∗

ij ; but x∗
ij = y∗i , since (x∗, y∗) is complete.

Corollary 3.5. The expected total facility cost is
∑

i∈F fiy
∗
i .

For each demand point k ∈ D, let Ck denote the fractional service cost of k, that
is, Ck =

∑
i∈F cikx

∗
ik. The expected service cost of k ∈ D is bounded in the following

lemma whose proof is presented below.

Lemma 3.6. For each demand point k ∈ D, the expected service cost of k is at
most Ck + (3/e)v∗k.

Overall, since
∑

k∈D v∗k = LP∗, the expected total service cost can be bounded as
follows.

Corollary 3.7. The expected total service cost is at most
∑

k∈D Ck+(3/e) LP∗.

By combining Corollaries 3.5 and 3.7, and noting that
∑

k∈D Ck +
∑

i∈F fiy
∗
i =

LP∗, we obtain the following.

Theorem 3.8. The expected total cost incurred by randomized rounding
with clustering is at most (1 + 3/e)LP∗.

Proof of Lemma 3.6. Fix a demand point k ∈ D. For future reference, let j◦ be
the center of the cluster to which k belongs; notice that j◦ always has a neighboring
facility i◦ opened (i.e., i◦ ∈ N(j◦)), and hence its service cost is never greater than
v∗j◦ . To gain some intuition behind the analysis, suppose first that each center in
C shares at most one neighbor with k; that is, |N(j) ∩ N(k)| ≤ 1 for each center
j ∈ C. Each neighbor i ∈ N(k) is opened with probability y∗i = x∗

ik independently
in this special case. For notational simplicity suppose that N(k) = {1, . . . , d}, with
c1k ≤ · · · ≤ cdk. Let q be the probability that none of the facilities in N(k) is open.

Note that q =
∏d

i=1(1 − y∗i ) =
∏d

i=1(1 − x∗
ik). One key observation is that q is “not

too big”: Fact 1 combined with 1− x ≤ e−x (x > 0) implies that

q =

d∏
i=1

(1− x∗
ik) ≤

d∏
i=1

e−x∗
ik = e−

∑d
i=1 x∗

ik =
1

e
.

We will bound the expected service cost of k by considering a provably worse algo-
rithm: assign k to its closest open neighbor; if none of the neighbors of k is open,
assign k to the open facility i◦ ∈ N(j◦) (exactly as in section 2). If facility 1 is open,
an event which occurs with probability y∗1 , the service cost of k is c1k. If, on the
other hand, facility 1 is closed, but facility 2 is open, an event which occurs with
probability (1− y∗1)y

∗
2 , the service cost of k is c2k, and so on. If all of the facilities in

the neighborhood of k are closed, which occurs with probability q, then k is assigned
to the open facility i◦ ∈ N(j◦). But in this case, k is serviced by i◦, so the service cost
of k is at most 2v∗j◦ + v∗k ≤ 3v∗k exactly as in Figure 1 (section 2); in fact, this backup
routing gives a deterministic bound: the service cost of k is always no more than 3v∗k.
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Thus the expected service cost of k is at most

c1k y
∗
1 + c2k y

∗
2(1− y∗1) + · · ·+ cdk y

∗
d(1− y∗1) . . . (1− y∗d−1) + 3v∗k q

≤
d∑

i=1

cikx
∗
ik +

1

e
3v∗k = Ck +

3

e
v∗k,

which concludes the proof of the lemma in this special case.

Now we return to the more general case in which there are centers in C that can
share more than one neighbor with k. We assumed that this was not the case in order
to ensure that the events of opening facilities in N(k) were independent, but now
this is no longer true for facilities i, i′ ∈ N(k) that are neighbors of the same center.
However, if one of i or i′ is closed, the probability that the other is open increases;
thus the dependencies are favorable for the analysis. The key idea of the proof is to
group together those facilities that are neighbors of the same cluster center, so that
the independence is retained and the proof of the special case above still works. A
more rigorous analysis follows.

Let Ĉ be the subset of centers that share neighbors with k. For each center j ∈ C,
let Sj = N(j)∩N(k), and so Ĉ = {j ∈ C : Sj �= ∅}. We have already proved the lemma

when |Sj | ≤ 1 for each center j ∈ C. For each center j ∈ Ĉ, let Ej be the event that at
least one common neighbor of j and k is open (see Figure 2). To follow the proof, for

each j ∈ Ĉ, it will be convenient to think of the event of choosing facility i in Sj as a
sequence of two events: first j chooses to “open” Sj with probability pj =

∑
i∈Sj

x∗
ik

(i.e., event Ej occurs); and then if Sj is open, j chooses facility i ∈ Sj with probability
x∗
ij/pj (which is the conditional probability of opening i, given event Ej). Now let

cj =
∑

i∈Sj
cikx

∗
ik/pj ; that is, cj is the conditional expected distance from k to Sj ,

given the event Ej . For example, if Sj = {r, s, t} are the common neighbors of j
and k, the event Ej occurs when one of r, s, or t is open, pj = x∗

rk + x∗
sk + x∗

tk, and

cj = crkx
∗
rk/pj + cskx

∗
sk/pj + ctkx

∗
tk/pj . Notice that by Fact 2, the events Ej (j ∈ Ĉ)

are independent. This completes the facility central grouping. Consider the neighbors
of k that are noncentral facility locations; that is, locations i ∈ N(k) ∩ R. For each
noncentral neighbor i ∈ N(k) ∩ R, let Ei be the event in which facility i is open, let
ci be the distance cik, and let pi = x∗

ik. Next notice that all of the events E� are
independent. It follows easily from the definitions that

∑
� p� =

∑
i∈F xik = 1 and∑

� c�p� = Ck.

Now we can argue essentially as in the simple case when |Sj | ≤ 1 for each center
j ∈ C. Assume that there are d events E�, and, for notational simplicity, that they
are indexed by � ∈ {1, . . . , d}, with c1 ≤ · · · ≤ cd. Let D be the event that none of
E1, . . . , Ed occurs; that is, D is precisely the event in which all the facilities in the
neighborhood of k, N(k), are closed; let q be the probability of event D. Note that,
as in the simple case, the service cost of k is never greater than its backup routing
cost 3v∗k; in particular, this bound holds even conditioned on D. As before, we will
analyze the expected service cost of a worse algorithm: k is assigned to the open
neighboring facility with smallest c�; and if all the neighbors are closed, k is assigned
through its backup routing to the open facility i◦ ∈ N(j◦). If the event E1 occurs
(with probability p1), the expected service cost of k is c1. If event E1 does not occur,
but event E2 occurs (which happens with probability (1−p1)p2), the expected service
cost of k is c2, and so on. If we are in the complementary space D, which occurs with
probability q =

∏d
�=1(1 − p�), the service cost of k is never greater than its backup
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N(4)

4

E4

k

N(k)

E2

2

N(2)

E1

E3
3

1

Fig. 2. Estimating the expected service cost of k. Here the centers that share a neighbor with
k are demand locations 2 and 4 (Ĉ = {2, 4}). The neighbors of k that are noncentral locations are 1
and 3. Event E2 (respectively, E4) occurs when a facility in N(k)∩N(2) (respectively, N(k)∩N(4))
is open, while event E1 (respectively, E3) occurs when facility 1 (respectively, 3) is open. Though
there are dependencies among the neighbors of a fixed center, the events E1, E2, E3, and E4 are
independent.

service cost 3v∗k. Thus the expected service cost of k can be bounded by

c1 p1 + c2 (1− p1)p2 + · · ·+ cd (1− p1) . . . (1− pd−1)pd + 3v∗k q.(7)

To prove the lemma we bound the first d terms of (7) by Ck, and q by 1/e.

Notice than even though the clustering construction is deterministic, the backup
service cost of k (that is, the distance between k and the facility open in N(j◦)) is
a random variable B. In the proof above, we used the upper bound B ≤ 3v∗k. In
fact, the proof of Lemma 3.6 shows that the expected service cost of k is no more
than Ck + q E[B|D], where D is the event in which no neighbor k is open, as in
the proof of the lemma. As can be easily seen, the upper bound used for (7) is not
tight. In fact, we can get an upper bound of (1 − q)Ck + q E[B|D] as follows. First
note the following simple probabilistic interpretation of the first d terms of (7). Let
Z� (� = 1, . . . , d) be independent 0-1 random variables, with Prob{Z� = 1} = p�.
Consider the set of indices for which Z� is 1, and let Z be the minimum c� value in
this set of indices; if all of the Z� are 0, Z is defined to be 0. Then the expected
value of Z is exactly equal to the first d terms of (7). Given a set of numbers S, we
will use min◦(S) to denote the smallest element of S if S is nonempty, and 0 if S
is empty, so that Z = min◦ {c�Z� : � = 1, . . . , d and Z� = 1}. The following intuitive
probability lemma, whose proof is given in section 6, provides a bound on the first d
terms of (7). (A much simpler proof of this lemma, based on the Chebyshev integral
inequality, was observed by Sviridenko [Svi02].)
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Lemma 3.9. Suppose that 0 ≤ c1 ≤ · · · ≤ cd, p1, . . . , pd > 0, with
∑d

�=1 p� = 1.
Let Z1, . . . , Zd be 0-1 independent random variables, with Prob{Z� = 1} = p�; let
C =

∑
c�p�. Then

E

[
min◦

{�:Z�=1}
c�Z� + C

d∏
�=1

(1− Z�)

]
≤ C.

Applying the lemma to the first d terms of (7), since E[
∏d

�=1(1−Z�)] =
∏d

�=1(1−
p�) = q, we have that

c1p1 + c2(1− p1)p2 + · · ·+ cd(1− p1) . . . (1− pd−1)pd ≤ Ck(1− q).(8)

Thus we have proved the following.
Lemma 3.10. For each demand point k ∈ D, the expected service cost of k is at

most (1− q)Ck + q E[B|D].
Finally, we introduce the last idea that leads to the (1 + 2/e)-approximation

algorithm. In Figure 1, we have bounded the distance from the center j◦ to the open
facility i◦, ci◦j◦ , by v∗j◦ . However, i◦ is selected (by the center j◦) with probability

x∗
i◦j◦ , and, thus, the expected length of this leg of the routing is

∑
i∈F cij◦x

∗
ij◦ = Cj◦ ,

which in general is smaller than the estimate v∗j◦ used in the proof of Lemma 3.6. Thus,
to improve our bounds, we slightly modify the clustering procedure by changing line
3 of Table 1 to

3’. choose j◦ ∈ S with smallest v∗j + Cj value (j ∈ S)

We will call the modified algorithm randomized rounding with improved
clustering. Notice that Lemmas 3.4 and 3.10 are unaffected by this change. We
will show that the modified rule 3’ leads to the bound E[B|D] ≤ 2v∗k +Ck, improving
on the bound of 3v∗k we used in the proof of Lemma 3.6.

Lemma 3.11. If we run randomized rounding with improved clustering,
the conditional expected backup service cost of k, E[B|D], is at most 2v∗k + Ck.

Proof. Suppose that the clustering partition assigned k to the cluster with center
j◦. Deterministically, we divide the proof into two cases.

Case 1. Suppose that there is a facility � ∈ N(k)∩N(j◦) such that c�j◦ ≤ Cj◦ (see
Figure 3(a)). Let i be the facility in N(j◦) that was opened by j◦; notice that cij◦ ≤ v∗j◦
(because (x, y) is v∗-close). Then the service cost of k is at most cik ≤ ck�+c�j◦ +cj◦i,
which, using again that (x∗, y∗) is v∗-close, is at most v∗k+c�j◦+v∗j◦ ≤ v∗k+Cj◦+v∗j◦ ≤
Ck + 2v∗k, where the last inequality follows from the fact that the center has the
minimum (Cj+v∗j ) value. In this case, we have a (deterministic) bound, B ≤ Ck+2v∗k.

Case 2. Assume that c�j◦ > Cj◦ for every � ∈ N(k) ∩ N(j◦) (see Figure 3(b)).
First note that when we do not condition on D (i.e., that no facility in N(k) is open),
then the expected length of the edge from j◦ to the facility that j◦ has selected is Cj◦ .
However, we are given that all of the facilities in the neighborhood of k are closed,
but, in this case, all of these facilities that contribute to the expected service cost of j◦
(the facilities in N(k)∩N(j◦)) are at a distance greater than the average Cj◦ . Thus the
conditional expected service cost of j◦ is at most the unconditional expected service
cost of j◦, Cj◦ . It follows then that if � ∈ N(k) ∩ N(j◦), the conditional expected
service cost of k is at most Cj◦ + cj◦� + c�k ≤ Cj◦ + v∗j◦ + v∗k ≤ Ck + 2v∗k, where
again the last inequality follows from the fact that Cj◦ + v∗j◦ ≤ Ck + v∗k . Hence,

E[B|D] ≤ Ck + 2v∗k in this case too.
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Fig. 3. Bounding the backup service cost of k.

Thus, using Lemmas 3.10 and 3.11, the expected service cost of k can be bounded by

Ck(1− q) + q (2v∗k + Ck) = Ck + 2q v∗k ≤ Ck +
2

e
v∗k,

where once again we bound q by 1/e.

Corollary 3.12. The expected total service cost of randomized rounding
with improved clustering is at most

∑
k∈D Ck + (2/e)

∑
k∈D v∗k.

Combining Corollaries 3.5 and 3.12, randomized rounding with improved
clustering produces a feasible solution with expected cost no greater than

∑
i∈F

fiy
∗
i +

∑
k∈D

Ck +
2

e

∑
k∈D

v∗k =

(
1 +

2

e

)
LP∗ ≈ 1.736 LP∗.

Thus we have proved the following theorem.

Theorem 3.13. There is a polynomial-time randomized algorithm that finds a
feasible solution to the uncapacitated facility location problem with expected cost at
most (1 + 2/e) LP∗.

As a consequence of the theorem, we obtain the following corollary on the quality
of the value of the linear programming relaxation of [Bal65].

Corollary 3.14. The optimal value of the linear programming relaxation P is
within a factor of 1.736 of the optimal cost.

This improves on the previously best known factor of 3.16 presented in [STA97].

To finish the proof of Theorem 1.1 we will show in the next section that the
algorithm of Theorem 3.13 can be derandomized using standard methods.



14 FABIÁN A. CHUDAK AND DAVID B. SHMOYS

4. Derandomization. In this section we show how to derandomize the algo-
rithm of Theorem 3.13. To this end, we will use the method of conditional expec-
tations due to Erdös and Selfridge [ES73] (see also Spencer [Spe87]) that works as
follows. Suppose that we have m 0-1 random variables U1, . . . , Um and know that
E[F ] = G, where F = g(U1, . . . , Um) for a nonnegative real-valued function g of m
variables. Our task is to determine a set of values u1, . . . , um for the random variables
U1, . . . , Um such that g(u1, . . . , um) ≤ G. We wish to decide whether to set U1 to 0 or
1. The expected value E[F ] is a convex combination of the conditional expectations
E[F |U1 = 0] and E[F |U1 = 1]; more precisely,

E[F ] = Prob{U1 = 0}E[F |U1 = 0] + Prob{U1 = 1}E[F |U1 = 1].

We would have certainly made the right decision if the conditional expectation de-
creases. Thus we set u1 to 1 if E[F |U1 = 1] ≤ E[F |U1 = 0], and 0 otherwise. Note
that E[F |U1 = u1] ≤ E[F ] = G. The process continues inductively. Suppose that we
have already decided on the values u1, . . . , ut ∈ {0, 1} so that the conditional expected
value E[F |U1 = u1, . . . , Ut = ut] is at most G. Now E[F |U1 = u1, . . . , Ut = ut] is a con-
vex combination of E[F |U1 = u1, . . . , Ut = ut, Ut+1 = 0] and E[F |U1 = u1, . . . , Ut =
ut, Ut+1 = 1]. Again we choose to set ut+1 to 1 if the expected value decreases, that is,
if E[F |U1 = u1, . . . , Ut = ut, Ut+1 = 1] ≤ E[F |U1 = u1, . . . , Ut = ut, Ut+1 = 0], and 0
otherwise. Clearly, at termination, we obtain a set of 0-1 values u1, . . . , um such that
g(u1, . . . , um) ≤ G as desired. Notice that we need only to compute 2m conditional
expected values. However, for this process to work we have to be able to compute all
the intermediary conditional expectations efficiently (i.e., in polynomial time).

We first show that the analysis of randomized rounding with improved
clustering also provides a random variable W , a pessimistic estimator [Rag88],
such that the cost of the solution delivered by the algorithm is at most W , and the
bounds we obtained can be read off as a bound on the expected value of W , that
is, E[W ] ≤ (1 + 2/e)LP∗. Furthermore, the expected value of W can be computed
exactly. The upper bound W will let us use the method of conditional expectations
to derandomize the algorithm.

The random variable W is precisely the cost of the worse algorithm we used to
prove Theorem 3.13; this algorithm either assigns each demand k to the closest open
neighbor (in the c sense as in the proof of Lemma 3.6) or, if none of its neighbors
is open, it assigns k to the backup facility of the cluster to which k belongs. More
concretely, for each potential facility location i ∈ F let Ui be the 0-1 random variable
that is 1 exactly when a facility at location i is open. Notice that the random variables
Ui are not independent in general, and that, since we assumed that the feasible solution
(x, y) was complete, the expected value of Ui is yi. It follows immediately that the
facility cost of the randomized algorithm is

∑
i∈F fiUi.

Next we need to find an upper bound for the service costs expressed in terms of
the Ui’s. We fix a demand location k ∈ D and carefully revise the bounds on the
expected service cost of k given in the previous section. Recall the notation used
in the proof of Lemma 3.6. For each � ∈ {1, . . . , d}, we extend the definition of S�

when � is a neighbor of k by just setting S� equal to {�}. Note that in any case
c�p� =

∑
i∈S�

cikyi = E[
∑

i∈S�
cikUi]. Now let P� =

∑
i∈S�

Ui and T� =
∑

i∈S�
cikUi

for � = 1, . . . , d; and let Q =
∏d

�=1(1−P�). Observe that because of the dependencies,
the random variables P� are 0-1 with p� = E[P�] =

∑
i∈S�

x∗
ik. Now suppose that

according to Lemma 3.11 we are in Case 1. Then the arguments given to bound the
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expected service cost of k in effect say that the service cost of k is at most

T1 + T2(1− P1) + · · ·+ Td(1− P1) . . . (1− Pd−1) +Q(v∗k + v∗j◦ + Cj◦);(9)

let Zk denote this upper bound. Since the factors of the products in each term are
independent, it is straightforward to verify that the bound on the service cost of k of
Theorem 3.13 implies E[Zk] ≤ Ck + (2/e)v∗k.

For Case 2, the service cost of k is at most

T1 + T2(1− P1) + · · ·+ Td(1− P1) . . . (1− Pd−1) +Q
(
v∗k + v∗j◦ +

∑
i∈N(j◦)−N(k)

cijUi

)
,

(10)

which as before will be denoted by Zk. This case is slightly more complicated than
Case 1, since before we used the fact that our upper bound was deterministic. Now
dependencies have to be taken into account. As in Case 1, the expected value of
the first d terms can be upper bounded, exactly as in the proof of Theorem 3.13, by
(1− q)Ck. For the last term, notice first that the dependencies imply that Pj◦Ui = 0
(and thus (1−Pj◦)Ui = Ui ) for each i ∈ N(j◦)−N(k); hence, if Q′ =

∏
j �=j◦(1−Pj),

Q
∑

i∈N(j◦)−N(k)

cijUi = Q′ (1− Pj◦)
∑

i∈N(j◦)−N(k)

cijUi = Q′ ∑
i∈N(j◦)−N(k)

cijUi.

Now the two factors on the rightmost expression are independent, and

E

 ∑
i∈N(j◦)−N(k)

cijUi

 ≤ (1− pj◦)Cj◦ ,

since, by Case 2, cij◦ > Cj◦ for all i ∈ Sj◦ . Thus the expected value of the last term
of (10) can be bounded by q(v∗k + v∗j◦ + Cj◦). Putting the pieces together, we have

again that E[Zk] ≤ Ck + (2/e)v∗k as needed. Notice also that, as in Case 1, Zk can be
written as a sum in which each term is the product of independent random variables.

Clearly, if W =
∑

i∈F fiUi +
∑

k∈D Zk, the cost of the randomized algorithm can
be bounded by W , and E[W ] ≤ (1+2/e)LP∗. Since W is the cost of a worse algorithm,
if we were able to find 0-1 values for the Ui’s so that the corresponding value of W
is at most its expected value E[W ], we would have a feasible solution to the problem
whose cost is at most (1 + 2/e)LP∗, thus proving Theorem 1.1. As mentioned earlier,
to find such values for the Ui’s we apply the method of conditional expectations.

We need to explain how to compute the conditional expected values of W . To
understand how to apply the method of conditional expectations suppose first that
all of the Ui’s are independent random variables. Now the conditional expected value
E[W |Ui = 0] (respectively, E[W |Ui = 1]) is easy to compute: simply replace Ui by 0
(respectively, by 1) in the expression of W and compute the expected value directly.
It is also easy to see that we can substitute each Ui by ui ∈ {0, 1} for i ∈ E , for
any subset E ⊆ F , and compute E[W |Ui = ui (i ∈ E)]. Thus, if we did not have
dependencies, the derandomization of the algorithm is quite simple. However, if, for
instance, Us and Ut (s, t ∈ F , s �= t) are dependent, when conditioning on the event
{Us = 1}, we cannot just replace Us by 1 in the expression of W , since the value of
Ut might also be affected. This apparent difficulty can be easily overcome in our case,
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since the dependencies imply that Ut = 0 whenever Us = 1. Next we describe the
derandomization process with more detail.

We first consider the noncentral facilities. If i is a noncentral facility location,
i ∈ R, it is easy to compute the conditional expected value of W , given that Ui = u
(u = 0, 1): simply substitute Ui by u in the expression of W and take expected values.
In the same way, we can also compute E[W |Ui = ui (i ∈ E)], for any subset E ⊆ R,
where ui ∈ {0, 1} (i ∈ E). Now we can determine the values of ui for i ∈ R applying
the method of conditional expectations as described earlier. For notational simplicity,
we will assume that R = {1, . . . , r}. In the first step, we set u1 equal to 1 (or,
equivalently, open facility 1) only if E[W |U1 = 1] ≤ E[W |U1 = 0]; otherwise, we set
u1 equal to 0. Inductively, if we already know u1, . . . , uh−1, in step h we set Uh to 1 if
E[W |U1 = u1, . . . , Uh−1 = uh−1, Uh = 1] ≤ E[W |U1 = u1, . . . , Uh−1 = uh−1, Uh = 0],
and to 0 otherwise. When h = r, we have values u1, . . . , ur such that if W is the
conditional random variable W |U1 = u1, . . . , Ur = ur, then E[W ] ≤ E[W ].

In what follows we find values for the remaining variables Ui, that is, decide which
central facilities to open, in such a way that at termination the cost of the solution
is at most E[W ]. Fix a center j ∈ C. We wish to decide which neighboring facility to
open. For each neighbor i ∈ N(j) we can compute the conditional expectation of W ,
given that Ui is 1 as follows. Since Ui = 1, for all the other neighbors i′ of j it must
be that Ui′ = 0. Hence we just replace these values in the formula of W and compute
the corresponding expectation. The key observation is that, since we open exactly
one facility in the neighborhood of j, E[W ] is a convex combination of the conditional
expected values E[W |Ui = 1] for i ∈ N(j), that is,

E[W ] =
∑

i∈N(j)

Prob{Ui = 1}E[W |Ui = 1].

Thus we open the neighboring facility i◦ ∈ N(j) for which the conditional expected
value is smallest; more precisely, we set ui◦ equal to 1 and set ui equal to 0 for
i ∈ N(j), i �= i◦. Using now that the neighborhoods of distinct centers are disjoint, we
can essentially argue as in the simple case when all the variables were independent.
We repeat the process inductively; at each step we treat a new center and decide which
neighboring facility to open so that the conditional expected value never increases.

Finally, notice that there are |R|+ |C| steps, and overall we need only to compute
1 + 2|R|+ |L| expected values. The most expensive computation that dominates the
whole derandomization process is to find, initially, the expected value of W , which
takes O(|D||F| log |F|) arithmetic operations.

5. Extensions. To motivate the results of this section, suppose that the con-
tribution of the fractional facility cost to the optimal fractional cost is very small.
If we run randomized rounding with improved clustering and focus on the
analysis, we would have an imbalance between the facility and service cost upper
bounds. Hence, it is intuitively clear that we could afford to open facilities with
higher probability to balance out the bounds. In this section, we will show how to
do this in general, providing a more refined performance guarantee that depends on
information related to the cost distribution of the optimal fractional solution.

A standard technique to improve the performance of randomized rounding con-
sists of using a nontrivial mapping of the optimal fractional solution into probabilities.
One of the most common approaches boosts all the probabilities by a factor of γ for
a fixed parameter γ > 0. For instance, the simplest randomized rounding algorithm
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would open facility i ∈ F with probability min{γy∗i , 1}. These ideas can also be
applied to our randomized algorithm in a simple fashion that we describe below.

First of all, as mentioned in section 3, the proof of Theorem 3.13 is valid for any
g-close solution; that is, if (x, y) is g-close, randomized rounding with improved
clustering produces a feasible solution with expected cost at most∑

i∈F
fiyi +

∑
j∈D

∑
i∈F

cijxij +
2

e

∑
j∈D

gj .

In fact, it is also easy to see that the derandomization of section 4 also carries over to
this more general setting.

Now suppose again that (x, y) is g-close and complete, and let γ ≥ 1. We next de-
scribe the algorithm γ-randomized rounding with improved clustering, which
is a variant of randomized rounding with improved clustering. The only dif-
ference is that now we open facilities with higher probabilities. Each noncentral facil-
ity i ∈ R is opened independently with probability min{γyi, 1}. As in randomized
rounding with improved clustering, each center j ∈ C opens one facility in its
neighborhood i ∈ N(j), with probability xij , in a first phase. Additionally, if a facility
i ∈ N(j) has not been opened, it is now opened in a second phase with probability
min{γyi − xij , 1} = min{γyi − yi, 1}. The new algorithm has a guarantee given by
the following theorem, whose proof is a minor variation of the proof of Theorem 3.13.

Theorem 5.1. For each γ ≥ 1, the expected cost of the solution produced by
γ-randomized rounding with improved clustering is at most

γ
∑
i∈F

fiyi +
∑
j∈D

∑
i∈F

cijxij +
2

eγ

∑
j∈D

gj .

Proof. For simplicity, we will analyze a worse algorithm in which we are allowed
to open more than one facility at each location i ∈ F . More precisely, for each facility
i ∈ L, if i is in the neighborhood of center j, we open a facility at location i in
the second phase with probability min{γyi − yi, 1} independently of whether there is
already an open facility at i (from the first phase); in this case, we of course take into
account the extra facility cost.

First we estimate the expected total facility cost as in Lemma 3.4. If i ∈ R is
a noncentral facility, i is open with probability min{γyi, 1}, giving a contribution to
the expected total facility cost of fi min{γyi, 1} ≤ γ fiyi. Now if i ∈ L is a central
facility location, i ∈ N(j) for j ∈ C, a facility is open at i first with probability
yi = xij , contributing fiyi. In addition, another facility is open at i with probability
min{γyi − yi, 1}, contributing an additional fi min{γyi − yi, 1} to the expected total
facility cost. Overall, the contribution of i is fiyi + fi min{γyi − yi, 1} ≤ γ fiyi, once
again. Thus, the expected total facility cost is at most γ

∑
i∈F fiyi.

Next focus on a demand point k ∈ D. As in the proof of Lemma 3.6, for each
center j ∈ C, Sj = N(j) ∩ N(k) and Ĉ = {j ∈ C : Sj �= ∅}. Now, for each j ∈ Ĉ, the
event Ej occurs when a facility in Sj is open in the first phase; the probability of
event Ej is then pj =

∑
i∈Sj

xik. In addition, for each central neighbor i ∈ N(k) ∩ L,
define the event Ei in which a facility is open at location i in the second phase; hence
the probability of event Ei is pi = min{γyi − yi, 1}. For each noncentral neighbor
i ∈ N(k) ∩ R, the event Ei occurs when a facility at location i is open, and the
probability of event Ei is pi = min{γyi, 1}. As in the proof of Lemma 3.6 and by the
assumption at the beginning of the proof, all the events E� are independent. For each
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j ∈ Ĉ, cj is the expected distance from k to Sj , given the event Ej and considering
only the first phase. For each neighbor i ∈ N(k), ci is simply the distance cik. Without
loss of generality, we assume that there are d events E� and that they are indexed by
� ∈ {1, . . . , d} with c1 ≤ · · · ≤ cd. Let D be the event in which none of the events

E1, . . . , Ed occurs, and let q =
∏d

�=1(1−p�) be the probability of event D. If B is the
backup service cost of k, that is, the distance from k to the facility open during the
first phase in the cluster to which k belongs (as in the proof of Lemma 3.10), following
the proofs of Lemmas 3.6 and 3.10, the expected service cost of k is at most

c1 p1 + c2 (1− p1)p2 + · · ·+ cd (1− p1) . . . (1− pd−1)pd + E[B|D] q.(11)

It is easy to see that the proof of Lemma 3.11 remains valid, so that E[B|D] ≤
2gk +

∑
i∈F cikxik. Following the proof of Theorem 3.13, we need only to show that

the first d terms of (11) are at most (1 − q)
∑

i∈F cikxik and that q ≤ 1/eγ . We
will use the following generalization of Lemma 3.9, whose proof is postponed until
section 6. (A much simpler proof of this lemma, based on the Chebyshev integral
inequality, was observed by Sviridenko [Svi02].)

Lemma 5.2. Let 0 ≤ c1 ≤ · · · ≤ cd, and z1, . . . , zd > 0, with
∑d

�=1 z� = 1,
and let γ ≥ 0. Suppose that Z1, . . . , Zd are 0-1 independent random variables, with
Prob{Z� = 1} = min{γz�, 1}; let C =

∑
c�z�. Then

E

[
min◦
Z�=1

c�Z� +

d∏
�=1

(1− Z�)C

]
≤ C.

If j ∈ Ĉ, let zj = pj/γ so that pj = γzj = min{γzj , 1}. If i ∈ N(k) ∩ R, let
zi = yi = xik so that pi = min{γzi, 1}. Finally, if i ∈ N(k) ∩ L, with i ∈ N(j), j ∈ Ĉ,
let zi = xik − xik/γ so that pi = min{γzi, 1}. Now we have that

∑
� z� = 1, and∑

� c�z� =
∑

i∈F cikxik. As in the proof of Lemma 3.10, using now Lemma 5.2, the
first d terms of (11) can be bounded by (1− q)

∑
i∈F cikxik.

To finish the proof of the theorem notice that if p� is 1 for some �, q is 0; otherwise,

q =

d∏
�=1

(1− p�) =

d∏
�=1

(1− γz�) ≤
d∏

�=1

e−γz� = e−
∑d

�=1 γz� =
1

eγ
.

Using similar arguments to those given in section 4, the algorithm of the theorem
can be derandomized.

For the rest of the section let ρ ∈ [0, 1] be defined by ρ LP∗ =
∑

i∈F fiy
∗
i . If ρ is

either 0 or 1, there is an optimal solution to P which is integral; that is, all the yi’s are
0 or 1. When ρ = 0, the optimal solution sets yi to 1 exactly for those facilities i ∈ F
for which fi = 0. The case when ρ = 1 is slightly more complicated and requires that
the distance function be symmetric and satisfy the triangle inequality. First, for each
facility location i ∈ F , define Di as the set of demand points that are at distance 0
from i. If i, � ∈ F and j, k ∈ D, the inequality cij ≤ cik + c�k + c�j implies that for
i �= i′, either Di = Di′ or Di ∩Di′ = ∅. Hence, we can partition the set of facilities
into classes such that if i and i′ belong to the same class, Di = Di′ , and Di ∩Di′ = ∅

otherwise. Now, since ρ = 1, the sets Di (i ∈ F) cover all the demand points. Finally,
the optimal solution simply opens the cheapest facility in each class. (Notice that the
fact that Di ∩Di′ = ∅ for i and i′ in different classes is crucial to argue optimality.)
Thus we will assume that 0 < ρ < 1. For each fixed ρ, we want to apply Theorem 5.1
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to a g-close feasible solution to P with a conveniently chosen γ so as to improve the
performance guarantee of γ-randomized rounding with improved clustering.

First we consider the optimal solution (x∗, y∗), which is v∗-close. By Theorem
5.1, the expected cost of the solution produced by γ-randomized rounding with
improved clustering is at most

γ
∑
i∈F

fiy
∗
i +

∑
j∈D

∑
i∈F

cijx
∗
ij +

2

eγ

∑
j∈D

v∗j .

Since
∑

j∈D v∗j = LP∗, and
∑

j∈D
∑

i∈F cijx
∗
ij = (1−ρ) LP∗, the expected performance

guarantee is at most

γ ρ+ (1− ρ) +
2

eγ
.(12)

Now we choose γ ≥ 1 so as to minimize (12), which gives

γ =

{
ln(2/ρ) if ρ ≤ 2/e,

1 if ρ > 2/e.

In this case, we obtain a performance guarantee of{
1 + ρ ln(2/ρ) if ρ ≤ 2/e,

1 + 2/e if ρ > 2/e.

Figure 4 shows the performance of the new algorithm for each value of ρ. Notice that
the performance improves when ρ gets closer to 0, but then there is no improvement,
for instance, when ρ is close to 1. To improve the guarantees for this range of values
of ρ, we will use a different g-close solution, the one proposed by Shmoys, Tardos, and
Aardal [STA97], which provides better guarantees when ρ is close to 1.

In what follows, we apply Theorem 5.1 to the g-close solutions given in [STA97],
which were obtained using the filtering technique of Lin and Vitter [LV92b] applied to
the optimal solution (x∗, y∗). Fix α ∈ (0, 1]. For a demand point j ∈ D, suppose that
N(j) = {1, . . . , d}, with c1j ≤ · · · ≤ cdj . Let �∗ = min{� : 1 ≤ � ≤ d,

∑�
i=1 x

∗
ij ≥ α};

then the α-point of j, cj(α) is c�∗j . For each demand point j ∈ D, let

βα
j =

∑
i:cij≤cj(α)

x∗
ij .

The filtered solution (xα, yα) is defined in a simple way to ensure g-closeness, for
gj = cj(α) (j ∈ D), as follows: if j ∈ D, i ∈ F ,

xα
ij =


x∗
ij

βα
j

if cij ≤ cj(α),

0 otherwise,

and yαi = min{1, y∗i /α} for i ∈ F . It is easy to verify that (xα, yα) is a feasible
primal solution (because βα

j ≥ α) and that (xα, yα) is (cj(α))-close. The total frac-
tional facility cost of the filtered solution is

∑
i∈F fiy

α
i , and it is clearly bounded

by
∑

i∈F fiy
∗
i /α. Next define τ(α) =

∑
j∈D cj(α)/

∑
j∈D

∑
i∈F cijx

∗
ij . The following

lemma follows from Lemma 10 of [STA97] and was observed in [GK99].
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Lemma 5.3. The function τ(α) satisfies the following expression:∫ 1

0

τ(α) dα = 1.

Proof. It was shown in [STA97] that
∫ 1

0
cj(α) dα =

∑
i∈F cijx

∗
ij , from which the

lemma follows at once according to our definitions.
Also note that τ(α) is a left continuous step function that has at most O(|D||F|)

break points. Since for each demand point k ∈ D, the fractional service cost of the
filtered solution is bounded by the fractional transportation cost, that is,∑

i∈F
cikx

α
ik =

∑
{i:cik≤ck(α)}

cik
x∗
ik

βα
j

≤
∑
i∈F

cikx
∗
ik,

the previous theorem implies that the expected total cost of the solution of γ-randomized
rounding with improved clustering when applied to the (cj(α))-close solution
(xα, yα) is at most

γ
∑
i∈F

fi
y∗i
α

+
∑
j∈D

∑
i∈F

cijx
∗
ij +

2

eγ

∑
j∈D

cj(α),

or an expected performance guarantee of

γ
ρ

α
+ 1− ρ+

2

eγ
(1− ρ)τ(α).(13)

To find the best possible guarantee we will use binary search on a target guarantee and
Lemma 5.3 in a way similar to that used in [GK99] as follows. Fix c > 1, and suppose
that γ-randomized rounding with improved clustering does not produce a
c-approximation algorithm for every α ∈ (0, 1), γ ≥ 1. Then

τ(α) >
eγ

2

(c− 1 + ρ)α− γρ

(1− ρ)α
.(14)

We are interested only in values of α for which the expression on the right is nonneg-
ative; hence we will assume that α ≥ γρ/(c− 1 + ρ). For fixed α, the value of γ ≥ 1
that makes the right-hand side of (14) greatest is given by

γ(α) =


(c− 1 + ρ)α− ρ

ρ
if 2ρ/(c− 1 + ρ) ≤ α ≤ 1,

1 if ρ/(c− 1 + ρ) ≤ α ≤ 2ρ/(c− 1 + ρ).

Thus, from (14), we obtain a lower bound for τ(α), LBc(α), given by

LBc(α) =


ρ

2

exp{[(c− 1 + ρ)α− ρ]/ρ}
(1− ρ)α

if 2ρ/(c− 1 + ρ) ≤ α ≤ 1,

e

2

(c− 1 + ρ)α− ρ

(1− ρ)α
if ρ/(c− 1 + ρ) ≤ α ≤ 2ρ/(c− 1 + ρ),

0 if 0 ≤ α ≤ ρ/(c− 1 + ρ).

Note that LBc(α) is a continuous and increasing function of α (since c and ρ are fixed).

Now since
∫ 1

0
τ(α) dα = 1, and τ(α) > LBc(α), if we can show that

∫ 1

0
LBc(α) dα > 1,
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we have a contradiction, and, thus, the performance guarantee of the algorithm is no
greater than c. Using bisection search we can find the smallest c, say c◦, within a

small error tolerance (say 0.0001) for which
∫ 1

0
LBc◦(α) dα > 1, and hence show that

the algorithm has a performance guarantee c◦. It is clear that the bisection search
takes constant time. We finally address the issue of how to find the parameters α and
γ to obtain a c◦-approximation algorithm. We know that∫ 1

0

τ(α) dα = 1 <

∫ 1

0

LBc◦(α) dα;(15)

hence there must be a value of α, say α◦, such that

τ(α◦) ≤ LBc◦(α◦).(16)

This implies that when γ = γ(α◦), γ-randomized rounding with improved clus-
tering produces a solution with expected cost within a factor of c◦ of optimum. Thus
we need only to argue how to find such an α◦ in polynomial time.

Now we know that τ(α) is a left continuous step function with at most O(|D|2)
break points. Hence we can find a partition of the interval (0, 1] = (0, s1] ∪ (s1, s2]
∪ · · · ∪ (sk, 1], with k = O(|D|2), such that τ(α) is constant in each subinterval.
Suppose that τ(α) = z in the subinterval (si, si+1]. If z > LBc◦(si+1), since LBc◦
is increasing, the inequality must hold for the whole subinterval. Thus if for all the
right endpoints of the subintervals inequality (16) does not hold, τ(α) > LBc◦(α) for
each α ∈ (0, 1], contradicting (15). This gives a simple way to find a c◦-approximation
algorithm. Figure 4 shows the performance guarantees obtained using this algorithm.

We conclude the section by pointing out that there is a minor improvement on the
best guarantee we can achieve using the algorithms γ-randomized rounding with
improved clustering. Indeed, a careful computation gives a slightly improved
overall performance guarantee of 1.73352 < 1.73576 ≈ 1 + 2/e.

6. Proof of Lemmas 3.9 and 5.2. Notice that Lemma 3.9 follows from Lemma
5.2 by simply taking γ = 1. Thus we need only to prove Lemma 5.2. As noted above,
Sviridenko [Svi02] (in the proof and discussion around his Lemmas 4 and 5) observed
that a much simpler version of this proof can be derived from the Chebyshev integral
inequality, and he cited particular variants in the text of Hardy, Littlewood, and Pólya
[HLP52].

The key idea of the proof is to observe that the expected value decreases as a
function of γ; thus, since when γ is 0 the expected value is exactly C, we are done.

For γ ≥ 0, let p(γ) := E[min◦{i:Zi=1} ciZi +
∏d

i=1(1− Zi)C]. Let γ = mini(1/zi).
We first prove the lemma for γ ≤ γ, so that γzi < 1, if γ < γ. In this case, p(γ) can
be computed as

c1γz1 + c2γz2(1− γz1) + · · ·+ cdγzd(1− γz1) · · · (1− γzd−1) + C

d∏
�=1

(1− γz�).

Notice that p(γ) is a polynomial on γ and that p(0) = C. Hence, to prove the lemma
in this case it is enough to show that p′(γ) ≤ 0 for γ ∈ (0, γ).

Next define for each � = 0, 1, . . . , d

F�(γ) =

{
1 if � = 0,

(1− γz�)F�−1(γ) if � ≥ 1.
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Fig. 4. Performance guarantees of γ-randomized rounding with improved clustering as a
function of ρ. The solid line corresponds to the algorithm that uses the optimal v∗-close solution
(x∗, y∗), while the dashed line corresponds to the algorithm run with the filtered solution of [STA97].

Thus we can write

p(γ) = c1γz1F0(γ) + c2γz2F1(γ) + · · ·+ cdγzdFd−1(γ) + CFd(γ)

=

d∑
�=1

c�γz�F�−1(γ) + Fd(γ)

d∑
�=1

c�z�

=

d∑
�=1

c�z� [γF�−1(γ) + Fd(γ)] .

Then

p′(γ) =
d∑

�=1

c�z�
[
F�−1(γ) + γF ′

�−1(γ) + F ′
d(γ)

]
.

For � = 1, . . . , d, let λ� = F�−1(γ) + γF ′
�−1(γ) + F ′

d(γ) so that p′(γ) =
∑d

�=1 c�z�λ�.
Next note that

F ′
�(γ) =

{
0 if � = 0,

−z�F�−1(γ) + (1− γz�)F
′
�−1(γ) if � ≥ 1.
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It is easy to check by induction that F ′
�(γ) ≤ 0, � = 0, . . . , d. To prove the lemma in

this case, we will use the following two claims.
Claim 1. The following equality holds:

∑d
�=1 z�λ� = 0.

Claim 2. There is an index �◦, 0 ≤ �◦ ≤ d, such that λ1, . . . , λ�◦−1 ≥ 0, and
λ�◦ , . . . , λd ≤ 0.

To prove that p′(γ) ≤ 0, take �◦ as in Claim 2; then use Claim 1 and the order of
the c�’s:

p′(γ) =
�◦−1∑
�=1

c�λ�z� +

d∑
�=�◦

c�λ�z�

≤ c�◦

(
�◦−1∑
�=1

λ�z�

)
+ c�◦

(
d∑

�=�◦

λ�z�

)

= c�◦

d∑
�=1

λ�z�

= 0.

We complete the proof of the lemma for γ ∈ [0, γ] by proving the claims.
Proof of Claim 1. Note first that for � = 1, . . . , d

−z�F�−1(γ)− γz�F
′
�−1(γ) = F ′

�(γ)− F ′
�−1(γ).

Thus

d∑
�=1

[−z�F�−1(γ)− γz�F
′
�−1(γ)] = F ′

d(γ)− F ′
0(γ) = F ′

d(γ),

which implies that
∑

� z�λ� = 0, since
∑

� z� = 1.
Proof of Claim 2. If λ� ≥ 0 (or λ� ≤ 0) for all �, using Claim 1, λ� = 0 for all

�, and any index works. Hence we can assume that at least one λ� < 0 and at least
one λ� > 0. Suppose the claim does not hold. Then there must exist an index �,
1 ≤ � ≤ d, such that λ� ≤ 0, but λ�+1 > 0. In particular,

λ�+1 = F�(γ) + γF ′
�(γ) + F ′

d(γ) > 0.

Thus,

λ�+1 − F ′
d(γ) = F�(γ) + γF ′

�(γ)

= (1− γz�)F�−1(γ) + (1− γz�)γF
′
�−1(γ)− γz�F�−1(γ)

= (1− γz�)[F�−1(γ) + γF ′
�−1(γ)]− γz�F�−1(γ)

> −F ′
d(γ)

≥ 0.

Let t := F�−1(γ) + γF ′
�−1(γ). Since (1 − γz�) > 0 and −γz�F�−1(γ) < 0, it must be

the case that t > 0. Since λ� ≤ 0, t ≤ −F ′
d(γ). Thus,

0 < t ≤ −F ′
d(γ) < λ�+1 − F ′

d(γ) = (1− γz�)t− γz�F�−1(γ) < (1− γz�)t,

which is impossible since (1− γz�) < 1.
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Next suppose that γ ≥ γ, and let �◦ be the smallest index for which min{γz�, 1}
is 1. Now we have that

p(γ) = c1γz1 + c2γz2(1− γz1) + · · ·+ c�◦(1− γz1) . . . (1− γz�◦−1).

We reduce this case to the previous one as follows. Let α =
∑�◦−1

�=1 z�, γ
′ = γα, and

let z′� = z�/α for � = 1, . . . , �◦ − 1; note that
∑�◦−1

�=1 z′� = 1. We have then that

p(γ) = c1γ
′z′1 + c2γ

′z′2(1− γ′z′1) + · · ·+ c�◦(1− γ′z′1) . . . (1− γ′z′�◦−1).(17)

Notice that γ′z′� < 1 for each � = 1, . . . , �◦−1. If C
′
=
∑�◦−1

�=1 c�z
′
�, and q =

∏�◦−1
�=1 (1−

γ′z′�), we can apply the previous case to conclude that the first �◦ − 1 terms of (17)

can be bounded by (1− q)C
′
. Thus,

p(γ) ≤ (1− q)C
′
+ c�◦q.(18)

Suppose that q ≤ 1− α. Then, since C
′ ≤ c�◦ by the ordering of the c’s, from (18)

p(γ) ≤ αC
′
+ (1− α)c�◦ =

�◦−1∑
�=1

c�z� + (1− α)c�◦ ≤
d∑

�=1

c�z� = C,

and the lemma follows. Hence, to conclude the proof, we need only to argue that
q ≤ 1− α. First note that since 1− x ≤ e−x (x ≥ 0),

q =

�◦−1∏
�=1

(1− γ′z′�) ≤
�◦−1∏
�=1

e−γ′z′
� = e−γ′∑�◦−1

�=1 z′
� = e−γ′

= e−γα.

Now, since γz�◦ ≥ 1, it must be that γ ≥ 1/(1− α). Finally,

q ≤ e−γα ≤ e−α/(1−α) ≤ 1− α,

where the last inequality follows from 1−ln(y) ≤ 1/y for y ∈ (0, 1) by setting y = 1−α.
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1. Introduction. The suffix tree of a given string of length n is the compacted
trie of all its suffixes. This tree has size O(n) and can be constructed in O(n) time [12,
16, 15]. Suffix trees have several applications (see [8]). One of the main applications
of suffix trees is to preprocess a text in linear time so as to answer pattern occurrence
queries in time proportional to the length of the query and independent of the length
of the preprocessed text. The preprocessing involves building the suffix tree for the
text. Next, given a query pattern, the unique path down the suffix tree traced by this
pattern is determined; each leaf of the tree which lies further down from this path
corresponds to an occurrence of the pattern.

Parameterized suffix trees. Baker [1] generalized the definition of suffix trees to
parameterized strings, i.e., strings having variable characters or parameters in addition
to the usual fixed symbols. The set of parameters and the set of symbols are disjoint.
Two parameterized strings are said to match each other if the parameters in one can
be consistently replaced with the parameters in the other to make the two strings
identical. Here, consistency demands that all occurrences of a particular parameter
are replaced by the same parameter and distinct parameters are replaced by distinct
parameters. Baker [1] gave a definition of suffix trees for parameterized text strings
t so as to facilitate answering pattern occurrence queries in time independent of the
text length |t|.

Two-dimensional suffix trees. Giancarlo [7] generalized suffix trees to two-
dimensional (2D) texts t in order to answer pattern occurrence queries (i.e., find
all occurrences of a given square array p in the square text t) in time independent of
|t|.
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Suffix tree construction. There are several algorithms for constructing the suffix
tree of a string drawn from a constant-sized alphabet set in O(n) time. These include
the algorithms by McCreight [12], Weiner [16], and Ukkonen [15]. All these algorithms
exploit an important property of suffix trees; namely, each node has an outgoing suffix
link.

Farach [5] showed how to construct suffix trees in O(n) time even when the
alphabet size was not constant but some polynomial in n. This algorithm differs
from the others above in that it is not sweep-based and seems to be less critically
dependent on the existence of outgoing suffix links. However, it requires renaming
pairs of adjacent characters to get a string of size half that of the original string. The
suffix tree for this smaller string is built recursively; Farach shows how the suffix tree
of the original string can be obtained from the suffix tree of this smaller string in O(n)
time.

In contrast to suffix trees for strings, suffix trees for both parameterized strings
and 2D arrays lack the suffix link property; i.e., there could be nodes in the tree
without an outgoing suffix link defined. In addition, the node degrees in these suffix
trees need not be bounded by a constant. Due to these two problems, the best
constructions known until recently for suffix trees for parameterized strings [1, 11]
and 2D arrays [7] took O(n log n) time in the worst case, where n is the size of
the input string/array. In each case (i.e., in [1] and [7]; [11] uses a different data
structure), the problem of missing suffix links was handled by using a dynamic tree
data structure [14]; this data structure is used to find the insertion site of the next
suffix in O(log n) time. Further, the problem of large node degrees was handled by
the standard approach of maintaining a binary search tree, which also gave a Θ(logn)
overhead.

We mention here that Baker [1] gives two algorithms for constructing suffix trees
for parameterized strings, one with time complexity O(n log n), as mentioned above,
and another with time complexity O(n(|Π|+log |Σ|)), where Π is the set of parameters
and Σ is the set of symbols. Kosaraju [11] gave a faster algorithm with time complexity
O(n(log |Π|+ log |Σ|)), which is O(n log n) when |Π| = Θ(n).

Recently, Kim and Park [10] used the paradigm of Farach [5] to give an O(n) time
algorithm for 2D suffix tree construction (for polynomially bounded alphabet size).
However, it is not clear how to apply this paradigm to the case of parameterized
strings. In particular, it is not clear how the renaming of pairs of adjacent characters
mentioned above can be accomplished in such a way that the suffix tree of the given
string can be obtained from the suffix tree of the renamed string in O(n) time.

Our contribution. We present two new tools in this paper.

(i) The first tool is aimed at tackling the problem of missing suffix links. We
augment McCreight’s algorithm with a new feature which copies nodes back-
wards (imagine suffix links as going forwards), thus adding additional nodes
and suffix links to the suffix tree. Using a nontrivial accounting procedure,
we show that this back-propagation adds only O(n) extra nodes and accom-
plishes the construction of the suffix tree in O(n) time even with missing
suffix links. The back-propagation is similar to fractional cascading, as used
in many pointer-based data structures of bounded degree (when viewed as
graphs); the difficulty here is that the degrees are potentially unbounded,
which appears to necessitate quite a different analysis.

(ii) The time analysis in (i) assumes that given a node x and a character a, the
unique edge from x to a child of x starting with the character a is com-
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putable in O(1) time. To enable this for high degree nodes x, we give an
extension of the dynamic version of the Fredman–Komlos–Szemerédi (FKS)
perfect hashing scheme [6] which supports insertion of n items from a poly-
nomial sized range in amortized constant time and linear space, with close

to inverse exponential, i.e., O(log n)

2Θ(n1−ε/ log n)
, failure probability. This is in con-

trast to the previous expected time result of Dietzfelbinger et al. [3] and the
previous result of Dietzfelbinger and Meyer auf der Heide [4], which achieves
inverse polynomial failure probability. Searching for an item requires worst-
case constant time. In fact, the items being in a polynomial sized range is
not necessary for our hashing scheme; it suffices if they can be hashed into a
polynomial sized range in linear time.

The above two tools provide a unified framework from which randomized O(n)
time algorithms for constructing suffix trees for regular strings, parameterized strings,
and 2D arrays are easily derived. These algorithms work with high probability (for
2D arrays, the failure probability is only inverse polynomial and not close to inverse
exponential as in the case of regular and parameterized strings; this higher failure
probability arises in the process of casting the 2D array problem in the above unified
framework). This is the first O(n) time randomized algorithm for parameterized suffix
tree construction; the previous best algorithms [1, 11] took O(n log n) deterministic
time. The suffix trees we construct also have the property that the unique path in the
tree corresponding to a given pattern string p can be found in O(p) time, regardless
of the degrees of the nodes.

2. The general setting. Before describing our algorithm, we describe the gen-
eral setting for which our algorithm works. We need the following definitions.

Compacted trie. A compacted trie is a tree data structure defined on a collection
of strings. This tree has one leaf per string in this collection, and each internal node
has at least two children. Therefore, the number of nodes is linear in the number of
strings in the given collection. Each edge of the tree is associated with (or labeled
with) some substring of one of the strings in the given collection. The key property
is that for every pair of leaves, the string formed by concatenating the edge labels on
the path from the root to the least common ancestor of these two leaves is the longest
common prefix of the strings associated with the two leaves.

In this paper, we are interested in compacted tries for certain kinds of string
collections.

Quasi-suffix collections. An ordered collection of strings s1, s2, . . . , sn is called a
quasi-suffix collection if and only if the following conditions hold. Let |s| denote the
length of string s.

1. |s1| = n and |si| = |si−1| − 1. Therefore, |sn| = 1.
2. No si is a prefix of another sj .
3. Suppose strings si and sj have a common prefix of length l > 0. Then si+1

and sj+1 have a common prefix of length at least l − 1.
We will assume that all the strings are drawn from an alphabet of size polynomial in
n.

Character oracles. Note that the total length of the strings in a quasi-suffix
collection of n strings is O(n2), while our aim is to achieve O(n) time construction
for the compacted trie. Therefore, we cannot afford to read the collections explicitly.
Instead, we will assume an oracle which supplies the ith character of the jth string
of the collection on demand in O(1) time.

Multiple quasi-suffix collections. Consider several distinct quasi-suffix collections
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having l strings in all. These quasi-suffix collections constitute a multiple quasi-suffix
collection if conditions 2 and 3 above hold for any pair of strings si, sj over all the
collections (in other words, these conditions hold for pairs within each collection and
for pairs drawn from distinct collections as well).

Our main result will be the following.

Theorem 1. Let ε be any positive constant. The compacted trie of a quasi-suffix
collection of n strings can be constructed in O(n) time and space with failure probability

at most O(log n)

2Θ(n1−ε/ log n)
, given the above character oracle. Further, the compacted trie

of a multiple quasi-suffix collection comprising l strings in all can be constructed in

O(l) time and space with failure probability at most O(log l)

2Θ(l1−ε/ log l)
,

2.1. Examples of quasi-suffix collections. The significance of the above the-
orem comes from the following examples of quasi-suffix collections. The simplest
example is the collection of all suffixes of a string s with a special end-of-string sym-
bol. This is a quasi-suffix collection but with a stronger property; namely, condition
3 in the definition of quasi-suffix collections is satisfied with equality. The compacted
trie of these suffixes is the well-known suffix tree of the string s. Next, we give two
more significant examples for which equality need not hold in condition 3.

2.1.1. Suffix trees for parameterized strings. Recall from the introduction
that a parameterized string s has parameters and symbols. The alphabet from which
parameters are derived is disjoint from the alphabet from which symbols are derived.
Further, both alphabet sizes are polynomial in n, the length of s. As is standard,
assume that s ends in a symbol $ which does not occur elsewhere in s. From s, Baker
[1] defined the following collection of strings.

Each suffix s′ of s is mapped to a string num(s′) with parameters replaced by
numbers and symbols retained as such (assume that symbols are not numbers). The
replacement of parameters is done as follows. The first occurrence of each parameter
in s′ gets value 0 in num(s′). Subsequent occurrences of a parameter get values
equal to the distance from the previous occurrence of the same parameter. Consider
the collection of strings {num(s′)|s′ suffix of s} in decreasing length order. Baker
[1] defined the suffix tree of parameterized string s to be the compacted trie of this
collection. That this collection of strings is indeed a quasi-suffix collection can be seen
as follows.

Condition 1 clearly holds, and condition 2 follows from the occurrence of the
special symbol $ at the end of s. Condition 3 is shown to hold next. Note that
if s′i and s′i+1 are two consecutive suffixes of s, then num(s′i+1) can be obtained
from num(s′i) as follows: for each well-defined index k > 0, set num(s′i+1)[k] to
num(s′i)[k + 1] if num(s′i)[k + 1] �= k, and set num(s′i+1)[k] to 0 otherwise. Next,
consider two suffixes s′i and s′j of s. From the above observation, it follows that if
num(s′i) and num(s′j) have a common prefix of length k + 1, then num(s′i+1) and
num(s′j+1) have a common prefix of length k. Further, if num(s′i) and num(s′j) differ
at location k + 1, then num(s′i+1) and num(s′j+1) could be identical at location k if
one of num(s′i)[k+1], num(s′j)[k+1] equals k and the other equals 0. Condition 3 is
now easily seen to hold.

The character oracle for the above quasi-suffix collection is easily implemented in
O(1) time after the following precomputation: for each occurrence of a parameter in s,
determine the previous occurrence, if any, of this parameter in s. This precomputation
is easily done in O(n) time.
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2.1.2. Suffix trees for 2D arrays. Consider a 2D array s having size m × n,
m ≥ n and characters drawn from some polynomial range. For each square subarray s′

of s which is maximal (i.e., touches either the right boundary or the bottom boundary
or both boundaries of s), Giancarlo [7] defined a string num(s′) as follows.

Defining num(s′). Partition s′ into L’s as in [7] (an L is formed by taking a prefix
of a row and a prefix of a column, with the common point being at the bottom-right;
both prefixes have equal lengths; the resulting shape is actually the image of the
character L reflected about a vertical axis). num(s′) will be a sequence of numbers,
with one number for each such L; these numbers are arranged in increasing order of L
sizes. The number for a particular L is obtained by reading this L as a string and then
mapping strings to integers in such a way that distinct strings map to distinct integers
(by using, for example, the Karp–Rabin fingerprinting scheme [9], which ensures this
property with inverse polynomial failure probability). Finally, a special end-of-string
symbol $ is appended to num(s′), as was done for parameterized strings.

The quasi-suffix collections. Consider a particular top-left to bottom-right diag-
onal and consider all maximal square subarrays of s with top-left point on this diag-
onal. The num() strings corresponding to these subarrays are easily seen to form a
quasi-suffix collection. Thus each top-left to bottom-right diagonal gives a quasi-suffix
collection of strings. Since there arem+n−1 diagonals, we havem+n−1 = O(m) dis-
tinct quasi-suffix collections in all. It is easy to check that these m+n−1 quasi-suffix
collections together constitute a multiple quasi-suffix collection (we will use distinct
end-of-string symbols for each diagonal to satisfy condition 2 for pairs of strings drawn
from distinct collections). Note that the number of strings in each collection is at most
n. Giancarlo [7] defined the common compacted trie of these m+n− 1 collections to
be the suffix tree of s.

The character oracle. A character oracle which works with inverse polynomial
failure probability in O(1) time after O(mn) preprocessing is easy to implement using
the Karp–Rabin fingerprinting scheme. The preprocessing involves computing prefix
sums for each row and column.

2.2. Proving Theorem 1. The rest of the paper is devoted to proving Theorem
1. First, we will describe how to construct the compacted trie of a single quasi-suffix
collection of n strings in O(n) time with high probability. This algorithm can easily be
extended to multiple quasi-suffix collections (such as those resulting from 2D arrays).
This extension is sketched briefly in section 6.

Our algorithm for a single quasi-suffix collection will have two components. The
first component is a modification of McCreight’s algorithm and is described in section
4 and section 5. In these sections, we will assume that the unique child of any given
node with edge label beginning with a given character can be determined in O(1) time.
The second component, i.e., a dynamic perfect hashing scheme described below, will
handle this problem.

Note that in all the above examples of quasi-suffix collections, the alphabet size is
a polynomial in n (while a radix sort followed by relabeling could reduce this to size
at most n, the difficulty would be to subsequently process searches in the suffix tree,
as the search string would be written using the “old” alphabet). Thus to access the
unique edge with a particular starting character from a node, we need to perfectly hash
O(n) pairs, where the first entry in the pair is a node number and the second entry
is a character from the alphabet. Each such pair can be treated as a number from
a range polynomial in n. In section 7, we give a dynamic hashing scheme which will
perfectly hash items from a polynomial in n range with close to inverse exponential
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failure probability.
Before giving our algorithms, we need an outline of McCreight’s algorithm for

constructing the suffix tree of a string.

3. McCreight’s algorithm. The use of suffix links is crucial to this algorithm.
Suffix links are defined as follows.

Definitions. For a node x, let str(x) denote the substring associated with the
path from the root of the tree to x. A suffix link points from a node x to a node y
such that str(y) is just str(x) with the first character removed. Let link(x) denote
this node y. Let par(x) denote the parent of x. For a string u, define node(u) to be
that node x, if any, for which str(x) = u.

Since condition 3 in the definition of quasi-suffix collections is satisfied with equal-
ity for the collection of suffixes of a string, suffix links are defined for each node x in
the suffix tree; i.e., for each node x, a node y = link(x) with the above description
exists.

McCreight’s construction inserts suffixes into the suffix tree one by one in order
of decreasing length. For each suffix i, one new leaf and possibly one new internal
node are inserted. The algorithm for inserting suffix i+1, given that suffix i inserted
leaf y as a child of an existing or new internal node x, is as follows.

The search for the insertion site of suffix i+1 begins from link(par(x)). It involves
two stages: a rescanning stage and, possibly, a scanning stage.

In the rescanning stage, the tree is rescanned downwards from link(par(x)) until
the right position for link(x) is found. Rescanning requires determining that path
down the tree from link(par(x)) whose edge labels form the same substring as the
label on the edge between par(x) and x. Such a path is guaranteed to exist by
condition 3 in the definition of quasi-suffix collections. By virtue of this guarantee,
it suffices to examine just the first character on each edge to determine this path, as
opposed to examining all the characters comprising the edge label; thus we have the
term rescanning (as opposed to scanning, which involves examining all the characters
in the labels at each edge encountered).

Next, there are two cases depending on whether or not a node is already present
at the position for link(x) identified above. If no node is currently present, then
equality in condition 3 in the definition of quasi-suffix collections demands that a new
internal node be inserted at this location and a new leaf corresponding to suffix i+ 1
be inserted as its child; there is no scanning stage in this case. On the other hand, if
a node is indeed present at the above position, then the algorithm involves scanning
downwards from this position. In either case, note that link(x) is now well defined.

The two key facts used to show O(n) time performance over all suffixes are as
follows. Consider the portions of the suffix tree traversed in the scanning stages for
the various suffixes (we will call them scanned portions). These scanned portions
correspond to disjoint portions of the input string, and, therefore, they sum up to
O(n) in length (the length of a scanned portion is the number of characters, not
nodes, encountered in the path scanned). Further, the total time taken in rescan
stages between any two consecutive scanning stages is bounded by the time taken in
the first of these two scanning stages.

Two problems. Two related problems arise in generalizing the above algorithm
to quasi-suffix collections. The first is that link(par(x)) may not be defined. The
second is that the lack of a node at the right position for link(x) (as located in the
rescanning stage) no longer requires a new node to be inserted at this location (this is
due to the lack of equality in condition 3 in the definition of quasi-suffix collections);
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Fig. 1. Backing up and back-propagation.

we note that if a new node is not inserted, then a scanning stage will begin from this
position.

4. Our algorithm. As in McCreight’s algorithm, we will insert the strings in
the given collection s1, . . . , sn in the compacted trie in decreasing order of length.
Much of the algorithm remains the same; however, we make two key modifications.
The first involves traversing the path up the tree from a newly inserted node to
find an ancestor with a suffix link. The second involves copying nodes backwards
while rescanning down the tree from the destination of the above suffix link. These
changes affect only the rescanning algorithm; the scanning part remains unchanged.
We describe these changes in detail next.

Defining suffix links. For a node x, link(x) is now defined to be that node y such
that if str(x) is the longest common prefix of some si and sj , then str(y) is a common
prefix of si+1 and sj+1; further, |str(y)| = |str(x)| − 1. Note that since condition 3
in the definition of quasi-suffix collections need not be satisfied with equality, link(x)
need not be defined for every node x. Also note that if link(x) exists, then it is
unique.

Backing up. Recall McCreight’s algorithm above. Now, since link(par(x)) need
not exist, we must traverse up the tree from x until a node with a suffix link is
found. We call this node nanc(x) (nanc stands for nearest ancestor). It may be that
nanc(x) = x. Next, the tree is rescanned downwards from link(nanc(x)), as before,
but with one modification to be described shortly. See Figure 1.
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Real and imaginary nodes. Recall our description of McCreight’s algorithm above.
If a new scanning stage begins from the position identified for link(x) in the rescanning
stage, and there is no node at this position, we introduce an imaginary node at this
position. Note that this imaginary node has only one child. Internal nodes which
are not imaginary will be called real. Real nodes will have at least two children each;
in addition, they will also have outgoing suffix links pointing, possibly, to imaginary
nodes.

Note that there are just O(n) real nodes and O(n) imaginary nodes (at most one
real internal node, one leaf, and one imaginary node are inserted per suffix). Since
real nodes have at least two children each, imaginary nodes have just one child each,
and the number of leaves is n, the total number of children over all real and imaginary
nodes is O(n). Also note that the total length of the scanned portions of the tree
in McCreight’s algorithm is O(n), and this remains the same for our algorithm. We
state these facts below for future reference.

Fact 1.

(i) The number of real and imaginary nodes together is O(n).
(ii) The total number of children of real and imaginary nodes together is O(n).
(iii) The total length of the scanned portions of the tree is O(n) (the length of a

single scanned portion is the number of characters, not nodes, encountered in
the path scanned).

We need to add one more feature to McCreight’s algorithm to get linear time
complexity for quasi-suffix collections.

Back-propagated nodes. Other than real and imaginary nodes, our construction
will involve internal nodes of a third kind, called back-propagated nodes. Back-
propagated nodes will always have suffix links and only one child each. They are
defined as follows. In the following, think of suffix links as pointing forwards (i.e., to
the right; see Figure 1).

When the appropriate path starting at link(nanc(x)) is rescanned in order to
determine the position for link(x), several nodes could be encountered in the process.
If more than two nodes are encountered, then alternate nodes are propagated back
to the path (nanc(x), x) (i.e., new nodes with suffix links pointing to the traversed
nodes are set up on this path), taking care that the first and the last nodes traversed
are not propagated back. The new nodes are called back-propagated nodes.

Direction of back-propagation. Note that a node could be back-propagated in
several different directions; i.e., several back-propagated nodes could have their suffix
links pointing to this node. Further, a back-propagated node could be propagated
backwards further, forming a chain of back-propagated nodes.

Definitions. For a node x, let prev(x) be a set of strings defined as follows. For
each si in the given quasi-suffix collection having prefix str(x), prev(x) contains the
prefix of si−1 of length |str(x)| + 1. Note that prev(x) is a set and not a multiset;
therefore all strings in it are distinct. Direction u is said to be valid for node x if
string u appears in prev(x). Node x is said to be back-propagated in direction u if
there exists a string u in prev(x) such that node(u) exists and is a back-propagated
node (see Figure 2). Note that the suffix link of node(u) points to x under these
conditions, i.e., link(node(u)) = x.

The following invariant is maintained by our algorithm by virtue of the fact that
only alternate nodes encountered are back-propagated and the first and last nodes
encountered are not back-propagated.
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str(x)

x

si

si−1

sj−1
sjback-propagated in direction v

back-propagated in direction u

u

v

Fig. 2. Direction of back-propagation.

Invariant 1. If a node x is back-propagated in direction u, then its parent is not
back-propagated in direction u′, where u′ is a prefix of u. The algorithm is presented
in pseudocode below.

The algorithm is presented in pseudocode in Figure 3.

5. Time complexity. There are two aspects to the time taken to insert a partic-
ular string si from the given quasi-suffix collection. The first involves backing up from
x to nanc(x), subsequent to the insertion of x. The second involves rescanning the
appropriate path down from link(nanc(x)) until the position for link(x) is located.
We account for these two aspects of the time separately.

We make a few remarks on the second aspect here. Each step taken here involves
one of the following:

1. Creating a new back-propagated node.
2. Adding a suffix link to an already existing node. This happens when one seeks

to back-propagate a node but the site of this back-propagation is already
occupied by some other node. For this to happen, the latter node must not
have a suffix link; i.e., it must be an imaginary node. A suffix link is now
added to this imaginary node.

3. Creating a new real or imaginary node. This is the node link(x).

Since only one real or imaginary node is added when rescanning from link(nanc(x)) to
link(x), the time taken in this rescanning is proportional to O(1) plus the number of
nodes back-propagated in this process plus the number of imaginary nodes for which
suffix links are set up in this process. Since each imaginary node can get only one
suffix link during the course of the entire algorithm, bounding the above time boils
down to bounding the number of back-propagated nodes by O(n).

5.1. Bounding back-propagated nodes. This will use a charging argument,
where each back-propagated node will be charged to either some real/imaginary node
or to some character in the string s1. Each real/imaginary node and each character
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//Insert suffix s1

Create a single edge (x1, y1) with x1 as the root, labeled s1.

for i = 2 to n do

//Insert suffix si

Let yi−1 be the leaf inserted for si−1, and let xi−1 be its parent.

Find nanc(xi−1), the nearest ancestor of xi−1 with a suffix link, if any;
nanc(xi−1) is the root node otherwise.

Rescan the path starting at link (nanc(xi−1)) until the location for link (xi−1)
is reached.

If link (xi−1) is a new node, split the label on the edge previously containing
link (xi−1)’s location so that |string(link(xi−1))| = |string(xi−1)| − 1.

As the rescan proceeds, back propagate every second node encountered, starting
two nodes after link(nanc(xi−1)) and stopping two nodes before link(xi−1).

If node b is the back propagation of node c, split the label on the edge previously
containing b’s location so that |string(b)| = |string(c)|+ 1.

If link(xi−1) was already present, scan from link(xi−1) to find the location for yi.

Add a label for the edge to node yi so that string(yi) = si.

od

Fig. 3. Algorithm for quasi-suffix tree construction.

in s1 will be charged O(1) in the process. The O(n) bound will follow from Fact
1. It may be that a node created by back-propagation subsequently becomes real or
imaginary. These nodes are not counted; only nodes that are not real or imaginary
when the full tree is built are counted.

Note that a back-propagation chain always starts at a real or an imaginary node.
We will define a tree for each real or imaginary node x as follows.

Defining BP − tree(x). All nodes in this tree other than the root x are back-
propagated nodes. Those back-propagated nodes which are back-propagated from
x (i.e., have suffix links pointing to x) are children of x in this tree. Trees rooted
at these children are defined recursively; i.e., children of a node are those which are
back-propagated from that node. The leaves of this tree are those nodes from which
no further back-propagation occurs.

Consider the forest of BP − trees(∗) rooted at the various real/imaginary nodes
that are back-propagated. Each back-propagated node appears in exactly one tree in
this forest.

Decomposing BP − tree(x) into paths. We partition the nodes of this tree into
paths. The first path is the minimal path starting from the root x and ending on a
node y with the following property: either there exists a valid direction u such that
y has not been back-propagated in this direction or there is no valid direction for
y. Clearly, such a node y must exist. But for the termination restriction, the path
starting at the root is chosen arbitrarily. Once nodes in this path are removed, the
subtrees hanging off this path are decomposed recursively.

Clearly, each back-propagated node will belong to exactly one of the various paths
formed above. Think of each path as going backwards from its start node.

Accounting for long paths. We show that the sum of the lengths of all the paths
obtained above is proportional to the number of such paths plus O(n). It will then
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suffice to bound the number of such paths.

Consider any path obtained above. Let x be any node on this path other than its
start node. link(x) is the node from which x was back-propagated, say in direction u.
Note that link(x) will precede x in the path being considered (as paths go backwards).

By Invariant 1, the parent par(link(x)) of link(x) in the compacted trie has not
been back-propagated in the direction u′, where u′ is the prefix of u such that |u′|
equals |str(par(link(x)))|+ 1; u′, of course, is a valid direction for par(link(x)) (be-
cause u is valid for link(x) itself). It follows that either par(link(x)) is a real/imaginary
node or par(link(x)) is a back-propagated node and the last node in its path (for if
there is a direction in which a node is not back-propagated, then by construction that
node is the last node on its path). In either case, we charge par(link(x)) for x.

Clearly, in this process each real/imaginary node and each back-propagated node
which is the last node in its respective path will be charged an amount bounded by the
number of its children. From Fact 1(ii), this charge sums to O(n) for real/imaginary
nodes. Note that back-propagated nodes have only one child each. Thus, it now
suffices to bound the total number of paths.

Bounding the total number of paths. We will extend the above paths backwards
to form a collection of extended paths, as below.

Consider any one path, and let x be the last node on this path. The extension
to this path is performed as follows. Start at x and follow that direction backwards
along which x was not back-propagated (there is at least one such direction, unless
there are no valid directions for x). Next, repeatedly follow any arbitrarily chosen
valid direction backwards. This extension need not always encounter a node (in fact
we will stop when we hit a node); it is allowed to cut through edges.1 So if a particular
step of this extension leads to the middle of an edge e, take an arbitrary valid direction
back from that point on e. Continue this extension until either a node is reached or
there is no valid direction along which to continue.

Thus an extended path consists of an initial prefix of nodes (i.e., the path itself),
followed by a walk which cuts through edges, and possibly terminates on a node.
Again, note that we think of a path as going backwards. We have the following
claims.

Lemma 5.1. Two distinct extended paths cannot intersect (i.e., they cannot cut
through the same point on some edge or have a node in common), except that the last
node of one can be the first node of the other.

Proof. Since forward directions are always unique, two extended paths can inter-
sect otherwise only if the start node of one path is contained in the other path and is
not the last node on that path. This is a contradiction since all the unextended paths
begin at nodes, the unextended paths are node disjoint, and the extension of a path
terminates as soon as a node is reached.

Lemma 5.2. If an extended path terminates by reaching a node y (and not by
running out of valid directions), then y cannot be a back-propagated node.

Proof. Let x be the last node of the path whose extension is under consideration.
Suppose y is a back-propagated node. As forward links are unique, clearly x must
have been back-propagated in the direction implied by y. But we started the exten-
sion of this path by choosing a direction along which x was not back-propagated, a
contradiction.

1We have defined valid directions only for nodes in the compacted trie. However, this definition
can be extended for points in the middle of an edge in the obvious way, i.e., by imagining a node to
be present at that point.
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Lemma 5.3. The total number of paths is O(n), and hence the total number of
back-propagated nodes is O(n).

Proof. Consider a particular extended path. If it ends at a node without running
out of valid directions, this node must be real/imaginary by Lemma 5.2; the current
path is then charged to this node. By Lemma 5.1, each real/imaginary node is just
charged once.

On the other hand, if this extended path ends because all further valid directions
backwards are exhausted, then the substring associated with the termination point
is a prefix of s1. Further, by Lemma 5.1, different extended paths which end in this
way are associated with distinct prefixes of s1. Thus the number of paths is O(n).

The lemma follows from the argument given earlier that the number of back-
propagated nodes is proportional to the number of paths plus O(n).

5.2. Backing-up time. It remains to account for the time taken to determine
nanc(x) after the insertion of a leaf as a child of x. Note that all such nodes x for
which nanc(x) will be determined are real nodes (because x has at least two children).

This computation requires traversing upwards from x until the nearest node with
a suffix link is found. All nodes encountered on the way must be imaginary (real and
back-propagated nodes have suffix links), and we need to account for the time taken
to traverse these nodes.

The key claim is the following. Note that an imaginary node y signals the begin-
ning of a new scanning phase in McCreight’s algorithm, in which the tree is scanned
downwards starting at y, until a new leaf is inserted as a child of a new or existing
internal node z.

Lemma 5.4. The total number of times imaginary node y can be encountered
while determining nanc(∗) over the entire algorithm is at most |str(z)| − |str(y)|.

Proof. Note that z is a real node after the above scanning phase starting at y
finishes. y could be encountered once while setting up link(z). Subsequently, since
link(z) is in place, y will be encountered only when finding nanc(z′), where z′ is real
and on the path from y to z. There can be at most |str(z)| − |str(y)| such distinct
real nodes z′.

Corollary 5.5. The total time taken in traversing imaginary nodes while de-
termining nanc(∗) is O(n).

Proof. |str(z)|− |str(y)| equals the number of characters scanned in the scanning
phase following the insertion of imaginary node y. By Fact 1(iii), summed over all
y, this is O(n) characters. But by Lemma 5.4, summed over all y, this is also the
number of imaginary nodes encountered while determining nanc(∗).

Theorem 1 now follows for quasi-suffix collections, assuming that the correct
child of a particular node can be found in O(1) time. The extension to quasi-suffix
collections is sketched next.

6. Algorithm for multiple quasi-suffix collections. We sketch how to ex-
tend the above algorithm to a multiple quasi-suffix collection having l strings in all.
The time taken will be O(l).

Suffix links and back-propagation directions need to be redefined appropriately
as follows. Let ski denote the ith string in the kth quasi-suffix collection under con-
sideration (assume an arbitrary ordering on the various quasi-suffix collections).

Suffix links. For a node x, link(x) is now defined to be that node y such that if
str(x) is the longest common prefix of some ski and slj , then str(y) is a common prefix

of ski+1 and slj+1; further, |str(y)| = |str(x)| − 1. Note that since condition 3 in the



38 RICHARD COLE AND RAMESH HARIHARAN

definition of quasi-suffix collections need not be satisfied with equality, link(x) need
not be defined for every node x. Also note that if link(x) exists, then it is unique;
this follows because if str(x) is a prefix of ski and of sk

′
j , then ski+1 and sk

′
j+1 agree in

the first |str(x)| − 1 characters.

Back-propagation directions. For a node x, let prev(x) be a set of strings defined
as follows. For each ski having prefix str(x), prev(x) contains the prefix of ski−1 of
length |str(x)|+1. Note that prev(x) is a set and not a multiset; therefore all strings
in it are distinct. Direction u is said to be valid for node x if string u appears in
prev(x).

The algorithm. The algorithm inserts each collection in turn into the current com-
pacted trie. The first string of each quasi-suffix collection starts a new scanning stage
beginning at the root of the compacted trie. The subsequent strings in the collection
are inserted as in the previous algorithm. Note that the size of the compacted trie will
now be Θ(l). Fact 1 continues to hold with O(n) replaced by O(l). The analysis is as
before with the following two changes. All O(n) terms are replaced by O(l). Further,
in Lemma 5.3, if an extended path ends because all further valid directions backwards
are exhausted, then the substring associated with the termination point is a prefix of
the first string in one of the several quasi-suffix collections being considered.

7. The hashing scheme. Recall from section 2.2 that we need to perfectly hash
O(n) pairs, where the first entry in each pair is a node number and the second entry
is a character from the alphabet. Each such pair can be treated as a number from a
range polynomial in n. We give a dynamic hashing scheme which will perfectly hash
an item from a polynomial in n range in amortized O(1) time, with close to inverse
exponential failure probability. The time taken to access a particular item will be
O(1), and the total space is O(n).

Fredman, Komlos, and Szemerédi [6] showed how n items from the range
[0 . . . poly(n)] can be hashed into the range [0 . . . s] without any collisions, where
s = Θ(n). Their algorithm takes O(n) time and space and works by choosing ran-
domly from a family of almost-universal hash functions (assuming constant time arith-
metic on O(log n) bits). It ensures no collisions with probability at least 1/2.

This was generalized by Dietzfelbinger et al. [3] to the dynamic setting. The
expected amortized insertion/deletion time for their algorithm is O(1); searching
takes O(1) worst-case time. Subsequently, Dietzfelbinger and Meyer auf der Heide
[4] achieved O(1) worst-case insertion/deletion/search time with inverse polynomial
failure probability. We achieve close to inverse exponential failure probability but
with O(1) amortized insertion/deletion times and O(1) worst-case search time. This
is done by modifying the FKS perfect hashing scheme to make it work with high
probability, first in the static setting and then in the dynamic setting.

First, we present the static algorithm. The key idea is to create several perfect
hashing subproblems and to apply the FKS scheme on each independently to obtain
a high success probability.

7.1. The static hashing scheme. The following steps are performed. Let ε be
any positive constant. The time and space taken by our data structure will be linear
but with a 1

ε constant factor. The failure probability will decrease as ε gets closer to
0.

Step 1. Start with an imaginary array A of size nc, where the n items to be
hashed come from the range 1 . . . nc. Each item indexes into a unique element in this
array. Next, repeatedly partition this array as in Step 2.
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Step 2. Construct a partition tree as described below. Each node in this tree will
have a subarray of A associated with it. The depth of this tree will be a constant, and
the number of nodes will be O(n). The root of this tree is A itself. It has nε children,
each associated with a distinct subarray of A of size nc−ε obtained by partitioning
A into nε disjoint pieces. Each subarray with more than nε items is recursively
partitioned; the remaining subarrays become leaves. Each leaf has at most nε items.
Clearly, the number of levels in this tree is O( cε ) = O(1), and the total size in O(n).
The total time taken to set up the tree is easily seen to be O(n).

Step 3. Next, we consider each leaf of the above tree in turn and the items in
the subarray associated with this leaf. We perfect-hash these items using the FKS
perfect hashing scheme. Since this scheme succeeds only with probability 1/2, several
trials may be required before these items are perfectly hashed. We show that with
high probability, the total time taken in this process over all leaves is O(n).

7.2. Time complexity. We need to bound the time taken to perform several
FKS perfect hashings, where the total sizes of all subproblems is n, each subproblem
has size at most nε, and a subproblem is performed successfully in linear time with
probability 1/2.

Size categories. Divide the leaves into O(log n) categories quadrupling by size
(i.e., the number of items associated with the leaf). Consider just leaves in any one
size category, namely, the category in which leaf sizes are in the range nε

4i+1 · · · nε

4i ,
i ≥ 0. We will show that the time taken for this category is proportional to the sum

of the sizes of leaves in this category plus O( n
2i ), with failure probability O(log n)

2
Θ( 2in1−ε

log n
)
.

It follows that the total time taken over all categories is O(n), with failure probability
O(log n)

2
Θ(n1−ε

log n
)
.

A leaf is said to succeed when the items in it are perfectly hashed. A round refers
to one trial for each of the relevant leaves. The trials for the various leaves can be
imagined to have proceeded in rounds, with leaves succeeding in one round dropping
out of the subsequent rounds. We organize the rounds into groups.

Grouping rounds. The 0th group comprises rounds performed before the number

of unsuccessful leaves in this size category drops below n1−ε2i

log n . For j ≥ 1, the jth
group comprises rounds performed after the number of unsuccessful leaves in this size

category drops below n1−ε2i

2j−1 logn but before this number drops below n1−ε2i

2j log n .

We show that group 0 has O(i+ log logn) rounds and that each group j ≥ 1 has

O(2j) rounds, with failure probability O(log n)

2
Θ(n1−ε2i

log n
)
(over all groups). Further, we show

that with the same failure probability, every two consecutive rounds in group 0 reduce
the number of unsuccessful leaves by half. The total time taken for rounds in group
0 is then proportional to the sum of leaf sizes in this category. The time taken for
rounds in the other groups is

O

Θ(log n)∑
j=1

[2j
n1−ε2i

2j−1 log n

nε

4i
]

 = O
( n

2i

)
,

as required.
The key property. To show the above claims on the number of rounds in each

group, we will need the following property, obtained using the Chernoff bound [2].
If there are #u unsuccessful leaves at some instant of time, then half these leaves
succeed in the next 2k rounds, with failure probability 1

2Θ(#uk) .
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Group 0. First, consider group 0. If the number of unsuccessful leaves at some

instant is at least n1−ε2i

logn , then two rounds will halve the number of unsuccessful leaves,

with failure probability at most 1

2
Θ(n1−ε2i

log n
)
(apply the above property with k = 1 and

#u ≥ n1−ε2i

logn ). Note that the number of leaves in the size category being considered is

at most n
nε/4i+1 = n1−ε4i+1 to begin with. It follows that group 0 has 2(i+2+log logn)

rounds, and halving occurs in each pair of consecutive rounds, with failure probability

at most (i+2+log log n)

2
Θ(n1−ε2i

log n
)

= O(log n)

2
Θ(n1−ε2i

log n
)
.

Other groups. Next, consider group j, j ≥ 1. Applying the above property with

k = 2j and #u ≥ n1−ε2i

2j logn , we get that group j has 2 ·2j rounds, with failure probability
1

2
Θ(n1−ε2i2j

2j log n
)
= 1

2
Θ(n1−ε2i

log n
)
. Finally, adding up the failure probability over all O(log n)

groups gives O(log n)

2
Θ(n1−ε2i

log n
)
, as required.

The total time and space taken above is thus O(n), with high probability. Search-
ing for an element requires following the unique path down the partition tree to reach
the relevant perfect-hash table. These operations are easily seen to take O(1) worst-
case time.

Comment. This analysis can also be applied to the second stage of the standard
FKS scheme, assuming the first stage has succeeded (i.e., the initial hash has parti-
tioned the items so that the expected number of pairwise collisions is O(n), and so
every bucket holds O(n1/2) items). We then conclude that the second stage fails with
close to exponentially small probability.

This might lead one to consider a high probability 3-stage FKS-like scheme. The
first stage will be the standard FKS first stage, but it will be decreed to succeed
if the number of pairwise collisions is at most n3/2. This happens with probability
1 − O(1/n1/2) by Markov’s inequality. This step can be repeated up to 2d times
to obtain a failure probability of O(1/nd). The sets resulting from the first stage
are then hashed using a standard 2-stage FKS scheme, but as each of these sets has
size O(n3/4), by an analysis similar to the one of this section one obtains a close to
exponentially small failure probability. Thus the overall failure probability is O(1/nd).
Note that as the first stage is repeated only if necessary, this appears to entail fewer
arithmetic steps than using a 2d-independent hash function.

7.3. The dynamic hashing scheme. The dynamic version of the above static
scheme maintains the partition tree described in Step 2 above at each instant (with
the same parameters; i.e., A has size nc and the branching factor is nε; here n is the
total number of items which will ever be inserted).

Initially, the partition tree will have just an empty root node. This tree will
build up as insertions are made. The size of the partition tree at any instant will be
proportional to the number of items in it. Further, at each instant, the perfect-hash
structure at any leaf will have an associated capacity. This capacity will be at least
the number of items at that leaf but no more than twice this quantity. It follows that
the total space required at any instant will be proportional to the number of items
present.

The algorithm for an insertion is described next. Note that our compacted tree
application involves only insertions and no deletions.

Insertions. On an insertion x, the path down this partition tree to the appropriate
leaf v is traced in O(1) time. Subsequently, there are two cases depending upon how
many items are already present in this leaf v.
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First, suppose v has more than nε items, including x. Then the subarray associ-
ated with v is subdivided as in Step 2 of the static algorithm, and the subtree rooted
at v is developed. Each leaf in this tree will have at most nε elements in it. The
elements in each of these leaves are then perfect-hashed.

Next, suppose v has at most nε items, including x. Then the items already in
v would have been perfect-hashed; further, this perfect-hash structure will have a
certain capacity. If this capacity is equaled by the insertion of x, then all the items
in v (including x) are rehashed into a perfect-hash structure of twice the capacity.
Otherwise, if this capacity is not equaled, then v is perfect-hashed. If there is no
collision, then v’s insertion is complete. Otherwise, if there is a collision, then all the
items in v along with x are perfect-hashed again.

Time analysis. We will show that the total time taken to perform n insertions is

O(n), with failure probability at most O(log n)

2Θ(n1−ε/ log n)
. To show the above, the following

facts need to be noted.

1. The height of the partition tree isO(1); therefore, the time spent in developing
leaves into subtrees on insertion is just O(n) over all n insertions.

2. The perfect-hash structure at any leaf in the partition tree begins with ca-
pacity which is twice the number of items currently in the structure. Future
insertions increase this number until it equals the capacity. Until this hap-
pens, this perfect-hash structure stays in place, though it may have to be
rebuilt as many times as collisions are caused by insertions. Once the num-
ber of items matches the capacity, this perfect-hash structure is abandoned,
and a new perfect-hash structure with twice the capacity is put in place.

3. The total capacities of all perfect-hash structures which were ever in existence
at any time during the n insertions is O(n) (note that when a perfect-hash
structure at a leaf is replaced by a new structure with twice the capacity,
each structure is counted separately in the above sum). This follows from the
doubling of capacities at a leaf and from the constant depth of the partition
tree.

4. When the capacity of a perfect-hash structure at a leaf is doubled, the prob-
ability that this structure needs rebuilding before the number of items in it
equals the new capacity is at most 1/2. Further, the time taken for rebuilding
a particular perfect-hash structure is proportional to its capacity.
Note the difference from the static case, where a perfect-hash trial succeeds
on the items currently present with probability 1/2. Now, this is replaced by
the fact that a perfect-hash trial succeeds with probability 1/2 even on future
insertions as long as the capacity is not equaled.

Thus, to establish the total time bound above, it suffices to bound the total
time taken for rebuilding the perfect-hash structures at the various leaves. This in
turn boils down to the following question: What is the total time taken to perform
several FKS perfect hashings, where the total sizes of all subproblems is Θ(n), each
subproblem has size at most nε, and a subproblem is performed successfully in linear
time with probability 1/2? The analysis is now identical to the static case.

We conclude with two remarks on generalizing the above scheme when the number
of items is unknown and deletions need to be performed as well. Neither of these is
relevant to our application of constructing suffix trees.

Unknown number of items. Suppose the number of items to be hashed is an
unknown quantity m, with each item coming from the range 1 . . . nc. Then we start
with an initial estimate of 1 and double the estimate each time it is equaled by
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insertions. Suppose the current estimate is 2e, and the number of items inserted is
e. We first hash these items into an imaginary array A of size (2e)c. No collisions
occur, with inverse polynomial (in e) failure probability (using families of almost-
universal hash functions). We repeatedly try new hash functions until no collisions
occur. Subsequently, we build the partition tree with degree (2e)ε. When the number
of insertions equals 2e, we double our estimate to 4e and rebuild the entire structure.
If the total number of insertions is m, then the total time and space required is O(m),
with probability 1 minus an inverse polynomial in m. This failure probability can be
reduced to 1

mΘ(log m) by using a family of hash functions defined by Siegel [13], instead
of a family of almost-universal hash functions.

Deletions. Deletions can be easily handled as follows. A deleted item is just
marked as deleted, without causing any other change to the data structure. Whenever
the number of items marked as deleted becomes a constant fraction of the number of
items currently in the data structure the entire structure is rebuilt on the undeleted
items. The running time remains O(m) for m insertions and deletions, with the same
failure probability as above. The space at any instant is proportional to the number
of undeleted items.
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Abstract. We present a new technique for differentiating deterministic from nondeterministic
communication complexity. As a consequence we give almost tight lower bounds for the nondeter-
ministic communication complexity with a restricted number of advice bits. In particular, for any
function t : N→ N with t(n) ≤ n/2 we construct a family (Ln,t(n) : n ∈ N) of languages such that

• Ln,t(n) ⊆ {0, 1}2n,

• nc(Ln,t(n)) = O(t(n) · log2
n

t(n)
) and nc(Ln,t(n)) = O

(
n

t(n)·log2 n
t(n)

+ log2 t(n)
)
,

• but nco(t(n))(Ln,t(n)) = Ω
(

n
log2

n
t(n)

)
.

Here ncr(L) is the nondeterministic communication complexity of L, assuming that at most r advice
bits are utilized. Thus, in contrast to probabilistic communication complexity, a small reduction in
the number of advice bits results in almost maximal communication. As a special case we obtain a
family Ln ⊆ {0, 1}2n of languages with

nco(
√
n/ log2 n)(Ln) = Ω

(
n

log2 n

)
,

nc(Ln) + nc(Ln) = O(
√
n),

and hence nondeterministic communication with slightly restricted access to advice bits is almost
quadratically weaker than nondeterminism that always gives correct answers (from the set {yes,
no, ?}). As a consequence we obtain an almost optimal separation between Monte-Carlo communi-
cation and “correct” nondeterminism and answer a question of Beame and Lawry.
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1. Introduction. Communication complexity for two-party protocols [1, 21] is
one of the most thoroughly investigated complexity measures (see, for instance, the
textbooks [9, 15]). Communication complexity is closely related to fundamental com-
plexity measures of several parallel and sequential computational models, i.e., Boolean
circuits [19], VLSI circuits [16], Turing machines [14], branching programs and pseu-
dorandomness [4], and combinatorial optimization [20].

An additional reason to investigate communication complexity is to determine
exact relationships between the computation modes determinism, nondeterminism,
and probabilism [2, 3, 11, 17]. In this paper we consider the number of advice bits for
nondeterministic two-party communication as a computational resource. The related
problem, namely, restricting the number of random bits for probabilistic two-party
communication, has been considered in [6, 7, 18]. In [18] it was shown that a log-
arithmic number of random bits suffices for optimal probabilistic (i.e., Las Vegas,
Monte-Carlo and bounded-error) protocols. We show that the situation for nondeter-
ministic communication is completely different.

∗Received by the editors September 18, 2002; accepted for publication (in revised form) July 21,
2003; published electronically November 14, 2003. A preliminary version of this work originally
appeared as [10]. The authors were partially supported by DFG grants HR 14/6-1 and SCHN 503/2-
1.

http://www.siam.org/journals/sicomp/33-1/41462.html
†Lehrstuhl für Informatik I, RWTH Aachen, 52056 Aachen, Germany (jh@cs.rwth-aachen.de).
‡Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, 60054 Frankfurt am

Main, Germany (georg@thi.informatik.uni-frankfurt.de).

43
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Let L ⊆ {0, 1}2n be a given language. We assume the fixed-partition model of
communication complexity; i.e., processor A (resp., B) receives an input x ∈ {0, 1}n
(resp., y ∈ {0, 1}n), and both processors try to determine whether (x, y) ∈ L. We
assume that an advice bit is given to a processor that requests it; hence we work within
the model of private nondeterministic communication as opposed to the public model,
in which both processors know the advice bits. For a natural number r ∈ N , let

ncr(L)

be the nondeterministic communication complexity of L restricted to protocols that
do not require more than r advice bits. nc(L) = ncn(L) denotes the conventional non-
deterministic communication complexity, whereas c(L) = nc0(L) is the deterministic
communication complexity of L. We can now state our main result.

Theorem 1.1. Let t : N → N be an arbitrary function with t(n) ≤ n/2. Then
there is a family Ln,t(n) ⊆ {0, 1}2n of languages with

nc(Ln,t(n)) = O

(
t(n) · log2

n

t(n)

)
,

nc(Ln,t(n)) = O

(
n

t(n) · log2 n
t(n)

+ log2 t(n)

)
, or alternatively

nc log2 t(n)(Ln,t(n)) = O

(
n

t(n)
+ log2 t(n)

)
, but

nco(t(n))(Ln,t(n)) = Ω

(
n

log2
n

t(n)

)
.

Observe that ncr(L) = nc(L), provided nc(L) ≤ r. Thus the nondeterministic
communication of Ln,t(n) remains bounded by s = O(t(n) · log2 n

t(n) ), even if at most

s advice bits are available, and Theorem 1.1 describes an almost maximal blow-up in
communication, when the number of advice bits is reduced by a logarithmic factor.

Nondeterministic communication can be restricted to being one-way without in-
creasing communication costs. Klauck [13], however, shows a round hierarchy for
nondeterministic communication with slightly restricted access to advice bits.

The crucial dependence on the number of advice bits is not just limited to non-
deterministic communication, but applies to self-verifying nondeterminism as well,
where three types of answers may be given: yes, no, and I do not know. Whenever
the answer is “yes” or “no,” then the answer has to be correct, and for each input
one of these answers has to be given by at least one computation.

It is not difficult to see that svnc(L), the communication complexity of self-
verifying protocols for a language L, satisfies the inequality

max{nc(L),nc(L)} ≤ svnc(L) ≤ max{nc(L),nc(L)}+ 1,

and we get c(L) = O(svnc(L)2) [2]. Our next result shows that this quadratic gap
also appears between self-verifying nondeterminism and nondeterminism with slightly
restricted access to advice bits. If we impose the restriction t(n) ≤ √n/ log2 n in The-
orem 1.1, then the nondeterministic communication complexity of Ln,t(n) dominates
the nondeterministic communication complexity of Ln,t(n), and hence svnc(Ln,t(n)) =

O( n
t(n)·log2 n ). Moreover, we can reduce the consumption of advice bits for Ln,t(n) by

choosing the alternative version, and we get the following.
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Corollary 1.2. Let t : N→ N be an arbitrary function with t(n) ≤ √n/ log2 n.
Then there is a family Ln,t(n) ⊆ {0, 1}2n of languages with

svnc(Ln,t(n)) = O

(
n

t(n) · log2 n
)
, or alternatively

svnc t(n)·log2 n(Ln,t(n)) = O

(
n

t(n)

)
, but

nco(t(n))(Ln,t(n)) = Ω

(
n

log2 n

)
.

If we set t(n) =
√
n/ log2 n and Ln = Ln,t(n), then the almost quadratic and thus

almost maximal blow-up between slightly restricted nondeterministic communication
and self-verifying nondeterminism becomes apparent.

Corollary 1.3. There is a family Ln ⊆ {0, 1}2n of languages with

svnc(Ln) = O(
√
n), but

nco(
√
n/ log2 n)(Ln) = Ω

(
n

log2 n

)
.

Thus nondeterministic and self-verifying nondeterministic protocols show a com-
pletely different behavior compared with their probabilistic counterparts, Monte-Carlo
and Las Vegas protocols, which require at most O(log2 n) random bits [18].

Beame and Lawry ([5]; see also problem 3.11 in [15]) ask whether the communi-
cation complexity of self-verifying nondeterministic protocols is an asymptotic upper
bound for the Las Vegas communication complexity. We show that Corollary 1.3
implies a negative answer even for Monte-Carlo communication. Let mcc(L) be the
Monte-Carlo communication complexity of L, where we assume error probability 1

2 .
By [18] we have mcc(L) ≥ ncO(log2n)(L)−O(log2 n), and hence Corollary 1.3 implies

mcc(Ln) = Ω

(
svnc(Ln)

2

log2 n

)
.

Thus there is an almost quadratic gap (and hence almost maximal gap) between
Monte-Carlo communication and self-verifying nondeterminism. This consequence of
Theorem 1.1, however, is superseded by a recent result of [12], which constructed
a family of languages Ln ⊆ {0, 1}n with two-sided error randomized communica-
tion complexity Θ(n) and self-verifying nondeterministic communication complexity
Θ(
√
n).
The proof of Theorem 1.1 utilizes the fact that a nondeterministic protocol with

r advice bits is a collection of at most 2r deterministic protocols. Hence one such

deterministic protocol exists that accepts at least
|Ln,t(n)|

2r entries of Ln,t(n) and rejects
all elements of the complement. Let us call such a protocol an r-protocol.

Proof techniques are required that give good results for the communication com-
plexity of r-protocols but weak results for nondeterministic protocols. We briefly
discuss the most prominent general techniques, i.e., the rank method, fooling sets,
and upper-bounding the size of monochromatic submatrices.

The rank method does not seem to be adequate, since it does not apply to non-
determinism, even when limiting the number of advice bits. Moreover, the following
observation shows that each language L ⊆ {0, 1}n can be decomposed into O(log2 n)
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languages Li such that the rank of each Li over Z2 is bounded by the nondetermin-
istic communication complexity of L. The argument, however, does not apply to the
rank over the reals. (For a language K ⊆ {0, 1}2n let rankF (K) be the rank of the
communication matrix of K over the field F .)

Proposition 1.4. Let L ⊆ {0, 1}2n be an arbitrary language with nc(L) = c.
Then languages L1, . . . , L2n+1 ⊆ {0, 1}2n exist such that

L =

2n+1⋃
i=1

Li and log2(rankZ2
(Li)) ≤ nc(L) for all i.

In other words, log2(2n + 1) advice bits suffice to recognize L if we are allowed to
replace deterministic protocols by “small-rank” protocols.

Proof. Let nc(L) = k. Then we obtain the representation M =
⋃2k

i=1Mi for the
communication matrix M of L: An optimal nondeterministic protocol consists of at
most 2k accepting messages, which each contribute a rank-1 matrix Mi. For a vector
α of 2k zeroes and ones we define the matrix

M(α) =

2k∑
i=1

αi ·Mi

over Z2. Observe that rank(M(α)) ≤ 2k and that

M [i, j] = 0⇒M(α)[i, j] = 0.

On the other hand, if we choose the vector α at random, then

prob[M(α)[i, j] = 0] =
1

2

for any positive entry (i, j) (i.e., M [i, j] = 1).
Hence if we choose 2n+ 1 vectors α(1), . . . , α(2n+1) at random, we get

prob[M(α(1))[i, j] = 0 ∧ · · · ∧M(α(2n+1))[i, j] = 0] =
1

22n+1

for any positive entry (i, j). Thus α(1), . . . , α(2n+1) exist with

M(α) =

2n+1⋃
i=1

M(αi),

and the claim follows if we define Li as the language with communication matrix
M(α(i)).

The methods of 1-fooling sets [9, 15] (i.e., determining large sets of 1-entries of
the communication matrix with the fooling set property) and 1-chromatic submatrices
[9, 15] (i.e., upper-bounding the size of the largest 1-chromatic submatrix) have to
fail since they yield lower bounds for nondeterministic communication as well. The
corresponding methods of 0-fooling sets and 0-chromatic submatrices cannot be ap-
plied without change, since elements of the language may be rejected. Thus, in order
to prove lower bounds for protocols with a restricted degree of nondeterminism, we
have to develop new proof techniques.

The situation is far easier if we consider a sublogarithmic number of advice bits.
The language NIDn = {(x, y) : x, y ∈ {0, 1}n and x = y} benefits the most if many
advice bits are available.
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Proposition 1.5.
(a) For each language L ⊆ {0, 1}2n and any r ∈ N ,

ncr(L) ≥ c(L)

2r
.

(b) n
2r ≤ ncr+1(NIDn) ≤ n

2r + r + 1.

Proof. (a) A nondeterministic protocol with r advice bits and c exchanged bits
can be simulated by a deterministic protocol with 2r · c exchanged bits.

(b) We describe a nondeterministic protocol for NIDn. The protocol partitions
the n bits of processor A into at most 2r + 1 intervals of length � n

2r �. Processor A
guesses an interval (with at most r + 1 advice bits) and communicates the interval
and its bits.

The paper is organized as follows. The next section introduces a disjointness
language that will be hard for restricted nondeterminism. Section 3 introduces the
crucial concept of simple and double witnesses and shows some basic properties. A
proof sketch and a description of a new approach for distinguishing deterministic
and nondeterministic communication complexity make up section 4. The argument
is completed in sections 5 through 7. Conclusions and open problems are given in
section 8.

2. A disjointness language. From now on we fix nonnegative integers m, n,
and s (with n ≤ m). We begin with a construction of the language family mentioned
in Theorem 1.1.

Definition 2.1.
(a) Pm,n denotes the collection of all n-element subsets of {1, . . . ,m}, and

P(s)
m,n = ×s

i=1 Pm,n.

(b) Let L be a subset of {0, 1}2n. The set

L(s) = {(x1, . . . , xs; y1, . . . , ys) : ∀ i, xi, yi ∈ {0, 1}n and (xi, yi) ∈ L}

is called the s-fold direct sum of L.
(c) Dm,n denotes the complement of the language of set disjointness when inputs

are subsets of {1, . . . ,m} of size n, i.e.,

Dm,n = {(x, y) : x, y ∈ Pm,n and x ∩ y = ∅}.

Theorem 1.1 is an immediate consequence of the following reformulation.
Theorem 2.2. Assume that m and n are sufficiently large with m ≥ n32.
(a) nc(D

(s)
m,n) = O(s · log2m) and nc(D

(s)
m,n) = O(n+ log2(s · log2m)).

(b) nco(s)(D
(s)
m,n) = Ω(s · n).

Obviously nc(D
(s)
m,n) = O(s · log2m) follows by having a nondeterministic protocol

guess a common element s times. We exploit the following surprising result, which
provides an efficient nondeterministic protocol to verify disjointness.

Proposition 2.3 (Example 2.12 in [15]). Assume that processors A and B
receive k-element subsets x, y ⊆ {1, . . . , N}, respectively. Then there is a nondeter-
ministic protocol that verifies whether x and y are disjoint by exchanging at most
O(k + log logN) bits.
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As a consequence of Proposition 2.3 we obtain nc(D
(s)
m,n) = O(n+log2(s · log2m)),

since guessing a pair of disjoint sets requires just log2 s bits. Thus it remains to show
part (b), and this is the topic of subsequent sections. Next we show that Theorem 1.1
is a consequence of Theorem 2.2.

Proof of Theorem 1.1. Input size k and the upper bound t(k) on the number of
advice bits are given. Choose n such that

k = Θ

(
t(k) · log2

(
n32

n

))
.

Thus k = Θ(t(k) ·n · log2 n) (resp., n · log2 n = Θ( k
t(k) )), and hence log2 n = Θ(log2(n ·

log2 n)) = Θ(log2
k

t(k) ). We set

Lk,t(k) = D
t(k)
n32,n.

We observe first that a nondeterministic protocol can recognize Lk,t(k) by guessing
common elements for each of the t(k) sets. Hence nc(Lk,t(k)) = O(t(k) · log2 n) =

O(t(k) · log2 k
t(k) ).

To recognize the complement we guess one of the t(k) sets and apply Proposi-
tion 2.3 to verify disjointness. Thus

nc(Lk,t(k)) = O(n+ log2 log2m+ log2 t(k))

= O

(
k

t(k) · log2 n
+ log2 t(k)

)
= O

(
k

t(k) · log2 k
t(k)

+ log2 t(k)

)
.

Alternatively, we guess one of the t(k) sets and then communicate this set completely.
This gives

nclog2 t(k)(Lk,t(k)) = O(n · log2 n+ log2 t(k))

= O

(
k

t(k)
+ log2 t(k)

)
.

We now use Theorem 2.2(b) for the lower bound on Lk,t(k):

nco(t(k))(Lk,t(k)) = nco(t(k))(D
t(k)
n32,n)

= Ω(t(k) · n) = Ω

(
k

log2 n

)
= Ω

(
k

log2
k

t(k)

)
,

and the claim follows.

3. Simple and double witnesses. Our argument is tailor-made for D
(s)
m,n and

more generally for direct sums of languages with small nondeterministic communi-
cation complexity. We utilize the properties of such languages through the crucial
concepts of simple and double witnesses.
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Definition 3.1. Let I be a subset of {1, . . . , s}.
(a) An element

w ∈ ×s
i=1(Pm,0 ∪ Pm,1 ∪ Pm,2)

is called a witness. If |wi| ≤ 1 for all components i and I = {i : |wi| = 1},
then w is called a simple witness with core I. If 1 ≤ |wi| ≤ 2 for all com-
ponents i and I = {i : |wi| = 2}, then w is called a double witness with core

I. Finally, we say that a witness w with core I is a witness for x ∈ P(s)
m,n,

provided wi ⊆ xi for all i ∈ I.
(b) WitnessI,1 is the set of simple witnesses with core I, and WitnessI,2 is the

set of double witnesses with core I. We define for r ∈ {1, 2} and x ∈ P(s)
m,n

WitnessI,r(x) = {w : w ∈WitnessI,r and for all i ∈ I, wi ⊆ xi }.

(c) Let w be a witness, and let X be a subset of P(s)
m,n. Then

pX(w) =
|{x ∈ X : for all i, wi ⊆ xi }|

|X|
is the probability that a random element of X possesses w as a witness.

If two elements x, y ∈ P(s)
m,n possess a common simple witness w (with core I),

then this witness guarantees an intersection of xi and yi for every component i ∈ I.
Thus any common witness w with core {1, . . . , s} testifies that (x, y) belongs to D(s)

m,n.
We show in the next lemma that there is a small set of witnesses that is able to

testify for a large number of entries of a 1-chromatic submatrix. Hence, on an intuitive
level, the canonical nondeterministic protocol that guesses one witness should not be
too far away from an optimal protocol.

Lemma 3.2. Let X and Y be subsets of P(s)
m,n with M = X × Y as the induced

submatrix of the communication matrix for D
(s)
m,n. Let I be a subset of {1, . . . , s} of

size k.
(a)

∑
w∈WitnessI,1

pX(w) = nk and
∑

w∈WitnessI,1
pY (w) = n

k.

(b) Assume that M is 1-chromatic. Then∑
w∈WitnessI,1

pX(w) · pY (w) ≥ 1.

(c) For 0 ≤ ρ ≤ 1 set WI(ρ) = {w ∈ WitnessI,1 : pX(w) ≥ ρ and pY (w) ≥ ρ}.
Assume that M is 1-chromatic. Then, for every α > 0,

|WI(α · n−k)| ≤ n
2k

α

and ∑
w∈WI(α·n−k)

pX(w) · pY (w) ≥ 1− 2α.

Remark 3.1. Fix the core I of size k. Observe that there are exactly mk simple
witnesses with core I. Therefore, as a consequence of part (a), ( n

m )k is the aver-
age probability for a random element in X having a given witness. Hence the set
WI(α · n−k) consists of highly likely witnesses, since m ≥ n32.
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For α = 1
4 we get relatively few, namely 4 · n2k � mk, simple witnesses that

already contribute 1
2 towards the sum

∑
w∈WitnessI,1

pX(w) · pY (w).
Proof. (a) We first observe that |WitnessI,1(x)| = nk and hence obtain

∑
w∈WitnessI,1

pX(w) =
∑

w∈WitnessI,1

∑
x∈X,w∈WitnessI,1(x)

1

|X|

=
∑
x∈X

∑
w∈WitnessI,1(x)

1

|X|

=
∑
x∈X

|WitnessI,1(x)|
|X| =

∑
x∈X

nk

|X| = n
k.

(b) Assume that M is 1-chromatic. Then for each entry (x, y) of M there exists
a simple witness w with core I and wi ⊆ xi ∩ yi for all i ∈ I. Hence, since pX(w) · |X|
(resp., pY (w) · |Y |) is the number of rows (resp., columns) with witness w,

|X| · |Y | ≤
∑

w∈WitnessI,1

pX(w)|X| · pY (w)|Y |,

and the claim follows.

(c) The upper bound on |WI(α · n−k)| is an immediate consequence of part (a).
Moreover, we obtain again with part (a) that∑

w∈WitnessI,1, w/∈WI(α·n−k)

pX(w) · pY (w)

≤
∑

w∈WitnessI,1

pX(w) · α · n−k +
∑

w∈WitnessI,1

α · n−k · pY (w) ≤ 2α,

and the remaining part of the claim follows.

Next, we determine the size of D
(s)
m,n and the expected number of entries with a

double witness. It should not come as a surprise that this expected number is small

when compared to the size of D
(s)
m,n, since double intersections are rare.

Lemma 3.3.

(a) If m and n are sufficiently large with m ≥ n32, then

|D(s)
m,n| ≥ e−s/n ·

(
n2

m

)s

·
(
m

n

)2s

.

(b) Let X = P(s)
m,n. Then for any integer k ( 1 ≤ k ≤ s)

∑
I⊆{1,...,s},|I|=k

∑
w∈WitnessI,2

pX(w) · pX(w) ≤ 2−k ·
(
s

k

)
·
(
n2

m

)s+k

.

Proof. (a) Fix an element x ∈ P(1)
m,n. If a set y ∈ P(1)

m,n is randomly chosen, then

prob[x and y intersect] ≥ n ·
(
m−n
n−1

)(
m
n

) ,
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since the right-hand side counts intersections in exactly one element. Hence, provided
that m and n are sufficiently large with m ≥ n32,

prob[x and y intersect] ≥ n
2

m
·
(
m−n
n−1

)(
m−1
n−1

)
=
n2

m
· m− n
m− 1

· · · m− 2n+ 2

m− n+ 1

=
n2

m
·
(
1− n− 1

m− 1

)
· · ·
(
1− n− 1

m− n+ 1

)
≥ n

2

m
·
(
1− n− 1

m− n+ 1

)n−1

≥ n
2

m
· e−(n−1)· n−1

m−2n+2 since (1− x) ≥ e −x
1−x

≥ n
2

m
· e−1/n.

Thus |D(1)
m,n| ≥ e−1/n · (n2

m ) · (mn)2, and the claim follows since |D(s)
m,n| = |D(1)

m,n|s.
(b) Let w be a double witness with core I and |I| = k. Remember that X = P(s)

m,n.
Then

pX(w) =

(
m−2
n−2

)k(
m
n

)k ·
(
m−1
n−1

)s−k(
m
n

)s−k

=

(
n · (n− 1)

m · (m− 1)

)k

·
(
n

m

)s−k

≤
(
n

m

)2k

·
(
n

m

)s−k

=

(
n

m

)s+k

.

Hence

∑
w∈WitnessI,2

pX(w) · pX(w) ≤
(
m

2

)k

·ms−k ·
(
n

m

)s+k

·
(
n

m

)s+k

≤ 2−k ·m2k ·ms−k ·
(
n

m

)s+k

·
(
n

m

)s+k

= 2−k ·
(
n2

m

)s+k

,

and the claim follows.

4. A proof sketch. We first give a rough proof outline of Theorem 2.2(b).

Assume that PN is a nondeterministic protocol, which accepts D
(s)
m,n with r advice

bits and communicates o(s · n) bits. Then PN consists of a collection of at most
2r deterministic protocols P1, . . . , P2r , where each Pi accepts only inputs that belong

to D
(s)
m,n and communicates at most o(s · n) bits.
In order to show that r advice bits are also necessary it suffices to show that

any deterministic protocol Q, which accepts only inputs from D
(s)
m,n and exchanges at
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most o(s · n) bits, accepts fewer than |D(s)
m,n|/2r elements from D

(s)
m,n. Assume to the

contrary that Q accepts at least the fraction

2 · |D
(s)
m,n|
2ε·s

of elements from D
(s)
m,n. Then at least half of the entries that are accepted by Q belong

to large 1-chromatic matrices M1, . . . ,Mx, each with at least
(
m
n

)s
/2o(s·n) rows and

columns. Assume that Mi has Xi (resp., Yi) as its set of rows (resp., columns) and

let X0 = Y0 = P(s)
m,n be the set of rows and columns of the communication matrix.

Since Q is a deterministic protocol we get∑
I,|I|=k

∑
w∈WitnessI,2

pX0
(w) · pY0

(w)(4.1)

≥
x∑

i=1

|Xi| · |Yi|
|X0| · |Y0| ·

∑
I,|I|=k

∑
w∈WitnessI,2

pXi
(w) · pYi

(w).

Now, according to Lemma 3.2, there is a small set W ∗ of simple witnesses (with
core {1, . . . , s}) which testify for most nonempty intersections of M = Mi. For such
a witness w ∈ W ∗ let M(w) be the large submatrix of M consisting of all rows and
columns of M with simple witness w.

Imagine that we remove w from the row and column vectors of M(w). (In other
words, if x is the label of a row or column of M(w), then we replace x by x′ with
x′i = xi − {wi}.) We obtain a large submatrix, which will, however, in general not
be 1-chromatic. Now assume that any large, not necessarily 1-chromatic, matrix
has a considerable number of simple witnesses that are quite likely for both rows
and columns. Then, provided that M is large, M(w) has a large number of simple
witnesses, and these witnesses turn into double witnesses after merging with w. (In
general we will not obtain many simple witnesses with core I = {1, . . . , s}, since even
a large submatrix may possess components i with xi ∩ yi = ∅ for all of its rows x and
all of its columns y. Hence we have to work with large core sets.)

The following lemma expresses that M will indeed have many double witnesses.
Lemma 4.1. Let ε ∈ ]0, 1[ be sufficiently small. Assume that m and n are

sufficiently large with m ≥ n32. Let M = X × Y be a 1-chromatic submatrix with

|X| ≥ 4 · ns · αs·n1 ·
(
m

n

)s

and |Y | ≥ 4 · ns · αs·n2 ·
(
m

n

)s

,

where α1, α2 ∈ [0, 1[ are sufficiently large. Then, for k = (1− 2ε) · s,∑
I,|I|=k

∑
w∈WitnessI,2

pX(w) · pY (w) ≥ 2−15k/16 ·
(
s

k

)
·
(
n2

m

)k

.

Our goal is to show that Q produces, through its large disjoint 1-chromatic sub-
matrices Mi, far too many double witnesses. We apply Lemma 4.1 and get with (4.1)∑

I,|I|=k

∑
w∈WitnessI,2

pX0
(w) · pY0

(w) ≥
x∑

i=1

|Xi| · |Yi|
|X0| · |Y0| · 2

−15k/16 ·
(
s

k

)
·
(
n2

m

)k

≥ |D(s)
m,n|

2ε·s · (mn)2s · 2−15k/16 ·
(
s

k

)
·
(
n2

m

)k

.
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However,

|D(s)
m,n|(

m
n

)2s ≥ e−s/n ·
(
n2

m

)s

and therefore

∑
I,|I|=k

∑
w∈WitnessI,2

pX0
(w) · pY0

(w) ≥ e−s/n · 2−15k/16−ε·s ·
(
s

k

)
·
(
n2

m

)s+k

for X0 = Y0 = P(s)
m,n. This contradicts assertion (b) of Lemma 3.3, and Theorem 2.2

follows.
Thus Lemma 4.1 is the technical core of our argument. To obtain the rather

precise bounds, we follow a qualitative approach; namely, we show that it suffices to
consider monotone submatrices M . The next section treats the problem of multiple
counting when determining the number of double witnesses. Monotone submatrices
will be investigated in section 6. Finally we conclude the argument in section 7, where
we show that any large, not necessarily 1-chromatic matrix has a considerable number
of simple witnesses which are quite likely for both rows and columns.

5. 1-chromatic submatrices and double witnesses. Our goal is to show
Lemma 4.1. In a first step we reduce the problem of counting double witnesses in
large 1-chromatic submatrices to the problem of counting simple witnesses in large
but otherwise arbitrary submatrices.

We fix a 1-chromatic matrix M = X × Y with the properties described in
Lemma 4.1. With Lemma 3.2(c) we obtain (for α = 1

4 ) a set W ∗ of simple witnesses
with core {1, . . . , s} such that

pX(w), pY (w) ≥ 1

4 · ns for all w ∈W ∗,(5.1)

|W ∗| ≤ 4 · n2s, and(5.2) ∑
w∈W∗

pX(w) · pY (w) ≥ 1

2
.(5.3)

Let ε be a positive real number to be determined later. For the moment we fix
a subset I ⊆ {1, . . . , s} of size k = (1 − 2ε) · s ≥ s/2. For each w∗ ∈ W ∗ let
M(w∗) = X(w∗)×Y (w∗) be the submatrix ofM = X×Y consisting of exactly those
entries (x, y) of M with w∗ as a common witness (i.e., w∗

i ⊆ xi ∩ yi for all i). We
obtain for each simple witness w ∈ WitnessI,1 (with wi = w∗

i for all elements i ∈ I)
the double witness u = w∗ ∪ w for M(w∗); i.e., ui = w∗

i ∪ wi for all i. However, we
cannot immediately infer that the matrix M has a correspondingly large number of
double witnesses with core I, since the double witness u may be induced by too many
simple witnesses. Observe that this can happen only if u contains too many witnesses
from the set W ∗.

Let u ∈WitnessI,2 be a double witness. The set

W ∗(u) := {w∗ ∈W ∗ : w∗
i ⊆ ui for all i ∈ I }

contains all witnesses from W ∗ that “generate” u. We say that the simple witness
w ∈ WitnessI,1 counts if there is no double witness u ∈ WitnessI,2 with wi ⊆ ui for
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all i ∈ I and |W ∗(u)| ≥ 27k/8. If a witness counts, then none of its generated double
witnesses contains more than 27k/8 witnesses from W ∗, and consequently multiple
counting will be “modest.” How many simple witnesses do not count?

Assume that w does not count and that the double witness u is the reason. If all
elements of W ∗(u) agree on at most k/4 components from I with w, then they agree
with u− w on the remaining components, and hence

|W ∗(u)| ≤
k/4∑
i=0

(
k

i

)
≤ k ·

(
k

k/4

)

≤ k · 4k/4 ·
(
4

3

)3k/4

since

(
t

α · t
)
≤
(
1

α

)α·t
·
(

1

1− α
)(1−α)·t

= k ·
(
4 · 4

3

33

)k/4

= k ·
(

4

33/4

)k

< 27k/8.

The last inequality holds for sufficiently large k, since 4
33/4 < 27/8. In other words,

if w does not count, then some element w∗ ∈ W ∗ agrees with w on at least k/4
components in I. But then, for n ≤ m1/32 and m sufficiently large, at most

|W ∗| ·
(
k

k/4

)
·m3k/4 ≤ 4 · n2s ·

(
k

k/4

)
·m3k/4 because of (5.2)

≤ 2s+2 ·
(
n2s

mk/4

)
·mk since

(
k

k/4

)
≤ 2s

≤ 2s+2 · m
k

mk/8
since n2 ≤ m1/16 ≤ mk/(8·s)

≤ (ε2 ·m)(1−11ε2)k, where ε2 =
1

99
,(5.4)

witnesses in WitnessI,1 do not count.
The following lemma provides the promised reduction to counting simple wit-

nesses. Before presenting the lemma, we set up a number of constants. Let w∗

be an element of W ∗. We decrement m and n by one to reflect that only restric-
tions of witnesses w ∈ ×s

i=1{1, . . . ,m} − {w∗
i } are considered. Remember that

|X| = 4ns · αsn1 ·
(
m
n

)s
, by assumption on the matrix M . Since pX(w∗) ≥ 1

4·ns

(with (5.1)), we get

|X(w∗)| ≥ αs·n1 ·
(
m

n

)s

≥ αs·(n−1)
1 ·

(
m− 1

n− 1

)s

,

where the last inequality holds for sufficiently largem and n. The analogous statement
holds of course for |Y (w∗)| as well. Moreover, we choose α1, α2 < 1 so large that the
following hold, with ε1 = ε and ε2 =

1
80 :

α1, α2 > 41/n−1 · e−ε41/2 and ε21 ≥
2(n− 1)

m− 1
,

α1, α2 > 41/(n−1) · e−ε32·(1−ε2)/4 and ε2 ≥ n− 1

(1− ε2) · (m− 1)
,

1

32
· (1− ε1)

3s(
s

ε1·s
) ≥ e−ε22·s/2.

This is clearly possible for the first four inequalities, provided m and n are sufficiently
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large and n32 ≤ m. The fifth inequality follows if ε1 = ε is sufficiently small.
Lemma 5.1. α1, α2 ∈ [0, 1] as well as ε1, ε2 ∈ [0, 1/6] satisfy the inequalities

α1, α2 > 41/n · e−ε41/2 and ε21 ≥
2n

m
,(5.5)

α1, α2 > 41/n · e−ε32·(1−ε2)/4 and ε2 ≥ n

(1− ε2) ·m,(5.6)

1

32
· (1− ε1)

3s(
s

ε1·s
) ≥ e−3·ε2·s/2.(5.7)

Assume that X and Y are subsets of P(s)
m,n, with |X| = αs·n1 ·

(
m
n

)s
and |Y | = αs·n2 ·

(
m
n

)s
.

Then there is a subset I ⊆ {1, . . . , s} of size at least k = (1 − 2ε1) · s such that, for
any set W of simple witnesses with core I,∑

w∈WitnessI,1−W

pX(w) · pY (w) ≥ 1

32
· (1− ε1)

5k(
s

ε1·s
)2 ·

(
n2

m

)k

,

provided |W | ≤ (ε2 ·m)(1−11·ε2)·s.
In what follows we show that Lemma 5.1 implies Lemma 4.1. The proof of

Lemma 5.1 is given in the subsequent sections.
We apply Lemma 5.1 to the submatrix X(w∗) × Y (w∗) and obtain a subset

I(w∗) ⊆ {1, . . . , s} of size k = (1 − 2ε) · s. Observe that at most (ε2 · m)(1−11ε2)k

simple witnesses from WitnessI(w∗),1 do not count (because of (5.4)), and hence∑
w∈WitnessI(w∗) and w counts

pX(w∗)(w) · pY (w∗)(w) ≥ 1

32
· (1− ε)

5k(
s
ε·s
)2 ·

(
(n− 1)2

m− 1

)k

≥ 1

64
· (1− ε)

5k(
s
ε·s
)2 ·

(
n2

m

)k

.

The last inequality holds for n ≥ 4. We set

simple(w∗, I) :=
∑

w∈WitnessI,1 and w counts

pX(w∗)(w) · pY (w∗)(w).

If a witness counts, then none of its generated double witnesses contains more than
27k/8 witnesses from W ∗. Hence∑

|I|=k

∑
w∈WitnessI,2

pX(w) · pY (w)

≥ 2−7k/8 ·
∑
|I|=k

∑
w∗∈W∗

pX(w∗) · pY (w∗) · simple(w∗, I)

≥ 2−7k/8 ·
∑

w∗∈W∗
pX(w∗) · pY (w∗) · simple(w∗, I(w∗))

≥ 2−7k/8 ·
∑

w∗∈W∗
pX(w∗) · pY (w∗) · 1

64
· (1− ε)

5k(
s
ε·s
)2 ·

(
n2

m

)k

≥ 2−7k/8 · 1

128
· (1− ε)

5k(
s
ε·s
)2 ·

(
n2

m

)k

with (5.3)

≥ 2−15k/16 ·
(
s

k

)
·
(
n2

m

)k

,
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provided that the positive real number ε is chosen sufficiently small (and hence k is
sufficiently large).

This concludes the proof of Lemma 4.1. We still have to deal with the problem of
counting simple witnesses when disregarding a small witness-set. We start to tackle
this problem in the next section, where we show that it suffices to investigate monotone
submatrices.

6. Monotone submatrices. We have to give rather precise estimates of the
number of entries with a double witness for large 1-chromatic submatrices. As al-
ready outlined above, we start by estimating the number of entries with a simple
witness for large (not necessarily 1-chromatic) submatrices. To obtain tight bounds
we follow a qualitative approach; namely, we show that it suffices to consider mono-
tone submatrices.

Definition 6.1.
(a) Let x = (x1, . . . , xs) and y = (y1, . . . , ys) be elements of P(s)

m,n with xi =
{xi,1 < · · · < xi,n} and yi = {yi,1 < · · · < yi,n}. Then

x ≤ y ⇔ xi,j ≤ yi,j for all i, j.

(b) A subset X ⊆ P(s)
m,n is called monotone decreasing (resp., monotone increas-

ing) if for all x ∈ X and for all y ∈ P(s)
m,n

y ∈ X whenever y ≤ x (resp., y ∈ X whenever x ≤ y).

(c) A matrix M = X × Y is monotone provided X is monotone decreasing and
Y is monotone increasing.

Our first goal is to show that monotone submatrices minimize the sum∑
w∈WitnessI,1

pX(w) · pY (w).

This can be verified along the lines of Frankl and Füredi [8] (establishing Harper’s
isoperimetric inequality for the hypercube). In particular, they show that the minimal
distance between two sets of vertices of the n-dimensional hypercube is minimized by
choosing (generalized) Hamming balls centered at 0 (resp., 1). Since a Hamming ball
around 0 (resp., 1) is in our terminology monotone decreasing (resp., increasing), this
result supports the intuition that monotone submatrices “minimize intersections.”

However, the situation gets involved since we also have to deal with a set W of
forbidden witnesses and the transformation from an arbitrary matrix to a monotone
matrix loses track of those witnesses. Therefore we introduce the concept of a system,
consisting of a submatrix M = X × Y and assignments f, g of sets of forbidden
witnesses to elements of X and Y , respectively.

Definition 6.2. Let I be a subset of {1, . . . , s}. A system (X, f, Y, g, I) con-

sists of subsets X,Y ⊆ P(s)
m,n and assignments f : X → P(WitnessI,1) and g :

Y → P(WitnessI,1). We define

legalI(X, f, Y, g) = {(x,w, y) : x ∈ X, y ∈ Y,
w ∈ (WitnessI,1(x)− f(x)) ∩ (WitnessI,1(y)− g(y))}.

Moreover, we demand that f(x) ⊆ WitnessI,1(x) and g(y) ⊆ WitnessI,1(y) for all
x, y ∈ Y .
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The next lemma allows us to restrict attention to monotone submatrices only.

Lemma 6.3. The sets X,Y ⊆ P(s)
m,n are given. Then there is a monotone decreas-

ing subset X ′ and a monotone increasing subset Y ′ with

|X| = |X ′| and |Y | = |Y ′|.

Moreover, for any subset I ⊆ {1, . . . , s} and any system (X, f, Y, g, I), a system
(X ′, f ′, Y ′, g′, I) exists such that∑

x∈X
|f(x)| =

∑
x′∈X′

|f ′(x′)| and
∑
y∈Y
|g(y)| =

∑
y′∈Y ′

|g′(y′)|,(6.1)

as well as

| legalI(X, f, Y, g) | ≥ | legalI(X ′, f ′, Y ′, g′) |.(6.2)

Remark 6.1. Observe that the transformation from the sets X and Y to the sets
X ′ and Y ′ is independent of the assignments f , g and the core I.

Let p∗X(w) be the probability that w occurs as a legal witness for a row of X, and
define p∗Y (w), p

∗
X′(w), and p∗Y ′(w) analogously. The last inequality of Lemma 6.3 now

implies that ∑
w∈WitnessI,1

p∗X(w) · p∗Y (w) ≥
∑

w∈WitnessI,1

p∗X′(w) · p∗Y ′(w),

and we have reached our goal. However, now a witness may be legal for some rows
and columns and forbidden for others. However, the number of pairs (x,w)—with w
forbidden for x—remains unchanged.

Proof. We initially follow the construction in the argument of Frankl and Fü-
redi [8]. In particular, set

[z] =

s∑
i=1

n∑
j=1

zi,j

for z ∈ P(s)
m,n, and introduce the weight-function

weight(Z) =
∑
z∈Z

[z]

for a subset Z ⊆ P(s)
m,n. If X is not monotone decreasing or if Y is not monotone in-

creasing, then we construct subsets X ′ and Y ′ of P(s)
m,n such that properties (6.1), (6.2)

of the lemma are satisfied and

weight(Y ′)− weight(X ′) > weight(Y )− weight(X).

Obviously the lemma follows after repeating this procedure until monotonicity is
reached.

We assume without loss of generality that X is not monotone decreasing and, in
particular, that there is x = (x1, x2, . . . , xs) ∈ X with ξ ∈ x1, ξ − 1 /∈ x1 such that

(x1 − {ξ} ∪ {ξ − 1}, x2, . . . , xs) /∈ X.
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For x ∈ X set x̂ = (x1 − {ξ} ∪ {ξ − 1}, x2, . . . , xs) and define

decreaseξ(x) =

{
x̂ if x1 ∩ {ξ − 1, ξ} = {ξ} and x̂ /∈ X,
x otherwise.

For y ∈ Y set ŷ = (y1 − {ξ − 1} ∪ {ξ}, y2, . . . , ys) and define

increaseξ(y) =

{
ŷ if y1 ∩ {ξ − 1, ξ} = {ξ − 1} and ŷ /∈ Y,
y otherwise.

We replace X and Y by

X ′ = {decreaseξ(x) | x ∈ X} and Y ′ = {increaseξ(y) ∈ Y | y ∈ Y }.
Thus we move x “down” (resp., y “up”) whenever possible. We say that x∗ ∈ X is
a twin of x ∈ X if x∗ and x differ only in their first component and one obtains x∗1
from x1 by replacing ξ by ξ − 1 or vice versa. If {ξ − 1, ξ} ⊆ x1, then x is called its
own twin. Observe that a twin prevents x from moving down.

We get |X| = |X ′|, |Y | = |Y ′|, and moreover weight(Y ′) − weight(X ′) >
weight(Y )− weight(X), since weight(Y ′) ≥ weight(Y ) and weight(X ′) < weight(X).

Assume that x′ ∈ X ′ and y′ ∈ Y ′ are given with decreaseξ(x) = x′ and
increaseξ(y) = y′ for x ∈ X and y ∈ Y . We first consider the easy case 1 /∈ I
and define f ′(x′) = f(x) and g′(y′) = g(y). Obviously property (6.1) holds as well as
property (6.2): If w ∈ WitnessI,1(x) − f(x), then w ∈ WitnessI,1(x

′) − f ′(x′) since
1 /∈ I.

The case 1 ∈ I has to be treated more carefully. In particular, we move up
forbidden witnesses for x′ whenever possible. Why? Property (6.2) requires that the
new system have no more legal triples (x′, w, y′) than the old system. The decrease-
operation for X moves sets down, whereas the increase-operation for Y moves sets
up, and thus the sets in X and Y are moved away from each other. Legal witnesses
for the new sets x′ and y′ should also move away from each other and hence should
be moved down (resp., up). To create space for these movements we move forbidden
witnesses in the opposite direction whenever possible; these movements are harmless,
since the intersections created by forbidden witnesses are not counted.

We now define f ′(x′) and g′(y′) with the help of the decrease and increase oper-
ations relative to f(x) as opposed to X (resp., relative to g(y) as opposed to Y ).

Case 1. x′ /∈ X (resp., y′ /∈ Y ). Remember that we obtain x′ (resp., y′) by
moving x down (resp., by moving y up). We set

f ′(x′) = {decreaseξ(w) : w ∈ f(x)} and g′(y′) = {increaseξ(w) : w ∈ g(y)}.
Hence f(x) (resp., g(y)) is moved down (resp., up) as well. From now on we omit the
definition of g′, since it will be completely analogous to the definition of f ′.

Case 2. x′ ∈ X. Observe that x′ = x.
Case 2.1. x has no twin in X. We set f ′(x) = f(x).
Case 2.2. x has a twin in X. We assume without loss of generality that ξ−1 ∈ x1.

This time f ′ will move up witnesses whenever possible. In particular, if x = twin(x),
then we redistribute forbidden witnesses within f(x) ∪ f(twin(x)). The witnesses in
f(x) all have ξ−1 as their element. We remove such a witness w from f(x) and insert
its twin w∗ into f(twin(x)) iff w∗ is not already an element of f(twin(x)). Hence we
set

f ′(x) = {w ∈ f(x) : w1 = ξ − 1} ∪ {w ∈ f(x) : w1 = ξ − 1 and twin(w) ∈ f(twin(x))}.
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The remaining forbidden witnesses from the union f(x) ∪ f(twin(x)) are placed
into f ′(twin(x)). We can move up forbidden witnesses also if x = twin(x), i.e., if
{ξ − 1, ξ} ⊆ x1. We set

f ′(x) = {increaseξ(w) : w ∈ f(x)}.

Observe that our construction of f ′ and g′ satisfies property (6.1) of Lemma 6.3:
We have either |f ′(x′)| = |f(x)| or |f ′(x′)| + |f ′(x∗)| = |f(x′)| + |f(x∗)| for twins x′

and x∗.
In order to verify property (6.2) we define an injection

count : legalI(X
′, f ′, Y ′, g′) → legalI(X, f, Y, g).

Let (x′, u′, y′) ∈ legalI(X
′, f ′, Y ′, g′) be given. We assume that x′ = decreaseξ(x) and

y′ = increaseξ(y) for x ∈ X and y ∈ Y . We set u = u′ − {ξ} ∪ {ξ − 1}.
Case 1. u′1 /∈ {ξ − 1, ξ}. Then (x, u′, y) ∈ legalI(X, f, Y, g), and we set count(x′,

u′, y′) = (x, u′, y). Obviously count is injective when restricted to arguments satisfying
the case assumption.

Case 2. u′1 = ξ. Since ξ ∈ x′1, we obtain x′ = x, and x was not moved down due
to the twin x∗ ∈ X. Let y∗ be the twin of y if y has a twin in Y . We first make a few
easy observations.

(A) If x = x∗, then f ′(x′) was obtained by applying the increase-operation to
f(x). But u′ /∈ f ′(x′), since u′ is legal and hence u, u′ /∈ f(x).

(B) If y = y∗, then g′(y′) was obtained by applying the decrease-operation to
g(y). It is not possible that both u and u′ belong to g(y), since otherwise
u′ ∈ g′(y).

(C) If x = x∗, then f ′(x′) keeps all forbidden witnesses from f(x) and receives
increased witnesses from f(x∗). Since u′ /∈ f ′(x), we have u /∈ f(x∗) and
u′ /∈ f(x).

(D) If y = y∗, then g′(y′) is the subset of g(y) obtained by removing all witnesses
w, whose decreased version does not belong to g(y∗). But u′ /∈ g′(y), and
thus if u′ ∈ g(y), then u /∈ g(y∗).

Case 2.1. y′ = y. Hence y was moved up and obviously u1 ∈ y1. If x = x∗,
then u /∈ f(x) = f(x∗) with (A). If x = x∗, then u /∈ f(x∗) with (C). In either case
u /∈ f(x∗) and u1 = ξ − 1 ∈ x∗1. We set count(x′, u′, y′) = (x∗, u, y).

We can assume y′ = y from now on.
Case 2.2. y = y∗ and x = x∗. With (B) one of u or u′ does not belong to g(y)

and with (A) u, u′ /∈ f(x). Thus, if u /∈ g(y), set count(x′, u′, y′) = (x, u, y), and
otherwise set count(x′, u′, y′) = (x, u′, y).

Case 2.3. y = y∗ and x = x∗. We have u, u′ /∈ f(x) with (A). If u /∈ g(y∗), we set
count(x′, u′, y′) = (x, u, y∗). Otherwise u′ /∈ g(y) with (D) and we set count(x′, u′, y′)
= (x, u′, y).

Case 2.4. y = y∗ and x = x∗. We have u /∈ f(x∗) and u′ /∈ f(x) with (C). More-
over, it is not possible that both u and u′ belong to f(y) with (B). If u /∈ f(y), then
set count(x′, u′, y′) = (x∗, u, y). Otherwise u′ /∈ g(y) and we set count(x′, u′, y′) =
(x, u′, y).

Case 2.5. y = y∗ and x = x∗. Again we have u /∈ f(x∗) and u′ /∈ f(x) with (C).
If u /∈ g(y∗), then we set count(x′, u′, y′) = (x∗, u, y∗). Otherwise u′ /∈ g(y) with (D)
and we set count(x′, u′, y′) = (x, u′, y).

Case 3. u′1 = ξ − 1. This case is analogous to Case 2.
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Why is “count” injective? Assume that count−1(x,w, y) is nonempty. If w1 /∈
{ξ − 1, ξ}, then (x,w, y) is generated through Case 1, but count, when restricted to
Case 1, is injective.

Now assume that (x,w, y) is generated through Case 2. We observe by inspection
that if (x,w, y) is generated by one subcase, then no other subcase can generate
(x,w, y): If y = y′, then Case 2.1 is responsible and all other subcases can be uniquely
identified when checking which of x and y is its own twin.

By symmetry, injectivity within Case 3 is guaranteed as well. Thus injectivity
can only be violated if (x,w, y) is generated through Case 2 and Case 3. By checking
for x = x′, y = y′, and which of x and y are its own twin, one finds that a collision
is possible only if Case 2.i collides with 3.i for i ≥ 2. Each Case 2.i attempts first to
assign the witness u with u1 = ξ − 1 and assigns u′ with u′1 = ξ only when this is
impossible. Case 3 follows this approach symmetrically by trying first to assign the
witness v with v1 = ξ and assigns v′ with v′1 = ξ − 1 only when this is impossible.

Now it suffices to observe that a failure in the first attempt in Case 2.i makes a
generation by Case 3.i impossible.

The next proposition states a basic property of monotone sets, namely, that the
probability of a witness increases if we reduce one or several of its components.

Proposition 6.4. Let X be a monotone decreasing subset of P(s)
m,n. Then for

any subset I ⊆ {1, . . . , s} and for any simple witnesses u, v ∈WitnessI,1 with ui ≤ vi
for all i ∈ I,

pX(u) ≥ pX(v).

Proof. Let I ⊆ {1, . . . , s} be given. Assume that a row x ∈ X possesses v as
a simple witness (i.e., vi ∈ xi for all i ∈ I). We set yi = xi whenever i /∈ I, and
otherwise

yi =

{
xi if {ui, vi} ⊆ xi,
xi − {vi} ∪ {ui} otherwise.

The function f , with f(x) = (y1, . . . , ys), is an injection mapping elements of X with
witness v to elements of X with witness u. The claim follows.

The next lemma exhibits the crucial advantage of monotone sets, namely, that a
large monotone set X possesses a witness wX (with a large core set I) such that wX

– has only large components and
– is nevertheless still quite likely.

In particular we describe the relationship between the size of X (expressed by α)
on one side and the component size of wX (expressed by β), the probability of wX

(expressed by ε), and the size of the core (expressed by δ) on the other side.
Lemma 6.5. α ∈ [0, 1] and β, δ, ε ∈ [0, 1/2] are nonnegative real numbers with

α > 41/n · e−ε2·β·δ/4 and ε ≥ n

β ·m.(6.3)

Let X ⊆ P(s)
m,n be monotone decreasing with |X| = αn·s · (mn)s.

(a) With probability at least 1−2−s, an element (x1, . . . , xs) ∈ X has the property
that

|{(1− β) ·m+ 1, . . . ,m} ∩ xi| ≥ (1− ε)2 · β · n
for at least (1− δ) · s components i.
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(b) There is a subset I ⊆ {1, . . . , s} with |I| = (1− δ) · s such that for any subset
J ⊆ I of size k the simple witness wJ , with core J and wJ

j = (1− β) ·m for
j ∈ J , satisfies

pX(wJ) ≥ (1− ε)2k
2 · ( s

δ·s
) · ( n

m

)k

.

Proof. (a) We first determine an upper bound for the probability

pE = prob[|y ∩ {(1− β) ·m+ 1, . . . ,m}| ≤ E],

where y is a random subset of {1, . . . ,m} of size n. We claim that

pE ≤ prob

[ n∑
i=1

Yi ≤ E
]
,(6.4)

where

Yi =

{
1 with probability β − n

m ,
0 with probability 1− β + n

m .

Assume that we pick n elements from {1, . . . ,m} without replacement and call the
selection of an element from {(1 − β) · m + 1, . . . ,m} a success. Then the success
probability in the n+ 1st attempt will be minimal if all previous attempts have been
successful, and hence the success probability is always at least β·m−n

m = β− n
m . Hence

(6.4) follows, since the probability of staying below the threshold E is higher when
we assume a smaller success probability.

We have ε ≥ n
β·m (with (6.3)) and therefore 1− n

β·m ≥ 1− ε. Thus,

β − n

m
≥ (1− ε) · β and β − n

m
≥ β

2

(
since ε ≤ 1

2

)
.(6.5)

Observe that E∗ = (β− n
m )·n is the expected value of

∑n
i=1 Yi. We set E = (1−ε)·E∗

and obtain as a consequence of Chernoff’s bound

pE ≤ prob

[ n∑
i=1

Yi ≤ (1− ε) · E∗
]

≤ e−ε2·E∗/2.

Let J be a subset of {1, . . . , s}, and let pE(J) be the probability that a randomly

chosen element x = (x1, . . . , xs) of P(s)
m,n has the property that xj , for all j ∈ J ,

intersects {(1− β) ·m+ 1, . . . ,m} in at most E elements. Then we get

pE(J) ≤ e−ε2·E∗·|J|/2

and, as a consequence, ∑
J⊆{1,...,s},|J|=δ·s

pE(J) ≤ 2s · e−ε2·E∗·δ·s/2.
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In other words, the probability that a randomly chosen element x intersects
{(1 − β) · m + 1, . . . ,m} in at most E elements for δ · s components is small. On
the other hand, |X| = αs·n · (mn)s with

αs·n ≥ 22s · e−ε2·β·δ·s·n/4 because of (6.3)

≥ 22s · e−ε2·(β− n
m )·n·δ·s/2 because of (6.5)

= 2s · 2s · e−ε2·E∗·δ·s/2,

and hence ∑
J⊆{1,...,s},|J|=δ·s

pE(J) ≤ 2−s · |X|(
m
n

)s .
Therefore all but |X|/2s elements (x1, . . . , xs) of X have the property that
|{(1 − β) ·m + 1, . . . ,m} ∩ xi| > E for at least (1 − δ) · s components i. The claim
follows, since E = (1− ε) · E∗ = (1− ε) · (β − n

m ) · n ≥ (1− ε)2 · β · n (with (6.5)).
(b) According to (a) there is a set I ⊆ {1, . . . , s} with |I| = (1−δ) ·s and a subset

X0 ⊆ X such that
• |X0| ≥ |X|

2·( s
δ·s)

and

• for all i ∈ I and for all x ∈ X0, |{(1− β) ·m+ 1, . . . ,m} ∩ xi| > E.
Hence for every subset J ⊆ I with |J | = k,∑

u∈WitnessJ,1,uj>(1−β)·m for all j∈J
pX(u)

=
∑

u∈WitnessJ,1,uj>(1−β)·m for all j∈J

|{x ∈ X : u ∈WitnessJ,1(x)}|
|X|

=
∑
x∈X

|{u ∈WitnessJ,1(x) : uj > (1− β) ·m for all j ∈ J}|
|X|

=
∑
x∈X

∏
j∈J |{(1− β) ·m+ 1, . . . ,m} ∩ xj |

|X| .

We can now bring X0 into play and get∑
x∈X

∏
j∈J |{(1− β) ·m+ 1, . . . ,m} ∩ xj |

|X| ≥
∑
x∈X0

Ek

|X| ≥
|X|

2 · ( s
δ·s
) · Ek

|X| =
Ek

2 · ( s
δ·s
) .

As a consequence of Proposition 6.4, the witness wJ (with core J and wJ
j = (1−β) ·m

for all j ∈ J) has the highest probability of all simple witnesses u with core J and
uj > (1− β) ·m for all j ∈ J and hence

pX(wJ) ≥ Ek

2 · ( s
δ·s
) · (β ·m)k

≥ (1− ε)k · (β − n
m )knk

2 · ( s
δ·s
) · (β ·m)k

·

≥ (1− ε)k
2 · ( s

δ·s
) · (β − n

m )k

βk
·
(
n

m

)k

≥ (1− ε)2k
2 · ( s

δ·s
) · ( n

m

)k

because of (6.5),
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and this was to be shown.
The results of this section are crucial for proving Lemma 5.1. This will be done

in the next section.

7. Large submatrices and simple witnesses. As a first step in the proof of
Lemma 5.1, we show that witnesses from a relatively small set W of witnesses will
constitute a correspondingly small minority among simple witnesses for the rows of
a relatively large matrix. The next lemma makes the size dependencies explicit and
will be used to show that small sets of forbidden witnesses have only little impact.

Lemma 7.1. α ∈ [0, 1] and ε ∈ [0, 1/6] are nonnegative real numbers with

α > 41/n · e−ε3·(1−ε)/4 and ε ≥ n

(1− ε) ·m.

Assume that X is a subset of P(s)
m,n of size αs·n · (mn)s. For a subset I ⊆ {1, . . . , s} of

size k ≥ s/2 let W be a subset of WitnessI,1 with |W | ≤ (ε ·m)(1−11ε)·k. Then∑
w∈W

pX(w) ≤ 2 · e−3ε·k · nk.

Proof. We first show, using the methods in the proof of Lemma 6.3, that one can
assume that W is monotone decreasing, i.e., if u ≤ v componentwise and v ∈W , then
also u ∈ W . If W is not monotone decreasing, then there will be an element w ∈ W
such that, without loss of generality, w1 = {ξ} and w′ = ({ξ − 1}, w2, . . . , ws) /∈W .

For x ∈ X set x′ = (x1 − {ξ} ∪ {ξ − 1}, x2, . . . , xs) and define

decreaseξ(x) =

{
x′ if x1 ∩ {ξ − 1, ξ} = {ξ} and x′ /∈ X,
x otherwise.

Analogously define the function decreaseξ(u) for u ∈W . We replace X and W by

X ′ = {decreaseξ(x) | x ∈ X} and W ′ = {decreaseξ(u) ∈W | u ∈W},
and observe first that |X| = |X ′| and |W | = |W ′|. Finally we claim that∑

w∈W
pX(w) ≤

∑
w′∈W ′

pX′(w′).

Let u be an element of W . If {ξ − 1, ξ} ∩ u1 = ∅, then u ∈ W ′ and pX(u) = pX′(u).
Otherwise u has a twin u′, i.e., u = u′ and one of u and u′ results from the other by
an application of decrease. If u′ ∈W , then both belong to W ′ and pX(u) + pX(u′) =
pX′(u) + pX′(u′). Otherwise u′ ∈ W ′ − W and therefore u′1 = {ξ − 1}. Hence
pX(u) ≤ pX′(u′).

Thus, after repeating the above procedure suitably often, we obtain a subsetX∗ ⊆
P(s)
m,n (with |X∗| = |X|) and a monotone decreasing subset W ∗ (with |W ∗| = |W |),

such that ∑
w∈W

pX(w) ≤
∑

w∗∈W∗
pX∗(w∗).

Let I be a subset of {1, . . . , s} of size k ≥ s/2. Since |W ∗| = |W | and |W | ≤
(ε ·m)(1−11ε)·k and since W ∗ is monotone decreasing, each element of W ∗ has at least
11ε · k components of value at most ε ·m, since otherwise

|W ∗| > (ε ·m)(1−11ε)·k.
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Thus all elements of W ∗ have a large number of small components. We say that a
component i is regular for (x1, . . . , xs) provided

|{ε ·m+ 1, . . . ,m} ∩ xi| ≥ (1− ε)3 · n.

Finally we call x conventional if x has at least (1 − ε) · s regular components. We
apply Lemma 6.5(a) (with β = 1 − ε and δ = ε) and obtain, with probability at
least 1− 2−s, that an element x∗ ∈ X∗ is conventional. Fix an arbitrary conventional
element x∗ and distinguish exactly (1−ε) ·s of its regular components. We claim that

|{w ∈W ∗ | w ∈WitnessI,1(x
∗)}| ≤ e−3ε·k · nk.(7.1)

Let E be the expected number of small components (i.e., of value at most ε · m)
of a witness w ∈ WitnessI,1(x

∗), where we consider only the distinguished regular
components of x∗. Then E ≤ (k − ε · s) · (1− (1− ε)3) ≤ (k − ε · s) · 3ε ≤ 3ε · k. We
choose β, with β · E = 9ε · k, and obtain

prob[w has at least 9ε · k small components | w ∈WitnessI,1(x
∗)] ≤ e−E·(β−1)2/3

with the Chernoff bound. We have E · (β−1) = E ·β−E ≥ 6ε ·k and hence β−1 ≥ 2
as well as E · (β − 1)2 ≥ 12ε · k. Thus the probability of having at least 9ε · k small
components is bounded by e−12ε·k/3 ≤ e−3ε·k.

If we also consider the at most ε · s irregular components of I, we obtain, with
probability at most e−3ε·k, at least 9ε · k + ε · s ≤ 11ε · k components with value at
most ε ·m. Claim (7.1) follows, since elements of W ∗ have at least 11ε ·k components
with value at most ε ·m.

We conclude by also considering (the few) unconventional elements of X∗ and
obtain ∑

w∈W∗
pX∗(w) =

∑
x∈X∗

|{w ∈W ∗ | w ∈WitnessI,1(x
∗)}|

|X∗|

≤ |X
∗|

2s
· n

k

|X∗| +
∑

x∈X∗, x is conventional

e−3ε·k · n
k

|X∗|

≤ n
k

2s
+ e−3ε·k · nk =

(
1

2s
+ e−3ε·k

)
· nk ≤ 2 · e−3ε·k · nk,

where the last inequality follows, since ε ≤ 1
4 .

Proof of Lemma 5.1. We have to show that a large subset I ⊆ {1, . . . , s} (of size k)
exists, such that many quite likely (simple) witnesses w (with core I) are common to
X and Y even if witnesses in a small set W are not counted. We may assume that
X and Y are large (|X| = αs·n1 · (mn)s and |Y | = αs·n2 · (mn)s) and that W is small

(|W | ≤ (ε2 ·m)(1−11·ε2)·s).
We start by making the transition to monotone sets X ′ and Y ′ according to

Lemma 6.3 (with |X| = |X ′| and |Y | = |Y ′|). Next, Lemma 6.5, applied for ε = 2β =
δ = ε1, provides a subset IX′ ⊆ {1, . . . , s} of size (1− ε1) · s such that

pX′(uJ) ≥ (1− ε1)2l
2 · ( s

ε1·s
) · ( n

m

)l
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for any subset J ⊆ IX′ of size l, where uJj = (1− ε1/2) ·m for all j ∈ J . The situation
for Y ′ is analogous, and we obtain a subset IY ′ ⊆ {1, . . . , s} of size (1 − ε1) · s such
that

pY ′(vJ) ≥ (1− ε1)2l
2 · ( s

ε1·s
) · ( n

m

)l

for any subset J ⊆ IY ′ of size l, where vJj = (1 − ε1/2) · m for all j ∈ J . We set
I = IX′ ∩ IY ′ and obviously k := |I| ≥ (1− 2 · ε1) · s.

We go back to Lemma 6.3 and apply it for the system (X, f, Y, g, I), where

f(x) =W ∩WitnessI,1(x),

g(y) =W ∩WitnessI,1(y).

With Lemma 6.3 we obtain functions f ′ : X ′ → P(WitnessI,1) and g′ : Y ′ →
P(WitnessI,1) defining the new sets of forbidden witnesses such that∑

x∈X
|f(x)| =

∑
x′∈X′

|f ′(x′)| and
∑
y∈Y
|g(y)| =

∑
y′∈Y ′

|g′(y′)|.(7.2)

Finally we set

p∗X(u) = |{x ∈ X : u ∈WitnessI,1(x)− f(x) }|/|X|,
p∗Y (u) = |{y ∈ Y : u ∈WitnessI,1(y)− g(y) }|/|Y |

and introduce p∗X′(u), p∗Y ′(u) analogously. Then we get∑
w∈WitnessI,1

p∗X(w) · p∗Y (w) ≥
∑

w∈WitnessI,1

p∗X′(w) · p∗Y ′(w)

as a consequence of Remark 6.1. We apply Lemma 7.1 (with ε = ε2) and utilize (7.2)
to get ∑

x′∈X′
|f ′(x′)| =

∑
x∈X
|f(x)| = |X| ·

∑
w∈W

pX(w) ≤ 2|X| · e−3ε2·k · nk and∑
y′∈Y ′

|g′(y′)| =
∑
y∈Y
|f(y)| = |Y | ·

∑
w∈W

pY (w, ) ≤ 2|Y | · e−3ε2·k · nk.

Call a simple witness u ∈WitnessI,1 crucial if ε1 ·m/2 + 1 ≤ ui ≤ (1− ε1/2) ·m
for all i ∈ I. Observe that there are (1− ε1)k ·mk crucial witnesses. Let

U = {u : u ∈WitnessI,1 is crucial and p∗X′(u) < pX′(u)/2}.

We claim that |U | ≤ 1
4 · (1− ε1)k ·mk. The difference between p∗X′ and pX′ is due to

forbidden witnesses and, since∑
u∈U
|{x′ ∈ X ′ : u ∈WitnessI,1(x

′)− f ′(x′) }|

≥
∑
u∈U
|{x′ ∈ X ′ : u ∈WitnessI,1(x

′) }| −
∑

x′∈X′
|f ′(x′)|,
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we obtain

|X ′| ·
∑
u∈U

p∗X′(u) ≥ |X ′| ·
∑
u∈U

pX′(u)−
∑

x′∈X′
|f ′(x′)|

≥ |X ′| ·
∑
u∈U

pX′(u)− 2|X| · e−3ε2·k · nk.

As a consequence, since |X| = |X ′|,∑
u∈U

p∗X′(u) ≥
∑
u∈U

pX′(u)− 2 · e−3ε2·k · nk.(7.3)

Let u be a crucial witness. Then with Proposition 6.4 and Lemma 6.5,

pX′(u) ≥ pX′(uI) ≥ (1− ε1)2k
2 · ( s

ε1·s
) · ( n

m

)k

,

and therefore, assuming |U | > 1
4 · (1− ε1)k ·mk,∑

u∈U
pX′(u) ≥ |U | · (1− ε1)

2k

2 · ( s
ε1·s
) · ( n

m

)k

=
|U |
mk
· (1− ε1)

2k

2 · ( s
ε1·s
) · nk

>
1

4
· (1− ε1)k · (1− ε1)

2k

2 · ( s
ε1·s
) · nk =

1

8
· (1− ε1)

3k(
s

ε1·s
) · nk

≥ 4 · e−3ε2·k · nk because of (5.7).

Thus, if |U | > 1
4 · (1− ε1)k ·mk, then with (7.3),∑

u∈U
p∗X′(u) ≥

∑
u∈U

pX′(u)− 2 · e−3ε2·k · nk ≥
∑
u∈U

pX′(u)/2,

and p∗X′(u) ≥ pX′(u)/2 for at least one witness u ∈ U . This contradicts the definition
of U , and therefore |U | ≤ 1

4 · (1− ε1)k ·mk.
We carry out the same argument for the set Y of columns and obtain that for at

least one half of all crucial witnesses u,

p∗X′(u) ≥ pX′(u)

2
≥ (1− ε1)2k

4 · ( s
ε1·s
) · ( n

m

)k

and

p∗Y ′(u) ≥ pY ′(u)

2
≥ (1− ε1)2k

4 · ( s
ε1·s
) · ( n

m

)k

.

Since ∑
u∈WitnessI,1−W

pX(u) · pY (u) =
∑

u∈WitnessI,1

p∗X(u) · p∗Y (u)

≥
∑

u∈WitnessI,1

p∗X′(u) · p∗Y ′(u)

≥
∑

u is crucial

p∗X′(u) · p∗Y ′(u)

≥ 1

2
· (1− ε1)k ·mk · (1− ε1)

4k

16 · ( s
ε1·s
)2 · ( nm

)2k

≥ 1

32
· (1− ε1)

5k(
s

ε1·s
)2 ·

(
n2

m

)k

,
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the claim follows.

8. Conclusion. We have shown that a reduction in the number of advice bits
by a logarithmic factor may result in an almost optimal increase for nondeterministic

communication. This result was obtained for the language D
(s)
m,n, a direct sum version

of the disjointness language, by
1. first showing that any 1-chromatic submatrix of the communication matrix

has few simple witnesses testifying for most entries and
2. then utilizing this property by showing that a large 1-chromatic submatrix

has a large number of quite likely double witnesses.
A deterministic protocol partitions the communication matrix into submatrices,
and hence the number of double witnesses is at least as large as the sum, over all
1-chromatic submatrices M , of the number of double witnesses of M . Thus a deter-
ministic protocol that exchanges few bits and accepts many inputs cannot be correct,
since it generates too many double witnesses. Step 2 is verified by showing that
monotone submatrices will have the smallest number of entries with a common sim-
ple witness and hence follows a qualitative approach.

Consequently we obtained a family Ln ⊆ {0, 1}2n of languages with

nco(
√
n/ log2 n)(Ln) = Ω

(
svnc(Ln)

2

log2 n

)
= Ω

(
n

log2 n

)
,(8.1)

and hence an almost quadratic gap between self-verifying nondeterministic commu-
nication and advice-restricted nondeterminism. As an immediate consequence of this
gap we also obtained an almost quadratic gap between self-verifying nondeterministic
communication and Monte-Carlo communication, namely,

mcc(Ln) ≥ nco(
√
n/ log2 n)(Ln) = Ω

(
svnc(Ln)

2

log2 n

)
= Ω

(
n

log2 n

)
.

We close with two questions. Can the logarithmic gap in (8.1) be removed? Are there
further application areas for the new lower bound method?

Acknowledgment. Paul Beame observed that Theorem 1.1 separates Monte-
Carlo communication from self-verifying nondeterministic communication.
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Abstract. Delaunay meshes with bounded circumradius to shortest edge length ratio have been
proposed in the past for quality meshing. The only poor quality tetrahedra, called slivers, that can
occur in such a mesh can be eliminated by the sliver exudation method. This method has been shown
to work for periodic point sets, but not with boundaries. Recently a randomized point-placement
strategy has been proposed to remove slivers while conforming to a given boundary. In this paper we
present a deterministic algorithm for generating a weighted Delaunay mesh which respects the input
boundary and has no poor quality tetrahedron including slivers. As in previous work, we assume
that no input angle is acute. Our result is achieved by combining the weight pumping method for
sliver exudation and the Delaunay refinement method for boundary conformation.
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Delaunay triangulation, weighted Delaunay refinement, sliver
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1. Introduction. In finite element methods a three-dimensional domain is often
partitioned with tetrahedra. The quality of their shapes influences the quality of the
finite element solution [21]. This motivated the decade-long research on generating
meshes with guaranteed aspect ratio called quality meshes [1, 3, 5, 6, 7, 18, 19, 20].
A considerable literature has built up on the subject; see the surveys and books
[2, 11, 14, 22]. We review only a few of them in the context of the work in this paper.

Bern, Eppstein, and Gilbert [3] pioneered a quadtree-based triangulation ap-
proach for producing quality meshes with close to optimal size in two dimensions.
Mitchell and Vavasis [18] extended this technique to triangulate polyhedra with guar-
anteed aspect ratio in higher dimensions. This line of work provided many crucial
insights into the problem, though the elements produced by this method have a biased
alignment because of the axis-parallel boxes used in quadtree/octtree subdivisions.
Delaunay-based triangulations do not have this problem, and they are widely used in
mesh generation for their uniqueness and many other nice properties; see [14, 11]. As
a result, researchers have also concentrated on computing meshes as a subcomplex of
a Delaunay mesh with guaranteed quality. Chew proposed a simple circumcenter in-
sertion method for the problem in two dimensions [5] which produces a uniform mesh
of quality triangles. Ruppert [19], in a pioneering work called Delaunay refinement,
showed how circumcenter insertion can be used to produce a quality graded mesh
with optimal size.

Many of the concepts, including the analysis of the local feature size, introduced
by Ruppert are the basis of the further developments in this area. Shewchuk made
an important contribution in extending the Delaunay refinement to three-dimensional
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domains with boundaries [20]. This refinement eliminates any tetrahedron that has a
large ratio of its circumradius to the shortest edge length. Consequently the result-
ing mesh satisfies the radius-edge ratio property ; i.e., all tetrahedra have radius-edge
ratios below a threshold. Although most of the poor quality tetrahedra are removed
by the radius-edge ratio property, one type of bad tetrahedra called slivers are not
eliminated; see [8]. Slivers are formed by four points placed almost uniformly around
the equator of a sphere. Slivers have bounded radius-edge ratio, but they have neg-
ligible volume, which makes them poor quality. Cheng et al. [7] proposed the sliver
exudation method to get rid of the slivers from a Delaunay mesh that already have
the radius-edge ratio property. They introduced the pumping technique, which as-
signs a weight to each vertex, which prohibits any sliver to be incident on them in the
weighted Delaunay triangulation. Subsequently, Edelsbrunner et al. [12] developed a
method for perturbing the points so that the unweighted Delaunay tetrahedralization
has the radius-edge ratio property and is sliver-free.

Unfortunately, the algorithms of [7, 12] could not handle boundaries and were
applied to periodic point sets. In a recent work, Edelsbrunner and Guoy [13] exper-
imented with the sliver exudation method, which reveals that the technique is very
effective in eliminating slivers. After sliver exudation, almost all tetrahedra have an-
gles greater than 5◦ (except that some tetrahedra with angles less than 5◦ survive
near the boundary). Thus, boundary handling remains a challenge. Recently, Li
and Teng [15] showed that it is possible to construct a sliver-free Delaunay mesh,
in the presence of boundaries, with a randomized point-placement strategy extended
from that of Chew [6]. A sliver is destroyed by inserting a random point near its
circumcenter. The analysis of this algorithm is a nice example of the confluence of
the results developed over the years by Chew [6], Ruppert [19], Shewchuk [20], and
Cheng et al. [7].

In this paper we present the first deterministic algorithm to construct a Delau-
nay mesh, with the radius-edge ratio property and without any sliver, of a three-
dimensional domain with boundaries. We combine Delaunay refinement with sliver
exudation and obtain what we call the weighted Delaunay refinement. We show that
this technique produces a graded mesh with asymptotically optimal size. Our work
can be viewed as an advance along the line of research initiated by Chew and Ruppert
[5, 19] and carried forward by Dey, Bajaj, and Sugihara [8], Shewchuk [20], Cheng
et al. [7], Edelsbrunner et al. [12], and Li and Teng [15]. Encouraged by the exper-
imental results of Edelsbrunner and Guoy [13], we believe that weighted Delaunay
refinement is eminently practical. Their experiments show that, after sliver exuda-
tion, relatively few slivers near the domain boundary survive. Thus, we expect that
most slivers can be destroyed without adding extra points.

The rest of the paper is organized as follows. Section 2 describes the basic defi-
nitions. Section 3 presents our algorithm, and its behavior is analyzed in sections 4,
5, and 6. Section 7 proves the guarantees achieved by our algorithm. We conclude in
section 8.

2. Definitions. We need the following definitions, most of which have been
introduced in earlier works.

Quality of tetrahedra. The volumes of tetrahedra in a normalized sense capture
their quality. Poor quality tetrahedra have small normalized volume. Let R, L, and V
be the circumradius, shortest edge length, and volume, respectively, of a tetrahedron
τ . We characterize τ by two ratios ρ(τ) = R/L and σ(τ) = V/L3. If ρ(τ) exceeds a
threshold ρ0, then we call it skinny. If ρ(τ) ≤ ρ0 and σ(τ) does not exceed a threshold
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σ0, then we call τ a sliver. As in previous work [7, 15], we will show that there exist
ρ0 and σ0 independent of the domain such that our algorithm does not produce any
skinny tetrahedron or sliver with respect to ρ0 and σ0.

Piecewise linear complex. The domain to be meshed is a bounded volume, and
its boundary is presented using a piecewise linear complex (PLC). A collection P
of vertices, segments, and facets in R

3 is called a PLC (i) if all elements on the
boundary of an element in P also belong to P and (ii) if any two elements intersect,
their intersection is a lower-dimensional element in P.

Input. We assume that the domain to be meshed is a convex bounded volume
containing a collection of vertices, segments, and facets represented as a PLC. An
input angle is the angle between two segments sharing a vertex, a segment and a facet
sharing one vertex, or two facets sharing a vertex or a segment. We assume that no
input angle is acute. If the input PLC does not bound a convex volume, we enclose it
in a large box, mesh the inside of the box, and keep only the tetrahedra covering the
original domain. This technique has been used before [11, 19]. We use P to denote
the (possibly extended) input PLC.

Incidence. Two elements in P are incident if one is in the boundary of the other.
Adjacent elements. We call two elements of P adjacent if either they are incident

or they are nonincident but their closure intersect. For example, two segments sharing
an endpoint are adjacent, and two facets sharing a segment are adjacent. As another
example, if a segment does not lie on the boundary of a facet but they share a vertex,
then they are adjacent. A vertex of P is not adjacent to any other element that is
not incident to it.

Local feature size. The local feature size for P is a function f : R
3 → R, where

f(x) is the radius of the smallest ball centered at x intersecting two nonadjacent
elements of P.

Weighted Delaunay triangulation. We use x̂ to denote a weighted point at x with
weight X2. The weighted point x̂ can be interpreted as a sphere centered at x with
radius X. Notice that any point can be thought of as a weighted point with weight
zero. The weighted distance π(x̂, ŷ) between two weighted points x̂ and ŷ is given by

π(x̂, ŷ) = ‖x− y‖2 −X2 − Y 2.

If π(x̂, ŷ) = 0, then for any point z ∈ x̂∩ ŷ, ‖x−z‖2 +‖y−z‖2 = X2 +Y 2 = ‖x−y‖2.
That is, ∠xzy = π/2. Thus we say that x̂ and ŷ are orthogonal. If π(x̂, ŷ) is greater
(resp., smaller) than 0, then for any point z ∈ x̂∩ ŷ, ∠xzy > π/2 (resp., ∠xzy < π/2),
and we say that x̂ and ŷ are further than (resp., closer to) orthogonal from each other.
The bisector plane of x̂ and ŷ is the locus of points at equal weighted distances from
x̂ and ŷ.

Let τ be a simplex of dimension one or more in R
3; i.e., τ is an edge, a triangle, or

a tetrahedron. The smallest orthosphere of τ is the smallest sphere, say x̂, so that x̂ is
orthogonal to each weighted vertex of τ . The smallest orthosphere is the counterpart
of the smallest circumspheres for simplices with unweighted vertices; see Figure 2.1.
Notice that for a tetrahedron there is only a single sphere orthogonal to all of its
four weighted vertices, which is its smallest orthosphere. The center and radius of
the smallest orthosphere of any simplex are called its orthocenter and orthoradius,
respectively.

For a weighted point set V, a tetrahedron spanning four points of V is weighted
Delaunay if its orthosphere is further than orthogonal away from any other weighted
point in V. A weighted Delaunay triangulation of V is the collection of all weighted
Delaunay tetrahedra along with their triangles, edges, and vertices.
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xx

Fig. 2.1. Smallest orthospheres of an edge and a triangle with orthocenter x.

3. Weighted Delaunay refinement.

3.1. Overview. The Delaunay refinement algorithm as originally proposed by
Ruppert [19] and later extended to three dimensions by Shewchuk [20] iteratively
inserts circumcenters of tetrahedra that have radius-edge ratio above a threshold.
Whenever a circumcenter x lies so close to an element F in the input PLC that some
of its subsets cannot appear in the current Delaunay triangulation, x is rejected and
F is subdivided instead. It can be proved that a new vertex x is inserted at least
c · f(x) distance away from all other vertices and input elements for some constant
c > 0. This lower bound on distances guarantees the termination because only a finite
number of points can be accommodated in a bounded domain with a lower bound on
the interpoint distances.

Delaunay refinement achieves bounded radius-edge ratio but fails to remove sliv-
ers. This motivated the sliver exudation method of Cheng et al. [7], which eliminates
slivers from a Delaunay mesh that already have bounded radius-edge ratio. The key
algorithmic tool in sliver exudation is the assignment of weights to unweighted ver-
tices. The weight assignment can be viewed as pumping the unweighted vertex to
grow it to a sphere (weighted vertex). When an unweighted vertex v is pumped, there
is a restriction on the weight to be assigned to v. The weight must be selected from
the interval [0, ω2N(v)2], where N(v) is the Euclidean distance to its nearest vertex
and ω ∈ (0, 1/2) is a constant. It is shown that there exists a weight in the mentioned
interval for each vertex v so that if v is assigned that weight, all slivers incident to
v are removed from the weighted Delaunay triangulation of the vertex set (see [7]).
This is stated precisely in the following sliver theorem.

Theorem 3.1 (sliver theorem; see [7]). Given a periodic point set V and a
Delaunay triangulation of V with radius-edge ratio ≤ ρ, there exist ρ0 > 0, σ0 > 0,
and a weight assignment in [0, ω2N(v)2] for each vertex v in V such that ρ(τ) ≤ ρ0

and σ(τ) > σ0 for each tetrahedron τ in the weighted Delaunay triangulation of V.

The required weights can be assigned in a deterministic manner for periodic point
sets as defined by Cheng et al. [7]. Periodic point sets are infinite points sets without
boundaries. So Theorem 3.1 does not give an algorithm for meshing bounded domains.
For a bounded domain, the weight assignment may challenge the boundary. We solve
this problem by combining the Delaunay refinement with pumping while redefining
the encroachment with respect to weighted points.
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p

x

Fig. 3.1. A subsegment is encroached by p̂. Note that the angle shown between p̂ and the smallest
orthosphere of the subsegment is less than π/2. The subsegment is split by its orthocenter x.

Our algorithm refines a Delaunay triangulation until it determines that it is safe
to pump vertices to remove slivers. In the refinement process it attempts to insert
circumcenters of skinny tetrahedra. However, these centers may come close to or chal-
lenge some boundary elements, which are then subdivided. The subdivision process
may trigger further subdivision with new vertices. This refinement process is exactly
the same as that of Ruppert [19] and Shewchuck [20]. We introduce another stimulus
for refinement in preparation for pumping the vertices to remove slivers in a final
stage. If a vertex v has a sliver incident to it, we check whether the vertex with max-
imum allowed weight challenges any boundary element. If so, a refinement process is
triggered. We will see that even if v does not challenge any boundary element, v̂, the
weighted vertex, may. At these stages, we maintain only the unweighted Delaunay
triangulation of the current vertex set. At the end of the refinement process, when no
further boundary element is challenged by weighted or unweighted vertices, we safely
pump the vertices to eliminate slivers.

3.2. Subsegments and subfacets. Our algorithm maintains a set of vertices
V which consists of the input vertices initially, and it grows as we refine boundary
elements and insert circumcenters of skinny tetrahedra.

The vertices in V on a segment of P subdivide it into subsegments. Let ab be a
subsegment. A point p encroaches upon ab if p lies inside the smallest circumsphere of
ab. Suppose that there is no encroached subsegment. Consider the vertices in V on a
facet of P in isolation. The two-dimensional Delaunay triangulation of these vertices
conforms to the boundary of the facet. Each triangle on the facet is called a subfacet.
A point p encroaches upon a subfacet abc if p lies inside the smallest circumsphere
of abc.

Eventually, we will assign weights to vertices in V. This will require us to deal with
the weighted versions of subsegments, subfacets, and encroachment. The weighted-
subsegments are exactly the same as subsegments but possibly with weighted end-
points. A weighted point p̂ encroaches upon a weighted-subsegment ab if p̂ is closer
than orthogonal to the smallest orthosphere of ab. See Figure 3.1 for an illustration.
Suppose that there is no encroached weighted-subsegment. Consider the weighted
vertices on a facet of P in isolation. The two-dimensional weighted Delaunay tri-
angulation of these vertices conforms to the boundary of the facet. Each triangle
on the facet is called a weighted-subfacet. A weighted point p̂ encroaches upon a
weighted-subfacet abc if p̂ is closer than orthogonal to the smallest orthosphere of abc.

We will prove several properties for the weighted Delaunay triangulation (Lemmas
3.2–3.6) later. As the weighted case is more general than the unweighted case, these
results are applicable for the unweighted Delaunay triangulation as well as when only
some of the vertices are weighted.
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3.3. Weight assignment. For a vertex u, there are at most two assigned
weights, one to check whether û encroaches upon a boundary element, and possi-
bly another if u participates in an actual pumping in the final stage. Let ω0 < 1 be
a constant chosen in advance. The value of ω0 will be determined in section 5. We
use the weight ω2

0f(u)2 for an encroachment check and the interval [0, ω2
0f(u)2] to

assign weights during pumping. It is important that there be enough space around u
when it is pumped. Recall that the vertex û with weight U2 is equivalent to a sphere
centered at u with radius U . The assigned weights also impose a requirement that
no other vertex be allowed within an Euclidean distance of 2ω0f(u) from u. Conse-
quently, after pumping, û can reach up to half of the Euclidean distance to its nearest
neighbor. Thus no two weighted vertices intersect after pumping. We provide an
exact statement of this property below.

Vertex gap property. For each vertex u in V, the weight of u used for encroachment
checking or pumping is at most ω2

0f(u)2, and the Euclidean nearest neighbor distance
of u in V is at least 2ω0f(u).

Note that we need to maintain the vertex gap property throughout the algorithm
as new vertices are inserted (added to V). As the weights assigned to the vertices
are not large compared with interpoint distances, the resulting weighted Delaunay
triangulation satisfies many properties of the unweighted one, and many results of
the Delaunay refinement carry over to the weighted Delaunay refinement (Lemmas
3.2–3.6). We will prove the vertex gap property in section 5.

3.4. Locations of centers. Whenever a subsegment is encroached, we split it
by inserting its midpoint. Whenever a subfacet is encroached, we split it by inserting
its circumcenter. This requires the circumcenter to lie on the facet of P containing that
subfacet. Whenever there is a skinny tetrahedron, we insert its circumcenter. This
requires the circumcenter to lie inside the input domain to prevent perpetual growth
of the mesh. Although at this point we need these results for Delaunay triangulations,
we prove them for weighted Delaunay triangulations that we will need in section 7 for
pumping.

Lemma 3.2. Suppose that the vertex gap property holds. If there is no encroached
weighted-subsegment or weighted-subfacet, no weighted vertex p̂ intersects a segment
or a facet that does not contain p.

Proof. Assume to the contrary that the lemma does not hold. First of all, p̂
cannot enclose any vertex other than p because of the vertex gap property. Let F
be a segment intersected by p̂ if there is any. Otherwise, let F be a facet intersected
by p̂. Let q be the projection of p on F . Observe that any point on F lies inside
the smallest orthosphere of some weighted-subsegment or weighted-subfacet, or inside
some weighted vertex on F (viewed as a sphere). Suppose that q lies inside the
smallest orthosphere x̂ of a weighted-subsegment or weighted-subfacet τ . We have
‖p − x‖2 = ‖q − x‖2 + ‖p − q‖2 < X2 + P 2 as ‖q − x‖ < X and ‖p − q‖ < P .
This implies that p̂ encroaches upon τ , a contradiction. Suppose that q lies inside a
weighted vertex v̂. Similarly, we get ‖p− v‖2 = ‖q − v‖2 + ‖p− q‖2 < V 2 + P 2. This
implies that p̂ and v̂ intersect, which contradicts the vertex gap property.

Lemma 3.3. Suppose that the vertex gap property holds.
(i) A weighted-subsegment contains its orthocenter.
(ii) If no weighted-subsegment is encroached, a facet contains the orthocenter of

any weighted-subfacet on it.
(iii) If no weighted-subsegment or weighted-subfacet is encroached, the input do-

main contains the orthocenter of any weighted Delaunay tetrahedron inside
the input domain.
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Proof. Because of the vertex gap property, (i) is obvious. We present a proof
that works for both (ii) and (iii). Let Ω be a facet or the input domain. Let τ be a
weighted-subfacet on Ω or a weighted Delaunay tetrahedron inside Ω correspondingly.
Let ŝ be the smallest orthosphere of τ . Assume to the contrary that s lies outside Ω.

Let p be a vertex of τ such that ps crosses ∂Ω. By Lemma 3.2, p̂ does not cross
∂Ω, so ŝ must cross ∂Ω in order to be orthogonal to p̂. Let E be the element in ∂Ω
closest to s. As ŝ is empty of vertices, E is either a segment or facet. Let LE be the
affine hull of E. Let ŷ be the diametral/equatorial sphere of ŝ ∩ LE . We make four
observations (see Figure 3.2).

s

p

y

Fig. 3.2. Illustration for Lemma 3.3 when Ω is a facet. The shaded disks are the vertices of
the weighted-subfacet whose orthocenter is s. The solid circle is ŝ, and the dashed one is ŷ.

First, y lies in the interior of E.
Second, the bisector plane of ŝ and ŷ contains E. Note that p and s lie on opposite

sides of this bisector plane. So π(p̂, ŷ) < π(p̂, ŝ) = 0.
Third, for any vertex v on E, we have π(v̂, ŷ) ≥ 0 because π(v̂, ŝ) = π(v̂, ŷ) and

ŝ is not closer than orthogonal to v̂.
Fourth, we claim that the projection q of p onto LE lies in the interior of E.

Assume to the contrary that q does not lie in the interior of E. By the first ob-
servation, y lies in the interior of E. So qy intersects an endpoint of E if LE is a
line or qy intersects a weighted-subsegment in ∂E if LE is a plane. Let γ denote
the endpoint/weighted-subsegment that qy intersects. Let x̂ denote γ̂ if γ is a ver-
tex, or the smallest orthosphere of γ if γ is a weighted-subsegment. Let H be the
bisector plane of x̂ and ŷ. Consider π(v̂, x̂) for each vertex v of γ. If γ is a ver-
tex, then π(v̂, x̂) = π(x̂, x̂) = −2X2 ≤ 0; otherwise, γ is a weighted-subsegment and
π(v̂, x̂) = 0. On the other hand, by the third observation, π(v̂, ŷ) ≥ 0 for each vertex
v of γ. We conclude that for each vertex v of γ, π(v, ŷ) ≥ π(v, x̂). Thus γ lies in the
halfspace H+ bounded by H, where π(a, x̂) ≤ π(a, ŷ) for each point a ∈ H+. The ray
emitting from x through y must shoot outside H+ because a point sufficiently far in
this direction is closer to ŷ than x̂. Coupling this with the fact that qy intersects γ,
we conclude that q ∈ H+. Note that pq is parallel to H. Thus p ∈ H+, which implies
that π(p̂, x̂) ≤ π(p̂, ŷ). By the second observation, π(p̂, ŷ) < 0 and so π(p̂, x̂) < 0. If
γ is a vertex, this contradicts the vertex gap property; otherwise, it contradicts the
assumption that no weighted-subsegment is encroached. This proves the claim.

Let τ be the weighted-subsegment or weighted-subfacet in the interior of E that
contains q. Let ẑ be the smallest orthosphere of τ . Let H1 be the bisector plane of ŷ
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and ẑ. By the third observation, for each vertex v of τ , π(v̂, ŷ) ≥ 0 = π(v̂, ẑ). Thus
τ lies inside the halfspace H+

1 bounded by H1, where π(a, ẑ) ≤ π(a, ŷ) for each point
a ∈ H+

1 . As q ∈ τ and pq is parallel to H1, we have p ∈ H+. Thus π(p̂, ẑ) ≤ π(p̂, ŷ),
which is negative by the second observation. However, p̂ encroaches upon τ then, a
contradiction.

3.5. Adjacent elements and encroachment. A key property in ordinary De-
launay refinement (without weight assignment) is that vertices on one element of P
cannot encroach upon subsegments and subfacets on an adjacent element of P, pro-
vided that no input angle is less than π/2. This property is needed for the algorithm
to terminate. We show that this property also holds for the weighted case.

Lemma 3.4. If the vertex gap property holds, then for any weighted-subsegment
ab on an edge e of P, ab cannot be encroached upon by any vertex that lies on an
edge adjacent to e or a facet adjacent but nonincident to e.

Proof. Let x̂ be the smallest orthosphere of ab. By Lemma 3.3(i), x lies on ab.
Let E be an edge adjacent to e or a facet adjacent but nonincident to e. Let u be a
vertex on E. Let v be the common vertex of E and e. By the vertex gap property,
û does not contain v. Clearly, x̂ does not contain v. π(x̂, û) = ‖u− x‖2 −X2 −U2 >
‖u− x‖2−‖v− x‖2−‖u− v‖2. Because all input angles are at least π/2, ‖u− x‖2 ≥
‖v − x‖2 + ‖u− v‖2. Thus π(x̂, û) > 0 and û does not encroach upon ab.

Lemma 3.5. Let abc be a weighted-subfacet on a facet F of P. If there is no
encroached weighted-subsegment, then abc cannot be encroached by any vertex that lies
on a facet adjacent to F or an edge adjacent but non-incident to F .

Proof. Let H be the plane containing F . Let T denote the two-dimensional
weighted Delaunay triangulation of the vertices on F . Let VT denote the subdivision
of H induced by T . Let Σ be the set of the smallest orthospheres of the triangles in
T , the smallest orthospheres of weighted-subsegments in ∂F , and a sphere centered
at infinity in H with infinite radius. By duality, VT is the intersection of H and the
weighted Voronoi diagram of Σ. Let u be a vertex that lies on a facet adjacent to F or
an edge adjacent but nonincident to F . Because no input angle is less than π/2, the
orthogonal projection of u onto H falls outside F or on ∂F . Consider any weighted-
subfacet abc on F . The directed segment from the projection of u to a intersects a
sequence of cells of VT , including some weighted-subsegment vw in ∂F . This yields
a corresponding sequence of spheres in Σ owning the cells intersected. The weighted
distances from û to the spheres in the sequence increase along the sequence. It follows
that if û encroaches upon abc, û also encroaches upon vw, a contradiction.

3.6. Projection. Instead of finding any encroached subfacet, we will focus on
one that contains the projection of its encroaching vertex. Such a result has been
proved by Shewchuk [20] for encroachments by unweighted points in the unweighted
Delaunay triangulations. We will need a weighted version of this result.

Lemma 3.6. If no weighted-subsegment is encroached and p̂ encroaches upon
some weighted-subfacet on a facet F , then there exists a weighted-subfacet h on F
which is encroached upon by p̂, and h contains the orthogonal projection of p on F .

Proof. Let H be the plane containing F . Let T denote the two-dimensional
weighted Delaunay triangulation of the vertices on F . Let VT denote the subdivision
of H induced by T . Let Σ be the set of the smallest orthospheres of the triangles of T ,
the smallest orthospheres of the subsegments in ∂F , and a sphere centered at infinity
in H with infinite radius. VT is the intersection of H and the weighted Voronoi
diagram of Σ. Let t1 be a weighted-subfacet of F that is encroached upon by p̂.
Suppose that p projects to a cell t2 in VT . When we walk along the directed segment
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from the projection of p (inside t2) to an interior point of t1, we encounter a sequence
of cells in VT . This yields a corresponding sequence of spheres in Σ owning the cells
encountered. The weighted distances from p̂ to the spheres in this sequence increase
along the sequence. If t2 is outside F , then the walk will exit a triangle t outside F
and enter a triangle t′ inside F at some point; i.e., t ∩ t′ is a weighted-subsegment
in ∂F . Because p̂ encroaches upon t1, we have π(p̂, x̂) ≤ π(p̂, ŷ) < 0, where x̂ is the
smallest orthosphere of t ∩ t′ and ŷ is the smallest orthosphere of t1. It follows that
p̂ encroaches upon t ∩ t′, which is a contradiction.

3.7. Algorithm. The input to our algorithm QualMesh is a PLC. The PLC
bounds a convex domain and may contain vertices, segments, and facets within the
domain. We also assume that no input angle is less than π/2. This includes all angles
between two segments sharing a vertex, a segment and a facet sharing one vertex,
or two facets sharing a vertex or a segment. The assumption of a convex bounded
domain is not a serious restriction because any PLC can be enclosed within a large
enough box whose elements are included in the extended PLC. After the meshing is
finished, one can choose to retain the desired tetrahedra. This standard technique
has been used before [11, 19].

In the algorithm below we have a refinement step which is done in the unweighted
Delaunay triangulation though some of the refinements may be triggered by a weighted
point. Subsequent to this refinement, the vertices are pumped to eliminate slivers.
Obviously, this is carried out in the weighted Delaunay triangulation. The results
proved so far for the weighted Delaunay triangulation also remain valid for the un-
weighted case (where all weights are assumed to be zero) as well as when only some
vertices are weighted.

QualMesh(P).
1. Compute the Delaunay triangulation of the input vertices of P.
2. Repeatedly apply a rule from the following list until no rule is applicable.

Rule i is applied only if it is applicable and no Rule j with j < i is applicable.
The parameters ρ0, σ0, and ω0 will be determined later.
Rule 1 (subsegment refinement). If there is an encroached subsegment,

insert its midpoint.
Rule 2 (subfacet refinement). If there is an encroached subfacet, there

exists an encroached subfacet h that contains the projection of its en-
croaching vertex on the facet containing h. Insert the circumcenter of
h, provided that it does not encroach upon any subsegment. Other-
wise, reject the circumcenter and apply Rule 1 to split an encroached
subsegment.

Rule 3 (tetrahedron refinement). Assume that there is a tetrahedron
with radius-edge ratio exceeding ρ0 and circumcenter z. If z does not
encroach upon any subsegment or subfacet, insert z. Otherwise, reject
z and perform one of the following actions:
• If z encroaches upon some subsegment(s), use Rule 1 to split one

such subsegment.
• Otherwise, z encroaches upon some subfacet(s) and use Rule 2 to

split one such subfacet that contains the projection of z.
Rule 4 (weighted encroachment). Let DelV be the Delaunay triangu-

lation of the current vertex set V. Take a vertex v that is incident on
a sliver τ (i.e., σ(τ) ≤ σ0). Let v̂ be the weighted vertex v with weight
ω2

0f(v)2.
• If v̂ encroaches upon some subsegment in DelV that does not lie on
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the same segment as v, use Rule 1 to split one such subsegment.
• If v̂ encroaches upon some subfacet in DelV that does not lie on the

same facet as v, use Rule 2 to split one such subfacet that contains
the projection of v.

Notice that we always maintain an unweighted Delaunay triangulation
in step 2, and v̂ is used only for checking encroachments.

3. For each vertex v incident on a sliver τ (i.e., σ(τ) ≤ σ0), pump v with
weight in [0, ω2

0f(v)2] until no sliver is incident to v. Maintain the weighted
Delaunay triangulation during the pumping. We claim that no pumped vertex
encroaches upon any weighted-subsegment and weighted-subfacet.

3.8. Time analysis. We analyze the time complexity of the algorithm in terms
of n, the number of input vertices, and N , the number of output vertices. We will
prove in section 7.4 that N is no more than a constant factor of the minimum number
of vertices possible.

Consider the lifting map µ : R
3 → R

4, which maps a point x = (x1, x2, x3) ∈ R
3

to a point µ(x) = (x1, x2, x3, x
2
1+x2

2+x2
3) ∈ R

4. For a point set V in three dimensions,
let µ(V) = {µ(v), v ∈ V}. The Delaunay triangulation of V is the projection of the
convex hull of µ(V) (see [10]). The first step can be done in O(n2) time using Chazelle’s
convex hull algorithm [4]. The second step is a loop, and a new vertex is added in
each iteration. Thus there are fewer than N iterations. After each vertex insertion in
Rule 1, 2, 3, or 4, we have to update the Delaunay triangulation. An inserted point
p is the center of a circumsphere, circumcircle, or a segment. In each case we get
a tetrahedron that is destroyed after inserting p. We explore in the Delaunay data
structure in a depth-first manner to collect all tetrahedra that are destroyed with the
insertion of p. Once these tetrahedra are identified, p is connected to the boundary
of the union of them to update the Delaunay triangulation. If Dp is the number
of deleted tetrahedra, the complexity of this update is O(Dp). Thus the total time
of all updates over the entire algorithm is upper bounded by the number of deleted
tetrahedra. We argue that this number is O(N2).

In the lifted diagram in four dimensions, the insertion of p can be viewed as follows.
The point µ(p) is below the convex hull of µ(V), and let T be the set of tetrahedra
on this convex hull visible to µ(p). Insertion of µ(p) destroys all tetrahedra in T
and creates new tetrahedra on the updated convex hull by connecting µ(p) to the
boundary of the union of tetrahedra in T . Let us call the union of new tetrahedra
incident to µ(p) its cap. The space between the cap of µ(p) and T can be triangulated
by connecting µ(p) to each tetrahedron in T . Thus, assuming that the convex hull
of the initial point set is triangulated, one can maintain a triangulation in the lifted
diagram after each insertion, which contains the lifted deleted tetrahedra. Therefore,
all tetrahedra deleted byQualMesh can be mapped to tetrahedra in the triangulation
of N points in four dimensions. Since the size of any triangulation of N points in
four dimensions is only O(N2) (see Theorem 1.2 of [9]), the same bound applies to
the number of deleted tetrahedra.

Each insertion is preceded by a search of an encroached subsegment, subfacet, or
skinny tetrahedron. We argue that this search can also be done in O(N2) total time.
We maintain a stack of all skinny tetrahedra. Whenever an update is performed in
the triangulation, we update the stack and mark any tetrahedron deleted through
pointers. Thus, a skinny tetrahedron can be obtained by popping the stack until the
popped tetrahedron is not marked. The time to create the initial stack is O(n2), the
complexity of the initial Delaunay triangulation. The time to update the stack can be
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absorbed in the triangulation update time, which is O(N2) in total. Next, we need to
account for searching the encroached subsegments and subfacets. This encroachment
may occur by an inserted or rejected point. Since each rejected point leads to an
insertion, the total number of inserted and rejected points is O(N). For each such
point we can scan all subfacets and subsegments to determine the encroachments. At
any time of the algorithm, the total number of subsegments and subfacets is O(N).
This is because the subfacets and subsegments on a planar facet create a plane graph
whose complexity is linear in terms of the number of vertices, and each input edge
can be incident to only a constant number of facets due to the input angle constraint.
Therefore, counting over all points, all encroachments can be determined in O(N2)
time.

Other than vertex insertion, we also need to compute f(v) for some vertex v in
each application of Rule 4. This can be done in O(n) time by checking all the input
elements. Thus the total time spent in computing local feature sizes is O(Nn). Hence,
the total time taken by the second step is O(N2 +Nn+n2) = O(N2). The third step
pumps at most N vertices. Each pumping requires updating the mesh connectivity.
The complexity of these updates again can be counted through the lifted diagram
to be O(N2). Thus, the third step takes O(N2) time. In all, we have the following
theorem.

Theorem 3.7. The time complexity of QualMesh is O(N2), where N is the
minimum number of points required to mesh the input domain with tetrahedra that
have bounded aspect ratio.

4. Insertion radii. We define a notion of insertion radius for each vertex in-
serted or rejected by QualMesh. The main result in this section is a relation among
insertion radii and local feature sizes which allows us to prove a lower bound on inter-
vertex distances in section 5. For any vertex x in the input PLC, the insertion radius
rx is the Euclidean distance from the nearest input vertex. For any vertex x that
QualMesh inserts or rejects, the insertion radius rx is the distance of x from the
nearest vertex in the current V. In section 5, we will see that a lower bound on the
insertion radii of vertices implies a lower bound on the intervertex distances. Thus a
packing argument shows that QualMesh must terminate as the domain has bounded
volume.

The analysis uses a parent-child relation among all vertices that are input vertices
or inserted/rejected by QualMesh. This is similar to the parent-child relation defined
by Shewchuk [20] for the three-dimensional Delaunay refinement, but we need some
modifications because of refinement triggered by weighted points. Parents of input
vertices are undefined. If QualMesh inserts or rejects a vertex x using Rule i,
1 ≤ i ≤ 3, then x has type i. The parent of x is defined as follows.

1. x has type 3. Among the two endpoints of the shortest edge of the tetrahedron
split by x, the vertex p that appeared in the latest V is the parent of x.

2. x has type 1 or 2. Then x is the circumcenter of a subsegment or subfacet τ .
There are two cases.
(a) If τ is encroached by a weighted vertex p̂ in Rule 4, the parent of x is p.
(b) If τ is encroached by an unweighted vertex, we choose the parent of x

to be the encroaching vertex p nearest to x. If p was not rejected, then
rx = ‖p− x‖; otherwise, rx = X ≥ ‖p− x‖.

Our goal is to lower bound rx in terms of f(x) and rp, where p is the parent of
x. (This recurrence will be useful in an inductive proof to lower bound rx in terms
of f(x) only.) To this end, we prove two technical lemmas. Lemma 4.1 lower bounds
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‖p−x‖ in terms of f(x), f(p), and rp. Lemma 4.2 lower bounds rx in terms of ‖p−x‖.
Both apply under some special conditions. Then we employ these two lemmas and
analyze the remaining cases to obtain the lower bound on rx in terms of f(x) and rp.

Lemma 4.1. Suppose that the vertex gap property holds. Let x be a vertex of type
1 or 2. Let p be the parent of x. Let x̂ be the smallest circumsphere of the subsegment
or subfacet centered at x.

(i) If p is an input vertex, p has type 1, or p has type 2 and x has type 2, then
‖p− x‖ ≥ max{f(x), f(p)}.

(ii) Suppose that p has type 2 and x has type 1, or that p has type 3. If p does
not lie inside x̂, then ‖p− x‖ ≥ rp/

√
2.

Proof. Let F be the segment containing x if x has type 1; otherwise let F be the
facet containing x. We first claim that p does not lie on F . If the insertion/rejection
of x is induced in Rule 4, the claim is enforced by the algorithm. Otherwise, because
the unweighted Delaunay triangulation of vertices on a segment or facet gives the sub-
segments and subfacets, an unweighted vertex on a segment (facet) cannot encroach
upon subsegments (subfacets) on the same segment (facet).
Case 1: p is an input vertex. The two balls centered at p and x with radius ‖p− x‖

intersect two nonadjacent input elements (F and p). Thus ‖p − x‖ ≥ f(p)
and ‖p− x‖ ≥ f(x).

Case 2: p has type 1, or p has type 2 and x has type 2. Let F ′ be the segment/facet
containing p. We already know that F ′ �= F . We argue that F and F ′ are
nonadjacent. If x has type 1 and p has type 1, then Lemma 3.4 implies that
F ′ is nonadjacent to F . Suppose that x has type 2. The insertion/rejection
of x could be induced in an application of Rule 4, or it could be induced in a
direct application of Rule 2. In any case, there is no encroached subsegment;
otherwise Rule 1 would have been invoked instead. Thus Lemma 3.5 implies
that F ′ and F are nonadjacent. As F and F ′ are nonadjacent, ‖p−x‖ ≥ f(x)
and ‖p− x‖ ≥ f(p).

Case 3: p has type 2 and x has type 1, or p has type 3. (When p has type 2 and
x has type 1, p and x may lie on the same facet.) By assumption, p does
not lie inside x̂. This implies that the insertion/rejection of x is induced in
Rule 4. Also, QualMesh enforces two conditions. First, p was inserted by
QualMesh. Second, if x has type 1 (resp., type 2) and lies on a segment
(resp., facet), p does not lie on the same segment (resp., facet). It suffices
to lower bound the distance from p to F . Go back to the time when p was
inserted by QualMesh.
Case 3.1: x has type 1. Then F is a segment. Let ab be the subsegment

on F that contains x at that time. Observe that p lies outside the
smallest circumsphere of ab; otherwise, p would have been rejected for
encroaching upon a subsegment because p has type 2 or 3. If the nearest
point of ab to p is a or b, then ‖p − x‖ ≥ min{‖p − a‖, ‖p − b‖} ≥ rp
because a and b exist when p is inserted. Otherwise, the nearest point
lies in the interior of ab. Assume that the orthogonal projection of p onto
ab lies on ay, where y is the midpoint of ab. Then sin ∠pay ≥ 1/

√
2.

Thus ‖p− x‖ ≥ ‖a− p‖ · sin ∠pay ≥ rp/
√

2.
Case 3.2: x has type 2. Then p has type 3 and F is a facet. Observe that p

lies outside the smallest circumsphere of any subsegment in ∂F or any
subfacet on F . Otherwise, p would have been rejected for encroaching
upon a subsegment or subfacet because p has type 3.

If the nearest point of F to p lies on a segment F ′ in ∂F , by apply-
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ing the analysis in Case 3.1 to F ′, we conclude that ‖p − x‖ ≥ rp/
√

2.
Otherwise, the nearest point q on F to p lies inside some subfacet abc on
F . Note that q is the orthogonal projection of p onto abc. The Voronoi
diagram of a, b, and c divides abc into three regions, each containing a
vertex of abc. Assume that q lies inside the region containing a. Let ẑ
be the smallest circumsphere of abc. Let H be the plane that is per-
pendicular to F and passes through a and p. H ∩ ẑ is a circle and p
lies outside it. Let y be the center of H ∩ ẑ. Observe that q lies on
ay and so sin ∠pay ≥ 1/

√
2. The Euclidean distance from p to F is

‖a− p‖ · sin ∠pay ≥ rp/
√

2.

Lemma 4.2. Suppose that the vertex gap property holds. Let x be a vertex of type
1 or 2. Let p be the parent of x. Then rx ≥ ‖p− x‖/√2.

Proof. Let x̂ be the circumsphere of which x is the center. If p lies inside x̂, p is
unweighted, and it follows from the definition of parent that rx ≥ ‖p − x‖. Assume
that p does not lie inside x̂. For p to be the parent of x, the insertion/rejection of x
must be induced in Rule 4 by the weighted vertex p̂ with weight ω2

0f(p)2. This also
implies that p ∈ V at that time. By Lemma 4.1, ‖p− x‖ ≥ f(p) or ‖p− x‖ ≥ rp/

√
2.

If ‖p − x‖ ≥ f(p), then ‖p − x‖/√2 ≥ ω0f(p) as ω0 ≤ 1/2. If ‖p − x‖ ≥ rp/
√

2, as
rp ≥ 2ω0f(p) by the vertex gap property, we also get ‖p− x‖/√2 ≥ ω0f(p). Because
p̂ was closer than orthogonal to x̂, we have X2 + ω2

0f(p)2 > ‖p − x‖2. Substituting
ω2

0f(p)2 by ‖p− x‖2/2 and rearranging terms, we get rx = X > ‖p− x‖/√2.

We are ready to lower bound rx in terms of f(x) and the insertion radius of the
parent of x. This is the main result of this subsection.

Lemma 4.3. Suppose that the vertex gap property holds. Let x be an input vertex
or a vertex inserted or rejected. Let p be the parent of x, if it exists.

(i) If x is an input vertex or p is an input vertex, then rx ≥ f(x)/
√

2.
(ii) Otherwise, rx ≥ f(x)/

√
2 or rx ≥ c · rp, where c = 1/2 if x has type 1 or 2

and c = ρ0 if x has type 3.

Proof. If x is an input vertex, then rx ≥ f(x) by the definition of local feature
size. Suppose that QualMesh inserts x or rejects x by Rule 1, 2, or 3. Recall that x
is the center of the smallest circumsphere of a subsegment, subfacet, or tetrahedron.
Let x̂ denote this circumsphere.

Consider the case where p is an input vertex. If x has type 1 or 2, then ‖p−x‖ ≥
f(x) by Lemma 4.1. Note that rx ≥ ‖p − x‖/√2 by Lemma 4.2. Thus we get
rx ≥ f(x)/

√
2. Suppose that x has type 3. Let τ be the skinny tetrahedron split

by x. One endpoint of the shortest edge of τ is p. Let q denote the other endpoint.
Because p is an input vertex, q is also an input vertex. This is because p did not
appear in V earlier than q by the definition of parent-child relation, which can only
happen if q is also an input vertex. This means that the empty ball centered at x
with radius rx has two input vertices, namely p and q, on its boundary. Therefore,
rx = ‖p− x‖ ≥ f(x).

Consider the case where p is not an input vertex. If x has type 3, then rp is at
most the shortest edge length of the tetrahedron split by x. Then rx = X ≥ ρ0rp.
Suppose that x has type 1 or 2. If p has type 1, or p has type 2 and x has type 2,
then ‖p − x‖ ≥ f(x) by Lemma 4.1 and rx ≥ ‖p − x‖/√2 by Lemma 4.2. Then
rx ≥ f(x)/

√
2. The remaining cases are that p has type 2 and x has type 1, or p has

type 3.

Case 1: p lies inside x̂. Thus p was rejected by QualMesh and rx = X. Let τ be
the subsegment or subfacet of which x̂ is the smallest circumsphere.
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Case 1.1: τ is a subsegment ab. Let a be the vertex of τ nearest to p. Then
∠pxa ≤ π/2. It follows that ‖p− a‖ ≤ √2X =

√
2rx. The vertex a was

in V when p was rejected. Thus rp ≤ ‖p− a‖. Hence, rx ≥ rp/
√

2.
Case 1.2: τ is a subfacet abc. The Voronoi diagram of a, b, and c divides

abc into three regions, each owned by a vertex of abc. Rule 2 enforces
that τ contain the orthogonal projection of p. Thus we can assume that
the projection of p lies in the region, say, owned by a. Let H be the
plane that is perpendicular to abc and passes through a and p. Let
y be the center of the circle H ∩ x̂. As the projection of p lies inside
the region owned by a, ∠pya ≤ π/2. This implies that ‖p − a‖2 ≤
‖y − p‖2 + ‖y − a‖2 ≤ ‖y − p‖2 + X2. As p lies inside x̂ ∩H, ‖y − p‖ <
radius(H ∩ x̂) ≤ X. It follows that ‖p− a‖ ≤ √2X =

√
2rx. The vertex

a was in V when p was rejected. Thus rp ≤ ‖p−a‖. Hence, rx ≥ rp/
√

2.
Case 2: p does not lie inside x̂. We have ‖p − x‖ ≥ rp/

√
2 by Lemma 4.1(ii) and

rx ≥ ‖p− x‖/√2 by Lemma 4.2. Thus rx ≥ rp/2.

5. Vertex-to-vertex distances. In this section, we apply Lemma 4.3 to prove
lower bounds on the insertion radii and intervertex distances. In the process, we
also prove that the vertex gap property holds throughout the algorithm. We will use
these results in section 7 to prove several guarantees provided by weighted Delaunay
refinement. We need the following relation involving local feature sizes and insertion
radii.

Lemma 5.1. Let x be a vertex with parent p. If rx ≥ c · rp, then f(x)/rx ≤
f(p)/(c · rp) +

√
2.

Proof. Recall that when x is inserted, x is the center of the smallest circumsphere
of a subsegment, subfacet, or tetrahedron. Let x̂ denote this circumsphere. If x has
type 3, then rx = ‖p − x‖. If x has type 1 or type 2, then rx ≥ ‖p − x‖/√2 by
Lemma 4.2. Starting with the Lipschitz condition, we get

f(x) ≤ f(p) + ‖p− x‖
≤ f(p)

c · rp · rx +
√

2rx,

which implies that f(x)/rx ≤ f(p)/(c · rp) +
√

2.
The following are the constants of proportionality in Lemma 5.2, the main result

in this subsection:

C1 =
7
√

2ρ0

ρ0 − 4
, C2 =

3
√

2ρ0 + 2
√

2

ρ0 − 4
, C3 =

√
2ρ0 + 3

√
2

ρ0 − 4
, ω0 =

1

2(1 + C1)
.

Note that whenever ρ0 > 4, we have C1 > C2 > C3 >
√

2.
Lemma 5.2. Let x be a vertex of P or a vertex inserted or rejected by QualMesh.

We have the following invariants for ρ0 > 4:
(i) If x is a vertex of P or the parent of x is a vertex of P, then rx ≥ f(x)/

√
2 >

f(x)/C3. Otherwise, if x has type i for 1 ≤ i ≤ 3, then rx ≥ f(x)/Ci.
(ii) For any other vertex y that appears in V currently, ‖x − y‖ is greater than

or equal to max{f(x)/C1, f(y)/(1 + C1)}.
(iii) If x is inserted by QualMesh, the vertex gap property holds afterwards.
Proof. We prove by induction. Invariant (i) holds before QualMesh starts (the

basis case). Clearly, invariant (i) is not affected by pumping a vertex. Thus it suffices
to prove invariant (i) where x is inserted or rejected by QualMesh. Let p be the
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parent of x. If p is an input vertex, Lemma 4.3 implies that rx ≥ f(x)/
√

2. Suppose
that p is not an input vertex. We assume inductively that invariant (i) holds for p
and we conduct a case analysis. If x has type 3, then rx ≥ ρ0 · rp by Lemma 4.3. By
induction, we get f(p) ≤ C1rp regardless of the type of p. By Lemma 5.1, we get

f(x)

rx
≤ C1

ρ0
+
√

2 = C3.

If x has type 2, the proof of Lemma 4.3 reveals that rx ≥ f(x)/
√

2 > f(x)/C2 when
p has type 1 or 2. When p has type 3, Cases 1 and 2 in the proof of Lemma 4.3 reveal
that rx ≥ rp/2. By the induction assumption, f(p) ≤ C3rp. Then, by Lemma 5.1, we
get

f(x)

rx
≤ 2C3 +

√
2 = C2.

If x has type 1, then the proof of Lemma 4.3 reveals that rx ≥ f(x)/
√

2 > f(x)/C1

when p has type 1. When p has type 2 or 3, Cases 1 and 2 in the proof of Lemma 4.3 re-
veal that rx ≥ rp/2. By the induction assumption, f(p) ≤ C2rp. Then, by Lemma 5.1,
we get

f(x)

rx
≤ 2C2 +

√
2 = C1.

This proves that invariant (i) holds in general.
Consider invariant (ii). For any vertex y that appears in V currently, ‖x − y‖ ≥

rx ≥ f(x)/C1. Because of f(x) ≥ f(y) − ‖x − y‖, we also get ‖x − y‖ ≥ f(x)/C1 ≥
f(y)/C1 − ‖x− y‖/C1. It follows that ‖x− y‖ ≥ f(y)/(1 + C1).

Consider invariant (iii). It follows from invariant (ii) that for any vertices u and v
in V, ‖u− v‖ ≥ f(u)/(1 +C1). By our choice of values of C1 and ω0, f(u)/(1 +C1) =
2ω0f(u). This proves that the vertex gap property still holds.

6. Effect of pumping. Let V denote a set of unweighted points. Let ConvV
denote the convex hull of V. Let V̂ be the weighted points obtained after some weight
assignment to points in V. We have already defined N(x) to be the distance to the
nearest neighbor in V for any x ∈ V. We extend the definition for any x ∈ R

3 by
letting N(x) denote the Euclidean distance from x to its second nearest neighbor in V
for any point x ∈ R

3. If x ∈ V, then N(x) still denotes the nearest neighbor distance

of x. We say V̂ has weight property [ω] for some ω ∈ (0, 1/2) if U ≤ ωN(u) for each

û ∈ V̂. Let Del V̂ denote the weighted Delaunay triangulation of V̂. Del V̂ has ratio
property [ρ] if the orthoradius-edge ratio of every tetrahedron in Del V̂ is at most ρ.

The work of Cheng et al. [7] suggests that DelV and Del V̂ behave similarly given
the ratio and weight properties, as follows.

Lemma 6.1 (Claim 7 in [7]). Let V be a periodic point set. If DelV has ratio

property [ρ] and V̂ has weight property [ω], then Del V̂ has ratio property [ρ′] for some
ρ′ depending on ρ and ω.

In this section, we prove a version of the Lemma 6.1 for dealing with a finite
point set (see Lemma 6.6). There are two differences from Lemma 6.1. First, V is a
finite point set instead of a periodic point set. Second, we need an extra condition
that the orthocenter of each tetrahedron in Del V̂ lie inside ConvV. Then the rest of
Lemma 6.1 carries over.
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We need three results from Talmor’s thesis [16]. We state them below and include
the proof of Lemma 6.3, as we need an inequality in the proof later. For a point p ∈ V,
let Vp(V) denote the Voronoi cell owned by p in the Voronoi diagram of V. Let bp and
Bp be balls centered at p such that radius(bp) = N(p)/2 and radius(Bp) = ρL ·N(p),
where L is a constant used in the next lemma.

Lemma 6.2 (Lemma 3.4.3 in [16]). If DelV has ratio property [ρ], the lengths
of two adjacent edges of DelV differ by at most some constant factor L depending
on ρ.

Lemma 6.3 (Lemma 3.5.1 in [16]). Assume that DelV has ratio property [ρ].
For each p ∈ V, Vp(V) contains bp, and Bp contains all vertices of Vp(V).

Proof. It is obvious that bp ⊆ Vp(V) as radius(bp) = N(p)/2. Let v ∈ V such that
‖p − v‖ = N(p). Then pv is an edge of DelV. Let τ be some tetrahedron in DelV
incident to p. Let pq be an edge of τ . Using Lemma 6.2, we get

‖p− q‖ ≤ L · ‖p− v‖ = L ·N(p).(6.1)

Let z be the circumcenter of τ ; i.e., z is a vertex of Vp(V). The ratio property implies
that

‖p− z‖ ≤ ρ · ‖p− q‖ ≤ ρL ·N(p) = radius(Bp).

Thus, Bp contains all vertices of Vp(V).
Lemma 6.4 (Theorem 3.6.2 in [16]). Assume that DelV has ratio property [ρ].

Let xz be a line segment lying inside
⋃

p∈V Vp(V) ∩ Bp. Let ẑ be the sphere centered
at z with radius ‖x− z‖. Then there is a constant C > 0 such that if ẑ is empty, then
N(z) ≤ C ·N(x).

Next, we apply Lemma 6.3 to show that Bp is so large that Vp(V) ∩Bp contains
Vp(V)∩ConvV. The implication is that

⋃
p∈V Vp(V)∩Bp contains the Voronoi diagram

of V clipped within ConvV.
Lemma 6.5. Assume that DelV has ratio property [ρ]. For each p ∈ V, Vp(V) ∩

ConvV ⊆ Vp(V) ∩Bp.
Proof. We first prove that Vp(V) ∩ ConvV ⊆ Bp. If Vp(V) is bounded, then

Vp(V) ⊆ Bp by Lemma 6.3. It follows that Vp(V) ∩ ConvV ⊆ Bp. Suppose that
Vp(V) is unbounded. Then p is an extreme vertex of ConvV. Let T be the set of
boundary triangles of ConvV incident to p. For each triangle t ∈ T , let Ht denote the
supporting plane of t, and let H+

t denote the halfspace bounded by Ht that contains
ConvV. By convexity, Vp(V)∩ConvV ⊆ Vp(V)∩⋂t∈T H+

t . We show that Bp contains

the vertices of Vp(V) ∩ ⋂t∈T H+
t . A vertex z of Vp(V) ∩ ⋂t∈T H+

t has one of three
types:

1. z is a vertex of Vp(V). By Lemma 6.3, z ∈ Bp.
2. z is the intersection of some edge pq in DelV with a facet of Vp(V). By (6.1),
‖p− q‖ ≤ L ·N(p) ≤ radius(Bp), and so z ∈ Bp.

3. z is the intersection of Ht for some t ∈ T and some edge of Vp(V). Let q and
r be the other two vertices of t. Let Q be the convex quadrilateral on Ht

bounded by the bisector plane of p and q, the bisector plane of p and r, pq,
and pr. See Figure 6.1.
Let u be the vertex of Q diagonally opposite p. Observe that z lies inside Q.
Thus we are done if we can show that Q ⊆ Bp. By (6.1), ‖p−q‖ ≤ radius(Bp)
and ‖p − r‖ ≤ radius(Bp). It follows that p, q, and r lie inside Bp. Let
θ = ∠pqr and β = ∠prq. The angle of Q at u is θ + β. After splitting this
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p

rq

u

Fig. 6.1. The shaded convex quadrilateral is Q.

angle into two with the diagonal pu, let γ denote the one on the same side as
pq. Without loss of generality, assume that γ ≥ (θ + β)/2, which is at least
min{θ, β}. By the ratio property, ρ ≥ min{1/(2 sin θ), 1/(2 sinβ)}. It follows
that ρ ≥ 1/(2 sin γ). We have

‖p− u‖ =
‖p− q‖
2 · sin γ

≤ ρ · ‖p− q‖
(6.1)

≤ ρL ·N(p)

= radius(Bp).

Therefore, Q ⊆ Bp, and hence z lies inside Bp.
Note that Vp(V)∩⋂t∈T H+

t is bounded. We conclude that Vp(V)∩ConvV ⊆ Vp(V)∩⋂
t∈T H+

t ⊆ Bp. Finally, Vp(V)∩ConvV = Vp(V)∩Vp(V)∩ConvV ⊆ Vp(V)∩Bp.
Finally, we apply Lemmas 6.4 and 6.5 to prove the main result of this subsection.
Lemma 6.6. Let V be a finite point set. Assume that DelV has ratio property

[ρ], V̂ has weight property [ω], and the orthocenter of each tetrahedron in Del V̂ lies

inside ConvV. Then Del V̂ has ratio property [ρ′] for some constant ρ′ depending on
ρ and ω.

Proof. Let ẑ be the orthosphere of a tetrahedron τ in Del V̂. That is, z is the
orthocenter of τ . Let qr be the shortest edge of τ . Let x be the intersection point
qz ∩ ẑ.

By assumption, z lies inside ConvV. Thus we have xz ⊆ ConvV by convex-
ity. Using the fact that

⋃
p∈V Vp(V) = R

3, we get xz ⊆ ConvV ∩ ⋃p∈V Vp(V) =⋃
p∈V Vp(V) ∩ ConvV. Lemma 6.5 further implies that xz ⊆ ⋃p∈V Vp(V) ∩ Bp. As ẑ

is empty, we can apply Lemma 6.4 to xz and V. We get

Z ≤ N(z) ≤ C ·N(x).(6.2)

By the Lipschitz property, N(x) ≤ N(q) +‖q−x‖. Because q̂ and ẑ intersect and
x = qz ∩ ẑ, x lies inside q̂. By the weight property, the radius of q̂ is at most ωN(q),
and so ‖q−x‖ ≤ ωN(q). Thus, we have N(x) ≤ (1 +ω)N(q). As q and r are vertices
in V, N(q) ≤ ‖q − r‖. It follows that

N(x) ≤ (1 + ω) · ‖q − r‖.(6.3)

Substituting (6.3) into (6.2), we get Z ≤ C · (1 + ω) · ‖q − r‖. Recall that qr is
the shortest edge of τ . Hence, ρ′ can be set to be C · (1 + ω).
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7. Guarantees. We establish four guarantees for QualMesh. The first two
guarantees, termination and gradedness, follow from Lemma 5.2. The absence of
sliver and the size optimality are guaranteed using Lemma 5.2, Lemma 6.6, and some
other results to be proved.

7.1. Termination and gradedness.
Theorem 7.1. QualMesh terminates with a graded mesh.
Proof. It follows from Lemma 5.2(ii) that any two vertices u and v at any

stage of the algorithm must satisfy ‖u − v‖ ≥ f(u)/(1 + C1) ≥ fmin/(1 + C1),
where fmin is the minimum local feature size in the domain. If we center dis-
joint balls of radii fmin/(2 + 2C1) at the mesh vertices, then we can pack at most
24(1 + C1)3volume(D)/(4πf3

min) such balls inside a bounded domain D. Thus the
algorithm must terminate. Gradedness follows from the vertex gap property.

7.2. Conformity. After pumping in step 3, is Del V̂ conforming? The vertices
in V̂ partition the input segments into weighted-subsegments. For any input facet
F , the two-dimensional weighted Delaunay triangulation of vertices on F partition
F into weighted-subfacets. We show that Del V̂ is conforming by showing that no
weighted-subsegment or weighted-subfacet is encroached.

Theorem 7.2. No weighted-subsegment or weighted-subfacet is encroached upon
during the completion of QualMesh.

Proof. Assume to the contrary that a vertex v̂ in Del V̂ encroaches upon a
weighted-subsegment or weighted-subfacet τ .

Consider the case in which τ is a weighted-subsegment. Observe that the smallest
circumsphere C of τ encloses the smallest orthosphere O of τ . Thus, the bisector H
of C and O avoids C, and so H avoids τ too. τ lies in the halfspace H+ bounded
by H such that π(p, C) ≤ π(p,O) for all points p ∈ H+. Observe that in order
that v̂ encroach upon τ , τ contains the orthogonal projection of v onto the segment
containing τ . Thus, v ∈ H+, and so π(v̂, C) ≤ π(v̂, O) < 0. The weight of v̂ is at
most the weight used for v in Rule 4. However, this contradicts the fact that v, with
that weight, did not encroach upon τ .

Consider the case in which τ is a weighted-subfacet on a facet F . By Lemma 3.6,
we can assume that τ contains the projection of v. Let O be the smallest orthosphere
of τ . The two-dimensional unweighted Delaunay triangulation of vertices in V on
F partitions F into subfacets. Let τ ′ be the subfacet that contains the projection
of v on τ . Let C be the smallest circumsphere of τ ′. We claim that the bisector
plane H of C and O avoids τ ′. Otherwise, H intersects C, which implies that C and
O intersect (H passes through their intersection). Because τ ′ has vertices on both
sides of H, a vertex of τ ′ must lie inside O, a contradiction. Observe that τ ′ lies in
the halfspace H+ bounded by H such that π(p, C) ≤ π(p,O) for all point p ∈ H+.
Thus, π(v̂, C) ≤ π(v̂, O) < 0. The weight of v̂ is at most the weight used for v in
Rule 4. However, this contradicts the fact that v, with that weight, did not encroach
upon τ ′.

7.3. No sliver. Slivers incident to an unweighted vertex p are eliminated by
pumping p. In sliver exudation, p is pumped within the weight interval [0, ω2

0N(p)2].
During the pumping, tetrahedra incident to p change at discrete instances. For pump-
ing to work, two conditions (Lemmas 7.3 and 7.4) must hold over the entire interval of
pumping. First, the lengths of edges incident to p are within a constant factor. Sec-
ond, only a constant number of tetrahedra can be incident to p. These two conditions
are proved by Cheng et al. [7] for periodic point set using Lemma 6.1. Lemma 6.6 is
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the analogue of Lemma 6.1 for finite point set. By Theorem 7.2 and Lemma 3.3(iii),
the conditions of Lemma 6.6 are satisfied. Thus we can prove the two conditions for
finite point set using exactly the same proofs as those used in [7]. For completeness,

we sketch the proofs below. Let K(V) be the graph consisting of edges in Del V̂ for

all V̂ with weight property [ω0].

Lemma 7.3 (Claim 10 in [7]). Assume that DelV has ratio property [ρ0]. The
lengths of any two adjacent edges in K(V) are within a constant factor ν0 ≥ 1 de-
pending on ρ0 and ω0.

Proof (sketch). Let p be a vertex in V. First, consider a triangle pqu ∈ Del V̂ for

some V̂ with weight property [ω0]. Let Z be the radius of the smallest orthosphere of
pqu. By Lemma 6.6, Z ≤ ρ′ ·‖p−q‖ and Z ≤ ρ′ ·‖p−u‖. On other hand, by the weight
property, a constant fraction of pq lies outside p̂ and q̂. This fraction of pq lies inside
the smallest orthosphere of pqu, and so Z = Ω(‖p − q‖). Similarly, Z = Ω(‖p − u‖).
It follows that ‖p− q‖ and ‖p− u‖ differ by at most some constant factor k1.

Second, consider the case in which pq and pu are two edges in K(V) such that

∠qpu is less than some constant angle bound η. Assume that V̂1 and V̂2 denote the
two weighted versions of V such that pq ∈ Del V̂1 and pu ∈ Del V̂2. Let H be the plane
passing through pqu. We pick the orthosphere ẑ of a tetrahedron τ in Del V̂1 that is
incident on pq. We intersect ẑ with H to obtain a circle ŷ centered at y with radius
Y . Note that ŷ is orthogonal to the circles p̂∩H and q̂∩H. By Lemma 6.6, the radius
of ẑ is at most ρ′ · ‖p− q‖. Clearly, Y is at most the radius of ẑ. So Y ≤ ρ′ · ‖p− q‖.
This implies that pq cuts deeply into ŷ. As u lies outside ŷ, for sufficiently small η
(dependent on ρ′ and ω0), pu cannot be much shorter than pq. By symmetry, pq
cannot be much shorter than pu. Thus, ‖p − q‖ and ‖p − u‖ differ by at most some
constant factor k2.

Next, we deal with all incident edges of p. Let S be a unit sphere centered at
p. We take a maximal packing of disjoint spherical caps with angular radii η/4 on
S. The number of such caps is a constant m dependent on η. Then we expand the
angular radius of each cap to η/2. The expanded caps cover S. Each incident edge

pq projects radially to a vertex q′ on S. Each triangle pqr in Del V̂ for some V̂ with
weight property [ω0] projects radially to an arc q′r′ on S. This yields a connected
graph embedded on S. Suppose that we walk from q′ to an arbitrary vertex u′

within the graph. If the walk stays within a cap, by our second observation, the edge
length increases by at most a factor of k2. If the walk enters a new cap, by our first
observation, the edge length increases by at most a factor of k1. If the walk returns
to a cap visited before, the whole detour increases the edge length by at most a factor
of k2. As there are m caps, we conclude that ‖p− q‖ and ‖p− u‖ differ by at most a
factor of km2 km−1

1 .

Lemma 7.4 (Claim 11 in [7]). Assume that DelV has ratio property [ρ0]. The de-
gree of every vertex in K(V) is bounded by some constant δ0 depending on ρ0 and ω0.

Proof (sketch). Let p be a vertex in V. Let L be the length of the longest incident
edge of p in K(V). Let r be a neighbor of p in K(V). By Lemma 7.3, ‖p− r‖ ≥ L/ν0.
The nearest neighbor of r is a Delaunay neighbor of r. Thus, by Lemma 7.3 again,
the nearest neighbor distance of r is at least L/ν2

0 . It follows that, at the neighbors of
p, we can center disjoint balls of radius L/(2ν2

0). Observe that all these balls lie inside
the ball centered at p with radius L+L/(2ν2

0). Thus, a packing argument shows that
p has O(1) neighbors.

Cheng et al. [7] proved that a sliver incident to p can remain weighted Delaunay
only within a subinterval of width O(σ0N(p)2) during pumping. As the number of
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tetrahedra in K(V) incident to p is bounded by a constant, if we choose σ0 properly,
the intervals over which slivers remain incident to a vertex p can be made small enough
so that there is a subinterval over which no sliver is incident to p. This is the key
idea in [7] in the proof that pumping can eliminate slivers for periodic point sets.
The freedom in choosing σ0 reveals that it is unnecessary to use exactly the weight
interval [0, ω2

0N(p)2]. It is equally good that the weight interval contains [0, ω2
0N(p)2]

for some constant ω0 ≤ ω0.
We would like to employ Lemmas 7.3 and 7.4 with V being a finite point set. To

this end, we first need to guarantee that the pumping in step 3 of QualMesh uses
a weight interval [0, ω2

0N(p)2] and that the resulting weighted point set V̂ has weight
property [ω0] for some constants ω0 ≤ ω0. The weight property [ω0] follows from the
vertex gap property. Lemma 7.5 tells us how to set ω0.

Lemma 7.5. Let M be the mesh obtained at the end of step 2 of QualMesh.
For any vertex v in M, its nearest neighbor distance is at most 2

√
2f(v).

Proof. Let Bv denote the ball centered at v of radius N(v)/2. Assume to the
contrary that 2

√
2f(v) < N(v). Then Bv intersects two disjoint elements of P. Bv

cannot contain any vertex in V. So Bv intersects the interior of subsegments or
subfacets. Let E be the nearest subsegment or subfacet to v that Bv intersects. Let ṽ
be the orthogonal projection of v onto the affine hull of E. Note that ṽ lies on E. The
Voronoi diagram of the vertices of E partitions E into regions, each owned by one
vertex of E. Assume that ṽ lies in the region owned by the vertex w of E. Because
‖v − w‖ ≥ radius(Bv) >

√
2f(v) and ‖v − ṽ‖ ≤ f(v), we have

‖v − ṽ‖ < ‖v − w‖/
√

2.(7.1)

Let x̂ be the smallest circumsphere of E. We have ‖v − x‖2 = ‖ṽ − x‖2 + ‖v − ṽ‖2.
Because ṽ lies in the region owned by w, ∠xṽw ≥ π/2, which implies that ‖ṽ−x‖2 ≤
‖w − x‖2 − ‖ṽ − w‖2. Therefore,

‖v − x‖2 ≤ ‖w − x‖2 − ‖ṽ − w‖2 + ‖v − ṽ‖2
= ‖w − x‖2 − ‖v − w‖2 + 2‖v − ṽ‖2

(7.1)
< ‖w − x‖2.

However, v lies inside x̂ then, and so v encroaches upon E, a contradiction.
In step 3 of QualMesh, we pump p using the weight interval [0, ω2

0f(p)2]. This
interval contains [0, ω2

0N(p)2/8] by Lemma 7.5. Using Lemmas 7.3 and 7.4, the same
proof in [7] shows that pumping eliminates slivers for the finite point set V. For
completeness, we sketch the proof below. Algorithmically, we can use flips to generate
new tetrahedra as pumping progresses and stop when no sliver is incident to p.

Theorem 7.6. There is a constant σ0 > 0 such that σ(τ) > σ0 for every tetra-
hedron τ in the output mesh of QualMesh.

Proof (sketch). Let pqrs be a sliver in some V̂ with weight property [ω0]. We
are to analyze what happens to pqrs when p is pumped with weight from the inter-
val [0, ω2

0f(p)2]. Let Wqrs be the subinterval such that pqrs may remain weighted
Delaunay when P 2 ∈Wqrs.

We claim that |Wqrs| = O(σ0N(p)2). Let L be the shortest edge length of pqrs.
Let ẑ be the orthosphere of pqrs. Let H(P ) be the signed distance of z from the
plane passing through qrs when p has weight P 2. H(P ) is positive if p and z lie
on the same side and H(P ) is negative otherwise. Observe that Z2 = H(P )2 + Y 2,
where Y is the radius of smallest orthosphere of qrs. By Lemma 6.6, Z ≤ ρ′L. The
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circumradius of qrs is at least L/2. Also, by Claim 4 in [7], the circumradius of qrs is
at most Y/

√
1− 4ω2

0 . It follows that H(P )2 = Z2−Y 2 = O(L2) or H(P ) ∈ [−kL, kL]
for some constant k. By Claim 13 in [7], H(P ) = H(0) − P 2/(2D), where D is the
distance of p from the plane passing through qrs. Substituting into H(P ) ∈ [−kL, kL]
and rearranging terms, we get 2D ·H(0)− 2kDL ≤ P 2 ≤ 2D ·H(0) + 2kDL. Thus,
|Wqrs| ≤ 4kDL. Note that volume(pqrs) = Θ(L2D) and volume(pqrs)/L3 ≤ σ0 as
pqrs is a sliver. This implies that D = O(σ0L) and so |Wqrs| = O(σ0L

2). The nearest
neighbor of p is the Delaunay neighbor of p. Thus by applying Lemma 7.3 to p and
then to q, r, and s, we conclude that L = Θ(N(p)). Hence, |Wqrs| = O(σ0N(p)2).

Finally, by Lemma 7.4, there are at most δ3
0 slivers incident to p throughout

the entire pumping. Hence there are at most δ3
0 forbidden subintervals. Their total

length is at most k′σ0δ
3
0N(p)2 for some constant k′. By Lemma 7.5, the weight

interval [0, ω2
0f(p)2] contains [0, ω2

0N(p)2/8]. It follows that if σ0 < ω2
0/(8k′δ3

0), p can
be assigned a weight within [0, ω2

0f(p)2] such that p is not incident to any sliver.

7.4. Size optimality. We prove that the size of our Delaunay mesh is within a
constant factor of the size of any mesh that has bounded aspect ratio. Our proof is a
combination of ideas in Ruppert’s proof for the two-dimensional case [19] and ideas
in Mitchell and Vavasis’s proof for their octtree algorithm in higher dimensions [18].

Let T be a triangulation of the input domain that conforms to P and has bounded
aspect ratio. Let τ be a tetrahedron in T . Denote the minimum height of τ from a
vertex by h(τ). Let v0, v1, v2, and v3 be the vertices of τ . Each vi is to be viewed
as a column vector consisting of the coordinates of the vertex. Define Mτ to be the
3×3 matrix (v1−v0, v2−v0, v3−v0). Although Mτ depends on the numbering of the
vertices of τ , the numbering does not affect the properties of Mτ that will be used.
For a vector x, we use ‖x‖ to denote its L2-norm. For a square matrix A, we use ‖A‖
to denote its spectral norm, i.e., the square root of the maximum eigenvalue of AtA.

Lemma 7.7 (Lemma 2 in [18]). For any tetrahedron τ in T , ‖(M−1
τ )t‖ =

‖M−1
τ ‖ ≤ k1/h(τ) for some constant k1 ≥ 1.
Proof. It is proved in [18] that ‖M−1

τ ‖ ≤ k1/h(τ) for some constant k1. ‖A‖ =
‖At‖ for any square matrix A.

Between two points on two disjoint elements of T (vertices, edges, triangles, or
tetrahedra), we show in the following lemma that one can always find a tetrahedron
that is relatively small compared with the distance between the two points. The result
is analogous to Theorem 2 in [18].

Lemma 7.8. Let p and q be two points in the interior of T . Let τp and τq be the
tetrahedra of T containing p and q, respectively. If τp and τq do not share any vertex,
then there is a tetrahedron τ in T intersecting pq such that

(i) h(τ) ≤ k2‖p− q‖ for some constant k2 ≥ 1;
(ii) τ shares a vertex with τq. (τ can be forced to share a vertex with τp instead,

but τ cannot be guaranteed to share vertices with both τp and τq.)
Proof. Define a simplicial map ψ : T → R by setting ψ(v) = 1 for each vertex v

of τq, and ψ(w) = 0 for all other vertices w. It follows that ψ(x) = 1 for all points
x ∈ τq, and ψ(x) = 0 for all points x ∈ τp. As ψ is continuous, there exists a point u
on pq such that the directional derivative of ψ at u has magnitude at least 1/‖p− q‖.
By convexity, there is a tetrahedron τ in T containing u. By the linearity of ψ on τ ,
�ψ is constant on τ . Therefore,

‖�ψ‖ ≥ 1

‖p− q‖(7.2)
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on τ . This implies that τ shares a vertex with τq; otherwise ψ and �ψ would be
identically zero on τ , which is a contradiction. This proves (ii). We express �ψ on τ
using Mτ as follows. Let v0, v1, v2, v3 be the vertices of τ . Define ri = ψ(vi)− ψ(v0)
for i = 1, 2, 3. Observe that 0 ≤ |ri| ≤ 1.

Claim 7.1. For any point z in τ , ψ(z)− ψ(v0) = (r1, r2, r3)M−1
τ (z − v0).

Proof. The point z can be written as a convex combination of the vertices of τ :
z =

∑3
i=0 λivi. This implies that

z − v0 =

3∑
i=1

λi(vi − v0).

We view M−1
τ as three row vectors α1, α2, α3 ordered from top to bottom. Recall that

Mτ = (v1−v0, v2−v0, v3−v0). As M−1
τ Mτ = I, αk ·(vk−v0) = 1 and αk ·(vj−v0) = 0

for all j �= k. It follows that

M−1
τ (z − v0) = (λ1, λ2, λ3)t.

We conclude that (r1, r2, r3)M−1
τ (z−v0) =

∑3
i=1 λi(ψ(vi)−ψ(v0)) = (

∑3
i=0 λiψ(vi))−

ψ(v0) = ψ(z)− ψ(v0).

The claim implies that �ψ = (M−1
τ )t(r1, r2, r3)t on τ and so

‖�ψ‖ ≤ ‖(M−1
τ )t‖ · ‖(r1, r2, r3)t‖

≤
√

3 · ‖(M−1
τ )t‖, as 0 ≤ |ri| ≤ 1

Lemma 7.7≤
√

3k1/h(τ).

Combining the above with (7.2), we obtain h(τ) ≤ √3k1‖p−q‖. This proves (i).

As T has a bounded aspect ratio, it enjoys properties similar to those stated in
Lemma 6.2. In particular, two tetrahedra sharing a vertex have similar minimum
heights.

Lemma 7.9 (see [17, 18]). If two tetrahedra τ1 and τ2 in T share a vertex, then
h(τ1) ≤ k3h(τ2) for some constant k3 ≥ 1.

Next, we prove that the minimum heights of tetrahedra in T change smoothly.
The result is analogous to Lemma 11 in [18].

Lemma 7.10. Let p and q be two points, and let τp and τq, respectively, be the
two tetrahedra in T that contain them. Then h(τq) ≤ k4 max{h(τp), ‖p− q‖} for some
constant k4 ≥ 1.

Proof. If τq shares a vertex with τp, then h(τq) ≤ k3h(τp), by Lemma 7.9. Con-
sider the case where τq does not share a vertex with τp. By Lemma 7.8, there is a
tetrahedron τ in T intersecting pq such that h(τ) ≤ k2‖p− q‖ and τ shares a vertex
with τq. Starting with Lemma 7.9, we get h(τq) ≤ k3h(τ) ≤ k2k3‖p− q‖.

The following lemma shows that the minimum heights of tetrahedra in T are also
related to the local feature sizes. The result is analogous to Lemma 5 in [19].

Lemma 7.11. Let x be a point, and let τ be a tetrahedron in T containing x.
Then h(τ) ≤ k5f(x) for some constant k5 ≥ 1.

Proof. Let B be the ball centered at x of radius f(x). B contains two points p
and q on two disjoint elements of P. By Lemma 7.8, there is a tetrahedron τ ′ in T
intersecting pq such that h(τ ′) ≤ k2‖p− q‖. Let u be a point in the intersection of τ ′
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and pq. By applying Lemma 7.10 to u and x, we have

h(τ) ≤ k4 max{h(τ ′), ‖u− x‖}
≤ k4 max{k2‖p− q‖, ‖u− x‖}
≤ k4 max{k2 · 2f(x), f(x)}
≤ 2k2k4f(x).

We are now ready to prove the main theorem of this section.
Theorem 7.12. The output size of QualMesh is within a constant factor of

the size of any mesh of bounded aspect ratio for the same domain.
Proof. Let D denote the domain to be meshed. Let n be the number of vertices

in the Delaunay mesh output by QualMesh. First, we show that n is at most some
constant times

∫
D

dx
f(x)3 . As N(v) ≥ f(v)/(1 + C1), we can center a ball Bv of radius

dv = f(v)/(2 + 2C1) at each vertex v so that all balls are disjoint. Observe that
f(x) ≤ f(v) + dv for all x ∈ Bv. Therefore,∫

D

dx

f(x)3
≥
∑
v

∫
Bv

dx

f(x)3

≥
∑
v

4πd3
v

3(f(v) + dv)3

≥
∑
v

4π

3(3 + 2C1)3
.

Therefore, we have

n =
∑
v

1 ≤ 3(3 + 2C1)3

4π

∫
D

dx

f(x)3
.

By Lemma 7.4, the number of tetrahedra in the Delaunay mesh is within a constant
factor of n. More formally, let m be the number of tetrahedra; we have

m ≤ k6

∫
D

dx

f(x)3

for some constant k6.
Next, consider a mesh T of D of bounded aspect ratio. For each point x in

D, define D(x) to be the minimum height of the tetrahedra in T containing x. By
Lemma 7.11, D(x) ≤ k5f(x) and so∫

D

dx

f(x)3
≤ k3

5

∫
D

dx

D(x)3

≤ k3
5

∑
τ∈T

∫
τ

dx

h(τ)3

= k3
5

∑
τ∈T

volume(τ)

h(τ)3

≤ k3
5k7

∑
τ∈T

1,

as volume(τ) ≤ k7h(τ)3 for some constant k7. Combining the above with the upper
bound on m, we conclude that m is within a constant factor of the size of T .



92 SIU-WING CHENG AND TAMAL K. DEY

8. Conclusions. A series of developments starting with Chew [5] and Rup-
pert [19] and continuing with Shewchuk [20] and Cheng et al. [7] brought the difficult
problem of quality three-dimensional Delaunay meshing of bounded domains close
to the solution. Li and Teng [15] recently developed a randomized point-placement
strategy to generate a provably good three-dimensional Delaunay mesh of bounded
domains. This paper introduces a new paradigm, weighted Delaunay refinement,
which gives the first deterministic algorithm for the problem. We believe that we will
add fewer points in practice because weighted Delaunay refinement uses pumping to
eliminate slivers instead of point-placement.

Of course, as with previous algorithms the constants derived for the theory are
miserably unsatisfactory for all practical purposes. For example, the constant ρ0 > 4
is large for any practical purpose, and the constant σ0 is extremely small. Experiments
show that these constants need not be that bad in practice when sliver exudation and
Delaunay refinement are used separately [13]. Will the same remain true when we
combine the two into our weighted Delaunay refinement algorithm?

In QualMesh we need to compute the local feature size f(v) while assigning
weight to a vertex v. Although the computation of f(v) is feasible, it is better if
we can avoid computing it in practice. Toward this end, one can gradually increase
the weight to v and check the quality of tetrahedra incident to v as they change at
discrete moments. Experiments should be performed to see what bound on angles we
get in practice with this strategy. We plan future work to answer these questions.
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CONFLICT-FREE COLORINGS OF SIMPLE GEOMETRIC REGIONS
WITH APPLICATIONS TO FREQUENCY ASSIGNMENT
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Abstract. Motivated by a frequency assignment problem in cellular networks, we introduce and
study a new coloring problem that we call minimum conflict-free coloring (min-CF-coloring). In its
general form, the input of the min-CF-coloring problem is a set system (X,S), where each S ∈ S is
a subset of X. The output is a coloring χ of the sets in S that satisfies the following constraint: for
every x ∈ X there exists a color i and a unique set S ∈ S such that x ∈ S and χ(S) = i. The goal is
to minimize the number of colors used by the coloring χ.

Min-CF-coloring of general set systems is not easier than the classic graph coloring problem.
However, in view of our motivation, we consider set systems induced by simple geometric regions in
the plane.

In particular, we study disks (both congruent and noncongruent), axis-parallel rectangles (with
a constant ratio between the smallest and largest rectangle), regular hexagons (with a constant
ratio between the smallest and largest hexagon), and general congruent centrally symmetric convex
regions in the plane. In all cases we have coloring algorithms that use O(logn) colors (where n
is the number of regions). Tightness is demonstrated by showing that even in the case of unit
disks, Θ(logn) colors may be necessary. For rectangles and hexagons we also obtain a constant-ratio
approximation algorithm when the ratio between the largest and smallest rectangle (hexagon) is a
constant.

We also consider a dual problem of CF-coloring points with respect to sets. Given a set system
(X,S), the goal in the dual problem is to color the elements in X with a minimum number of colors
so that every set S ∈ S contains a point whose color appears only once in S. We show that O(log |X|)
colors suffice for set systems in which X is a set of points in the plane and the sets are intersections
of X with scaled translations of a convex region. This result is used in proving that O(logn) colors
suffice in the primal version.

Key words. conflict-free coloring, frequency assignment, approximation algorithms, computa-
tional geometry
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1. Introduction. Cellular networks are heterogeneous networks with two differ-
ent types of nodes: base-stations (that act as servers) and clients. The base-stations
are interconnected by an external fixed backbone network. Clients are connected
only to base-stations; links between clients and base-stations are implemented by ra-
dio links. Fixed frequencies are assigned to base-stations to enable links to clients.
Clients, on the other hand, continuously scan frequencies in search of a base-station
with good reception. This scanning takes place automatically and enables smooth
transitions between links when a client is mobile. Consider a client that is within the
reception range of two base-stations. If these two base-stations are assigned the same
frequency, then mutual interference occurs, and the links between the client and each
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of these conflicting base-stations are rendered too noisy to be used. A base-station
may serve a client, provided that the reception is strong enough and interference
from other base-stations is weak enough. The fundamental problem of frequency as-
signment in a cellular network is to assign frequencies to base-stations so that every
client is served by some base-station. The goal is to minimize the number of assigned
frequencies since spectrum is limited and costly.

We consider the following abstraction of the above problem, which we refer to as
the minimum conflict-free coloring problem (min-CF-coloring).

Definition 1.1. Let X be a fixed domain (e.g., the plane), and let S be a
collection of subsets of X (e.g., disks whose centers correspond to base-stations). A
function χ : S → N is a CF-coloring of S if, for every x ∈ ⋃S∈S S, there exists a
color i ∈ N such that {S ∈ S : x ∈ S and χ(S) = i} contains a single subset S ∈ S.

The goal in the min-CF-coloring problem is to find a CF-coloring that uses as few
colors as possible. It is not hard to verify that, in its most general form defined above,
this problem is not easier than vertex coloring in graphs and is even equally hard to
approximate. An adaptation of the NP-completeness proof of minimum coloring of
intersection graphs of unit disks by [CCJ90] proves that even CF-coloring of unit disks
(or unit squares) in the plane is NP-complete. Since this proof is based on a reduction
from coloring planar graphs, it follows that approximating the minimum number of
colors required in a CF-coloring of unit disks is NP-hard for an approximation ratio
of 4

3 − ε, for every ε > 0.

1.1. Our results. We restrict our attention to set systems (X,R), where X is
a set of points in the plane and R is a family of subsets of X that are defined by the
intersections of X with closed geometric regions in the plane (e.g., disks). We refer
to the members of R as ranges, and to (X,R) as a range-space.

1.1.1. CF-coloring of disks. Given a finite set of disks S, the size-ratio of S
is the ratio between the largest and the smallest radiuses of disks in S. For simplicity
we assume that the smallest radius is 1. For each i ≥ 1, let Si denote the subset of
disks in S whose radius is in the range [2i−1, 2i). Let φ2i(Si) denote the maximum
number of centers of disks in Si that are contained in a 2i × 2i square. We refer to
φ2i(Si) as the local density of Si (with respect to 2i× 2i square). For a set of centers
X ⊂ R

2, and for any given radius r, let Sr(X) denote the set of (congruent) disks
having radius r whose centers are the points in X.

Our main results for coloring disks are stated in the following theorem.

Theorem 1.2.

1. Given a finite set S of disks with size-ratio ρ, there exists a polynomial-

time algorithm that computes a CF-coloring of S using O (min
{∑log(ρ)+1

i=1 (1+

log φ2i(Si)), log |S|}) = O
(
min

{
log(ρ) ·maxi{log φ2i(Si)}, log |S|}) colors.1

2. Given a finite set of centers X ⊂ R
2, there exists a polynomial-time algorithm

that computes a coloring χ of X using O(log |X|) colors such that if we color
Sr(X) by assigning each disk D ∈ Sr(X) the color of its center, then this is
a valid CF-coloring of Sr(X) for every radius r.

Tightness of Theorem 1.2 is shown by presenting, for any given integer n, a set
S of n unit disks with φ1(S) = n for which Ω(logn) colors are necessary in every
CF-coloring of S.

1For simplicity of notation, we avoid writing log(x+ 1) throughout the paper, even when x may
equal 1, and consider O(0) to be O(1).
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In the first part of Theorem 1.2, the disks are not necessarily congruent; that
is, the size-ratio ρ may be bigger than 1. In the second part of Theorem 1.2, the
disks are congruent (i.e., the size-ratio equals 1). However, the common radius is not
determined in advance. Namely, the order of quantifiers in the second part of the
theorem is as follows: Given the locations of the disk centers, the algorithm computes
a coloring of the centers (of the disks) such that this coloring is conflict-free for every
radius r. We refer to such a coloring as a uniform CF-coloring.

Uniform CF-coloring has an interesting interpretation in the context of cellular
networks. Assume that base-stations are located in the disk centers X. Assume that
a client located at point P has a reception range r. The client is served, provided
that the disk centered at P with radius r contains a base-station that transmits in a
distinct frequency among the base-stations within that disk.

Thus, uniform CF-coloring models frequency assignment in the setting of isotropic
base-stations that transmit with the same power and clients with different reception
ranges. Moreover, the coloring of the base-stations in a uniform CF-coloring is inde-
pendent of the reception ranges of the clients.

Building on Theorem 1.2, we also obtain two bicriteria CF-coloring algorithms
for disks having the same (unit) radius. In both cases we obtain colorings that use
very few colors. In the first case this comes at a cost of not serving a small area that
is covered by the disks (i.e., an area close to the boundary of the union of the disks).
In the second case we serve the entire area, but we allow the disks to have a slightly
larger radius. A formal statement of these bicriteria results follows.

Theorem 1.3. For every 0 < ε < 1 and every finite set of centers X ⊂ R
2, there

exist polynomial-time algorithms that compute colorings as follows:
1. A coloring χ of S1(X) using O

(
log 1

ε

)
colors for which the following holds:

The area of the set of points in
⋃S1(X) that are not served with respect to

χ is at most an ε-fraction of the total area of S1(X).
2. A coloring of S1+ε(X) that uses O

(
log 1

ε

)
colors such that every point in⋃S1(X) is served.

In other words, in the first case, the portion of the total area that is not served is
an exponentially small fraction as a function of the number of colors. In the second
case, the increase in the radius of the disks is exponentially small as a function of the
number of colors.

1.1.2. CF-coloring of rectangles and regular hexagons. Let R denote a
set of axis-parallel rectangles. Given a rectangle R ∈ R, let w(R) (respectively,
h(R)) denote the width (respectively, height) of R. The size-ratio of R is defined by

max
{w(R1)
w(R2)

, h(R1)
h(R2)

}
R1,R2∈R.

The size-ratio of a collection of regular hexagons is simply the ratio of the longest
side length to the shortest side length.

Theorem 1.4. Let R denote either a set of axis-parallel rectangles or a set
of axis-parallel regular hexagons. Let ρ denote the size-ratio of R, and let χopt(R)
denote an optimal CF-coloring of R.

1. If R is a set of rectangles, then there exists a polynomial-time algorithm that
computes a CF-coloring χ of R such that |χ(R)| = O((log ρ)2) · |χopt(R)|.

2. If R is a set of regular hexagons, then there exists a polynomial-time algo-
rithm that computes a CF-coloring χ of R such that |χ(R)| = O(log ρ) ·
|χopt(R)|.

For a constant size-ratio ρ, Theorem 1.4 implies a constant-ratio approximation
algorithm.
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Fig. 1.1. On the left is an example of a scaled translation Cr,O of a regular hexagon C with
respect to the point O, where the scaling factor is r = 2. The points y, z, and w on the small
hexagon C are mapped to the points y′, z′, and w′, respectively, on the larger hexagon Cr,O. The
dashed lines correspond to the rays emanating from O toward the points y, z, and w. On the
right is an additional set X = {x1, x2, x3} of three points and the corresponding set Cr,O(X) =
{Cr,O(x1), Cr,O(x2), Cr,O(x3)}.

1.1.3. Uniform CF-coloring of congruent centrally symmetric convex
regions. Consider a convex region C and a point O. Scaling by a factor r > 0 with
respect to a center O is the transformation that maps every point P �= O to the point
P ′ along the ray emanating from O toward P such that |P ′O| = r · |PO|. The center
point O is a fixed point of the transformation of the scaling. We denote the image
of C with respect to such a scaling by Cr,O. Given a point x and a scaling factor
r > 0, we denote by Cr,O(x) the image of Cr,O obtained by the translation that maps
O to x (see Figure 1.1). We refer to C ′ as a scaled translation of C if there exist
points x,O and a scaling factor r > 0 such that C ′ = Cr,O(x). Given a set of centers
X and a scaling factor r > 0, the set Cr,O(X) denotes the set of scaled translations
{Cr,O(x)}x∈X .

A region C ∈ R
2 is centrally symmetric if there exists a point O (called the

center) such that the transformation of reflection about O is a bijection of C onto C.
Note that disks, rectangles, and regular hexagons are all convex centrally symmetric
regions.

The following theorem generalizes the uniform coloring result presented in part 2
of Theorem 1.2 to sets of centrally symmetric convex regions that are congruent via
translations.

Theorem 1.5. Let C denote a centrally symmetric convex region with a center
point O. Given a finite set of centers X ⊂ R

2, there exists a coloring χ of X that uses
O(log |X|) colors such that if we color each c ∈ Cr,O(X) with the color of its center,
then this is a valid CF-coloring of Cr,O(X) for every scaling factor r.

A polynomial-time constructive version of Theorem 1.5 holds when the region C is
“well behaved,” e.g., a disk, an ellipsoid, or a polygon. (More formally, a polynomial-
time algorithm for computing Delaunay graphs of arrangements of regions Cr,O(X) is
needed.)

1.2. Techniques.

1.2.1. A dual coloring problem: CF-coloring of points with respect to
ranges. In order to prove Theorem 1.2, we consider the following coloring problem,
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which is dual to our original coloring problem described in Definition 1.1.
Definition 1.6. Let (X,R) denote a range-space. A function χ : X → N is a

CF-coloring of X with respect to R if, for every R ∈ R, there exists a color i ∈ N

such that the set {x ∈ R : χ(x) = i} contains a single point.
Note that in the original definition of CF-coloring (Definition 1.1) we were in-

terested in coloring ranges (regions) in order to serve points contained in the ranges,
while in Definition 1.6 we are interested in coloring points in order to “serve” ranges
containing the points.

We give a general framework for CF-coloring points with respect to sets of ranges
R and provide a sufficient condition under which a coloring using O(log |X|) colors
can be achieved. This condition is stated in terms of a special graph constructed from
(X,R). When X is a set of points in the plane and R is the set of ranges obtained
by intersections with disks, this graph is the standard Delaunay graph. We then
study several cases in which the condition is satisfied. Theorems 1.2 and 1.5 follow
by reduction to these cases. We believe that Theorem 1.7 stated below (from which
Theorem 1.5 is easily derived) is of independent interest.

Theorem 1.7. Let C be a compact convex region in the plane, and let X be a
finite set of points in the plane. Let R ⊆ 2X denote the set of ranges obtained by
intersecting X with all scaled translations of C. Then there exists a CF-coloring of
X with respect to R using O(log |X|) colors.

Recently, Pach and Tóth [PT03] proved that Ω(log |X|) colors are required for
CF-coloring every set X of points in the plane with respect to disks.

1.2.2. CF-coloring of chains. A chain S is a collection of subsets, each as-
signed a unique index in {1, . . . , |S|}, for which the following holds. For every (dis-
crete) interval [i, j], 1 ≤ i ≤ j ≤ |S|, there exists a point x ∈ ⋃S∈S S such that the
subcollection of subsets that contains the point x equals the subcollection of subsets
indexed from i to j. Moreover, for every point x ∈ ⋃S∈S S, the set of indexes of
subsets that contain the point x is an interval. (For an illustration, see Figure 6.2.)
We show that chains of unit disks (respectively, unit squares and hexagons) are tight
examples of Theorem 1.2 (respectively, Theorem 1.4); namely, every CF-coloring of
a chain must use Ω(log |S|) colors, and it is possible to CF-color every chain using
O(log |S|) colors.

Chains also play an important role in our approximation algorithm for CF-coloring
rectangles and hexagons. Loosely speaking, our coloring algorithm works by decom-
posing the set of rectangles into chains. An important component in our analysis
is understanding and exploiting the intersections between pairs of different chains.
Specifically, we show how different types of pairs of chains (see Figures 7.5 and 7.9)
can “help” each other so as to go below the upper bound on the number of colors
required to color chains, which is logarithmic in their size.

1.3. Related problems. As noted above, min-CF-coloring of general set sys-
tems is not easier (even to approximate) than vertex-coloring in graphs. The latter
problem is of course known to be NP-hard, and is hard even to approximate [FK98].
The problem remains hard for the special case of unit disks (and squares), and it
is even NP-hard to achieve an approximation ratio of 4

3 − ε for every ε > 0 (by an
adaptation of [CCJ90]).

Marathe et al. [MBH+95] studied the problem of vertex-coloring of intersection
graphs of unit disks. They presented an approximation algorithm with an approx-
imation ratio of 3. Motivated by channel assignment problems in radio networks,
Krumke, Marathe, and Ravi [KMR01] presented a 2-approximation algorithm for the
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distance-2 coloring problem in families of graphs that generalize intersection graphs
of disks.

A natural variant of min-CF-coloring is min-CF-multicoloring. Given a collection
S of sets, a CF-multicoloring of S is a mapping χ from S to subsets of colors. The
requirement is that for every point x ∈ ⋃S∈S S there exists a color i such that
{S : x ∈ S, i ∈ χ(S)} contains a single subset. The min-CF-multicoloring problem is
related to the problem of minimizing the number of time slots required to broadcast
information in a single-hop radio network. In view of this relation, it has been observed
by Bar-Yehuda ([B01], based on [BGI92]) that every set system (X,S) can be CF-
multicolored using O(log |X| · log |S|) colors.

Mathematical optimization techniques have been used to solve a family of fre-
quency assignment problems that arise in wireless communication (for a comprehen-
sive survey, see [AHK+01]). We elaborate why these frequency assignment problems
do not capture min-CF-coloring. Basically, such frequency assignment problems are
modeled using interference or constraint graphs. The vertices correspond to base-
stations, and edges correspond to interference between pairs of base-stations. Each
edge (v, w) is associated with a penalty function pv,w : N× N→ R, so that if v is as-
signed frequency i ∈ N and w is assigned frequency j ∈ N, then a penalty of pv,w(i, j)
is incurred. A typical constraint is to bound the maximum penalty on every edge. A
typical cost function is the number of frequencies used. CF-coloring cannot be mod-
eled in this fashion because CF-coloring allows for conflicts between base-stations,
provided that another base-station serves the “area of conflict.” Even models that
use nonbinary constraints (see [DBJC98]) do not capture CF-coloring. We note that
the above models take into account interferences between close frequencies, while we
have ignored this issue for the sake of simplicity. We can, however, incorporate some
variants of such constraints. For example, in the case of unit disks we can easily
impose the constraint that, for every point x, the frequency assigned to the disk that
serves x differs by at least δmin from the frequency assigned to every other disk cov-
ering x. By applying Theorem 1.2 and multiplying each color by δmin, we can satisfy

the above constraint while using O
(
min

{∑log(ρ)+1
i=1 log φ2i(Si), log |S|} · δmin

)
colors

(and there is an example that exhibits tightness).
Frequency assignment problems in cellular networks as well as the positioning

problem of base-stations have been studied extensively; see [AKM+01, GGRV00, H01]
for other models and many references. Finally, we refer to [HS03, SM03] for further
work on CF-coloring problems.

Further research. Among the open problems related to our results are the follow-
ing: (1) Is there a constant approximation algorithm for min-CF-coloring of unit disks
and disks in general? (2) Is it possible to extend our results to min-CF-coloring with
capacity constraints defined as “every base-station is given a capacity that bounds
the number of clients that it can serve”?

Organization. In section 2, preliminary notions and notations are presented. In
section 3 we describe our results for CF-coloring points with respect to range-spaces:
We describe a general framework and several applications. In section 4 we prove
our results for CF-coloring of disks (Theorems 1.2 and 1.3), which build on results
from section 3. Theorem 1.5 is proved in section 5, and tightness of Theorem 1.2 is
established in section 6. Our O(1)-approximation algorithm for rectangles is provided
in section 7. In section 8 we discuss how a very similar algorithm can be applied to
color regular hexagons. Finally, in section 9 we derive a couple of additional related
results.
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2. Preliminaries.

2.1. Combinatorial arrangements. A finite set R of regions (in the plane)
induces the following equivalence relation. Every two points x, y in the plane belong
to the same class if and only if they reside in exactly the same subset of regions
in R. That is, x and y are in the same equivalence class if {R ∈ R : x ∈ R} =
{R ∈ R : y ∈ R}. We refer to each such equivalence class as a cell. The set of all
cells induced by R is denoted by cells(R). With a slight abuse of notation, we view
the pair (cells(R),R) as a range-space. To be precise, (cells(R),R) is the following
range-space: (a) the ground set is equal to a representative from every cell, and (b) the
ranges are the intersections of sets in R with the ground set. We henceforth refer to
the range-space (cells(R),R) as the combinatorial arrangement induced by R; we
denote this combinatorial arrangement by A(R).

a cell

Fig. 2.1. An arrangement of disks. The marked cell corresponds to the regions that are con-
tained in the middle disk and only in that disk.

The definition of a combinatorial arrangement differs from that of a topological
arrangement (where one considers the subdivision into connected components induced
by the ranges). For example, Figure 2.1 depicts a collection of disks. The two shad-
owed regions constitute a single cell in the combinatorial arrangement induced by
the disk. In the definition of a topological arrangement these regions are considered
as two separate cells. We often consider combinatorial arrangements of the form
(V,R), where V ⊂ cells(R). We refer, in short, to combinatorial arrangements as
arrangements.

2.2. Primal and dual range-spaces. Consider a range-space (X,R). The dual
set system is (R, X∗), where X∗ = {N(x)}x∈X ⊆ 2R and N(x) = {R ∈ R : x ∈ R}.
One may represent a set system by a bipartite graph (X ∪R, E), with an edge (x,R)
if x ∈ R. Under this representation, the dual set system corresponds to the bipartite
graph in which the roles of the two sides of the vertex set are interchanged. Isomor-
phism of set systems is equivalent to the isomorphism between the bipartite graph
representations of the corresponding set systems.

Let T denote a set of regions in the plane. We use T to denote a set of regions
with some common property, for example, the set of all unit disks or the set of axis-
parallel unit squares. Given a set of points X and a region R (such as a disk), when
referring to R as a range (namely, a subset of X) we actually mean R ∩X.

A range-space (X,R) is a T -type range-space if R ⊆ T . We are interested in
situations in which the dual of a T -type range-space is isomorphic to a T -type range-
space.

Definition 2.1. A set of regions T is self dual if the dual range-space of every
T -type range-space is isomorphic to a T -type range-space.

For example, it is not hard to verify that the set of all unit disks is self dual. On
the other hand, the set of all disks (or even disks of different radius) is not self dual.
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The following claim states a condition on T that is sufficient for T to be self dual
when X is a set of points in the plane.

Claim 2.2. Let C be a fixed centrally symmetric region in the plane, and let T
be the set of all regions congruent (via translation, not rotation) to C. Then T is self
dual.

Proof. Given a T -type range-space (X,R), let Y denote the set of centers of the
ranges in R. For a point x in the plane, let C(x) denote the region congruent to C

that is centered at x. For a set X of points in the plane, let C(X)
�
= {C(x) : x ∈ X}

denote the set of regions congruent to C centered at points of X. The range-space
(Y, C(X)) is obviously a T -type range-space. To see that this system is isomorphic to
the dual range-space (R, X∗), we identify every range R ∈ R with its center. Since C
is centrally symmetric, it follows that y ∈ C(x) if and only if x ∈ C(y) for every two
points x, y. This means that a center y ∈ Y is in C(x) if and only if the range C(y)
contains the point x ∈ X. Hence, for every point x ∈ X, the set C(x) ∩ Y equals the
set of centers of ranges in N(x), and the claim follows.

As a corollary of Claim 2.2 we obtain the following.

Corollary 2.3. Let C be a fixed centrally symmetric region in the plane, and
let T be the set of all regions congruent (via translation, not rotation) to C. Then the
CF-coloring arrangement of T -type regions is equivalent to CF-coloring points with
respect to a T -type set of ranges.

We rely on Corollary 2.3 in the proof of part 2 of Theorem 1.2 and in the proof
of Theorem 1.5.

3. CF-coloring points with respect to ranges. In this section we present
CF-coloring algorithms for points with respect to ranges. The colorings require
O(log n) colors, where n denotes the number of points.

3.1. Intuition. We begin this subsection by presenting a high level description
of our algorithm. We then briefly discuss how it can be applied to the special case
where X is a set of n points in the plane and the ranges in R are intersections of X
with disks.

The algorithm works in an iterative manner, where in iteration i it selects the sub-
set of points that are colored by color number i. Let Xi denote the set of points that
are colored by the color i, and let X<i (respectively, X≤i) denote the set

⋃
j<iXj (re-

spectively,
⋃

j≤iXj). When determining Xi, the algorithm ensures that the following
condition holds:

For every range S ∈ R, either (i) S can be served by a point colored
j < i (i.e., there exists j < i : |S ∩Xj | = 1), or (ii) S ∩Xi contains
at most one point, or (iii) S contains a point that is not colored yet
(i.e., S � X≤i).

Correctness follows because if either (i) or (ii) holds, then S can be served by a point
colored j ≤ i, while if neither (i) nor (ii) holds, then there will be a point colored
by a color greater than i that can serve S. In fact, a coloring that obeys the above
condition has the following property: For every range S ∈ R, the highest color of a
point contained in S has multiplicity 1.

Observe that we can trivially obey the above condition by selecting Xi to consist
of a single point in X \X<i, so that each point is colored by a different color. However,
the total number of colors in this case is |X| = n, while we are interested in using
only O(log n) colors. To obtain O(log n) colors, we show that (for the sets of ranges
we consider), in each stage it is possible to select at least a constant fraction of the
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remaining points (i.e., |Xi| ≥ 1
4 · |X \X<i|).

To make the above more concrete, consider the special case of coloring a set of
points X with respect to disks. First assume that the points all lie on a straight
line. In such a case, the choice of Xi involves simply picking every other point of
X \ X<i (see Figure 3.1). By convexity, if a disk D contains two (or more) points
from Xi, then it must contain all the points in between these two points. Between
every two points in Xi there must exist at least one point not in X≤i. It follows that

the condition required from Xi holds. Since |Xi| =
⌈ |X\X<i|

2

⌉
, the number of colors

used is O(log n), as desired.

Fig. 3.1. Selection of Xi when the points lie on a straight line. The points drawn are those in
X \X<i. The points of Xi are denoted by filled dots. The unfilled dots denote points in X \X≤i.
The disk on the left contains two points in Xi and hence also an unfilled dot. The disk on the right
contains only a single point in Xi.

The choice of Xi when the points are in general position in the plane is more
involved. In this case, we construct the Delaunay graph Gi of the set X \X<i: Two
points pi and pj form an edge in Gi if and only if there is a closed disk D that contains
pi and pj on its boundary and does not contain any other point in X \ X<i. The
graph Gi is planar and hence is 4-colorable. The largest color class contains at least
1
4 of the remaining points and is an independent set in Gi. In Claim 3.4 below we
prove that the largest color class is a good candidate for Xi.

3.2. A general framework. We start by presenting a general framework for
CF-coloring a set X of points with respect to a set R ⊆ 2X of ranges, and describe
sufficient conditions under which the resulting coloring uses O(log n) colors. Since
every range R ∈ 2X that contains a single point from X is trivially served by that
point, we assume that every range in R contains at least two points from X.

Definition 3.1. Let X be a set of points and R ⊆ 2X a set of ranges. A
partition (X1, X2) of X is R-useful if X1 �= ∅ and

∀S ∈ R : |S ∩X1| = 1 or S ∩X2 �= ∅.

Algorithm 1. CF-color(X,R)—CF-color a set X with respect to a set of
ranges R.
1: Initialization: i← 1, X1 ← X, R1 ← R. (i denotes an unused color, Xi is the

set of points not yet colored, and Ri is the set of ranges that contain more than
one point in Xi and cannot be served by points colored j, for j < i.)

2: while Xi �= ∅, do
3: Find an Ri-useful partition (X1, X2) of Xi. (See Claim 3.4 below.)
4: Color: ∀x ∈ X1 : χ(x)← i.
5: Project: Xi+1 ← X2 and Ri+1 ← {S ∩ X2 : S ∈ Ri, |S ∩ X1| �= 1, and

|S ∩X2| ≥ 2}.
6: Increment: i← i+ 1.
7: end while
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Claim 3.2. The coloring of X computed by CF-color(X,R) is a CF-coloring
of X with respect to R.

Proof. Consider a range S ∈ R. Let i denote the last iteration in which Xi ∩S ∈
Ri. In other words, in the ith iteration, theRi-useful partition (X1, X2) ofXi satisfies
either |X1 ∩ S| = 1 or |X2 ∩ S| = 1. In the first case, S can be served by the single
element x ∈ X1 ∩ S (which is colored i). In the second case, S can be served by the
single element x ∈ X2 ∩ S (which is colored j, for j > i). Observe that if at the end
of iteration i the range-space Ri+1 becomes empty while Xi+1 is not empty, then the
partition (Xi+1, ∅) is trivially Ri+1-useful, and all the points in Xi+1 can be colored
with the color i+ 1.

Note that Algorithm CF-color computes a CF-coloring in which every range
S ∈ R is served by the point with the highest color among the points in S.

3.2.1. Sufficient conditions for using O(log |X|) colors. If in every iter-
ation i we have |X1| = Ω(|Xi|), then Algorithm CF-color uses O(log |X|) colors.
We formalize a condition guaranteeing that |X1| is a constant fraction of |Xi|. The
condition is phrased in terms of a special graph that is attached to the range-space
(Xi,Ri).

We refer to ranges S ∈ Ri as minimal if they are minimal with respect to in-
clusion. Recall that we initially assume that for every S ∈ R, |S| ≥ 2 (since ranges
of size one are served trivially). The algorithm ensures that, in each iteration, every
range in Ri contains at least two points. Hence, minimal ranges contain at least two
points.

Definition 3.3. A Delaunay graph of a set system (X,R) is a graph DGR(X,E),
defined as follows. For every minimal S ∈ R, pick a pair u, v ∈ S and define
e(S) = (u, v). The edge set E is defined by E = {e(S) : S ∈ R and S is minimal}.

A Delaunay graph of a set system is not uniquely defined if there exist minimal
ranges that contain more than two points. To simplify the presentation, we abuse
notation and refer to the Delaunay graph of a set system as if it were unique.

We now discuss how Definition 3.3 is an extension of the standard definition of the
Delaunay graph of a set of points in the plane. The Delaunay graph of a set of points
X in the plane is defined as the dual graph of the Voronoi diagram of X [BKOS97].
Theorem 9.6 in [BKOS97] suggests an equivalent definition: Two points pi and pj
form an edge in the Delaunay graph of X if and only if there is a closed disk D that
contains pi and pj on its boundary and does not contain any other point in X. This
equivalent definition implies that the edge set of a Delaunay graph corresponding to
X equals the set of minimal ranges containing two points induced by disks. We leave
it as an exercise to prove that every minimal range induced by a disk contains exactly
two points. Hence, in the case of points in the plane and disks, DGR(X,E) is the
standard Delaunay graph of X.

The next claim shows how an R-useful partition can be found by Algorithm
CF-color.

Claim 3.4. If X1 ⊆ X is an independent set in DGR, then the partition
(X1, X \X1) is R-useful.

Proof. Assume for the sake of contradiction that there exists an independent set
X1 such that (X1, X \X1) is not an R-useful partition of X. That is, there exists a
range S ∈ R such that |S ∩X1| �= 1 and S ∩ (X \X1) = ∅. Note that assuming that
S ∩ (X \ X1) = ∅ necessarily implies that S ⊆ X1, and so we may replace the first
condition (i.e., |S ∩X1| �= 1) by |S ∩X1| ≥ 2.

Let S′ denote a minimal range that is a subset of S (hence S′ ⊆ X1). By the
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Fig. 3.2. An illustration of the execution of Algorithm 1 in the case of disks in the plane. In
panel A we see the given set of points. In panel B, the Delaunay graph is depicted. Recall that there
is an edge between every pair of points p, q that are separated from the rest of the points by a disk.
Two such disks are depicted for this graph. C–G depict five steps of the algorithm. In each step
we see the Delaunay graph over the remaining uncolored points, where the newly colored points are
marked by arrows. (The previously colored points also appear in the figure, but they are not part of
the Delaunay graph.) In H we see the final coloring of all points, and an example of a disk and the
point that can serve it. (In general, there may be more than one such point.)

definition of the set of edges E in the Delaunay graph DGR of (X,R), it follows that
there is an edge e(S′) between two points in S′. But this contradicts the assumption
that X1 is an independent set, and the claim follows.

The method we use to show that Delaunay graphs have large independent sets is
to show that Delaunay graphs are planar. Another easy way to show that there exists
a large independent set is, for example, to show that the number of edges is linear.
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Claim 3.5. If in each iteration of the algorithm the Delaunay graph of (Xi,Ri)
is planar, then Algorithm 1 uses O(log |X|) colors.

Proof. By Claim 3.4, it suffices to show that, in every iteration of Algorithm CF-
color, the Delaunay graph has an independent set X1 that satisfies |X1| = Ω(|Xi|).
The existence of a large independent set X1 in the Delaunay graph DGRi(Xi, E)
follows from the planarity of DGRi . Planarity implies that the graph is 4-colorable
[AH77a, AH77b], and therefore, the largest color-class is an independent set of size
at least |Xi|/4. (Recall that planar graphs can be 4-colored in polynomial time
[AH77a, AH77b, RSST96]. For our purposes, a coloring using six colors suffices. One
could easily color planar graphs using six colors, since the minimum degree is at
most 5. This means that a greedy algorithm could be used to find an independent set
of size at least |Xi|/6.)

In the rest of this section we apply Algorithm CF-color to three types of range-
spaces: disks in the plane, half-spaces in R

3, and homothetic centrally symmetric
convex regions in the plane. For each of these cases we prove that the premise of
Claim 3.5 is satisfied—that is, that the Delaunay graph of the corresponding range-
space is planar. Moreover, for disks, half-spaces in R

3, and scaled translations of a
convex polygon, the corresponding Delaunay graphs are computable in polynomial
time, which implies that Algorithm CF-color is polynomial.

3.3. Disks in the plane. Recall that, in the case of disks in the plane, the
Delaunay graph that we attach to the set system (X,R) is the standard Delaunay
graph. Hence, the Delaunay graph is planar [BKOS97, Theorem 9.5]. We may now
apply Claim 3.5 to obtain the following lemma.

Lemma 3.6. Let X denote a set of n points in the plane. Let R denote the
collection of all subsets of X of size at least 2 obtained by intersecting X with a
(closed) disk. Then it is possible to color X with respect to R using O(log n) colors.

3.4. Half-spaces in R
3. Given a hyperplane H (not parallel to the z-axis), the

positive half-space H+ is the set of all points that either lie on or are above H. We
denote by H+ the set of all positive half-spaces in R

3.
Lemma 3.7. Let X be a set of n points in R

3. Let R denote the collection of all
subsets of X of size at least two obtained by intersecting X with a half-space in H+.
Then there exists a CF-coloring of X with respect to R that uses O(log n) colors.

Let CH (X) denote the convex hull of X. We make the following simplifying
assumption: Every point in X is an extreme point of CH (X). If not, then all the
points of X that are not extreme points of CH (X) may be colored by a unique
“passive” color. The coloring of nonextreme points by a passive color means, in
effect, that these points are removed. This reduction is justified by the fact that
every half-space H+ that intersects the convex hull of X must contain an extreme
point of X. The coloring will be a CF-coloring of the extreme points of CH (X) with
respect to positive half-spaces, and hence X ∩H+ will be served as well.

Claim 3.8. Every minimal range in the range-space (X,R) is a pair of points.
Proof. Consider a range R ∈ R defined by half-space H+. Translate H upward as

much as possible so that every further translation upward reduces the range defined
by the positive half-space to less than two points. Let H1 denote the plane parallel to
H obtained by this translation. Let R1 denote the range corresponding to the positive
half-space H+

1 . If R1 contains more than two points, then either R1 is contained in
the plane H1 or all but one of the points in R1 are in the plane H1. Assume that
R1 ⊂ H1. Consider a line & in H1 that passes through two adjacent vertices u, v (i.e.,
an edge) in the polygon corresponding to the (two-dimensional) convex hull of R1
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relative to the plane H1. Tilt the plane H1 slightly, where the line & serves as the
axis of rotation. It is possible to rotate H1 so that the resulting plane H2 satisfies
X ∩ H+

2 = {u, v}. A similar argument applies if there is a single point in R1 \ H1,
and the claim follows.

Proof of Lemma 3.7. Claim 3.8 implies that the Delaunay graph DGR = (X,E)
of the range-space (X,R) is defined by (u, v) ∈ E if and only if there exists a positive
half-space H+ such that X ∩H+ = {u, v}. Recall that we assumed that every point
in X is an extreme point of CH (X). Two points x, y ∈ X are adjacent if there
exists a supporting plane H of CH (X) such that H ∩X = {u, v}. The skeleton graph
G′ = (X,E′) of CH (X) is the graph over the points in X with edges between adjacent
points. The skeleton graph is drawn on the boundary of CH (X) using straight lines
without crossings. Since the boundary of CH (X) is homeomorphic to a sphere, it
follows that the skeleton graph is planar.

By definition, the edge set of the Delaunay graph is contained in the edge set of
the skeleton graph. Hence the Delaunay graph is planar and, by Claim 3.5, X can be
CF-colored with respect to R using O(log |X|) colors.

3.5. Scaled translations of a convex region in the plane. In this subsection
we prove Theorem 1.7. We first introduce some definitions and notation.

For a closed region C let ∂C denote the boundary of C, and let C̊ denote the
interior of C. We next recall the definition of homothecy (cf. [C69, p. 68]).

Definition 3.9. A transformation τ : R
2 → R

2 is a homothecy if there exist
a point O (called the homothetic center) and a nonzero real number λ (called the
similitude ratio) such that

1. O is a fixed point of τ (namely, O = τ(O));
2. every point P �= O is mapped to a point τ(P ) where (i) τ(P ) is on the line
OP , and (ii) the length of the segment Oτ(P ) satisfies |Oτ(P )| = λ · |OP |.

We use the notation C ′ ∼ C to denote that C ′ is a scaled translation of C. For
a homothetic transformation τ : R

2 → R
2, we denote the image of a set S ⊆ R

2

under τ by τ(S). Note that if the similitude ratio of a homothecy τ is positive, then
τ(C) ∼ C.

Definition 3.10. A range S ∈ R is induced by a region C if S = C ∩ X. A
range S ∈ R is boundary-induced by a closed region C if S = ∂C∩X and C̊∩X = ∅.

Recall that, for the purpose of CF-coloring, ranges that contain one point as well
as the empty range are trivial. Hence, we do not consider the empty set and subsets
that contain a single point to be ranges. Therefore, we define the range-space R
induced by a collection of regions C by

R = {C ∩X : C ∈ C and |C ∩X| ≥ 2}.
It follows that minimal ranges contain at least two points.

Let C denote a compact convex region in the plane. Let X ⊂ R
2 denote a finite

set of points in the plane. Let (X,R) denote the range-space induced by the set of
all scaled translations of C. By Claim 3.5, in order to prove Theorem 1.7, it suffices
to prove that the Delaunay graph of (X,R) is planar. To this end we first show the
following.

Claim 3.11. Every minimal range S ∈ R is boundary-induced by a region
C ′ ∼ C.

Proof. Since S is a range, there exists a scaled translation CS ∼ C such that
X ∩ CS = S. By contracting CS , if necessary, we may guarantee that the boundary
of CS contains a point from S. The interior of CS contains at most one point of
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Fig. 3.3. An illustration for the proof of Claim 3.11.

S. Otherwise, by an infinitesimal contraction, we are left with a range S′
� S that

contains at least two points, thus contradicting the minimality of S.
We now show how to find a region C ′ ∼ C such that all of S lies on the boundary

of C ′. Let x ∈ S denote a point on the boundary of CS . If S is not boundary-induced
by CS , then there is a unique point y ∈ S ∩ C̊S . The region C ′ is the image of C with
respect to the homothecy τ that is defined as follows. Let y′ denote the intersection
point of the boundary of CS with the half-open ray emanating from x toward y. Set x
to be the homothetic center, and set the similitude ratio to be the ratio |xy|/|xy′|. By
definition of τ , both x and y are on the boundary of C ′. By minimality of S, it follows
that C ′ ∩X = S. By definition of τ and convexity of C, it follows that C ′ ⊆ CS . If
a point z ∈ S is in the interior of C ′, then it is in the interior of CS ; hence z = y,
which contradicts y ∈ ∂C ′. It follows that every point in S is in the boundary of C ′,
and the claim follows. For an illustration, see Figure 3.3.

We now show that a planar drawing of the Delaunay graph DGR = (X,E)
is obtained if its edges are drawn as straight line segments. Consider two edges
(x0, y0), (x1, y1) ∈ E. For i = 0, 1, assume that xi, yi ∈ Si for a minimal range
Si ∈ R, where S0 �= S1. Let Ci ∼ C denote scaled translations of C such that Si is
boundary-induced by Ci. If C0 ∩ C1 = ∅, then the segments x0y0 and x1y1 do not
cross each other. If C0 ∩ C1 �= ∅, then the boundaries ∂C0 and ∂C1 intersect.

We first consider the case in which ∂C does not contain a straight side. Namely,
no three points on ∂C are colinear. Under this assumption, since Ci is a scaled
translation of C for i = 0, 1, it follows that ∂C0 ∩ ∂C1 contains at most two points.

If ∂C0 ∩ ∂C1 contains a single point p, then one can separate the convex regions
C0 and C1 using a straight line passing through p. This separating line implies that
the segments x0y0 and x1y1 cannot cross each other.

If ∂C0 ∩ ∂C1 contains two points, denote these points by p and q. The boundary
∂Ci is partitioned into two simple curves, each delimited by the points p and q; one
curve is contained in ∂Ci \ C̊1−i, and the second curve is ∂Ci ∩ C1−i. We denote the
curve ∂Ci \ C̊1−i by γi, and we denote the curve ∂Ci ∩C1−i by γ′i. Since the interior

C̊1−i lacks points of X, it follows that xi and yi are in γi.
In order to prove that the segments x0y0 and x1y1 do not cross each other, it

suffices to show that the line pq separates γ0 \ {p, q} and γ1 \ {p, q}. (Intersection
of two edges means that the edges share an interior point, which cannot be p or q.)
Assume, for the sake of contradiction, that γ0 \ {p, q} and γ1 \ {p, q} are on the same
side of the line pq. These curves do not intersect, and together with the segment pq,
one must contain the other, contradicting their definition.

The case in which ∂C contains a straight side (and so ∂C0 ∩ ∂C1 may contain a
subsegment of such a straight side) is dealt with similarly to the case in which ∂C
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does not contain a straight side. It is not hard to verify that in such a case ∂C0∩∂C1

consists of at most two connected components (each either straight line or a single
point). By picking p to be any point from one component and q to be any point from
the other component, we can apply essentially the same argument used above.

This concludes the proof of Theorem 1.7.

4. CF-colorings of arrangements of disks. In this section we prove Theo-
rems 1.2 and 1.3 stated in the introduction.

4.1. Proof of Theorem 1.2. Part 2 of Theorem 1.2 is proved as follows. The
disk centers X ⊂ R

2 are given. Consider a radius r (which is not given to the
algorithm!), and apply Corollary 2.3 to the arrangement A(Sr(X)). Let Y denote the
set consisting of representatives from every cell in cells(Sr(X)). The dual range-space
is isomorphic to a range-space with (i) a ground set X and (ii) ranges induced by
Sr(Y ). We extend the range-space to ranges induced by all the disks (of all radiuses).
A CF-coloring of the points in X with respect to the set of all disks is also a CF-
coloring of every arrangement A(Sr(X)). Part 2 of Theorem 1.2 now follows directly
from Lemma 3.6.

We now turn to proving part 1 of Theorem 1.2.

A transformation to points and half-spaces. In what follows, we show that the
problem of CF-coloring n arbitrary disks in the plane reduces to CF-coloring of a set
of points X in R

3 with respect to the set of ranges H+(X) determined by all positive
half-spaces containing at least two points from X.

We use a fairly standard dual transformation that transforms a point p = (a, b)
in R

2 to a plane p∗ in R
3, with the parameterization z = −2ax− 2by + a2 + b2, and

transforms a disk S in R
2, with center (x, y) and radius r ≥ 0, to a point S∗ in R

3,
with coordinates (x, y, r2 − x2 − y2).

It is easily seen that, in this transformation, a point p ∈ R
2 lies inside (respectively,

on the boundary of, outside) a disk S if and only if the point S∗ ∈ R
3 lies above

(respectively, on, below) the plane p∗. Indeed, a point (a, b) lies inside a disk with

center (x, y) and radius r if and only if (a− x)
2

+(b− y)2 < r2. After rearrangement,
this is equivalent to −2ax − 2by + a2 + b2 < r2 − x2 − y2. Now this inequality is
equivalent to the condition that the point (x, y, r2 − x2 − y2) = S∗ lies above the
plane z = −2ax − 2by + a2 + b2, as asserted. The cases of a point lying on the
boundary of a disk or outside a disk are treated analogously.

Given a collection S = {S1, . . . , Sn} of n distinct disks in the plane, one can use
the above transformation to obtain a collection S∗ = {S∗

1 , . . . , S
∗
n} of n points in R

3

such that any CF-coloring of S∗ with respect to H+(S∗), with k colors, induces a
CF-coloring of the disks of S with the same set of k colors.

As shown in subsection 3.4 (Lemma 3.7), it is possible to apply Algorithm 1 to
obtain a CF-coloring of the points in S∗ with respect to H+(S∗) using O(log n) colors.
Recall that part 1 of Theorem 1.2 states that the number of colors is of the order of

the minimum between log n and
∑log(ρ)+1

i=1 log φ2i(Si). Recall that ρ is the size-ratio
of S, Si is the subset of disks in S whose radius is in the range [2i−1, 2i), and φ2i(Si)
is the maximum number of disks in Si whose centers reside in a common 2i × 2i

square. To obtain the latter bound we proceed in two steps: First we assume that
the size-ratio is at most 2, and then we deal with the more general case.

The tiling. Assume that the size-ratio ρ is at most 2. By scaling, we may assume
that every radius is in the interval [1, 2]. We partition the plane into 2 × 2 square
tiles. We say that a disk S belongs to tile T if the center of S is in T . We denote the
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subset of disks in S that belong to T by S(T ). Note that the union of the disks in
any given tile intersects at most nine different tiles. We assign a palette (i.e., a subset
of colors) to each tile using nine different palettes, where the disks belonging to a
particular tile are assigned colors from the tile’s palette. Palettes are assigned to tiles
by following a periodic 3× 3 assignment. This assignment has the property that any
two disks that belong to different tiles either do not intersect or their tiles are given
different palettes (so that necessarily the two disks are assigned different colors). By
the definition of local density we have that |S(T )| ≤ φ2(S) for every tile T . Since
we can color the set of disks S(T ) belonging to tile T using O(log |S(T )|) colors, and
the total number of palettes is nine, we get the desired upper bound of O(log φ2(S))
colors. The general case of arbitrary size-ratio is dealt with by first partitioning the
set of disks into classes according to their radius. The ith class, denoted Si, consists
of disks, the radiuses of which are in the interval [2i, 2i+1). Within each class, the
size-ratio is bounded by 2; hence we can CF-color each class using O(log φ2i(Si))
colors. By using a different (super-)palette per class, we obtain the desired bound on

the number of colors, i.e.,
∑log ρ+1

i=1 O(log φ2i(Si)).
4.2. Bicriteria CF-coloring algorithms. In this section we prove Theorem

1.3. The first part of the theorem reveals a trade-off between the number of colors
used and the fraction of the area that is served. The second part of the theorem
reveals a trade-off between the number of colors used to serve the union of the unit
disks and the radiuses of the serving disks.

We first derive the following corollary from Theorem 1.2.
Corollary 4.1. Let S be a set of unit disks, and let dmin(S) be the minimum

distance between the centers of disks in S. If dmin(S) ≤ 2, then every arrangement
A(S) of unit disks can be CF-colored using O

(
log
(
min

{|S|, 1
dmin(S)

}))
colors.

Observe that if dmin(S) > 2, then a single color suffices since the disks are disjoint.
Proof. Obviously φ1(S) ≤ |S|. Since a unit square can be packed with at

most O( 1
dmin(S(T ))2 ) many disks of radius dmin(S(T )), it follows that φ1(S) =

O( 1
dmin(S(T ))2 ).

Let X ⊂ R
2 denote a finite set of centers of disks. Recall that Sr(X) = {B(x, r) |

x ∈ X}, where B(x, r) denotes a disk of radius r centered at x. Let Ar(X) =⋃
x∈X B(x, r). The area of a region A in the plane is denoted by |A|. Let Lr(X)

denote the length of the boundary of Ar(X). In order to prove Theorem 1.3 we shall
need the following two lemmas, which are proved subsequently.

Lemma 4.2. For every finite set X of points in the plane,

|A1(X)| ≥ 1

2
· L1(X).

Lemma 4.3. For every finite set X of points in the plane and every ε > 0,

|A1+ε(X)−A1(X)| ≤ (2ε+ ε2) · L1(X).

Proof of Theorem 1.3. We start with the second part. Let X ′ ⊆ X denote a
maximal subset with respect to inclusion such that ||x1−x2|| ≥ ε for every x1, x2 ∈ X ′.
Observe that

⋃S1(X) ⊆ ⋃S1+ε(X
′). Corollary 4.1 implies that S1+ε(X

′) can be CF-
colored using O(log 1+ε

ε ) colors. The second part follows.
We now turn to the first part. Let ε1 = ε/6 andX ′ as above. Corollary 4.1 implies

that there exists a CF-coloring χ of S1(X ′) using O
(
log 1

ε

)
colors. To complete the
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�

Q1 Q2

Fig. 4.1. An illustration for the proof of Lemma 4.4.

proof we need to show that

|A1(X)−A1(X ′)|
|A1(X)| ≤ ε.

Since A1(X) ⊆ A1+ε1(X ′) and A1(X ′) ⊆ A1(X), it suffices to prove that

|A1+ε1(X ′)−A1(X ′)|
|A1(X ′)| ≤ ε.

By Lemmas 4.2 and 4.3 it follows that

|A1+ε1(X ′)−A1(X ′)|
|A1(X ′)| ≤ (2ε1 + ε21) · L1(X ′)

1
2 · L1(X ′)

= 4 · ε1 + 2ε21.

Since ε < 1, it follows that 4 · ε1 + 2ε21 ≤ 6 · ε1 = ε, and the corollary follows.

4.2.1. Proving Lemmas 4.2 and 4.3. We denote a sector by sect(Q,α, r),
where Q is its center, α is its angle, and r is its radius. A boundary sector of A1(X)
is a sector sect(Q,α, 1) such that Q ∈ X and its arc is on the boundary of A1(X).
A boundary sector is maximal if it is not contained in another boundary sector. We
measure angles in radians. Therefore, in a unit disk, (1) the angle of a sector equals
the length of its arc, and (2) the area of a sector equals half its angle.

Lemma 4.4. The intersection of every two different maximal boundary sectors in
A1(X) has zero area.

Proof. The lemma is obvious if the boundary sectors belong to the same disk. Let
Q1, Q2 ∈ X, and let Di denote the circles centered at Qi, for i = 1, 2, as depicted in
Figure 4.1. Let sect i denote a boundary sector that belongs to circle Di, for i = 1, 2.
Let & denote the line defined by the intersection points of the circles D1 and D2. The
line & separates the centers Q1 and Q2 so that they belong to different half-planes.
The sector sect i is contained in the half-plane that contains Qi, and hence sect1∩sect2
contains at most two points. The lemma follows.

Proof of Lemma 4.2. The sum of the angles of the maximal boundary sectors of
A1(X) equals L1(X). By Lemma 4.4, the maximal boundary sectors are disjoint, and
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hence the sum of their areas is bounded by |A1(X)|. However, the area of a sector of
radius 1 whose angle equals α is α/2.

Lemma 4.5. Let X denote a finite set of points in the plane. For every P ∈
A1+ε(X) − A1(X), there exists a point Q ∈ X such that (1) P ∈ B(Q, 1 + ε) and
(2) the segment PQ contains a boundary point of A1(X).

Proof. Let Q denote a closest point in X to P . Since P ∈ A1+ε(X) − A1(X), it
follows that P ∈ B(Q, 1 + ε). Let Y denote the point at distance 1 from Q along the
segment QP . All we need to show is that Y is on the boundary of A1(X). If not,
then Y is in the interior of a disk B(Q′, 1) for Q′ ∈ X −{Q}. The triangle inequality
implies that Q′ is closer to P than Q, a contradiction. The lemma follows.

Proof of Lemma 4.3. Lemma 4.5 implies that, for every point P ∈ A1+ε(X) −
A1(X), there exists boundary sector sect(Q,α, 1) of A1(X) (where Q ∈ X) such that

P ∈ sect(Q,α, 1 + ε)− sect(Q,α, 1).

It follows that

|A1+ε(X)−A1(X)| ≤
∑

sect(Q,α,1)

|sect(Q,α, 1 + ε)− sect(Q,α, 1)|

=
∑

sect(Q,α,1)

α · (2ε+ ε2),

where sect(Q,α, 1) ranges over all maximal boundary sectors of A1(X). The claim
follows by observing that the sum of the angles of the boundary sectors of A1(X)
equals L1(X).

5. Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.7 similarly to
the way that part 2 of Theorem 1.2 was shown to follow from Lemma 3.6.

Specifically, let C be a centrally symmetric convex region with a center point
O, and X the set of centers that we are given. Consider a particular scaling factor
r, and apply Corollary 2.3 to the arrangement A(Cr,O(X)). Let Y denote the set
consisting of representatives from every cell in cells(Cr,O(X)). The dual range-space
is isomorphic to a range-space with (i) a ground set X and (ii) ranges induced by
Cr,O(Y ). We extend the range-space to ranges induced by all scaled translations of C.
A CF-coloring of the points in X with respect to all scaled translations of C is also
a CF-coloring of every arrangement A(Cr,O(X)). Theorem 1.5 now follows directly
from Theorem 1.7.

6. Chains and CF-coloring of chains. In this section we introduce a com-
binatorial structure that we call a chain. Chains are used to establish the tightness
of Theorem 1.2. They are also central to our O(1) approximation algorithms for
rectangles and hexagons.

6.1. Combinatorial structure. Consider an arrangement A(S) of a collection
of regions in the plane S. We associate with every cell v ∈ cells(S) the subset
N(v) ⊆ S of regions that contain the cell, namely, N(v) = {S ∈ S : v ⊆ S}.

A set S of regions in the plane is said to be indexed if the regions are given indexes
from 1 to |S|. In the following definition we identify a region with its index. We refer
to a set {i, i+ 1, . . . , j} of consecutive integers as an interval and denote it by [i, j].

Definition 6.1. Let S denote an indexed set of n regions. The arrangement
A(S) satisfies the interval property if N(v) is an interval [i, j] ⊆ [1, n] for every cell
v ∈ cells(S).
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1 13 32

[1,1] [1,2] [1,3] [3,3][2,3]

[2,2]

[2,2]
2

[1,1] [1,2]

[2,2]

[2,3] [3,3]

Fig. 6.1. On the left is an arrangement of three disks that satisfies the full interval property, and
on the right is an arrangement that satisfies the interval property but not the full interval property.
In particular, in both cases the disks are unit disks and their centers reside on a line. However, in
the arrangement on the right, the first and the third disk do not intersect, and hence there is no cell
v such that N(v) = [1, 3].

The arrangement A(S) satisfies the full interval property if it satisfies the interval
property and if, in addition, for every interval [i, j] ⊆ [1, n], there exists a cell v ∈
cells(S) such that N(v) = [i, j].

For an illustration of the interval and full interval properties, see Figure 6.1. The
definition of the (full) interval property is sensitive to the indexing. Indexes of regions
are usually based on the order of appearance of the regions along the boundary of
the union of the regions. We refer, in short, to an arrangement of an indexed set of
regions that satisfies the full interval property as a chain.

The definition of a chain implies that an arrangement A(S) is a chain if and only
if the dual range-space is isomorphic to ({1, . . . , n}, {[i, j] : 1 ≤ i ≤ j ≤ n}), where
n = |S|. The next lemma, which follows directly from this observation, shows that
the chain property is hereditary.

Lemma 6.2. Let S denote an indexed set of regions. Let S ′ ⊆ S, and let the
indexes of regions S ′ agree with their order in S. If A(S) is a chain, then A(S ′) is
also a chain.

Before discussing colorings of chains, we observe that it is easy to construct chains.
Consider a set S of n unit disks with centers positioned along a straight line at distance

1
n+1 apart. Index the disks from 1 to n according to the position of their centers from
left to right. The arrangement A(S) is depicted on the top of Figure 6.2. Observe
that every two disks in the arrangement intersect.

We apply duality to prove that the arrangementA(S) is a chain. The arrangement
is the range-space (cells(S),S). Let X denote a set of representatives of cells in
cells(S), and let Y denote the centers of unit disks in S. The dual range-space is
the pair (Y, {N(x)}x∈X). Since the disks are unit disks, it follows that N(x) is the
intersection of Y with a unit disk centered at x. The set Y is indexed, and its points
are located along a line sufficiently close so that they are included in a unit disk.
Hence the collection of sets {N(x)}x∈X is simply the set of all intervals [i, j] ⊆ [1, n].
It follows that the arrangement A(S) is a chain, as claimed. For an illustration, see
Figure 6.2 (bottom).

6.2. CF-colorings of chains. In this subsection we show that the number of
colors both necessary and sufficient for CF-coloring a chain of n regions is Θ(log n).

Lemma 6.3. Every CF-coloring of a chain of n regions uses Ω(log n) colors.
Proof. Let Ia,b denote the set {[i, j] : a ≤ i ≤ j ≤ b}, namely, the set of all

subintervals of [a, b]. By definition, the dual range-space of a chain is isomorphic
to the range-space ([1, n], I1,n). Therefore, CF-coloring a chain is equivalent to CF-
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[3,6][1,10] [4,8]

[4,8]

[3,6]

[1,10]

Fig. 6.2. On the top is a chain of disks, where the disks are numbered 1, . . . , 10 from left to
right. The three cells that are marked correspond to the three respective intervals. On the bottom is
an illustration of the dual range-space. In the dual space there is a point for every disk in the primal
space, and a subset for every cell in the primal space. Since the cells in the primal space correspond
to intervals, the subsets in the dual space correspond to intervals [i, j] = {i, i+ 1, . . . , j} as well.

coloring [1, n] with respect to I1,n. We hence focus on the latter problem. Let f(n)
denote the minimum number of colors required for such a coloring.

Consider an optimal CF-coloring χn of [1, n] with respect to I1,n. Let i denote the
index that serves the interval [1, n]. It follows that for every index j �= i, χ(j) �= χ(i).
Since χ(i) is unique, it follows that every subinterval that contains i can be served
by i.

We partition I1,n into three sets as follows: (i) I1,(i−1), the set of all subintervals
of [1, i− 1]; (ii) I ′, the set of all subintervals of [1, n] that contain i; and (iii) I(i+1),n,
the set of all subintervals of [i + 1, n]. (Observe that if i = 1 (respectively, i = n),
then I1,(i−1) (respectively, I(i+1),n) is empty.)

Since i can serve only intervals in I ′, we are left with two range-spaces that are
the dual of (shorter) chains. Namely, the range-space ([1, (i − i)], I1,(i−1)) and the
range-space ([(i+ i), n], I(i+1),n).

Since χ(j) must differ from χ(i) for every j �= i, it follows that f(n) satisfies the
following recurrence equation:

f(n) ≥ 1 + max
i
{f(i− 1), f(n− i)}.

Therefore, f(n) = Ω(log n), and the lemma follows.
Lemma 6.4. Every indexed arrangement of n regions that satisfies the interval

property can be CF-colored with O(log n) colors.
It suffices to prove the above lemma for chains. (In terms of the dual range-

space, this simply means that we add constraints.) In fact, in section 3.1 we already
presented a proof of the above lemma in the special case of unit disks whose centers
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[5,14]
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Fig. 6.3. An illustration for Lemma 6.4. The 15 points in the figure are the points of the dual
range-space. Point number 8 is colored with the “highest color” (corresponding to the densest filling
in the illustration). Points 4 and 12 are colored with the next highest color, and points 2, 6, 10,
and 14 with the next. The remaining points (all odd-numbered points) are colored with the lowest
color. If we now consider, for example, the intervals (ranges in the dual space) [5, 14] and [2, 6],
then the first can be served by point number 8, and the latter by point number 4.

reside on a line. In section 6.1 we showed that a chain can be obtained from an
arrangement of unit disks whose centers are collinear. Hence, the lemma follows. We
provide an alternative proof of the above lemma that follows the spirit of the proof
of the lower bound stated in Lemma 6.3.

Proof. We use the same notation as in the proof of the previous lemma. Without
loss of generality the dual range-space is isomorphic to ([1, n], I1,n). (Adding ranges
does not make CF-coloring a set of points with respect to a set of ranges any easier.)
Hence, we focus on CF-coloring of such a dual range-space.

We show by induction that f(n) ≤ �log n� + 1 (see Figure 6.3). The induction
basis n = 1 is trivial. For n > 1, let i = �n/2� and color it with the color �log n�. The
index i serves all the subintervals of [1, n] that contain i. A subinterval of [1, n] that
does not contain i is either in I1,(i−1) or in I(i+1),n. The induction hypothesis implies
that the range-spaces ([1, (i−1)], I1,(i−1)) and ([(i+1), n], I(i+1),n) can each be colored
by 1 + �log(n/2)� = �log n� colors. Since the ground sets of these range-spaces are
disjoint, we may use the same set of colors for each. It follows that at most �log n�+1
colors are used, as required.

7. An approximation algorithm for rectangles. In this section we prove
Theorem 1.4 for the case of axis-parallel rectangles. For simplicity, most of the proof
deals with the special case of axis-parallel unit squares. In section 7.4 we point out
the modifications required for rectangles.

We begin with a high level description of the algorithm (for the special case of
axis-parallel unit squares). The algorithm starts by partitioning the plane into square
tiles of side-lengths 1/2. Given a set of S of unit squares, we say that a square
s ∈ S belongs to a tile if its center resides inside the tile. Hence the tiling induces a
partition of S. We first observe that squares that belong to sufficiently distant tiles
do not intersect. Therefore, as shown for the case of disks, we may assign each tile
a palette of colors so that the total number of palettes used is constant, and any
two different tiles whose squares may intersect are assigned different palettes. At this
point we could simply apply Theorem 1.5 to separately color the squares that belong
to each tile. This would give us a CF-coloring that uses O(log φ(S)) colors, where φ(S)
is the maximum number of centers of squares in S that are contained in a square tile
of side-lengths 1/2. However, the resulting coloring may be far from optimal (recall
that we are interested in a constant-ratio approximation algorithm). The reason is
that squares whose centers reside in different, but neighboring, tiles may interact with
each other in a manner that allows us to save in the number of colors used. For an
illustration, see Figure 7.1.

Instead of coloring all squares as suggested above, our algorithm selects only a
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Fig. 7.1. An example illustrating how, by taking into account intersections between squares that
belong to different tiles, we may significantly reduce the number of colors required in a CF-coloring.
Here there is a large number of squares that belong to the middle tile and constitute a chain. If we
color the squares of each tile separately, the number of colors used is logarithmic in the size of the
chain. However, there is a CF-coloring that uses only five colors: Simply color each of the thick
squares by a distinct color and use the fifth color for the remaining squares.

T

T’

Fig. 7.2. An illustration of the selection of squares that intersect an orphan tile T with an
edge. The tile T is the dashed square, the selected squares are marked in bold, and the remaining
unserved region T ′ is shaded.

subset of squares, which are “essential” for serving the area covered by the union of
the squares. Once this stage is over, we can “return” to each tile from which squares
were requested, and color the requested squares by applying Theorem 1.5. The notion
of essentialness is formalized later on in this section. It enables us to show that the
total number of colors used is indeed necessary, up to a constant. Clearly, every tile
that contains the center of at least one square can be completely served by any one
of the squares that belong to it. Thus the main issue is serving tiles that lack centers
of squares. We refer to such tiles as “orphan” tiles. In what follows we describe how
an orphan tile selects the squares that are used to serve it.

Consider an orphan tile T (for which the set of squares that intersect it is
nonempty). The squares that intersect it (and may hence serve parts of it) can
be partitioned into two types: those that intersect it with an edge and those that
intersect it with a corner. Each type can be further partitioned into four subtypes
according to the edge type (respectively, corner type) with which they intersect T .
We first observe that, within each subtype of squares that intersect T with an edge,
we can select a single square that can serve the entire area within T that is covered
by squares of this subtype. After selecting one square from each subtype, we are
essentially left with the problem of serving a rectangular region, denoted by T ′, that
is contained in T . For an illustration, see Figure 7.2.
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2

3

1

T’ T’

Fig. 7.3. On the left is a subset of squares that intersect the rectangular region T ′ with their
top-right corner. In order to cover the intersection of T ′ with their union it is necessary to select
all squares. On the right is the same set of squares, together with one more square, which intersects
T ′ with its bottom-left corner. Now only the 3 bold squares (labeled 1, 2, and 3) are necessary.

Suppose that we now separately consider each subset of squares that intersect T ′

with a common corner type (e.g., top-right). For each corner type, it suffices to focus
on the subset of squares that participate in the envelope of the squares that intersect
T ′. However, the envelopes of squares corresponding to different corner types may
intersect in T ′. Such intersections may help in reducing the number of squares needed
to cover the intersection of T ′ with the union of all squares. For an illustration, see
Figure 7.3.

In order to address the issue of “intersections” between envelopes of subsets of
squares corresponding to different corner types, we consider these subsets of squares
in pairs. Specifically, we first deal with “adjacent” pairs whose corresponding corners
have a common edge (e.g., top-right and top-left), and then with “opposite” pairs
(top-right with bottom-left, and bottom-right with top-left). For the first class of
adjacent pairs, we show that by selecting at most two squares per pair we can serve
the region of the intersection of each pair. For the second class of “opposite” pairs,
we describe a procedure that selects a subset of squares that is at most a constant
factor larger than necessary. Further details for these more involved steps are given
in subsections 7.2 and 7.3.

7.1. Preliminaries. Let R be a set of axis-parallel rectangles of side-length
at least 1. We denote a set of axis-parallel unit squares by S. For simplicity, we
assume that the rectangles (respectively, squares) in R (respectively, S) are arranged
in general position (i.e., no two corners of two distinct rectangles have the same x-
coordinate or y-coordinate). Let Γ = {�, �, �, �} denote the set of corner types. We
denote the top-right corner of a rectangle R by �(R). In general, for a corner γ ∈ Γ,
we denote the γ-corner of R by γ(R). The x-coordinate (y-coordinate) of a γ-corner
of a rectangle R is denoted by xγ(R) (yγ(R)). Let op : Γ→ Γ denote the permutation
that swaps opposite corners (i.e., op = (�, �)(�, �)). The center of a rectangle R is
the intersection point of its two main diagonals.

The tiling. We partition the plane into “half-open” square tiles having side-lengths
1/2, namely, Ti,j = [i/2, (i+1)/2)× [j/2, (j+1)/2). We say that a rectangle R belongs
to tile T if the center of R is in T . We denote the set of rectangles in R that belong to
tile T by R(T ). A tile T is an orphan if R(T ) = ∅. A tile is bare if no rectangle in R
intersects it. We say that two tiles are e-neighbors (respectively, v-neighbors) if they
share an edge (respectively, a corner). The v-neighbor of T that shares its γ-corner
with the op(γ) corner of T is denoted Tγ .

Tiles are half-open, and their side-length is defined to be half the minimum side-
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P2,4

P2,5

P1,4

P1,4

Q

5
6

4

3
2
1

[2,4]

7

0

Fig. 7.4. An illustration of a corner-chain consisting of six rectangles (the two dotted rectangles,
numbered 0 and 7, are only for the sake of the analysis in the proof of Claim 7.3). The cell
corresponding to the interval [2, 4] is filled, and its four defining corners are marked.

length of a rectangle so that (i) if a rectangle R belongs to a tile T , then rectangle R
covers the tile T ; and (ii) a tile can contain at most one corner of a rectangle.

In the case of a set S of unit squares, squares belonging to Tγ intersect T with
their γ-corner. Moreover, the corners of a unit square S ∈ S(T ) reside in v-neighbors
of T . Hence, a square S intersects only the tile it belongs to and the neighbors of that
tile.

Corner-chains. We next consider chains determined by rectangles having the
same corner in a common region. Let T be a fixed tile, and let Q ⊆ T denote a
rectangle. Let γ ∈ Γ denote a corner type. Let R(Q, γ) denote the set of rectangles
R ∈ R that satisfy γ(R) ∈ Q. The size of the tile T implies that every rectangle of
side length at least 1 has at most one corner in T . Define the Q-envelope of R(Q, γ)
to be the boundary of R(Q, γ) that is in Q (see Figure 7.4). The vertices of a Q-
envelope are either corners γ(R), for R ∈ R(Q, γ), or intersections of sides of two

rectangles. Let R̃(Q, γ) denote the subset of rectangles in R(Q, γ) that participate in
the Q-envelope of R(Q, γ).

The next claim shows that the corner γ determines whether the Q-envelope is
nonincreasing or nondecreasing.

Claim 7.1. Let Q be a rectangular region with side-lengths at most 1/2. If
γ ∈ {�, �}, then the Q-envelope of R(Q, γ) is nonincreasing, and if γ ∈ {�, �}, then
the Q-envelope of R(Q, γ) is nondecreasing.

Proof. We prove the claim for γ = �. An analogous argument holds for the other
cases. Let R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering of R̃(Q, γ) which satisfies
x�(R1) < x�(R2) < · · · < x�(Rm). We show that y�(R1) > y�(R2) > · · · > y�(Rm).

Assume, in contradiction, that for some pair of squares Rk, R� ∈ R̃(Q, γ), where
k < & (so that x�(Rk) < x�(R�)), we have that y�(Rk) < y�(R�). In such a case we
would have that (x�(Rk), y�(Rk)) ∈ R�, contradicting the fact that Rk belongs to the

envelope R̃(Q, γ).

The next definition will be useful in all that follows.

Definition 7.2. Let Q be a region, and let S be an indexed set of regions. Let SQ
denote the set of regions {Q ∩ S}S∈S . Assume that each region Q ∩ S ∈ SQ inherits
the index of S. We say that S is a chain with respect to Q if the arrangement A(SQ)
is a chain.

Claim 7.3. Let Q be a rectangular region with side-lengths at most 1/2. Index the
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rectangles of R̃(Q, γ) according to the x-coordinate of their γ-corner. Then R̃(Q, γ)
is a chain with respect to Q.

Claim 7.3 justifies referring to R̃(Q, γ) as a corner-chain.

Proof. We prove the claim for γ = �. The other three cases can be reduced to
this case by “turning the picture.” Let R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering

of R̃(Q, γ) according to the x coordinates of their �-corner. Let R0 and Rm+1 be
two “fictitious” rectangles, where the right side of R0 coincides with the left side
of Q, and the top side of Rm+1 coincides with the bottom side of Q. Let Pi,j , for
0 ≤ i ≤ j ≤ m + 1, denote the intersection of the right side of Ri and the top side
of Rj . Note that for every 1 ≤ i ≤ m, Pi,i = �(Ri), Pi,m+1 is the intersection of
Ri with the bottom side of Q, and P0,i is the intersection of Ri with the left side
of Q. By Claim 7.1, it follows that Pi,j is well defined and that Pi,j ∈ Q for every

1 ≤ i ≤ j ≤ m + 1. The arrangement of R̃(Q, γ) in Q is a set of rectangular-
shaped cells, the corners of which are the set of points {Pi,j}. Specifically, for every
1 ≤ i ≤ j ≤ m, the cell v for which N(v) = [i, j] is the rectangle whose corners are
Pi−1,j+1, Pi−1,j , Pi,j , and Pi,j+1.

Disjoint palettes. In the case of unit squares we assign a palette (i.e., a subset of
colors) to each tile, using in total nine disjoint palettes. Palette distribution is such
that neighboring tiles are assigned different palettes (i.e., we periodically assign nine
different palettes to blocks of 3 × 3 tiles). The tile size implies that if two squares
belong to different tiles that are assigned the same palette, then the squares have an
empty intersection.

7.2. Main lemmas. In this section we lay the ground for our algorithm and
its analysis by presenting our main lemmas. For simplicity we focus on a collection
S of unit squares. In subsection 7.4 we discuss how to perform the extension to
general rectangles. Specifically, in this section we provide our main lemmas concerning
interactions between corner-chains of opposite corners and corner-chains of adjacent
corners.

7.2.1. Corner-chains of adjacent corners. Consider a rectangle Q with side-
lengths at most 1/2. Let S̃� = S̃(Q, �) and S̃� = S̃(Q, �) denote corner-chains cor-
responding to adjacent corners � and �. (The other three cases of pairs of adjacent
corners can be reduced to this case by “turning the picture.”) We show that, by pick-
ing at most one square from each corner-chain, it is possible to “separate” between
the chains. That is (as formalized in the next lemma), after picking one square from
each chain, the squares having smaller indexes than those picked form a chain with
respect to the remaining region.

Let {Si}mi=1 (respectively, {S′
i}m

′
i=1) denote the ordering of the squares in S̃� (re-

spectively, S̃�) in increasing (respectively, decreasing) order of the x-coordinate of

their centers (or corners in Q). By Claim 7.3, both indexed sets S̃� and S̃� are chains
with respect to Q.

Lemma 7.4. There exist two squares, Sk ∈ S̃� and S′
� ∈ S̃�, such that

1. the prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
�−1} are disjoint; namely, for every

Sk′ and S′
�′ such that k

′ < k and &′ < &, we have Sk′ ∩ S′
�′ = ∅;

2. each of the prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
�−1} is a chain with respect

to Q \ (Sk ∪ S′
�);

3. the union of Sk and S
′
� covers every point in Q that is covered by a square in

one of the suffixes; namely, (
⋃m

t=k+1(St ∩Q))
⋃

(
⋃m′

t=�+1(S′
t ∩Q)) ⊆ Sk ∪ S′

�.
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Q

P

Sk S′
�

Fig. 7.5. An illustration for Lemma 7.4. The region Q is depicted by a dashed rectangle. Only
the corners of squares in the corner-chains are depicted. The two filled squares are the selected
squares Sk and S′

�.

The implication of this lemma is that it is possible to select two squares Sk and

S′
� to serve all cells that are contained in the union (

⋃m
t=k(St ∩Q)) ∪ (

⋃m′

t=�(S
′
t ∩Q)).

Furthermore, each of the prefixes is a chain with respect to the remaining region.

Proof. Consider the Q-envelopes of the two corner-chains. Both envelopes are
“stairs” curves. By Claim 7.1, the Q-envelope of S̃� (S̃�) is nonincreasing (nonde-
creasing). Hence the Q-envelopes intersect at most once. If they do not intersect,
then the claim is trivial (pick the last square from each chain). Otherwise, let P
denote the intersection point. Let the selected squares Sk and S′

� be the squares that
intersect in point P . We assume that P is along the horizontal upper side of S′

� (i.e.,
Py = y�(S′

�)) and along the vertical right side of Sk (i.e., Px = x�(Sk)). (The reverse
case is reduced to this case by “flipping the picture.”)

Part 1 of the lemma follows by showing that the vertical line passing through
P separates the prefixes. Namely, if A ∈ Sk′ , k′ < k, then Ax < Px (i.e., the x-
coordinate of point A is less than the x-coordinate of point P ). Similarly, if B ∈ S′

�′ ,

&′ < &, then Bx > Px. Consider first any square Sk′ ∈ S̃�, where k′ < k. By our
assumption that P is along the vertical right side of Sk, we have that Px = x�(Sk). By

the ordering of the squares in S̃�, we have that x�(Sk′) < x�(Sk), and hence for every
A ∈ Sk′ , Ax ≤ x�(Sk′) < x�(Sk). It directly follows that Ax < Px. Next consider

a square S′
�′ ∈ S̃�, where &′ < &. By our assumption that P is along the horizontal

upper side of S′
�, and by the ordering of the squares in S̃�, necessarily x�(S′

�′) > Px.
But, for every point B ∈ S′

�′ , Bx ≥ x�(S′
�′), and so Bx > Px.

To prove part 2 of the lemma it suffices to show that (i) (Sk′ \ Sk) ∩ S′
� = ∅ if

k′ < k, and (ii) (S′
�′ \ S′

�) ∩ Sk = ∅ if &′ < &. This is sufficient since S̃� (respectively,

S̃�) is a chain with respect to Q. Hence, every cell corresponding to an interval

[i, j] ⊆ [1, k−1] (respectively, [i, j] ⊆ [1, &−1]) of S̃� (respectively, S̃�) in Q is disjoint
from Sk ∪ S′

�, and the full interval property is preserved. For example, consider the
two squares in Figure 7.5 that belong to the �-chain and are above S′

�. If we denote
them by S1 and S2, then we see that the regions S1 \ S′

� and S2 \ S′
� are both disjoint

from Sk and that {S1, S2} form a chain with respect to Q \ (Sk ∩ S′
�).

In order to verify (i), consider a square Sk′ for k′ < k. To show that (Sk′ \Sk) ∩
S′
� = ∅, consider a point A ∈ (Sk′ \Sk). The ordering of S̃� implies that Ay > y�(Sk),

and by the definition of P , y�(Sk) ≥ Py. Since Py = y�(S′
�), we get that A is above

S′
� and, in particular, A /∈ S′

� as claimed in (i). Item (ii) is proved analogously, and
part 2 of the lemma follows.

It remains to prove part 3 of the lemma. Consider a point A ∈ Sk′ ∩ Q, for
k′ > k. There are two possibilities. (i) Ax ≤ Px: In this case, Ay ≤ y�(Sk′) ≤ y�(Sk).
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i

i− 1

j

j + 1
B

SB

Fig. 7.6. The construction in the proof of Lemma 7.6.

Since Px = x�(Sk), we get that A ∈ Sk. (ii) Ax > Px: If Ay ≥ Py, then �(Sk′)
is above and to the right of P , and hence P ∈ Sk′ , a contradiction. It follows that
Ay < Py = y�(S′

�). Since Px ≥ x�(S′
�), we get that A ∈ S′

�. Therefore, the suffix of

S̃� is covered by Sk ∪ S′
�. The proof for the suffix of S̃� is analogous, and part 3 of

the lemma follows.

7.2.2. Corner-chains of opposite corners. Consider a rectangle Q with side
lengths at most 1/2. Let S̃� = S̃(Q, �) and S̃� = S̃(Q, �) denote corner-chains cor-
responding to opposite corners � and �. (The case of the �-corner and �-corner is
reduced to this case by “flipping or rotating the picture.”) Let Q� = Q∩⋃S∈S̃� S and
Q� = Q∩⋃S∈S̃� S. Our goal is to select an approximately minimum subset from each
corner-chain so as to cover Q� ∪Q�. To this end, we find minimal covers of Q� \Q�,
Q� \Q�, and Q� ∩Q�.

Definition 7.5. A subset S̃m� ⊆ S̃� is a minimal cover of Q�\Q� if (i) S̃m� covers

Q� \Q�, and (ii) no proper subset of S̃m� covers Q� \Q�.
The following lemma shows that minimal covers of (Q� \ Q�) are chains with

respect to (Q� \Q�).

Lemma 7.6. If S̃m� ⊆ S̃� is a minimal cover of Q� \Q�, and the squares in S̃m�
are indexed according to the x-coordinate of their �-corners, then S̃m� is a chain with
respect to Q� \Q�.

Proof. Let S̃m� = {S′
1, . . . , S

′
k}. Since S̃� is a chain with respect to Q, it follows

that S̃m� is also a chain with respect to Q�. For simplicity, add “dummy” squares S′
0

and S′
k+1 to S̃m� , where �(S′

0) = �(Q) and �(S′
k+1) = �(Q). Note that these dummy

squares do not assist in covering Q� \Q�. For the sake of contradiction, assume that

S̃m� is not a chain with respect to Q� \Q�. Since S̃m� is not a chain, it is not empty.
Consider an interval [i, j], for 0 < i ≤ j < k + 1, such that the corresponding cell in

A(S̃m� ) is contained in Q�. (See Figure 7.6 for an illustration of this case.) Consider
the corner B of the cell [i, j] in Q defined by the intersection of the sides of S′

i−1 and

S′
j+1 in Q. Since the cell [i, j] is in Q�, so is the point B. Let SB ∈ S̃� denote a

square that contains B. It follows that the whole cell [i, j] as well as �(S′
i−1), �(S′

i),
�(S′

j), and �(S′
j+1) are in SB . It is easy to see that we may omit both S′

i and S′
j from

S̃m� while still covering Q� \Q�, contradicting the assumption that S̃m� is a minimal



CONFLICT-FREE COLORING OF SIMPLE GEOMETRIC REGIONS 121

1
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6
7

(A) (B)

Fig. 7.7. A minimal cover of the union of opposite corner-chains. (A) The rectangle Q is
depicted by a dashed rectangle. The union of the “upper” corner-chain Q� is shaded (so that Q� \Q�
is the unshaded region within Q). A minimal cover S̃m� ⊆ S̃� is depicted by thick �-corners. (B) An
explanation of how S̃m� is greedily computed. Here only the boundary of Q� is depicted. Cells [1, 1],
[2, 4], and [5, 7] are shaded. Since cell [1, 1] is not completely covered by Q�, we add square 1 to the
cover. Cells [2, 2] and [2, 3] are covered by Q�, but cell [2, 4] is not; therefore, square 4 is added to
the cover. Now cells [5, 5] and [5, 6] are covered by Q�, but cell [5, 7] is not; therefore, square 7 is
added to the minimal cover.

cover.
An algorithm for finding a minimal cover. We now describe a greedy algorithm

for finding a subset S̃m� ⊆ S̃� that is a minimal cover of Q� \ Q�. Let S1, . . . , Sm be

an ordering of the squares in S̃� according to the increasing value of x�(Si). Recall

that S̃� is a chain with respect to Q, and therefore every subset of S̃� is a chain with
respect to Q. For any two indexes 1 ≤ a ≤ b ≤ m, let S̃�[a, b] denote the cell v in the

arrangement A(S̃�) such that N(v) = {Sa, . . . , Sb}.
The greedy algorithm works in an iterative fashion. Let k be the index of the

square selected in the last iteration (where initially k = 0 and S̃m� = ∅). Consider

all cells S̃�[k + 1, &], where (k + 1) ≤ & ≤ m, such that S̃�[k + 1, &] ∩ Q is not fully
contained in Q�. If there is no such cell, then the algorithm terminates. Otherwise,
let & be the minimum index such that S̃�[k + 1, &] is not fully contained in Q�, and

add S� to S̃m� . For an example, see Figure 7.7(B).

Claim 7.7. The greedy algorithm computes a minimal cover S̃m� ⊆ S̃� of Q�\Q�.
By “rotating the picture,” we can obtain an analogous claim concerning a minimal

cover S̃m� ⊆ S̃� of Q� \Q�.

Proof. Let k1 < k2 < · · · < kr denote the sequence of squares added to S̃m� by

the greedy algorithm. We show that the algorithm computes a cover S̃m� of Q� \Q�,
by showing that the following invariant holds throughout the algorithm:

(Q� \Q�) ∩
kt⋃
i=1

Si ⊆
t⋃

j=1

Skj .

The invariant holds trivially when the algorithms starts (as kt = 0). Assume, for the

sake of contradiction, that a cell S̃�[i, j] (for i ≤ j < kt) in Q� \ Q� is not covered
by
⋃

j≤t Skj . If i ≤ kt−1, then there are two cases: (i) j ≤ kt−1, in which case the

induction hypothesis already implies that cell S̃�[i, j] is contained in
⋃

j<t Skj , and

(ii) j > kt−1, in which case cell S̃�[i, j] is contained in Skt−1 . Both cases lead to a

contradiction, so we assume that i > kt−1. It can be verified that if the cell S̃�[i, j]
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kt−1

kt−1 + 1

[kt−1 + 1, j]

j

i

[i, j]

Fig. 7.8. An illustration for the case i > kt−1 in the proof of Claim 7.7.

D’

D

P

U’

U

Fig. 7.9. An illustration for Lemma 7.8. The point P ∈ Q� ∩ Q� is in D ∩ U , where neither
D ∈ S̃m� nor U ∈ S̃m� . Here D′ ∈ S̃m� (the square that covers the cell that contains the point slightly
to the left of �(U)) is such that y�(D′) > Py. Finally, U ′ = B�(D′), that is, it is the last square

from S̃� that intersects D′.

is in Q� \Q�, then the cell S̃�[kt−1 + 1, j] is also in Q� \Q�, but in such a case, the
greedy algorithm would have chosen Skt

such that kt−1 + 1 ≤ kt ≤ j, a contradiction.
For an illustration of this case, see Figure 7.8.

The stopping condition of the algorithm, combined with the invariant, guarantees
that, when the algorithm terminates, S̃m� covers Q� \Q�.

Minimality of S̃m� is proved as follows. Consider a square Sj ∈ S̃m� . When Sj was

added to S̃m� , it was added due to a cell [i, j], with i greater than the index of the

square added to S̃m� just before Sj . The cell [i, j] is covered only by Sj (among the

squares in S̃m� ), and hence minimality follows.

Let m� = |S̃m� |, and let m� = |S̃m� |. Let m = max{m�,m�}. In the next lemma

we show that it is possible to cover Q� ∪Q� by O(m) squares from S̃� ∪ S̃�.

Lemma 7.8. There exists a subset S ′ ⊆ S̃� ∪ S̃� of O(m) squares that covers
Q� ∪Q�.

Proof. Since S̃m� (respectively, S̃m� ) covers Q� \ Q� (respectively, Q� \ Q�) and

|S̃m� ∪ S̃m� | ≤ 2m, the remaining problem is to cover Q� ∩ Q� using O(m) squares.

For every square S ∈ S̃m� consider the set S̃�(S) of squares in S̃� that intersect
S. Define A�(S) (respectively, B�(S)) to be the first (respectively, last) square in

S̃�(S) when sorted according to the y-coordinates of their �-corners. We claim that⋃
S∈S̃m

�
(A�(S)∪B�(S)) covers (Q�∩Q�)\ (S̃m� ∪S̃m� ). Hence, we need to add at most

two squares from S̃� per square in S̃m� to cover (Q� ∩Q�) \ (S̃m� ∪ S̃m� ).

Consider a point P ∈ Q� ∩ Q�. Let D ∈ S̃� (respectively, U ∈ S̃�) denote a

square that contains P . If D ∈ S̃m� or U ∈ S̃m� , then we are done. Otherwise,

consider the cell in A(S̃�) that contains a point slightly to the left of �(U). This

cell is in Q� \ Q�, and therefore there exists a square D′ ∈ S̃m� that covers this
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cell. If P ∈ D′, we are done. Otherwise, we consider two cases: y�(D′) ≥ Py and
y�(D′) < Py. In the first case consider the square U ′ = B�(D′). Such a square exists
since U intersects D′. We can now bound the coordinates of �(U ′) to show that
P ∈ U ′ as follows: (i) x�(U ′) ≤ x�(D′) < Px (the first inequality holds because U ′

and D′ intersect, and the second inequality holds because y�(D′) ≥ Py while P /∈ D′);
(ii) y�(U ′) ≤ y�(U) ≤ Py (the first inequality holds because U ′ = B�(D′), and the
second by the premise of this case). Thus P ∈ U ′. For an illustration of this case, see
Figure 7.9. The second case in which y�(D′) < Py is treated analogously, where here
we let U ′ = A�(D′). The claim follows.

Remark 1. Lemmas 7.6 and 7.8 and Claim 7.7 regarding opposite corner-chains
were stated with respect to a rectangle Q that is contained in a tile. The same lemmas
and claim hold with respect to a region Q ⊆ T that satisfies the following properties.

The region Q contains two designated points C� and C�. (When Q is a rectangle,
then C� is the bottom-left corner and C� is the top-right corner.) The point C� is

contained in every square in S̃�, and the point C� is contained in every square in S̃�.
Moreover, if a square S ∈ S̃� (respectively, S ∈ S̃�) contains the point C� (respectively,
C�), then Q� \Q� = ∅ (respectively, Q� \Q� = ∅).

As we discuss in more detail shortly, if Lemma 7.4 is applied to separate corner-
chains of adjacent corners, then the remaining uncovered region in a tile is a region
that satisfies the above condition. Hence, after separating corner-chains of adjacent
corners, we may apply Claim 7.7 and Lemma 7.8 for the covering of the remaining
region in the tile.

Remark 2. After the separation of adjacent corner-chains in a tile, it is not
possible for both pairs of opposite corner-chains to intersect. Namely, at most one
pair of opposite corner-chains may intersect. We do not rely on this property, the
proof of which is easy.

7.3. Coloring arrangements of squares. In this section we prove Theo-
rem 1.4 for unit squares. The goal of the algorithm is to pick an “essential” subset
of squares per tile whose union must be served. The coloring of the essential squares
per tile is done according to Theorem 1.5. Recall that a tile is an orphan tile if it
does not contain a center of a square. As noted at the start of this section, the main
thrust of the algorithm and its analysis is in serving the covered regions in orphan
tiles (i.e., the union of the squares minus the union of nonorphan tiles). The task
of selecting a subset of squares that serves the covered parts of orphan tiles is “done
independently” by the orphan tiles. The set of essential squares per nonorphan tile
is the set of squares that belong to the tile and have been selected by one of the
neighboring orphan tiles.

7.3.1. Selection of squares by nonbare orphan tiles. Consider a nonbare
orphan tile T . In this section we describe how squares from neighboring tiles are
selected by T so that these squares serve the area that is the intersection of T with
their union.

Selection of squares consists of three steps: (1) selection of at most one square
from each e-neighbor—this step maximizes service from e-neighbors; (2) selection of
at most two squares from each v-neighbor—this step resolves all interactions between
chains of squares corresponding to adjacent corners; (3) final selection of squares
from the remaining chains corresponding to corners—this step takes into account
interactions between chains corresponding to opposite corners.

Selecting squares from e-neighbors. Consider the tile T and the set of squares that
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belong to an e-neighbor T e of T . For brevity, assume that T e is to the left of T and
that S(T e) �= ∅. Every square S ∈ S(T e) covers a vertical strip of T . If we select the
rightmost square S in S(T e), then we get that for every S′ ∈ S(T e), S′ ∩ T ⊆ S ∩ T .
In the same fashion, we select the closest square to T from each e-neighbor of T . By
selecting at most one square from each e-neighbor of T , the first substep covers all
the points in T ∩⋃T e∈e-neighbors(T ) S(T e).

After this step, the region within the tile T that still needs to be served is a
rectangle. Let us denote this rectangle by T ′. Note that the union of squares in S
may either fully cover or partly cover the rectangle T ′. In any case, only squares that
belong to v-neighbors of T intersect T ′. An illustration of this step was provided in
Figure 7.2.

Selecting squares from v-neighbors: Adjacent corners. Consider the rectangle
T ′ ⊆ T and a corner γ. The squares of S(T ′, γ) that participate in the T ′-envelope

are denoted by S̃(T ′, γ). By Claim 7.3, S̃(T ′, γ) is a chain with respect to T ′ when
indexed according to the x-coordinate of its centers (or γ-corners). By applying
Lemma 7.4 to the four appropriate pairs of chains corresponding to adjacent corners,
we obtain at most eight squares that serve as “separators” between the pairs of chains.
The selected squares cover all points in T ′ that are covered by squares in the tails of
the chains. Each corner-chain is reduced to a consecutive block of squares between
the two selected squares in that chain. The remaining portions of adjacent corner-
chains are disjoint. Let T ′′ denote the subregion consisting of T ′ minus the union of
the (at most eight) selected squares. By our notational convention, S̃(T ′′, γ) denotes
the subset of squares in S(T ′′, γ) that participate in the T ′′ envelope. Note that, by

Lemma 7.4, S̃(T ′′, γ) is a chain with respect to T ′′.
Selecting squares from v-neighbors: Opposite corners. In the third step we apply

Claim 7.7 and Lemma 7.8 to each pair of subsets S̃(T ′′, γ) and S̃(T ′′, op(γ)). This

application determines the subsets of S̃(T ′′, γ) (and S̃(T ′′, op(γ))) that suffice to serve
the intersection of T ′′ with the union of each pair of chains. Note that, due to the
separation of adjacent corner-chains (see Lemma 7.4), at most one pair of opposite
corner-chains may intersect.

A subtle issue to be addressed is whether the remaining region T ′′ ⊆ T ′ ⊆ T in
the beginning of this step satisfies the premises of Remark 1 for each pair of opposite
corner-chains. Consider, for example, the subset S̃(T ′′, �). This subset is a consecutive

block of squares from S̃(T ′, �). Let Sf� and S�� denote the squares in S̃(T ′, �)\S̃(T ′′, �)

that “hug” this block (i.e., Sf� and S�� were selected in the adjacent corner-chain stage).

The designated point C� ∈ T ′′ is the intersection of the right side of Sf� and the top
side of S��. One can define in this fashion all four designated points Cγ for γ ∈ Γ. We

can now apply Lemma 7.8 to each pair of subsets S̃(T ′′, γ) and S̃(T ′′, op(γ)), where
the corresponding designated points that satisfy the premise of Remark 1 are Cop(γ)

and Cγ . For an illustration, see Figure 7.10.

7.3.2. Coloring the essential squares. In the previous steps, each orphan
tile To selected a subset of squares used to serve the points in To ∩

⋃S. Given a
nonorphan tile T , let sel(T ) ⊆ S(T ) denote the subset of squares whose centers reside
in T that are selected by some tile in order to participate in its cover. If no square
in S(T ) is requested from orphan tiles, then we select an arbitrary square in S(T ) to
serve T , and let sel(T ) contain only this square. At this stage we apply Theorem 1.5
and color each subset sel(T ) by O(log |sel(T )|) colors; these colors are taken from the
palette assigned to the tile T .
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Fig. 7.10. An illustration for the choice of points Cγ and Cop(γ) that satisfy the premise of
Remark 1. The selected squares, which determine the two points, are labeled and marked in bold.
The dashed bold corners of squares correspond to the four other selected squares that belong to the
adjacent chains S̃(T ′, �) and S̃(T ′, �). The thin dashed rectangle is T ′, and T ′′ is the region obtained
by removing the four bold and four dashed-bold squares from T ′.

Recall that at most one square from S(T ) was requested from each of its four
e-neighbors. Each of its four v-neighbors initially requested at most two squares (as
“separators” between chains). These requests amount to at most twelve squares. The
main contribution to sel(T ) is due to the subsets of squares that were requested by
v-neighbors of T in the last selection step, that is, in the step that deals with opposite
corner-chains.

For each corner type γ, let selγ(T ) denote the subset of squares in sel(T ) that
were selected by Top(γ) in the opposite-corners selection step. The γ-corners of squares
in selγ(T ) are contained in the tile Top(γ). Let mγ(T ) = |selγ(T )|. Since |sel(T )| =
O(maxγ∈Γ {mγ(T )}), and since there are nine palettes, the next corollary follows.

Corollary 7.9. For any given set of unit squares S, it is possible to CF-color
S using O (log (maxT,γ {mγ(T )})) colors.

7.3.3. A lower bound for optimal CF-coloring. In this section we lower-
bound the number of colors required by an optimal CF-coloring. Recall that, for a
tile T and corner γ ∈ Γ, the set of squares that intersect T with corner type γ is
denoted by S(T, γ). Recall that S̃(T, γ) denotes the subset of squares from S(T, γ)
that appear in the T -envelope.

Let T be any (orphan) tile, and let γ be a corner. The following lemma states a

lower bound on χopt(S) in terms of the size of a subset S ′ ⊆ S̃(T, γ) that is a chain
with respect to the region Q = T \ {S : S /∈ S(T, γ)}. That is, the region Q is what
remains of T after we remove all squares that intersect T with the exception of squares
in S(T, γ).

Lemma 7.10. Let T denote a tile, γ a corner type, and let Q = T \ {S :

S /∈ S(T, γ)}. Let S ′ ⊆ S̃(T, γ) be a chain with respect to Q. Then every CF-coloring
of A(S) requires Ω(log |S ′|) colors.

The proof of Lemma 7.10 follows the same outline as the proof of Lemma 6.3.
In fact, the same lower bound holds also for CF-multicoloring, implying Theorem 9.2
(see section 9). The only difference is that here we need to take into account that
squares from S(T, γ) \ S ′ may cover points in Q and hence can potentially serve cells



126 G. EVEN, Z. LOTKER, D. RON, AND S. SMORODINSKY

1

2

4

5

7

6

1,7

3

1

2

4

5

7

6

1,7

3

S S
v v

P

P’

P

QQ
����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

Fig. 7.11. Illustration for the proof of Lemma 7.10. The squares of S′ are labeled from 1 to 7.
The region Q is the nonshaded region within the dashed rectangle. The point P is the top-right

corner of v1,7 (which here equals v
Q
1,7). On the left is an illustration of the case in which P is served

(in an optimal CF coloring) by a square S such that S ∩Q ⊆ S3 ∩Q. The point P ′ in this case is
the top-right corner in a cell of the chain determined by S4, . . . , S7. On the right is an illustration
of the case in which P is served by a square S whose top-right corner does not reside in any square
of S′.

in the chain S ′. For an illustration of the proof of the lemma, see Figure 7.11.

Proof. We consider the case γ = �. All other cases are proved analogously. Let
S1, . . . , Sm be an ordering of the squares in S ′ so that x�(S1) < · · · < x�(Sm). For
every 1 ≤ i ≤ j ≤ m, let vi,j denote the cell in the arrangement A(S ′) for which
N(vi,j) = {Si, . . . , Sj}. (Recall that for a cell v, N(v) denotes the subset of regions

that contain v.) Let vQi,j = vi,j ∩ Q, where we know that vQi,j is nonempty for every
1 ≤ i ≤ j ≤ m because S ′ is a chain with respect to Q. Since we are dealing
with squares (or, more generally, rectangles), we know that each vi,j is a rectangle.

However, it may be the case that vQi,j is not a rectangle. The exact structure of vQi,j
is actually immaterial to the proof. What will be needed is the following subclaim
(where we assume that m > 3 or else Lemma 7.10 holds trivially).

Subclaim. For every 1 ≤ i, j ≤ m such that i ≤ j − 2, the top-right corner of vi,j
is contained also in vQi,j .

Proof of subclaim. Assume that the subclaim does not hold. This means that
there exists some square S′ /∈ S(T, �) that contains the top-right corner of vi,j . But
in such a case either S′ ⊇ vi+1,j or S′ ⊇ vi+1,j−1 or S′ ⊇ vi,j−1, contradicting the
premise of the lemma that S ′ is a chain with respect to Q. The subclaim is thus
established. For an illustration, see Figure 7.12.

Now consider an optimal CF-coloring χopt of S. Let P be the top-right corner of

v1,m. By the above subclaim (assuming m > 3), P ∈ vQ1,m. Since P ∈ Q, only squares
in S(T, �) contain P . Let S ∈ S(T, �) be a square that serves P in the coloring χopt.
We first consider the case that �(S), the top-right corner of S, is contained in some
Sk ∈ S ′ (in particular, Sk may equal S). In this case, S ∩Q ⊆ Sk ∩Q.

We make two observations. The first is that both {S1, . . . , Sk−1} and {Sk+1, . . . ,
Sm} are chains with respect to Q \ S. This is true since {S1, . . . , Sm} is a chain
with respect to Q, (hence both subsets must be chains with respect to Q \ Sk), and
Q ∩ S ⊆ Q ∩ Sk. Thus, S cannot fully serve any of the cells in these two subchains.
The second observation is that every square S′ ∈ S(T, �) that serves the top-right
corner P ′ of a cell in one of these chains (that corresponds to an interval of size at
least 3) must also contain P . This is true because every top-right corner of such a
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Fig. 7.12. An illustration for the proof of the subclaim in the proof of Lemma 7.10: (i) i = 2,
j = 7, and S′ covers v3,7; (ii) i = 3, j = 5, and S′′ covers v4,4; and (iii) i = 1, j = 4, and S′′′
covers v1,3.

cell dominates P (i.e., the x and y coordinates of such corners are not smaller than
Px and Py, respectively). Since S serves P , it follows that the color of every square
that contains P must be different from χopt(S).

If �(S), the top-right corner of S, is not contained in any Sk ∈ S ′ = {S1, . . . , Sm},
then define k as follows: k = max{i : x�(Si) < x�(S)}. Since S ′ is a chain with respect
to Q, it follows that {S1, . . . , Sk} and {Sk+1, . . . , Sm} are chains with respect to Q\S.
Furthermore, similarly to what was shown above, for any square S′ ∈ S(T, �) that
can serve the top-right corner of a cell in one of these chains (that corresponds to an
interval of size at least 3) χopt(S

′) �= χopt(S). In either case we get the recurrence
relation

|χopt({S1, . . . , Sm})|
≥ 1 + min

1≤k≤m
{max {|χopt({S1, . . . , Sk−1}) |, |χopt({Sk+1, . . . , Sm})|}},

where for any subset S ′′ of less than three squares, |χopt(S ′′)| ≥ 1. Hence |χopt(S)| =
Ω(log |S ′|), and the lemma follows.

For any nonorphan tile T and corner γ, let selγ(T ) and mγ(T ) (= |selγ(T )|) be as
defined preceding Corollary 7.9. Using Lemma 7.10, we establish the following lower
bound.

Lemma 7.11. For any given set of unit squares S, we have that |χopt(S)| =
Ω (log (maxT,γ {mγ(T )})).

Proof. Consider a tile T and a corner type γ such that mγ(T ) is maximal. Let
W denote the tile Top(γ), which selected the squares in selγ(T ). Let Q denote the
region remaining in W when the γ-corner chain and op(γ)-corner chain are considered
in W . Assume, without loss of generality, that γ = �. The set sel�(T ) consists of

two kinds of squares: (i) squares that belong to the a minimal cover S̃m� of Q� \ Q�
(these squares are selected by the greedy algorithm) and (ii) pairs of squares that
were selected according to the procedure defined in Lemma 7.8. Let m′ denote the
number of squares of the first kind, and let m′′ denote the number of squares of the
second kind.

We consider first the case that m′ ≥ m′′. The separation procedure of adjacent
corner-chains combined with Lemma 7.6 implies that S̃m� is a chain with respect to
W \ {S : S /∈ S(W, �)}. By Lemma 7.10 we get that the number of required colors is
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Ω(logm′) = Ω(m�(T )).

We next consider the case that m′′ > m′. Let V denote the tile W�. The squares
in sel�(V ) were also selected by the tile W . The number of squares in sel�(V ) that

belong to a minimal cover S̃m� of Q� \ Q� is at least m′′/2. By applying the same
argument now on the tile V and the �-corner, the lemma follows.

7.3.4. Wrapping up the proof of Theorem 1.4 for unit squares. Combin-
ing Corollary 7.9 and Lemma 7.11, and noting that the computational complexity of
the algorithm is due only to sorting squares according their coordinates, Theorem 1.4
for unit squares directly follows.

7.4. General rectangles. Consider a collection R of rectangles with size-ratio
ρ. Our goal is to prove the existence of an efficient algorithm for CF-coloring R that
uses O((log ρ)2) · |χopt(R)| colors. This means that if the size-ratio ρ is constant, then
the algorithm is a constant-ratio approximation algorithm.

By separately scaling the x-axis and the y-axis, we may assume that the minimum
width and height of rectangles in R are equal to 1. Hence, all side-lengths are in the
range [1, ρ].

The algorithm proceeds in two steps (as in the proof of Theorem 1.2). First,
consider the case of ρ ≤ 2. For this case we show that O(|χopt(R)|) colors suffice. For
the more general case of ρ > 2, we partition the set of rectangles into log2 ρ classes.
For 1 ≤ i, j < log ρ + 1, the class Ri,j consists of rectangles whose width is in the
interval [2i−1, 2i) and whose height is in the interval [2j−1, 2j). Each class is colored
using a distinct palette, to obtain a CF-coloring that uses O((log ρ+ 1)2) · |χopt(R)|
colors, as required.

7.4.1. Rectangles with ρ ≤ 2. We outline the algorithm for the case ρ ≤ 2
below.

1. The tiling is the same as in the case of unit squares. The tiles are assigned
25 different palettes (instead of nine).

2. An orphan tile may now be completely covered by a rectangle. An orphan
tile that is completely covered by a rectangle selects such a rectangle (this
type of selection does not exist in the case of unit squares).

3. Instead of selecting closest rectangles from e-neighbors, every nonbare orphan
tile that is not completely covered by a single rectangle selects the rightmost
rectangle (if any) whose right edge intersects both the bottom and top side
of the tile. The same selection takes place in the other three axis-parallel
directions. In this stage an orphan cell selects at most four rectangles.

4. A nonbare orphan tile that still contains a region covered by R but not by
the rectangles selected so far selects rectangles from the corner-chains as in
the algorithm for unit squares. The reason that the same techniques apply is
that the intersection of a rectangle with a tile contains at most one corner.

5. The essential (selected) rectangles from each tile are colored as described in
the following paragraph.

Coloring the essential rectangles. Given a nonorphan tile T , let sel(T ) denote the
set of rectangles that belong to T and were selected in the previous stages. For a corner
type γ and a nonbare orphan tile W , let R′(W,γ) be the subset of rectangles selected
by W whose γ-corner resides in W . Finally, let m = maxW,γ{|R′(W,γ)|} denote the
maximum (over all tiles W and corner types γ) of the number of rectangles selected
by an orphan tile W due to their participation in a γ-corner-chain within the tile.



CONFLICT-FREE COLORING OF SIMPLE GEOMETRIC REGIONS 129

H� H�

H�

H❂

H�

H�

T H❁

H�

Fig. 7.13. An illustration for the proof of Lemma 7.12. The thickest rectangles belong to all four
chains. The second-thickest rectangles belong to the top-left and top-right chains, and the thinnest
rectangles belong only to the top-right chain.

In this section we show that for every nonorphan tile T , (i) |sel(T )| ≤ O(m), and
(ii) sel(T ) can be CF-colored using O(log |sel(T )|) colors.

We begin by counting the number of rectangles in sel(T ). Since the side-length
of every rectangle is in the range [1, 2], and all the rectangles in sel(T ) are centered in
T , it follows that

⋃
S∈sel(T ) S intersects at most 25 tiles. Therefore, |sel(T )| = O(m)

for every tile T .

Similarly to Lemma 7.11, |χopt(R)| = Ω(logm). To obtain the constant-ratio
approximation algorithm, we next show that sel(T ) can be CF-colored using
O(log |sel(T )|) colors. Note that Theorem 1.5 is not applicable in this case since
the rectangles are not congruent.

Lemma 7.12. Let R′ be a set of axis-parallel rectangles with minimum width
(height) at least 1. Assume that all centers of rectangles in R′ reside in a square tile
of side-length 1/2. Then it is possible to CF-color R′ using O(log(|R′|)) colors.

Proof. Let T be the 1/2 × 1/2 tile that contains the centers of the rectangles
in R′. Extend the sides of T into lines, and consider the subdivision of the plane
into nine regions by these four lines. The subdivision consists of (i) the tile itself
T , (ii) four corner regions denoted by H�, H�, H�, and H�, and (iii) four remaining
regions denoted by H�, H�, H❁, and H❂. These regions are depicted in Figure 7.13.

Since each of the four regions H�, H�, H❁, and H❂ is of height/width 1/2, it
suffices to select one rectangle for each and give it a unique color in order to serve
the intersection of R′ with each of them. In particular, for H� we take the rectangle
whose top edge has the largest y coordinate; for H�, the rectangle whose bottom edge
has the smallest y coordinate, and similarly for H❁ and H❂. Any one of these (at
most) four rectangles can serve all of T as well.
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Next we observe that in order to serve each of the four corner regions H�, H�,
H�, and H�, it suffices to focus on four corner-chains. Let R̃′

�, R̃′
�, R̃′

�, and R̃′
�,

respectively, denote the set of rectangles that appear in the envelope of R′ in each
of the four corner parts. That is, those rectangles in R′ whose corresponding corners
(� in H�, � in H�, and, in general, γ in Hγ) are not contained in any other rectangle in
R′. The intersection of any other rectangle in R′ with each Hγ , γ ∈ Γ, is contained in

the intersection of the corresponding subset R̃′
γ with Hγ . Note that the four subsets

are not necessarily disjoint.
By a slight variant of Claim 7.3, each corner-chain R̃′

op(γ) is indeed a chain with
respect to Hγ . While it is possible to apply Lemma 6.4 to each of these chains, we
do not directly obtain a single consistent coloring because the different chains are not
necessarily disjoint. Instead, we partition the rectangles into 24 − 1 = 15 disjoint
subsets, where each subset consists of rectangles that belong to the same nonempty
subset of corner-chains (e.g., R̃′

� and R̃′
� but not R̃′

� and R̃′
�).

The important observation regarding the envelope of R′ is that if every boundary
segment is given a symbol that corresponds to the rectangle it belongs to, then the
sequence of symbols is a Davenport–Schinzel sequence DS(n, 2) [SA95]. Namely, no
two consecutive symbols are equal, and there is no alternating subsequence of length 4
(i.e., no “. . . a . . . b . . . a . . . b . . . ” for every pair of symbols a �= b).

As a consequence, if two rectangles belong to more than one chain (that is to two,
three, or even all four chains), then they appear in the same order (up to reversal)
in all chains they belong to. Hence we can color each of the 15 subsets separately in
a consistent manner (using 15 different palettes). The total number of colors used is

hence O(log(|R̃|)), as required.

8. Coloring arrangements of regular hexagons. In this section we prove
Theorem 1.5 for the case of regular hexagons. The proof follows the ideas used in
the proof for the case of rectangles. We therefore provide a sketch of the proof (with
accompanying illustrations) but do not give the full details of the proof.

8.1. Preliminaries. The sets of regular hexagons that we consider are axis-
parallel; namely, two of the sides of the hexagons are parallel to the x-axis. The type
of a vertex is determined by the slope of the segment connecting the center of the
hexagon with the vertex (see Figure 8.1). In the same fashion, we define the type of
an edge of the hexagon.

bottom-left bottom-right

middle-right

top-righttop-left

middle-left

Fig. 8.1. A hexagon and its vertices.

The tiling. In the case of hexagons we consider a tiling of the plane by equilateral
triangles with unit side-lengths; one side of each triangular tile is horizontal (see
Figure 8.2). Triangular tiles have two possible orientations: In the up orientation, the
vertex opposite the horizontal edge is above that edge, and in the down orientation,
that vertex is below the horizontal edge.
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Fig. 8.2. The triangular tiling and a pair of hexagons. The tile borders are depicted by dotted
lines. Both centers of the hexagons are in the middle tile. Both hexagons completely cover the
middle tile. Larger hexagons may intersect more than the 12 neighboring tiles.

We adapt the notation of section 7 as follows. The set of hexagons is denoted
by H. We assume that the side-length of every hexagon is in the range [1, ρ]. For a
tile T , we let H(T ) denote the set of hexagons in H that belong to T (that is, whose
center resides in T ). A tile T is an orphan if H(T ) = ∅, and it is bare if no hexagon
in H intersects it.

Since the tiles are equilateral triangles of side-length 1, the following holds for
any set of hexagons H with side-lengths at least 1.

Observation 1. For every tile T and hexagon H ∈ H, (i) if H ∈ H(T ), then
T ⊂ H; (ii) T contains at most one vertex of H; (iii) if T intersects two edges e1, e2
of a hexagon H, then these edges are adjacent and T contains also the vertex e1∩e2.

Disjoint palettes. As in the case of disks (cf. Theorem 1.2), we reduce the problem
to the case of size-ratio 2 by paying a factor of log ρ. Henceforth, we assume that
ρ ≤ 2. We assign a palette to every tile T . The colors assigned to hexagons in H(T )
belong to the palette assigned to T . Palettes are disjoint, and the distribution of
palettes is such that intersecting hexagons from different tiles are assigned different
colors. This requires only a constant number of palettes. For example, consider a tiling
of the plane with hexagonal supertiles that contain a constant number of triangular
tiles. Assign every triangular tile within a hexagonal supertile a different palette, and
extend this coloring periodically according to the hexagonal supertiles. The resulting
assignment of palettes is as required.

8.2. Coloring arrangements of hexagons. As in the case of rectangles, the
algorithm has two stages. In the first stage, each nonbare orphan tile T selects a
subset of hexagons whose union serves the covered regions in T . For each nonorphan
tile T , let sel(T ) denote the subset of hexagons in H(T ) that were selected by orphan
tiles in the first stage. In the second stage, the hexagons in sel(T ) are CF-colored,
for every nonorphan tile T , using colors from the palette assigned to T .

8.2.1. Selection of hexagons by nonbare orphan tiles. Consider a nonbare
orphan tile T . If there exists a hexagon that covers all of T , then we simply select one
of these hexagons to serve it and no more selections are required. We now consider
nonbare orphan tiles that are not covered by a single hexagon.

For an edge type e, let H(T, e) denote the set of hexagons that intersect T with
an edge that is of type e (i.e., a nonempty intersection, but no vertex of the hexagon
is contained in T ). We claim that a single hexagon covers the intersection of T
with hexagons from H(T, e). For example, let e be the top horizontal edge. The
set of hexagons that intersect T with their top horizontal edge is hence denoted by
H(T, e). Among these hexagons, pick the hexagon H with the highest center. The
hexagon H covers the intersection of T with every hexagon in H(T, e). This completes
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T’

Fig. 8.3. Let T be the central triangular tile in the figure, which is an orphan tile. The figure
illustrates the choice of hexagons that intersect T with an edge. The selected hexagons are the two
thick hexagons, and the region T ′ ⊂ T that remains after their selection is filled.

Fig. 8.4. An example of a top-right chain. For simplicity, in this figure T ′ = T . That is, the
dotted triangle is a tile T .

the discussion of the selection of hexagons that intersect T with an edge. For an
illustration, see Figure 8.3.

We denote by T ′ the region contained in T that remains after this choice of at
most six hexagons (one per edge type). Note that if T ′ is nonempty, then T ′ is a
polygon with at least three edges and at most six edges. The edges of Q are parallel
to those of the hexagons in H.

We now consider the selection of hexagons that intersect T ′ with a vertex. Let
γ denote a vertex type (e.g., top-right), and let H(T ′, γ) denote the set of hexagons

whose γ-vertex is in T ′. Among the hexagons in H(T ′, γ), let H̃(T ′, γ) denote the
hexagons that participate in the envelope of H(T ′, γ) in T ′. Similarly to the analysis
in the case of rectangles, the latter cover all of the intersection of T ′ with the former,
and furthermore they constitute a (corner) chain with respect to T ′. We refer to
the chain in terms of the vertex type (e.g., top-right chain). For an illustration, see
Figure 8.4.

Thus, there are at most six corner-chains intersecting T ′, one for each vertex
type. Here we have three types of “interactions” between chains, depending on the
distance between the corresponding vertex types on the hexagons—that is, distance-
one (e.g., top-right and top-left), distance-two (e.g., top-right and middle-left), and
distance-three (e.g., top-right and bottom-left).

Interactions between distance-one and distance-two chains. Interactions between
distance-one chains and distance-two chains are analogous to the interactions between
corner-chains of adjacent corners in the case of rectangles. Specifically, for each such
pair of chains, we can select a single hexagon from each chain so that (1) the union
of the two selected hexagons covers the intersection between the chains, and (2) the
remaining hexagons (not covered by the two selected hexagons) constitute disjoint
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chains with respect to T ′ minus the two hexagons. For an illustration, see Figure 8.5.

Fig. 8.5. The two “benign” interactions between corner-chains in a tile T . On the left side
is a distance-one interaction between a top-right chain and a top-left chain. On the right is a
distance-two interaction between a top-right chain and a middle-left chain. In each figure, the two
bold hexagons are those selected from the two chains.

It follows that, by selecting at most four hexagons from each of the six chains
that intersect T ′, it is possible to service all areas of intersections between such pairs
of subsets of hexagons. Let T ′′ ⊆ T ′ denote the remaining region in T ′ ⊆ T that is
not covered by these selected hexagons.

Interactions between pairs of distance-three (opposite) chains. The case of interac-
tions between distance-three chains is analogous to the interaction between opposite
chains in the case of rectangles. In particular, it is possible to select an approximately
minimum subset of hexagons from the two chains so as to serve all the area in their
union (within the region T ′′). For an illustration, see Figure 8.6.

8.3. Coloring the selected hexagons. We now return to each nonorphan tile
T and assign colors to the hexagons requested from it. Note that Theorem 1.5 is not
applicable since the hexagons are not congruent.

Lemma 8.1. Let H̃ be a subset of axis-aligned hexagons with side-lengths at
least 1, which all belong to the same tile T . Then it is possible to CF-color H̃ using
O(log(|H̃|) colors.

Proof sketch. First, we assume, without loss of generality, that every hexagon in
H̃ participated in the envelope (i.e., contains a vertex in

⋃
H∈H̃H).

Similarly to the proof of Theorem 1.4 for rectangles, we extend the sides of a
tile to partition the area covered by H̃ into several subregions (see Figure 8.7). The
number of resulting regions is seven (including the tile T itself, which is covered by

every hexagon in H̃). Three of these subregions have a common vertex with T (and
are referred to as the “angular” subregions), and three have a common edge (and are

referred to as the “trapeze” subregions). The vertices of every hexagon in H̃ are in
the trapeze subregions. Hence, it is possible to select at most three hexagons to serve
the angular subregions. Each of these hexagons is assigned a unique color (and thus
T itself is also served).

We now deal with serving points in the trapeze regions. We wish to identify
two chains in each trapeze region. Fix a trapeze region R. Every hexagon has two
adjacent vertices in the trapeze region (as well as the edge connecting these vertices).
Let u and v denote the vertex types that appear in R. Pick the hexagon HR whose
edge is farthest away from the corresponding edge of the triangular tile. Consider the
sequence of vertices along the envelope of H̃ in R. This sequence starts with a block
of vertices of type u and ends with a block of vertices of type v. The two vertices
of HR in R appear consecutively in this envelope. By picking HR and assigning it
a unique color, the envelope in R is separated into two parts. Moreover, the region
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Fig. 8.6. An interaction between the distance-three (opposite) chains top-right and bottom-left.
The selected hexagons are bold.

Trapeze shaped region

Angular region

Fig. 8.7. The partitioning of the area covered by hexagons that belong to the same tile. The
six subregions HR outside the tile are determined by the dashed lines that are extensions of sides of
the tile. There are three angular regions, which can each be served by a single hexagon, and three
trapeze-shaped regions. The two dotted lines within the top-left trapeze-shaped region are determined
by the hexagon selected as in the proof (sketch) of Lemma 8.1. Each of the two dotted lines, paired
with one of the dashed lines bounding the trapeze-shaped region, define the (angular) subregion that
contains a (disjoint) corner-chain.

(R \HR) ∩ (
⋃

H∈H̃H) consists of two disjoint connected parts. The hexagons whose
vertices appear in the envelope in each part are chains with respect to R \HR. Thus,
by picking at most six hexagons and assigning them unique colors, we have identified
six disjoint chains.

As in the proof of Lemma 7.12, hexagons that belong to multiple chains appear in
the same order (up to reversal) in these chains. Hence we partition the hexagons that
appear in chains into at most 26 − 1 subsets, where within each subset all hexagons
belong to the same chains. (A finer counting argument is based on showing that for
every three or more chains there can be at most one hexagon that belongs to all these
chains. Hence we actually focus on subsets of hexagons that belong to one or two
chains.) Each such subset is provided with a disjoint palette and can be colored using
a logarithmic (in its size) number of colors.

Finally, the proof of Theorem 1.4 for regular hexagons follows by combining the
above lemma with a lower bound analogous to Lemma 7.10, the basic properties of
the tiling, and the requesting process from orphan tiles.
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9. Consequences.

9.1. Universal bounds for noncongruent rectangles and hexagons. As a
corollary of Lemma 7.12 we also obtain a universal bound for the case of rectangles
that is analogous to the case of disks (part 1 of Theorem 1.2).

Specifically, for each pair of integers i, j ≥ 1, let Ri,j denote the subset of rect-
angles in R whose width is in the range [2i−1, 2i) and whose height is in the range
[2j−1, 2j). Let φ2i,2j (Si,j) denote the maximum number of centers of rectangles in
Ri,j that are contained in a rectangular tile of width 2i and height 2j . We refer to
φ2i,2j (Ri,j) as the local density of Ri,j (with respect to rectangular tiles of width 2i

and height 2j).

Theorem 9.1. There exists an algorithm that, given a set R of axis-parallel
rectangles with side-lengths in the interval [1, ρ], finds a CF-coloring χ of R using

O
(
min

{∑log(ρ)+1
i=1

∑log(ρ)+1
j=1 (1 + log φ2i,2j (Ri,j)), log |R|}) colors.

Lemma 8.1 implies an analogous theorem for hexagons.

9.2. CF-multicoloring. An interesting by-product of Theorem 1.4 and its anal-
ysis has to do with minimum CF-multicoloring. A CF-multicoloring of a collection S
is a mapping χ from S to subsets of colors. The requirement is that for every point
x ∈ ⋃S∈S S there exist a color i such that {S : x ∈ S, i ∈ χ(S)} contains a single
subset. It has been observed by Bar-Yehuda ([B01], based on [BGI92]) that every
set-system (X,S) can be CF-multicolored using O(log |X| · log |S|) colors. Since the
problem of minimum graph coloring can be reduced to CF-coloring of set-systems, it
follows that there exist set-systems for which there is an exponential gap between the
minimum number of colors required in a CF-coloring and the minimum number of
colors required in a CF-multicoloring. In particular, this is true when the set-system
(X,S) corresponds to a clique G = (V,E) as follows: There is a set Sv for every
vertex v ∈ V , and there is a point xe ∈ X for every edge e ∈ E. The set Sv contains
the point xe if and only if v is an endpoint of e. The number of colors required to
CF-color this set-system is |S| = |V |, in contrast to the O(log2 |S|) colors that are
sufficient for CF-multicoloring.

A natural question is whether, in the geometric setting that we study, the number
of colors required for CF-multicoloring is significantly smaller than that required for
CF-coloring. An example in which CF-multicoloring saves colors is a “circle” of five
congruent squares such that every adjacent pair of squares intersects and no three
squares intersect. Since the number of squares is odd, three colors are needed for CF-
coloring. However, CF-multicoloring requires only two colors: Color the first square
with two colors, and then color the rest of the squares with alternating colors. The
lower bound proved in Lemma 6.3 also applies to CF-multicoloring, and hence CF-
multicoloring does not save colors in chains. Furthermore, it follows from our analysis
(cf. Lemma 7.10) that CF-multicoloring reduces the number of colors by at most a
constant in the case of congruent squares (or hexagons).

Theorem 9.2. Let S denote a set of congruent axis-parallel squares, and let
χmulti

opt (S) denote an optimal CF-multicoloring of S. Then |χmulti
opt (S)| = Θ(|χopt(S)|).
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In this paper, we study the Simultaneous Messages (SM) model of multiparty communication
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allowed to communicate with each other. Instead, each of the k players simultaneously sends a
message to a referee, who sees none of the inputs. The referee then announces the function value.

We prove lower and upper bounds on the SM complexity of several classes of explicit functions.
Our lower bounds extend to randomized SM complexity via an entropy argument. A lemma es-
tablishing a tradeoff between average Hamming distance and range size for transformations of the
Boolean cube might be of independent interest.

Our lower bounds on SM complexity imply an exponential gap between the SM model and the
CFL model for up to (log n)1−ε players for any ε > 0. This separation is obtained by comparing the
respective complexities of the Generalized Addressing Function, GAFG,k, where G is a group of order
n. We also combine our lower bounds on SM complexity with the ideas of H̊astad and Goldmann
[Comput. Complexity, 1 (1991), pp. 113–129] to derive superpolynomial lower bounds for certain
depth-2 circuits computing a function related to the GAF function.

We prove some counterintuitive upper bounds on SM complexity. We show that GAF
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complexity O(n0.92). When the number of players is at least c logn, for some constant c > 0, our
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Z
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has polylog(n) complexity. We also examine a class of functions defined
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each xi is a bit string of fixed length ≤ n bits. k players collaborate to evaluate
f(x0, . . . , xk−1). Each player has full knowledge of the function f . The ith player
knows each input argument except xi; we will refer to xi as the input missed by
player i. We can imagine input xi written on the forehead of player i. Each player
has unlimited computational power. They share a blackboard, viewed by all players,
where in each round of the game some player writes a bit. The last bit written on the
board must be the function value.

Definition 1.1. A multiparty protocol is a specification of which player writes
in each round and what that player writes. The protocol must specify the following
information for each possible sequence of bits that is written on the board so far:

1. Whether or not the game is over, and in case it is not over, which player
writes the next bit: This information should be completely determined by the
information written on the board so far.

2. What that player writes: This should be a function of the information written
on the board so far and of the input seen by that player.

The cost of a multiparty protocol is the number of bits written on the board for the
worst case input. The multiparty communication complexity of f , denoted C(f), is
the minimum cost of a protocol computing f .

Fairly strong multiparty communication complexity lower bounds of the form n/ck

were obtained by Babai, Nisan, and Szegedy [BaNS92] for some families of explicit
functions. However, it seems that those methods do not extend to logarithmic number
of players and beyond.

H̊astad and Goldmann [HG91] found a curious application of the [BaNS92] bounds
to lower bounds for small depth threshold circuits. Subsequent work by Yao [Ya90]
and Beigel and Tarui [BeT91] reduces ACC circuits (bounded depth, polynomial size
circuits with Boolean and MOD m gates) to small depth circuits similar to those
considered by [HG91]. These results imply that a superpolylogarithmic lower bound
for the communication complexity of a function f with a superpolylogarithmic number
of players would show that f /∈ ACC.

In fact, this separation would already follow from similar lower bounds in a weaker
model, which we call the Simultaneous Messages (SM) model (see Definition 2.1).
This connection was pointed out to us by Avi Wigderson.

The SM model is a restricted version of the general multiparty communication
model in which the players are not allowed to communicate with each other. Instead,
each player can send a single message to a referee, who sees none of the inputs. The
referee announces the value of the function based on the messages sent by the players.

The subject of this paper is the complexity of explicit functions in the SM model.

1.2. Lower bounds. We prove lower bounds on the SM complexity of the Gener-
alized Addressing Function, GAFG,k, where G is a group of order n (see Definition 2.3).
The input to GAFG,k consists of n+ (k − 1) log n bits partitioned among the players
as follows: player 0 gets a function x0 : G −→ {0, 1} (represented as an n-bit string)
on her forehead, whereas players 1 through k − 1 get group elements x1, . . . , xk−1,
respectively, on their foreheads. The output of GAFG,k for this input is the value of
the function x0 on the product x1 · . . . · xk−1.

Our first result is an Ω( |G|1/(k−1)

k−1 ) lower bound on the SM complexity of GAFG,k
for any finite group G (Theorem 2.8).

The result uses a decomposition theorem for finite groups (Theorem 2.19). A
related body of work, going back to a 1937 conjecture of Rohrbach [Ro37a, Ro37b],
is discussed in a separate section, partly for the sake of its own interest (section 7).
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In section 3, we prove a lower bound similar to Theorem 2.8 on the randomized
SM complexity of GAFG,k. Specifically, we show that any randomized SM protocol

for GAFG,k with a success probability ≥ (1 + ε)/2 must have a cost of Ω( |G|1/(k−1)ε2

k−1 ).
The proof of this result is based on an “entropy loss lemma,” which may be of in-
dependent interest (Lemmas 3.7 and 3.9). The lemma provides a tradeoff between
the average Hamming distance travelled and the number of destinations reached by
a transformation of the Boolean cube. Similar entropy based tools have been used
earlier in [Man98] and [KaT00].

It is easy to see that the general multiparty communication complexity of GAFG,k
is at most log n + 1. Hence the lower bounds stated above show that the SM model
is exponentially weaker than the general model for up to (logn)1−ε players. In fact,
we prove this exponential gap between the SM model and an intermediate model
called the “one-way communication model” [NW93] (see Definition 2.6). This result
supports the hope that it might be easier to obtain stronger lower bounds in the SM
model than in the general communication model. On the other hand, as mentioned
in section 1.1, sufficiently strong lower bounds in the SM model still have some of the
same interesting consequences to circuit complexity as those in the general model.

As mentioned before, H̊astad and Goldmann [HG91] relate lower bounds on mul-
tiparty communication complexity to lower bounds on certain depth-2 circuits. In
this paper, we use ideas from [HG91] to relate SM complexity to depth-2 circuit com-
plexity. In particular, we show that a circuit with an arbitrary symmetric gate at
the top and AND gates at the bottom computing an explicit function on n variables
derived from GAFZ

t
2,k

must have size exp((log n/ log log n)2). We note that similar
techniques applying the general multiparty communication complexity lower bounds
were used by Razborov and Wigderson [RaW93].

1.3. Upper bounds. A curious development concerning SM complexity is the
discovery of unexpected upper bounds. It appeared natural to expect that, when
the number of players is constant, the SM complexity of GAF should be Ω(n). This,
however, is false. In fact, we give a counterintuitive upper bound of O(n0.92) on the
SM complexity1 of GAFZ

t
2,3
. More generally, we show an upper bound of roughly

nO(log k/k) + log n on the SM complexity of GAFZ
t
2,k
. This gives a polylog(n) upper

bound when the number of players is logn; in fact, if the number of players is greater
than logn, an upper bound of 2 + logn holds (sections 5.1 and 5.2).

The O(n0.92) upper bound, first published in [BaKL95] (a preliminary version
of this paper), together with related results about cyclic groups Zn by Pudlák and
Rödl [PR93] and Pudlák, Rödl, and Sgall [PRS97], has prompted a refinement of an
approach proposed by Nisan and Wigderson [NW93] toward superlinear size lower
bounds on log-depth circuits. This approach uses 3-party communication complexity
lower bounds and exploits a graph-theoretic reduction due to Valiant [Va77], building
on earlier results by Erdős, Graham, and Szemerédi [EGS75]. To explain this ap-

proach, let us consider a Boolean function f1 : {0, 1}O(n)×{0, 1}O(n)×{0, 1}log n −→
{0, 1}. From this, let us construct an n-output function f(x, y) = (z1, . . . , zn) by
setting zj := f1(x, y, j). Then an Ω(n) lower bound on the total number of bits
communicated in a 3-party SM protocol for f1 (with x, y, and j on the foreheads of
players 0, 1, and 2, respectively) would imply a superlinear lower bound on log-depth
circuits computing the function f . In particular, if there were an Ω(n) lower bound on
the 3-party SM communication complexity of GAFZ

t
2,3
, where n = 2t, then the above

1This bound has subsequently been improved to O(n0.73) in [AmL00].
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connection would have yielded an explicit function requiring superlinear size circuits
of log-depth.

However, we have a 3-party SM protocol for GAFZ
t
2,3

that uses only n0.92 bits
of communication. Analogously, [PR93, PRS97] prove an o(n) upper bound on the
3-party SM complexity of GAFZn,k. On the other hand, these and several similar
functions are conjectured to require superlinear size circuits of log-depth. This situ-
ation motivated a refined version of the approach from [NW93]. This refined version
seeks 3-party SM lower bounds when there are certain constraints on the lengths of
messages from individual players. Indeed, in response to the surprising upper bounds
from [BaKL95] and [PR93], Kushilevitz and Nisan present such an approach in their
book [KuN97, section 11.3]. We describe this new formulation below.

Let f be an n-bit output function and f1 its single-bit output counterpart as
defined above. Then Valiant’s lemma implies the following: if f has log-depth linear
size circuits, then f1 has an SM protocol in which, for any fixed ε > 0, (i) player 2
sends at most O(n/ log log n) bits, and (ii) players 0 and 1 send O(nε) bits each. Thus
a lower bound showing that any 3-party SM protocol for an explicit f1 must violate
(i) or (ii) would yield an explicit f that cannot be computed simultaneously in linear
size and logarithmic depth.

It is interesting to note that, in contrast to the lower bound, our upper bound
depends heavily on the structure of the elementary abelian 2-group G = Z

t
2. In

particular, the upper bound does not apply to the cyclic group G = Zn. For GAFZn,k,
Pudlák, Rödl, and Sgall [PRS97] prove an upper bound of O(n log log n/ log n) for
k = 3 (three players) and of O(n6/7) for k ≥ c log n. Their upper bounds have been

significantly improved by Ambainis [Am96] to O(n log1/4 n

2
√

log n ) for k = 3 and to O(nε) for

an arbitrary ε > 0 for k = O((log n)c(ε)). However, these bounds for Zn are still much
weaker than the corresponding bounds for Z

t
2 presented in this paper.

We also give surprising upper bounds on the SM complexity of a different class of
functions defined by certain depth-2 circuits (section 6). For this class of functions,
we prove polylog(n) upper bounds on the SM complexity when the number of players
is at least log n+ 2. This class of functions includes Generalized Inner Product (GIP)
and Majority of Majorities. The special case of GIP improves a result due to Grolmusz
[G94], where the same upper bound is given for 2-round protocols. We note that
GIP is a prime example in the study and applications of multiparty communication
complexity [BaNS92, G94, HG91, RaW93]. Majority of Majorities is an interesting
candidate function to be outside ACC.

The circuits defining the class of functions mentioned above have an arbitrary
symmetric gate of fan-in n at the top and gates of fan-in k (= number of players)
at the bottom. Furthermore, each bottom gate is assumed to compute a symmetric
function with very small 2-party, one-way communication complexity (we call such
functions compressible; see Definition 6.1). We partition the input so that each player
misses one bit from each bottom gate.

We also give an example of an explicit symmetric function that is not compressible
(in the sense of Definition 6.1). The proof of this result uses Weil’s character sum
estimates.

1.4. Comparison with [BaKL95]. Finally, a comment on how the present
paper relates to its preliminary version [BaKL95]. Most results of [BaKL95] have
been superseded both in generality and in the elegance of the proof. This is especially
true for the (deterministic and randomized) lower bounds which have been extended
to all groups. A discussion of circuit complexity applications has been added. The
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main new additions are the counterintuitive upper bounds for the case of more than
log n players for a significant class of functions, including the Majority of Majorities
function.

1.5. Organization of the paper. In section 2, we introduce the model of SM
and prove a lower bound on the SM complexity of the Generalized Addressing Function
(GAF) with respect to an arbitrary finite group G (see Definition 2.3). Section 3 ex-
tends this lower bound to the randomized SM complexity of GAFG,k . In section 4, we
present some consequences of our lower bounds on SM complexity to certain depth-2
circuits. Sections 5 and 6 deal with upper bounds on SM complexity. In section 5, we
give nontrivial upper bounds for GAF with respect to elementary abelian 2-groups,
whereas in section 6 we define a natural class of functions and show very efficient SM
protocols for them. In section 7, we discuss a group-decomposition problem arising
from the GAF lower bounds; this section may be of interest in its own right. Section 8
concludes the paper with several open problems.

2. A SIMULTANEOUS MESSAGES lower bound. Let f(x0, . . . , xk−1) be a
Boolean function, where each xi is a bit string of fixed length ≤ n. A referee and k
players collaborate to evaluate f(x0, . . . , xk−1). Each participant (referee and players)
has full knowledge of the function f . For 0 ≤ i ≤ k− 1, the ith player, pi, knows each
input argument except xi. The referee does not know any of the input. Each player
pi simultaneously passes a message of fixed length to the referee, after which the
referee announces the function value. Each participant is a function of the arguments
it “knows.”

Definition 2.1. An SM protocol P for f is a set of players along with a referee
that correctly computes f on all inputs. The cost of an SM protocol for f is the
length of the longest message sent to the referee by any individual player.2 The SM
complexity of f , denoted C0(f), is the minimum cost of a protocol computing f .

Remark 2.2. This model is implicit in the work of Nisan and Wigderson [NW93,
Theorem 7], where they consider the case k = 3. The first papers investigating the
SM model in detail are the conference version of the current paper [BaKL95] and
a paper by Pudlák, Rödl, and Sgall [PRS97]; the latter uses the name “oblivious
communication complexity.”

2.1. The Generalized Addressing Function GAFG,k. The function that we use
to show an exponential gap between the SM and general multiparty communication
models is the GAF, defined as follows.

Definition 2.3. Let G be a group of order n. Elements of G are represented by
binary strings of length log n. Let x0 : G −→ {0, 1} be a function represented as an
n-bit string, and let x1, . . . , xk−1 ∈ G. Then the Generalized Addressing Function for
the group G and k players, denoted by GAFG,k, is defined as follows:

GAFG,k(x0, . . . , xk−1) := x0[x1 · . . . · xk−1].

Here · denotes the group operation in G.
The notation C0(GAFG,k) refers to the SM complexity of the GAFG,k function

under the natural partition of the input among the players; i.e., player i misses input
xi. Note that the partition of the input among the players is not balanced since

2This definition of the cost, as the ∞-norm of the vector of message lengths of the players, differs
from that of the STACS ’95 version [BaKL95], where we consider the 1-norm. We continue to use
the total communication for C and C1 (Definitions 1.1 and 2.6).
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player 0 has |x0| = n bits “on her forehead,” whereas player i for 1 ≤ i ≤ k − 1 has
|xi| = log n bits on her forehead.

Recall that C(f) denotes the k-party communication complexity of the function
f (where f is a function in k variables) (see section 1.1).

Observation 2.4. C(GAFG,k) ≤ log n+ 1.
Proof. Player p0 writes g = x1 · . . . · xk−1; then p1 writes x0[g].
Remark 2.5. This is a special case of the observation that C(f) ≤ 1+ the length

of the shortest input.
Definition 2.6. A special case of the communication model is one-way commu-

nication, in which each player may write on the blackboard only once, and they proceed
in the prescribed order p0, p1, . . . , pk−1. Let C1(f) denote the one-way communication
complexity of f .

Clearly, n ≥ C0(f) ≥ C1(f)/k ≥ C(f)/k for any function f of k variables. For
GAFG,k, the proof of Observation 2.4 gives a one-way protocol, so we obtain the
following consequence.

Corollary 2.7. C1(GAFG,k) ≤ log n+ 1.
The main result of this section is an SM lower bound on the Generalized Addressing

Function of the form Ω(n1/(k−1)/(k − 1)). This bound implies an exponential sepa-
ration between C0(f) and C1(f) (and hence also between C0(f) and C(f)) for up to
k = (log n)1−ε players. We state the result.

Theorem 2.8. For any group G of order n and any k ≥ 2,

C0(GAFG,k) ≥ cn1/(k−1)

k − 1 ,

where c = (1− 1/√e)/2 > 0.19.
The proof of this lower bound is given in the next two subsections.
Remark 2.9. For k = 3, Theorem 2.8 gives an Ω(

√
n) lower bound. Nisan and

Wigderson [NW93] give an Ω(
√
n) lower bound for a different function, based on hash

functions [MNT93]. They actually show this lower bound for one-way complexity,
establishing an exponential gap between C1(f) and C(f) for k = 3.

Remark 2.10. Theorem 2.8 states an SM lower bound for all finite groups G.
Special cases of this result were found independently by Pudlák, Rödl, and Sgall (the
cyclic group G = Zn) [PRS97, Proposition 2.3] and by the authors of the conference
version of the present paper (the elementary abelian group G = Z

t
2) [BaKL95]. Those

bounds were extended in a preliminary version of this paper to a large class of groups,
including all solvable groups. For arbitrary groups, however, our original lower bound
was worse by a logarithmic factor than the bound stated in Theorem 2.8. We express
our gratitude to an anonymous referee for pointing out that a simple modification of
our argument yields the improved result stated as Theorem 2.8.

All proofs use essentially the same strategy, an information-theoretic argument
combined with a group-decomposition result. Simple cases of the group-decomposition
result are discussed as Examples 2.14 and 2.15. The general group-decomposition
theorem appears as Theorem 2.19.

2.2. SM lower bound for GAFG,k and group decompositions. In this
subsection, we give an SM lower bound for GAFG,k in terms of a parameter ρ of G
and k related to optimal decompositions of a large fragment of a group. In the next
subsection we shall estimate ρ within a constant factor. From this bound, our SM
lower bound for GAFG,k (Theorem 2.8) will be immediate.
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Definition 2.11. For a finite group G and A,B ⊆ G, the product AB is defined
as AB = {a · b : a ∈ A, b ∈ B}. Note that |AB| ≤ |A| · |B|.

Definition 2.12. Let α be a real number, 0 < α ≤ 1. For a finite group G and
a positive integer u we define

ρα(G, u) = min
H1,...,Hu⊆G

{ρ : |H1 · . . . ·Hu| ≥ α|G| and ∀i, |Ĥi| ≤ ρ},

where Ĥi is defined to be the Cartesian product of all Hj except Hi.

Remark 2.13. Note that |Ĥi| =
∏
j �=i |Hj |. Also note that Ĥi is not the product∏

j �=iHj in the sense of Definition 2.11; in fact, Ĥi is not even a subset of G. (It is a
subset of G× · · · ×G (u− 1 times).)

The following two examples give upper bounds on ρ for two special groups. In
section 7, we will see that these upper bounds are optimal to within a constant factor.

Example 2.14. ρ1(Z
t
2, u) ≤ 2n1−1/u, where n = 2t.

Proof. Let V = Z
t
2. Decompose V into a direct sum of u subspaces: V =

H1 ⊕ · · · ⊕Hu, where for each i, 1 ≤ i ≤ u, �t/u� ≤ dimHi ≤ �t/u�. This implies

ρ1(V, u) ≤ max
i
|Ĥi| = max

i

n

|Hi| =
n

mini |Hi|(2.1)

≤ n

2�t/u�
≤ 2n

2t/u
=

2n

n1/u
= 2n1−1/u.

Example 2.15. ρ1/2(Zn, u) ≤ 2n1−1/u and ρ1(Zn, u) ≤ 4n1−1/u.
Proof. Let 2t < n ≤ 2t+1. We consider the elements of Zn to be binary strings

of length t + 1. Let K be the subset of Zn given by binary strings with their most
significant ((t+1)st) bit equal to zero. Identify K with H1⊕· · ·⊕Hu, where Hi is the
set of binary numbers with t digits in which all digits are 0 except for the ith segment
of �t/u� or �t/u� digits, which can be either 0 or 1. Thus each Hi has size ≥ 2�t/u�.
Clearly, |K| = 2t ≥ n/2. By (2.1), we have that maxi |Ĥi| ≤ 2|K|1−1/u ≤ 2n1−1/u.
Hence ρ1/2(Zn, u) ≤ 2n1−1/u.

To cover the entire group Zn, apply the above argument to bit strings of length
(t + 1) (but perform group operations in Zn). Then we get that maxi |Ĥi| ≤ 2 ·
2(t+1)(1−1/u) ≤ 4n1−1/u, and this gives us the bound on ρ1(Zn, u).

As a concrete example, consider Z25, u = 3, and α = 1. It is easy to see that a
(complete) cover is given by Z25 = {0, 16} + {0, 4, 8, 12} + {0, 1, 2, 3}. Note that in
this cover, some elements (e.g., 5) have more than one factorization (under the group
operation addition modulo 25).

Lemma 2.16. For any finite group G and any α (0 < α ≤ 1),

C0(GAFG,k) ≥ α|G|
(k − 1) ρα(G, k − 1) .

Proof. We prove a lower bound on the length of the longest message sent by
p1, . . . , pk−1. We ignore p0 by assuming that the referee knows whatever p0 knows.
This assumption can only make our lower bound stronger.

The proof is by an information-theoretic argument. Pick a factorization K =∏k−1
i=1 Hi of some subset K ⊆ G which is optimal in the sense that |K| ≥ α|G|,

H1, . . . , Hk−1 ⊆ G, and maxi |Ĥi| = ρα(G, k − 1).
We shall restrict player p0’s inputs to functions x0 : G −→ {0, 1} such that

x0(g) = 0 for all g ∈ G \K. For i = 1, . . . , k − 1, we shall restrict player pi’s inputs
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to Hi. For a fixed x0 (on p0’s forehead and hence visible to all pi, 1 ≤ i ≤ k − 1),
player pi can send at most |Ĥi| different messages. Hence the total number of bits
received by the referee (for all combinations of these restricted inputs) is at most
ρα(G, k − 1)(k − 1)#, where # is the length of the longest message sent by the players
pi, 1 ≤ i ≤ (k − 1). But this collection of messages must determine every bit of x0

corresponding to the set K ⊆ G. Hence we must have ρα(G, k − 1)(k − 1)# ≥ αn,
giving the claimed bound. The foregoing ideas are formalized below.

Let P be any SM protocol for GAFG,k. Let r denote the referee function. Let #
be the cost of P . For notational convenience, we assume, without loss of generality,
that each player sends a message of length # (padding their messages if necessary).

We define a function F in terms of the player and referee functions. The input
to F will be a binary string of length (k − 1)ρα(G, k − 1)#, and the output will be a
|K|-bit string. We will then show that F is surjective, which will yield the theorem.

Definition 2.17. For each g ∈ K, we fix elements h1 ∈ H1, . . . , hk−1 ∈ Hk−1

such that g = h1 · . . . · hk−1 and refer to this as “the” decomposition of g.

Now we define a function F : {0, 1}�|Ĥ1| × · · · × {0, 1}�|Ĥk−1| −→ {0, 1}K as

follows. Let (w1, w2, . . . , wk−1) be an input to F , where wi ∈ {0, 1}�|Ĥi|. The #-bit
substrings of wi are indexed by elements of Ĥi. The output bit y(g) corresponding
to g ∈ K is determined as follows. Let g = h1 · . . . · hk−1 be the decomposition

of g. For 1 ≤ i ≤ k − 1, let mi(g) be the #-bit substring of wi at index ĥi :=

(h1, . . . , hi−1, hi+1, . . . , hk−1) ∈ Ĥi. Letm0(g) = p0(h1, . . . , hk−1). Now define y(g) =
r(m0(g),m1(g), . . . ,mk−1(g)).

Claim 2.18. F is surjective.
Proof. Let x0 ∈ {0, 1}G such that x0(g) = 0 for all g ∈ G \K. Define the input

wx0 = (w1, . . . , wk−1) to F as follows: For each i, 1 ≤ i ≤ k − 1, and each ĥi ∈ Ĥi,

define the #-bit substring of wi at index ĥi to be pi(x0, ĥi), i.e., the message sent by

pi when she sees x0 and ĥi. We now show that F (wx0
) = xK0 (the restriction of x0 to

K), which will prove the claim. Recalling our notation that y = F (wx0), we want to
show that for each g ∈ K, y(g) = x0(g).

Let g ∈ K, and let g = h1 · . . . · hk−1, hi ∈ Hi be the decomposition of g.
From the definition of wx0 , for 1 ≤ i ≤ k − 1, we have mi(g) = (#-bit substring

of wi at index ĥi) = pi(x0, ĥi), and also m0(g) = p0(h1, . . . , hk−1). Now using the
definition of F we have

y(g) = r(m0(g),m1(g), . . . ,mk−1(g))

= r(p0(h1, . . . , hk−1), p1(x0, h2, . . . , hk−1), . . . , pk−1(x0, h1, . . . , hk−2))

= GAFG,k(x0, h1, . . . , hk−1) by the correctness of the protocol

= x0(g) by definition of GAFG,k.

Thus F (wx0) = xK0 and F is surjective, and this completes the proof of the
claim.

Claim 2.18 implies that the domain of F is at least as large as the range of
F . Thus #(k − 1)ρα(G, k − 1) ≥ #(|Ĥ1| + · · · + |Ĥk−1|) ≥ |K| ≥ α|G|, and hence
# ≥ n/(k − 1)ρα(G, k − 1). This completes the proof of Lemma 2.16.

2.3. Decomposition of groups. In this subsection we estimate the quantity
ρα(G, u) for a specific positive constant α.

Theorem 2.19. Given a finite group G and a positive integer u, there exist sub-
sets H1, . . . , Hu ⊆ G such that |Ĥi| < 2|G|1−1/u for i = 1, . . . , u, and |H1 · . . . ·Hu| >
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(1− 1/√e)|G| > 0.39|G|.
Corollary 2.20. Let α = 1 − 1/√e ≈ 0.39. Then for any finite group G and

any positive integer u,

ρα(G, u) < 2|G|1−1/u.

Combining Corollary 2.20 and Lemma 2.16, our lower bound for the SM com-
plexity of GAFG,k (Theorem 2.8) is immediate.

For the proof of Theorem 2.19, we use the following result. Let G be a group and
a1, . . . , ak ∈ G. The cube based on the sequence a1, . . . , ak is the set C(a1, . . . , ak) :=
{1, a1} · . . . · {1, ak}. In other words, C(a1, . . . , ak) consists of the 2

k subproducts
aε11 . . . aεkk , where εi ∈ {0, 1}.

Theorem 2.21 (see [BaE82]). Let G be a finite group of order n, and let # be
a positive integer. Then there exists a sequence of elements a1, . . . , a� ∈ G such that
|C(a1, . . . , a�)| > n(1− exp(−2�/n)).

For completeness we include the proof.
Lemma 2.22. Let A be a subset of a finite group G. Then for some x ∈ G we

have

|G \ (A ∪Ax)|
|G| ≤

( |G \A|
|G|

)2

.(2.2)

Proof. Let |G| = n and |A| = k. Let us select x ∈ G at random from the uniform
distribution. Then for every g ∈ G, the probability that g /∈ Ax is (n−k)/n. Therefore
the expected number of those g ∈ G \A which do not belong to Ax is (n− k)2/n. So
this is the expected size of the set G \ (A ∪ Ax). Pick an x for which |G \ (A ∪ Ax)|
is not less than its expected value.

Proof of Theorem 2.21. We choose a1, . . . , a� ∈ G successively as follows. Set
A1 = {a1} and Ai+1 = Ai ∪ Aiai+1. Let a1 ∈ G be arbitrary; given a1, . . . , ai, we
choose ai+1 ∈ G so as to maximize |Ai+1|.

Let pi = |G \Ai|/n.
We have p1 = 1− 1/n, and by Lemma 2.22 we have pi+1 ≤ p2

i . Therefore

p� ≤
(
1− 1

n

)2�

< exp
(−2�/n) .(2.3)

Noting that |C(a1, . . . , a�)| = n(1− p�) completes the proof.
Proof of Theorem 2.19. Let n = |G|, and let # denote the integer satisfying

n/2 ≤ 2� ≤ n. Let a1, . . . , a� ∈ G be the sequence of # elements in G guaranteed by
Theorem 2.21.

Let us split # into u parts as evenly as possible: # = k1 + · · · + ku, where ki ∈
{�#/u�, �#/u�}. Let Hj = C(ak1+···+kj−1+1, . . . , ak1+···+kj ). (So H1 is the cube based
on the first k1 members of the sequence {ai}; H2 is the cube based on the next
k2 members of the sequence, etc.) Then H1 . . . Hu = C(a1, . . . , a�), and therefore
|H1 . . . Hu| > n(1− exp(−2�/n)) ≥ n(1− 1/√e).

Moreover, |Ĥi| = 2�−ki < 2�(1−1/u)+1 ≤ 2n1−1/u.

3. Randomized complexity of SIMULTANEOUS MESSAGES. In this sec-
tion, we give lower bounds on the randomized SM complexity of the function GAFG,k
(Theorem 3.3, Lemma 3.4). Up to a constant factor, the bounds match our lower
bounds on deterministic SM complexity (Theorem 2.8, Lemma 2.16).
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In a randomized SM protocol all the players and the referee are allowed to use
coin flips.

We consider public coin protocols, i.e., protocols where the random strings used
are visible to all parties, including the referee. This is clearly the strongest possible
model in the sense that it can simulate at no extra cost the models which allow private
or partially private (e.g., hidden from the referee) coins. Therefore any lower bound
in the public coin model will automatically remain valid in models with private or
partially private coins.

Definition 3.1. A randomized SM protocol P for a function f is said to have ε
advantage (0 ≤ ε ≤ 1) if

for every input x, Pr[P (x) = f(x)]− Pr[P (x) �= f(x)] ≥ ε,(3.1)

where the probability is taken over the random choices of the players and the referee.
Definition 3.2. The cost of a randomized SM protocol is the maximum number

of bits communicated by any player on any input and for any choice of the random
bits. We define the ε-randomized SM complexity of f , denoted Rε

0(f), as the minimum
cost of a randomized SM protocol for f achieving an advantage ≥ ε.

Note that a deterministic protocol has advantage ε = 1, so C0(f) = R1
0(f).

We also note, for future reference, that inequality (3.1) is equivalent to the fol-
lowing:

Pr[P (x) = f(x)] ≥ 1 + ε

2
.(3.2)

The main result of this section is a lower bound on the randomized SM complexity
of the GAFG,k function, extending the deterministic lower bound of Theorem 2.8.

Theorem 3.3. For any finite group G, and k ≥ 2,

Rε
0(GAFG,k) = Ω

( |G|1/(k−1) ε2

k − 1
)
.

This bound will follow from Lemma 3.4 below.
In this and later sections we will express our bounds in terms of the binary entropy

function H defined as follows:

H(x) := −x log2 x− (1− x) log2(1− x) (0 ≤ x ≤ 1).(3.3)

Note that H(0) = H(1) = 0. The maximum of H is taken at x = 1/2, where
H(1/2) = 1.

Lemma 3.4. For any finite group G, 0 ≤ ε ≤ 1, and 0 ≤ α ≤ 1,

Rε
0(GAFG,k) ≥

α|G|
(k − 1)ρα(G, k − 1)(1−H(1/2− ε/2)).

This lemma extends the deterministic lower bound of Lemma 2.16. Its proof
generalizes the strategy from the deterministic case. While we completely recover
x0 (restricted to the part of the group covered by the decomposition) from all the
messages of the players in the proof of Lemma 2.16, here we will be able only to
recover “most” bits of an “average” x0. Lemma 3.7 provides a means to lower bound
the amount of information from which such a reconstruction is possible and can be
thought of as a generalization of Claim 2.18.
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Our main result for this section (Theorem 3.3) is now immediate by combining
Corollary 2.20 and Lemma 3.4 and using the following well-known estimate for the
binary entropy function:

For |δ| ≤ 1/2, 1− π2

3 ln 2
δ2 ≤ H

(
1

2
− δ

)
≤ 1− 2

ln 2
δ2.(3.4)

Following Yao [Ya83], we prove our lower bound on randomized complexity (Lem-
ma 3.4) via a lower bound on distributional complexity.

Definition 3.5. Given a Boolean function f , a probability distribution µ on its
input space, and an ε, 0 ≤ ε ≤ 1, a (µ, ε)-SM protocol for f is a deterministic SM
protocol P such that

Pr
µ
[P (x) = f(x)]− Pr

µ
[P (x) �= f(x)] ≥ ε,

where the probability is with respect to the distribution µ on the input space. We define
the (µ, ε)-distributional complexity of f , denoted Cµ,ε

0 (f), as the minimum cost of a
(µ, ε)-SM protocol for f .

Next we state Yao’s key observation, which reduces the question of lower bounds
on randomized complexity to lower bounds on distributional complexity with respect
to any distribution on inputs.

Theorem 3.6 (see [Ya83]). For any function f and any 0 ≤ ε ≤ 1,
Rε

0(f) = max
µ

Cµ,ε
0 (f).

The following lemma provides a tradeoff between the average Hamming distance
travelled and the number of destinations reached by a transformation of the Boolean
cube. The lemma may be of independent interest, in addition to being central to our
proof of Lemma 3.4.

Lemma 3.7 (distance-range tradeoff). Let φ : {0, 1}m −→ {0, 1}m be a function
with range R. Let 0 ≤ δ ≤ 1/2. Suppose the average Hamming distance between
X ∈ {0, 1}m and φ(X) is ≤ δm. Then

|R| ≥ 2(1−H(δ))m.(3.5)

Remark 3.8. Using a random cover of the Boolean cube by Hamming balls
one can show that for δ < 1/2, the lower bound (3.5) is optimal within a factor of
c1(δ)

√
m.

Lemma 3.7 is an immediate consequence of Lemma 3.9 below. H(X) denotes the
entropy of the random variable X. For the concept of entropy of random variables and
related facts, we refer to the second edition of Alon and Spencer [AlS00, section 14.6].

Lemma 3.9 (entropy loss lemma). Let φ : {0, 1}m −→ {0, 1}m. Let X ∈ {0, 1}m
be a random element of the domain chosen according to a probability distribution µ.
Let 0 ≤ δ ≤ 1/2. Suppose that

E[dist(X,φ(X))] ≤ δm,

where dist(·, ·) refers to Hamming distance and E(·) denotes the expected value. Then
H(X)−H[φ(X)] ≤ H(δ)m.

Note that if µ is the uniform distribution, then the conditions in Lemmas 3.7
and 3.9 become identical, and H(X) = m. So the conclusion of Lemma 3.7 follows
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from the known fact that for any random variable Y with range R, the entropy of Y
is bounded by

H[Y ] ≤ log2 |R|.(3.6)

This completes the proof of Lemma 3.7.
For the proof of the entropy loss lemma we will use the following elementary facts

from information theory [AlS00, section 14.6]:
• For any two random variables U and V ,

H[U, V ] = H[V ] +H[U |V ].(3.7)

•
H[U |V ] ≤ H[U ].(3.8)

• If V is completely determined by U , then

H[U, V ] = H[U ].(3.9)

• Let X = (X1, . . . , Xm). Then

H[X] = H[X1, . . . , Xm] ≤
m∑
i=1

H[Xi].(3.10)

• The binary entropy function H defined in (3.3) is concave:

∑
i

αi = 1, 0 ≤ αi ≤ 1 =⇒
∑
i

αiH(pi) ≤ H
(∑

i

αipi

)
.(3.11)

Proof of the entropy loss lemma. Let Y = φ(X). Note that

H[X]−H[Y ] = H[X,Y ]−H[Y ] = H[X|Y ],(3.12)

where the first equality follows from (3.9), since Y is completely determined by X,
and the second follows from (3.7). So the conclusion of Lemma 3.9 is equivalent to
the inequality

H[X|Y ] ≤ mH(δ).(3.13)

Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym). For 1 ≤ i ≤ m, let Zi denote the
indicator random variable of the event Xi �= Yi, i.e.,

Zi :=

{
1 if Xi �= Yi,
0 otherwise.

Let δi := Pr[Zi = 1] = E[Zi]. Then
∑

i Zi = dist(X,Y ). It follows that

m∑
i=1

δi =

m∑
i=1

E[Zi] = E

[
m∑
i=1

Zi

]
= E[dist(X,Y )] ≤ δm.(3.14)

Claim 3.10. For 1 ≤ i ≤ m, we have

H[Xi|Y ] ≤ H(δi).(3.15)
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Assuming the validity of the claim, the following string of inequalities yields the
bound (3.13):

H[X|Y ] ≤
m∑
i=1

H[Xi|Y ] using (3.10)

≤
m∑
i=1

H(δi) by the claim

≤ mH

(
1

m

m∑
i=1

δi

)
by (3.11)

≤ mH(δ) since for 0 ≤ x ≤ 1/2, H(x) is increasing.

Finally, we need to prove Claim 3.10. We use a⊕ b to denote the mod 2 sum of
a and b.

H[Xi|Y ] = H[Xi ⊕ Yi|Y ] since for any fixed y, Xi and Xi ⊕ yi have identical entropies

≤ H[Xi ⊕ Yi] = H[Zi] using (3.8) and the definition of Zi

= H(δi) since Zi is a binary random variable with Pr[Zi = 1] = δi.

This completes the proof of the entropy loss lemma.
Next we prove our main result.
Proof of Lemma 3.4. We will prove a lower bound on Cµ,ε

0 (GAFG,k) for some
distribution µ and apply Theorem 3.6.

Let G be a group of order n. Let H1, . . . , Hk−1 be an optimal collection of subsets
of G from Definition 2.12, and let K = H1 · . . . · Hk−1. Let C = H1 × · · · × Hk−1.
Note that K ⊆ G and C ⊆ G× · · · ×G ((k − 1) times). Note further that |K| ≤ |C|
and multiplication provides a natural onto map C → K. Let B ⊆ C be a set of
representatives of the preimages under this map; so |K| = |B|, and each element of
g ∈ K can be uniquely factored as g = h1 · . . . · hk−1, where (h1, . . . , hk−1) ∈ B.

The distribution µ we will use is the uniform distribution on {0, 1}K × B; i.e.,
player 0 will be given a uniformly chosen x0 : K −→ {0, 1}, and players 1 through
k − 1 will be given a uniformly chosen (k − 1)-tuple from B. (Strictly speaking, x0

will be taken from functions G −→ {0, 1} that are fixed to zero on G \K.)
Given x0 ∈ {0, 1}K , we define wx0

∈ {0, 1}�|Ĥ1| × · · · × {0, 1}�|Ĥk−1| as before in
the proof of Lemma 2.16 from the players’ functions pi for 1 ≤ i ≤ k − 1. The #-bit
segment (wx0)ĥi

of wx0 corresponding to ĥi ∈ Ĥi is defined as (wx0)ĥi
= pi(x0, ĥi).

We again define a function F :

F : {0, 1}�|Ĥ1| × · · · × {0, 1}�|Ĥk−1| −→ {0, 1}K .

The function F is defined as in the proof of Lemma 2.16 from the referee’s function
r and player 0’s function p0. Specifically, for g ∈ K, let (h1, . . . , hk−1) ∈ B be the
unique factorization of g in B. For w ∈ domain(F ), we set

(F (w))(g) = r
(
p0(h1, . . . , hk−1), wĥ1

, . . . , wĥk−1

)
.

For x0 ∈ {0, 1}K , define y0 := F (wx0) ∈ {0, 1}K . We claim that the average Ham-

ming distance between x0 and y0 (averaging over x0 ∈ {0, 1}K) is at most |K|(1−ε)/2.
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Indeed, let us form a {0, 1}K×B (0, 1)-matrixM as follows: M(x0, (h1, . . . , hk−1)) = 1
if and only if the protocol P makes an error when player 0 has x0 on her forehead
and player i for 1 ≤ i ≤ k − 1 has hi on her forehead, i.e., x0(h1 · . . . · hk−1) �=
r(p0(h1, . . . , hk−1), p1(x0, ĥ1), . . . , pk−1(x0, ĥk−1)). By the definition of y0, we have
M(x0, (h1, . . . , hk−1)) = 1 if and only if x0(h1 · . . . · hk−1) �= y0(h1 · . . . · hk−1). More-
over, since the protocol P has ε advantage, by inequality (3.2) it follows that the
fraction of 1’s in M is at most (1− ε)/2. Hence the average distance between x0 and
y0 is at most |K|(1− ε)/2.

Now an application of the distance-range tradeoff lemma (Lemma 3.7) concludes
the proof as follows. Let m = |K| = α|G|. Define φ : {0, 1}m → {0, 1}m by
setting φ(x0) = y0 = F (wx0). Let δ = (1 − ε)/2. We have just verified the
average-distance condition, so Lemma 3.7 implies that the range R of y0 satisfies
log |R| ≥ |K|H(1/2− ε/2). On the other hand, the range of y0 is not larger than the
domain of F :

(k − 1)#ρα(G, k − 1) ≥ log |R| ≥ α|G|(1−H(1/2− ε/2)),

and hence

Cµ,ε
0 (GAFG,k) = # ≥ α|G|

(k − 1)ρα(G, k − 1) (1−H(1/2− ε/2)) .

This completes the proof of Lemma 3.4.
This also completes the proof of the main results of this section. The rest of the

section is devoted to a discussion of the need to use information theory (entropy)
arguments and to clarifying the connections with the papers [BJKS02] and [BaKL95].

Remark 3.11. Our central “entropy” tool was Lemma 3.7; its proof was the only
place where the concept of entropy was used. The question arises whether the use of
entropy was necessary at all.

The key word in Lemma 3.7 is “average.” If we impose the bound dist(X,φ(X)) ≤
δm on all X ∈ {0, 1}m, then the conclusion will follow from a straightforward Ham-
ming bound on coverings of the Boolean cube. Indeed, in this case the Hamming balls
of radius δm about R would cover the entire Boolean cube; therefore

2m ≤ |R|
∑
k≤δm

(
m

k

)
≤ |R|2mH(δ),(3.16)

proving the desired inequality. In the last step we used the bound
∑

k≤δm
(
m
k

) ≤
2mH(δ), which is valid for all m and δ (0 ≤ δ ≤ 1/2) (see, e.g., [MacS77, p. 310]). (For
δ < 1/2 and large m, the bound can be improved by a factor of ∼ c(δ)/

√
m; cf. (5.1).)

More significantly, even if the condition is on average distance, the use of entropy
can be avoided to obtain a slightly weaker result by a Markov inequality argument
combined with the Hamming bound indicated above.

Indeed, under the conditions of Lemma 3.7 one can prove, without the use of
entropies, the following lower bound on |R| for any constant c > 0:

|R| ≥ c

δ + c
2(1−H(δ+c))m.(3.17)

To see (3.17), note that by Markov’s inequality on nonnegative random variables,
there exists a subset S ⊆ {0, 1}m such that |S| ≥ 2mc/(δ + c) and for all X ∈ S,
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dist(X,φ(X)) ≤ (δ + c)m. Now apply the Hamming bound argument as in (3.16)
above to get a lower bound on |φ(S)|, and hence on |R|.

Furthermore, an application of this weaker inequality would essentially suffice for
a proof of the main result of this section, the lower bound for Rε

0 (Lemma 3.4).
To deduce a lower bound on Rε

0 from inequality (3.17), we can choose c = ε/4
and note that (cf. proof of Lemma 3.4) δ = (1 − ε)/2. This implies c/(δ + c) ≥ ε/2
and leads to a bound only slightly weaker than Lemma 3.4:

Rε
0(GAFG,k) ≥

α|G|(1−H(1/2− ε/4)) + log(ε/2)

(k − 1)ρα(G, k − 1) .

Using this inequality we obtain the lower bound

Rε
0(GAFG,k) = Ω

( |G|1/(k−1) ε2 + log ε

k − 1
)
,

which is only slightly weaker than the lower bound on Rε
0 given in Theorem 3.3.

The conclusion is that, in essence, entropy arguments are not needed for the main
results of this section. On the other hand, our simple and elegant entropy argument
makes the conclusions also more elegant.

Remark 3.12. A key step in our entropy argument is Claim 3.10. We note that
the claim is in fact “Fano’s inequality” [CT91] for the special case of Boolean variables.

First, we state Fano’s inequality on the prediction errors for Boolean variables.
Proposition 3.13 (Fano’s inequality for Boolean variables). Let X be a Boolean

random variable and Y a random variable over the domain SY . Let g : SY → {0, 1}
be a “prediction function” (given the value of Y ∈ SY , g guesses the value of X). Let
δ be the “prediction error”: δ = Pr[g(Y ) �= X]. Then H[X |Y ] ≤ H(δ).

Claim 3.10 follows from Proposition 3.13 as follows.
For 1 ≤ i ≤ m, let us define gi : {0, 1}m → {0, 1} by setting gi(Y ) = Yi. Let

us use gi to predict Xi given Y . The prediction error is δi = Pr[Xi �= Yi]. Fano’s
inequality gives H[Xi|Y ] ≤ H(δi), which is exactly inequality (3.15), completing the
proof of Claim 3.10.

Conversely, our proof of Claim 3.10 in effect proves Proposition 3.13. Indeed, our
proof of Claim 3.10 can be found in the last three lines of the proof of the entropy
loss lemma above. To see how to adapt those three lines to prove Proposition 3.13,
replace Xi by X, Yi by g(Y ), Zi by Z := X ⊕ g(Y ), and δi by δ. This completes the
proof of Fano’s inequality.

Remark 3.14. (comparison with [BJKS02] and [BaKL95]) Independent of our
work, Bar-Yossef et al. [BJKS02] describe an information-theoretic approach to prov-
ing lower bounds on the distributional SM complexity of GAFG,k analogous to our
Lemma 3.4.

The [BJKS02] result differs from ours in their definition of the ρ parameter (based,
apparently, on an optimistic interpretation of the ρ parameter defined in the original
[BaKL95] paper).

The [BJKS02] definition of ρ assumes a decomposition of the entire group G as
a product of subgroups. These assumptions apparently lead to large values of ρ and
thus to poor estimates of the complexity. [BJKS02] make no attempt to estimate the
value of their ρ parameter.

The [BaKL95] definition of ρ used subsets rather than subgroups of G as factors in
the decomposition of the entire group G. It is shown in [BaKL95] that this approach
gives a bound for every group of order n which is only slightly worse than the bound
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obtained for the “nicest” groups (cyclic and elementary abelian groups), namely,
by a factor of O(

√
log n). A positive outcome of the “Modified Rohrbach Problem

(section 7)” would eliminate this factor.
In the present paper we eliminate this factor in a different way, by bypassing the

obstacle posed by the Rohrbach problem. In section 2.3 we have constructed optimal
(up to a constant factor) decompositions of a positive fraction of G into a product of
subsets (Theorem 2.19). This approach yields SM lower bounds for all groups that
are within a constant factor of the results for the “nicest” groups.

The foregoing comments apply to the deterministic lower bound. The actual
contribution of [BJKS02] is an information-theoretic argument to extend the proof of
the deterministic lower bound to distributional complexity. Specifically, [BJKS02] uses
“Fano’s inequality for Boolean variables” on prediction errors in terms of conditional
entropy (see above in Proposition 3.13).

The information-theoretic arguments presented in [BJKS02] remain valid in the
context of the more general decompositions considered in our paper which correspond
to the ρα parameter defined in Definition 2.12.

[BJKS02] use their entropy argument to prove their analogue of Lemma 3.4.
Although our proof of Lemma 3.4 is also entropy-based, the two proofs look rather
different. Our attempt to find the “common core” of the two proofs yielded only a
modest result (see Remark 3.12).

4. Applications to lower bounds in circuit complexity. In this section, we
derive some consequences of the SM lower bounds from section 2.2 to superpolynomial
lower bounds on certain depth-2 circuits. These circuits are described by the following
definition.

Definition 4.1. A (sym,and)-circuit is defined to be a depth-2 circuit with a
symmetric gate at the top and AND gates at the bottom. (We draw circuits with the
output at the top. Hence inputs to the bottom gates are input variables and their
negations).

We note that Beigel and Tarui [BeT91] reduce ACC circuits to (sym,and)-circuits
of quasi-polynomial size with bottom fan-in polylog(n). We present below a lower
bound of exp((logn/ log log n)2) on the size of (sym,and)-circuits (of arbitrary bottom
fan-in) computing some very weak functions. In fact, our lower bound applies to a
function in ACC that contains GAFZ

t
2,k

as a subfunction.
The following remarkable observation by H̊astad and Goldmann relates multiparty

communication complexity to certain depth-2 circuits.
Lemma 4.2 (see [HG91]). Suppose a function f is computed by a depth-2 circuit

consisting of an arbitrary symmetric gate of fan-in s at the top and bottom gates
computing arbitrary functions of at most k − 1 variables. Then, for any partition of
the input among the players, the k-party communication complexity of f is O(k log s).

For completeness, we give a proof of Lemma 4.2.
Proof. Since each bottom gate of the circuit has fan-in at most k − 1, there is at

least one player who can evaluate that gate. Partition the bottom gates among the
players such that all the gates assigned to a player can be evaluated by that player.
Now each player broadcasts the number of her gates that evaluate to 1. This takes
O(log s) bits per player since the top gate has fan-in at most s. Now one of the players
can add up all the numbers broadcasted to compute the symmetric function given by
the top gate and announce the value of the function.

It is obvious that this proof works in the SM model as well: each player sends to
the referee the number of gates evaluating to 1 among his gates, and the referee adds
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these numbers to compute f . The SM complexity of the protocol is clearly O(log s).
Hence, we get the following corollary.

Corollary 4.3. Suppose a function f is computed by a depth-2 circuit consisting
of an arbitrary symmetric gate of fan-in s at the top and bottom gates computing
arbitrary functions of at most k − 1 variables. Then, for any partition of the input
among the players, the k-party SM complexity of f is O(log s).

This observation, pointed out to us by Avi Wigderson, serves as the main moti-
vation for considering SM complexity.

The next lemma uses the method of random restrictions [Aj83, FSS84] to reduce
the fan-in of the bottom gates and at the same time to ensure that the “target
function” (with high SM complexity) is computed by the restricted circuit. We note
that a similar technique is used by Razborov and Wigderson [RaW93].

First, we introduce a definition.
Definition 4.4. Let f(x1, . . . , xv) be a Boolean function of v variables. Let

S1, . . . , Sv be disjoint sets of variables, where |Si| = b for all i. Then the Parityb
Blow-up of f is the function g on vb variables defined by

g(y1, . . . , yvb) = f(⊕i∈S1
yi, . . . ,⊕i∈Sv

yi).

Definition 4.5. For a set X of Boolean variables a restriction ρ is defined to be
a mapping ρ : X −→ {0, 1, ∗}. We interpret a variable assigned a ∗ to be “free,” i.e.,
not fixed to a constant. Given a function f on X, its restriction f|ρ is the induced
function on variables assigned a ∗ by ρ obtained by evaluating f when the nonfree
variables are fixed according to ρ. For a circuit C, its restriction C|ρ is the circuit
(with variables from ρ−1(∗)) obtained by fixing the variables of C assigned 0 or 1 by
ρ and simplifying wherever possible.

Lemma 4.6. Let g be the Parityb Blow-up of f . Let # be a parameter satisfying
# ≤ log b − log ln v + 1, and let 0 < c < 1 be a constant. Suppose that g is computed
by a circuit C consisting of at most 2c·�

2

AND gates at the bottom. Then there is a
restriction ρ such that

• all AND gates at the bottom level of C|ρ have fan-in at most #,
• C|ρ has v input variables, exactly one from each block Si, and
• C|ρ computes f .

Proof. We define ρ in two stages. First, we obtain a random restriction ρ1 that
reduces the fan-in of each bottom AND gate to at most # and keeps alive at least two
variables from each block Si. We prove the existence of ρ1 below. Second, we define ρ2

by assigning values to all but one of the variables from each Si left alive by ρ1 so that we
are left with exactly one unnegated variable from each Si; i.e., ρ2(ρ1(⊕j∈Siyj)) = yi′

for some yi′ ∈ Si. The desired restriction ρ is the composition of ρ1 and ρ2. Moreover,
by the definition of g, the restricted circuit computes f(y1′ , . . . , yv′).

Let p := (2 ln v)/b. Note that p ≤ 2−�. We choose ρ1 by independently assigning
to each variable a ∗ (to keep it alive) with probability p and a 0 or 1, each with
probability (1−p)/2. Let γ be a bottom level AND gate of C, and let m be the fan-in
of γ.

First consider the case when m ≤ #2. Without loss of generality, m ≥ #. Then

Pr[γ|ρ1
has fan-in > #] ≤

∑
i>�

(
m

i

)
pi
(
1− p

2

)m−i

≤ (1 + o(1))

(
m

#

)
p�
(
1− p

2

)m−�
since #� mp
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≤ (1 + o(1))(pe#)� since m ≤ l2

≤ 2−�2·(1−o(1)) since p ≤ 2−�.

Next consider the case when m > #2. Then

Pr[γ|ρ1
has fan-in > #] ≤ Pr[γ|ρ1

�≡ 0] ≤
(
1 + p

2

)m
≤ 2−�2·(1−o(1)) since m > #2 and p ≤ 2−�.

Since C has at most 2c·�
2

AND gates at the bottom (where c < 1 is a constant),
from the preceding two cases it follows that

Pr[ some bottom AND gate of C|ρ1
has fan-in > l] = o(1).(4.1)

Moreover, for a fixed i, 1 ≤ i ≤ v, we have

Pr[ρ1(Si) has < 2 ∗’s] = (1− p)b + bp(1− p)b−1

≤ e−pb(1 + bp/(1− p))

≤ O(log v/v2) since p ≥ 2 ln v/b.

Hence, we also have

Pr[ ρ1 assigns fewer than 2 ∗’s to some block Si ] = o(1).(4.2)

From (4.1) and (4.2), we see that with high probability all bottom AND gates of
C|ρ1

have fan-in at most #, and, furthermore, the inputs of C|ρ1
will have at least two

variables from each block Si. Hence such a restriction ρ1 exists.

By composing ρ1 with an additional restriction ρ2 as described in the beginning
of the proof, we complete the proof of the lemma.

Theorem 4.7. Suppose an n variable function f has k-party SM complexity at
least c0(n, k) for some partition of the input among the players. Then any (sym,and)-
circuit computing the Parityn Blow-up of f must have size at least min{exp(k2),
exp(c0(n, k))}.

Proof. Let g denote the Parityn Blow-up of f , and let C be a minimal size
(sym,and)-circuit computing g. If C has size > 2(k−1)2 , we are done.

Therefore, suppose size of C is ≤ 2(k−1)2 . We apply Lemma 4.6 to obtain a re-
striction ρ such that bottom gates of C|ρ have fan-in at most k−1 and C|ρ computes f .

Now applying Corollary 4.3, we see that the size of C|ρ must be exponential in
the SM complexity c0(n, k) of f . Hence C itself must have size ≥ exp(c0(n, k)).

Using our lower bound on SM complexity from section 2 we immediately get the
following corollary.

Corollary 4.8. Let G be any group of order n, and let k = ε log n/ log log n
for a sufficiently small constant ε > 0. Then any (sym,and)-circuit computing the
Parityn Blow-up of GAFG,k must have size exp((logn/ log log n)2).

Proof. From Theorem 2.8, we have that for c0(n, k) := C0(GAFG,k) = Ω(n
1/(k−1)/

(k−1)). Hence, if k ≤ ε log n/ log log n for sufficiently small ε > 0, c0(n, k) ≥ k2. Now
we get the claimed bound from Theorem 4.7.
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5. A SIMULTANEOUS MESSAGES protocol for GAFZ
t
2,k. In this section we

give a nontrivial protocol for GAFG,k for G = Z
t
2. Our protocol yields an upper bound

of about n(log k)/k, where n = 2t (see Theorem 5.5). In particular, for three players
we obtain a nontrivial O(n0.92) upper bound (see Theorem 5.3). These upper bounds
have been subsequently improved in [AmL00], giving in particular an upper bound of
O(n0.73) for three players. These upper bounds should be compared with our lower
bound of Ω(n1/(k−1)/(k − 1)) (Theorem 2.8).

It is curious to remark that, in contrast to the lower bound, our protocol heavily
depends on the specific structure of this group. In particular, it does not apply to the
cyclic group G = Zn. For cyclic groups, Pudlák, Rödl, and Sgall [PRS97] give upper
bounds of O(n(log log n/ log n)k), for constant k, and O(n6/7) for k ≥ c log n for some
constant c. These upper bounds have been significantly improved by Ambainis [Am96]

to O(n log1/4 n

2
√

log n ) for k = 3 and to O(nε) for an arbitrary ε > 0 for k = O((log n)c(ε)).
However, the bounds for Zn are still much weaker than the corresponding bounds for
Z
t
2 presented in this paper.

We will think of the n-bit string A held by p0 (previously denoted x0) as a Boolean
function on t := logn variables z1, . . . , zt, i.e., A : {0, 1}t −→ {0, 1}. For 1 ≤ i ≤ k−1,
let xi be the t-bit string held by player pi. Then we have

GAFZ
t
2,k
(A, x1, . . . , xk−1) = A(x1 + · · ·+ xk−1),

where “+” denotes addition in Z
t
2.

5.1. Three players. We will first describe the protocol for three players. The
idea extends naturally to the general case. For simplicity of notation, let p1 hold x
and p2 hold y. At the cost of 2t bits, p0 sends the strings x and y to the referee. Since
this communication will be insignificant, we can henceforth ignore p0 and assume that
the referee knows x and y (but not A). Then we want to minimize the number of bits
sent by p1 and p2 that will enable the referee to compute A(x+ y).

The protocol will be based on the fact that the Boolean function A can be repre-
sented as a multilinear polynomial of (total) degree at most t. In fact, the following
lemma is the crucial observation in the protocol. We use the notation

Λ(m, b) =
b∑

j=0

(
m

j

)

and the fact that for fixed δ, 0 < δ < 1/2,

Λ(m, δm) ∼ c(δ)2mH(δ)/
√
m.(5.1)

Lemma 5.1. Given the promise that A is a multilinear polynomial of degree d
over Z2, x, y ∈ Z

t
2, GAFZ

t
2,3
(A, x, y) has an SM protocol with cost Λ(t, �d/2�).

Proof. Let A be given by A(z) =
∑

S⊆[t], |S|≤d aS ZS , where ZS denotes the

monomial
∏
i∈S zi. Thus,

A(x+ y) =
∑
|S|≤d

aS
∏
i∈S
(xi + yi) =

∑
|S|≤d

aS
∑

T1∪̇T2=S

XT1 YT2 ,

where XT1 :=
∏
i∈T1

xi and YT2 :=
∏
i∈T2

yi.
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We can rewrite this as follows:

A(x+ y)

=
∑

|T1|≤�d/2�

 ∑
|T1∪̇T2|≤d

aT1∪̇T2
YT2

 ·XT1 +
∑

|T2|≤�d/2�

 ∑
|T1∪̇T2|≤d

aT1∪̇T2
XT1

 · YT2 ,

where T1 and T2 are disjoint subsets of [t], and we assume without loss of generality
that terms aT1∪̇T2

XT1 YT2 with both |T1| and |T2| less than or equal to �d/2� are
placed in the first sum.

We now observe that the first sum in the last equation is a polynomial in x whose
coefficients (which depend only on aT1∪̇T2

YT2) are known to p1. Similarly, the second
sum is a polynomial in y whose coefficients are known to p2. The degree of both
polynomials is bounded by �d/2�. Hence, using at most Λ(t, �d/2�) bits, each player
can communicate the coefficients of their corresponding polynomial to the referee.
Since the referee already knows x and y, he can evaluate the two polynomials and
add them up to announce the value of A(x+ y). Since p0 used only 2t bits to send x
and y to the referee, the cost of the protocol is simply Λ(t, �d/2�).

Remark 5.2. For small enough d, the protocol is a quadratic improvement over
the trivial one where the entire function A is communicated to the referee.

Suppose now that A is an arbitrary Boolean function. We will use Lemma 5.1
on the low-degree part of A and the trivial protocol on the high-degree part. Since
there are not too many high-degree terms, we will be able to keep the communication
within nc for some c < 1.

Theorem 5.3. C0(GAFZ
t
2,3
) = o(n0.92).

Proof. Let A : Z
t
2 −→ {0, 1} and x, y ∈ Z

t
2 be the inputs on the foreheads of

players 0, 1, and 2, respectively. Write A as a multilinear polynomial over Z2 of
degree at most t: A(z) =

∑
S⊆[t] aS ZS . Define A

′ to be the part of A corresponding

to degree less than or equal to 2t/3, and let A′′ be the remaining part of A. That is,

A(z) =
∑

|S|≤2t/3

aS ZS +
∑

|S|>2t/3

aS ZS = A′(z) +A′′(z).

Players p1 and p2 use the protocol of Lemma 5.1 on A′. They just send the high-
degree terms aS for |S| > 2t/3 directly to the referee (each sends half of them). The
number of bits used by each of p1 and p2 is at most

Λ(t, t/3) +
1

2

∑
j>2t/3

(
t

j

)
≤ 3

2
Λ(t, t/3) ≤ O(2tH(1/3)/

√
t),

using the estimate (5.1). Since p0 sends fewer bits than p1 or p2 (p0 sends only 2t
bits), the protocol has cost O(nH(1/3)/

√
log n). As H(1/3) = 0.91829 . . . , the theorem

follows.

5.2. k players. We generalize the idea from the preceding section to k players.
An extension of Lemma 5.1 follows.

Lemma 5.4. Given the promise that A is a t-variable multilinear polynomial of
degree d over Z2, and for 1 ≤ i ≤ k − 1, xi ∈ Z

t
2, GAFZ

t
2,k
(A, x1, . . . , xk−1) has an

SM protocol with cost at most Λ(t, �d/(k − 1)�) + t.
Proof. In the 3-player protocol, player p0 passes the two short inputs. In the

k-player protocol, the task of passing the short inputs x1, . . . , xk−1 will be divided
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among players p1 through pk−1, and p0 will remain silent. This avoids having one
player (p0) communicate too many bits in case k is large.

Letting A(z) =
∑

S⊆[t], |S|≤d aS ZS , we have

A(x1 + · · ·+ xk−1) =
∑
|S|≤d

aS
∏
j∈S

(x1,j + · · ·+ xk−1,j)

=
∑
|S|≤d

aS
∑

T1∪̇···∪̇Tk−1=S

X1,T1
· · ·Xk−1,Tk−1

,

where Xi,Ti =
∏
j∈Ti

xij .

Let us consider a monomial aS ZS . Since the Ti are disjoint,
∑k−1

i=1 |Ti| = |S| ≤ d,
and hence the smallest Ti is of size at most �d/(k − 1)�. Thus in the expansion∑

T1∪̇···∪̇Tk−1=S

aS X1,T1 · · ·Xk−1,Tk−1
,

each term can be “owned” by a player pi such that Ti is the smallest set in that term.
(In case of ties, take the smallest such i.) As a result, the value of this monomial
on x1 + · · · + xk−1 can be distributed among the k players by giving them each a
polynomial of degree at most �|S|/(k − 1)�.

The proof follows by linearity and proceeds similarly to that of Lemma 5.1. We
conclude that for 1 ≤ i ≤ k − 1, player pi needs to send Λ(t, �d/(k − 1)�) bits for the
terms they own and t bits to send xi+1 (player pk−1 sends x1).

Theorem 5.5. C0(GAFZ
t
2,k
) ≤ k

k−1Λ(t, �t/k�) + t.

Proof. Let A : Z
t
2 −→ {0, 1} be player 0’s input, and let xi ∈ Z

t
2 be player i’s input

for 1 ≤ i ≤ k− 1. The proof is similar to the proof of Theorem 5.3: separate the low-
degree and high-degree parts of A as follows. Monomials of A of degree higher than
t(1−1/k) are sent directly to the referee. (For simplicity, we ignore floors and ceilings
in this proof.) By dividing these high-degree monomials equally among the k − 1
players, we see that each player sends at most 1

k−1

∑
t(1−1/k)≤i≤t

(
t
i

)
= Λ(t, t/k)/(k−1)

bits. The remaining low-degree part of A has degree at most t(1 − 1/k). Applying
Lemma 5.4 with d = t(1− 1/k), each player sends at most Λ(t, t/k)+ t bits to handle
the low-degree part and to transmit xi+1 (player pk−1 transmits x1). Adding up, we
get that each player sends at most k

k−1Λ(t, t/k) + t bits to the referee.

Corollary 5.6. For 3 ≤ k ≤ log n, C0(GAFZ
t
2,k
) ≤ nO((log k)/k) + log n.

Proof. Use estimate (5.1) and note that, for k ≥ 3, H(1/k) ≤ log(ek)/k.
Remark 5.7. It follows that if k ≥ c log n for any constant c > 0, then each player

sends at most polylog(n) bits to the referee. Moreover, it is easy to see from the proof
of Lemma 5.4 that if k = log n + 1, each player sends at most 2 + log n bits and if
k > log n+ 1, each player needs to send only at most 1 + logn bits.

6. SM upper bounds for other functions. In this section, we give nontrivial
upper bounds on the SM complexity of a class of functions defined by certain depth-2
circuits and for a partition of the input variables in which each of the k players misses
one input bit from each bottom gate. The n bottom gates are identical with fan-in
k and compute certain symmetric functions called symmetric compressible functions
(see Definition 6.1). The top gate is an arbitrary symmetric gate. We call this
class of communication problems the SymCom(n, k) problems (see Definition 6.7). It
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includes, for example, Majority of Majorities, Generalized Inner Product, and Parity of
Thresholds.

We start by defining the functions that are allowed on the bottom level, i.e.,
the compressible functions. Let X = {x1, . . . , xk} be a set of Boolean variables and
f(x1, . . . , xk) a Boolean function. Alice sees a subset A ⊆ X of the variables, and
Bob sees the remaining set B = X \ A. Consider the one-way communication model
where Alice sends a message to Bob, and Bob must deduce the value of f from Alice’s
message and the part of the input he sees. For a given partition of the set of variables
A ∪̇ B = X, we denote by CA→B(f) the minimum number of bits that Alice must
send.

Definition 6.1. A class of Boolean functions F is called compressible if for any
partition A,B �= ∅, A ∪̇B = X, and any f ∈ F we have CA→B(f) = O(log |B|).

Remark 6.2. We refer to a function f as a compressible function if it belongs to a
compressible class of functions. The constant implied by the O notation may depend
on the class but not on the particular function.

We shall be interested only in compressible symmetric functions. Note that in
this case, it is clear that CA→B ≤ log(|A| + 1). The point of our definition is that
we require CA→B ≤ log |B| even when |B| is very small compared to |A|. Indeed, we
shall use this property for |B| = Θ(log k).

Example 6.3. The following Boolean functions are compressible:

1. Parity(x1, . . . , xk) = x1 ⊕ · · · ⊕ xk.

2. Modm,T (x1, . . . , xk) = 1 if and only if
∑k

i=1 xi ∈ T (mod m).

3. Thkt (x1, . . . , xk) = 1 if and only if
∑k

i=1 xi ≥ t.

Remark 6.4. We will give an example of a function which is not compressible in
section 6.1 below (see Definition 6.12 and Corollary 6.15).

Proposition 6.5. For every partition A ∪̇ B = X = {x1, . . . xk} (A,B �= ∅) we
have the following:

1. CA→B(Parity) ≤ 1.
2. CA→B(Modm,T ) ≤ �logm�.
3. CA→B(Th

k
t ) ≤ �log(|B|+ 2)�.

Proof. The statements about the Parity and Modm functions are trivial. We prove
the statement of the proposition for threshold functions. Let A,B �= ∅, A ∪̇B = X =
{x1, . . . , xk} be some partition of the input variables. Let # be the number of 1’s in
part A. If # < t− |B|, the value of Thkt must be 0, and if # ≥ t the result must be 1,
regardless of part B of the input. For # = t−i, i = 1, . . . , |B|, the value of the function
depends on part |B|. Therefore, for Bob to compute the value of f , it is enough for
Alice to send one of |B| + 2 messages to Bob: one for the case where # < t − |B|,
one for the case where # ≥ t, and one for each value of # from t − |B| to t − 1. This
requires only �log(|B|+ 2)� bits.

Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1} be Boolean functions. Consider
the following depth-2 circuit. The first level has n f -gates whose inputs are disjoint,
so there are nk input bits to the circuit. The second level consists of a g-gate which
takes the outputs of the f -gates as its n inputs. We denote the function computed
by this circuit by g ◦ f (see Figure 6.1).

Definition 6.6. We define the (g, f)-communication problem as the problem of
k players computing g ◦ f , where k is the same number as the fan-in of the f-gates,
and the input variables are partitioned among the k players so that the jth player
misses the jth input bit of each f-gate.
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  g
n

  f   

2 k1

  f   

2 k1

  f   

2 k1

Fig. 6.1. The depth-2 circuit defining g ◦ f .

Definition 6.7. We call the (g, f)-communication problem a SymCom(n, k)
problem if the function g is symmetric and the function f is compressible and sym-
metric.

Remark 6.8. Observe that the AND function is compressible (cf. Proposition
6.5(3)). Hence the circuits used to define a SymCom(n, k) communication problem
above are somewhat similar to the (sym,and)-circuits defined in section 4. However,
there are some crucial differences. First, inputs to distinct bottom gates of circuits
in this section (Figure 6.1) are required to be disjoint, whereas no such restriction is
imposed in (sym,and)-circuits. Second, the number of players in this section is equal
to the bottom fan-in of the circuits, and this is not necessarily true of (sym,and)-
circuits.

In Theorem 6.11, we will show that there are efficient SM protocols for
SymCom(n, k) problems for k > 1 + log n players. First, we need two lemmas.

Lemma 6.9. Let t and n be positive integers such that t > 1 + log n. Let
b0, . . . , bt−1 be integers. Consider the following system of t equations in t + 1 un-
knowns:

(t− i)yi + (i+ 1)yi+1 = bi, i = 0, 1, . . . , t− 1.(6.1)

Assume further that

yi ≥ 0, i = 0, 1, . . . , t;

t∑
i=0

yi ≤ n.(6.2)

Then, under constraints (6.2), the system of equations (6.1) has at most one integral
solution.

Proof. Let y = (y0, . . . , yt) and y′ = (y′0, . . . , y
′
t) be two solutions of (6.1), each

consisting of nonnegative integers whose sum is at most n. For i = 0, 1, . . . , t, let
di = yi − y′i. Since y �= y′, we know there exists at least one di �= 0.

From (6.1), we obtain the following equations:

(t− i)di + (i+ 1)di+1 = 0, i = 0, 1, . . . , t− 1.(6.3)

From the i = 0 equation, we can express d1 in terms of d0: d1 = −td0 = −(t1)d0.
From this and the i = 1 equation, we get

d2 =
−(t− 1)

2
d1 =

(t− 1)t
2

d0 =

(
t

2

)
d0.
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Continuing in this way, we see that for i = 0 to t, di = (−1)i(ti)d0. Since some di is
not 0, we know that d0 �= 0. Furthermore, since the di are integers, we know that
|d0| ≥ 1, and thus |di| ≥

(
t
i

)
. We also note that since yi, y

′
i ≥ 0, we have

yi + y′i ≥ |yi − y′i| = |di|.

Now we use the fact that the sum of the yi and the sum of the y′i are both at most n
to derive a contradiction and complete the proof:

2n ≥
t∑

i=0

(yi + y′i) ≥
t∑

i=0

|di| ≥
t∑

i=0

(
t

i

)
= 2t > 21+log n = 2n.

Lemma 6.10. Let n be a positive integer, and let M be a t × m (0, 1)-matrix,
with m ≤ n and t = �log n� + 2. For i = 0, 1, . . . , t, let yi be the number of columns
of M with i ones. For j = 1, . . . , t, let player j see all of M except row j. Then there
exists an SM protocol in which each player sends O(log2 n) bits to the referee, after
which the referee can calculate y0, . . . , yt.

Proof. For j = 1, . . . , t, player j sends (aj(0), aj(1), . . . , aj(t − 1)) to the referee,
where aj(i) is the number of columns player j sees with i ones. Note that each
player sees only t − 1 of the rows and thus cannot see t ones in any column. For
i = 0, 1, . . . , t− 1, the referee computes bi :=

∑t
j=1 aj(i).

We observe that y0, . . . , yt are nonnegative integers whose sum is m ≤ n and
that for the bi defined above they satisfy the system of equations (6.1). Thus, by
Lemma 6.9, there is no other such solution. The referee, being arbitrarily powerful,
can thus compute y0, . . . , yt.

How many bits does each player send? Clearly, each aj(i) ≤ n, so each aj(i) can be
communicated with �log n� bits. Since each player communicates t = 1+ �log(n+1)�
such numbers to the referee, the complexity of this SM protocol is O(log2 n) as
desired.

We now state the theorem regarding SM protocols for SymCom functions.
Theorem 6.11. If (g, f) is a SymCom(n, k) problem and k > 1 + log n, then

C0(g ◦ f) ≤ polylog(n).
Proof. Arrange the nk input bits of g ◦ f in a k × n matrix M such that player i

knows all of M except the ith row. Each column of M contains the k input bits of a
given f -gate. Let t = �log n�+2. The first t players will be the only ones who speak,
so we call them the active players. We also call their rows and the entries in those
rows active. The remaining players, rows, and entries are called passive.

Consider a single column v ∈ {0, 1}k of M . Since f is compressible, there is a
one-way 2-party protocol P for Alice and Bob, where Alice sees the passive entries of v
and Bob sees the active entries of v, such that Alice sends Bob O(log t) = O(log log n)
bits. Note that since f is symmetric, the only thing that Bob needs to know about
the input he sees is how many ones there are. Thus, the value of f(v) is determined
by the message Alice sends on v and the number of ones among v’s active entries.

For every column v of M , the t active players see all of the passive entries of v
and thus know what message Alice would send under P upon seeing v. Let c > 0 be
such that Alice sends at most c log log n bits, and hence at most r = logc n possible
messages. Let m1, . . . ,mr be the possible messages Alice can send under P .

From M , the active players form r new matrices M1, . . . ,Mr, where Mi consists
of the columns of M for which Alice sends Bob message mi under protocol P . For
each j, 1 ≤ j ≤ r, the t players and the referee execute the protocol of Lemma 6.10
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on the submatrix of Mj consisting of the active rows. Thus the referee can deduce,
for each i, 0 ≤ i ≤ t, the number of columns of Mj which have i ones among their
active entries. From this and the fact that under P Alice would send message mj for
every column of Mj , the referee can deduce the number of columns v of Mj for which
f(v) = 1. By summing over all j, the referee calculates the total number of f -gates
that evaluate to 1, which suffices to evaluate g ◦ f , as g is symmetric.

The cost of this protocol is r ·O(log2 n) = O(logc+2 n).

6.1. A function which is not compressible. It is easy to check that a random
symmetric function is incompressible. In this subsection we give an example of an
explicit symmetric function which is not compressible (see Definition 6.1).

Definition 6.12. For an odd prime p, we define the function “quadratic char-
acter of the sum of the bits” QCSBp : {0, 1}p → {0, 1} by QCSBp(x1, . . . , xp) = 1 if
and only if x1 + · · · + xp is a quadratic residue mod p, where the xi are single bits.
Recall that y �= 0 is a quadratic residue mod p if y is a square mod p.

Let p be an odd prime, and let r = �( 12−c1) log p�, for any constant c1, 0 < c1 <
1
2 .

Let M be the (r + 1)× (p+ 1) ±1-matrix defined by M(i, j) = 1 if and only if i+ j
is a quadratic residue mod p and −1 otherwise for 0 ≤ i ≤ r, 0 ≤ j ≤ p.

Lemma 6.13. For any y ∈ {−1, 1}r+1, the number of columns of M identical to
y is O(p/2r).

Proof. This is an immediate consequence of André Weil’s character sum estimates
(cf. [Sch76]; see also [Bo85, pp. 311, 319]): Let q be an odd prime power, and let U0, U1

be disjoint subsets of Fq. For x, y in Fq, let χ(x) = 1 if x �= 0 is a square in Fq, 0 if
x = 0, and −1 otherwise. Let

S = {x ∈ Fq | for i = 0, 1, (∀u ∈ Ui)(χ(x− ui) = (−1)i)}.

Let m = |U0 ∪ U1|, and let s = |S|. Then

|s− 2−mq| ≤ m
√
q.(6.4)

Let q := p. Let y = (y0, y1, . . . , yr) ∈ {−1, 1}r+1. Let U0 = {p− i : 0 ≤ i ≤ r, yi = 1}.
Let U1 = {p− i : 0 ≤ i ≤ r, yi = −1}. Clearly, column j ofM is identical to y exactly
if j ∈ S. Setting m := |U0 ∪ U1| = r + 1 gives us

s ≤ p/2r+1 + (r + 1)
√
p = O(p/2r).

Theorem 6.14. Let p and r be as above, and let b be an integer r < b < (1−c2)p,
for any constant c2. For any 2-party one-way (Alice to Bob) protocol for QCSBp, if
Bob sees b of the p input bits and Alice sees the other a = p− b bits, then Alice must
send Bob r −O(1) bits.

Proof. Assume that there is such a one-way protocol P . We set b − r of Bob’s
bits to 0 and tell both players this. This is extra information, so P will still work for
this restricted problem.

This new communication problem can be represented by the (r + 1) × (a + 1)
±1-matrix M ′, obtained by deleting the last b columns of M . The rows represent the
number of ones that Bob sees, and the columns represent the number of ones Alice
sees. From Lemma 6.13, we know that every y ∈ {−1, 1}r+1 occurs in M and thus in
M ′ at most O(p/2r) times. Since there are p− b = Ω(p) columns in M ′, the number
of distinct columns in M ′ is Ω(2r), and so Alice must send Bob r −O(1) bits.

Corollary 6.15. If p is an odd prime, then QCSBp is not compressible.
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Proof. If Bob sees b = (log p)O(1) bits, then Alice must send at least r − O(1) =
Ω(log p) = bΩ(1) bits, which greatly exceeds the requirement for compressible func-
tions.

7. Decompositions of groups: The Rohrbach conjecture. In this sec-
tion, we prove results about ρ(G, u) := ρ1(G, u) (i.e., when

∏u
i=1 Hi = G in Defini-

tion 2.12) and indicate related conjectures. We shall see that ρ(G, u) behaves roughly
as |G|1−1/u.

First, we observe the following easy lower bound.
Proposition 7.1. For any finite group G, ρ(G, u) ≥ |G|1−1/u.
Proof. Let G = H1 ·. . .·Hu be an optimal decomposition. If |Hi| ≥ |G|1/u for each

i, then |Ĥi| ≥ |G|1−1/u. Otherwise, assume |Hi| < |G|1/u for some fixed i. Observe

that |Hi| · |Ĥi| ≥ |G|. Therefore, in this case also |Ĥi| > |G|1−1/u.
For arbitrary finite groups, an upper bound on ρ(G, u) that is not too far from

optimal follows from Theorem 2.21.
Corollary 7.2 (of Theorem 2.21). For any finite group G of order n, ρ(G, u) ≤

2(4n lnn)1−1/u.
Proof. Partition the two-element sets of Theorem 2.21 into u classes, each con-

taining at least �m/u� of the m two-element sets. This means that there are at most
m− �m/u� two-element sets in any u− 1 of the classes. Therefore,

ρ(G, u) ≤ max
i
|Ĥi| ≤ 2m−�m/u� ≤ 21+m−m/u = 2 · 2m(u−1)/u ≤ 2(4n lnn)1−1/u.

The parameter ρ(G, u) is closely related to a question posed by Rohrbach [Ro37a,
Ro37b] in 1937.

Definition 7.3. A sequence H1, . . . , Hu of subsets of a finite group G is called
a u-decomposition of G if G = H1 · . . . · Hu. If H1 = · · · = Hu = H, we denote
Hu = H1 · . . . ·Hu. A subset H of G is called a u-basis of G if Hu = G.

Rohrbach’s Problem. Is there a constant c = c(u) such that every finite group G
has a u-basis H, where |H| ≤ c|G|1/u?

Note that if Rohrbach’s Problem has an affirmative answer, then we will have,
for every finite group G, ρ(G, u) ≤ (c(u))u−1|G|1−1/u. On the other hand, if we have
a u-decomposition G = H1 · . . . ·Hu with |Hi| ≤ α|G|1/u, then we will have a u-basis
H of G with |H| ≤ (αu)|G|1/u by simply taking H = H1 ∪ · · · ∪ Hu. Moreover,
such a decomposition will also give that ρ(G, u) ≤ αu−1|G|1−1/u. Hence the following
question appears to be of more general interest.

Modified Rohrbach Problem. Is there an absolute constant c such that every finite
group G has a u-decomposition G = H1 · . . . ·Hu, where |Hi| ≤ c|G|1/u?

Both Rohrbach’s Problem and its modified version have been answered affirma-
tively for several special classes of finite groups. Of particular interest in our context
is the following result of Kozma and Lev [KoL94] (for our purposes, λi = 1/u in the
following theorem).

Theorem 7.4 (see [KoL94]). Let G be a finite group such that every composition
factor of G is either a cyclic group or an alternating group. Then for every positive
integer u and nonnegative real numbers λi such that λ1 + · · · + λu = 1, there is a
u-decomposition G = H1 · . . . ·Hu, where |H1| ≤ |G|λ1 and Hi ≤ 2|G|λi for 2 ≤ i ≤ u.
In particular, this conclusion holds if G is an alternating group or if G is solvable.

This result answers the Modified Rohrbach Problem affirmatively for some impor-
tant special classes of finite groups. As a consequence, we have the following corollary
about ρ(G, u).
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Corollary 7.5. Let G be a finite group such that every composition factor of
G is either a cyclic group or an alternating group. Then for every positive integer u,
ρ(G, u) ≤ 2u−1|G|1−1/u. In particular, this bound holds if G is an alternating group
or if G is solvable.

These results have been extended to groups with linear (PSL(n, q)) and symplec-
tic (Psp(2n, q)) composition factors (in addition to cyclic and alternating composition
factors) with a suitable small constant in place of the coefficient 2 (Pyber [Py98]).
There is hope that the Modified Rohrbach Problem will be settled in the affirmative in
the foreseeable future. (As mentioned above, this will also settle Rohrbach’s original
problem.)

In Examples 2.14 and 2.15, we gave upper bounds of O(|G|1−1/u) on ρ(G, u) of
two special cases of greatest interest to us, namely G = Z

t
2 and G = Zn. Thus in these

cases we reduce the gap between the trivial lower bound |G|1−1/u (Proposition 7.1)
and the upper bound to an absolute constant. These bounds are therefore stronger
than those implied by an affirmative answer to the Modified Rohrbach Problem.

We propose the following stronger version of the Modified Rohrbach Problem.
Problem. Is there an absolute constant c such that for any finite group G and any

positive integer u, ρ(G, u) ≤ c|G|1−1/u?
We have given the positive answer for cyclic groups and for elementary abelian

2-groups.

8. Open problems.
1. The main open problem in multiparty communication complexity theory re-
mains to find a nontrivial lower bound for some explicit function for more
than logn players. The following are some candidate functions:
(a) Let Tk,rt be defined as follows: Tk,rt (x1, . . . , xk) = 1 if and only if x1 +

· · ·+ xk ≥ t, where the xi are r-bit integers. The candidate function is
majority of thresholds MTn,k,r, defined by the following depth-2 circuit:

the bottom level has n Tk,rt gates, whose inputs are disjoint (so MT is a
function of knr bits), and the top gate is a majority gate. There are k
players, and the ith player misses the ith integer of each threshold gate.
We recommend n = k = r.
The (majority, Tk,1t )-communication problem is a SymCom(n, k) prob-
lem (see section 6), and hence for k ≥ 2 + log n it has an efficient SM
protocol. However, for r ≥ 2, MTn,k,r does not fit our description of
SymCom functions (because players miss more than one input bit at
each “f -gate”). So our protocol does not work, even though, for bounded

r, Tk,rt is a compressible function.
(b) Quadratic character of the sum of the coordinates, defined as follows: Let

p be an n-bit prime, and for 1 ≤ i ≤ k let xi be an n-bit integer missed by
player i. QCSp,k(x1, . . . , xk) := 1 if and only if x1+· · ·+xk is a quadratic
residue mod p. It is shown in [BaNS92] that C(QCSp,k) ≥ Ω(n/2k).

(c) Let F be a finite field of order q. Give each player a t × t matrix over
F . Let M be the product (in a given order) of these matrices. Estimate
the SM complexity of decision problems associated with M , such as, “Is
trace(M) a quadratic residue in F?” (for odd q). Here n ≈ qt

2

. The
case t = 2 is of particular interest.

2. Consider the SM problem GAFG,3. Show that there exists an ε > 0 such
that in any SM protocol for GAFG,3, if player 2 sends at most nε bits,
then player 1 must send ω(n/ log log n) bits. As explained in section 1.3,
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such a lower bound would imply that the n-bit output function f(x0, x1) =
(GAFG,3(x0, x1, x2))x2∈G cannot be computed by circuits of size O(n) and
depth O(log n). Note that our lower bound proof in section 2 implies3 that
for any ε > 0, if player 2 sends at most nε bits, then player 1 must send
Ω(n1−ε) bits. On the other hand, by the upper bound of [AmL00] (improving
the protocol in section 5), it suffices if both players send O(n0.73) bits.

3. Find nontrivial SM lower or upper bounds for the majority of QCSBs for any
partition of the input bits (see section 6).

4. Obtain an n1−ε SM upper bound for GAFG,k for the case where G is a cyclic
group. The best upper bound known is due to Ambainis [Am96]. He shows

that C0(GAFZn,3) = O(n log1/4 n

2
√

log n ) and that C0(GAFZn,k) = O(nε) for an arbi-

trary ε > 0 for k = O((log n)c(ε)).
5. The lower bound on the randomized SM complexity of GAFZ

t
2,k

from sec-

tion 3 is useful only when the advantage ε is n−O(1/k). Improve this to yield
meaningful (polylog(n)) lower bounds on the randomized SM complexity even
for advantages as small as 2−polylog(n). Such an improvement would enable
the extension of circuit lower bounds from section 4 to depth-3 in the spirit
of [HG91, RaW93] exploiting an “approximation lemma” from [HMPST87].
Note that the [BaNS92] lower bound in the CFL model works even for ad-

vantages as small as 2−n/c
k

.
6. This problem, stated as an open question in an earlier version of this paper
[BaKL95], was resolved in [BaHK01]. We repeat the problem and state its
current status.
Find a function f for which the one-way complexity C1(f) is exponentially
larger than C(f) for k ≥ 4 players.
Such a gap was found for k = 3 [NW93]; cf. Remark 2.9. For all k ≤ c log n,
the gap was established in [BaHK01]. We note that lower bounds for C1

complexity have been applied in [BaNS92] to lower bounds on branching
programs and formula size.

Acknowledgments. We are grateful to Avi Wigderson for suggesting to us the
SM model and pointing out the connection of ACC with the model considered in
this paper. In October of 1994, P. Pudlák kindly sent us the manuscript [PRS97] by
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1. Introduction. In this paper, we present and analyze a new public-key en-
cryption scheme, and several variants, proving that they are secure against adaptive
chosen ciphertext attack (as defined by Rackoff and Simon [50]) under standard in-
tractability assumptions. The schemes are quite practical, requiring just a few expo-
nentiations in a group for both encryption and decryption. Moreover, the proofs of
security of these schemes rely only on standard intractability assumptions: one vari-
ant relies only on the hardness of the decisional Diffie–Hellman problem, while other,
somewhat more practical, variants rely on a couple of other standard intractability
assumptions.

The hardness of the decisional Diffie–Hellman problem is essentially equivalent to
the semantic security of the basic ElGamal encryption scheme [30]. Thus, with just
a bit more computation, we get security against adaptive chosen ciphertext attack,
whereas the basic ElGamal scheme is completely insecure against this type of attack.

While there are several provably secure public-key encryption schemes in the lit-
erature, they are all quite impractical. Also, there are several practical encryption
schemes that have been proposed, but none of them has been proven secure under
standard intractability assumptions. The significance of our results is that they pro-
vide several schemes that are provably secure and practical at the same time. There
appear to be no other public-key encryption schemes in the literature that enjoy both
of these properties simultaneously.

1.1. Chosen ciphertext security. Semantic security, defined by Goldwasser
and Micali [34], captures the intuition that an adversary should not be able to obtain
any partial information about a message given its encryption. However, this guarantee
of secrecy is only valid when the adversary is completely passive, i.e., can only eaves-
drop. Indeed, semantic security offers no guarantee of secrecy at all if an adversary
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can mount an active attack, i.e., inject messages into a network or otherwise influence
the behavior of parties in the network.

To deal with active attacks, Rackoff and Simon [50] defined the notion of security
against an adaptive chosen ciphertext attack. If an adversary can inject messages
into a network, these messages may be ciphertexts, and the adversary may be able to
extract partial information about the corresponding cleartexts through its interactions
with the parties in the network. Rackoff and Simon’s definition models this type
of attack by simply allowing an adversary to obtain decryptions of its choice; i.e.,
the adversary has access to a “decryption oracle.” Now, given an encryption of a
message—the “target” ciphertext—we want to guarantee that the adversary cannot
obtain any partial information about the message. To achieve this, we have to restrict
the adversary’s behavior in some way; otherwise, the adversary could simply submit
the target ciphertext itself to the decryption oracle. The restriction proposed by
Rackoff and Simon is the weakest possible: the adversary is not allowed to submit the
target ciphertext itself to the oracle; however, it may submit any other ciphertext,
including ciphertexts that are related to the target ciphertext.

A different notion of security against active attacks, called nonmalleability, was
proposed by Dolev, Dwork, and Naor [27, 28]. Here, the adversary also has access
to a decryption oracle, but his goal is not to obtain partial information about the
target ciphertext but rather to create another encryption of a different message that
is related in some interesting way to the original, encrypted message. For example, for
a nonmalleable encryption scheme, given an encryption of n, it should be infeasible to
create an encryption of n + 1. It turns out that nonmalleability and security against
adaptive chosen ciphertext attack are equivalent [8, 28].

An encryption scheme secure against adaptive chosen ciphertext attack is a very
powerful cryptographic primitive. It is essential in designing protocols that are secure
against active adversaries. For example, this primitive is used in protocols for authen-
tication and key exchange [29, 28, 54] and in protocols for escrow, certified e-mail, and
more general fair exchange [3]. It is by now generally recognized in the cryptographic
research community that security against adaptive chosen ciphertext attack is the
“right” notion of security for a general-purpose public-key encryption scheme. This
is exemplified by the adoption of Bellare and Rogaway’s OAEP scheme [10] (a prac-
tical but only heuristically secure scheme) as the Internet encryption standard RSA
PKCS#1 version 2 and for use in the SET protocol for electronic commerce. Another
motivation for security against adaptive chosen ciphertext attack is Bleichenbacher’s
attack [13] on the widely used SSL key establishment protocol, which is based on RSA
PKCS#1 version 1—Bleichenbacher showed how to break this protocol by mounting
a specific chosen ciphertext attack (SSL still uses RSA PKCS#1 version 1, but the
protocol has been patched so as to avoid Bleichenbacher’s attack).

There are also intermediate notions of security between semantic security and
adaptive chosen ciphertext security. Naor and Yung [47] propose an attack model
where the adversary has access to the decryption oracle only prior to obtaining the
target ciphertext, and the goal of the adversary is to obtain partial information about
the encrypted message. Naor and Yung called this type of attack a chosen ciphertext
attack ; it has also been called a “lunch-time” or “midnight” attack, and also an
indifferent chosen ciphertext attack. In this paper, we will use the phrase adaptive
chosen ciphertext attack for Rackoff and Simon’s definition to distinguish it from Naor
and Yung’s definition. Also, throughout this paper, unless otherwise specified, by
“security” we will always mean “security against adaptive chosen ciphertext attack.”
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1.2. Previous work.
Provably secure schemes. Naor and Yung [47] presented the first scheme prov-

ably secure against lunch-time attacks. Subsequently, Dolev, Dwork, and Naor [27]
presented a scheme that is provably secure against adaptive chosen ciphertext attack.

Rackoff and Simon [50] present and prove the security of an encryption scheme,
but their scheme is actually not a public-key scheme in the traditional sense: in
their scheme, all users—both senders and receivers—require public keys, and, more-
over, a trusted center is required to perform certain functions. In contrast, all other
schemes mentioned in this paper, including our own, are traditional public-key sys-
tems: encryption is a probabilistic function of the message and the receiver’s public
key, decryption is a function of the ciphertext and the receiver’s secret key, and no
trusted center is required. This distinction can be important: adding extra system
requirements as in the Rackoff and Simon scheme can greatly restrict the range of
application of the scheme.

All of the previously known schemes provably secure under standard intractability
assumptions are completely impractical (albeit polynomial time), as they rely on
general and expensive constructions for noninteractive zero-knowledge proofs. This
includes nonstandard schemes like Rackoff and Simon’s as well.

Practical schemes. Damg̊ard [25] proposed a practical scheme that he conjectured
to be secure against lunch-time attacks; however, this scheme is not known to be
provably secure in this sense and is in fact demonstrably insecure against adaptive
chosen ciphertext attack.

Zheng and Seberry [62] proposed practical schemes that are conjectured to be
secure against chosen ciphertext attack, but again no proof based on standard in-
tractability assumptions is known. Lim and Lee [39] also proposed practical schemes
that were later broken by Frankel and Yung [31].

Bellare and Rogaway [9, 10] have presented practical schemes for which they give
heuristic proofs of adaptive chosen ciphertext security; namely, they prove security
based on the assumption of a one-way trapdoor permutation in an idealized model
of computation, the so-called random oracle model, wherein a hash function is rep-
resented by a random oracle. Actually, it turns out that the proof of security of
the OAEP scheme in [10] is flawed: as demonstrated in [57], there can be no stan-
dard “black box” security proof based on an arbitrary one-way trapdoor permutation.
However, the negative result in [57] does not rule out the possibility that OAEP in con-
junction with a specific one-way trapdoor permutation scheme is secure. Indeed, it is
shown in [57] that OAEP with exponent-3 RSA is secure, and this result is generalized
in [32] to arbitrary-exponent RSA. A new scheme, OAEP+, is also presented in [57],
which can be proven secure in the random oracle model, using an arbitrary one-way
trapdoor permutation. Further variations of OAEP and OAEP+ are discussed in [15].

Shoup and Gennaro [58] also give ElGamal-like schemes that are secure against
adaptive chosen ciphertext attack in the random oracle model and that are also
amenable to efficient threshold decryption.

We stress that although a security proof in the random oracle model is of some
value, it is still only a heuristic proof. In particular, these types of proofs do not
rule out the possibility of breaking the scheme without breaking the underlying in-
tractability assumption. Nor do they even rule out the possibility of breaking the
scheme without finding some kind of weakness in the hash function, as shown by
Canetti, Goldreich, and Halevi [19].
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1.3. Further progress. Subsequent to the publication of the extended ab-
stract [22] on which the present paper is based, some further progress in this area
has been made. Canetti and Goldwasser [20] presented a threshold-decryption vari-
ant of our scheme. Also, the authors of the present paper [24] have generalized and
extended the basic ideas underlying our encryption scheme, obtaining new and quite
practical encryption schemes that are secure against adaptive chosen ciphertext at-
tack under different assumptions—one scheme relies on Paillier’s decision composite
residuosity assumption [49], while the other (somewhat less practical) scheme relies
on the classical quadratic residuosity assumption.

1.4. Outline of paper. Our paper consists of two parts.
Part 1. In the first part, we take care of a number of preliminaries, after which

we present a basic version of our new scheme, along with a few variants. This first
part is organized as follows:
Section 2: We introduce some basic notation that will be used throughout the paper.
Section 3: We state the formal definition of a public-key encryption scheme and the

notion of security against adaptive chosen ciphertext attack. We also discuss
some implications of the definition of security that illustrate its utility.

Section 4: We state the formal definitions of several intractability assumptions related
to the discrete logarithm problem: the discrete logarithm assumption, the
computational Diffie–Hellman assumption, and the decisional Diffie–Hellman
assumption. In doing this, we introduce the notion of a computational group
scheme, which is a general framework that allows us to discuss in an abstract,
yet sufficiently concrete way the different families of groups that may be used
in cryptographic applications.

Section 5: We define the notion of a target collision resistant hash function, which is a
special type of a universal one-way hash function. We will use this primitive
in the most efficient variants of our encryption scheme.

Section 6: We present and analyze the basic version of our encryption scheme, which
we call CS1, along with two variants, called CS1a and CS1b. We prove the
security of these schemes based on the decisional Diffie–Hellman assumption
and the assumption that a given family of hash functions is target collision
resistant. We also present and analyze a somewhat less efficient scheme, called
CS2, which does not require a target collision resistant hash function.

Part 2. The schemes presented in section 6 suffer from two drawbacks. First,
the schemes require that plaintexts are, or can be encoded as, group elements, which
may significantly restrict the range of application of the encryption scheme and/or
the choice of computational group scheme; it would be nice to relax this restriction,
allowing plaintexts to be, say, bit strings of arbitrary length. Second, if the decisional
Diffie–Hellman assumption is false, these schemes can be trivially broken; it would
be nice if we could provide a second level of defense so that if the decisional Diffie–
Hellman assumption turns out to be false, we have a scheme that still offers some
security—even if only heuristically.

It turns out that both of these drawbacks can be dealt with by using a technique
called hybrid encryption. Basically, a hybrid encryption scheme uses public-key en-
cryption techniques to derive a shared key that is then used to encrypt the actual
message using standard symmetric-key techniques. The second part of the paper is
devoted to developing the formal theory behind this technique and to designing and
analyzing variations on our basic scheme that utilize this technique. This part is
organized as follows:
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Section 7: We lay the theoretical foundations for hybrid encryption. Although most of
the ideas in this section appear to be “folklore,” they have not been treated
rigorously in the literature. In section 7.1, we introduce the notion of a
key encapsulation mechanism and an appropriate notion of security against
adaptive chosen ciphertext attack. A key encapsulation mechanism is like a
public-key encryption scheme, except that the encryption algorithm can only
be used to generate and encrypt a random bit string of fixed length, which
we shall use as a key for a symmetric-key encryption scheme. In section 7.2,
we state the formal properties of a symmetric-key encryption scheme that
we need for use in a hybrid encryption scheme and discuss some simple con-
structions based on pseudorandom bit generators and message authentication
codes. In section 7.3, we prove that an appropriately secure key encapsulation
mechanism, combined with an appropriately secure symmetric-key encryption
scheme, yields a public-key encryption scheme that is secure against adaptive
chosen ciphertext attack.
In what follows, we concentrate exclusively on the problem of construct-
ing secure key encapsulation mechanisms, since the problem of constructing
symmetric-key encryption schemes is essentially solved.

Section 8: We discuss the notion of a secure key derivation function, which is a func-
tion that should map random group elements to pseudorandom bit strings
of a given length. A key derivation function is an essential ingredient in our
constructions of key encapsulation mechanisms.

Section 9: We present and analyze a key encapsulation mechanism, CS3, along with
two variants, CS3a and CS3b, and prove their security under the decisional
Diffie–Hellman assumption, and also assuming a target collision resistant hash
function and a secure key derivation function.

Section 10: The hybrid encryption scheme obtained from CS3b is by far the most
practical of the encryption schemes presented in this paper; moreover, it has
other interesting security properties. We show that CS3b is no less secure
than a more traditional key encapsulation mechanism that is a hashed vari-
ant of ElGamal encryption, which we call HEG. Second, we also show that
CS3b is secure in the random oracle model (viewing the key derivation func-
tion as a random function), under the weaker computational Diffie–Hellman
assumption, and also assuming a target collision resistant hash function. The
results in this section show that there is virtually no risk in using scheme
CS3b relative to more traditional encryption schemes, while at the same time
CS3b provides a security guarantee that more traditional schemes do not.

We conclude in section 11 with a brief summary.

2. Some preliminaries.

2.1. Basic mathematical notation. Z denotes the ring of integers, Z≥0 de-
notes the set of nonnegative integers, and for positive integer k, Zk denotes the ring
of integers modulo k, and Z∗

k denotes the corresponding multiplicative group of units.

2.2. Algorithms and probability spaces. We write ν ← α to denote the
algorithmic action of assigning the value of α to the variable ν.

Let X be a finite probability space, i.e., a probability space on a finite set S. For
α ∈ S, we let PrX [α] denote the probability that X assigns to α, and for S′ ⊂ S we
let PrX [S′] denote the probability that X assigns to S′.

We write ν
R← X to denote the algorithmic action of sampling an element of S
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according to the distribution X and assigning the result of this sampling experiment

to the variable ν. We sometimes write ν1, . . . , νk
R← X as shorthand for ν1

R← X; . . . ;

νk
R← X.
For any finite set S, U(S) denotes the uniform distribution on S. We write ν

R← S

as shorthand for ν
R← U(S).

For any probability space X on a finite set S, we denote by [X] the subset of
elements of S that are assigned nonzero probability by X, i.e., the “support” of X.

If X1, X2, . . . , Xk are finite probability spaces and φ is a k-ary predicate, then we
write

Pr[φ(ν1, . . . , νk) : ν1
R← X1; . . . ; νk

R← Xk]

to denote the probability that φ(ν1, . . . , νk) holds when ν1 is sampled from X1, ν2 is
sampled from X2, etc. More generally, for 1 ≤ i ≤ k, Xi may be a family of finite
probability spaces parameterized by (ν1, . . . , νi−1), and we write

Pr[φ(ν1, . . . , νk) : ν1
R← X1; ν2

R← X2(ν1); . . . ; νk
R← Xk(ν1, . . . , νk−1)]

to denote the probability that φ(ν1, . . . , νk) holds when ν1 is sampled from X1, after
which ν2 is sampled from X2(ν1), and so on. In this case, it is important that ν1, . . . , νk
are sampled in the order given.

Similarly, if F is a k-ary function, then

{F (ν1, . . . , νk) : ν1
R← X1; ν2

R← X2(ν1); . . . ; νk
R← Xk(ν1, . . . , νk−1)}

denotes the probability space defined by sampling ν1 from X1, ν2 from X2(ν1), and
so on, and then evaluating the function F (ν1, . . . , νk).

We shall consider polynomial-time probabilistic algorithms A. We shall insist
that for all λ ∈ Z≥0 and all inputs of length λ, algorithm A always halts in time
bounded by a polynomial in λ, regardless of the random choices that A may make.
In particular, for any input tuple (α1, . . . , αk), the random choices made by A as
well as the output of A on this input are finite probability spaces. We denote this
output probability space of A for a given input (α1, . . . , αk) by A(α1, . . . , αk). We
stress that A(α1, . . . , αk) is a probability space and not a value. As such, we may write

ν
R← A(α1, . . . , αk) to denote the algorithmic action of running A on input (α1, . . . , αk)

and assigning the output to the variable ν. When we speak of the “running time” of
A, we mean the worst-case running time of A for inputs of a given length.

To exercise the above notation a bit, note that [A(α1, . . . , αk)] denotes the set of
possible outputs of A on input (α1, . . . , αk). For a tertiary predicate φ, polynomial-
time probabilistic algorithms A1 and A2, and a value α0,

Pr[φ(α0, α1, α2) : α1
R← A1(α0);α2

R← A2(α0, α1)]

denotes the probability that φ(α0, α1, α2) holds when A1 is run on input α0, yielding
an output α1, and then A2 is run on input (α0, α1), yielding an output α2.

For λ ∈ Z≥0, 1λ denotes the bit string consisting of λ copies of the bit 1. The
string 1λ will often be an input to an algorithm: this is a technical device that allows
a polynomial-time algorithm to run in time bounded by a polynomial in λ, even if
there are no other inputs to the algorithm or those inputs happen to be very short.
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2.3. Statistical distance and negligible functions. Let X and Y be proba-
bility spaces on a finite set S. Define the statistical distance ∆(X,Y ) between X and Y
as

∆(X,Y ) :=
1

2

∑
α∈S

|PrX [α]− PrY [α]|.

One can easily verify that

∆(X,Y ) = max
S′⊂S

|PrX [S′]− PrY [S′]|.

A function F mapping nonnegative integers to nonnegative reals is called negligible
if for all positive numbers c there exists an integer λ0(c) ≥ 0 such that for all λ > λ0(c)
we have F (λ) < 1/λc.

3. Secure public-key encryption. In this section, we state the basic proper-
ties of a public-key encryption scheme, along with the definition of security against
adaptive chosen ciphertext attack. Although the notions here are relatively standard,
we treat a number of details here that are not often dealt with in the literature. We
also discuss some implications of the definition of security that illustrate its utility.

3.1. Public-key encryption schemes. A public-key encryption scheme PKE
consists of the following algorithms:

• A probabilistic, polynomial-time key generation algorithm PKE.KeyGen that
on input 1λ for λ ∈ Z≥0 outputs a public-key/secret-key pair (PK,SK). The
structure of PK and SK depends on the particular scheme.
For λ ∈ Z≥0, we define the probability spaces

PKE.PKSpaceλ := {PK : (PK,SK)
R← PKE.KeyGen(1λ)}

and

PKE.SKSpaceλ := {SK : (PK,SK)
R← PKE.KeyGen(1λ)}.

• A probabilistic, polynomial-time encryption algorithm PKE.Encrypt that takes
as input 1λ for λ ∈ Z≥0, a public key PK ∈ [PKE.PKSpaceλ], and a message
m and outputs a ciphertext ψ.
A ciphertext is a bit string. The structure of a message may depend on the
particular scheme; see below (section 3.1.1) for a discussion.
• A deterministic, polynomial-time decryption algorithm PKE.Decrypt that

takes as input 1λ for λ ∈ Z≥0, a secret key SK ∈ [PKE.SKSpaceλ], and a
ciphertext ψ and outputs either a message m or the special symbol reject.

3.1.1. Message spaces. Different public-key encryption schemes might specify
different message spaces, and these message spaces might in fact vary with the choice
of public key. Let us denote by PKE.MSpaceλ,PK the message space associated with
λ ∈ Z≥0 and PK ∈ [PKE.PKSpaceλ]. Although there may be other ways of categoriz-
ing message spaces, we shall work with schemes that specify message spaces in one of
two ways:

unrestricted message space: PKE.MSpaceλ,PK = {0, 1}∗ for all λ and PK.
restricted message space: PKE.MSpaceλ,PK is a finite set that may depend on λ

and PK.
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There should be a deterministic, polynomial-time algorithm that on input 1λ,
PK, and α determines if α ∈ PKE.MSpaceλ,PK.

Clearly, a public-key encryption scheme with an unrestricted message space will be
most suitable in a setting where a very general-purpose encryption scheme is required.
However, encryption schemes with restricted message spaces can be useful in some
settings as well.

3.1.2. Soundness. A public-key encryption scheme should be sound in the sense
that decrypting an encryption of a message should yield the original message.

Requiring that this always holds is a very strong condition which will not be
satisfied by many otherwise quite acceptable encryption schemes.

A definition of soundness that is adequate for our purposes runs as follows.
Let us say a public-key/secret-key pair (PK,SK) ∈ [PKE.KeyGen(1λ)] is bad if
for some m ∈ PKE.MSpaceλ,PK and some ψ ∈ [PKE.Encrypt(1λ,PK,m)] we have

PKE.Decrypt(1λ,SK, ψ) �= m. Then our requirement is that the probability that the
key generation algorithm outputs a bad key pair grows negligibly in λ.

One could formulate even weaker notions of soundness that would still be adequate
for many applications, but we shall not pursue them here.

3.2. Security against adaptive chosen ciphertext attack. An adversary
A in an adaptive chosen ciphertext attack (CCA) is a probabilistic, polynomial-time
oracle query machine.

The attack game is defined in terms of an interactive computation between the
adversary and its environment. The adversary’s environment responds to the oracle
queries made by the adversary: each oracle query response is sampled from a prob-
ability space that is a function of the adversary’s input and all the previous oracle
queries made by the adversary. We require that A runs in time strictly bounded
by a polynomial in the length of its input, regardless of its probabilistic choices and
regardless of the responses to its oracle queries from its environment.

We now describe the attack game used to define security against adaptive chosen
ciphertext attack; that is, we define (operationally) the environment in which A runs.
We assume that the input to A is 1λ for some λ ∈ Z≥0.

Stage 1: The adversary queries a key generation oracle. The key generation oracle

computes (PK,SK)
R← PKE.KeyGen(1λ) and responds with PK.

Stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary submits a bit string ψ, and the

decryption oracle responds with PKE.Decrypt(1λ,SK, ψ).
We emphasize that ψ may be an arbitrary bit string, concocted by A in an arbi-

trary fashion—it certainly need not be an output of the encryption algorithm.
Stage 3: The adversary submits two messages m0,m1 ∈ PKE.MSpaceλ,PK to an

encryption oracle. In the case of an unrestricted message space, we require that
|m0| = |m1|.

On input m0,m1, the encryption oracle computes

σ
R← {0, 1}; ψ∗ R← PKE.Encrypt(1λ,PK,mσ)

and responds with the “target” ciphertext ψ∗.
Stage 4: The adversary continues to make calls to the decryption oracle subject

only to the restriction that a submitted bit string ψ is not identical to ψ∗.
Again, we emphasize that ψ is arbitrary and may even be computed by A as a

function of ψ∗.
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Stage 5: The adversary outputs σ̂ ∈ {0, 1}.
We define the CCA advantage of A against PKE at λ, denoted AdvCCAPKE,A(λ),

to be |Pr[σ = σ̂]− 1/2| in the above attack game.
We say that PKE is secure against adaptive chosen ciphertext attack if

for all probabilistic, polynomial-time oracle query machines A the
function AdvCCAPKE,A(λ) grows negligibly in λ.

3.3. Alternative characterization of security. In applying the above defini-
tion of security, one typically works directly with the quantity

AdvCCA′
PKE,A(λ) := |Pr[σ̂ = 1 | σ = 0]− Pr[σ̂ = 1 | σ = 1]| .

If we view A as a statistical test, then the quantity AdvCCA′
PKE,A(λ) measures A’s

advantage in distinguishing a game in which m0 is always encrypted from a game in
which m1 is always encrypted. It is easy to verify that

AdvCCA′
PKE,A(λ) = 2 · AdvCCAPKE,A(λ).

We present here a sketch of another characterization of this notion of security
that illustrates more fully its utility in reasoning about the security of higher-level
protocols. This alternative characterization is a natural, high-level, simulation-based
definition that in some ways provides a justification for the rather low-level, techni-
cal definition given above. Our treatment here will be somewhat less formal than
elsewhere in this paper.

We start by defining the notion of a channel, which is an object that implements
the following operations:

• KeyGen—outputs a public key PK.
• Encrypt—takes as input a message m and outputs a ciphertext ψ.
• Decrypt—takes as input a ciphertext ψ and outputs a message m (possibly a

special reject symbol).
Additionally, a channel is parameterized by a security parameter λ.

To initialize a channel, the KeyGen operation is invoked, after which an arbitrary
number of Encrypt and Decrypt operations may be invoked. A channel may maintain
state between invocations of these operations. We shall assume that messages are
arbitrary bit strings.

A channel may be implemented in several ways. One way, of course, is to simply
“plug in” a public-key encryption scheme. We call such an implementation of a
channel a real channel. We wish to describe another implementation, which we call
an ideal channel.

Loosely speaking, an ideal channel acts essentially like a private storage and
retrieval service: when an Encrypt operation is invoked with a message m, the ideal
channel generates a corresponding ciphertext ψ without even “looking” at m and
stores the pair (m,ψ) in a table; when a Decrypt operation is invoked with a ciphertext
ψ such that (m,ψ) is in the table for some m, the ideal channel returns the message
m. Thus, the “encryption” ψ of a message m is completely independent of m and
essentially plays the role of a “receipt,” which when presented to the Decrypt operation
yields the message m. As such, the Encrypt operation might be better named Store
and the Decrypt operation named Retrieve.

We now describe the operation of an ideal channel in a bit more detail.
An ideal channel is built using a channel simulator. A channel simulator is an

object that implements an interface that is identical to that of a channel, except that
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the Encrypt operation does not take as input a message but rather just the length of
a message.

An ideal channel uses a channel simulator as follows. The KeyGen operation of
the ideal channel is implemented directly in terms of the KeyGen operation of the
channel simulator. The ideal channel maintains a set S of message/ciphertext pairs
(m,ψ) and a set T of ciphertexts, both initially empty.

When the Encrypt operation of the ideal channel is invoked with input m, the
ideal channel invokes the channel simulator with input |m|, obtaining a ciphertext ψ.
If ψ ∈ T or (m′, ψ) ∈ S for some m′, the ideal channel becomes “broken,” and this
and all subsequent invocations of either Encrypt or Decrypt return a special symbol
indicating this; otherwise, the ideal channel adds the pair (m,ψ) to S and returns ψ
as the result of the Encrypt operation.

When the Decrypt operation of the ideal channel is invoked with input ψ, the ideal
channel first checks if (m,ψ) ∈ S for some m; if so, it simply returns the message m;
otherwise, it adds ψ to T , invokes the Decrypt operation of the channel simulator to
obtain m, and returns m.

That completes the description of how an ideal channel is implemented using a
channel simulator.

Now we define a notion of security based on the indistinguishability of real and
ideal channels for a public-key encryption scheme PKE with an unrestricted message
space. Consider a game in which a polynomial-time probabilistic adversary A interacts
with an arbitrary number of channels and at the end of the game outputs a 0 or 1.
We say that PKE is secure in the sense of channel indistinguishability if there exists
an efficient channel simulator such that, for the resulting ideal channel, A cannot
effectively distinguish between a game played with all real channels and a game played
with all ideal channels; i.e., the absolute difference between the probabilities that A
outputs a 1 in the two games grows negligibly in the security parameter.

Note that since real channels never become broken, this definition of security
implies that ideal channels become broken with only negligible probability.

It is straightforward to show that if PKE is secure against adaptive chosen cipher-
text attack, then it is also secure in the sense of channel indistinguishability. To prove
this, the channel simulator is implemented using the KeyGen and Decrypt algorithms
of PKE, and the Encrypt operation of the channel simulator on input � simply runs
the Encrypt algorithm of PKE on input 1�. It can be shown using a standard “hybrid”
argument that the resulting ideal channel is indistinguishable from the real channel.

In analyzing a higher-level protocol, one may substitute all real channels by ideal
channels. Presumably, it is much more straightforward to then analyze the resulting
idealized protocol, since in the idealized protocol ciphertexts are just “receipts” that
are completely independent of the corresponding messages. Security implies that any
(polynomial-time recognizable) event in the original protocol occurs with essentially
the same probability as in the idealized protocol.

3.4. Further discussion. The definition of security we have presented here is
from [50]. It is called IND-CCA2 in [8]. It is known to be equivalent to other notions,
such as nonmalleability [27, 8, 28], which is called NM-CCA2 in [8].

There are other, weaker notions of security for a public-key encryption scheme.
For example, [47] defines a notion that is sometimes called security against indiffer-
ent chosen ciphertext attack, or security against lunchtime attack. This definition of
security is exactly the same as the one above in section 3.2, except that Stage 4 of
the attack is omitted—that is, the adversary does not have access to the decryption
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oracle after it obtains the target ciphertext. While this notion of security may seem
natural, it is actually not sufficient in many applications; in particular, in the channel
model discussed above in section 3.3 one could not allow the interleaving of Encrypt
and Decrypt operations. This notion is called IND-CCA1 in [8].

An even weaker notion of security for a public-key encryption scheme is that of
security against a passive attack, also known as semantic security. This definition of
security is exactly the same as the one above in section 3.2, except that both Stages
2 and 4 of the attack are omitted— that is, the adversary does not have access to the
decryption oracle at all. This notion was introduced in [34] and is called IND-CPA
in [8]. This notion of security is quite limited: it is only adequate in situations where
the adversary has only the power to eavesdrop network traffic but cannot modify
network traffic or otherwise actively participate in a protocol using the encryption
scheme.

For a similar, but slightly different, approach to modeling encryption as an “ide-
alized” process, see [18]. See also [7] for another generalization of the definition of
adaptive chosen ciphertext attack to a setting involving many users and messages.

Another notion of security is that of plaintext awareness, introduced in [10] and
further refined in [8], where in a certain sense an adversary who submits a cipher-
text for decryption must already “know” the corresponding plaintext, and hence the
decryption oracle does not really help. The notion defined in these papers makes
sense only in the random oracle model, but in that model security in the sense of [8]
implies security against adaptive chosen ciphertext attack. Conversely, while security
against adaptive chosen ciphertext attack does not imply that an adversary “knows”
the plaintext corresponding to a submitted ciphertext, it does imply that it does
not “hurt” to tell him the plaintext, and in this sense the notion of security against
adaptive chosen ciphertext attack is probably just as good as any notion of plaintext
awareness.

4. Intractability assumptions related to the discrete logarithm prob-
lem. In this section, we recall the discrete logarithm (DL) assumption, the computa-
tional Diffie–Hellman (CDH) assumption, and the decisional Diffie–Hellman (DDH)
assumption. All of these assumptions are formulated with respect to a suitable group
G of large prime order q generated by a given element g.

Informally, the DL assumption is this:
given gx, it is hard to compute x.

Informally, the CDH assumption is this:
given gx and gy for random x, y ∈ Zq, it is hard to compute gxy.

Informally, the DDH assumption is this:
it is hard to distinguish triples of the form (gx, gy, gz) for random
x, y, z ∈ Zq from triples of the form (gx, gy, gxy) for random x, y ∈ Zq.

It is clear that the DDH assumption is at least as strong as the CDH assumption,
which in turn is at least as strong as the DL assumption. The rest of this section is
devoted to describing these assumptions more formally, discussing appropriate groups,
and discussing some variations and consequences of these assumptions.

4.1. Computational group schemes. To state these intractability assump-
tions in a general but precise way and in an appropriate asymptotic setting, we intro-
duce the notion of a computational group scheme.

A computational group scheme G specifies a sequence (Sλ)λ∈Z≥0
of group dis-

tributions. For every value of a security parameter λ ∈ Z≥0, Sλ is a probability
distribution of group descriptions. A group description Γ specifies a finite abelian



178 RONALD CRAMER AND VICTOR SHOUP

group Ĝ, along with a prime order subgroup G, a generator g of G, and the order q
of G. We use multiplicative notation for the group operation in Ĝ, and we denote the
identity element of Ĝ by 1G.

We will write Γ[Ĝ,G, g, q] to indicate that Γ specifies Ĝ, G, g, and q as above. The
following is a simple example of this notation: “for all λ ∈ Z≥0, for all Γ[Ĝ,G, g, q] ∈
[Sλ], we have gq = 1G.”

As usual, mathematical objects such as a group description Γ and elements of a
group Ĝ are represented for computational purposes as bit strings bounded in length
by a polynomial in λ. The interpretation of these bit strings is up to the algorithms
comprising the group scheme (see below). However, we require that the encoding
scheme used to represent group elements as bit strings be canonical ; that is, every
element of a group Ĝ has a unique binary encoding.

The group scheme should also provide several algorithms:
• a deterministic, polynomial-time algorithm for computing the group oper-

ation that takes as input 1λ for λ ∈ Z≥0, Γ[Ĝ,G, g, q] ∈ [Sλ], along with

h1, h2 ∈ Ĝ, and outputs the group element h1 · h2 ∈ Ĝ;
• a deterministic, polynomial-time algorithm for computing the group inversion

operation that takes as input 1λ for λ ∈ Z≥0, Γ[Ĝ,G, g, q] ∈ [Sλ], and h ∈ Ĝ

and outputs h−1 ∈ Ĝ;
• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈ Z≥0,

Γ[Ĝ,G, g, q] ∈ [Sλ], and α ∈ {0, 1}∗ and determines if α is a valid binary en-
coding of an element of Ĝ;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈ Z≥0,

Γ[Ĝ,G, g, q] ∈ [Sλ], and h ∈ Ĝ and determines if h ∈ G;
• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈ Z≥0

and Γ[Ĝ,G, g, q] ∈ [Sλ] and outputs g and q;
• a probabilistic, polynomial-time approximate sampling algorithm Ŝ that on

input 1λ approximately samples Sλ: the distributions Sλ and Ŝ(1λ) should
be statistically close; that is, the statistical distance ∆(Sλ, Ŝ(1λ)) should be
a negligible function in λ.

Notice that we do not require that the output distribution Ŝ(1λ) of the sam-
pling algorithm is identical to Sλ but only that the distributions have a negligible
statistical distance. In particular, not all elements of [Ŝ(1λ)] are necessarily valid
group descriptions. It would be impractical to require that these two distributions be
identical.

Note that the requirement that the group order be easily computable from the
group description is not a trivial requirement: it is easy to exhibit groups whose orders
are not easy to compute, e.g., subgroups of Z∗

n for composite n.
The requirement that group elements have unique encodings is also an important,

nontrivial requirement. It is easy to exhibit quotient groups in which the problem of
computing canonical representatives of residue classes is nontrivial. An example of
this is the group underlying Paillier’s encryption scheme [49].

Let Γ[Ĝ,G, g, q] ∈ [Sλ]. The value 1G may be directly encoded in Γ, but if not
we can always compute it as g · g−1.

Although we will not require it, typical group schemes will have the property that
for all Γ[Ĝ,G, g, q] ∈ [Sλ] the only elements of Ĝ of order q lie in G. When this is the
case, testing whether a given h ∈ Ĝ lies in the subgroup G can be implemented by
testing if hq = 1G. However, a group scheme may provide a more efficient subgroup
test.
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Let Γ[Ĝ,G, g, q] ∈ [Sλ]. For a ∈ G \ {1G} and b ∈ G, we denote by loga b the
discrete logarithm of b to the base a; that is, loga b is the unique element x ∈ Zq such
that b = ax.

As a notational convention, throughout this paper, the letters a–h (and decorated
versions thereof) will denote elements of Ĝ, and the letters r–z (and decorated versions
thereof) will denote elements of Zq.

4.2. Examples of appropriate computational group schemes. There are
several examples of computational group schemes that are appropriate for crypto-
graphic applications.

Example 1. Let �1(λ) and �2(λ) be polynomially bounded integer-valued functions
in λ such that 1 < �1(λ) < �2(λ) for all λ ∈ Z≥0. It should be the case that the
function 2−�1(λ) is negligible. For a given λ ∈ Z≥0, the distribution Sλ is defined as
the distribution of triples (q, p, g), where

• q is a random �1(λ)-bit prime,
• p is a random �2(λ)-bit prime with p ≡ 1 (mod q), and
• g is a random generator of G, the unique subgroup of order q of the cyclic

group Ĝ = Z∗
p.

Elements in Z∗
p can be encoded canonically as bit strings of length �2(λ). Group

operations in Z∗
p are efficiently implemented using arithmetic modulo p, and group in-

version is implemented using the extended Euclidean algorithm. To test if an element
(α mod p) ∈ Z∗

p lies in G, we can test if αq ≡ 1 (mod p).
A random generator g of G may be obtained by generating a random element in

Z∗
p and raising it to the power (p−1)/q (repeating if necessary if this yields (1 mod p)).

The sampling algorithm Ŝ may use standard, practical algorithms for primality
testing that may err with a small probability that grows negligibly in λ. See, e.g., [4]
for more information on primality testing. Not all elements of [Ŝ(1λ)] are valid group
descriptions. Moreover, depending on other aspects of the implementation, the distri-
bution on the valid group descriptions may also be slightly skewed away from Sλ. In
our formulation of various intractability assumptions, it is much more convenient to
work with the natural distribution Sλ than with the more awkward distribution Ŝ(1λ).

We should comment that the density of primes p such that p ≡ 1 (mod q) has never
been proven to be sufficiently large to ensure fast termination of the group generation
algorithm. Dirichlet’s theorem on primes in arithmetic progressions applies only to
the case where q is fixed relative to p. However, provided �2(λ) ≥ (2 + δ)�1(λ) for
some fixed δ > 0, for any �1(λ)-bit prime q, the probability that a random �2(λ)-bit
number of the form qk + 1 is prime is Ω(1/�2(λ)), assuming the extended Riemann
hypothesis (ERH). This follows from Theorem 8.8.18 in [4].

If the density of primes p such that p ≡ 1 (mod q) cannot be proven to be
sufficiently large to ensure fast termination of the group generation algorithm, even
assuming the ERH, it may not be unreasonable to still conjecture that this is the case.

Example 2. This is the same as Example 1, except that p = 2q + 1, where q
is a random �1(λ)-bit prime. Such a prime q is known as a Sophie Germain prime.
It is unknown if there exist infinitely many Sophie Germain primes. However, it
is conjectured that there are, and specific conjectures on their density have been
made [5, 6] that empirically seem to be valid. In particular, it is conjectured that the
probability that a random �1(λ)-bit number is a Sophie Germain prime is Ω(1/�1(λ)2).
If such a density estimate were true, then a simple trial and error method for finding
Sophie Germain primes would terminate quickly. See [23] for more information on
efficiently generating such primes.
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Since the subgroup G of Z∗
p of order q is just the subgroup of quadratic residues,

testing if a given element (α mod p) ∈ Z∗
p lies in G can be performed by computing

the Legendre symbol (α | p), which is generally much more efficient than computing
αq mod p.

A nice property of this construction is that the numbers {1, . . . , q} are easily
encoded as elements of G. Given α ∈ {1, . . . , q}, we test if (α | p) = 1; if so, then
we encode α as (α mod p) ∈ G, and otherwise we encode α as (−α mod p). Given a
group element h = (α mod p) ∈ G with 1 ≤ α ≤ p − 1, we decode h as α if α ≤ q,
and otherwise we decode h as p− α.

This encoding scheme clearly allows us to also easily encode arbitrary bit strings
of length �1(λ)− 1 as elements of G.

Example 3. One can also construct G as a prime order subgroup of an elliptic
curve over a finite field. Elliptic curves and their application to cryptography is a very
rich field, and we refer the reader to [12] for an introduction and further references.
We note here only that some of the same minor technical problems that arose above
in Example 1 also arise here; namely, we note that (1) the known procedures for gen-
erating elliptic curves whose orders have a suitably large prime factor are somewhat
heuristic, simply because not enough has been proven about how the order of a ran-
domly generated elliptic curve factors into primes, and (2) it is in general not easy
to encode arbitrary bit strings of a given length as points on an elliptic curve. We
also note that it is fairly easy to generate elliptic curves of prime order so that we do
not have to work in a subgroup; i.e., we can take G = Ĝ. This is useful, as then the
subgroup test becomes trivial.

4.3. Intractability assumptions.

4.3.1. The DL assumption. Let G be a computational group scheme specifying
a sequence (Sλ)λ∈Z≥0

of group distributions.
For all probabilistic, polynomial-time algorithms A and for all λ ∈ Z≥0, we define

the DL advantage of A against G at λ as

AdvDLG,A(λ) := Pr[ y = x : Γ[Ĝ,G, g, q]
R← Sλ; x

R← Zq; y
R← A(1λ,Γ, gx) ].

The DL assumption for G is this:
For every probabilistic, polynomial-time algorithm A, the function
AdvDLG,A(λ) is negligible in λ.

4.3.2. The CDH assumption. Let G be a computational group scheme spec-
ifying a sequence (Sλ)λ∈Z≥0

of group distributions.
For all probabilistic, polynomial-time algorithms A and for all λ ∈ Z≥0, we define

the CDH advantage of A against G at λ as

AdvCDHG,A(λ) := Pr[ c = gxy : Γ[Ĝ,G, g, q]
R← Sλ; x, y

R← Zq; c
R← A(1λ,Γ, gx, gy) ].

The CDH assumption for G is this:
For every probabilistic, polynomial-time algorithm A, the function
AdvCDHG,A(λ) is negligible in λ.

For all probabilistic, polynomial-time algorithms A, for all λ ∈ Z≥0, and for all

Γ[Ĝ,G, g, q] ∈ [Sλ], we define the CDH advantage of A against G at λ given Γ as

AdvCDHG,A(λ | Γ) := Pr[ c = gxy : x
R← Zq; y

R← Zq; c
R← A(1λ,Γ, gx, gy) ].
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4.3.3. The DDH assumption. Let G be a computational group scheme spec-
ifying a sequence (Sλ)λ∈Z≥0

of group distributions.

For all λ ∈ Z≥0 and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we define the sets Dλ,Γ and Tλ,Γ
as follows:

Dλ,Γ := {(gx, gy, gxy) ∈ G3 : x, y ∈ Zq};
Tλ,Γ :=G3.

The set Dλ,Γ is the set of “Diffie–Hellman triples.” Also, for ρ ∈ G3, define DHPλ,Γ(ρ)
= 1 if ρ ∈ Dλ,Γ, and otherwise define DHPλ,Γ(ρ) = 0.

For all 0/1-valued, probabilistic, polynomial-time algorithms A and for all λ ∈
Z≥0, we define the DDH advantage of A against G at λ as

AdvDDHG,A(λ)

:=
∣∣∣Pr[ τ = 1 : Γ

R← Sλ; ρ
R← Dλ,Γ; τ

R← A(1λ,Γ, ρ) ]

− Pr[ τ = 1 : Γ
R← Sλ; ρ

R← Tλ,Γ; τ
R← A(1λ,Γ, ρ) ]

∣∣∣ .
The DDH assumption for G is this:

For every probabilistic, polynomial-time, 0/1-valued algorithm A, the
function AdvDDHG,A(λ) is negligible in λ.

For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all λ ∈ Z≥0,

and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we define the DDH advantage of A against G at λ
given Γ as

AdvDDHG,A(λ | Γ)

:=
∣∣∣Pr[ τ = 1 : ρ

R← Dλ,Γ; τ
R← A(1λ,Γ, ρ) ]

− Pr[ τ = 1 : ρ
R← Tλ,Γ; τ

R← A(1λ,Γ, ρ) ]
∣∣∣ .

A minor variation. We will need the following variation on the DDH assump-
tion.

For all λ ∈ Z≥0 and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we define the sets D′
λ,Γ and T ′

λ,Γ

as follows:

D′
λ,Γ := {gx, gy, gxy : x, y ∈ Zq, x �= 0};
T ′
λ,Γ := {gx, gy, gz : x, y, z ∈ Zq, x �= 0, z �= xy}.

That is, D′
λ,Γ is the set of triples (ĝ, a, â) ∈ G3 such that ĝ �= 1G and logg a = logĝ â,

and T ′
λ,Γ is the set of triples (ĝ, a, â) ∈ G3 such that ĝ �= 1G and logg a �= logĝ â.

It is easy to verify the following:

∆(U(Dλ,Γ),U(D′
λ,Γ)) ≤ 1/q;(4.1)

∆(U(Tλ,Γ),U(T ′
λ,Γ)) ≤ 2/q.(4.2)

For all 0/1-valued, probabilistic, polynomial-time algorithms A and for all λ ∈
Z≥0, we define

AdvDDH′
G,A(λ)

:=
∣∣∣Pr[ τ = 1 : Γ

R← Sλ; ρ
R← D′

λ,Γ; τ
R← A(1λ,Γ, ρ) ]

− Pr[ τ = 1 : Γ
R← Sλ; ρ

R← T ′
λ,Γ; τ

R← A(1λ,Γ, ρ) ]
∣∣∣ .
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For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all λ ∈ Z≥0, and
for all Γ ∈ [Sλ], we define

AdvDDH′
G,A(λ | Γ)

:=
∣∣∣Pr[ τ = 1 : ρ

R← D′
λ,Γ; τ

R← A(1λ,Γ, ρ) ]

− Pr[ τ = 1 : ρ
R← T ′

λ,Γ; τ
R← A(1λ,Γ, ρ) ]

∣∣∣ .
The inequalities (4.1) and (4.2) imply the following.
Lemma 4.1. For all 0/1-valued, probabilistic, polynomial-time algorithms A, for

all λ ∈ Z≥0, and for all Γ[Ĝ,G, g, q] ∈ [Sλ],∣∣AdvDDHG,A(λ | Γ)− AdvDDH′
G,A(λ | Γ)

∣∣ ≤ 3/q.

In particular, the DDH assumption holds for G if and only if for every probabilis-
tic, polynomial-time 0/1-valued algorithm A the function AdvDDH′

G,A(λ) is negligible
in λ.

Random self-reducibility. In this section, we discuss the random self-reduc-
ibility property of the DDH problem and its implications.

The following lemma states the random self-reducibility property for the DDH
problem.

Lemma 4.2. There exists a probabilistic, polynomial-time algorithm RSR such
that for all λ ∈ Z≥0, for all Γ ∈ [Sλ], and for all ρ ∈ Tλ,Γ, the distribution
RSR(1λ,Γ, ρ) is U(Dλ,Γ) if ρ ∈ Dλ,Γ and is U(Tλ,Γ) if ρ /∈ Dλ,Γ.

This was first observed by Stadler [61], who needed the result to prove the security
of a particular protocol, and later by Naor and Reingold [45], who also pointed out
some of its broader implications.

The algorithm RSR is very simple. Given 1λ, the group description Γ[Ĝ,G, g, q],
and ρ = (a, b, c) ∈ G3, the algorithm computes (a′, b′, c′) ∈ G3 as follows:

r
R← Zq; s

R← Zq; t
R← Zq; a′ ← args; b′ ← bgt; c′ ← crartbsgst.

The implication of this random self-reduction is that if Diffie–Hellman tuples can
be efficiently distinguished from random tuples with a nonnegligible advantage, then
Diffie–Hellman tuples can be efficiently recognized with negligible error probability.
More formally, we have the following.

Lemma 4.3. For every 0/1-valued, probabilistic, polynomial-time algorithm A
and every polynomial P (with integer coefficients, taking positive values on Z≥0),
there exists a 0/1-valued, probabilistic, polynomial-time algorithm A1 such that for all
λ ∈ Z≥0, for all Γ ∈ [Sλ], for all ρ ∈ Tλ,Γ, and for all κ ∈ Z≥0,

if AdvDDHG,A(λ | Γ) ≥ 1/P (λ), then

Pr[τ �= DHPλ,Γ(ρ) : τ
R← A1(1λ,Γ, ρ, 1κ)] ≤ 2−κ.

Lemma 4.3 follows from Lemma 4.2 using standard “amplification” techniques,
making use of standard results on tail inequalities for the binomial distribution (cf. sec-
tion C.5 in [21]). Given 1λ, Γ, ρ, and 1κ, algorithm A1 invokes algorithm A as a sub-
routine O(P (λ)2κ) times with inputs (1λ,Γ, ρ′), where each ρ′ ∈ Tλ,Γ is independently
sampled from RSR(1λ,Γ, ρ); additionally, algorithm A1 has to run algorithm A as a
subroutine O(P (λ)2κ) times to “calibrate” A, calculating an estimate of

Pr[ τ = 1 : ρ′ R← Tλ,Γ; τ
R← A(1λ,Γ, ρ′) ].
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4.4. Further discussion. The CDH assumption was introduced informally by
[26]. Since then, there have been many papers that deal with the DL and CDH
assumptions and cryptographic applications based on them. The DDH assumption
appears to have first surfaced in the cryptographic literature in [16], although, as that
paper notes, the DDH assumption is actually needed to prove the security of a number
of previously proposed protocols. Indeed, the famous Diffie–Hellman key exchange
cannot be proved secure in any reasonable and standard way just based on the CDH
assumption: the DDH assumption (or some variant thereof) is required.

The DDH assumption underpins a number of cryptographic applications. See,
for example, the work of Stadler [61] on publicly verifiable secret sharing and the
construction by Naor and Reingold [45] of pseudorandom functions. Also, the well-
known encryption scheme of ElGamal [30] relies on the DDH for its security against
passive attacks (i.e., semantic security).

One variant of the ElGamal scheme is as follows. Let G be a group of prime order
q generated by an element g. The public key consists of a group element h = gz,
where z ∈ Zq is chosen at random; the secret key is z. To encrypt a message m,
where we assume that m ∈ G, we compute

u
R← Zq; a← gu; b← hu; c← b ·m

to form a ciphertext ψ = (a, c). To decrypt such a ciphertext using the secret key,
one computes

b← az; m← c · b−1

to obtain the message m.
It is easy to show that the security of this encryption scheme against passive at-

tack is equivalent to the DDH assumption. It is also easy to see that this scheme is
completely insecure against adaptive chosen ciphertext attack: if (a, c) is an encryp-
tion of m ∈ G, then for any m′ ∈ G, (a, c ·m′) is an encryption of m ·m′; thus, one
can submit (a, c ·m′) to the decryption oracle, obtaining m ·m′, from which one then
computes m.

There are some very special families of elliptic curves for which the DDH assump-
tion does not hold but for which the CDH assumption still appears to stand [38]. How
these results are to be interpreted is a bit unclear. On the one hand, perhaps they
cast some doubt on the DDH assumption in general. On the other hand, perhaps they
illustrate only that very specially crafted families of elliptic curves may exhibit some
surprising security weaknesses, which would seem to counsel against using such special
families of elliptic curves for cryptographic applications and instead to use generic,
randomly generated elliptic curves; indeed, for another special class of elliptic curves,
the DL assumption is false [60].

We refer the reader to two excellent surveys, [43] and [14]. The latter focuses
exclusively on the DDH assumption, while the former discusses both the CDH and
the DDH assumptions. Also see [53], where it is shown that the DDH is hard in a
“generic” model of computation.

5. Target collision resistant hash functions. In this section, we define the
notion of a target collision resistant hash function, which is a special kind of universal
one-way hash function, tailored somewhat for our particular application.

We informally summarize this section as follows. We shall be working with a
group G of order q, and we want to hash tuples of group elements to elements of Zq.
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For this purpose, we will use a family of keyed hash functions such that given a
randomly chosen tuple of group elements and randomly chosen hash function key, it
is computationally infeasible to find a different tuple of group elements that hashes
to the same value using the given hash key.

5.1. Definitions. Let k be a fixed positive integer, and let G be a computational
group scheme specifying a sequence (Sλ)λ∈Z≥0

of group distributions.
A k-ary group hashing scheme HF associated with G specifies two items:
• A family of key spaces indexed by λ ∈ Z≥0 and Γ ∈ [Sλ]. Each such key

space is a probability space on bit strings denoted by HF.KeySpaceλ,Γ.
There must exist a probabilistic, polynomial-time algorithm whose output
distribution on input 1λ and Γ is equal to HF.KeySpaceλ,Γ.

• A family of hash functions indexed by λ ∈ Z≥0, Γ[Ĝ,G, g, q] ∈ [Sλ], and

hk ∈ [HF.KeySpaceλ,Γ], where each such function HFλ,Γ
hk maps a k-tuple ρ ∈ Gk

of group elements to an element of Zq.
There must exist a deterministic, polynomial-time algorithm that on input
1λ, Γ[Ĝ,G, g, q] ∈ [Sλ], hk ∈ [HF.KeySpaceλ,Γ], and ρ ∈ Gk outputs HFλ,Γ

hk (ρ).
Let A be a probabilistic, polynomial-time algorithm. For λ ∈ Z≥0, we define

AdvTCRHF,A(λ)

:= Pr[ ρ ∈ Gk ∧ ρ �= ρ∗ ∧ HFλ,Γ
hk (ρ∗) = HFλ,Γ

hk (ρ) :

Γ[Ĝ,G, g, q]
R← Sλ; ρ∗ R← Gk; hk

R← HF.KeySpaceλ,Γ; ρ
R← A(1λ,Γ, ρ∗, hk) ].

The target collision resistance (TCR) assumption for HF is this:
For every probabilistic, polynomial-time algorithm A, the function
AdvTCRHF,A(λ) is negligible in λ.

It will also be convenient to define the following. Let A be a probabilistic,
polynomial-time algorithm. For λ ∈ Z≥0 and Γ[Ĝ,G, g, q] ∈ [Sλ], we define

AdvTCRHF,A(λ | Γ)

:= Pr[ ρ ∈ Gk ∧ ρ �= ρ∗ ∧ HFλ,Γ
hk (ρ∗) = HFλ,Γ

hk (ρ) :

ρ∗ R← G; hk
R← HF.KeySpaceλ,Γ; ρ

R← A(1λ,Γ, ρ∗, hk) ].

5.2. Further discussion. As already mentioned, our notion of a target collision
resistant hash function is a special case of the more general notion of a universal one-
way hash function, introduced by Naor and Yung [46]. In their presentation, the
hash functions mapped bit strings to bit strings, but of course, using appropriate
formatting, we can easily make such a function a map from tuples of elements of
the group G to elements of Zq. The notion of security presented in [46] was also
slightly stronger than ours: in their paper, the first input to the hash function (i.e.,
the “target” input) is chosen adversarially, but independent of the key of the hash
function, whereas in our application the target input is a random tuple of group
elements. Note that our usage of the term “target collision resistance” differs from
that in [11], where it is used to mean a “nonasymptotic” version of security, but is
otherwise identical to the notion of security for universal one-way hash functions.

As was shown in [46], universal one-way hash functions can be built from arbitrary
one-way permutations. This result was extended by Rompel [51], who showed that
universal one-way hash functions can be built (albeit less efficiently) from arbitrary
one-way functions.
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In practice, to build a universal one-way hash function one can use a dedicated
cryptographic hash function, such as SHA-1 [52]. Constructions in [11] and [55] show
how to build a general-purpose universal one-way hash function using the underly-
ing compression function of SHA-1, assuming the latter is second preimage collision
resistant. In practice, one might simply use SHA-1 directly without a key—it is not
unreasonable to assume that this already satisfies our definition of target collision
resistance.

Note that the notion of target collision resistance is both qualitatively and quan-
titatively weaker than the notion of (full) collision resistance, which is why we prefer
to rely on the former rather than the latter. A collision resistant hash function is one
where it is hard for an adversary to find two different inputs that hash to the same
value; the difference between our notion of target collision resistance and collision
resistance is that in the former, one of the two inputs is not under the control of
the adversary, while in the latter both inputs are under the control of the adversary.
Simon [59], in fact, gives a kind of separation result, which suggests that collision
resistance is a strictly stronger notion of security than target collision resistance.

6. The new encryption scheme: Basic version.

6.1. Description of the scheme. In this section, we present the basic version,
CS1, of our new scheme.

The scheme makes use of a computational group scheme G as described in sec-
tion 4.1, defining a sequence (Sλ)λ∈Z≥0

of distributions of group descriptions and

providing a sampling algorithm Ŝ, where the output distribution Ŝ(1λ) closely ap-
proximates Sλ.

The scheme also makes use of a group hashing scheme HF associated with G, as
described in section 5.

The scheme is described in detail in Figure 6.1.
Remark 6.1. Note that this encryption scheme has a restricted message space:

messages are elements of the group G. This limits to some degree the applicability
of the scheme and the choice of group scheme; indeed, if one wants to encrypt arbi-
trary bit strings of some bounded length, then among the examples of group schemes
discussed in section 4.2 only Example 2, based on Sophie Germain primes, is suitable.

Remark 6.2. Note that in step D2 of the decryption algorithm, we test if a, â,
and c belong to the subgroup G. This test is essential to the security of the scheme.
Although some group schemes may provide a more efficient method for performing
these tests, in a typical implementation one may have to compute aq, âq, and cq,
testing that each of these is 1G.

Remark 6.3. Note that the key generation algorithm samples a group description
Γ from Ŝ(1λ). However, in describing the encryption scheme we assume that Γ is a
valid group description. With negligible probability (in λ), Γ may not be a valid
group description, in which case the behavior of the key generation, encryption, and
decryption algorithms is implementation dependent.

Remark 6.4. It is straightforward to verify that this encryption scheme satisfies
the basic requirements that any public-key encryption scheme should satisfy, as de-
scribed in section 3.1. In particular, the soundness property will always hold when Γ
is a valid group description.

Remark 6.5. Technically speaking, the output ψ of the encryption algorithm is
actually a canonical binary encoding of the 4-tuple (a, â, c, d) ∈ G4. In particular, it
is critical that for any two ciphertexts ψ′ �= ψ the parsing algorithm in step D1 of
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Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ;

w
R← Z∗

q ; x1, x2, y1, y2, z1, z2
R← Zq;

ĝ ← gw; e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2

and output the public key PK = (Γ, hk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, x1, x2, y1, y2, z1, z2).

Encryption: Given 1λ for λ ∈ Z≥0, a public key

PK = (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h) ∈ [Sλ]× [HF.KeySpaceλ,Γ]×G4,

along with a message m ∈ G, compute

E1: u
R← Zq;

E2: a← gu;
E3: â← ĝu;
E4: b← hu;
E5: c← b ·m;
E6: v ← HFλ,Γ

hk (a, â, c);
E7: d← eufuv

and output the ciphertext ψ = (a, â, c, d).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z1, z2) ∈ [Sλ]× [HF.KeySpaceλ,Γ]× Z6
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 4-tuple (a, â, c, d) ∈ Ĝ4; output reject and halt if ψ is not of
this form.

D2: Test if a, â, and c belong to G; output reject and halt if this is not the
case.

D3: Compute v ← HFλ,Γ
hk (a, â, c).

D4: Test if d = ax1+y1v · âx2+y2v; output reject and halt if this is not the case.
D5: Compute b← az1 âz2 .
D6: Compute m← c · b−1 and output m.

Fig. 6.1. The public-key encryption scheme CS1.

the decryption algorithm should not output the same 4-tuple of group elements.

6.2. Security analysis of the scheme. We shall prove that CS1 is secure
against adaptive chosen ciphertext attack if the DDH assumption holds for G and
the TCR assumption holds for HF. However, we wish to state and prove a concrete
security reduction. To this end, we need some auxiliary definitions.

Suppose PKE is a public-key encryption scheme that uses a group scheme in the
following natural way: on input 1λ, the key generation algorithm runs the sampling
algorithm of the group scheme on input 1λ, yielding a group description Γ. For a
given probabilistic, polynomial-time oracle query machine A, λ ∈ Z≥0, and group
description Γ, let us define AdvCCAPKE,A(λ | Γ) to be A’s advantage in an adaptive
chosen ciphertext attack, where the key generation algorithm uses the given value of
Γ instead of running the sampling algorithm of the group scheme.

For all probabilistic, polynomial-time oracle query machines A, for all λ ∈ Z≥0,
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let QA(λ) be an upper bound on the number of decryption oracle queries made by
A on input 1λ. We assume that QA(λ) is a strict bound in the sense that it holds
regardless of the probabilistic choices of A and regardless of the responses to its oracle
queries from its environment.

Theorem 6.1. If the DDH assumption holds for G and the TCR assumption
holds for HF, then CS1 is secure against adaptive chosen ciphertext attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, there
exist probabilistic algorithms A1 and A2, whose running times are essentially the same
as that of A, such that the following holds. For all λ ∈ Z≥0 and all Γ[Ĝ,G, g, q] ∈ [Sλ],
we have

AdvCCACS1,A(λ | Γ) ≤ AdvDDHG,A1(λ | Γ) +AdvTCRHF,A2
(λ | Γ) + (QA(λ) + 4)/q.

(6.1)
The precise running times of algorithms A1 and A2 depend a good deal on details

of the model of computation and on implementation details, and so we make no
attempt to be more precise on this matter.

Before continuing, we state the following simple but useful lemma, which we leave
to the reader to verify.

Lemma 6.2. Let U1, U2, and F be events defined on some probability space. Sup-
pose that the event U1∧¬F occurs if and only if U2∧¬F occurs. Then |Pr[U1]− Pr[U2]|
≤ Pr[F ].

To prove Theorem 6.1, let us fix a probabilistic, polynomial-time oracle query
machine A, the value of the security parameter λ ∈ Z≥0, and the group description

Γ[Ĝ,G, g, q] ∈ [Sλ].
The attack game is as described in section 3.2. We now describe the relevant

random variables to be considered in analyzing the adversary’s attack.
Suppose that the public key is (Γ, hk, ĝ, e, f, h) and that the secret key is

(Γ, hk, x1, x2, y1, y2, z1, z2). Let w := logg ĝ, and define x, y, z ∈ Zq as follows:

x :=x1 + x2w, y := y1 + y2w, z := z1 + z2w.

That is, x = logg e, y = logg f , and z = logg h.
As a notational convention, whenever a particular ciphertext ψ is under consider-

ation in some context, the following values are also implicitly defined in that context:
• a, â, b, c, d ∈ G, where ψ = (a, â, c, d) and b := az1 âz2 ;
• u, û, v, r, s, t ∈ Zq, where

u := logg a, û := logĝ â, v :=HFλ,Γ
hk (a, â, c), r := logg c, s := logg d,

and

t :=x1u + y1uv + x2ûw + y2ûvw.

For the target ciphertext ψ∗, we also denote a∗, â∗, b∗, c∗, d∗ ∈ G and u∗, û∗, v∗, r∗, s∗, t∗

∈ Zq the corresponding values.
The probability space defining the attack game is then determined by the follow-

ing, mutually independent, random variables:
• the coin tosses Coins of A;
• the values hk, w, x1, x2, y1, y2, z1, z2 generated by the key generation algo-

rithm;
• the values σ ∈ {0, 1} and u∗ ∈ Zq generated by the encryption oracle.
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Let G0 be the original attack game, let σ̂ ∈ {0, 1} denote the output of A, and
let T0 be the event that σ = σ̂ in G0 so that AdvCCACS1,A(λ | Γ) = |Pr[T0]− 1/2|.

Our overall strategy for the proof is as follows. We shall define a sequence
G1,G2, . . . ,G� of modified attack games. Each of the games G0,G1, . . . ,G� op-
erates on the same underlying probability space. In particular, the public key and
secret key of the cryptosystem, the coin tosses Coins of A, and the hidden bit σ take
on identical values across all games. Only some of the rules defining how the envi-
ronment responds to oracle queries differ from game to game. For any 1 ≤ i ≤ �, we
let Ti be the event that σ = σ̂ in game Gi.

To assist the reader, here is a high-level “road map” of the games:
• In game G1, we modify the encryption oracle so that it uses the secret key

to do the encryption rather than the public key. This change is purely con-
ceptual, and Pr[T1] = Pr[T0].

• In game G2, we modify the encryption oracle again so that the Diffie–Hellman
triple (ĝ, a∗, â∗) is replaced by a random triple. Under the DDH assumption,
A will hardly notice, and, in particular, |Pr[T2]− Pr[T1]| will be negligible.
• In game G3, we modify the decryption oracle so that it rejects all ciphertexts

ψ such that u �= û, i.e., such that (ĝ, a, â) is not a Diffie–Hellman triple. We
will see that Pr[T2] and Pr[T3] differ by an amount bounded by Pr[R3], where
R3 is the event that a ciphertext is rejected in G3 that would not have been
under the rules of game G2.

• In game G4, we modify the encryption oracle again so that now the ciphertext
is constructed without even looking at either σ, m0, or m1. We will see that
1/2 = Pr[T4] = Pr[T3] and that Pr[R4] = Pr[R3] (where R4 is defined in the
same way as R3 but with respect to game G4).

• In game G5, we add another rejection rule to the decryption oracle, this time
rejecting all ciphertexts ψ such that (a, â, c) �= (a∗, â∗, c∗), but v = v∗. If
A were able to produce such a ciphertext, this would represent a collision in
the hash function, and so this rejection rule will be applied with negligible
probability. Under the TCR assumption, this implies that |Pr[R5]− Pr[R4]|
is negligible (where R5 is defined in the same way as R3 but with respect to
game G5). We will also see that Pr[R5] is negligible (unconditionally).

Tracing through the above steps, one sees that |Pr[T0]− 1/2| is negligible.
We now present the details, but we shall defer the proofs of all lemmas to the end

of the proof of the theorem.
Game G1. We now modify game G0 to obtain a new game G1. These two

games are identical, except for a small modification to the encryption oracle. Instead
of using the encryption algorithm as given to compute the target ciphertext ψ∗, we
use a modified encryption algorithm in which steps E4 and E7 are replaced by

E4′: b← az1 âz2 ;
E7′: d← ax1+y1v · âx2+y2v.

The change we have made is purely conceptual: the values of b∗ and d∗ are exactly
the same in game G1 as they were in G0. Therefore,

Pr[T1] = Pr[T0].(6.2)

Note that the encryption oracle now makes use of some components of the secret
key, which is something the original encryption oracle does not do.

Game G2. We now modify game G1 to obtain a new game G2. We again
modify the encryption oracle, replacing step E3 of the encryption algorithm by

E3′: û
R← Zq \ {u}; â← ĝû.
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Note that whereas in games G0 and G1 we had u∗ = û∗, in game G2 u∗ and û∗

are nearly independent, being subject only to u∗ �= û∗. However, observe that games
G1 and G2 are the same, except that in game G1 the triple (ĝ, a∗, â∗) is uniformly
distributed in D′

λ,Γ, and in game G2 the triple (ĝ, a∗, â∗) is uniformly distributed in
T ′
λ,Γ. Thus, any difference in behavior between these two games immediately yields

a statistical test for distinguishing Diffie–Hellman triples from random triples. More
precisely, we have the following.

Lemma 6.3. There exists a probabilistic algorithm A1, whose running time is
essentially the same as that of A, such that

|Pr[T2]− Pr[T1]| ≤ AdvDDHG,A1(λ | Γ) + 3/q.(6.3)

Game G3. In this game, we modify the decryption oracle in game G2 to obtain
a new game G3. Instead of using the original decryption algorithm, we modify the
decryption algorithm, replacing steps D4 and D5 by

D4′: test if â = aw and d = ax+yv; output reject and halt if this is
not the case;

D5′: b← az.
Note that the decryption oracle now makes use of w but does not make use of

x1, y2, y1, y2, z1, z2, except indirectly through the values x, y, z.
Now, let R3 be the event that in game G3 some ciphertext ψ is submitted to the

decryption oracle that is rejected in step D4′ but that would have passed the test in
step D4.

Note that if a ciphertext passes the test in D4′, it would also have passed the
test in D4.

It is clear that games G2 and G3 proceed identically until the event R3 occurs.
In particular, the events T2 ∧¬R3 and T3 ∧¬R3 are identical. So, by Lemma 6.2, we
have

|Pr[T3]− Pr[T2]| ≤ Pr[R3],(6.4)

and so it suffices to bound Pr[R3]. We introduce auxiliary games G4 and G5 below
to do this.

Game G4. This game is identical to game G3, except for a small modification to
the encryption oracle. We again modify the algorithm used by the encryption oracle,
replacing step E5 by

E5′: r
R← Zq; c← gr.

It is clear by construction that

Pr[T4] = 1/2,(6.5)

since in game G4 the variable σ is never used at all, and so the adversary’s output is
independent of σ.

Define the event R4 to be the event in game G4 analogous to the event R3 in
game G3; that is, R4 is the event that in game G4 some ciphertext ψ is submitted
to the decryption oracle that is rejected in step D4′ but that would have passed the
test in step D4.

We show that this modification has no effect; more precisely, we have the following.
Lemma 6.4. We have

Pr[T4] = Pr[T3],(6.6)

Pr[R4] = Pr[R3].(6.7)
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Game G5. This game is the same as game G4, except for the following modifi-
cation.

We modify the decryption oracle so that it applies the following special rejection
rule: if the adversary submits a ciphertext ψ for decryption at a point in time after
the encryption oracle has been invoked such that (a, â, c) �= (a∗, â∗, c∗) but v = v∗,
then the decryption oracle immediately outputs reject and halts (before executing
step D4′).

To analyze this game, we define two events.
First, we define the event C5 to be the event that the decryption oracle in game

G5 rejects a ciphertext using the special rejection rule.
Second, we define the event R5 to be the event in game G5 that some ciphertext

ψ is submitted to the decryption oracle that is rejected in step D4′ but that would
have passed the test in step D4. Note that such a ciphertext is not rejected by the
special rejection rule, since that rule is applied before step D4′ is executed.

Now, it is clear that games G4 and G5 proceed identically until event C5 occurs.
In particular, the events R4 ∧¬C5 and R5 ∧¬C5 are identical. So, by Lemma 6.2, we
have

|Pr[R5]− Pr[R4]| ≤ Pr[C5].(6.8)

Now, if event C5 occurs with nonnegligible probability, we immediately get an
algorithm that contradicts the target collision resistance assumption; more precisely,
we have the following.

Lemma 6.5. There exists a probabilistic algorithm A2, whose running time is
essentially the same as that of A, such that

Pr[C5] ≤ AdvTCRHF,A2
(λ | Γ) + 1/q.(6.9)

Finally, we show that event R5 occurs with negligible probability, based on purely
information-theoretic considerations.

Lemma 6.6. We have

Pr[R5] ≤ QA(λ)/q.(6.10)

The detailed proof of this lemma is presented below. However, the basic idea
of the proof runs as follows. For a decryption query ψ, the only information the
adversary has about (x1, x2, y1, y2) are the values of x, y, and possibly s∗, which
are linear combinations of (x1, x2, y1, y2). As we will prove, the value of t, which
the adversary must successfully guess in order to make the event R5 happen, is an
independent linear combination of (x1, x2, y1, y2) and is therefore unpredictable.

Inequality (6.1) now follows immediately from (6.2)–(6.10).

Proofs of lemmas. To complete the proof of Theorem 6.1, we now present the
proofs of Lemmas 6.3, 6.4, 6.5, and 6.6.

Proof of Lemma 6.3. We describe the algorithm A1 in detail. For a given value
of λ ∈ Z≥0, it takes as input 1λ, Γ[Ĝ,G, g, q] ∈ [Sλ], and ρ = (ĝ, a∗, â∗) ∈ G3.

Algorithm A1 provides an environment for A, interacting with A as follows.
First, A1 computes

hk
R← HF.KeySpaceλ,Γ; x1, x2, y1, y2, z1, z2

R← Zq;

e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2
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in order to generate a public key PK = (Γ, hk, ĝ, e, f, h) and a secret key SK =
(Γ, hk, x1, x2, y1, y2, z1, z2). It then gives PK to A.

Whenever A submits a ciphertext ψ = (a, â, c, d) to the decryption oracle, A1

simply runs the decryption algorithm, using the secret key SK.
When A submits (m0,m1) to the encryption oracle, A1 computes

σ
R← {0, 1}; b∗ ← (a∗)z1(â∗)z2 ; c∗ ← b∗ ·mσ;

v∗ ← HFλ,Γ
hk (a∗, â∗, c∗); d∗ ← (a∗)x1+y1v

∗
(â∗)x2+y2v

∗

and responds with the “ciphertext” ψ∗ = (a∗, â∗, c∗, d∗).
When A outputs σ̂ and halts, A1 outputs 1 if σ = σ̂ and 0 if σ �= σ̂.
That completes the description of A1. By construction, it is clear that for fixed

λ and Γ ∈ [Sλ],

Pr[T1] = Pr[ τ = 1 : ρ
R← D′

λ,Γ; τ
R← A1(1λ,Γ, ρ) ];

Pr[T2] = Pr[ τ = 1 : ρ
R← T ′

λ,Γ; τ
R← A1(1λ,Γ, ρ) ].

Thus,

|Pr[T2]− Pr[T1]| = AdvDDH′
G,A1

(λ | Γ),

and so (6.3) now follows directly from this and Lemma 4.1.
Before continuing, we state and prove a simple but useful lemma. First, we

introduce some notation: for a field K and positive integers k, n, we denote by Kk×n

the set of all k × n matrices over K, i.e., matrices with k rows and n columns whose
entries are in K; for a matrix M , we denote by MT its transpose.

Lemma 6.7. Let k, n be integers with 1 ≤ k ≤ n, and let K be a finite field.
Consider a probability space with random variables 6α ∈ Kn×1, 6β = (β1, . . . , βk)T ∈
Kk×1, 6γ ∈ Kk×1, and M ∈ Kk×n such that 6α is uniformly distributed over Kn×1,
6β = M6α+6γ, and for 1 ≤ i ≤ k the ith rows of M and 6γ are determined by β1, . . . , βi−1.

Then conditioning on any fixed values of β1, . . . , βk−1 such that the resulting ma-
trix M has rank k, the value of βk is uniformly distributed over K in the resulting
conditional probability space.

Proof. Consider fixed values of β1, . . . , βk−1 ∈ K, which determine M and 6γ, and
assume that the matrix M has rank k. For any βk ∈ K, consider the corresponding
vector 6β = (β1, . . . , βk)T ; there are exactly |K|n−k vectors 6α such that 6β = M6α + 6γ.
Therefore, each possible value βk ∈ K is equally likely.

Proof of Lemma 6.4. Consider the quantity

X := (Coins, hk, w, x1, x2, y1, y2, σ, u
∗, û∗)

and the quantity z. Note that X and z take on the same values in games G3 and G4.
Consider also the quantity r∗. This quantity takes on different values in games

G3 and G4. For clarity, let us denote these values as [r∗]3 and [r∗]4, respectively.
It is clear by inspection that the events R3 and T3 are determined as functions

of X, z, and [r∗]3. Also, the events R4 and T4 have precisely the same functional
dependence on X, z, and [r∗]4. So to prove the lemma it suffices to show that the
distributions of (X, z, [r∗]3) and (X, z, [r∗]4) are identical. Observe that by construc-
tion, conditioning on any fixed values of X and z, the distribution of [r∗]4 is uniform
over Zq. So it will suffice to show that conditioning on any fixed values of X and z,
the distribution of [r∗]3 is also uniform over Zq.
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We have (
z
[r∗]3

)
=

(
1 w
u∗ wû∗

)
︸ ︷︷ ︸

=:M

·
(

z1

z2

)
+

(
0
logg mσ

)
.

Conditioning only on a fixed value of X, the matrix M is fixed, but the values z1 and
z2 are still uniformly and independently distributed over Zq. Observe that det(M) =
w(û∗−u∗) �= 0. If we further condition on a fixed value of z, the value of mσ is fixed,
and by Lemma 6.7 the distribution of [r∗]3 is uniform over Zq.

Proof of Lemma 6.5. Algorithm A2 provides an environment for A, interacting
with A as follows.

Algorithm A2 takes as input 1λ, Γ[Ĝ,G, g, q] ∈ [Sλ], ρ∗ = (a∗, â∗, c∗) ∈ G3,
and hk ∈ [HF.KeySpaceλ,Γ]. It first constructs a public key PK and secret key SK
for the encryption scheme using the standard key generation algorithm, except that
the given values of Γ and hk are used. It also constructs the target ciphertext ψ∗ =
(a∗, â∗, c∗, d∗), where a∗, â∗, c∗ are the given inputs as above and where d∗ is computed
as

v∗ ← HFλ,Γ
hk (a∗, â∗, c∗); d∗ ← (a∗)x1+y1v

∗
(â∗)x2+y2v

∗
.

Here, hk is the given input as above, and x1, y1, x2, y2 are the values taken from the
secret key SK as computed above.

Now A2 interacts with A using the rules of game G5 for the decryption oracle and
giving A the target ciphertext ψ∗ when A invokes the encryption oracle. However, if
the decryption oracle ever invokes the special rejection rule in game G5 for a given
ciphertext ψ, algorithm A2 immediately outputs (a, â, c) corresponding to ψ and halts.
Also, if the attack terminates without the special rejection rule ever having been
invoked, then A2 also halts (without producing any output).

That completes the description of A2. If the input (a∗, â∗, c∗) to A2 is sampled
uniformly over all triples of group elements subject to logg a

∗ �= logĝ â
∗, then algorithm

A2 succeeds in finding a collision with probability exactly Pr[C5]. However, in the
definition of AdvTCR the input is sampled from the uniform distribution over all
triples, not subject to the above restriction. The bound (6.9) follows from the fact
that the statistical distance between these two input distributions is 1/q.

Proof of Lemma 6.6. To prove (6.10), for 1 ≤ i ≤ QA(λ), let us define R
(i)
5 to be

the event that there is an ith ciphertext submitted to the decryption oracle in game
G5 and that the submitted ciphertext is rejected in step D4′ but would have passed

the test in step D4. For 1 ≤ i ≤ QA(λ), let us define B
(i)
5 to be the event that the

ith decryption oracle query occurs before the encryption oracle query and that the
submitted ciphertext passes the test in steps D1 and D2 of the decryption oracle. For

1 ≤ i ≤ QA(λ), let us define B̂
(i)
5 to be the event that the ith decryption oracle query

occurs after the encryption oracle query and that the submitted ciphertext passes the
tests in steps D1 and D2 of the decryption oracle.

The bound (6.10) will follow immediately from Lemmas 6.8 and 6.9 below.
Lemma 6.8. Notation is the same as in the proof of Lemma 6.6. For all 1 ≤ i ≤

QA(λ), we have Pr[R
(i)
5 |B(i)

5 ] ≤ 1/q.
Proof. Fix 1 ≤ i ≤ QA(λ). Consider the quantities

X := (Coins, hk, w, z)
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and

X ′ := (x, y).

The values of X and X ′ completely determine the behavior of the adversary up until
the point when the encryption oracle is invoked, and, in particular, they completely

determine the event B
(i)
5 . Let us call X and X ′ relevant if the event B

(i)
5 occurs.

It will suffice to prove that conditioned on any fixed, relevant values of X and X ′,
the probability that R

(i)
5 occurs is bounded by 1/q.

Once relevant values of X and X ′ are fixed, the value ψ of the ith decryption
query is also fixed, along with the corresponding values a, â, b, c, d, u, û, v, r, and s.

The test in D4′ fails if and only if one of the two mutually exclusive conditions
(â �= aw) or (â = aw and d �= ax+yv) holds. It is easy to verify that if the second
condition holds, then in fact the test in D4 fails. Thus, if the test in D4′ fails but
the one in D4 passes, it must be the case that â �= aw and d = ax1+y1vâx2+y2v. So we
need only to consider values of X and X ′ such that â �= aw. The condition â �= aw is
equivalent to the condition u �= û, and the condition d = ax1+y1vâx2+y2v is equivalent
to the condition s = t.

We have  x
y
t

 =

 1 w 0 0
0 0 1 w
u ûw uv ûvw


︸ ︷︷ ︸

=:M

·


x1

x2

y1

y2

 .

Let us first condition only on a fixed value of X, which fixes the first two rows of
M but leaves the values x1, x2, y1, and y2 still uniformly distributed over Zq and
mutually independent. Let us further condition on a fixed value of X ′ such that X
and X ′ are relevant and that u �= û. The third row of M is also fixed, along with
the values x, y, and s. It is easy to see by inspection that the rows of M are linearly
independent, since û �= u and w �= 0. From this, it follows by Lemma 6.7 that t is still
uniformly distributed over Zq, but, since s is fixed, we have Pr[s = t] = 1/q.

Lemma 6.9. Notation is the same as in the proof of Lemma 6.6. For all 1 ≤ i ≤
QA(λ), we have Pr[R

(i)
5 |B̂(i)

5 ] ≤ 1/q.
Proof. Fix 1 ≤ i ≤ QA(λ). Consider the quantities

X := (Coins, hk, w, z, u∗, û∗, r∗)

and

X ′ := (x, y, s∗).

The values of X and X ′ completely determine the adversary’s entire behavior in game

G5, and, in particular, they completely determine the event B̂
(i)
5 . Let us call X and

X ′ relevant if the event B̂
(i)
5 occurs.

It will suffice to prove that conditioned on any fixed, relevant values of X and X ′,
the probability that R

(i)
5 occurs is bounded by 1/q.

Once X and X ′ are fixed, the value ψ of the ith decryption query is also fixed,
along with the corresponding values a, â, b, c, d, u, û, v, r, and s. As in the proof of
Lemma 6.8, it suffices to consider values of X and X ′ for which u �= û and then to
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show that Pr[s = t] ≤ q. Notice that the value of X determines the value of v∗, and
we may also assume that v �= v∗. To see why we may do so, if v = v∗, then either
(a, â, c) = (a∗, â∗, c∗) or ψ is rejected by the special rejection rule. In the first case,
since ψ �= ψ∗, we must have d �= d∗, but this implies that ψ fails the test in D4. In
the second case, step D4′ is not even executed.

We have 
x
y
s∗

t

 =


1 w 0 0
0 0 1 w
u∗ û∗w u∗v∗ û∗v∗w
u ûw uv ûvw


︸ ︷︷ ︸

=:M

·


x1

x2

y1

y2

 .

Let us first condition only on a fixed value of X, which fixes the first three rows of
M but leaves the values x1, x2, y1, and y2 still uniformly distributed over Zq and
mutually independent. Let us further condition on a fixed value of X ′ such that X
and X ′ are relevant and that u �= û and v �= v∗. The fourth row of M is also fixed,
along with the values x, y, s∗, and s. It is easy to see that the rows of M are linearly
independent, since

det(M) = w2(û− u)(û∗ − u∗)(v∗ − v) �= 0.

From this, it follows by Lemma 6.7 that t is still uniformly distributed over Zq, but,
since s is fixed, we have Pr[s = t] = 1/q.

6.3. Two variations. Scheme CS1 was presented because it is in a form that
is particularly easy to analyze. We now describe and analyze two variations of the
scheme CS1, which we call CS1a and CS1b, that are a bit simpler than CS1 but require
a bit more work to analyze. For both of these schemes, the public key has the same
format and indeed the same probability distribution, as in CS1, and the encryption
algorithm is the same as in CS1. The key generation and decryption algorithms are
slightly different, however, and are described in detail in Figures 6.2 and 6.3.

Remark 6.6. Scheme CS1a is essentially the same scheme that was originally
presented as the “main scheme” in [22]. Scheme CS1b is a minor variation of a
scheme originally presented in [56].

Remark 6.7. Note that in scheme CS1b we do not have to separately test if â
belongs to the subgroup G in step D2′, since this is already implied by the test in
step D4′. The test that a and c belong to G may in some cases be implemented by
testing if aq = 1G and cq = 1G.

Remark 6.8. Note also in scheme CS1b that the decryption algorithm has to
compute either three or four (if we test if aq = 1G) powers of a and possibly one
power of c (if we test if cq = 1G). Special algorithmic techniques [17, 40] can be
employed to compute these several powers of a significantly faster than computing
several powers of different group elements.

Remark 6.9. In an actual implementation, it is strongly recommended to compute
both exponentiations in step D4′ of CS1b before rejecting the ciphertext, even if the
first exponentiation performed already implies that the ciphertext should be rejected.
The reason is that if the ciphertext is rejected after just one exponentiation, this may
reveal some timing information that could be exploited by an attacker. Indeed, if we
reject immediately upon detecting that â �= aw, then based upon timing information
an attacker could use the decryption box as a kind of Diffie–Hellman decision oracle.
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Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ;

w
R← Z∗

q ; x1, x2, y1, y2, z
R← Zq;

ĝ ← gw; e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz

and output the public key PK = (Γ, hk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, x1, x2, y1, y2, z).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z) ∈ [Sλ]× [HF.KeySpaceλ,Γ]× Z5
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 4-tuple (a, â, c, d) ∈ Ĝ4; output reject and halt if ψ is not of
this form.

D2: Test if a, â, and c belong to G; output reject and halt if this is not the
case.

D3: Compute v ← HFλ,Γ
hk (a, â, c).

D4: Test if d = ax1+y1vâx2+y2v; output reject and halt if this is not the case.
D5′: Compute b← az.
D6: Compute m← c · b−1 and output m.

Fig. 6.2. Key generation and decryption algorithms for CS1a.

Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ;

w
R← Z∗

q ; x, y, z
R← Zq;

ĝ ← gw; e← gx; f ← gy; h← gz

and output the public key PK = (Γ, hk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, w, x, y, z).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, x, y, z) ∈ [Sλ]× [HF.KeySpaceλ,Γ]× Z3
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 4-tuple (a, â, c, d) ∈ Ĝ4; output reject and halt if ψ is not of
this form.

D2′: Test if a and c belong to G; output reject and halt if this is not the case.
D3: Compute v ← HFλ,Γ

hk (a, â, c).
D4′: Test if â = aw and d = ax+yv; output reject and halt if this is not the

case.
D5′: Compute b← az.
D6: Compute m← c · b−1 and output m.

Fig. 6.3. Key generation and decryption algorithms for CS1b.

Our formal model of security does not model any notion of time at all, so such
attacks fall outside of the model. While some cryptosystems are vulnerable to actual
attacks given this type of timing information—notably, Manger’s attack [41] on RSA



196 RONALD CRAMER AND VICTOR SHOUP

PKCS #1 version 2—we know of no actual timing attack along these lines on CS1b.
Remark 6.10. For the same reasons as discussed in the previous remark, it is

important that any “error code” returned by the decryption algorithm in scheme CS1b
not reveal the precise reason why a ciphertext was rejected. Again, we know of no
actual “side channel” attack along these lines on CS1b.

Theorem 6.10. If the DDH assumption holds for G and the TCR assumption
holds for HF, then CS1a and CS1b are secure against adaptive chosen ciphertext
attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, for
all λ ∈ Z≥0, and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we have

|AdvCCACS1a,A(λ | Γ)− AdvCCACS1,A(λ | Γ)| ≤ QA(λ)/q(6.11)

and

|AdvCCACS1b,A(λ | Γ)− AdvCCACS1,A(λ | Γ)| ≤ QA(λ)/q.(6.12)

To prove this theorem, let us fix A, λ, and Γ[Ĝ,G, g, q]. Consider the attack game
G0 as defined in section 6.2: this is the game that A plays against the scheme CS1
for the given values of λ and Γ. We adopt all the notational conventions established
at the beginning of section 6.2 (i.e., prior to the description of game G1).

We begin by defining two modifications of game G0.
Game G−1a. In this game, we modify the decryption oracle so that in place

of step D5 we execute step D5′ as in the scheme CS1a. We emphasize that in
game G−1a we have z = z1 + z2w, where w, z1, and z2 are generated by the key
generation algorithm of CS1.

Game G−1b. In this game, we modify the decryption oracle so that in place of
steps D4 and D5 we execute steps D4′ and D5′ as in the scheme CS1b. We emphasize
that in game G−1b we have x = x1 + x2w, y = x1 + x2w, and z = z1 + z2w, where w,
x1, x2, y1, y2, z1, and z2 are generated by the key generation algorithm of CS1.

Let T−1a be the event that σ = σ̂ in game G−1a and T−1b be the event that σ = σ̂
in game G−1b.

We remind the reader that games G0, G−1a, and G−1b all operate on the same
underlying probability space: all of the variables

Coins, hk, w, x1, x2, y1, y2, z1, z2, σ, u
∗

that ultimately determine the events T0, T−1a, and T−1b have the same values in games
G0, G−1a, and G−1b; all that changes is the functional behavior of the decryption
oracle.

It is straightforward to verify that

AdvCCACS1a,A(λ | Γ) = |Pr[T−1a − 1/2]|

and

AdvCCACS1b,A(λ | Γ) = |Pr[T−1b − 1/2]|.

Let us define the event R−1b to be the event that some ciphertext is rejected in
game G−1b in step D4′ that would have passed the test in D4. It is clear that games
G0, G−1a, and G−1b all proceed identically until event R−1b occurs. In particular, the
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events T0∧¬R−1b, T−1a∧¬R−1b, and T−1b∧¬R−1b are identical. So, by Lemma 6.2,
we have

|Pr[T0]− Pr[T−1a]| ≤ Pr[R−1b]

and

|Pr[T0]− Pr[T−1b]| ≤ Pr[R−1b].

So it suffices to show that

Pr[R−1b] ≤ QA(λ)/q.(6.13)

To do this, for 1 ≤ i ≤ QA(λ), let R
(i)
−1b be the event that there is an ith ciphertext

submitted to the decryption oracle in game G−1b and that this ciphertext is rejected
in step D4′ but would have passed the test in step D4.

The bound (6.13) will follow immediately from the following lemma.

Lemma 6.11. For all 1 ≤ i ≤ QA(λ), we have Pr[R
(i)
−1b] ≤ 1/q.

Proof. The proof of this is lemma is almost identical to that of Lemma 6.8. Note
that in game G−1b the encryption oracle uses the “real” encryption algorithm and
so itself does not leak any additional information about (x1, x2, y1, y2). This is in
contrast to game G5, where the encryption oracle does leak additional information.

Fix 1 ≤ i ≤ QA(λ). Consider the quantities

X := (Coins, hk, w, z, σ, u∗)

and

X ′ := (x, y).

The values of X and X ′ completely determine the adversary’s entire behavior in game
G5, and hence determine if there is an ith decryption oracle query and, if so, the value
of the corresponding ciphertext. Let us call X and X ′ relevant if for these values of
X and X ′ there is an ith decryption oracle query and the corresponding ciphertext
passes steps D1 and D2.

It will suffice to prove that conditioned on any fixed, relevant values of X and X ′,
the probability that R

(i)
−1b occurs is bounded by 1/q.

The remainder of the argument is exactly as in Lemma 6.8, except using X, X ′,
and the notion of relevant as defined here.

6.4. A hash-free variant. Our basic scheme CS1 requires a target collision
resistant hash function. Qualitatively, the TCR assumption is much weaker than the
DDH assumption, since one can build a target collision resistant hash function based
on an arbitrary one-way function. Indeed, one can build a collision resistant hash
function under the DL assumption; however, the hash functions arising from such a
construction produce an output that is in G, whereas we need a hash function that
maps into Zq. We cannot in general expect to find an easy-to-compute, injective map
from G onto Zq; in Example 2 in section 4.2, we in fact do have such a map, but that
is an exceptional case.

For these reasons, we present a variation CS2 of our basic scheme that does not
require a hash function.
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Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ);

w
R← Z∗

q ; x1, x2, z1, z2
R← Zq;

for i = 1, . . . , N : y
(i)
1 , y

(i)
2

R← Zq;
ĝ ← gw; e← gx1 ĝx2 ; h← gz1 ĝz2 ;

for i = 1, . . . , N : fi ← gy
(i)
1 ĝy

(i)
2

and output the public key PK = (Γ, ĝ, e, (fi)
N
i=1, h) and the secret key

SK = (Γ, x1, x2, (y
(i)
1 , y

(i)
2 )Ni=1, z1, z2).

Encryption: Given 1λ for λ ∈ Z≥0, a public key

PK = (Γ[Ĝ,G, g, q], ĝ, e, (fi)
N
i=1, h) ∈ [Sλ]×GN+3,

along with a message m ∈ G, compute

E1: u
R← Zq;

E2: a← gu;
E3: â← ĝu;
E4: b← hu;
E5: c← b ·m;
E6: (v1, . . . , vN )← Chopλ,Γ(a, â, c);

E7: d← eu
∏N

i=1 f
uvi
i

and output the ciphertext ψ = (a, â, c, d).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], x1, x2, (y
(i)
1 , y

(i)
2 )Ni=1, z1, z2) ∈ [Sλ]× ZN+4

q ,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 4-tuple (a, â, c, d) ∈ Ĝ4; output reject and halt if ψ is not of
this form.

D2: Test if a, â, and c belong to G; output reject and halt if this is not the
case.

D3: Compute (v1, . . . , vN )← Chopλ,Γ(a, â, c).

D4: Test if d = ax1+
∑N

i=1 y
(i)
1 vi · âx2+

∑N
i=1 y

(i)
2 vi ; output reject and halt if this is

not the case.
D5: Compute b← az1 âz2 .
D6: Compute m← c · b−1 and output m.

Fig. 6.4. The public-key encryption scheme CS2, where N = N(λ,Γ).

This scheme requires a family {Chopλ,Γ} of “chopping” functions associated with

the group scheme G with the following properties. For λ ∈ Z≥0 and Γ[Ĝ,G, g, q] ∈
[Sλ], the function Chopλ,Γ injectively maps triples ρ ∈ G3 of group elements to N -

tuples (v1, . . . , vN ) ∈ ZN
q . Here, N = N(λ,Γ) is bounded by a polynomial in λ,

and the function Chopλ,Γ should be computable by a deterministic, polynomial-time

function that takes inputs 1λ, Γ, and ρ.
In principle, such chopping functions always exist, since we can write down the

binary representation of ρ and chop it into bit strings of length �log2 q�.
We present the details of scheme CS2 in Figure 6.4.
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Theorem 6.12. If the DDH assumption holds for G, then CS2 is secure against
adaptive chosen ciphertext attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, there
exists a probabilistic algorithm A1, whose running time is essentially the same as that
of A, such that the following holds. For all λ ∈ Z≥0 and all Γ[Ĝ,G, g, q] ∈ [Sλ], we
have

AdvCCACS2,A(λ | Γ) ≤ AdvDDHG,A1(λ | Γ) + (QA(λ) + 3)/q.

The proof of this theorem follows along the same lines as the proof of Theorem 6.1.
We present here a sketch of the proof, appealing in several places to arguments found
in the proof of Theorem 6.1 so as to avoid repeating arguments that are identical or
nearly identical.

Let us fix a probabilistic, polynomial-time oracle query machine A, the value of
the security parameter λ ∈ Z≥0, and the group description Γ[Ĝ,G, g, q] ∈ [Sλ].

We define x, z ∈ Zq as follows:

x :=x1 + x2w, z := z1 + z2w.

We also define y(i) ∈ Zq, for 1 ≤ i ≤ N , as

y(i) := y
(i)
1 + y

(i)
2 w.

As a notational convention, whenever a particular ciphertext ψ is under consider-
ation in some context, the following values are also implicitly defined in that context:

• a, â, c, d ∈ G, where ψ = (a, â, c, d);
• u, û, v1, . . . , vN , r, s ∈ Zq, where

u := logg a, û := logĝ â, (v1, . . . , vN ) :=Chopλ,Γ(a, â, c),

r := logg c, s := logg d.

For the target ciphertext ψ∗, we also denote by a∗, â∗, c∗, d∗ ∈ G and u∗, û∗, v∗1 , . . . ,
v∗N , r∗, s∗ ∈ Zq the corresponding values.

The probability space defining the attack game is then determined by the follow-
ing, mutually independent, random variables:

• the coin tosses of A;

• the values w, x1, x2, y
(1)
1 , . . . , y(N), y

(1)
2 , . . . , y

(N)
2 , z1, z2 generated by the key

generation algorithm;
• the values σ ∈ {0, 1} and u∗ ∈ Zq generated by the encryption oracle.

Let G0 be the original attack game, let σ̂ ∈ {0, 1} denote the output of A, and
let T0 be the event that σ = σ̂ in G0 so that AdvCCACS2,A(λ | Γ) = |Pr[T0]− 1/2|.

As in the proof of Theorem 6.1, we shall define a sequence of modified games
Gi, for i = 1, 2, . . . , and in game Gi the event Ti will be the event corresponding
to event T0 but in game Gi. We remind the reader that all of these games operate
on the same underlying probability space, and, except as otherwise specified, random
variables have identical values between games.

Game G1. In game G1, we modify the algorithm used by the encryption oracle
as follows. Steps E4 and E7 are replaced by

E4′: b← az1 âz2 ;

E7′: d← ax1+
∑N

i=1 y
(i)
1 vi · âx2+

∑N
i=1 y

(i)
2 vi .
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By the same reasoning as in the proof of Theorem 6.1, we have Pr[T1] = Pr[T0].
Game G2. We again modify the encryption oracle, replacing step E3 by

E3′: û
R← Zq \ {u}; â← ĝû.

By the same reasoning as in the proof of Theorem 6.1, one sees that there exists
a probabilistic algorithm A1, whose running time is essentially the same as that of A,
such that

|Pr[T2]− Pr[T1]| ≤ AdvDDHG,A1(λ | Γ) + 3/q.

Game G3. In this game, we modify the decryption oracle in game G2, replacing
steps D4 and D5 by

D4′: test if â = aw and d = ax+
∑N

i=1 y(i)vi ; output reject and halt if
this is not the case;

D5′: b← az.
Let R3 be the event that in game G3 some ciphertext ψ is submitted to the

decryption oracle that is rejected in step D4′ but that would have passed the test in
step D4.

As in the proof of Theorem 6.1, we have

|Pr[T3]− Pr[T2]| ≤ Pr[R3].

We claim that

Pr[R3] ≤ QA(λ)/q.

We can prove the analogue of Lemma 6.6 (in game G5 in the proof of Theorem 6.1)
by considering an (N + 3)× (2N + 2) matrix M over Zq defined as

M :=



1 w
1 w

. . .

1 w
u∗ û∗w u∗v∗1 û∗v∗1w · · · u∗v∗N û∗v∗Nw
u ûw uv1 ûv1w · · · uvN ûvNw


,

where w �= 0, û �= u, û∗ �= u∗, and vi �= v∗i for some i ∈ {1, . . . , N}. It will suffice to
show that the rows of M are linearly independent.

If we choose i such that vi �= v∗i and consider the 4 × 4 submatrix M ′ of M
consisting of the intersection of columns 1, 2, 2i + 1, 2i + 2 of M and rows 1, i + 1,
N +2, N +3 of M , we see that matrix M ′ has the same form as the matrix considered
in Lemma 6.9, and hence is nonsingular. It follows that the rows of M are linearly
independent, since any nontrivial linear relation among the rows of M implies a
nontrivial linear relation among the rows of M ′.

Game G4. We again modify the algorithm used by the encryption oracle, re-
placing step E5 by

E5′: r
R← Zq; c← gr.

By reasoning analogous to that in game G4 in the proof of Theorem 6.1, one can
show that

Pr[T4] = Pr[T3].
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Moreover, by construction it is evident that

Pr[T4] = 1/2.

That completes the proof sketch of Theorem 6.12. We leave it to the reader
to work out the details of the design and analysis of variants CS2a and CS2b of
scheme CS2, corresponding to the variants CS1a and CS1b of scheme CS1, which were
discussed in section 6.3.

Remark 6.11. Note that the high-level structure of the proof of Theorem 6.12 is
significantly simpler than that of Theorem 6.1. In particular, in the analysis of game
G3 in the proof of Theorem 6.12 we were able to bound the quantity Pr[R3] directly
without deferring the analysis to a later game, as in the proof of Theorem 6.1. This
simplification comes from the fact that we do not have to deal with a target collision
resistant hash function in Theorem 6.12, as we did in Theorem 6.1. Indeed, if in the
scheme CS1 we use a collision resistant hash function, we could prove the security
of CS1 using a proof with essentially the same line of reasoning as that of the proof
of Theorem 6.12, with one extra game between G0 and G1 to effectively ban hash
function collisions.

7. Hybrid encryption. The encryption schemes presented in the previous sec-
tion all had restricted message spaces. In some settings, an encryption scheme with
an unrestricted message space is more desirable. A simple and efficient way to build
an encryption scheme that has an unrestricted message is to build a hybrid encryption
scheme. Loosely speaking, such a scheme uses public-key encryption techniques to
encrypt a key K that is then used to encrypt the actual message using symmetric-key
encryption techniques. In this section, we develop the necessary tools for building a
hybrid public-key encryption scheme.

One key ingredient in any hybrid scheme is a key encapsulation mechanism. This
is like a public-key encryption scheme, except that the job of the encryption algorithm
is to generate the encryption of a random key K. Of course, one can always use a
general-purpose public-key encryption scheme to do this by simply generating K at
random and then encrypting it. However, there are typically more efficient ways to
do this.

As a quick example of a key encapsulation mechanism, consider the following
variation of the ElGamal encryption scheme. Let G be a group of prime order q
generated by an element g. Let H be a cryptographic hash function, such as SHA-1.
The public key consists of a group element h = gz, where z ∈ Zq is chosen at random;
the secret key is z. To generate an encryption of a symmetric key K, we compute

u
R← Zq; a← gu; b← hu; K ← H(b)

to form a ciphertext ψ = a. To decrypt a ciphertext ψ = a using the secret key, one
computes

b← az; K ← H(b),

obtaining a symmetric key K.
To build a complete hybrid encryption scheme, we combine a key encapsulation

mechanism with a symmetric-key encryption scheme.

7.1. Key encapsulation. A key encapsulation mechanism KEM consists of the
following algorithms:
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• A probabilistic, polynomial-time key generation algorithm KEM.KeyGen that
on input 1λ for λ ∈ Z≥0 outputs a public-key/secret-key pair (PK,SK). The
structure of PK and SK depends on the particular scheme.
For λ ∈ Z≥0, we define the probability spaces

KEM.PKSpaceλ := {PK : (PK,SK)
R← KEM.KeyGen(1λ)}

and

KEM.SKSpaceλ := {SK : (PK,SK)
R← KEM.KeyGen(1λ)}.

• A probabilistic, polynomial-time encryption algorithm KEM.Encrypt that
takes as input 1λ for λ ∈ Z≥0 and a public key PK ∈ [KEM.PKSpaceλ] and
outputs a pair (K,ψ), where K is a key and ψ is a ciphertext.
A key K is a bit string of length KEM.KeyLen(λ), where KEM.KeyLen(λ) is
another parameter of the key encapsulation mechanism.
A ciphertext is a bit string.
• A deterministic, polynomial-time decryption algorithm KEM.Decrypt that

takes as input 1λ for λ ∈ Z≥0, a secret key SK ∈ [KEM.SKSpaceλ], and a
ciphertext ψ and outputs either a key K or the special symbol reject.

7.1.1. Soundness. As for public key encryption, we need an appropriate notion
of soundness. A definition of soundness that is adequate for our purposes runs as
follows. Let us say a public-key/secret-key pair (PK,SK) ∈ [KEM.KeyGen(1λ)] is bad
if for some (K,ψ) ∈ [KEM.Encrypt(1λ,PK)] we have KEM.Decrypt(1λ,SK, ψ) �= K. Let
BadKeyPairKEM(λ) denote the probability that the key generation algorithm generates
a bad key pair for a given value of λ. Then our requirement is that BadKeyPairKEM(λ)
grows negligibly in λ.

7.1.2. Security against adaptive chosen ciphertext attack. For a key en-
capsulation mechanism, an adversary A in an adaptive chosen ciphertext attack is
a probabilistic, polynomial-time oracle query machine that takes as input 1λ, where
λ ∈ Z≥0 is the security parameter. We now describe the attack game used to define
security against adaptive chosen ciphertext attack, which is quite similar to that used
to define the corresponding notion of security for a public-key encryption scheme.

Stage 1: The adversary queries a key generation oracle. The key generation oracle

computes (PK,SK)
R← KEM.KeyGen(1λ) and responds with PK.

Stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary submits a ciphertext ψ, and the

decryption oracle responds with KEM.Decrypt(1λ,SK, ψ).
Stage 3: The adversary queries an encryption oracle.
The encryption oracle computes

(K∗, ψ∗)
R← KEM.Encrypt(1λ,PK); K+ R← {0, 1}�; τ

R← {0, 1};
if τ = 0, then K† ← K∗; else K† ← K+,

where � :=KEM.KeyLen(λ), and responds with the pair (K†, ψ∗).
Stage 4: The adversary continues to make calls to the decryption oracle subject

only to the restriction that a submitted ciphertext ψ is not identical to ψ∗.
Stage 5: The adversary outputs τ̂ ∈ {0, 1}.
We define AdvCCAKEM,A(λ) to be |Pr[τ = τ̂ ]− 1/2| in the above attack game.
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We say that KEM is secure against adaptive chosen ciphertext attack if
for all probabilistic, polynomial-time oracle query machines A the
function AdvCCAKEM,A(λ) grows negligibly in λ.

In applying the above definition of security, one typically works directly with the
quantity

AdvCCA′
KEM,A(λ) := |Pr[τ̂ = 1 | τ = 0]− Pr[τ̂ = 1 | τ = 1]| .

It is easy to verify that

AdvCCA′
KEM,A(λ) = 2 · AdvCCAKEM,A(λ).

7.2. One-time symmetric-key encryption. A one-time symmetric-key en-
cryption scheme SKE consists of two algorithms:

• A deterministic, polynomial-time encryption algorithm SKE.Encrypt that
takes as input 1λ for λ ∈ Z≥0, a key K, and a message m and outputs a
ciphertext χ.
The key K is a bit string of length SKE.KeyLen(λ).
Here, SKE.KeyLen(λ) is a parameter of the encryption scheme, which we
assume can be computed in deterministic polynomial time given 1λ.
The message m is a bit string of arbitrary, unbounded length.
The ciphertext χ is a bit string.
We denote by SKE.CTLen(λ, �) the maximum length of any encryption of a
message of length at most � when using security parameter λ.

• A deterministic, polynomial-time decryption algorithm SKE.Decrypt that
takes as input 1λ for λ ∈ Z≥0, a key K, and a ciphertext χ and outputs
a message m or the special symbol reject.
The key K is a bit string of length SKE.KeyLen(λ).
The ciphertext χ is a bit string of arbitrary length.

We require that SKE satisfy the following soundness condition: for all λ ∈ Z≥0,
for all K ∈ {0, 1}SKE.KeyLen(λ), for all m ∈ {0, 1}∗, we have

SKE.Decrypt(1λ,K,SKE.Encrypt(1λ,K,m)) = m.

7.2.1. Two definitions of security. We define two notions of security for a one-
time symmetric-key encryption scheme: security against passive attacks and security
against adaptive chosen ciphertext attacks.

As usual, an adversary A is a probabilistic, polynomial-time oracle query machine
that takes as input 1λ, where λ ∈ Z≥0 is the security parameter.

A passive attack runs as follows. The adversary A chooses two messages, m0 and
m1, of equal length and gives these to an encryption oracle. The encryption oracle
generates a random key K of length SKE.KeyLen(λ), along with random σ ∈ {0, 1},
and encrypts the message mσ using the key K. The adversary A is then given the
resulting ciphertext χ∗. Finally, the adversary outputs σ̂ ∈ {0, 1}.

We define AdvPASKE,A(λ) to be |Pr[σ = σ̂]− 1/2| in the above attack game.
We say that SKE is secure against passive attacks if

for all probabilistic, polynomial-time oracle query machines A the
function AdvPASKE,A(λ) grows negligibly in λ.

An adaptive chosen ciphertext attack is exactly the same as a passive attack,
except that after the adversary A obtains the target ciphertext χ∗ from the encryption
oracle the adversary may then query a decryption oracle any number of times. In each
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decryption oracle query, A submits a ciphertext χ �= χ∗ and obtains the decryption
of χ under the key K. As in the passive attack, A outputs σ̂ ∈ {0, 1}.

We define AdvCCASKE,A(λ) to be |Pr[σ = σ̂]− 1/2| in the above attack game.
We say that SKE is secure against adaptive chosen ciphertext attacks if

for all probabilistic, polynomial-time oracle query machines A the
function AdvCCASKE,A(λ) grows negligibly in λ.

7.2.2. Constructions. Our definition of a symmetric-key encryption scheme
and the corresponding notions of security are tailored to the application of building
a hybrid public-key encryption scheme. These definitions may not be appropriate
for other settings. In particular, our definitions of security do not imply protection
against chosen plaintext attack; however, this protection is not needed for hybrid
public-key encryption schemes, since a symmetric key is only used to encrypt a single
message.

It is easy to build a symmetric key encryption scheme that achieves security
against passive attacks using standard symmetric-key techniques. For example, to
encrypt a message m, one can expand the key K using a pseudorandom bit generator
to obtain a “one time pad” α of length |m| and then compute χ← m⊕ α.

A pseudorandom bit generator can be built from an arbitrary one-way permuta-
tion [33] or even from an arbitrary one-way function [36, 35]. These constructions,
however, are not very practical. In a practical implementation, it is perfectly reason-
able to stretch the key K by using it as the key to a dedicated block cipher and then
evaluate the block cipher at successive points (so-called counter mode) to obtain a
sequence of pseudorandom bits (cf. [44, Chapter 7]).

Note that the above construction yields a scheme that is completely insecure
against adaptive chosen ciphertext attack. However, it is also easy to build a sym-
metric key encryption scheme SKE2 that achieves security against adaptive chosen
ciphertext attack, given an arbitrary scheme SKE1 that is only secure against passive
attacks.

One technique is to simply build an SKE2 ciphertext by attaching a message
authentication code to the SKE1 ciphertext. Although this technique seems to be
“folklore,” for completeness we develop the details here.

A one-time message authentication code MAC specifies the following items:
• For λ ∈ Z≥0, a key length parameter MAC.KeyLen(λ) and an output length

parameter MAC.OutLen(λ).
We assume that MAC.KeyLen(λ) can be computed in deterministic polynomial
time given 1λ.
• A family of functions indexed by λ ∈ Z≥0 and mk ∈ {0, 1}MAC.KeyLen(λ), where

each function MACλ
mk maps arbitrary bit strings to bit strings of length exactly

MAC.OutLen(λ).
There must be a deterministic, polynomial-time algorithm that on input 1λ,
mk ∈ {0, 1}MAC.KeyLen(λ), and α ∈ {0, 1}∗ outputs MACλ

mk(α).
To define security for MAC, we define an attack game as follows. As usual, an

adversary A is a probabilistic, polynomial-time oracle query machine that takes as
input 1λ, where λ ∈ Z≥0 is the security parameter. The adversary A first chooses a
bit string α and submits this to an oracle. The oracle generates a random key mk
of length MAC.KeyLen(λ), computes β ← MACλ

mk(α), and returns β to the adversary.
The adversary A then outputs a list

((α1, β1), . . . , (αk, βk))
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of pairs of bit strings. We say that A has produced a forgery if for some 1 ≤ i ≤ k we
have αi �= α and MACλ

mk(αi) = βi.
We say that A is a (L1(λ), L2(λ), N(λ)) forging adversary if |α| ≤ L1(λ), k ≤

N(λ), and |αi| ≤ L2(λ) for all 1 ≤ i ≤ k.
Define AdvForgeMAC,A(λ) to be the probability that A produces a forgery in the

above game. We say that MAC is secure if
for all probabilistic, polynomial-time oracle query machines A the
function AdvForgeMAC,A(λ) grows negligibly in λ.

Message authentication codes have been extensively studied (cf. [44, Chapter 9]).
Once can easily build secure one-time message authentication codes using an appro-
priate family of universal hash functions without relying on any intractability assump-
tions. There are also other ways to build message authentication codes which may be
preferable in practice, even though the security of these schemes is not fully proven.

Now we demonstrate how to use SKE1 and MAC to build SKE2. The key length
SKE2.KeyLen(λ) of SKE2 will be equal to

SKE1.KeyLen(λ) + MAC.KeyLen(λ).

We will write such a key as (K,mk), where K is a bit string of length SKE1.KeyLen(λ)
and mk is a bit string of length MAC.KeyLen(λ).

To encrypt a message m under a key (K,mk) as above, algorithm SKE2.Encrypt
computes

χ← SKE1.Encrypt(1λ,K,m); tag← MACλ
mk(χ); χ′ ← χ ‖ tag

and outputs the ciphertext χ′.
To decrypt a ciphertext χ′ under a key (K,mk) as above, algorithm SKE2.Decrypt

first parses χ′ as χ′ = χ ‖ tag, where tag is a bit string of length MAC.OutLen(λ). If
this parsing step fails (because χ′ is too short), then the algorithm outputs reject;
otherwise, it computes

tag′ ← MACλ
mk(χ).

If tag �= tag′, the algorithm outputs reject; otherwise, it computes

m← SKE1.Decrypt(1λ,K, χ)

and outputs m.
To analyze the security of SKE2, we recall that for all probabilistic, polynomial-

time oracle query machines A, for all λ ∈ Z≥0, we denote by QA(λ) an upper bound
on the number of decryption oracle queries made by A on input 1λ. Although we
introduced this notation in the context of public-key encryption, we can adopt it here
in the context of symmetric-key encryption as well. We remind the reader that QA(λ)
should be a strict bound that holds for any environment.

For all probabilistic, polynomial-time oracle query machines A, for all λ ∈ Z≥0, we
define BA(λ) to be an upper bound on the length of the messages submitted by A to
the encryption oracle and B′

A(λ) to be an upper bound on the ciphertexts submitted
by A to the decryption oracle. As usual, these upper bounds should hold regardless
of the environment of A.

Theorem 7.1. If SKE1 is secure against passive attacks and MAC is a secure
one-time message authentication code, then SKE2 is secure against adaptive chosen
ciphertext attacks.
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In particular, for every probabilistic, polynomial-time oracle query machine A,
there exist probabilistic oracle query machines A1 and A2, whose running times are
essentially the same as that of A, such that for all λ ∈ Z≥0,

AdvCCASKE2,A(λ) ≤ AdvPASKE1,A1
(λ) + AdvForgeMAC,A2

(λ).

Moreover, A2 is a

(SKE1.CTLen(λ,B(λ)), B′(λ)−MAC.OutLen(λ), QA(λ))

forging adversary.
Proof. Fix A and λ, and let G0 denote the original chosen ciphertext attack game.

Let T0 be the event that σ = σ̂ in game G0.
We next define a modified attack game G1 in which all ciphertexts submitted to

the decryption oracle by A in game G1 are simply rejected.
Let T1 be the event that σ = σ̂ in game G1. Let R1 be the event in game G1

that some ciphertext is rejected in game G1 that would not have been rejected under
the rules of game G0.

Since games G0 and G1 proceed identically until event R1 occurs, the events
T0∧¬R1 and T1∧¬R1 are identical, and so, by Lemma 6.2, we have |Pr[T0]−Pr[T1]| ≤
Pr[R1].

It is straightforward to verify that

Pr[R1] ≤ AdvForgeMAC,A2
(λ)(7.1)

for an adversary A2 as described above.
The theorem now follows by observing that the attack by A in game G1 is now a

passive attack. That is, the adversary A1 in the theorem simply runs the adversary A,
and whenever A makes a decryption oracle query adversary A1 simply lets A continue
as if the decryption oracle rejected the ciphertext.

Remark 7.1. Although the keys for SKE2 are longer than those for SKE1, this
need not be the case if we use a pseudorandom bit generator to stretch a short key into
a suitably long key. Indeed, the key length of any symmetric key encryption scheme
need be no longer than the key length of a secure pseudorandom bit generator.

7.3. A hybrid construction. Let KEM be a key encapsulation mechanism (as
defined in section 7.1), and let SKE be a one-time symmetric key encryption scheme
(as defined in section 7.2). Further, let us assume that the two schemes are compatible
in the sense that for all λ ∈ Z≥0 we have KEM.KeyLen(λ) = SKE.KeyLen(λ). We now
describe a hybrid public-key encryption scheme HPKE.

The key generation algorithm for HPKE is the same as that of KEM, and the
public and secret keys are the same as those of KEM.

To encrypt a message m in the hybrid scheme, we run KEM.Encrypt to generate
a symmetric key K and a ciphertext ψ encrypting K. We then encrypt m under the
key K using SKE.Encrypt, obtaining a ciphertext χ. The output of the encryption
algorithm is ψ̂ = (ψ, χ), encoded in a canonical fashion as a bit string.

The decryption algorithm for the hybrid scheme runs as follows. Given a cipher-
text ψ̂, we first verify that ψ̂ properly encodes a pair (ψ, χ). If not, we output reject
and halt. Next, we decrypt ψ using KEM.Decrypt; if this yields reject, then we output
reject and halt. Otherwise, we obtain a symmetric key K and decrypt χ under K
using SKE.Decrypt and output the resulting decryption (which may be reject).



CHOSEN CIPHERTEXT SECURE ENCRYPTION 207

Theorem 7.2. If KEM and SKE are secure against adaptive chosen ciphertext
attacks, then so is HPKE.

In particular, if A is a probabilistic, polynomial-time oracle query machine, then
there exist probabilistic oracle query machines A1 and A2, whose running times are
essentially the same as that of A, such that for all λ ∈ Z≥0 we have

AdvCCAHPKE,A(λ) ≤ BadKeyPairKEM(λ) + AdvCCA′
KEM,A1

(λ) + AdvCCASKE,A2(λ).

Proof. Fix A and λ, and let G0 be the original chosen ciphertext attack game
played by A against HPKE. We let ψ̂∗ = (ψ∗, χ∗) denote the target ciphertext; σ is
the hidden bit generated by the encryption oracle and σ̂ is the bit output by A. Let
T0 be the event that σ = σ̂. Also, let K∗ denote the symmetric key output by the
algorithm KEM.Encrypt during the encryption process within the encryption oracle.

We now define a modified game G1. In this game, whenever a ciphertext (ψ, χ)
is submitted to the decryption oracle after the invocation of the encryption oracle, if
ψ = ψ∗ (but χ �= χ∗ of course), then the decryption oracle does not apply algorithm
KEM.Decrypt to obtain the symmetric key but instead just uses the key K∗ produced
by the encryption oracle. Let T1 be the event that σ = σ̂ in game G1.

This change is slightly more than just conceptual, since KEM.KeyGen may gener-
ate a bad key pair with probability BadKeyPairKEM(λ). However, unless this occurs,
games G0 and G1 proceed identically, and so, by Lemma 6.2, we have

|Pr[T1]− Pr[T0]| ≤ BadKeyPairKEM(λ).

Now we define a modified game G2. This game behaves just like game G1, except
that we use a completely random symmetric key K+ in place of the key K∗ in both
the encryption and decryption oracles. Let T2 be the event that σ = σ̂ in game G2.

It is straightforward to see that there is an oracle query machine A1, whose running
time is essentially the same as that of A, such that

|Pr[T2]− Pr[T1]| = AdvCCA′
KEM,A1

(λ).

The adversary A1 basically just runs the adversary A. In the attack game that
A1 is playing against KEM, the value K† is equal to K∗ in game G1 and is equal to
K+ in game G2. Note that in games G1 and G2 the ciphertext ψ∗ is never explicitly
decrypted, and so A1 need not submit this for decryption either.

Last, we observe that there is an oracle query machine A2, whose running time is
essentially the same as that of A, such that

|Pr[T2]− 1/2| = AdvCCASKE,A2(λ).

To see this, note that in game G2 the ciphertext χ∗ is produced using the random
symmetric encryption key K+, and also that some other ciphertexts χ �= χ∗ are
decrypted using K+, but that the key K+ plays no other role in game G2. Thus, in
game G2 the adversary A is essentially just carrying out an adaptive chosen ciphertext
attack against SKE.

Remark 7.2. We stress that it is essential for both KEM and SKE to be secure
against adaptive chosen ciphertext attack in order to prove that HPKE is as well. One
cannot start with a “weak” KEM and hope to “repair” it with a hybrid construction:
doing this may indeed foil some specific attacks, but we know of no way to formally
reason about the security of such a scheme. It is also important not to waste the
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chosen ciphertext security of KEM by using a “weak” SKE. Indeed, some popular
methods of constructing a “digital envelope” use a SKE that may only be secure
against passive attacks; even if the resulting composite ciphertext is digitally signed,
this does not necessarily provide security against chosen ciphertext attack.

Remark 7.3. In Remarks 6.9 and 6.10, we cautioned that revealing the reason
for rejecting a ciphertext may invalidate the proof of security. This is not the case for
the above hybrid construction. There are two reasons a ciphertext may be rejected
in this construction: either KEM.Decrypt rejects ψ or SKE.Decrypt rejects χ. We
leave it to the reader to verify that the above security proof goes through, essentially
unchanged, even if the adversary is told the reason for rejecting. This is a nice
feature, since in most practical implementations it would be easy to distinguish these
two rejection cases, assuming that χ was very long, and that the decryption algorithm
halted immediately when KEM.Decrypt rejects.

8. Key derivation functions. In the next section, we will present and analyze
a key encapsulation mechanism. The key will be derived by hashing a pair of group
elements. In order not to clutter that section, we develop here the notion of such a
key derivation function.

Let G be a computational group scheme specifying a sequence (Sλ)λ∈Z≥0
of group

distributions.
A key derivation scheme KDF associated with G specifies two items:
• A family of key spaces indexed by λ ∈ Z≥0 and Γ ∈ [Sλ]. Each such key

space is a probability space, denoted KDF.KeySpaceλ,Γ, on bit strings, called
derivation keys.
There must exist a probabilistic, polynomial-time algorithm whose output
distribution on input 1λ and Γ is equal to KDF.KeySpaceλ,Γ.

• A family of key derivation functions indexed by λ ∈ Z≥0, Γ[Ĝ,G, g, q] ∈ [Sλ],

and dk ∈ [KDF.KeySpaceλ,Γ], where each such function KDFλ,Γ
dk maps a pair

(a, b) ∈ G2 of group elements to a key K.
A key K is a bit string of length KDF.OutLen(λ). The parameter KDF.OutLen(λ)
should be computable in deterministic polynomial time given 1λ.
There must exist a deterministic, polynomial-time algorithm that on input
1λ, Γ[Ĝ,G, g, q] ∈ [Sλ], dk ∈ [KDF.KeySpaceλ,Γ], and (a, b) ∈ G2 outputs

KDFλ,Γ
dk (a, b).

We now define the security property that we shall require of KDF.
For all 0/1-valued, probabilistic, polynomial-time algorithms A, and for all λ ∈

Z≥0, define

AdvDistKDF,A(λ)

:=
∣∣∣Pr[ τ = 1 : Γ

R← Sλ; dk
R← KDF.KeySpaceλ,Γ; a, b

R← G;

τ
R← A(1λ,Γ, dk, a,KDFλ,Γ

dk (a, b)) ]

− Pr[ τ = 1 : Γ
R← Sλ; dk

R← KDF.KeySpaceλ,Γ; a
R← G; K

R← {0, 1}KDF.OutLen(λ);

τ
R← A(1λ,Γ, dk, a,K) ]

∣∣∣ .
That is, AdvDistKDF,A(λ) measures the advantage that A has in distinguishing

two distributions: in the first it is given KDFλ,Γ
dk (a, b) and in the second it is given a

random key K; in both distributions it is given the derivation key dk as well as the
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auxiliary group element a, so, in effect, both dk and a are to be regarded as public
data.

We shall say that KDF is secure if this distinguishing advantage is negligible; i.e.,
for all 0/1-valued, probabilistic, polynomial-time algorithms A the
function AdvDistKDF,A(λ) grows negligibly in λ.

It is also convenient to define a quantity analogous to AdvDistKDF,A(λ) but condi-
tioned on a fixed group description. For all 0/1-valued, probabilistic, polynomial-time
algorithms A, for all λ ∈ Z≥0, and all Γ[Ĝ,G, g, q] ∈ [Sλ],

AdvDistKDF,A(λ | Γ)

:=
∣∣∣Pr[ τ = 1 : dk

R← KDF.KeySpaceλ,Γ; a, b
R← G;

τ
R← A(1λ,Γ, dk, a,KDFλ,Γ

dk (a, b)) ]

− Pr[ τ = 1 : dk
R← KDF.KeySpaceλ,Γ; a

R← G; K
R← {0, 1}KDF.OutLen(λ);

τ
R← A(1λ,Γ, dk, a,K) ]

∣∣∣ .
8.1. Constructions.

8.1.1. Unconditionally secure constructions. One can build a secure KDF
for G without any assumptions, provided the groups defined by G are sufficiently large,
which they certainly will be in our applications. Indeed, all we need is that KDF is
pairwise independent.

In our context, we shall say that a KDF is pairwise independent if for all λ ∈ Z≥0,

for all Γ[Ĝ,G, g, q] ∈ [Sλ], for all a, b, b′ ∈ G with b �= b′, the distribution

{(KDFλ,Γ
dk (a, b),KDFλ,Γ

dk (a, b′)) : dk
R← KDF.KeySpaceλ,Γ}

is the uniform distribution over all pairs of bits strings of length KDF.OutLen(λ).
By the leftover hash lemma [36, 37], it follows that if KDF is pairwise independent,

then for all 0/1-valued, probabilistic, polynomial-time algorithms A, for all λ ∈ Z≥0,

and for all Γ[Ĝ,G, g, q] ∈ [Sλ],

AdvDistKDF,A(λ | Γ) ≤ 2−k,

where

k =

⌊�log2 q� − KDF.OutLen(λ)

2

⌋
.

We also point out that fairly efficient pairwise independent functions can be con-
structed without relying on any intractability assumptions.

8.1.2. Conditionally secure constructions. In practice, to build a key deriva-
tion function one might simply use a dedicated cryptographic hash function, such as
SHA-1.

In this situation, we will simply be forced to assume that such a KDF is secure.
However, such an intractability assumption is not entirely unreasonable. Moreover, a
dedicated cryptographic hash function has several potential advantages over a pairwise
independent hash function:

• it may not use a key, or it may use a very short key, which may lead to a
significant space savings;
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• it can usually be evaluated more quickly than a typical pairwise independent
hash function;
• it can be safely used to derive output keys that are significantly longer than

would be safe to derive with a typical pairwise independent hash function;
• it may, at least heuristically, provide even more security in applications than

a typical pairwise independent hash function.

9. The new encryption scheme: Hybrid version.

9.1. Description of the scheme. In this section, we present a hybrid version
of our new encryption scheme. Specifically, we present a key encapsulation mechanism
CS3, out of which one can easily construct a hybrid encryption scheme, as described
in section 7.

The scheme makes use of a computational group scheme G as described in sec-
tion 4.1, defining a sequence (Sλ)λ∈Z≥0

of distributions of group descriptions and

providing a sampling algorithm Ŝ, where the output distribution Ŝ(1λ) closely ap-
proximates Sλ.

The scheme also makes use of a binary group hashing scheme HF associated with
G, as described in section 5.

Finally, the scheme makes use of a key derivation scheme KDF, associated with G,
as described in section 8. Note that output key length CS3.KeyLen(λ) of the scheme
is equal to KDF.OutLen(λ).

The scheme is described in detail in Figure 9.1.

9.2. Security analysis of the scheme. We shall prove that CS3 is secure
against adaptive chosen ciphertext attack if the DDH assumption holds for G and
the TCR assumption holds for HF, and assuming that KDF is a secure key derivation
scheme.

As we have done before, for all probabilistic, polynomial-time oracle query ma-
chines A and for all λ ∈ Z≥0, we let QA(λ) be an upper bound on the number of
decryption oracle queries made by A on input 1λ. We assume that QA(λ) is a strict
bound in the sense that it holds regardless of the probabilistic choices of A and re-
gardless of the responses to its oracle queries from its environment.

Theorem 9.1. If the DDH assumption holds for G and the TCR assumption
holds for HF, and assuming that KDF is a secure key derivation scheme, then CS3 is
secure against adaptive chosen ciphertext attack

In particular, for all probabilistic, polynomial-time oracle query machines A, there
exist probabilistic algorithms A1, A2, and A3, whose running times are essentially the
same as that of A, such that the following holds. For all λ ∈ Z≥0 and all Γ[Ĝ,G, g, q] ∈
[Sλ], we have

AdvCCACS3,A(λ | Γ) ≤ AdvDDHG,A1(λ | Γ)AdvTCRHF,A2(λ | Γ)
+ AdvDistKDF,A3

(λ | Γ) + (QA(λ) + 3)/q.
(9.1)

To prove Theorem 9.1, let us fix a probabilistic, polynomial-time oracle query
machine A, the value of the security parameter λ ∈ Z≥0, and the group description

Γ[Ĝ,G, g, q] ∈ [Sλ].
The proof follows the same line of argument as the proof of Theorem 6.1, and we

will at several places appeal to arguments in that proof so as to avoid unnecessary
repetition.

The attack game is as described in section 7.1.2. We now discuss the relevant
random variables in this game.
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Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ; dk
R← KDF.KeySpaceλ,Γ;

w
R← Z∗

q ; x1, x2, y1, y2, z1, z2
R← Zq;

ĝ ← gw; e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2

and output the public key PK = (Γ, hk, dk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, dk, x1, x2, y1, y2, z1, z2).

Encryption: Given 1λ for λ ∈ Z≥0, a public key

PK = (Γ[Ĝ,G, g, q], hk, dk, ĝ, e, f, h) ∈ [Sλ]×[HF.KeySpaceλ,Γ]×[KDF.KeySpaceλ,Γ]×G4,

compute

E1: u
R← Zq;

E2: a← gu;
E3: â← ĝu;
E4: b← hu;
E5: K ← KDFλ,Γ

dk (a, b);
E6: v ← HFλ,Γ

hk (a, â);
E7: d← eufuv

and output the symmetric key K and the ciphertext ψ = (a, â, d).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, dk, x1, x2, y1, y2, z1, z2)

∈ [Sλ]× [HF.KeySpaceλ,Γ]× [KDF.KeySpaceλ,Γ]× Z6
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 3-tuple (a, â, d) ∈ Ĝ3; output reject and halt if ψ is not of
this form.

D2: Test if a and â belong to G; output reject and halt if this is not the case.
D3: Compute v ← HFλ,Γ

hk (a, â).
D4: Test if d = ax1+y1vâx2+y2v; output reject and halt if this is not the case.
D5: Compute b← az1 âz2 .
D6: Compute K ← KDFλ,Γ

dk (a, b) and output the symmetric key K.

Fig. 9.1. The key encapsulation mechanism CS3.

Suppose that the public key is (Γ, hk, dk, ĝ, e, f, h) and that the secret key is
(Γ, hk, dk, x1, x2, y1, y2, z1, z2). Let w := logg ĝ, and define x, y, z ∈ Zq as follows:

x :=x1 + x2w, y := y1 + y2w, z := z1 + z2w.

As a notational convention, whenever a particular ciphertext ψ is under consider-
ation in some context, the following values are also implicitly defined in that context:

• a, â, d ∈ G, where ψ = (a, â, d);
• u, û, v, s ∈ Zq, where

u := logg a, û := logĝ â, v :=HFλ,Γ
hk (a, â), s := logg d.

For the target ciphertext ψ∗, we also denote by a∗, â∗, d∗ ∈ G, and u∗, û∗, v∗, s∗ ∈ Zq

the corresponding values.
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The probability space defining the attack game is then determined by the follow-
ing, mutually independent, random variables:

• the coin tosses of A;
• the values hk, dk, w, x1, x2, y1, y2, z1, z2 generated by the key generation algo-

rithm;
• the values τ ∈ {0, 1}, K+ ∈ {0, 1}KDF.OutLen(λ), and u∗ ∈ Zq generated by the

encryption oracle in the attack game.
Let G0 be the original attack game, let τ̂ ∈ {0, 1} denote the output of A, and

let T0 be the event that τ = τ̂ in G0 so that AdvCCACS3,A(λ | Γ) = |Pr[T0]− 1/2|.
As in the proof of Theorem 6.1, we shall define a sequence of modified games Gi,

for i = 1, 2, . . . , where in game Gi the event Ti will be the event corresponding to
event T0 but in game Gi. The overall structure of the proof will differ a bit from
that of Theorem 6.1, even though many of the low-level details will be very similar.
Indeed, the proof of this theorem is conceptually a bit simpler (even though there are

more steps) than that of Theorem 6.1, since the inputs to HFλ,Γ
hk in the encryption

oracle are independent of any quantities computed by the adversary; we also save a
term of 1/q in (9.1) because of this (compare with (6.1) in Theorem 6.1).

Game G1. We now modify game G0 to obtain a new game G1. These two
games are identical, except that instead of using the encryption algorithm as given to
compute the target ciphertext ψ∗ we use a modified encryption algorithm in which
steps E4 and E7 are replaced by

E4′: b← az1 âz2 ;
E7′: d← ax1+y1vâx2+y2v.

By the same reasoning as in the proof of Theorem 6.1, we have

Pr[T1] = Pr[T0].

Game G2. We again modify the encryption oracle, replacing step E3 by

E3′: û
R← Zq; â← ĝû.

By the same reasoning as in the proof of Theorem 6.1, one sees that there exists
a probabilistic algorithm A1, whose running time is essentially the same as that of A,
such that

|Pr[T2]− Pr[T1]| ≤ AdvDDHG,A1(λ | Γ) + 2/q.

Note that unlike game G2 in the proof of Theorem 6.1, we do not impose the
restriction u∗ �= û∗ just yet; it is technically convenient to defer this until later. This
is why the term 2/q appears in the above bound rather than 3/q.

Game G3. This game is the same as game G2, except for the following modifi-
cation.

We modify the decryption oracle so that it applies the following special rejection
rule: if the adversary submits a ciphertext ψ for decryption at a point in time after
the encryption oracle has been invoked such that (a, â) �= (a∗, â∗) but v = v∗, then the
decryption oracle immediately outputs reject and halts (before executing step D4′).

We claim that there exists a probabilistic algorithm A2, whose running time is
essentially the same as that of A, such that

|Pr[T3]− Pr[T2]| ≤ AdvTCRHF,A2
(λ | Γ).

This follows from reasoning very similar to the proof of Lemma 6.5 in the analysis
of game G5 in the proof of Theorem 6.1. Observe that we can impose the special
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rejection rule already in this game, rather than deferring to a later game as in the
proof of Theorem 6.1, because, as we mentioned above, the inputs to HFλ,Γ

hk in the
encryption oracle are independent of any quantities computed by the adversary.

Game G4. We again modify the encryption oracle, replacing step E3′ by

E3′′: û
R← Zq \ {u}; â← ĝû.

It is easy to verify that

|Pr[T4]− Pr[T3]| ≤ 1/q.

Game G5. In this game, we modify the decryption oracle in game G4, replacing
steps D4 and D5 by

D4′: test if â = aw and d = ax+yv; output reject and halt if this is
not the case;

D5′: b← az.
Let R5 be the event that in game G5 some ciphertext ψ is submitted to the

decryption oracle that is rejected in step D4′ but that would have passed the test in
step D4.

It is clear that

|Pr[T5]− Pr[T4]| ≤ Pr[R5].

We also claim that

Pr[R5] ≤ QA(λ)/q.

This follows from reasoning analogous to that in Lemma 6.6 (in game G5 in the proof
of Theorem 6.1).

Game G6. We again modify the algorithm used by the encryption oracle, re-
placing step E4′ by

E4′′: r
R← Zq; b← gr.

By reasoning analogous to that in the analysis of game G4 in the proof of Theo-
rem 6.1, one can easily show that

Pr[T6] = Pr[T5].

Game G7. In this game, we modify the encryption oracle, replacing step E5 of
the encryption algorithm by

E5′: K
R← {0, 1}KDF.OutLen(λ).

It is straightforward to see that there exists a probabilistic algorithm A3, whose
running time is essentially the same as that of A, such that

|Pr[T7]− Pr[T6]| ≤ AdvDistKDF,A3(λ | Γ).

Furthermore, it is clear by construction that

Pr[T7] = 1/2.

That completes the proof of Theorem 9.1.

9.3. Two variations. One can easily modify scheme CS3 to obtain two variants,
which we call CS3a and CS3b, that are analogous to the variations CS1a and CS1b
of CS1, discussed in section 6.3. Only the key generation and decryption algorithms
differ. The details are presented in Figures 9.2 and 9.3.
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Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ; dk
R← KDF.KeySpaceλ,Γ;

w
R← Z∗

q ; x1, x2, y1, y2, z
R← Zq;

ĝ ← gw; e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz

and output the public key PK = (Γ, hk, dk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, dk, x1, x2, y1, y2, z).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, dk, x1, x2, y1, y2, z)

∈ [Sλ]× [HF.KeySpaceλ,Γ]× [KDF.KeySpaceλ,Γ]× Z5
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 3-tuple (a, â, d) ∈ Ĝ3; output reject and halt if ψ is not of
this form.

D2: Test if a and â belong to G; output reject and halt if this is not the case.
D3: Compute v ← HFλ,Γ

hk (a, â).
D4: Test if d = ax1+y1vâx2+y2v; output reject and halt if this is not the case.
D5′: Compute b← az.
D6: Compute K ← KDFλ,Γ

dk (a, b) and output the symmetric key K.

Fig. 9.2. Key generation and decryption algorithms for CS3a.

Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); hk

R← HF.KeySpaceλ,Γ; dk
R← KDF.KeySpaceλ,Γ;

w
R← Z∗

q ; x, y, z
R← Zq;

ĝ ← gw; e← gx; f ← gy; h← gz

and output the public key PK = (Γ, hk, dk, ĝ, e, f, h) and the secret key
SK = (Γ, hk, dk, x, y, z).

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], hk, dk, x, y, z) ∈ [Sλ]× [HF.KeySpaceλ,Γ]× [KDF.KeySpaceλ,Γ]× Z3
q,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a 3-tuple (a, â, d) ∈ Ĝ3; output reject and halt if ψ is not of
this form.

D2′: Test if a belongs to G; output reject and halt if this is not the case.
D3: Compute v ← HFλ,Γ

hk (a, â).
D4′: Test if â = aw and d = ax+yv; output reject and halt if this is not the

case.
D5′: Compute b← az.
D6: Compute K ← KDFλ,Γ

dk (a, b) and output the symmetric key K.

Fig. 9.3. Key generation and decryption algorithms for CS3b.

Remark 9.1. Scheme CS3b is essentially the same scheme that was originally
presented in [56]. This scheme is the most efficient scheme among all those presented
in this paper. It is also attractive in that it yields a public-key encryption scheme
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with an unrestricted message space. Moreover, this scheme has some other attractive
security properties that will be examined in section 10.

Remark 9.2. Analogous to Remark 6.7, we do not have to separately test if â
belongs to the subgroup G in step D2′ of the decryption algorithm of CS3b, and we
may test if a belongs to G in some cases by testing if aq = 1G.

Remark 9.3. Analogous to Remark 6.8, in scheme CS3b the decryption algorithm
has to compute either three or four (if we test if aq = 1G) powers of a, and special
algorithmic techniques can be exploited to do this.

Remark 9.4. Analogous to Remarks 6.9 and 6.10, it is strongly recommended
to always compute both exponentiations in step D4′ of CS3b before rejecting the
ciphertext and to not reveal the precise reason why any ciphertext was rejected.
Again, we know of no actual attack given this information, and, in fact, it seems very
unlikely—see section 10.7 below.

The following theorem can proved using an argument almost identical to the
argument that was used to prove Theorem 6.10. We leave it to the reader to verify
this.

Theorem 9.2. If the DDH assumption holds for G and the TCR assumption
holds for HF, and assuming that KDF is a secure key derivation scheme, then CS3a
and CS3b are secure against adaptive chosen ciphertext attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, for
all λ ∈ Z≥0, and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we have

|AdvCCACS3a,A(λ | Γ)− AdvCCACS3,A(λ | Γ)| ≤ QA(λ)/q

and

|AdvCCACS3b,A(λ | Γ)− AdvCCACS3,A(λ | Γ)| ≤ QA(λ)/q.

10. Further security considerations of scheme CS3b. The key encapsula-
tion mechanism CS3b, which was described and analyzed in section 9.3, has some
other interesting security properties, which we discuss in this section.

The main results we present here are the following. First, we show that CS3b is
no less secure than a more traditional key encapsulation mechanism that is a hashed
variant of ElGamal encryption, which we call HEG. Second, we also show that CS3b
is secure in the random oracle model (viewing KDF as a random oracle) if the CDH
and TCR assumptions hold. Along the way, we also give a security analysis of HEG in
the random oracle model, based on a rather nonstandard intractability assumption.

10.1. Hashed ElGamal key encapsulation. We begin by presenting a fairly
traditional version of ElGamal key encapsulation, which we call HEG.

The scheme makes use of a computational group scheme G as described in sec-
tion 4.1, defining a sequence (Sλ)λ∈Z≥0

of distributions of group descriptions and

providing a sampling algorithm Ŝ, where the output distribution Ŝ(1λ) closely ap-
proximates Sλ.

Also, the scheme makes use of a key derivation scheme KDF, associated with G,
as described in section 8. Note that output key length EG.KeyLen(λ) of the scheme is
equal to KDF.OutLen(λ).

The scheme is described in detail in Figure 10.1.

10.2. The random oracle model. We will analyze the security of both schemes
HEG and CS3b in the random oracle model. In this approach, a cryptographic hash
function—in this case KDF—is modeled for the purposes of analysis as a “black box”



216 RONALD CRAMER AND VICTOR SHOUP

Key Generation: On input 1λ for λ ∈ Z≥0, compute

Γ[Ĝ,G, g, q]
R← Ŝ(1λ); dk

R← KDF.KeySpaceλ,Γ; z
R← Zq; h← gz

and output the public key PK = (Γ, dk, h) and the secret key SK = (Γ, dk, z).

Encryption: Given 1λ for λ ∈ Z≥0, a public key

PK = (Γ[Ĝ,G, g, q], dk, h) ∈ [Sλ]× [KDF.KeySpaceλ,Γ]×G,
compute

E1: u
R← Zq;

E2: a← gu;
E3: b← hu;
E4: K ← KDFλ,Γ

dk (a, b)

and output the symmetric key K and the ciphertext ψ = a.

Decryption: Given 1λ for λ ∈ Z≥0, a secret key

SK = (Γ[Ĝ,G, g, q], dk, z) ∈ [Sλ]× [KDF.KeySpaceλ,Γ]× Zq,

along with a ciphertext ψ, do the following.

D1: Parse ψ as a group element a ∈ Ĝ; output reject and halt if ψ is not of
this form.

D2: Test if a belongs to G; output reject and halt if this is not the case.
D3: Compute b← az.
D4: Compute K ← KDFλ,Γ

dk (a, b) and output the symmetric key K.

Fig. 10.1. The key encapsulation mechanism HEG.

containing a random function to which the adversary and the algorithms implementing
the cryptosystem have “oracle access.” This approach has been used implicitly and
informally for some time; however, it was formalized by Bellare and Rogaway [9] and
has subsequently been used quite a bit in the cryptographic research community.

More precisely, we shall analyze the security of the scheme HEG and later CS3b
in an idealized model of computation where for all λ ∈ Z≥0, all Γ[Ĝ,G, g, q] ∈ [Sλ],

all dk ∈ [KDF.KeySpaceλ,Γ], and all a, b ∈ G, we treat the values KDFλ,Γ
dk (a, b) as mu-

tually independent, random bit strings of length KDF.OutLen(λ); moreover, the only

way to obtain the value of KDFλ,Γ
dk (a, b) is to explicitly query an oracle with input

(λ,Γ, dk, a, b). Actually, to be complete, we allow Γ, dk, a, and b to range over arbi-
trary bit strings, regardless of whether these are valid encodings of appropriate objects.
Since in any of our applications only a finite number of the values KDFλ,Γ

dk (a, b) will be
relevant, experiments based on these values can be modeled using finite probability
spaces.

When considering an adversary A that is carrying out an adaptive chosen ci-
phertext attack in the random oracle model, in addition to the usual types of oracle
queries that A makes, the adversary A is also allowed to query the random oracle
representing KDF. We shall denote by Q′

A(λ) a strict upper bound on the number of
random oracle queries that A makes for a given value of the security parameter λ; as
usual, this bound should hold regardless of the environment in which A actually runs.

10.3. CS3b is at least as secure as HEG. We now show that the scheme CS3b
is at least as secure as HEG.
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Theorem 10.1. If scheme HEG is secure against adaptive chosen ciphertext
attack, then so is CS3b; moreover, this implication holds in either the standard or
random oracle models.

In particular, for all probabilistic, polynomial-time oracle query machines A, there
exists another oracle query machine A1, whose running time is essentially the same
as that of A, such that for all λ ∈ Z≥0 and all Γ[Ĝ,G, g, q] ∈ [Sλ] we have

AdvCCACS3b,A(λ | Γ) ≤ AdvCCAHEG,A1
(λ | Γ);

moreover, QA1
(λ) ≤ QA(λ) and (in the random oracle model) Q′

A1
(λ) ≤ Q′

A(λ).

Proof. Fix A, λ, and Γ[Ĝ,G, g, q] as above. We construct an adversary A1 that
attacks HEG. The adversary A1 makes use of A by providing an environment for A as
follows.

First, suppose that A1 is given a public key (Γ, dk, h) for scheme HEG, where Γ
is fixed as above. Adversary A1 then “dresses up” the HEG public key to look like a
CS3b public key; namely, A1 computes

hk
R← HF.KeySpaceλ,Γ; w

R← Z∗
q ; x, y

R← Zq; ĝ ← gw; e← gx; f ← gy

and presents A with the CS3b public key

(Γ, hk, dk, ĝ, e, f, h).

Second, whenever A submits a CS3b ciphertext (a, â, d) ∈ Ĝ3 to the decryption
oracle, adversary A1 first performs the validity tests of the decryption algorithm of
CS3b, making use of the values hk, w, x, y generated above; if these tests pass, then
A1 invokes the decryption oracle of HEG with input a.

Third, when A invokes the encryption oracle of CS3b, adversary A1 does the
following. It invokes the encryption oracle of HEG, obtaining a ciphertext a∗ ∈ G and
a key K†. It then “dresses up” a∗ to look like a CS3b ciphertext; namely, it computes

â∗ ← (a∗)w; v∗ ← HFλ,Γ
hk (a∗, â∗); d∗ ← (a∗)x+yv∗

and presents A with the CS3b ciphertext (a∗, â∗, d∗) along with the key K†.
Fourth, when A terminates and outputs a value, A1 also terminates and outputs

the same value.
That completes the description of the adversary A1.
One has to check that A1 carries out a legal adaptive chosen ciphertext attack

in the sense that it should not attempt to submit the target ciphertext itself to the
decryption oracle, subsequent to the invocation of the encryption oracle. Consider
a ciphertext a submitted by A1 to the decryption oracle. This was derived from
a valid CS3b ciphertext (a, â, d) submitted by A to the decryption oracle. By the
construction, it is easy to see that if a = a∗, then, in fact, (a, â, d) = (a∗, â∗, d∗),
which cannot happen if A itself carries out a legal attack.

Since the simulation by A1 above is perfect, it is clear that whatever advantage A
has in guessing the hidden bit, adversary A1 has precisely the same advantage. It is
also clear by construction that QA1(λ) ≤ QA(λ) and in the random oracle model that
Q′

A1
(λ) ≤ Q′

A(λ).

10.4. The security of HEG in the random oracle model. As for the security
of HEG, even in the random oracle model we do not know how to prove a very strong
result. We content ourselves with a proof that the scheme HEG is secure against
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adaptive chosen ciphertext attack in the random oracle model, provided the CDH
assumption holds relative to an oracle for the DDH problem.

More precisely, for all probabilistic, polynomial-time oracle query machines A and
for all λ ∈ Z≥0, we define

AdvCDH∗
G,A(λ) := Pr[ c = gxy : Γ[Ĝ,G, g, q]

R← Sλ; x
R← Zq; y

R← Zq;

c
R← ADHPλ,Γ(1λ,Γ, gx, gy) ],

where the notation ADHPλ,Γ(· · ·) signifies that A runs with access to an oracle for the
Diffie–Hellman predicate DHPλ,Γ defined in section 4.3.3.

We say that the CDH assumption for G holds relative to an oracle for the DDH
problem if

for all probabilistic, polynomial-time oracle query machines A the
function AdvCDH∗

G,A(λ) is negligible in λ.
For all probabilistic, polynomial-time oracle query machines A, for all λ ∈ Z≥0,

and for all Γ[Ĝ,G, g, q] ∈ [Sλ], we also define

AdvCDH∗
G,A(λ | Γ) := Pr[ c = gxy : x

R← Zq; y
R← Zq; c

R← ADHPλ,Γ(1λ,Γ, gx, gy) ].

On the one hand, it has been proven (see [42]) that in a “generic” model of
computation the CDH problem remains hard even in the presence of a DDH oracle,
thus giving some justification for this assumption; on the other hand, if one works with
the special elliptic curves discussed in the paper [38] already mentioned in section 4.4,
then the DDH oracle actually has an efficient implementation, even though the CDH
problem still appears hard.

Theorem 10.2. The scheme HEG is secure in the random oracle model if the
CDH assumption for G holds relative to an oracle for the DDH problem.

In particular, for all probabilistic, polynomial-time oracle query machines A, there
exists an oracle query machine A1, whose running time is essentially the same as that
of A, such that for all λ ∈ Z≥0 and for all Γ[Ĝ,G, g, q] ∈ [Sλ] we have

AdvCCAHEG,A(λ | Γ) ≤ AdvCDH∗
G,A1

(λ | Γ) + QA(λ)/q;

moreover, the number of DDH-oracle queries made by A1 is bounded by Q′
A(λ).

To prove Theorem 10.2, let us fix A, λ, and Γ[Ĝ,G, g, q]. The attack game is as
described in section 7.1.2.

We begin by describing the relevant random variables in the attack game. The
public key is (Γ, dk, h) and the secret key is (Γ, dk, z).

For a given ciphertext ψ, we let a ∈ G denote the corresponding group element,
and we let b := az, u := logg a, and K :=KDFλ,Γ

dk (a, b). Note also that b = au. For the
target ciphertext ψ∗, we let a∗, b∗, u∗, and K∗ denote the corresponding values.

The encryption oracle also generates values τ ∈ {0, 1} and K+ ∈ {0, 1}KDF.OutLen(λ).
Let G0 be the original attack game, let τ̂ denote the output of A, and let T0 be

the event that τ = τ̂ so that AdvCCAHEG,A(λ | Γ) = |Pr[T0]− 1/2|.
As usual, we define a sequence of games G1, G2, etc., and in game Gi for i ≥ 1

we define Ti to be the event in game Gi corresponding to event T0 in game G0.
Game G1. We modify game G0 as follows. First, we run the encryption oracle

at the beginning of the attack game, but we give the results of this to the adversary
only when it actually invokes the encryption oracle. This is a purely conceptual
change, since the adversary provides no input to the encryption oracle. Second, if
the adversary ever submits a ciphertext ψ = ψ∗ to the decryption oracle before the



CHOSEN CIPHERTEXT SECURE ENCRYPTION 219

encryption algorithm is invoked, we abort the game immediately before responding
to this decryption oracle invocation (the environment, say, goes silent at this point).

Let F1 be the event that game G1 is aborted as above. It is clear that Pr[F1] ≤
QA(λ)/q. It is also clear that games G0 and G1 proceed identically until event F1

occurs, and so, by Lemma 6.2, we have |Pr[T1]− Pr[T0]| ≤ Pr[F1].
Game G2. We next modify game G1 as follows. If the adversary ever queries

the random oracle to obtain the value of KDFλ,Γ
dk (a∗, b∗), we immediately abort the

game before responding to this random oracle invocation.
It is easy to see that Pr[T2] = 1/2. This follows directly from the fact that in

game G2 the value of KDFλ,Γ
dk (a∗, b∗) is obtained from the random oracle only by

the encryption oracle: the adversary never queries the random oracle directly at this
point, nor does the decryption oracle.

Let F2 be the event that game G2 is aborted as above. It is clear that |Pr[T2]−
Pr[T1]| ≤ Pr[F2], so it suffices to bound Pr[F2].

We claim that Pr[F2] = AdvCDH∗
G,A1

(λ | Γ) for an oracle query machine A1 whose
running time and number of oracle queries are bounded as in the statement of the
theorem.

We now describe A1. It takes as input 1λ, Γ[Ĝ,G, g, q], along with group elements
a∗, h ∈ G, and attempts to compute b∗ ∈ G such that DHPλ,Γ(h, a∗, b∗) = 1. The
machine A1 has access to an oracle for the function DHPλ,Γ.

Machine A1 simulates the environment of game G2 for A as follows. It first

computes dk
R← KDF.KeySpaceλ,Γ and gives A the public key (Γ, dk, h). For the target

ciphertext, it of course sets ψ∗ := a∗. For the other output K† of the encryption oracle,
A1 simply generates this as a random bit string of length KDF.OutLen(λ).

Machine A1 also needs to simulate the responses to the random oracle and decryp-
tion oracle queries. For the random oracle queries, the only values that are relevant
are those corresponding to the given values of λ, Γ, and dk.

For the irrelevant random oracle queries, A1 simply maintains a set of input/output
pairs, generating outputs at random as necessary.

Machine A1 processes relevant random oracle queries using the following data
structures:

• a set V1 of triples (a, b,K), with a, b ∈ G and K ∈ {0, 1}KDF.OutLen(λ), initially
empty; this will contain those triples (a, b,K) for which A1 has assigned the

value K to KDFλ,Γ
dk (a, b);

• a set V2 of pairs (a, b), with a, b ∈ G, initially empty; this will contain precisely
those pairs (a, b) such that (a, b,K) ∈ V1 for some K, and DHPλ,Γ(h, a, b) = 1;
• a set V3 of pairs (a,K), with a ∈ G and K ∈ {0, 1}KDF.OutLen(λ), initially

empty; this will contain pairs (a,K) for which A1 has assigned the value K

to KDFλ,Γ
dk (a, b) for b ∈ G with DHPλ,Γ(h, a, b) = 1, even though A1 does not

actually know the value of b.
Given a request for the value KDFλ,Γ

dk (a, b), machine A1 does the following:
• It tests if (a, b,K) ∈ V1 for some K. If so (which means that A has queried

the value KDFλ,Γ
dk (a, b) before), it returns K as the value of KDFλ,Γ

dk (a, b);
otherwise, it continues.
• It invokes its own DDH-oracle to determine if DHPλ,Γ(h, a, b) = 1.
• If DHPλ,Γ(h, a, b) = 1, then we have the following:

– If a = a∗, it halts and outputs the solution b∗ := b to the given problem
instance (this corresponds to the early-abort rule introduced in game
G2); otherwise, it continues.
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– It adds the pair (a, b) to the set V2.
– If (a,K) ∈ V3 for some K, then it adds the triple (a, b,K) to V1 and

returns K as the value of KDFλ,Γ
dk (a, b); otherwise, it continues.

• It generates K as a random bit string of length KDF.OutLen(λ), adds the

triple (a, b,K) to V1, and returns K as the value of KDFλ,Γ
dk (a, b).

Machine A1 processes decryption oracle queries as follows. Suppose it is given a
ciphertext ψ, with a ∈ G the corresponding group element. Then it does the following:

• If ψ = ψ∗ (which can only happen if the encryption oracle has not yet been
invoked), then it simply halts (this corresponds to the early-abort rule intro-
duced in game G1); otherwise, it continues.
• It tests if (a, b) ∈ V2 for some b ∈ G.
• If this is so, then it finds the (unique) triple in V1 of the form (a, b,K) for

some K and returns this value of K as the result of the decryption oracle
invocation; otherwise, it continues.
• It tests if (a,K) ∈ V3 for some K.
• If this is so, then it returns this value of K as the result of the decryption or-

acle; otherwise, it generates a random bit string K of length KDF.OutLen(λ),
adds the pair (a,K) to V3, and returns this value of K as the result of the
decryption oracle invocation.

It is straightforward to verify by inspection that A1 as above does the job.
That completes the proof of Theorem 10.2.

10.5. The security of CS3b in the random oracle model. We can now
prove the following security theorem for CS3b in the random oracle model.

Theorem 10.3. The scheme CS3b is secure in the random oracle model if the
CDH assumption holds for G and the TCR assumption holds for HF.

Proof. To prove this, let us assume by way of contradiction that the CDH as-
sumption holds for G and the TCR assumption holds for HF, but CS3b is not secure
in the random oracle model.

Now, the CDH assumption implies that for any polynomials P1 and P2 (with
integer coefficients, taking positive values on Z≥0) there exists a λ0 ∈ Z≥0 such that
for all λ ≥ λ0

Pr[q ≤ P1(λ) : Γ[Ĝ,G, g, q]
R← Sλ] ≤ 1/P2(λ),

since otherwise a trivial, brute-force algorithm would have a CDH advantage that
was not negligible. This implies, in particular, that when we model KDF as a random
oracle, it acts as a secure key derivation scheme. From this it follows from Theorems
9.1 and 9.2 that CS3b is secure in the random oracle model if the DDH assumption
holds; actually, since these two theorems do not deal with the random oracle model,
one must make a cursory inspection of the proofs of these theorems to draw this
conclusion, but this is very straightforward.

Let A be a polynomial-time adversary that breaks the security of CS3b in the
random oracle model. This means that there exist polynomials P1, P2 (with integer
coefficients, taking positive values on Z≥0), an infinite set Λ ⊂ Z≥0, and sets Zλ ⊂ [Sλ]
for each λ ∈ Λ such that

• for all λ ∈ Λ and Γ ∈ Zλ, AdvCCACS3b,A(λ | Γ) ≥ 1/P1(λ);
• for all λ ∈ Λ, PrSλ

[Zλ] ≥ 1/P2(λ).
Theorems 9.1 and 9.2 (adapted to the random oracle model), together with our

TCR assumption, imply that there exists a polynomial-time algorithm A1 such that
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for all sufficiently large λ ∈ Λ and for all but a negligible fraction of Γ in Zλ we have

AdvDDHG,A1(λ | Γ) ≥ 1/(2P1(λ)).

We now apply Lemma 4.3 using the above algorithm A1 and choosing the value
of κ in that lemma so that 2−κ ·Q′

A(λ) ≤ 1/2, yielding a polynomial-time algorithm
A2 such that for all sufficiently large λ ∈ Λ, for all but a negligible fraction of Γ ∈ Zλ,
and for all ρ ∈ Tλ,Γ,

Pr[A2(1λ,Γ, ρ) �= DHPλ,Γ(ρ)] ≤ 1/(2Q′
A(λ)).

Applying Theorem 10.1 with the adversary A yields a polynomial-time adversary
A3 such that for all λ ∈ Λ and Γ ∈ Zλ, AdvCCAHEG,A3(λ | Γ) ≥ 1/P1(λ). Applying
Theorem 10.2 with the adversary A3 yields a polynomial-time oracle machine A4 such
that

AdvCDH∗
G,A4

(λ | Γ) ≥ 1/(2P1(λ))

for all sufficiently large λ ∈ Λ and for all but a negligible fraction of Γ ∈ Zλ. Since for
a given value of λ algorithm A4 makes no more than Q′

A(λ) DDH-oracle queries, if we
replace the DDH-oracle used by A4 with algorithm A2 above, we obtain a polynomial-
time algorithm A5 such that for all sufficiently large λ ∈ Λ and for all but a negligible
fraction of Γ in Zλ we have AdvCDHG,A5(λ | Γ) ≥ 1/(4P1(λ)). But this contradicts
the CDH assumption.

10.6. Random oracles and pairwise independent key derivation func-
tions: Getting the best of both. If we want to prove the security of CS3b in
the standard model without making any intractability assumptions about KDF, then
we may choose KDF to be pairwise independent. On the one hand, standard con-
structions for pairwise independent hash functions typically exhibit a lot of algebraic
structure, and it is not very reasonable to assume that such a KDF can be safely mod-
eled as a random oracle. On the other hand, typical dedicated cryptographic hash
functions, such as SHA-1, may be modeled as random oracles, but they are certainly
not pairwise independent.

We shall sketch here how to get the best of both worlds, i.e., how to implement
the KDF so that we get a proof of security of CS3b in the standard model just under
the DDH and TCR assumptions and in the random oracle model under the CDH and
TCR assumptions.

The idea is this: compute KDF as the XOR of a pairwise independent hash KDF1
and a cryptographic hash KDF2.

It is clear that if KDF1 is pairwise independent, then so is KDF, and so the security
of CS3b in the standard model under the DDH and TCR assumptions now follows
directly from Theorem 9.2.

Now suppose we model the cryptographic hash KDF2 as a random oracle. It is
easy to see that for any adversary A attacking CS3b given oracle access to KDF2 there
is an adversary A1, whose running time is roughly the same as that of A, that attacks
CS3b given oracle access to KDF: the adversary A1 just does whatever A does, except
that whenever A queries the oracle for KDF2 adversary A1 queries its oracle for KDF
and computes the value of KDF2 as the XOR of the value of KDF and the value of
KDF1. Note, however, that the output distribution of the oracle KDF is the same
as that of a random oracle, and so the security of CS3b in the random oracle model
under the CDH and TCR assumptions now follows directly from Theorem 10.3.
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We do not necessarily advocate this approach to building a KDF in practical
implementations: simply assuming that a KDF implemented directly using a dedicated
cryptographic hash is secure is quite reasonable, and the resulting KDF is much simpler
and more efficient than any approach that makes use of a pairwise independent hash
function.

10.7. Further discussion. The scheme HEG is intended to represent a fairly
traditional version of ElGamal key encapsulation. The only thing slightly nontradi-
tional about it is the fact that the symmetric key K is derived by hashing both a (the
ephemeral Diffie–Hellman public key) and b (the shared Diffie–Hellman key), rather
than just b alone.

Hashing both the ephemeral and shared keys together has some quantitative se-
curity advantages. Notice that in Theorem 10.2 the implied CDH algorithm makes no
more than Q′

A(λ) queries to the DDH-oracle. If we were to hash only the shared Diffie–
Hellman key, we could still prove the security of HEG, but the reduction would be less
efficient; in particular, the implied CDH algorithm might require up to Q′

A(λ) ·QA(λ)
queries to the DDH-oracle. A similar quantitative security advantage arises in the
multiuser/multimessage model (see [7]). In this model, we can exploit the well-known
random self-reducibility of the CDH problem to get a more efficient reduction if we
hash both keys instead of just one. Of course, these improved security reductions for
HEG carry over to the security reduction for CS3b in the random oracle model.

The DHAES encryption scheme [1], which is a hybrid ElGamal encryption scheme
that has been proposed for standardization, also hashes both the ephemeral and shared
Diffie–Hellman keys to derive a symmetric key. Indeed, the DHAES scheme can be
constructed from the key encapsulation mechanism HEG using the hybrid construc-
tions presented in section 7, and it is straightforward to verify that analogues of
Theorems 10.1 and 10.2 hold for the DHAES scheme as well. The DHAES scheme
needs to hash both group elements because it allows the possibility of a group G whose
order is a composite number. In a revised version of DHAES, called DHIES [2], the
group G is required to have prime order, and only the shared Diffie–Hellman key is
hashed. However, as we have seen, there are still some security benefits to be gained
from hashing both group elements, even if the group is of prime order, as we are
assuming in this paper.

We should also point out that because any attack on scheme CS3b can be immedi-
ately translated into an attack on HEG (see Theorem 10.1), it seems very unlikely that
any of the side channels discussed in Remark 9.4 could be used to break CS3b without
breaking HEG. Thus, although the availability of such side channel information would
invalidate the proof of security of CS3b under the DDH, it seems very unlikely that
it could be exploited to break it.

Theorem 10.3 originally appeared in the paper [56]. The proof in that paper
basically rolled all of the arguments used in the proofs of Theorems 10.1, 10.2, and
10.3, along with the arguments in section 10.6, into a single proof, which we have
unraveled to some extent here. Our presentation here was somewhat influenced by
the paper [48], which formally introduces the notion of the CDH assumption relative
to an oracle for the DDH problem.

The security reduction in Theorem 10.3 is quite inefficient: we have to perform
many simulations using the given adversary A just to solve one instance of the DDH
problem, and then in a different simulation involving A we have to solve many in-
stances of the DDH problem in order to solve one instance of the CDH problem. Of
course, if the DDH problem for a given group scheme turns out not to be a hard
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problem, then it may very well be the case that there is a much more efficient DDH
algorithm than the one built using our security reduction involving A. In this case,
the reduction in Theorem 10.3 becomes quite reasonable.

11. Summary. We conclude with a brief summary of the schemes presented in
this paper:

• the public-key encryption scheme CS1, which is secure under the DDH and
TCR assumptions, along with minor, slightly simpler, and more efficient vari-
ants CS1a and CS1b;

• the public-key encryption scheme CS2, which is a “hash free” variant of CS1
and which is secure under the DDH assumption;
• the key encapsulation mechanism CS3, along with variants CS3a and CS3b,

which can be combined with an appropriate symmetric cipher to build a
hybrid cipher; the hybrid cipher will be secure under the DDH and TCR
assumptions, together with an appropriate “smoothing” assumption for the
key derivation function, and an appropriate security assumption for the sym-
metric cipher.

Among these schemes, the one most likely to be used in practice is the hybrid
construction based on CS3b. Over the other schemes, it has the following advantages:

• it is more efficient;
• it can be used to encrypt messages that are bit strings of arbitrary length;
• it is no less secure than traditional “hashed” ElGamal;
• it can be proven secure in the random oracle model under weaker CDH as-

sumption.
A version of this scheme is currently included in a draft ISO standard for public key
encryption.
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Abstract. We define a counting class #Padd in the Blum–Shub–Smale setting of additive com-
putations over the reals. Structural properties of this class are studied, including a characterization
in terms of the classical counting class #P introduced by Valiant. We also establish transfer theorems
for both directions between the real additive and the discrete setting. Then we characterize in terms
of completeness results the complexity of computing basic topological invariants of semilinear sets

given by additive circuits. It turns out that the computation of the Euler characteristic is FP
#Padd
add -

complete, while for fixed k the computation of the kth Betti number is FPARadd-complete. Thus
the latter is more difficult under standard complexity theoretic assumptions. We use all of the above
to prove some analogous completeness results in the classical setting.
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1. Introduction. In 1989 Blum, Shub, and Smale [5] introduced a theory of
computation over the real numbers with the goal of providing numerical computations
(as performed, e.g., in numerical analysis or computational geometry) the kind of
foundations classical complexity theory has provided to discrete computation. This
theory describes the difficulty of solving numerical problems and provides a taxonomy
of complexity classes capturing different degrees of such a difficulty.

Since its introduction, this Blum–Shub–Smale (BSS) theory has focused mainly on
decisional problems. Functional problems attracted attention at the level of analysis
of particular algorithms, but structural properties of classes of such problems were
hardly studied. So far, the only systematic approach to study the complexity of certain
functional problems within a framework of computations over the reals is Valiant’s
theory of VNP-completeness [7, 40, 43]. However, the relationship of this theory to
the more general BSS setting is, as of today, poorly understood. A detailed account
of the research on complexity of real functions within the classical framework can be
found in [23].

A first step in the study of functional properties could focus on complexity classes
related to counting problems, i.e., functional problems, whose associated functions
count the number of solutions of some decisional problem.

In classical complexity theory, counting classes were introduced by Valiant in his
seminal papers [41, 42]. Valiant defined #P as the class of functions which count the
number of accepting paths of nondeterministic polynomial time machines and proved
that the computation of the permanent is #P-complete. This exhibited an unexpected
difficulty for the computation of a function, whose definition is only slightly different
from that of the determinant, a problem known to be in FNC2 ⊆ FP, and thus
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considered “easy.” This difficulty was highlighted by a result of Toda [38] proving
that PH ⊆ P#P, i.e., that #P has at least the power of the polynomial hierarchy.

In the continuous setting, i.e., over the reals, the only attempt to define counting
classes was made by Meer [27]. He defined a real version of the class #P and studied
some of its logical properties in terms of metafinite model theory. Meer did not
investigate complete problems for this class.

In this paper we will define and study counting classes in the model of additive
BSS machines [24]. The computation nodes of these machines perform additions
and subtractions but no multiplications and divisions. The corresponding complexity
classes are denoted by Padd and NPadd.

1

The results in this paper can be seen as a first step towards a better understanding
of the power of counting in the unrestricted BSS model over the reals (allowing also
for multiplications and divisions). A sequel to this paper studying this setting is under
preparation [11].

Our results can be grouped in two kinds: structural relationships between com-
plexity classes and completeness results. The latter (for whose proofs the former are
used) satisfy a driving motivation for this paper: to capture the complexity of com-
puting basic topological invariants of geometric objects in terms of complexity classes
and completeness results. In the following, we give an outline of the main results of
this paper.

1.1. Counting classes. Recall that #P is the class of functions f : {0, 1}∞ → N

for which there exists a polynomial time Turing machine M and a polynomial p with
the property that for all n ∈ N and all x ∈ {0, 1}n, f(x) counts the number of strings
y ∈ {0, 1}p(n) such that M accepts (x, y).

By replacing Turing machines with additive BSS machines in the above definition,
we get a class of functions f : R

∞ → N∪{∞}, which we denote by #Padd. Thus f(x)
counts the number of vectors y ∈ R

p(n) such that M accepts (x, y). By counting only
the number of “digital” vectors y ∈ {0, 1}p(n), we obtain a smaller class of functions
f : R

∞ → N denoted by D#Padd.
In Theorem 4.7 we show that a counting problem f ∈ D#Padd is D#Padd-

complete with respect to Turing reductions iff it is #Padd-complete with respect to
Turing reductions. Moreover, in section 4.3 we prove that there is a wealth of natu-
ral complete problems for the class D#Padd with respect to Turing reductions. For
instance, consider the following counting version of the real weighted perfect match-
ing problem #PMR: given w ∈ R and a bipartite graph G with real weights on the
edges, count the number of perfect matchings of G having weight at most w. (The
weight of a matching is defined as the sum of the weights of its edges.) The problem
#PMR turns out to be D#Padd-complete with respect to Turing reductions. The
same is true for the counting version of the real traveling salesman problem #TSPR

to count the number of Hamilton circuits of weight at most w of a given graph with
real weights on the edges. It is an interesting open problem whether these problems
are also D#Padd-complete with respect to parsimonious reductions; see section 7.

The above completeness results follow from a general principle (Proposition 4.13),
which says that for proving D#Padd-completeness of the counting version of a problem
in DNPadd it is sufficient to show that the restriction of the corresponding counting
problem to integer inputs is #P-complete. The proof of this principle is based on an

1To distinguish between classical and additive complexity complexity classes, we use the subscript
“add” to indicate the latter. Also, to further emphasize this distinction, we write the former in sans
serif.
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extension of the structural relationships between the real additive and the discrete
setting, discovered by Fournier and Koiran [16, 17], discussed next.

1.2. Structural relationships. The main result of section 4.1 is summarized
in Theorem 4.1, which says that for several classical2 complexity classes C consisting
of decisional problems the corresponding additive complexity class Cadd is contained
in, or even equal to, PC

add. That is, all problems in Cadd can be solved by an additive
machine working in polynomial time and having access to a (discrete) oracle in C.
Likewise, if C is a classical complexity class of functions {0, 1}∞ → {0, 1}∞, we obtain

that Cadd ⊆ FPC
add. In particular, we have FP

#Padd

add = FP#P
add.

Theorem 4.1 is an extension of the work of Fournier and Koiran [16, 17], who
discovered this close relationship between the real additive and the discrete setting.
This relationship is based on Meyer auf der Heide’s (nonuniform) construction of small
depth linear decision trees for point location in arrangements of hyperplanes [29,
30] (see also Meiser [28] for an extension of these results). Fournier and Koiran
showed that this construction can be made uniform if a classical NP-oracle is available.
This way, they proved that NPadd ⊆ PNP

add. We have extended this result in various
directions, in particular to the counting context.

An interesting application of the above insights is that Toda’s famous result [38],
as well as its extension by Toda and Watanabe [39], carry over to the real additive
setting (Corollary 4.6). We use this to prove that the counting class #Padd is closely

related to its digital variant D#Padd in the sense that FP
#Padd

add = FP
D#Padd

add . In
other words, a #Padd-oracle does not give more power to an additive polynomial time
Turing machine than a D#Padd-oracle.

An important application of our structural insights is the following transfer result
(Corollary 4.11):

#Padd ⊆ FPadd ⇐⇒ D#Padd ⊆ FPadd ⇐⇒ #P ⊆ FP/poly.

The proof uses the fact that the Boolean part of D#Padd, consisting of the restrictions
of all functions in D#Padd to the set of binary inputs {0, 1}∞, is equal to #P/poly

(Proposition 4.10).

1.3. Topological invariants. Algebraic topology studies topological spaces X
by assigning to X various algebraic objects in a functorial way. In particular, home-
omorphic (or even homotopy equivalent) spaces lead to isomorphic algebraic objects.
For a general reference in algebraic topology we refer the reader to [20, 33]. Typical
examples of such algebraic objects studied are the (singular) homology vector spaces
Hk(X;Q) over Q, defined for integers k ∈ N. The dimension bk(X) of Hk(X;Q) is
called the kth Betti number of the space X. The zeroth Betti number b0(X) counts
the number of connected components of X and for k > 0, bk(X), measures a more
sophisticated “degree of connectivity.” Intuitively speaking, for a three-dimensional
space X, b1(X) counts the number of holes and b2(X) counts the number of cavities
of X. It is known that bk(X) = 0 for k > n := dimX. The Euler characteristic of
X defined by χ(X) :=

∑n
k=0(−1)kbk(X) is an important numerical invariant of X,

enjoying several nice properties. For a finite set X, χ(X) is just the cardinality of X.
The notion of a cell complex [20, 33] will be of importance for our algorithms

to compute the Euler characteristic and the Betti numbers. For instance, if X is

2Throughout this paper we use the words discrete, classical, or Boolean to emphasize that we
are referring to the theory of complexity over a finite alphabet as exposed, e.g., in [2, 34].
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decomposed as a finite cell complex having ck cells of dimension k, then χ(X) :=∑n
k=0(−1)kck.

We remark that the number of connected components, the Euler characteristic,
and the Betti numbers lead to interesting lower complexity bounds for semialgebraic
decision problems; see [3, 44, 45] and the survey [9].

1.4. Semilinear sets and additive circuits. In this paper, we will confine our
investigations to semilinear sets X ⊆ R

n, which are derived from closed halfspaces
by taking a finite number of unions, intersections, and complements. Moreover, we
assume that the closed halfspaces are given by linear inequalities of “mixed type”
a1X1 + · · ·+ anXn ≤ b with integer coefficients ai and real right-hand side b.

We will represent semilinear sets by a very compact data structure. An additive
circuit C is a special arithmetic circuit [19], whose set of arithmetic operations is
restricted to additions and subtractions. The circuit may have selection gates and
use a finite set of real constants. (See Definition 2.9 for details.) The set of inputs
accepted by an additive circuit is semilinear, and any semilinear set can be described
this way.

The basic problem CSATadd to decide whether the semilinear set X given by
an additive circuit is nonempty turns out to be NPadd-complete [4]. By contrast,
the feasibility question for a system of linear inequalities of the above mixed type is
solvable in Padd. This is just a rephrasing of a well-known result by Tardos [37] (cf.
Remark 2.7).

Over the real numbers, space is not as meaningful a resource as it is in the discrete
setting (cf. [31]). The role of space, however, is satisfactorily played by parallel time
formalized by the notion of uniform arithmetic circuits (cf. [4, 14]). We denote by
PARadd the class of decision problems for which there exists a Padd-uniform family
(Cn) of additive circuits such that the depth of Cn grows at most polynomially in n
(see section 2). FPARadd denotes the class of functions f which can be computed
with such resources and such that the size of f(x) is polynomially bounded in the size
of x. (The size of a vector is defined as its length.)

1.5. Completeness results for topological invariants. In the computational
problems listed below, it is always assumed that the input is an additive circuit C and
X is the semilinear set accepted by C. We also say that X is defined or given by C.

Among the completeness results proved in this paper, the most important ones
are the following (for a complete list see section 6).

1. The problem DIMadd(d) to decide whether dimX ≥ d is NPadd-complete
(Theorem 5.1).

2. The problem EULERadd to compute the Euler characteristic of a closed semi-

linear set X is FP
#Padd

add -complete with respect to Turing reductions (Theorem 5.18).
3. The problem BETTIadd(k) to compute the kth Betti number bk(X) of a

closed semilinear set X is FPARadd-complete with respect to Turing reductions (The-
orem 5.19).

These results give a complexity theoretic distinction between the problems to
compute the Euler characteristic and to compute Betti numbers. The computation of
the Euler characteristic is strictly easier than the computation of the number of con-
nected components, or more generally than the computation of the kth Betti number
for any fixed k, under a standard complexity theoretic assumption (Corollary 5.23).
Intuitively, the fact that EULERadd is easier than BETTIadd(k) can be explained by
the various nice properties satisfied by the Euler characteristic.
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Let us now restrict the inputs in the above three problems P to constant-free
additive circuits and denote the resulting computational problem by P0. Note that
constant-free circuits can be encoded over a finite alphabet and thus be handled
by (classical) Turing machines. In section 5.3.6 we derive the following completeness
results in the Turing model: DIM0

add(d) is NP-complete, EULER0
add is FP#P-complete,

and BETTI0add(k) is FPSPACE-complete.
We briefly describe the proof idea for BETTIadd(k). The lower bound is inspired

by an early paper by Reif [35] (see also [36]), who showed the PSPACE-hardness of a
generalized movers problem in robotics. The reachability problem REACHadd is the
following: given an additive circuit defining the semilinear set X and given two points
s, t ∈ X, decide whether s and t are in the same connected component of X. Reif’s
result implies that the analogue of the reachability problem for semialgebraic sets
(given by inequalities of rational polynomials) is PSPACE-hard. We cannot apply this
result in our context, since we are dealing here with linear polynomials (of mixed type).
However, we borrow from Reif’s proof the idea to characterize PSPACE by symmetric
polynomial space Turing machines [26] and prove that REACHadd is PARadd-hard
(Proposition 5.9). From this lower bound result, one can derive the PARadd-hardness
of BETTIadd(k) by standard constructions of algebraic topology.

The proof that BETTIadd(k)belongs to FPARadd proceeds by the following steps:
1. An additive circuit C accepting a set X defines a decomposition of X into

leaf sets. This decomposition can be refined to a finite cell complex if X is
compact (cf. section 5.3.3).

2. The matrices (aij) of the boundary maps of the corresponding cellular ho-
mology can be succinctly represented by Boolean circuits computing aij from
the index pair (i, j) given in binary.

3. The rank of an integer matrix given in succinct representation can be com-
puted in a space efficient manner (Lemma 5.21).

1.6. Organization of the paper. We start in section 2 by introducing some
notation and recalling basic facts about additive machines. Then we define in section
3 the counting complexity class #Padd in the additive model as well as its digital
variant D#Padd, introduce different notions of reductions, and prove some basic com-
pleteness results. Section 4 deals with structural relationships and can be seen as
the first part of this paper. Section 5 about the complexity to compute topological
invariants constitutes the second part of this paper. It contains completeness proofs
for several natural computational problems, each of which are treated in separate sub-
sections. Those problems are counting connected components, computing the Euler
characteristic, and computing Betti numbers. We also present completeness results
for the corresponding problems in the Turing model in section 5.3.6. Finally, we end
the paper in section 6 with a summary of problems and results and with some selected
open problems in section 7.

2. Preliminaries about additive machines. We denote by R
∞ the disjoint

union R
∞ =

⊔
n≥0R

n, where, for n ≥ 0, R
n is the standard n-dimensional space

over R. The space R
∞ is a natural one to represent problem instances of arbitrarily

high dimension. For x ∈ R
n ⊂ R

∞, we call n the size of x, and we denote it by
size(x). Contained in R

∞ is the set of bitstrings {0, 1}∞ defined as the union of the
sets {0, 1}n for n ∈ N.

Additive machines (in the sequel called simply “machines”) are BSS machines
whose computation nodes perform only additions and subtractions (see [4, 24] for
details). To a machine M we naturally associate an input-output map ϕM : R

∞ →
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R
∞. We shall say that a function f : R

∞ → R
k, k ≤ ∞, is computable when there

is a machine M such that f = ϕM . Also, a set A ⊆ R
∞ is decided by a machine M

if its characteristic function χA : R
∞ → {0, 1} coincides with ϕM . So, for decision

problems, we consider machines whose output space is {0, 1} ⊂ R.
We can now introduce some central complexity classes.
Definition 2.1. A machine M over R is said to work in polynomial time when

there is a constant c ∈ N such that for every input x ∈ R
∞, M reaches its output node

after at most size(x)c steps. The class Padd is then defined as the sets of all subsets
of R

∞ that can be decided by a machine working in polynomial time. The class FPadd

is the class of functions computed by machines working in polynomial time.
Definition 2.2. A set A belongs to NPadd if there is a machine M satisfying the

following condition: for all x, x ∈ A iff there is y ∈ R
∞ such that M accepts the input

(x, y) within time polynomial in size(x). In this case, the element y is said to be a
witness for x. If we require the witness y to belong to {0, 1}∞ we say that A ∈ DNPadd

(the D standing for digital). Abusing language we will call the machine M above an
NPadd-machine (resp., a DNPadd-machine).

Remark 2.3.
(i) In this model the element y can be seen as the sequence of guesses used

in the Turing machine model (but note that in the case of NPadd these guesses are
not necessarily binary). However, we note that in this definition no nondeterministic
machine is introduced as a computational model, and nondeterminism appears here
as a new acceptance definition for the deterministic machine. Also, we note that
w.l.o.g., the length of y can be bounded by the running time of M (which is of the
form p(size(x)) for a polynomial p).

(ii) The definitions of NPadd and DNPadd extend in a straightforward manner
to all levels of the polynomial hierarchies PHadd and DPHadd, respectively (i.e., to
the classes Σkadd and Πk

add for k ≥ 0). For details see [4, 14].
Definition 2.4. We say that an additive machine has no real constants when

the only machine constants appearing in its program are 0 and 1. Complexity classes
for these machines are distinguished by the superscript 0 as in P0

add, NP0
add.

Natural examples of sets in these classes exist. For instance, the real travel-
ing salesman problem TSPR discussed in section 1.1 belongs to DNPadd (actually
to DNP0

add). Problems which are known to be NPadd-complete for many-one reduc-
tions are scarce (for some known problems see [15]). In contrast, the following result
by Fournier and Koiran [17] exhibits plenty of NPadd-complete problems with re-
spect to Turing reductions. For a problem S ⊆ R

∞, we define its integer part to be
SZ = S ∩ Z

∞.
Theorem 2.5 (see [17]). Let S ∈ NPadd. If SZ is NP-complete with respect to

Turing reductions, then S is NPadd-complete with respect to Turing reductions.
Of course, this theorem implies the NPadd-completeness for Turing reductions

of a large number of decision problems, for instance for TSPR and PMR (for formal
definitions of these problems, see section 6). Note that, in particular, every discrete
NP-complete problem (e.g., SAT) is NPadd-Turing-complete.

A basic fact used in proving many results on additive machines is the existence
of “small” rational points in polyhedra when the defining matrix has “small” integer
entries. In what follows, for an integer n ≥ 1, we denote the set {1, . . . , n} by [n].

Theorem 2.6 (see Theorem 3, Chapter 21 of [4]). Let P be a nonempty polyhe-
dron of R

n defined by a system

A1y ≤ b1; A2y < b2,(2.1)



COUNTING COMPLEXITY CLASSES 233

where A1 ∈ Z
N1×n, A2 ∈ Z

N2×n, b1 ∈ R
N1 , and b2 ∈ R

N2 . The entries of A1 and
A2 are integers of bit-size bounded by L. Then there is y ∈ P with the following
description:

yi =
∑
j∈I1

uijb1j +
∑
j∈I2

vijb2j + wi, i = 1, . . . , n,

where I1 ⊆ [N1], I2 ⊆ [N2], |I1| + |I2| ≤ n, and the coefficients uij, vij, wi are
rationals of bit-size at most (Ln)c for some constant c.

Remark 2.7.The feasibility of a system (2.1) of linear inequalities for given integer
matrices A1, A2 and real vectors b1, b2 can be decided in Padd. Moreover, a solution
can be computed in FPadd, if it exists. This is just a rephrasing a of well-known
and important result by Tardos [37]. We will not need this remark in the rest of the
paper.

Recall from [4] or [10, Exercise 3.15] that a linear decision tree T is a regular
binary tree, whose internal nodes are labeled by linear functions $ : R

n → R, and
whose leaves are labeled with “accept” or “reject.” Here, n is the dimension of the
input space. At a given node, an input x ∈ R

n goes to the left child if $(x) ≥ 0
and to the right child if $(x) < 0. Let X ⊆ R

n be the set accepted by the linear
decision tree T . The set of inputs in R

n, whose path in the computation tree T ends
up with a specific leaf ν, shall be called the leaf set Dν of ν. Note that the set Dν

can be described by a set of linear inequalities and is therefore convex. It is clear that
the leaf sets corresponding to the accepting leaves form a partition of the set X. In
particular, X is semilinear (cf. section 1.4).

We next use Theorem 2.6 to prove that NPadd = DNPadd. This is a well-known
result [24], but the idea of the proof will be repeatedly used in this paper.

Corollary 2.8. NPadd = DNPadd.
Proof. Let X ∈ NPadd and M be a machine deciding X as in Definition 2.2.

By unwinding the computation of M on pairs (x, y) ∈ R
n × R

p(n) we obtain a linear
decision tree T of depth polynomial in n. If z is a value tested for positivity at a
branch node of this tree, then

z =

p(n)∑
i=1

aiyi +

n∑
i=1

bixi +

k∑
i=1

ciαi + d,(2.2)

where α1, . . . , αk are the constants of M and the coefficients ai, bi, ci, and d are
integers of bit-size polynomial in n. Thus, for a given x ∈ R

n, the leaf set Dν of
points y such that (x, y) reaches the accepting leaf ν in T is the set of solutions of a
system of inequalities as in Theorem 2.6. We conclude that Dν is nonempty iff Dν

contains a point y such that, for i = 1, . . . , p(n),

yi =

n∑
j=1

bijxj +

k∑
j=1

cijαj + di,(2.3)

where the coefficients bij , cij , and di are rationals of bit-size polynomial in n (for
a polynomial which does not depend on ν or x). Then, to decide whether x ∈ X,
one can guess bij , cij , di ∈ Q, compute yi according to (2.3), and check whether
M accepts (x1, . . . , xn, y1, . . . , yp(n)). Alternatively, one could also compute y in
FPadd according to Remark 2.7 and check whether M accepts (x1, . . . , xn, y1, . . . ,
yp(n)).
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Over the real numbers, space is not as meaningful a resource as it is in the discrete
setting (cf. [31]). The role of space, however, is satisfactorily played by parallel time
(cf. [4, 14]). To introduce parallel time, we briefly recall the model of additive circuits,
a restriction of the more general model of arithmetic circuits introduced in [19].

Definition 2.9. An additive circuit C over R is an acyclic directed graph where
each node has indegree 0, 1, 2, or 3. Nodes with indegree 0 are either labeled as
input nodes or with elements of R (we shall call these constant nodes). Nodes with
indegree 2 are labeled with one of {+,−}. They are called arithmetic nodes. Nodes
with indegree 1 are output nodes. Nodes with indegree 3 are selection nodes. All
output nodes have outdegree 0. Otherwise, there is no upper bound on the outdegree
of the other nodes.

For an additive circuit C, the size of C is the number of nodes in C. The depth
of C is the length of the longest path from some input node to some output node.

The semantics of a selection node is as follows. With input (x, y, z) the node
returns y if x ≥ 0 and z otherwise. The semantics of all other nodes is obvious. If C
is an additive circuit with n input nodes and m output nodes, we may talk about the
function ϕC : R

n → R
m computed by the circuit. We remark that the computation of

an additive circuit can always be unwound to a linear decision tree.

Let f : R
∞ → R

∞. The family of additive circuits {Cn}n∈N computes f if for all
n ≥ 1, ϕCn

is the restriction of f to R
n.

The other ingredient we need to define parallel complexity classes is a notion of
uniformity.

Note that nodes of additive circuits can be described by five real numbers in the
following way. If the nodes of the circuit are g1, . . . , gN , then node gj is described
by the tuple (j, t, i, ir, im) ∈ R

5, where t represents the type of gj according to the
following (arbitrary) dictionary:

gj input constant + − selection output
t 1 2 3 4 5 6

.

For nodes of indegree 2, i and ir denote the numbers of the nodes which provide left
and right input to gj , respectively. If gj is a constant node, then i equals its constant,
and if gj is an output node, then i numbers the node which provides the input to gj .
Finally, if gj is a selection node, then i, ir, and im number its left, right, and middle
inputs. All components not mentioned above are set to 0. Thus, the whole circuit
can be described by a point in R

5N .

Definition 2.10. A family of circuits {Cn}n∈N is said to be uniform if there
exists an additive machine M that, on input (n, i), outputs the description of the ith
node of Cn. If M works in time nO(1),we shall say that the family is Padd-uniform.

We denote by PARadd the class of decision problems whose characteristic function
can be computed in parallel polynomial time, i.e., by a Padd-uniform family of circuits
such that depth(Cn) = nO(1). Also, FPARadd denotes the class of functions f which
can be computed with such resources and for which there is a polynomial p such that
size(f(x)) = p(size(x)) for all x ∈ R

∞.

Remark 2.11.

(i) Corollary 2.8 extends to all the polynomial hierarchy. That is, the power of
real quantification is the same as that of digital quantification as long as the number
of quantifier alternations is bounded. Surprisingly, if the number of quantifier alter-
nations is not bounded, then the power of digital quantification is exactly PARadd

and that of real quantification is at least additive exponential time, thus showing that
the latter is more powerful than the former. For details see [4, 14].



COUNTING COMPLEXITY CLASSES 235

(ii) In classical complexity theory, NP is a class of decision problems. Yet, if
S ∈ NP and x ∈ S, a witness y for x can be computed in FPNP and thus in FPSPACE
by computing its components one by one with an NP-routine. Looking at the proof
of Corollary 2.8, we see that one can do the same with NPadd and FPARadd.

3. Counting classes. We now want to define counting classes, following the
lines used in discrete complexity theory to define #P. This is the class of functions
f : {0, 1}∞ → N for which there exists an NP-machine M and a polynomial p such
that, for all n ∈ N, x ∈ {0, 1}n, f(x) = |{y ∈ {0, 1}p(n) | M accepts (x, y)}|. That is,
f(x) is the number of witnesses for x. A first remark is that over the reals one can
define two such complexity classes by counting the witnesses in an NPadd-machine or
in a DNPadd-machine, respectively.

Definition 3.1.
1. We say that a function f : R

∞ → N∪{∞} belongs to the class #Padd if there
exists a NPadd-machine M and a polynomial p such that, for all n ∈ N, x ∈ R

n,

f(x) = |{y ∈ R
p(n) | M accepts (x, y)}|.

2. We say that a function f : R
∞ → N belongs to the class D#Padd if there

exists a DNPadd-machine M and a polynomial p such that, for all n ∈ N, x ∈ R
n,

f(x) = |{y ∈ {0, 1}p(n) | M accepts (x, y)}|.

Remark 3.2.
(i) An unrestricted version of the class #Padd defined for machines over R which

can multiply and divide was defined by Meer in [27].
(ii) Note that it is not clear that NPadd = DNPadd implies #Padd = D#Padd,

since now we are counting witnesses instead of deciding their existence.
(iii) If f belongs to D#Padd, then the bit-size of f(x) is bounded by a polynomial

in the size of x. The same holds for f ∈ #Padd for those x ∈ R
n for which f(x) is

finite.
The next proposition locates the power of counting complexity classes within the

landscape of known complexity classes. For interpreting the second inclusion, one
should represent the value ∞ by some number in R \ N.

Proposition 3.3. We have the following inclusions of complexity classes over
R:

D#Padd ⊆ #Padd ⊆ FPARadd.

To prove Proposition 3.3 we will use the following result. Let CINFadd be the problem
to decide whether the solution set described by an additive circuit has infinitely many
points.

Lemma 3.4. CINFadd is NPadd-complete.
Proof. Recall from section 1.4 that the circuit satisfiability problem CSATadd is

NPadd-complete. Adding a dummy variable to an additive circuit gives a (trivial)
reduction from CSATadd to CINFadd, which shows the NPadd-hardness of CINFadd.

For the membership in NPadd, note that leaf sets are convex. So they are infinite
iff they contain at least two points. Therefore, the following algorithm shows that
membership of CINFadd is in NPadd. On input C guess a leaf ν and guess y1, y2 ∈ R

n.
Then check whether y1 �= y2 and whether y1, y2 reach the leaf ν. If yes, then accept;
otherwise, reject.
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Proof of Proposition 3.3. The first inclusion is clear. For the second, consider the
algorithm that, in parallel, checks for each accepting leaf ν whether there is any point
in Dν and, if yes, whether Dν has infinitely many points. These verifications can be
done in NPadd. If |Dν | = ∞ for some ν, then return ∞; else return the number of ν’s
such that Dν �= ∅. This procedure clearly is in FPARNPadd

add = FPARadd.

We will see in Theorem 4.7 below that the difference in power of D#Padd and
#Padd is negligible.

We now focus on complete problems. To do so, we define the appropriate notions
of reduction.

Definition 3.5. Let f, g : R
∞ → N ∪ {∞} and C be any of D#Padd or #Padd.

1. We say that ϕ : R
∞ → R

∞ is a parsimonious reduction from f to g if ϕ can
be computed in polynomial time and, for all x ∈ R

∞, f(x) = g(ϕ(x)).
2. We say that f Turing reduces to g if there exists an oracle machine which,

with oracle g computes f in polynomial time.
3. We say that a function g is C-hard if, for every f ∈ C, there is a parsimonious

reduction from f to g. We say that g is C-complete if, in addition, g ∈ C.
4. The notions of hardness and completeness with respect to Turing reductions

are defined similarly.

Let #CSATadd denote the problem of counting the number of points of a semi-
linear set given by an additive circuit. (Note that this requires computing a function
with values in N ∪ {∞}.)

Theorem 3.6. The counting problem #CSATadd is #Padd-complete.

Proof. One just checks that the usual many-one reduction from the nondetermin-
istic machine acceptance to additive circuit satisfiability is parsimonious.

We close this section by recalling a principle introduced by Toda [38] and Toda
and Watanabe [39], which allows us to assign to any complexity class C of decision
problems a corresponding counting complexity class # · C.

Definition 3.7. Given a set A ∈ {0, 1}∞ and a polynomial p, we define the
function #p

A : {0, 1}∞ → N which associates to x ∈ {0, 1}n the number

#p
A(x) = |{y ∈ {0, 1}p(n) | (x, y) ∈ A}|.

If C ⊆ 2{0,1}
∞

is a complexity class of decision problems, then we define

# · C = {#p
A | A ∈ C and p a polynomial}.

Similarly, one assigns # · C and D# · C to a complexity class C over R.

Note that # · P = #P, # · Padd = #Padd, and D# · Padd = D#Padd.

We will use the following important result due to Toda and Watanabe several
times.

Theorem 3.8 (see [39]). We have # · PH ⊆ FP#P.

4. Relationships between the real additive and the discrete setting.
The work of Koiran [24], Cucker and Koiran [14], and Fournier and Koiran [16, 17]
establishes close relationships between the real additive and the discrete model of
computation. Building on these techniques, we show in section 4.1 that similar re-
lationships hold for the counting classes. Then we use this in section 4.2 to derive
transfer theorems for counting classes between the additive real and the discrete set-
ting.



COUNTING COMPLEXITY CLASSES 237

4.1. The power of discrete oracles. The main result of this section, Theo-
rem 4.1 stated below, says that for several classical complexity classes C the corre-
sponding additive complexity classes Cadd are contained in, or even equal to, PC

add.
That is, all problems in Cadd can be solved by an additive machine working in poly-
nomial time and having access to an oracle in C.

This result was stated and proved for the class NPadd in [17]. Moreover, in [17,
Remark 2] it was already mentioned that the result for NPadd can be extended to the
classes of the polynomial hierarchy and to PARadd. So what is new in Theorem 4.1
is the extension to the counting classes and to the functional class FPARadd.

Theorem 4.1. The following statements hold (k ≥ 0):

1. Σkadd ⊆ PΣk

add, Πk
add ⊆ PΠk

add, PHadd = PPH
add.

2. D# · Σkadd ⊆ FP#·Σk

add , D# ·Πk
add ⊆ FP#·Πk

add , D# · PHadd ⊆ FP#·PH
add .

3. PARadd = PPSPACE
add .

4. FPARadd = FPPARadd

add = FPPSPACE
add .

Observe that part 2 of this theorem implies that D#Padd ⊆ FP#P
add.

As in Fournier and Koiran [16, 17], the proof of Theorem 4.1 relies on Meyer auf
der Heide’s (nonuniform) construction of small depth linear decision trees for point
location in arrangements of hyperplanes [29, 30]. Before giving the proof, we need to
develop some lemmas.

First, let us recall some terminology regarding arrangements of hyperplanes. For
s, n ∈ N we define Hs,n to be the set of linear polynomials a0+

∑n
i=1 aiXi with integer

coefficients ai such that
∑n

i=0 |ai| ≤ 2s. We denote by Fs,n the set of all nonempty
sets

F =
⋂

f∈Hs,n

{x ∈ R
n | f(x) = σ(f)}

corresponding to some sign function σ : Hs,n → {−1, 0, 1}. The space R
n is the

disjoint union of all F ∈ Fs,n. We will call this the universal cell decomposition for
the parameters s, n, and we call the sets F ∈ Fs,n the corresponding faces or cells.

By Theorem 2.6, each face F ∈ Fs,n contains a rational point of bit-size at most
(sn)c for some fixed constant c > 0 (even though a face F may be described by a
number of constraints exponential in n, s). Therefore, log |Fs,n| ≤ (sn)c.

In what follows, we will encode a face F ∈ Fs,n by a triple (s, n, x) ∈ N
2 × Q

n

such that x ∈ F and the bit-size of x is at most (sn)c. This way, we can describe
all faces in Fs,n, but, of course, the description is not unique. Abusing notation, we
will shortly express this by saying that the face F is represented by a “small rational
point” x.

For a fixed polynomial t we define Ht as the union of the Ht(n),n over all n ∈ N

and Ft as the union of the Ft(n),n over all n ∈ N.
Lemma 4.2. Let M be an additive machine without real constants taking inputs

in R
∞ × {0, 1}∞ such that its running time is bounded by a polynomial t in the size

of its first argument. The discrete relation

R := {(F, y) ∈ Ft × {0, 1}∞ | ∀x ∈ F
(
M accepts (x, y)

)}
can be checked in P, that is, in classical polynomial time.

Proof. Running M on an input (x, y) ∈ R
n × {0, 1}m takes at most t(n) steps

by assumption. On such an input, the machine M branches according to the signs of
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expressions a0 +
∑n

i=1 aixi +
∑m

j=1 bjyj , where
∑n

i=0 |ai| +
∑m

j=1 |bj | ≤ 2t(n). Hence

the hyperplane defined by (a0 +
∑m

j=1 bjyj) +
∑n

i=1 aiXi belongs to Ht(n),n for any
y ∈ {0, 1}m. It follows that if x and x′ belong to the same face F of Ft(n),n, then
for all y, (x, y) and (x′, y) follow the same path in the decision tree induced by M .
Therefore, if M accepts (x, y) for some x ∈ F , then it must accept (x, y) for all x ∈ F .

Therefore, checking that (F, y) ∈ R can be done as follows. Let F be represented
by the small rational point x ∈ F . Simulate the computation of the real machine M
on input (x, y) by a Turing machine. Since M has no real constants and works in
polynomial time, this simulation takes polynomial time (see [24, 4]).

The following is an immediate consequence of Lemma 4.2 and the definition of Σk.
Corollary 4.3. Let M be an additive machine as in Lemma 4.2, k ∈ N, and

q1, . . . , qk be polynomials. Consider the discrete relation

R := {(F, y) ∈ Ft × {0, 1}∞ | ∀x ∈ F ∃z1∀z2 . . . Qzk(
M accepts (x, y, z1, . . . , zk)

)},
where quantifiers alternate (Q is either existential or universal depending on the parity
of k) and the quantification is over zi ∈ {0, 1}qi(size(x)). Then R can be checked in
(classical) Σk.

Consider the following problem FEVALadd: given a quantifier-free formula ψ of
the first-order theory of (R,+,−,≤) with k free variables and a point x ∈ R

k, decide
whether ψ(x) holds. Note that the formula ψ can be encoded as an element of R

∞

in a straightforward way. In the following, we will identify ψ with its encoding. It is
well known that FEVALadd ∈ P0

add.
The next result is proved similarly as Lemma 4.2.
Lemma 4.4. Let M be a machine solving FEVALadd in time bounded by a poly-

nomial t in size(ψ). Then the following set belongs to PSPACE:

L := {F ∈ Ft | ∀ψ ∈ F Q1z1Q2z2 . . . Qnzn
(
M accepts (ψ, z1, . . . , zn)

)}.
Here Qi ∈ {∀,∃}, zi ∈ {0, 1}. Moreover, n denotes the size of ψ. Hence the number
of free variables of ψ is at most n, and the behavior of M on (ψ, z1, . . . , zn) is well
defined.

Given a polynomial t, the point location problem for t is the problem of computing,
for a given input x ∈ R

∞, a small rational point of the uniquely determined face
F ∈ Ft(size(x)),size(x) in which x lies. The following crucial statement is proved by
Fournier and Koiran [17, Theorem 2].

Proposition 4.5. For any polynomial t, the point location problem can be solved
in (FP0

add)
NP. That is, a small rational point of the face F ∈ Ft(n),n containing

the input point can be computed in polynomial time by an additive machine using a
classical oracle in NP.

We remark that in [17] a face F is represented by a system S of nO(1) linear
inequalities with integer coefficients of bit-size nO(1) such that the polyhedral set
defined by the system S is nonempty and is contained in the face F . However, note
that since linear programming (discrete setting) is in polyomial time [21, 22], we can
always compute from the system S a small rational point of F in polynomial time.

Proof of Theorem 4.1. 1. Assume that A ∈ Σkadd. Then (cf. Remark 2.11(i))
there exist polynomials q1, . . . , qk and B ∈ Padd such that for all x ∈ R

∞

x ∈ A ⇐⇒ ∃z1∀z2 . . . Qzk (x, z) ∈ B,
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where quantifiers alternate (Q is either existential or universal depending on the parity
of k) and the quantification is over zi ∈ {0, 1}qi(size(x)).

Let MB be an additive machine deciding B in time bounded by some polynomial t
and α1, . . . , α be the constants occurring in the program of MB other than 0 or 1.
Denote α = (α1, . . . , α), and let

C = {(x, z, v) ∈ R
∞ × {0, 1}∞ × R

 | MB accepts (x, z) when replacing

α by v in its program}.
Clearly, C ∈ P0

add and, for all (x, z) ∈ R
∞ × {0, 1}∞, (x, z) ∈ B ⇐⇒ (x, z, α) ∈ C.

In order to prove that A ∈ PΣk

add, it is sufficient to show that the set

A′ = {(x, v) ∈ R
∞ × R

 | ∃z1∀z2 . . . Qzk (x, z, v) ∈ C}

belongs to the class (P0
add)

Σk

. This reasoning shows that we may assume w.l.o.g. that
MB has no real constants, i.e., that B ∈ P0

add.
Since B ∈ P0

add, we may use Corollary 4.3 (used without the y in the input) to
deduce that the discrete language

R = {F ∈ Ft | ∀x ∈ F ∃z1∀z2 . . . Qzk
(
MB accepts (x, z)

)}
lies in the class Σk. (Recall that t bounds the running time of MB .) Consider now
the following algorithm. On input x ∈ R

n locate x in a face F of Ft(n),n (due to

Proposition 4.5, this can be done in (FP0
add)

NP). Then decide whether F ∈ R by an

oracle call to Σk. This algorithm works in PΣk

add and decides A.

The above reasoning shows that A ∈ PΣk

add. This immediately implies the inclu-
sions for Πk and PH. And, since PHadd is closed under Turing reductions, we even
get equality in this case.

2. Let ϕ : R
∞ → N be a counting problem in D#·Σkadd. Then there exist B ∈ Padd

and polynomials p, q1, . . . , qk such that for all n ∈ N and all x ∈ R
n

ϕ(x) = |{y ∈ {0, 1}p(n) | ∃z1∀z2 . . . Qzk (x, y, z1, . . . , zk) ∈ B}|,
where quantifiers alternate and the quantification is over zi ∈ {0, 1}qi(size(x)).

Let MB be some additive machine deciding B in time t for some polynomial t. As
in the proof of part 1, we can assume that MB has no real constants. By Corollary 4.3,
the map ψ : Ft → N defined for F ∈ Ft(n),n by

ψ(F ) := |{y ∈ {0, 1}p(n) | ∀x ∈ F ∃z1∀z2 . . . Qzk (x, y, z1, . . . , zk) ∈ B}|
lies in the discrete counting class # · Σk. Note that ϕ(x) = ψ(F ) for F ∈ Ft(n),n,
x ∈ F .

Consider now the following algorithm. On input x ∈ R
n, locate x in a face F

of Ft(n),n. Then compute ψ(F ) by an oracle call to # · Σk and return ψ(F ). This

algorithm works in FP#·Σk

add and computes ϕ(x).

The above proves the inclusion D# · Σkadd ⊆ FP#·Σk

add . The inclusion D# · Πk
add ⊆

FP#·Πk

add is proved similarly, and it follows that D# · PHadd ⊆ FP#·PH
add .

3. The inclusion PPSPACE
add ⊆ PARadd is clear, since PARadd is closed under Turing

reductions. Consider the subset DTRAO of the theory of the reals with addition and
order which consists of the sentences all of whose variables z satisfy a constraint of
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the form z = 0 ∨ z = 1. In [14] it is proven that DTRAO is PARadd-complete. It is
therefore sufficient to show that DTRAO ∈ PPSPACE

add .
Consider now the following algorithm. On input a digitally quantified first-order

sentence ϕ = Q1z1Q2z2 . . . Qkzk ψ(z1, . . . , zk) of the theory of (R,+,−,≤), where ψ
is quantifier-free of size n, we locate ψ in a face F ∈ Ft(n),n, where n is the size of ψ.
By construction, ϕ is true iff F belongs to the set L in Lemma 4.4. We then decide this
membership by an oracle call to PSPACE. This algorithm decides DTRAO ∈ PPSPACE

add .

4. The equality FPPARadd

add = FPPSPACE
add follows from the third statement of Theo-

rem 4.1. To prove the first equality, let f ∈ FPARadd, x ∈ R
n, and y = f(x) ∈ R

p(n).
Let α1, . . . , αk be the constants occurring in the additive machine that generates the
circuits computing f as described in Definition 2.10. For $ ≤ p(n) we have

y =

n∑
i=1

u
()
i xi +

k∑
j=1

v
()
j αj + b(),(4.1)

where u
()
i , v

()
j , and b() are integers of bit-size at most q(n) for a polynomial q. Let

Bx be the relation defined by

Bx = {(s, i, $, x) ∈ N
3 × R

∞ | the sth bit of u
()
i is 1}

and Bα, B1 the analogous relations for v
()
j and b(). We claim that Bx, Bα, B1 ∈

PARadd. In fact, the parallel algorithm deciding any of these relations simulates the
behavior of Cn (the circuit computing the restriction of f to R

n) on input x, keeping
expressions in the form (4.1) instead of actually performing the arithmetic operations.

To compute f(x) in FPPARadd

add , one uses the oracles Bx, Bα, and B1 to obtain the

binary expansions of u
()
i , v

()
j , and b() for all $, i, j. Then compute y by (4.1).

The following corollary is a real analogue of Toda and Watanabe’s Theorem 3.8.
Corollary 4.6. We have D# · PHadd ⊆ FP#P

add.
Proof. We conclude from Theorem 4.1(2) and Theorem 3.8 that

D# · PHadd ⊆ FP#·PH
add ⊆ FPFP#P

add = FP#P
add,

which proves the claim.
We use this to prove that the counting class #Padd is closely related to its digital

variant D#Padd in the sense that a #Padd-oracle does not give more power to an
additive polynomial time Turing machine than a D#Padd-oracle.

Theorem 4.7. We have FP
#Padd

add = FP
D#Padd

add = FP#P
add.

Proof. Clearly, it is enough to show that #Padd ⊆ FP#P
add. For this, it is sufficient

to prove that

#Padd ⊆ FPD#·NPadd

add .(4.2)

Indeed, by Corollary 4.6 we know that D# ·NPadd ⊆ FP#P
add.

In order to prove (4.2), let ϕ ∈ #Padd. Then there exist a polynomial p and an
additive machine M working in polynomial time such that, for all n ∈ N, x ∈ R

n,

ϕ(x) = |{y ∈ R
p(n) | M accepts (x, y)}|.

Using Lemma 3.4 we can find out in NPadd whether ϕ(x) is infinite on input x ∈ R
n.

Assume then that ϕ(x) is finite. Since leaf sets are convex, they are either infinite or
consist of just one point. In the case that ϕ(x) is finite, we have

ϕ(x) = |{ν ∈ {0, 1}t(n) | ∃y ∈ R
p(n) input (x, y) reaches the accepting leaf ν}|,
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since y is uniquely determined. Define B := ∪n∈NBn, where

Bn := {(x, ν) ∈ R
n×{0, 1}t(n) | ∃y ∈ R

p(n) input (x, y) reaches the accepting leaf ν}.
Then we have B ∈ NPadd. This implies that ϕ ∈ D# ·NPadd.

Remark 4.8.
(i) Statements analogous to Theorem 4.1 hold in the constant-free setting, e.g.,

NP0
add ⊆ (P0

add)
NP, D#P0

add ⊆ (FP0
add)

#P, FPAR0
add = (FP0

add)
PSPACE.

(ii) Similarly to Theorem 4.7, we have FP
#Σk

add

add = FP
D#·Σk

add

add = FP#P
add for k ≥ 0.

4.2. Boolean parts and transfer theorems. A problem that has attracted
much attention in real complexity is the computation of Boolean parts [8, 12, 13,
14, 24, 25]. Roughly speaking, this amounts to characterizing, in terms of classical
complexity classes, the power of resource bounded machines over R when their inputs
are restricted to be binary. In this section, we will be interested in the Boolean parts
of counting classes.

Definition 4.9. Let C be a counting class over R. Its Boolean part is the
classical complexity class BP(C) = {f : {0, 1}∞ → N | f = g|{0,1}∞ for some g ∈ C}.

Proposition 4.10. We have BP(D#Padd) = #P/poly.
Proof. The proof closely follows that of [4, Theorem 2, Chapter 22]. Consider a

function f in #P/poly. There is a polynomial q and an advice function h such that
h(n) belongs to {0, 1}q(n) for all n. Furthermore, there are an NP-machine M and a
polynomial p such that M accepts for exactly f(x) witnesses in {0, 1}p(n) on input
(x, h(n)) for all x ∈ {0, 1}n. Let us code in a single number ξh ∈ R the sequence
of advices h(1), h(2), . . . . Then we can consider a DNPadd-machine which, for each
input x ∈ {0, 1}n, first produces the digits of ξh and obtains h(n) and then simulates
M on (x, h(n)). This shows that #P/poly ⊆ BP(D#Padd).

Conversely, let us consider a function f in the Boolean part of D#Padd defined
by a DNPadd-machine M with time bound q. The computation of M on inputs of
size n is described by a linear decision tree T of depth q(n). Therefore, if α1, . . . , αk
are the real constants of M , then, for each x ∈ {0, 1}n, the test performed by T at a
node i has the form gi(x, α) ≥ 0 with

gi(x, α) =

n∑
j=1

aijxj +

k∑
j=1

bijαj + ci(4.3)

and where aij , bij , and ci are integers of bit-size polynomial in n. For a given x ∈
{0, 1}n, according to the outcome of the test (4.3), the point α ∈ R

k satisfies then an
inequality of the form gi,x(α) ≥ 0 or gi,x(α) < 0, where gi,x ∈ Z[Y1, . . . , Yk] is defined
by gi,x(y) = gi(x, y). Let Φ be the system of all these linear inequalities for i varying
over all branching nodes of T and x varying over the 2n possible points of {0, 1}n.
The system Φ is satisfied by α. Then, according to Theorem 2.6, there is a point
βn ∈ Q

k all of whose coordinates have polynomial bit-size in n, which also satisfies Φ.
Thus, if we replace α = (α1, . . . , αk) by βn in the tree T , the path followed by any
x ∈ {0, 1}n will not change, and x will be accepted or rejected as in T .

Let us now consider the function h : N → Q
k defined by h(n) = βn. Since the

bit-size of βn is polynomial in n we may interpret h as an advice function. The
classical machine which, with input (x, h(size(x))), simulates the behavior of M with
the constants α1, . . . , αk replaced by h(size(x)) shows that f ∈ #P/poly.
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Combining Proposition 4.10 with the results of section 4.1, we obtain the following
corollary.

Corollary 4.11. We have the following transfer results:
1. #Padd ⊆ FPadd iff D#Padd ⊆ FPadd iff #P ⊆ FP/poly.

2. FPARadd ⊆ FP
#Padd

add iff PSPACE ⊆ P#P/poly.
3. Similar equivalences hold for additive machines without constants and uni-

form classical complexity classes, respectively.
Proof. The first equivalence of part 1 follows from Theorem 4.7. In the second

equivalence of part 1, the direction from left to right follows from

#P ⊆ #P/poly = BP(D#Padd) ⊆ BP(FPadd) ⊆ FP/poly.

Here, the equality holds by Proposition 4.10, the last inclusion holds by Remark 4.12
below, and the one before the last is true by assumption. For the other direction, we

use Theorem 4.1(2) to get D#Padd ⊆ FP#P
add ⊆ FP

FP/poly
add = FPadd, where the second

inclusion follows by assumption. The other equivalences can be shown similarly.
Remark 4.12. One can extend the definition of Boolean parts to classes of (not

necessarily counting) functions over the reals and consider, for instance,

BP(FPadd) = {f : {0, 1}∞ → {0, 1}∞ | f = g|{0,1}∞ for some g ∈ FPadd}.

One can then use the same arguments to show that

BP(FPadd) = FP/poly, BP(FP
#Padd

add ) = FP#P/poly, BP(FPARadd) = FPSPACE/poly.

Also, for machines without constants we have the following, easier to prove, results:

BP(FP0
add) = FP, BP((FP0

add)
#P0

add) = FP#P, BP(FPAR0
add) = FPSPACE.

4.3. Complete counting problems. We obtain from Theorem 4.1 the follow-
ing result, providing us with plenty of complete problems for the class D#Padd.

Proposition 4.13. Let f : R
∞ → N belong to D#Padd, and assume that the

restriction of f to Z
∞ is #P-complete with respect to Turing reductions. Then f is

#Padd-complete and thus D#Padd-complete with respect to Turing reductions.
Proof. This is an immediate consequence of Theorem 4.7.
Proposition 4.13 yields plenty of Turing complete problems in D#Padd. We just

mention two particularly interesting ones. Assume that we are given a graph G with
real weights on the edges and some w ∈ R. We define the weight of a subgraph as the
sum of the weights of its edges.

1. Counting traveling salesman. Let #TSPR be the problem to count the num-
ber of Hamilton cycles of weight at most w in the graph G.

2. Counting weighted perfect matchings. Let #PMR be the problem to count
the number of perfect matchings of weight at most w in the graph G (here we assume
that G is bipartite).

Valiant [41, 42] proved the #P-completeness of the problem to count the number
of Hamilton cycles of a given graph and of the problem to count the number of
perfect matchings of a given bipartite graph. Together with Proposition 4.13, this
immediately implies the following corollary.

Corollary 4.14. The problems #TSPR and #PMR are D#Padd-complete with
respect to Turing reductions.
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Note that the problem to count the number of perfect matchings of a given bipar-
tite graph is equivalent to the famous problem to evaluate the permanent of a matrix
with entries in {0, 1}.

Remark 4.15.
1. Results for PARadd and FPARadd similar to Proposition 4.13 follow from

Theorem 4.1 in the same manner.
2. There is an algebraic theory of NP-completeness due to Valiant [7, 40, 43],

which captures the complexity to evaluate the generating functions of graph prop-
erties. For instance, the generating function of the property “perfect matching” is
the permanent of a real matrix, which turns out to be complete in this theory. The
functional problems studied in this theory take real values on real inputs and thus
differ substantially from the counting problems studied in this paper. It would be
interesting to clarify the relationship between these two approaches.

5. Complexity to compute topological invariants. In the computational
problems studied in this section, it is always assumed that the input is an additive
circuit C and X is the semilinear set accepted by C.

In the following subsections, we characterize the complexity to compute several
basic invariants of a semilinear set X. These invariants are the dimension (section 5.1),
the number of connected components (section 5.2), the Euler characteristic (section
5.3.4), and the Betti numbers (section 5.3.5). In section 6 we show that corresponding
completeness results for the Turing model hold as well.

5.1. Complexity of computing the dimension. For all d ≥ 0, the problem
DIMadd(d) consists of deciding whether the set X given by an additive circuit C has
dimension at least d. We define dim ∅ := −1 so that we can decide for nonemptiness
using the dimension function.

Theorem 5.1. For all d ≥ 0, the problem DIMadd(d) is NPadd-complete.
The main tool in proving Theorem 5.1 is the following proposition. It states that

if a polyhedron P has dimension at least d, then there is a projection of P onto a
d-dimensional coordinate subspace containing a scaled down d-dimensional standard
simplex. This can be used to construct an NPadd-certificate.

To formally state this proposition we define ej = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
n, the

column unit vector with 1 in the jth place. Also, recall that we denote by [m] the set
{1, . . . ,m}, for any m ∈ N.

Proposition 5.2. Let P be a polyhedron in R
n of dimension d ≥ 0 defined

by a system A1x ≤ b1; A2x < b2, where A1 ∈ R
N1×n, A2 ∈ R

N2×n, b1 ∈ R
N1 , and

b2 ∈ R
N2 . Then there exist points x(0), . . . , x(d) ∈ P , ρ > 0, and an injective map

π : [d] → [n] such that for all $, i ∈ [d] we have x
()
π(i) − x

(0)
π(i) = ρδ,i. Here δ is the

Kronecker’s delta.
Proof. We first prove the result for the case d = n. Let N = N1 + N2, A =[

A1

A2

] ∈ R
N×n, b =

[
b1
b2

] ∈ R
N , and denote by aTi ∈ R

n the ith row of A = (ai,j).
W.l.o.g. A �= 0. Since d = n, the polyhedron

P ∗ := {x ∈ R
n | Ax < b}

is nonempty. Let x∗ ∈ P ∗, and put y∗ := b − Ax∗ > 0, ε := mini≤N y∗i = y∗i0 .
Then aTi x

∗ ≤ bi − ε for all i ≤ N . Define ρ = ε/(2maxi,j |aij |). For all i, j we have
ρ|aTi ej | = ρ|aij | ≤ ε/2. This implies that, for all i,

|aTi (x∗ + ρej)| ≤ bi − ε +
ε

2
< bi.
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The points x(0) = x∗, x(j) = x∗ + ρej , together with the identity map π : [n] → [n],
satisfy the statement.

We now consider the general case, with d ≥ 1 (the case d = 0 is trivial). Since
dimP = d, there exists I ⊆ [N1] with |I| ≥ n− d such that the set

P ∗ := {x ∈ R
n | aTi x = bi for i ∈ I and aTi x < bi for i �∈ I}

is included in P and has dimension d. After eliminating redundant equalities, if
necessary, we can assume |I| = n− d.

In what follows, if x ∈ R
n and J ⊆ [n], we denote by xJ the vector obtained by

removing from x the coordinates with index not in J . Write J̄ = [n] − J . Let H be
the affine linear variety given by aTi x = bi for i ∈ I. Since dimH = d there exists
J ⊆ [n], |J | = d, such that we can express the coordinates xj , j �∈ J , in terms of the

coordinates xj , j ∈ J . More precisely, there exist S ∈ R
J̄×J and c ∈ R

J̄ such that

xJ̄ = SxJ + c.(5.1)

The projection of P ∗ on R
J has dimension d. It is given by the set of strict inequalities

obtained by substituting xJ̄ in the inequalities aix < bi, i �∈ I, according to (5.1).
We now apply the full-dimensional case to this set of inequalities to find points

x
()
J ∈ R

J , $ = 0, . . . , d, satisfying the statement in R
J (for some bijection π : [d] → J).

Finally, we lift these points to x() ∈ R
n, $ ∈ [d], by using (5.1).

Proof of Theorem 5.1. The hardness is immediate since adding d dummy variables
reduces circuit satisfiability CSATadd to DIMadd(d). (Here we use the convention
dim ∅ = −1.)

For the membership, note that leaf sets are convex. Therefore, if such a leaf set
contains the vertices of a d-dimensional simplex in R

n, it contains the whole simplex.
This ensures the correctness of the following algorithm for DIMadd(d).

input C
compute n, the number of input gates of C
guess an accepting leaf ν, x(0), . . . , x(d) ∈ R

n, ρ ∈ R, and π : [d] → [n]
check whether x(0), . . . , x(d), ρ, and π satisfy the statement of Proposition 5.2
if x(0), . . . , x(d) reach the leaf ν then ACCEPT else REJECT

This is clearly an NPadd-algorithm.

5.2. Counting connected components. Consider the reachability problem
REACHadd to decide for a given additive circuit C and two points s and t whether
these points are in the same connected component of the semilinear set X defined by
C. The corresponding counting problem #ccCSATadd is the problem of counting the
number of connected components of X given by C.

The main result of this section is the following.
Theorem 5.3. The problems REACHadd and #ccCSATadd are PARadd-complete

and FPARadd-complete with respect to Turing reductions, respectively.
This result is inspired by an early paper by Reif [35] (see also [36]), which showed

the PSPACE-hardness of a generalized movers problem in robotics. Reif’s result im-
plies that the analogue of REACHadd for semialgebraic sets given by inequalities of
(nonlinear) rational polynomials is PSPACE-hard. We cannot apply this result in
our context, since we are dealing here with linear polynomials. However, we borrow
from Reif’s proof the idea to describe PSPACE by symmetric polynomial space Turing
machines; see section 5.2.1.
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The problem REACHadd has a similar flavor as the undirected reachability prob-
lem for succinctly represented graphs, which asks whether two nodes s, t of such
a graph G are connected by a path. By a succinct representation of a graph [18]
we understand a Boolean circuit which decides, for a pair of nodes given in binary
encoding, whether they are adjacent. This representation allows a polynomial size
representation of graphs with exponentially many nodes. It is known that the undi-
rected reachability problem for succinctly represented graphs is PSPACE-complete. A
detailed treatment of the complexity of succinct problems can be found in [1].

The rest of this section is devoted to the proof of Theorem 5.3. It is organized
as follows: after two preparatory subsections on symmetric Turing machines and
embedding graphs, we provide the lower bound part of the proof in section 5.2.3. The
upper bound part of the proof is given in section 5.2.4.

5.2.1. Symmetric Turing machines. Roughly speaking, a symmetric Turing
machine [26] is a nondeterministic Turing machine with the property that its transition
relation is symmetric. Thus its configuration digraph is in fact a graph, which is
essential for capturing the symmetric reachability relation of REACHadd.

We briefly recall the notions which are essential for our proof. A (one tape)
symmetric Turing machine M is given by (Q,Σ,Σ0, s, t,∆), where Q is a finite state
space, s ∈ Q is the initial state, t ∈ Q is the final state, and ∆ is a finite set of
transitions. We will assume that the input alphabet Σ0 equals {0, 1} and that the
machine alphabet Σ contains 0, 1, and the blank “=.” The transitions δ ∈ ∆ are either
of the form δ1 = (p, a, 0, b, q) or δ2 = (p, ab, cd, q), where p, q ∈ Q and a, b, c, d ∈ Σ.
The transition δ1 is to be interpreted as follows: If the current state of the machine
is p and the head of the machine is above a cell containing the symbol a, then the
machine may rewrite this symbol by b and enter the state q without moving the head.
Similarly, reading backwards, if the machine is in state q and the head of the machine
is above a cell containing the symbol b, then the machine may rewrite this symbol by
a and enter the state p without moving the head. The interpretation of the transition
δ2 is as follows: If the current state is p, the head of the machine is above a cell
containing a, and the symbol in the cell to the immediate right is b, then the machine
may rewrite a by c and b by d, move one step to the right, and enter the state q.
The transition δ2 may also be read backwards with the obvious interpretation. A
configuration of M is an element (q, h, w) ∈ Q×N×ΣN, where q is the current state,
h the position of the head, and w the current tape contents. (All but finitely many
components of w are blanks.) The transitions induce a symmetric relation on the set
of configurations, which defines the (undirected) configuration graph.

In [26, Theorem 1] it is shown that any language recognized by a deterministic
Turing machine may be recognized by a symmetric Turing machine respecting the
same space bound.

5.2.2. Embedding graphs by straight-line segments. We first define two
types of products of graphs. Then we study embeddings of such graph products in
Euclidean space such that point location in these embedded graphs can be done by
additive circuits. This will be needed for the lower bound proof in section 5.2.3.

Definition 5.4. Let Gi = (Vi, Ei) be graphs, where 1 ≤ i ≤ t.

1. The product G1 × · · · × Gt is defined as a graph with the set of nodes V1 ×
· · ·×Vt; two distinct nodes u = (u1, . . . , ut) and v = (v1, . . . , vt) are adjacent iff there
exists i such that {ui, vi} ∈ Ei and uj = vj for all j �= i. If Gi = G for all i we will
write Gt instead of G× · · · ×G.
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2. The extended product G1⊗ · · ·⊗Gt also has set of nodes V1× · · ·×Vt. Now
two distinct nodes u = (u1, . . . , ut) and v = (v1, . . . , vt) are adjacent iff for all i either
ui = vi or {ui, vi} ∈ Ei.

Let G = (V,E) be a graph and ϕ : V → R
n be an injective map. We assign to

each edge e = {u, v} the closed (straight-line) segment ϕ(e) := {tϕ(u) + (1− t)ϕ(v) |
t ∈ [0, 1]}.

Definition 5.5. The injective map ϕ : V → R
n induces an embedding of the

graph G = (V,E) into R
n (by straight-line segments) iff

∀v ∈ V ∀e, e′ ∈ E
(
ϕ(v) ∈ ϕ(e) =⇒ v ∈ e

) ∧ (ϕ(e) ∩ ϕ(e′) �= ∅ =⇒ e ∩ e′ �= ∅).
The edge skeleton of the embedding is defined as the union of the segments corre-
sponding to all edges.

We denote by Km the complete graph on the set of nodes [m] and embed it in
R
m by sending the node i to the ith canonical basis vector ei. Thus we interpret Km

as the standard simplex in R
m.

Lemma 5.6.
1. Assume that ϕi : Vi → R

ni induces an embedding of Gi for i ∈ [t]. Then
V1×· · ·×Vt → R

n1×· · ·×R
nt , (v1 . . . , vt) �→ (ϕ1(v1), . . . , ϕt(vt)) induces an embedding

of G1 × · · · ×Gt.
2. Let ϕ : V → R

n−{0} induce an embedding of G = (V,E) and m ∈ N,m > 0.
Assume further that ϕ(u), ϕ(v) are linearly independent for all edges {u, v} ∈ E.
Define ψ : [m] × V → (Rn)m by ψ(i, v) := (0, . . . , 0, ϕ(v), 0, . . . , 0) with 0 everywhere
except at position i. Then ψ induces an embedding of the extended product Km ⊗ G
into (Rn)m.

Proof. 1. This can be shown by straightforward verification.
2. The proof is a bit cumbersome, since it requires several case distinctions.

Assume for simplicity that m = 2. Let e = {(1, u), (2, v)}, e′ = {(1, u′), (2, v′)} be
edges of K2 ⊗ G such that ψ(e) ∩ ψ(e′) �= ∅. Hence there exist s, t ∈ [0, 1] such that
tψ(1, u)+ (1− t)ψ(2, v) = sψ(1, u′)+ (1− s)ψ(2, v′). This means that tϕ(u) = sϕ(u′)
and (1− t)ϕ(v) = (1− s)ϕ(v′). We claim that e ∩ e′ �= ∅.

If t = 0, then s = 0 (since imϕ ⊆ R
n − {0}); hence ϕ(v) = ϕ(v′). Therefore

v = v′, and we are done. Similarly, t = 1 implies u = u′. We may therefore assume
that s, t �∈ {0, 1}.

Suppose u = v′. Then either u′ = u or {u′, u} ∈ E. In the latter case, ϕ(u′), ϕ(u)
are not linearly independent by assumption, which contradicts tϕ(u) = sϕ(u′). We
may therefore assume that u �= v′ and v �= u′.

Since s = t implies u′ = u, we assume w.l.o.g. that 0 < s < t < 1. It is easy to see
that under these assumptions we have ϕ({u, v})∩ϕ({u′, v′}) �= ∅ (cf. Figure 5.1). As
ϕ is an embedding, we deduce from this {u, v} ∩ {u′, v′} �= ∅; hence u = u′ or v = v′,
which proves the claim.

The other cases to be treated are simpler and are left to the reader. If m > 2,
one can argue similarly.

For positive integers a, b, p we define the graphs Gp
a,b := Ka⊗ (Kb)

p. Interpreting
complete graphs as embedded via the standard simplices in Euclidean space and using
the construction of the previous lemma, we get an embedding ψpa,b of Gp

a,b in R
abp. We

denote the induced set of nodes in R
abp by R and the edge skeleton by T (omitting

indices). The following property will be crucial.
Lemma 5.7. There are additive circuits of size polynomial in a, b, p depending

uniformly on these parameters and performing the following tasks:
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Fig. 5.1. The segments ϕ({u, v}) and ϕ({u′, v′}) intersect.

1. Compute the map ψpa,b : [a]× [b]p → R and its inverse.

2. Decide in which set of the partition R
abp = (Rabp \ T ) ∪ (T \R) ∪R a given

point in R
abp lies.

3. Compute the end points of the (unique) edge segment of Gp
a,b in which a given

point x ∈ T \R lies.
Proof. To compute ψpa,b is straightforward. For its inverse, as well as for parts

(2) and (3), note that the relevant information can be inferred from the signs of the
components xi of a given point in x ∈ R

abp. No multiplications, not even scalar ones,
are needed to perform these tasks.

5.2.3. Lower bound for reachability. We are going to show the PARadd-
hardness of REACHadd and #ccCSATadd. The next lemma tells us that it is sufficient
to do this for REACHadd.

Lemma 5.8. The problem REACHadd Turing reduces to #ccCSATadd.
Proof. Let X ⊆ R

n be given by an additive circuit C accepting X, and suppose
s, t ∈ X. Consider the following subset X ′ of R

n+1:

X ′ := (X × {0}) ∪ ({s} × [0, 1]) ∪ ({t} × [0, 1]) ∪ (Rn × {1}).

There is an FPadd-machine, which takes as input a circuit C together with s, t ∈ R
n

and outputs an additive circuit C′′ deciding membership to X ′. It is easy to check
that s and t are connected in X iff X ′ has the same number of connected components
as X (and one less otherwise). The latter condition can be tested by querying a
#ccCSATadd-oracle twice, once with C and once with C′′.

Proposition 5.9. The problem REACHadd is PARadd-hard with respect to Tur-
ing reductions.

Proof. By Theorem 4.1(3) it is sufficient to prove that REACHadd is PSPACE-
hard. Thus let L ⊆ {0, 1}∞ be any language in PSPACE. Let M be a symmetric
Turing machine deciding membership in L with polynomial space bound function p(n)
(cf. section 5.2.1). For fixed input length n let H ′

n denote the restriction of the configu-
ration graph of M to the set of nodes Vn := Q×[p(n)]×Σp(n). To an input w ∈ {0, 1}n
we assign the initial configuration i(w) := (s, 1, (w1, . . . , wn, =, . . . , =)). We may as-
sume w.l.o.g. that there is exactly one accepting configuration f := (t, 1, (=, . . . , =)).
Of course, the cardinality of Vn is exponential in n. However, it is clear that the
graph H ′

n can be succinctly represented by Boolean circuits of size polynomial in n.
Note that if (q, h, w), (q′, h′, w′) ∈ Vn are two configurations adjacent in H ′

n,
then |h − h′| ≤ 1, and the Hamming distance of w and w′ is at most two. Let
δ2 = (p, ab, cd, q) be the transition between these configurations and w.l.o.g. h′ = h+1.
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We introduce an additional node (δ, h, w̃), where w̃ is obtained from w by changing
the hth entry to the one of w′. Thus the Hamming distances of both w, w̃ and w̃, w′

are at most one. We think of the node (δ, h, w̃) as lying in between the nodes (q, h, w)
and (q′, h′, w′). By this construction we obtain a modified configuration graph Hn on
the set of nodes V ′

n := Q̃× [p(n)]×Σp(n) with the enlarged set of states Q̃ := Q ∪∆.
(Recall that ∆ is the set of transitions of M .) If (q, h, w) and (q′, h′, w′) are adjacent
in Hn, then the Hamming distance of w and w′ is at most one. Note that the graph
Hn can also be succinctly represented by Boolean circuits of size polynomial in n.

By enumerating symbols we may assume that Σ = [b] and Q̃ × [p(n)] = [a(n)]
with a polynomial function a(n). From the above observations we conclude that the
modified configuration graph Hn is a subgraph of the graph

Gn := G
p(n)
a(n),b := Ka(n) ⊗ (Kb)

p(n)

defined in section 5.2.2. We embed Gn in R
a(n)p(n)b with the construction of section

5.2.2 using a map ψn : Q̃ × [p(n)] × Σp(n) → Rn with induced set of nodes Rn. We
denote the edge skeleton of this embedding by Tn and denote by Sn the edge skeleton
of the induced embedding of the subgraph Hn of Gn.

By Lemma 5.7, membership in Tn can be decided by a uniform family of additive
circuits of size polynomial in n. It is now easy to see that also membership in Sn can
be decided by such a family (Cn) of additive circuits. In fact, we first find out whether
a given point x ∈ R

a(n)p(n)b lies in Rn or Tn. If x lies in Tn \Rn, then we compute the
end points y, z of the (unique) edge segment of Gn in which x lies. Furthermore, we
compute the inverse images η := ψ−1

n (y) and ζ := ψ−1
n (z). Due to Lemma 5.7 all this

can be done by a uniform family of additive circuits of size polynomial in n. Note that
x lies in Sn iff η and ζ are adjacent in the modified configuration graph Hn. Since
the latter can be succinctly described by Boolean circuits of size polynomial in n we
can test this in polynomial time.

Consider the map ϕ associating w ∈ {0, 1}n to (Cn, ψn(i(w)), ψn(f)). By con-
struction, w ∈ L iff the configurations i(w) and f can be connected in the modified
configuration graph Hn. This in turn is equivalent to the statement that the points
ψn(i(w)) and ψn(f) are connected by a path in the skeleton Sn defined by Cn. There-
fore, ϕ is a reduction from L to REACHadd.

In addition, it is obvious that the additive circuit Cn for Sn as well as the points
ψn(i(w)) and ψn(f) can be computed in polynomial time from w. This completes the
proof of the proposition.

Remark 5.10. From the above proof it follows immediately that the problems
REACHadd and #ccCSATadd restricted to closed input sets X remain complete for
PARadd and FPARadd, respectively.

5.2.4. Upper bound for reachability. In order to finish the proof of Theo-
rem 5.3, it remains to show the following lemma.

Lemma 5.11. The problem REACHadd is contained in PARadd, and the problem
#ccCSATadd is contained FPARadd.

Proof. Let C be an additive circuit defining a set X. The computation of C can
be unwound to a linear decision tree. We define a graph G, whose nodes consist of
the accepting leaves of this tree and whose edges join two different leaves µ and ν
iff the corresponding leaf sets Dµ and Dν touch each other, that is, Dµ ∩Dν �= ∅ or
Dµ ∩Dν �= ∅.

Let K1, . . . ,Kt be the connected components of the graph G. It is easy to see that
X has exactly t connected components, namely the sets of the form

⋃
ν∈Ki

Dν for i ∈
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[t]. (Use the fact that leaf sets are convex and thus connected.) Therefore, the number
of connected components of X is equal to the number of connected components of the
graph G.

Of course, the graph G may be exponentially large. However, it can be represented
by a weaker variant of the succinct representation discussed before. The nodes of G
can be encoded by a word in {0, 1}∞ encoding the corresponding path in the tree
(0 means branching to the left, 1 means branching to the right). For two such given
nodes µ, ν, we can decide in NPadd whether they are connected in G by guessing a
point x ∈ R

n and checking whether x ∈ Dµ ∩ Dν or x ∈ Dµ ∩ Dν . The latter can
be done as follows: we can easily write down the linear functions computed along
the path of µ, thus obtaining a description of Dµ by a system of linear inequalities.
A system describing the closure Dµ can be obtained from the one describing Dµ by
relaxing the occurring inequalities < to ≤.

As in the proof of Savage’s theorem we can decide in PARadd whether two nodes
of G are connected by a path as follows. Let the predicate PATH(µ, ν, i) express that
the nodes µ and ν are connected by a path of length at most 2i. Then we implement
PATH(µ, ν, i) by the recursive algorithm

for all nodes ω test whether PATH(µ, ω, i− 1) and PATH(ω, ν, i− 1)
using only polynomial space (compare [34, p. 149]). By applying this procedure for
every pair of nodes of G we can compute the number of connected components of G
and thus that of X in FPARadd.

Remark 5.12. Let p be a prime. Then the problem of counting the number of
connected components modulo p of a semilinear set given by an additive circuit is also
FPARadd-complete with respect to Turing reductions. For showing this, we have only
to observe that the proof of Lemma 5.8 immediately extends to counting mod p.

5.3. Euler characteristic and Betti numbers. The main results of this sec-
tion are the completeness results for EULERadd and BETTIadd(k) treated in section
5.3.4 and section 5.3.5. The following subsections prepare for the proofs.

5.3.1. Cell complexes and homology. We recall some notions from algebraic
topology [20, 33]. A cell of dimension k is a topological space homeomorphic to the
open k-dimensional unit ball int(Bk) := {x ∈ R

k | x21 + · · ·x2k < 1}. The closed
unit ball will be denoted by Bk. Its boundary ∂Bk is homeomorphic to the (k − 1)-
dimensional unit sphere.

Assume that a topological Hausdorff space X is decomposed into a finite, disjoint
union of cells: X = ∪Ni=1Fi. The k-skeleton Xk is then defined as the union of the
cells of dimension at most k. The cell decomposition is called a finite cell complex iff
each cell Fi has a characteristic map, that is, a continuous map hi : B

k → X mapping
the boundary ∂Bk to Xk−1 and such that hi induces a homeomorphism of int(Bk)
with Fi. In this case, X is necessarily compact.

In the following, we assume that X is a compact, semilinear subset of R
n decom-

posed into subsets Fi, i ∈ [N ], each described by a system

f1 = a1, . . . , fr = ar, g1 > d1, . . . , gs > ds,

where fi, gj are linear forms. Note that the Fi are bounded convex sets, which are open
in their affine closure aff(Fi). In particular, each Fi is a cell, and ∂Fi is homeomorphic
to a sphere. It is easy to see that this cell decomposition of X is a finite cell complex
if the following boundary condition is satisfied:

∀i, j ∈ [N ], Fi ∩ ∂Fj �= ∅ =⇒ Fi ⊆ ∂Fj .(5.2)
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This condition is equivalent to saying that the boundary ∂Fi of each cell is a union
of cells. Such cell complexes will be called semilinear cell complexes in the sequel.

The following fact is well known [20, 33]. Let X be decomposed as a semilinear
cell complex and denote by ck the number of the k-cells of this decomposition. Then
the Euler characteristic χ(X) can be computed as χ(X) =

∑n
k=0(−1)kck.

We remark that the decomposition into leaf sets given by a ternary additive
circuit may violate the boundary condition, which is a source of complications for our
investigations. (For a definition of ternary circuits, see section 5.3.3.) For instance,
consider the triangle X decomposed into the vertices a := (0, 0), b := (2, 0), c := (0, 2)
and the open segments segments joining a with b, a with c, b with c, and a with
(1, 1). Then the boundary point (1, 1) of the open segment joining a with (1, 1) is not
a vertex.

In order to define the cellular homology of a semilinear cell complex, we first need
to recall some facts about orientation.

Recall that an ordered basis of a finite-dimensional real vector space defines an
orientation of this space. Two ordered bases are said to have the same orientation iff
the transformation matrix sending one basis to the other has positive determinant.
By an orientation of an affine linear subspace A ⊆ R

n we understand an orientation
of its associated linear space L(A). An orientation of a convex subset F of R

n is
defined as an orientation of its affine hull aff(F ). It will be convenient to write
L(F ) := L(aff(F )).

Let A ⊆ R
n be given as the zero set of linear polynomials f1, . . . , fn−k in this

order. Extend the sequence f1 − f1(0), . . . , fn−k − fn−k(0) to a basis of the space
of linear forms such that the corresponding dual basis (v1, . . . , vn) is a positively
oriented basis of R

n. Then (vn−k+1, . . . , vn) is a basis of the linear space L(A), which
we define to be positively oriented. We will say that this is the orientation of A
induced by f1, . . . , fn−k. (Note that this is well defined.)

Let now A be the convex hull of a convex subset F of R
n, and assume that H is

a supporting hyperplane of F in A. That is, F lies on one side of H and the closure
of F meets H. Then an orientation of F induces an orientation of H as follows: let y
be a vector pointing from H outward of F . Then we say that a basis v1, . . . , vn−1 of
L(H) is positively oriented with respect to the induced orientation iff y, v1, . . . , vn−1
is a positively oriented basis of L(A). (This is again well defined.)

Let now X = ∪Ni=1Fi be a semilinear cell complex, and assume that all the
cells Fi are oriented. Let Φk denote the set of k-cells, and consider F ′ ∈ Φk and
F ∈ Φk+1. Assume that F ′ is contained in the closure of F . Then the affine hull of
F ′ is a hyperplane in the affine hull of F supporting the convex set F . Therefore, the
orientation of F induces an orientation on F ′ as explained above.

We define the incidence number [F, F ′] of F ∈ Φk+1 and F ′ ∈ Φk by

[F, F ′] =


0 iff F ′ is not contained in the closure of F ,
1 if the orientation F induces on F ′ is the same as that of F ′,
−1 otherwise.

For k ≥ 0 the incidence matrix Ik is the matrix associated with Ik : Φk+1 × Φk → Z

by Ik(F, F
′) = [F, F ′].

Let Ck be the Q-vector space having Φk as a basis. The boundary map ∂k : Ck+1 →
Ck is the Q-linear map defined for F ∈ Φk+1 by

∂k(F ) =
∑
F ′∈Φk

[F, F ′]F ′.
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The image Bk := im∂k of ∂k is called the vector space of k-boundaries, and the kernel
Zk := ker ∂k−1 is called the space of k-cycles. The kth cellular homology vector space
is defined as Hk := Zk/Bk. It is well known [20, 33] that Hk is isomorphic to the
singular homology vector space Hk(X;Q). Therefore, bk(X) := dimHk is the kth
Betti number, which is independent of the cell decomposition and of the choice of
orientations for its cells. We have bk(X) = dimZk − dimBk = ck − ρk−1 − ρk, where
ρk := rank ∂k and ck = |Φk|.

5.3.2. Reduction to the compact case. The technical result developed in
this section will be needed in the upper bound proofs for the problems EULERadd

and BETTIadd(k). The purpose is to show that the closedness assumption on X can
be strengthened to compactness w.l.o.g.

Let us first show that both closedness and compactness of a semilinear set can be
checked within the allowed resources, that is, in additive polynomial time with access
to a #P-oracle. We write ‖x‖∞ := maxi≤n |xi| for x ∈ R

n.
Lemma 5.13. Both closedness and compactness of a set X given by an additive

circuit can be decided in P#P
add.

Proof. The boundedness of X ⊆ R
n can be expressed as follows:

∃R ∈ R ∀x (x ∈ X =⇒ ‖x‖∞ ≤ R).

Hence this property can be decided in Σ2
add. The closedness of X ⊆ R

n can be
expressed by

∀y ∃ε ∀x (y �∈ X,x ∈ X, ε > 0 =⇒ ‖x− y‖∞ ≥ ε).

Hence this property can be decided in Π3
add. Now use Corollary 4.6.

We recall a further notion from topology [20, 33]. A subspace A of a space X is
called a strong deformation retract of X if there is a continuous map F : X×[0, 1] → X
such that F (x, 0) = x, F (x, 1) ∈ A, and F (a, t) = a for all x ∈ X, a ∈ A, and
t ∈ [0, 1]. It is a well-known fact that if A is a strong deformation retract of X,
then the inclusion of A in X induces an isomorphism of the homology vector spaces
Hk(A;Q) ! Hk(X;Q). In particular, the spaces A and X have the same Betti
numbers.

Lemma 5.14. Let X ⊆ R
n be a closed semilinear set given by an additive circuit C.

As usual, we denote by Dν the corresponding leaf sets. Then
1. we can compute from C in FPadd a real number R > 0 such that

∀ν (Dν �= ∅ =⇒ Dν ∩ [−R,R]n �= ∅);(5.3)

2. if R satisfies (5.3), then XR := X ∩ [−R,R]n is a strong deformation retract
of X.

Proof. 1. Each leaf set Dν is defined by a set of sign conditions for the values
computed by the circuit. On an input y ∈ R

n these values are of the form

z =

n∑
i=1

aiyi +

k∑
i=1

biαi + c,

where α1, . . . , αk are the constants of C and the coefficients ai, bi, c are integers of
bit-size at most s := size(C). If Dν is not empty, Theorem 2.6 implies that there is

a point y ∈ Dν such that yi =
∑k

j=1 uijαj + wi, where the uij , wi are rationals of
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bit-size at most L := (sn)c, c being some universal constant. Hence maxi |yi| ≤ R,

where R := 2L
(
1 +

∑k
j=1 |αj |

)
. Therefore, the bound R satisfies the condition (5.3).

Moreover, it is clear that R can be computed in FPadd from C.
2. Assume w.l.o.g. that X is not compact. Consider the one-point compact-

ification Ẋ of X, which is explicitly defined as follows. Let Sn ⊂ R
n+1 be the

n-dimensional sphere and N = (0, 0, . . . , 0, 1) ∈ Sn be its north pole. Projection from
N yields a homeomorphism between Sn−{N} and R

n×{−1} and therefore a home-
omorphism between Sn−{N} and R

n. The closure Ẋ of the image of X in Sn (which
consists of attaching N to this image) is called a one-point compactification of X. The
decomposition into leaf sets of X becomes a cell decomposition of Ẋ, which can be
turned into a finite cell complex by refinement. The claim is now a consequence of the
following intuitive topological fact, whose formal proof is left to the reader. Let Y be
a finite cell complex and p be a vertex of Y . Assume that U is an open neighborhood
of p so small that {p} is the only cell of the complex contained in U . Then Y \ U is
a strong deformation retract of Y \ {p}.

5.3.3. Universal cell decompositions. We adopt the notation Fs,n for the
universal cell decomposition for the parameters s, n, introduced in section 4.1.

Lemma 5.15. If X ⊆ R
n is compact and a finite union of faces in Fs,n, then the

decomposition of X is a semilinear cell complex.
Proof. It is obvious that the boundary condition (5.2) is satisfied.
Let C′ be an additive circuit defining the semilinear set X ⊆ R

n. At the price of
at most doubling the size of the circuit, we can transform C′ into a ternary additive
circuit C, which branches according to the sign of intermediate results in a ternary
way (< 0, = 0, > 0) instead of branching in a binary way according to x ≥ 0 or x < 0.
Each (nonempty) leaf set Dν of C is described in the form

f1 = a1, . . . , fr = ar, g1 > d1, . . . , gs > ds,

where the fi − ai and gj − dj are the linear polynomials computed along the path
leading to the leaf ν. Note that the linear forms fi, gj have integer coefficients of
bit-size at most 2s, where s is the size of the circuit C. If the circuit uses only the
constants 0, 1, then ai, dj are also integers of bit-size at most 2s. In the general case,
however, ai, dj are real numbers. In the first case, each leaf set Dν is a union of faces
of Fs,n. Thus, {F ∈ Fs,n | F ⊆ X} is a refinement of the decomposition of X into
the leaf sets. By Lemma 5.15 this decomposition is a semilinear cell complex if X is
compact.

Let X be a compact finite union of cells of Fs,n. To define (and compute) the
cellular homology groups of X we need to fix orientations on the cells F ∈ Fs,n. The
cellular homology groups are independent of the chosen orientations, so we will make
this choice in a convenient way as explained below.

By identifying a sequence (f1, . . . , fk) in (Hs,n)
k with the sequence of coefficients

of f1, . . . , fk (in a fixed order) and using the lexicographical ordering, we may consider
(Hs,n)

k as a totally ordered set. We can extend this order to the union H∞
s,n of the

(Hs,n)
k, for k ∈ N, by requiring that elements of (Hs,n)

k are strictly smaller than

elements of (Hs,n)
k′

for k < k′.
For F ∈ Fs,n let (f1, . . . , fn−k) be the smallest sequence in H∞

s,n such that F is
contained in the zero set of f1, . . . , fn−k. Then k = dimF . We define the orientation
of F as the orientation of aff(F ) induced by this smallest sequence (f1, . . . , fn−k)
(cf. section 5.3.1).
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In the sequel, F shall denote the union of the Fs,n, and H the union of the
Hs,n, over all s, n ∈ N, respectively. Recall that we encode the faces F ∈ F by
triples (s, n, x) ∈ N

2 × Q
n with a rational point x ∈ F of bit-size at most (sn)c. Let

the incidence function I : F × F → {−1, 0, 1} be defined by I(F, F ′) := [F, F ′], if
F, F ′ ∈ Fs,n for some s, n and dimF = dimF ′ + 1, and I(F, F ′) = 0 otherwise.

Lemma 5.16.

1. The membership decision problem {(F, x) ∈ F × R
∞ | x ∈ F} is in PH0

add.
2. The containment decision problem {(F, f) ∈ F × H | F ⊆ Z(f)} is in PH.

Here Z(f) denotes the zero set of the polynomials of the sequence f .
3. The closure containment problem {(F ′, F ) ∈ F × F | F ′ ⊆ ∂F} is in PH.
4. There is a function F → Q

∞ in FPPH mapping F to a positively oriented
basis of the linear space L(F ) associated with the affine hull of F .

5. The incidence function I : F × F → {−1, 0, 1} can be computed in FPPH.

Proof. 1. Let F ∈ Fs,n be given by the rational point x0 ∈ F . We have

x ∈ F ⇐⇒ ∀f ∈ Hs,n

(
sgnf(x) = sgnf(x0)

)
.

This condition is expressible in (Π1
add)

0 ⊆ PH0
add, which shows the claim.

2. Replacing in the statement for all x (x ∈ F ⇒ x ∈ Z(f)) the predicate “x ∈ F”
according to part 1, we obtain a (Π1

add)
0-statement. Since F and f are discrete, the

containment decision problem even belongs to the Boolean part of (Π1
add)

0 and thus
to Π1 by [14] (cf. Remark 4.12).

3. Using part 1, we can express “x ∈ F” by a (Π2
add)

0-statement. Hence F ′ ⊆ ∂F
can also be expressed by a (Π2

add)
0-statement. Since F, F ′ are discrete, this statement

is even in Π2.

4. Using part 2, we see that the following condition is in Π2: (f1, . . . , fn−k) is
the smallest sequence in H∞

s,n such that F is contained in the zero set of f1, . . . , fn−k.
The assertion follows now by Remark 2.11(ii).

5. For given F, F ′ ∈ Fs,n we first check in PH whether F ′ ⊆ ∂F and dimF ′ =
dimF−1 using parts 3 and 4. Then we compute positively oriented bases u1, . . . , uk+1
of L(F ) and v1, . . . , vk of L(F ′) in FPPH according to part 4. If F and F ′ are rep-
resented by the rational points x and x′, respectively, then y := x′ − x is a vector in
L(F ) pointing from L(F ′) outside of F . The incidence number [F, F ′] equals 1 iff the
bases y, v1, . . . , vk and u1, . . . , uk+1 have the same orientation, which can be checked
in P.

We extend now to the case when there are real constants what we have discussed
before.

Let s, n, $ ∈ N and η ∈ R
. By intersecting the universal cell decomposition

of R
n+ for the parameters s, n + $ with the hyperplane H(η) := {(x, y) ∈ R

n+ |
y = η}, we get a cell decomposition of R

n × {η}, which we identify with R
n. More

specifically, each face F ∈ Fs+,n induces a face F (η) of this decomposition, defined by
F (η)×{η} := F ∩H(η), provided this intersection is nonempty. Note that each F (η)

is defined by putting sign conditions on all polynomials of the form a0 +
∑

j=1 bjηj +∑n
i=1 aiXi, where

∑n
i=0 |ai|+

∑
j=1 |bj | ≤ 2s. We write Fs,n(η) := {F (η) | F ∈ Fs,n}

and call this the universal cell decomposition of R
n for the parameters s, n and vector

of constants η ∈ R
. Moreover, we write F(η) for the union of the Fs,n(η) over all

s, n ∈ N.

Most of the results shown so far in this subsection extend to this more general
notion of universal cell decompositions in a natural way. For instance, Lemma 5.15
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extends immediately to Fs,n(η). A face F (η) ∈ F(η) is encoded by F ∈ F , which is
itself encoded by a small rational point.

Lemma 5.17. An analogue of Lemma 5.16 holds, where the complexity classes
PH0

add, FP, and PH have to be replaced by PHadd, FP/poly, and PH/poly, respectively.
The proof is a straightforward extension of the proof of Lemma 5.16. For instance,

for treating the closure containment problem {(F ′, F ) ∈ F(η)×F(η) | F ′ ⊆ ∂F} one
first shows that this problem is in PHadd. Then, since this is a discrete problem, one
concludes that it is in the Boolean part of PHadd and thus in PH/poly by [14] (cf.
Remark 4.12).

5.3.4. Euler characteristic. The Euler characteristic χ(X) is a fundamental
invariant of a topological space.

Let EULERadd denote the following problem: given an additive circuit C defining
a closed semilinear set X, decide whether X is empty and, if not, compute its Euler
characteristic χ(X). Hence only circuits defining closed semilinear sets are considered
to be admissible inputs.

Theorem 5.18. The problem EULERadd is FP
#Padd

add -complete with respect to
Turing reductions.

Proof. We first show that EULERadd is #Padd-hard. Note that the problem
CSATadd introduced in section 1.4 trivially reduces to EULERadd by the definition of
the latter problem. Hence NPadd ⊆ PEULERadd

add . Therefore, by Theorem 5.1 we have

DIMadd(1) ∈ PEULERadd

add .
It is now easy to design a Turing reduction from #CSATadd to EULERadd. On

input of an additive circuit C, first decide whether X is finite using oracle calls to
DIMadd(1), and hence to EULERadd. If no, return ∞; otherwise, return χ(X). Since
#CSATadd is #Padd-complete by Theorem 3.6, this proves the hardness.

It remains to prove that EULERadd is contained in FP
#Padd

add . By Lemma 5.14, we
may restrict our discussion to additive circuits defining a compact semilinear set X ⊆
R
n. Assume that X is given by a ternary additive circuit C of size s using the real

constants η1, . . . , η. Then each of the leaf sets of C is a union of faces in Fs,n(η).
Hence the decomposition of X into the faces F ∈ Fs,n(η) contained in X is a semilinear
cell complex. If ck(C) denotes the number of k-cells of this cell complex, we have
χ(X) =

∑n
k=0(−1)kck(C).

Lemma 5.16 and its extension, Lemma 5.17, imply that on input C and F ∈
Fs,n(η) the property F ∈ Φk(C) can be tested in DPHadd. Therefore, ck(C) can be

computed from C in D# · PHadd, which is contained in FP#P
add by Corollary 4.6. This

shows that EULERadd belongs to FP#P
add.

5.3.5. Betti numbers. The kth Betti number bk(X) of a space X is defined as
the dimension of the kth (singular) homology vector space Hk(X;Q) (k ∈ N). The
Betti numbers modulo a prime p are defined by replacing the coefficient field Q by
the finite field Fp.

For k ∈ N, we define BETTIadd(k) to be the problem of computing the kth
Betti number of a closed semilinear set given by an additive circuit. Recall that for
k = 0 this is just the problem of counting the number of connected components. The
problem of computing the kth Betti number modulo a prime p shall be denoted by
BETTIadd(k, mod p).

The goal of this section is the proof of the following result, extending Theorem 5.3.
Theorem 5.19. For any k ∈ N and any prime p, the problems BETTIadd(k) and

BETTIadd(k, mod p) are FPARadd-complete with respect to Turing reductions.
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The next lemma provides the lower bound part of the proof of Theorem 5.19.
Lemma 5.20. BETTIadd(k) and BETTIadd(k,modp) are FPARadd-hard with

respect to Turing reductions for any k ∈ N and any prime p.
Proof. We will exhibit a Turing reduction from #ccCSATadd to BETTIadd(k).

W.l.o.g., we assume k > 0.
The suspension S(X) of a topological space X is defined as the space obtained

from the cylinder X×[0, 1] over X by identifying the points in each of the sets X×{0}
and X × {1}. Essentially, this is a double cone with basis X. It is well known that if
X �= ∅, the Betti numbers of S(X) and X are related as follows (cf. [20, 33]):

bk+1(S(X)) =

{
bk(X) if k > 0,
b0(X)− 1 if k = 0.

(5.4)

If X ⊆ R
n is given by an additive circuit, then we will use the following alternative

definition for the suspension:

S1(X) := (X × [0, 1]) ∪ (Rn × {0}) ∪ (Rn × {1}),

which, if X �= ∅, is homotopy equivalent to S(X) and therefore has the same Betti
numbers. Also,

bk(S1(∅)) =

{
0 if k > 0,
2 if k = 0.

(5.5)

This alternative definition of suspension has the advantage that it is easy to transform
an additive circuit describing X to one describing S1(X). Note that S1(X) is closed
if X is closed. If we iterate this construction k + 1 times starting with X ⊆ R

n, we
get a set Sk+1(X) ⊆ R

n+k+1, which satisfies, by (5.4) and (5.5),

bk(Sk+1(X)) = b0(S1(X))− 1 =

{
0 if X �= ∅,
1 if X = ∅.

This allows one to decide whether X = ∅ by one query to BETTIadd(k). If X = ∅,
then we return 0. Otherwise, note that, by (5.4), b0(X) = bk(Sk(X))+1 (since k > 0),
and we may return b0(X) after another query to BETTIadd(k). Strictly speaking, this
is a reduction from the restriction of #ccCSATadd to closed input sets X. However,
this is sufficient by Remark 5.10.

The same reduction can be made for the Betti numbers modulo a prime. The
hardness follows in this case by appealing to Remark 5.12.

Before proving the upper bound, we make a short digression on space efficient
linear algebra. It is well known [32] that the rank of an N × N integer matrix A,
whose entries have bit-size at most L, can be computed by uniform Boolean circuits
with depth (logL + logN)O(1) (and similary for matrices over Fp). Using Borodin’s
result [6], this can be translated to a polylogarithmic space computation of the rank
of A by a Turing machine.

Similarly as for graphs, we will understand by a succinct representation of an
integer matrix A = (aij) a Boolean circuit B computing the matrix entry aij from the
index pair (i, j) given in binary. From the above discussion we conclude the following
lemma.

Lemma 5.21. The rank of an N × N integer matrix A given in succinct rep-
resentation by a Boolean circuit B can be computed by a Turing machine with space
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polynomial in logN , the depth of B, and the log of the maximal bit-size of the entries
of A.

We finish now the proof of Theorem 5.19 by showing the following upper bound.

Proposition 5.22. BETTIadd(k) and BETTIadd(k,mod p) are both contained
in FPARadd.

Proof. 1. We first prove that BETTI0add(k) is in FPSPACE. Let the closed
semilinear set X ⊆ R

n be given by an additive circuit C′, whose only constants are
0 and 1. By Lemma 5.14, we may assume w.l.o.g. that X is compact. We transform
C′ into a ternary additive circuit C of size s as in section 5.3.3. Consider the cell
decomposition of X induced by C. It is clear that each of its leaf sets is a union of
faces in Fs,n. Lemma 5.15 implies that the decomposition of X into the faces F ∈ Fs,n
contained in X is a semilinear cell complex.

We put Φk(C) := {F ∈ Fs,n | dimF = k, F ⊆ X} and ck(C) := |Φk(C)| for
k ∈ N. Let ρk(C) denote the rank of the incidence matrix Ik(C) : Φk+1(C)×Φk(C) →
Z, (F, F ′) �→ [F, F ′]. In section 5.3.1 it was shown that the kth Betti number bk(X)
of X can be expressed as bk(X) = ck(C)− ρk−1(C)− ρk(C).

Lemma 5.16 implies that on input C and F the property F ∈ Φk(C) can be tested
in PH. Therefore, ck(C) can be computed from C in # · PH ⊆ FPSPACE.

Thus it remains to show that for each k ∈ N the function C �→ ρk(C) can be com-
puted in FPSPACE. It follows from Lemma 5.16(5) that Ik(C)(F, F ′) can be computed
from C, F, F ′ in FPSPACE. Hence, by Borodin’s result [6] a succinct representation B
of the incidence matrix Ik(C) having depth polynomial in s can be computed from
C in FPSPACE. By Lemma 5.21, we can compute the rank ρk(C) from B by a Tur-
ing machine in space polynomial in s. Altogether, we get a computation of ρk(C) in
FPSPACE.

2. We now prove that BETTIadd(k) belongs to FPARadd. Assume that the
compact semilinear set X ⊆ R

n is given by a ternary additive circuit C of size s using
the real constants η1, . . . , η. Then each of the leaf sets of C is a union of faces in
Fs,n(η). Hence the decomposition of X into the faces F ∈ Fs,n(η) contained in X
is a semilinear cell complex. The rest of the argument is based on Lemma 5.17 and
similar as before.

3. The case of positive characteristic can be settled similarly.

Corollary 5.23. BETTIadd(k) Turing reduces to EULERadd for some k ∈ N

iff PSPACE ⊆ P#P/poly. It does so with a constant-free reduction iff PSPACE ⊆ P#P.

Proof. This follows from Theorem 5.18, Theorem 5.19, and Corollary 4.11.

5.3.6. Some completeness results in the Turing model. The results of sec-
tion 4 and sections 5.1–5.3 can be combined to show completeness results for natural
geometric problems in the discrete setting.

An additive circuit C whose only constants are 0 and 1 can be encoded in {0, 1}∞.
Thus, one may consider discrete versions EULER0

add and BETTI0add(k), which are
defined as EULERadd and BETTIadd(k), respectively, but are restricted to constant-
free circuits. Note that since BP((Π3

add)
0) = Π3 (cf. [14]), a corresponding version of

Lemma 5.13 holds; i.e., closedness and compactness of a set given by a constant-free
additive circuit can be decided in P#P.

For these discrete problems the following results hold.

Corollary 5.24. The problems EULER0
add and BETTI0add(k), k ∈ N, are com-

plete with respect to Turing reductions in FP#P and FPSPACE, respectively. A similar
statement holds for the computation of Betti numbers modulo a prime.
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Fig. 6.1. Survey of main results.

Proof. This could be shown by checking in detail the proofs of Theorem 5.18 and
Theorem 5.19. More elegantly, we can derive Corollary 5.24 from general principles
using the concept of Boolean parts. We then need only to check that the reductions
in the proofs of Theorem 3.6, Theorem 5.18, and Theorem 5.19 are constant-free. For
instance, EULER0

add ∈ BP((FP0
add)

#P0
add) = FP#P according to Remark 4.12. For

the hardness note that

(FP0
add)

#P0
add = (FP0

add)
#CSAT0

add = (FP0
add)

EULER0
add .

By taking Boolean parts und using Remark 4.12, we conclude FP#P = FPEULER0
add .

The statement about BETTI0add(k) is proved similarly.

6. Summary. To facilitate the orientation of the reader, we have summarized
the results of this paper in Figure 6.1. There an arrow denotes an inclusion, problems
in square brackets are Turing-complete for the class at their left, and problems in
curly brackets are many-one-complete for that class. The problems appearing in the
figure are defined in the list below. We note that the completeness of SAT, CSATadd,
TSPR, PMR, QBF, and DTRAO was already known.
SAT (satisfiability). Given a propositional formula ϕ, decide whether there is an assign-

ment of Boolean values for the variables satisfying ϕ.
#SAT (counting satisfiability). Given ϕ as in SAT, count the number of satisfying assign-

ments.
QBF (quantified Boolean formulas). Given a quantified Boolean formula, decide whether

it is a tautology.
DTRAO (digital theory of the reals with addition and order). Given a sentence in the

theory of the reals with addition and order, all of whose variables satisfy a constraint
of the form x = 0 ∨ x = 1, decide whether it is a tautology.

TSPR (traveling salesman). Given a complete graph G with real weights on the edges and
w ∈ R, decide whether there is a Hamilton circuit in G with weight at most w.
(The weight of a subgraph is the sum of the weights of its edges.)
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#TSPR (counting traveling salesman). Given G and w ∈ R as in TSPR, count the number
of Hamilton circuits in G with weight at most w.

PMR (weighted perfect matching). Given a bipartite graph G with real weights on the
edges and w ∈ R, decide whether there is a perfect matching in G with weight at
most w.

#PMR (counting weighted perfect matchings). Given G and w ∈ R as in PMR, count the
number of perfect matchings in G with weight at most w.

CSATadd (circuit satisfiability). Decide whether the semilinear set given by an additive
circuit is nonempty.

DIMadd(d) (dimension). Given an additive circuit and d ∈ N, decide whether the dimen-
sion of the semilinear set defined by the circuit is at least d.

REACHadd (reachability). Given an additive circuit defining a semilinear set X and two
points s, t ∈ X, decide whether s and t are in the same connected component of X.

#CSATadd (point counting). Given an additive circuit defining a semilinear set X, com-
pute the number of points in X.

#ccCSATadd (counting connected components). Given an additive circuit defining a semi-
linear set X, compute the number of connected components of X.

EULERadd (Euler characteristic). Given an additive circuit defining a closed semilinear
set X, decide whether X is empty and, if not, compute its Euler characteristic.

BETTIadd(k) (Betti numbers). Given an additive circuit defining a closed semilinear setX,
compute the kth Betti number of X.

7. Open questions. We present some selected open problems.

Problem 7.1. In this paper, we prove completeness with respect to Turing re-
ductions. Do we also have completeness with respect to parsimonious reductions? For
instance, how about the completeness of #TSPR in D#Padd?

Problem 7.2.What is the complexity to deciding connectedness of a semilinear
set given by an additive circuit?

Problem 7.3. In this paper we proved that computing the torsion-free part of
the homology of semilinear sets is FPARadd-complete. Is the complexity of computing
the torsion part of this homology also FPARadd-complete?
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Abstract. Given an undirected graph G = (V,E) with |V | = n and |E| = m, nonnegative
integers ce and de for each edge e ∈ E, and a bound D, the constrained minimum spanning tree
problem (CST) is to find a spanning tree T = (V,ET ) such that

∑
e∈ET

de ≤ D and
∑

e∈ET
ce

is minimized. We present an efficient polynomial time approximation scheme (EPTAS) for this
problem. Specifically, for every ε > 0 we present a (1 + ε)-approximation algorithm with time

complexity O(( 1
ε
)O( 1

ε
)n4). Our method is based on Lagrangian relaxation and matroid intersection.
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1. Introduction. Given an undirected graph G = (V,E) with |V | = n and
|E| = m, nonnegative integers ce and de for each edge e ∈ E, and a bound D,
the constrained minimum spanning tree problem (CST) is to find a spanning tree
T = (V,ET ) such that

∑
e∈ET

de ≤ D and
∑

e∈ET
ce is minimized. We refer to ce and

de of an edge e as its cost and length, respectively. Thus the problem we consider is
that of finding a minimum cost spanning tree whose total length is at most D.
Aggarwal, Aneja, and Nair [1] proved that the problem is weakly NP-hard. With

respect to approximation algorithms, Goemans and Ravi [9] presented a polynomial
time approximation scheme (PTAS), i.e., a (1 + ε)-approximation algorithm for ev-

ery ε > 0, with time complexity O(nO( 1
ε ) logCmax), where Cmax is the largest cost.

Their algorithm is based on Lagrangian relaxation (for an earlier work on this prob-
lem that uses a Lagrangian relaxation, see Jornsten and Migdalas [13]) and uses the
adjacency relations for matroids. Recently, Hong, Chung, and Park [12] showed a
pseudopolynomial time algorithm for this problem that is based on a two-variable
extension of the tree-matrix theorem. We note that developing a fully polynomial
time approximation scheme based on their pseudopolynomial time algorithm is not
straightforward. Instead, [12] contains a fully polynomial bicriteria approximation
scheme. Currently, the question whether there exists a fully polynomial time approx-
imation scheme to CST is open. Andersen, Jornsten, and Lind [2] presented heuristic
algorithms for CST.
In this paper we provide the first efficient polynomial time approximation scheme

(EPTAS) to this problem: for every ε > 0 we provide a (1 + ε)-approximation with
time complexity g( 1ε )poly(n), where poly is some polynomial function, and g is any

function. Specifically, the complexity of our algorithm is O(( 1ε )
O( 1

ε )n4). Our method
adopts the basic ideas of Goemans and Ravi [9] and adds to them a novel application
of a matroid intersection algorithm. We note that our method (as well as Goemans
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and Ravi’s) provides a similar EPTAS using the same analysis to finding a minimum
cost base of a matroid with total length at most D, as long as there is a polynomial
time independence oracle for the matroid (for example, a union of k forests).
Lagrangian relaxation is a well-known method to approximate a constrained op-

timization problem.
We now present some basic definitions and results in matroid theory (see [14]

or [7]). An ordered pair M = (E,F), where E is a set of elements and F is a family
of subsets of E, is called a matroid if the following properties are satisfied: ∅ ∈ F ,
if S ∈ F and S′ ⊆ S, then S′ ∈ F , and if Sp, Sp+1 ∈ F are subsets with p, p + 1
elements, respectively, then there is e ∈ Sp+1 \Sp such that Sp∪{e} ∈ F . An element
of F is an independent set. A maximal independent set is a base of the matroid. A
polynomial time independence oracle for a matroid M is a polynomial time algorithm
such that for a given subset S ⊆ E the algorithm checks whether or not S ∈ F . Given
a matroid M with an element cost function c, the greedy algorithm finds a minimum
(total) cost base ofM . Therefore, for a matroid with a polynomial time independence
oracle, the problem of finding a minimum cost base is polynomially solvable. Given a
pair of matroids M = (E,F) and M ′ = (E,F ′) with polynomial time independence
oracles over common element set E and element cost function c, there is a polynomial
time algorithm that computes a minimum cost common base of M and M ′ (i.e., a
minimum cost subset S such that S is a base of both M and M ′) [3]. Computing the
minimum total common base of two matroids is one of the well-studied variants of
matroid intersection.
Matroid intersection is one of the strongest available tools that one can use in

polynomial time algorithms. However, we are aware of only a few uses of it in the
design of approximation algorithms (see, for example, Chalasani and Motwani [5]).
Therefore, we also contribute to extending the uses of matroid intersection.
Denote by OPT the optimum value for our problem. Given a spanning tree

T = (V,ET ) and a function f defined over E, we denote f(T ) =
∑

e∈ET
f(e).

Goemans and Ravi presented the following results:
1. Given an (α, 1)-approximation algorithm with time complexity Talg (i.e.,
an algorithm that provides output T such that d(T ) ≤ αD and c(T ) ≤
OPT ), there is a (1 + ε)α-approximation algorithm with time complexity
O(Talg log1+ε Cmax) where Cmax is the largest cost. To prove this, they sug-
gested applying a binary search over OPT and replacing the roles of c and d
in the bicriteria approximation algorithm.

2. A (2, 1)-approximation algorithm with time complexity O(m log2 n+n log3 n);
with the former result this gives a 2(1+ε)-approximation algorithm with time
complexity O((m log2 n+ n log3 n) log1+ε Cmax).

3. A (1+ε, 1)-approximation algorithm with time complexity O(nO( 1
ε )) for every

1 > ε > 0; with the former result this gives a (1+ ε)-approximation algorithm

with time complexity O(nO( 1
ε ) log1+ε Cmax) for every ε > 0.

Remark 1. The time complexity in result 1 can be reduced to O(Talg log log1+ε n+
TMST log n), where TMST is the time needed to compute a minimum spanning tree.

Proof. We apply Hassin’s method [11] and apply approximate geometric-mean
binary search instead of arithmetic-mean binary search. This reduces the number of
iterations to log2 log1+ε

UB
LB , where UB and LB are upper and lower bounds on OPT ,

respectively.
We use the method of Lorenz and Raz [15] to obtain good bounds. Let Sc =

{ce}e∈E . Given a threshold value c ∈ Sc, we consider the subgraph Gc = (V, {e ∈ E :
ce ≤ c}). We find a minimum value c ∈ Sc such that Gc contains a spanning tree T
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such that d(T ) ≤ D, and then c ≤ OPT ≤ (n− 1)c. Thus, by applying binary search
with O(log n) iterations on Sc, we obtain bounds LB and UB such that UB

LB ≤ n− 1.
The time complexity of the binary search is O(TMST log n).
Assume that ε ≤ 1

4 . We first compute a 2(1 + ε)-approximation solution using

result 2. The complexity of this phase is O((m+ n log n) log2 n log log1+ε n). Denote

by Ĉ the cost of this solution. Then OPT ≤ Ĉ ≤ 2(1 + ε)OPT . We remove from E
the edge set {e ∈ E : ce > Ĉ}.

2. The algorithm. First, we present the main tools that enable us to improve
Goemans and Ravi’s result. Given ε > 0 and Ĉ, we partition E into the following
edge sets: E0 = {e ∈ E : ce < εĈ}, and for 1 ≤ i ≤ I = � 1−ε

ε2 , Ei = {e ∈ E :

(ε+ (i− 1)ε2)Ĉ ≤ ce < (ε+ iε2)Ĉ}.
Our algorithm enumerates all the possible vectors with I +1 nonnegative integer

entries (n0, n1, . . . , nI) such that the following conditions hold:

1.
∑I

i=0 ni = n− 1.
2.
∑I

i=1 ni ≤ 1
ε .

For each such vector, our algorithm finds an approximate solution with exactly
ni edges from the set Ei if such a solution exists. Note that an optimal solution for
CST may have at most 1

ε edges with cost at least εOPT and, therefore, the second
condition holds for every optimal solution for CST.

Lemma 2. There are O(I
1
ε ) vectors that satisfy both conditions.

Proof. We have at most 1
ε items in the last I components. We consider a bucket

for each set Ei, i ≥ 1, and we have another bucket i = 0 that collects 1
ε −

∑I
i=1 ni

items. We have to place 1
ε items in the I + 1 buckets. Therefore, the number of

possibilities is at most (I + 1)
1
ε = O(I

1
ε ).

Given a cost function cλ(e), e ∈ E, and a vector (n0, n1, . . . , nI), we can find
a minimum cost spanning tree with ni edges from the set Ei (if such a spanning
tree exists). We do it via matroid intersection in the following manner: we define a
partition matroid over the ground set E such that a set E′ ⊆ E is independent in this
matroid if and only if |E′ ∩ Ei| ≤ ni for i = 0, 1, . . . , I. We define a second matroid
over E, the graphic matroid, where a set E′ ⊆ E is independent if and only if the
graph (V,E′) does not contain a cycle. We find a minimum cost common base of these
two matroids. This is done by computing a minimum cost set (if one exists) that is
independent in both matroids and has cardinality n− 1. Since the number of sets in
the partition matroid is O( 1ε ), we can find a minimum cost basis in the intersection

of the two matroids in O(mn+ n2

ε ) time (see Brezovec, Cornuejols, and Glover [4]).
Next we describe the use of Lagrangian relaxation for our problem (see [9] and [13]

for a similar idea). Given a graph G = (V,E), a value Ĉ, and (n0, n1, . . . , nI), let S
denote the set of incidence vectors of common bases of the graphic matroid and the
partition matroid. Our problem is

C = min
∑
e∈E

cexe

subject to x ∈ S(1) ∑
e∈E

dexe ≤ D.

Consider the budget constraint (1) as the complicating constraint. We can obtain
a lower bound on the optimum value C by dualizing it, and for any λ ≥ 0 we consider
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the problem defined as

C(λ) = min
∑
e∈E

(ce + λde)xe − λD

subject to x ∈ S.

We let cλ(e) = ce+ λde for every edge e ∈ E, and note that the problem C(λ) is,
exactly, to compute the minimum cost basis in the intersection of the two matroids
as described above. In order to find the best lower bound on C we maximize C(λ)
over all λ ≥ 0 to obtain

LR = max
λ≥0

C(λ).

It is well known that since C(λ) is a minimum of a set of linear functions (one for
every x ∈ S), C(λ) is concave and piecewise linear (see, for example, Fact 1.1 in [10]).
Let λ∗ denote a value of λ that maximizes C(λ), and let c∗(e) = cλ

∗
(e) for every

e ∈ E.
To solve the Lagrangian relaxation, we need to find the minimum base in the

matroid intersection with respect to c∗ without knowing λ∗. In order to do so, we
apply the combinatorial algorithm in [4] (the dual algorithm in section 3 of [4]) that
solves the minimum cost basis in the intersection of the two matroid problem where
one of them is a partition matroid. In each comparison we need to compare a1λ

∗+ b1
and a2λ

∗ + b2. This can be done by computing the breakpoint λbr =
b2−b1
a1−a2

(if
a1 �= a2—otherwise the comparison is independent of λ

∗), and then we need to de-
termine whether λ∗ ≤ λbr, λ

∗ = λbr, or λ
∗ ≥ λbr. This can be done using a pair of

matroid intersection computations (with λ = λ−
br and with λ = λ+

br). This leads to

an O([mn+ n2

ε ]
2) = O(m2n2 + n4

ε2 ) algorithm that solves (optimally) the Lagrangian
relaxation.
Our algorithm is based on solving the Lagrangian relaxation, as well as deriving

a good spanning tree out of it. We use an adjacency relationship on the polytope
defined by conv(S), where S is the set of incidence vectors of the common bases
in the intersection of two matroids. This adjacency relationship holds when one of
the matroids is a partition matroid (the other matroid can vary). The next lemma
generalizes Lemma 3.2 in [9] (where it was stated for the trivial partition matroid,
the case I = 0), and Lemma 9 in [8] (for a partition matroid with two sets, I = 1).

Lemma 3. Let n0, n1, . . . , nI be the number of edges from E0, E1, . . . , EI , re-
spectively, in an optimal solution. Let O denote the set of minimum cost common
bases in the intersection of the two matroids with respect to c∗, when the partition
matroid is defined with n0, n1, . . . , nI . Let T, T ′ ∈ O. Then there is a series of trees
T = T0 = (V,ET0), T1 = (V,ET1), . . . , T

′ = Tl = (V,ETl
) that satisfies the following:

1. Tj ∈ O, for j = 0, . . . , l.
2. Let Ej = Tj \ Tj+1 and E′j = Tj+1 \ Tj. Then |Ej ∩Ei| = |E′j ∩Ei| ≤ 1 for

i = 0, . . . , I and j = 0, . . . , l − 1.
Proof. We construct a path from T to T ′ of edge swaps. We prove the lemma by

induction over |T ′ \T |. For |T ′ \T | = 1 the lemma holds trivially. Assume the lemma
holds for any pair of optimal trees T, T ′ such that |T ′ \ T | = x − 1; we prove it for
|T ′ \ T | = x.
We consider a perturbed cost function c′ (for a small enough value of ε′) defined

as follows:
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c′(e) =


∞ if e /∈ T ∪ T ′,
c∗(e) + ε′ if e ∈ T \ T ′,
c∗(e)− ε′ if e ∈ T ′ \ T ,
c∗(e) if e ∈ T ∩ T ′.

We take T to be the initial solution to the primal algorithm in [4]. T is not optimal
with respect to c′ (because T ′ is the unique optimal solution with respect to c′), and
therefore the algorithm finds a negative cycle in a graph S. We first define an auxiliary
bipartite directed graph B = (V, V ′, A) as follows (see [3] and [4]): For every e ∈ T
we have a node in V , and for every e′ ∈ E \T we have a node in V ′. For every ei ∈ T
and e′j ∈ E \T we construct an arc (ei, e′j) with cost c(ei, e′j) = c′(ei)−c′(ej) provided
that (T \ {ei})∪ {e′j} is independent in the graphic matroid, and we construct an arc
(e′j , ei) with cost c(e

′
j , ei) = 0 provided that (T \ {ei}) ∪ {e′j} is independent in the

partition matroid (i.e., ei and e′j belong to the same set of the partition). Since for
e /∈ T ∪T ′, c′(e) =∞, a negative cycle in B does not contain e. S is obtained from B
(see [4]) by identifying the set of nodes corresponding to elements from (E \ T ) ∩ Ei

in V ′ to a single vertex vi for every i, and removing parallel edges.
By Theorem 4 in [4], there is a common base T ′′ that has a smaller cost than

T with respect to c′ (and therefore, T ′′ ∈ O) such that T ′′ is obtained from T by
swapping edges along a negative cycle C that has a minimum number of arcs (among
all the negative cycles in S). Suppose that the nodes along the cycle C correspond to
edges (e1, e

′
1, e2, e

′
2, . . . , el, e

′
l, e1) such that ek ∈ Eik for k = 1, . . . , l. C is simple, and

therefore, ik �= ik′ ∀k �= k′ and T ′′ ∈ O.
T ′′ ⊆ T ∪ T ′ and T ′′ �= T , and therefore, |T ′′ \ T ′| < |T \ T ′| = x. Therefore, by

the induction assumption, the lemma’s claim holds.
Our main result will follow from the next theorem.
Theorem 4. Let n0, n1, . . . , nI be the number of edges from E0, E1, . . . , EI , re-

spectively, in an optimal solution for CST. Let O denote the set of minimum cost
common bases in the intersection of the two matroids with respect to c∗, when the
partition matroid is defined with n0, n1, . . . , nI . Then there exists T = (V,ET ) ∈ O
such that

c(T ) ≤ LR+
∑

i:ni>0

(max
e∈Ei

{ce} − min
e∈Ei

{ce})

and

d(T ) ≤ D.

Proof. Let λ = λ∗ − ε′, where ε′ > 0. There is T− ∈ O that is optimal also with
respect to cλ (for a small enough value of ε′). Since cλ(T−) = C(λ) ≤ C(λ∗), we
obtain

c(T−) + (λ∗ − ε′)[d(T−)−D] ≤ c(T−) + λ∗[d(T−)−D] = LR.

Therefore, d(T−) ≥ D, and thus c(T−) ≤ LR. Similarly, for λ = λ∗ + ε′, there is
T+ ∈ O such that d(T+) ≤ D and c(T+) ≥ LR.
By Lemma 3, there is a series T− = T0, T1, . . . , Tl = T+ of spanning trees that

satisfies the properties of the lemma. Since c(T−) ≤ LR and c(T+) ≥ LR, there is
an index j such that c(Tj) ≤ LR and c(Tj+1) ≥ LR (and therefore, d(Tj+1) ≤ D).
Therefore,

c(Tj+1) ≤ c(Tj) +
∑

i:ni>0

(max
e∈Ei

{ce} − min
e∈Ei

{ce}).
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Remark 5.∑
i:ni>0

(max
e∈Ei

{ce} − min
e∈Ei

{ce}) ≤ 4(1 + ε)εOPT ≤ 5εOPT.

Proof. Note that maxe∈E0{ce} ≤ εĈ ≤ 2(1 + ε)εOPT , mine∈E0
{ce} ≥ 0, and

therefore, the term that corresponds to i = 0 is at most 2(1 + ε)εOPT . There are
at most 1

ε other terms in the summation. By the definition of Ei, each of them

contributes at most ε2Ĉ ≤ 2(1 + ε)ε2OPT , and together they contribute at most
2(1 + ε)εOPT . The second inequality follows for ε ≤ 1

4 .

Remark 6. The proof of Lemma 3 leads naively to an O(n
3

ε ) algorithm that,
given T− and T+, finds T that satisfies the claimed properties.

Proof. We construct the path of trees as in Lemma 3. In each step we first
construct the graph S. S contains O(n) vertices and O(nε ) edges. We construct S in

O(n
2

ε ) time by identifying for each ei the set {e′j ∈ T ′ : (T \{ei})∪{e′j} is independent
in the graphic matroid} in O(n) time. Next, we find a negative cycle with a minimum

number of edges using the Bellman–Ford algorithm in O(n
2

ε ) time. Finally, we identify
the next tree along the path in O(n) time. The total time complexity of a single step

is O(n
2

ε ) time. Since the total number of trees along this path is O(n), we conclude

that computing the entire path takes O(n
3

ε ) time.
Theorem 4 and Remarks 5 and 6 motivate the following algorithm: First, using

the 2(1 + ε)-approximation algorithm in [9], find a 2(1 + ε)-approximation value Ĉ
of OPT (OPT ≤ Ĉ ≤ 2(1 + ε)OPT ). Second, enumerate all the possible vectors
(n0, n1, . . . , nI), and for each of them apply the following procedure: Compute λ∗

that optimizes the Lagrangian relaxation. Among all the optimum common bases
(in the matroid intersection) for the cost function c∗, find a base that satisfies the
conditions of Theorem 4.
Finally, pick the tree that minimizes c(T ) (among all the possible vectors (n0, n1,

. . . , nI) that lead to a feasible tree).
We note that for the correct guess of the vector (n0, n1, . . . , nI), the cost of the

minimum cost base is exactly OPT . Since Ĉ ≤ 2(1 + ε)OPT , the tree that we find
costs (by Theorem 4 and Remark 5) at most OPT + 5εOPT = (1 + 5ε)OPT , and its
length is at most D.
Computing Ĉ takes O((m + n log n) log2 n log log1+ε n). By Lemma 2, there are

O(( 1
ε2 )

1
ε ) distinct vectors (n0, n1, . . . , nI). For each of them we solve the Lagrangian

relaxation in O(m2n2+ n4

ε2 ) time, and by Remark 6 we find T in another O(n
3

ε ) time.

Therefore, the total complexity of the algorithm is O(( 1
ε2 )

1
ε (m2n2)).

We conclude with the following theorem.
Theorem 7. For every ε > 0, there is a (1 + ε)-approximation algorithm that

runs in O(O( 1ε )
O( 1

ε )(m2n2)) time.

3. Improved complexity. We first note that if there is a parallel algorithm for
the minimum cost basis in the intersection of the two matroid problem, then it may
be combined (similar to the use in [9]) with Megiddo’s method [16] to improve the
time complexity for solving the Lagrangian relaxation. However, we are not aware of
such an algorithm.
In this section we provide a faster algorithm that solves the Lagrangian relaxation.

Our algorithm solves the Lagrangian relaxation in O(n
4

ε2 ) time.
To present the algorithm we note that for every λ ≥ 0 and i ≥ 0, an edge e ∈ Ei
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that participates in the minimum cost common base of the two matroids belongs to a
minimum cost (with respect to cλ = c+λd) spanning forest Fi(λ) of (V,Ei). c

λ(Fi(λ))
is a piecewise linear function of λ, and in each breakpoint of it Fi(λ) changes by an edge
swap (or a set of edge swaps in degenerate cases). Therefore, in each breakpoint there
is a pair of edges that have the same cost. We define a set of potential breakpoints as
{λ : ∃e, e′ ∈ E, cλ(e) = cλ(e′)}. Then, every breakpoint of cλ(Fi(λ)) for all i belongs
to the set of potential breakpoints. There are O(m2) potential breakpoints.
In a preprocessing step we compute the set of breakpoints. Afterwards, we apply

a binary search over this set. Therefore, we find an interval (λ1, λ2) that contains
λ∗, and such that no Fi(λ) has a breakpoint in this interval beside λ∗.1 Then, we
compute Fi(λ̂) for every i such that ni > 0 for some λ̂ ∈ (λ1, λ2). Now we remove

from the two matroids all the edges that do not participate in
⋃

i:ni>0 Fi(λ̂). In the
resulting common ground set, the number of elements is O(nε ). The total complexity

of this preprocessing step is O(mn logn
ε ).

We now apply our previous algorithm for solving the Lagrangian relaxation in

O(m2n2+ n4

ε2 ) to the resulting common ground set. The complexity of this procedure

is O(n
4

ε2 ). By using the algorithm of this section in our approximation algorithm, we
obtain the following theorem.

Theorem 8. For every ε > 0 there is a (1 + ε)-approximation algorithm with

time complexity O(O( 1ε )
O( 1

ε )(n4)).

Note added in proof. By using the matroid intersection algorithm of Frederick-
son and Srinivas [8] instead of the algorithm of Brezovec, Cornuejols, and Glover [4],

the complexity of our algorithm reduces to O(O( 1ε )
O( 1

ε )n3).

Acknowledgment. We are grateful to Arie Tamir for many useful comments
and in particular for helping us improve the time complexity of our algorithm from
that stated in Theorem 7 to that stated in Theorem 8.

REFERENCES

[1] V. Aggarwal, Y. Aneja, and K. Nair, Minimal spanning tree subject to a side constraint,
Comput. Oper. Res., 9 (1982), pp. 287–296.

[2] K. A. Andersen, K. Jornsten, and M. Lind, On bicriterion minimal spanning trees: An
approximation, Comput. Oper. Res., 23 (1996), pp. 1171–1182.

[3] C. Brezovec, G. Cornuejols, and F. Glover, Two algorithms for weighted matroid inter-
section, Math. Program., 36 (1986), pp. 39–53.

[4] C. Brezovec, G. Cornuejols, and F. Glover, A matroid algorithm and its application to
the efficient solution of two optimization problems on graphs, Math. Program., 42 (1988),
pp. 471–487.

[5] P. Chalasani and R. Motwani, Approximating capacitated routing and delivery problems,
SIAM J. Comput., 28 (1999), pp. 2133–2149.

[6] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM, 34 (1987),
pp. 200–208.

[7] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial
Optimization, John Wiley and Sons, New York, 1998.

[8] G. N. Frederickson and M. A. Srinivas, Algorithms and data structures for an expanded
family of matroid intersection problems, SIAM J. Comput., 18 (1989), pp. 112–138.

1By using Cole’s sorting network [6] we can find the interval (λ1, λ2) using O(logn) calls to mini-
mum cost common base of the two matroids and additional O(m) time without explicitly computing
the set of O(m2) potential breakpoints.



268 REFAEL HASSIN AND ASAF LEVIN

[9] M. X. Goemans and R. Ravi, The constrained minimum spanning tree problem, in Proceedings
of SWAT 96, Lecture Notes in Comput. Sci. 1097, Springer-Verlag, New York, 1996, pp.
66–75.

[10] D. Gusfield, Parametric combinatorial computing and a problem of program module distribu-
tion, J. ACM, 30 (1983), pp. 551–563.

[11] R. Hassin, Approximation schemes for the restricted shortest path problem, Math. Oper. Res.,
17 (1992), pp. 36–42.

[12] S.-P. Hong, S.-J. Chung, and B. H. Park, A fully polynomial bicriteria approximation scheme
for the constrained spanning tree problem, Oper. Res. Lett., to appear.

[13] K. Jornsten and S. Migdalas, Designing a minimal spanning tree network subject to a budget
constraint, Optimization, 19 (1988), pp. 475–484.

[14] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[15] D. H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest
path problem, Oper. Res. Lett., 28 (2001), pp. 213–219.

[16] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
ACM, 30 (1983), pp. 852–865.



SHAPE FITTING WITH OUTLIERS∗

SARIEL HAR-PELED† AND YUSU WANG‡

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 269–285

Abstract. Given a set H of n hyperplanes in R
d, we present an algorithm that ε-approximates

the extent between the top and bottom k levels of the arrangement of H in time O(n+(k/ε)c), where
c is a constant depending on d. The algorithm relies on computing a subset of H of size O(k/εd−1),
in near linear time, such that the k-level of the arrangement of the subset approximates that of the
original arrangement. Using this algorithm, we propose efficient approximation algorithms for shape
fitting with outliers for various shapes. These are the first algorithms to handle outliers efficiently
for the shape fitting problems considered.
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1. Introduction. Shape fitting, a fundamental problem in computational ge-
ometry, computer vision, machine learning, data mining, and many other areas, is
concerned with finding the best shape fitting a given input. For example, a widely
used shape fitting problem asks for a shape that best fits a set of points P under
some “fitting” criterion. Choices of such shapes include points, lines, hyperplanes,
and spheres. One typical criterion for measuring how well a shape γ fits P , denoted
as µ(P, γ), is the maximum distance between a point of P and its nearest point on γ,
i.e., µ(P, γ) = maxp∈P minq∈γ d(p, q). One would then like to find the extent measure
of P , defined as µ(P ) = minγ µ(P, γ), where the minimum is taken over a family of
shapes. For example, the problem of finding the point (resp., line) that fits P best is
the same as finding the minimum radius sphere (resp., cylinder) enclosing P , and the
problem of finding the hyperplane (resp., sphere, cylinder) that fits P best is the same
as finding the smallest width slab (resp., spherical shell, cylindrical shell) containing
P .

The exact algorithms for shape fitting are generally expensive; e.g., the best-
known algorithms for computing the smallest volume bounding box or tetrahedron
containing P in R

3 require O(n3) time . Consequently, attention has shifted to devel-
oping approximation algorithms for computing extent measures. Recently, Agarwal
et al. [3, 4, 19] provided a general technique for approximate shape fitting in low di-
mensions. Their technique relied on using linearization to reduce the problem into a
convex shape fitting problem and then solve it by known convex shape approximation
techniques. The most striking features of this technique are its wide applicability to
numerous shape fitting problems, and that the resulting running time is O(n+1/εc),
where n is the input size, c is a constant that depends on the problem at hand, and
ε is the quality of approximation requested.
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However, in the real world, noise in the input is omnipresent and one has to
assume that some of the input points are noise and as such should be ignored. To
a certain extent, the problem of handling outliers in computational geometry is still
open; see [7, 15, 22] for relevant results. While those results provide relatively efficient
solutions, most of them are restricted to two and three dimensions (where intuitively
the k-level has relatively low complexity) and are restricted in the type of problems
that they can solve. For additional results about outliers in general, see [8, 14].

In this paper, we present approximation algorithms that can handle outliers effi-
ciently in two or higher dimensions for a broad collection of shape fitting problems.
For example, given a set P of n points in R

d, we can find approximately the smallest
cylinder that contains at least n − k points of P in O(n + (k/ε)c) time, where c is a
constant depending only on d.1 Note that for a fixed ε, and a moderately small k,
this is a linear time algorithm. Our algorithm can solve all the shape fitting problems
considered in [3, 4, 19] efficiently under the additional constraint of k outliers. For
most of those problems, this is the first efficient approximation algorithm to handle
outliers.

Interestingly enough, our algorithm relies on computing a coreset to the given
point set in linear time. Namely, we compute a subset C of the points of cardinality
k/εO(1) such that instead of solving the problem on the original point set, one can
solve it on C. In particular, in some cases, we just plug in the (exact) algorithms of
[7, 12, 15, 22] on C and get an efficient approximation algorithm.

To facilitate this, we investigate a related question, which is interesting in its own
right: Given a set H of n hyperplanes in R

d and a subset X ⊆ R
d−1, how does one

compute efficiently the shortest vertical segment, with a vertical projection in X, that
stabs (at least) n− k of the hyperplanes of H? In approximate form, one would like
to find a vertical segment, with a vertical projection in X, that stabs at least n− k of
the hyperplanes of H and is of length at most a factor (1 + ε) of that of the optimal
segment. (Note that linear programming with violations [22] can be applied directly
when X = R

d−1 or X is a convex polytope, as the problem can then be formulated as
an LP-type problem. For our applications, however, X arises from our linearization
technique and is not necessarily a convex set. In particular, the set X is a semi-
algebraic set of constant complexity.) The direct approach for solving this problem
involves computing the bottom/top k levels of A(H) and enumerating by brute force
all possible such vertical segments (with vertical projection inX), whereA(H) denotes
the arrangement of hyperplanes of H. The approach implemented in this fashion is
doomed, as it leads to an inefficient algorithm with running time (roughly) of O(ndkd).
At the same time, since the k-level of A(H) is not necessarily convex for k > 1, we
can no longer take advantage of known convex shape approximation techniques as
was done in [3, 4, 19].

Instead, we study the question of approximating the first/last k levels directly.
Note that the combinatorial approximation of k levels is relatively well understood
(see [22, 2, 18]) and can be performed by random sampling or cuttings. (In the com-
binatorial settings, we are interested in finding a curve γ that lies close to the k-level
under the crossing metric. Namely, any vertical segment connecting a point on γ to
the k-level crosses at most εn lines.) However, our notion of approximation is stronger
as it combines both the geometry and the combinatorial structure of the levels. In
particular, we show that there is a coreset for this problem; namely, one can compute a

1In all our discussions, we consider the dimension to be a small constant, and as such the O(·)
notation hides constants that depend solely on d.
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subset of O(k/εd−1) hyperplanes such that the rth level of the coreset ε-approximates
the r-level of the arrangement A(H) for 1 ≤ r ≤ k. Here the approximation is the
Euclidean distance between the level and the approximate level, compared with the
length of the shortest vertical segment that connects the k-level with the n− k level
of the arrangement A(H). This can be done in O(n+ k/εd−1) time. (All algorithms
in this paper are randomized and their results are correct with high probability.)

We can apply the above results to a large number of shape fitting problems, in-
cluding those considered in [3, 4, 19]. To name a few, we can approximate the following
measures with k outliers: diameter, width, projection width, minimum enclosing ball,
minimum-width annulus, minimum-volume spherical shell, minimum-width cylindri-
cal shell, and also those measures for moving points. Note that most of those opti-
mization problems fall outside the paradigm of linear programming and as such can
not be solved using linear programming with violations. We can further extend our
technique to handle insertions and deletions with polylogarithmic time per update.

In section 3, we present an algorithm to compute a small coreset for a set of
hyperplanes in R

d. We extend the results for a set of polynomials or their roots in
section 4. In section 5, we present our results for various shape fitting problems with
outliers. Finally, we conclude with section 6.

2. Preliminaries. Throughout the paper, we refer to the xd-parallel direction
in R

d as vertical. Given a point x = (x1, . . . , xd−1) in R
d−1, let (x, xd) denote the

point (x1, . . . , xd−1, xd) in R
d. Each point x ∈ R

d is also a vector in R
d. Given a

geometric object A, A+x represents the object obtained by translating each point in
A by x.

A surface is a subset of R
d that intersects any vertical line in a single point.

Let A and B be either a point, a hyperplane, or a surface in R
d. We say that A

lies above (resp., below) B, denoted by A � B (resp., A � B), if for any vertical
line � intersecting both A and B, we have that xd ≥ yd (resp., xd ≤ yd), where
(x1, . . . , xd−1, xd) = A ∩ � and (x1, . . . , xd−1, yd) = B ∩ �.

Definition 2.1. For a set of n hyperplanes H in R
d, the level of a point x ∈ R

d

in the arrangement A(H) is the number of hyperplanes of H lying vertically below
x. For k = 0, . . . , n − 1, let LH,k represent the surface which is the closure of all
points on the hyperplanes of H whose level is k. We define the top k-level of H to be
UH,k = LH,n−k−1 for k = 0, . . . , n − 1. Let LH,≤k and UH,≤k denote ∪k

i=0LH,i and
∪k
i=0UH,i, respectively. Note that both LH,k and LH,≤k are subsets of the arrangement
of H. For x ∈ R

d−1, we slightly abuse notation and define LH,k(x) to be the value xd
such that (x, xd) ∈ LH,k.

Definition 2.2. The (k, r)-extent H|kr : R
d−1 → R is defined as the vertical

distance between the r-level and the top k-level of A(H), i.e., for any x ∈ R
d−1,

H|kr (x) = UH,k(x)− LH,r(x).

The k-extent of H is the (k, k)-extent of H and is denoted by EH,k = H|kk.
Definition 2.3. Given a parameter ε > 0, a function Eε : R

d−1 → R is an
ε-approximation to H|kr (·) if, for any x ∈ R

d−1, we have (1 − ε)H|kr (x) ≤ Eε(x) ≤
H|kr (x).

Our approximation relies on the idea that one can find a small subset of hyper-
planes, which are “crucial” as far as the top/bottom k levels are concerned.

Definition 2.4. For a point x ∈ R
d−1, a subset of hyperplanes H′ ⊆ H in R

d is
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a (k, ε, δ)-coreset at x if the following holds: for any r ≤ k, we have

LH,r(x) ≤ LH′,r(x) ≤ LH,r(x) + εEH,k(x) + δ

and

UH,r(x)− εEH,k(x)− δ ≤ UH′,r(x) ≤ UH,r(x).

If H′ is a (k, ε, δ)-coreset at all points of R
d−1, then it is (k, ε, δ)-coreset for H.

We omit δ from the above notation when δ = 0. One of the main contributions
of this paper is showing the existence of (k, ε)-coresets of size O(k/εd−1) for a set of
hyperplanes in R

d for any given k, ε > 0. Note that if H′ is a (k, ε/2)-coreset for H,
then the (r, t)-extent of H′ ε-approximates that of H for any r, t ≤ k. Therefore, in
order to compute an ε-approximation of EH,k, one just needs to compute LH′,k and
UH′,k, and the resulting EH′,k is the required approximation.

3. (k, ε)-coresets. In this section, given a set H = {h1, . . . , hn} of hyperplanes
in R

d, and parameters ε > 0 and 1 ≤ k ≤ n, we show how to compute a small (k, ε)-
coreset for H. Let ∆opt(H, k) denote the shortest vertical distance between the k-level
and the top k-level of A(H), i.e., ∆opt(H, k) = minx∈Rd−1 EH,k(x). The algorithm first
computes a set of O(1) vertical segments, the length of each being at most ∆opt(H, k),
such that, with high probability, all but O(k) hyperplanes of H intersect at least one
of those segments. Next, we subdivide H into O(1/ε) disjoint subsets and show that
the union of the (k, ε, ε∆opt(H, k))-coreset of each subset forms a (k, ε)-coreset for H.
Furthermore, we show that a coreset of size O(k/εd−2) can be computed efficiently
for each subset, resulting in a coreset of size O(k/εd−1) for H.

3.1. Short segments.
Lemma 3.1. Let J be a set of n hyperplanes in R

d. In O(n) time, one can
compute a set S of O(1) vertical segments such that with high probability (i) all the
segments of S are no longer than ∆opt(J , k), and (ii) |J0| = O(k), where J0 denotes
the set of all hyperplanes of J not stabbed by the segments of S.

Proof. The algorithm is iterative. Let Q1 = J , S1 = ∅. For i > 1, let Si be the set
of vertical segments computed in the beginning of the ith iteration. Let Qi = J \ Si

and mi = |Qi|, where J \ Si denotes the set of all hyperplanes of J not intersecting
any segment of Si. That is, Qi is the set of hyperplanes not yet handled by the
algorithm.

If mi = O(k), we are done, and set J0 to be Qi. Otherwise, if mi ≤ n1/(3d),
we compute the k-level and the top k-level of the arrangement A(Qi) and the short-
est vertical segment between those two levels. Let h∗i denote this segment; then
|h∗i | ≤ ∆opt(J , k). Set Si+1 = Si ∪ {h∗i } and observe that Si+1 is the required set, as
|J \ Si+1| = 2k. Clearly, a naive implementation of the algorithm for this step would
take O(m2d+1

i ) = O(n) time.
Otherwise, if mi > n1/(3d), then let Ri be a random sample from Qi of size

O(n1/3d log n). Now consider the range space Σ = (J ,X ), where X consists of all
subsets of X ⊆ J where there is a vertical segment s such that X = s∩J , where s∩J
denote the hyperplanes of J that intersect s. The size of X is bounded by O(nd+1).
Furthermore, the range space Σ has a bounded Vapnik–Chervonenkis dimension (VC-
dimension). Therefore, by the ε-sample theorem [6], with high probability, Ri is an
τ -sample of Qi, where τ = 1/n1/6d. That is, for any vertical segment s, with high
probability, we have

|Qi ∩ s|
|Qi| − τ ≤ |Ri ∩ s|

|Ri| ≤ |Qi ∩ s|
|Qi| + τ,
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where X ∩ s denotes the set of hyperplanes of X that intersects s. Compute the
arrangement A(Ri), and compute the shortest vertical segment h

∗
i between the Ki-

level and the top Ki-level of A(Ri), where

Ki =

⌈
|Ri|

(
k

|Qi| + τ
)⌉

.

Since Ri is a τ -sample of Qi, we have, with high probability, that

LQi,k � LRi,Ki � URi,Ki � UQi,k.

Thus, with high probability, the segment h∗i is shorter than ∆
opt(J , k), and h∗i in-

tersects at least mi(1 − 4τ) − 2k hyperplanes of Qi. Let Si+1 = Si ∪ {h∗i }, and let
Qi+1 = Qi \ {h∗i }. This step takes O(|Ri|2d+1

) = O(n) time.
We are left with the task of bounding the number of iterations of the algorithm.

Clearly, with high probability, mi+1 ≤ 4τmi+2k. Therefore, for mi ≥ 4k/τ , we have
mi+1 ≤ 8τmi ≤ 8mi/n

1/6d. On the other hand, if mi ≤ 4k/τ , then mi+1 ≤ 6k and
the algorithm stops in the next iteration. We conclude that the number of iterations
performed by the algorithm is O(log1/τ n) = O(6d) = O(1) with high probability,
which implies the lemma.

The algorithm of Lemma 3.1 can be derandomized using deterministic construc-
tion of ε-samples [9]. This results in a somewhat slower algorithm. Note that the
algorithm of Lemma 3.1 can be modified to output, together with each vertical seg-
ment of S, the corresponding set of hyperplanes of J that intersect it within the same
time bound.

3.2. Disjoint subsets. Apply Lemma 3.1 to H. Let S denote the set of seg-
ments generated, and let H0 be the set of hyperplanes of H not stabbed by any
segment of S. Break every segment of S into �4/ε� equal-length subsegments. For
any such subsegment s, we have |s| ≤ ε∆opt(H, k)/4. Let S′ = {s1, . . . , sm} denote
the resulting set of segments, where m = O(1/ε) with high probability. We distribute
the hyperplanes of H\H0 into the sets associated with the subsegment of S

′ that they
intersect. If a hyperplane is stabbed by more than one segment from S′, it is only
distributed to (an arbitrary) one of them. Let Hi be the resulting set of hyperplanes
associated with segment si for i = 1, . . . ,m. By construction |H| = ∑m

i=0 |Hi|, and
|H0| = O(k). This redistribution process can be easily performed in linear time by
using the floor function and by observing that each of the hyperplanes of H \ H0 is
already associated with one of the segments of S.

Definition 3.2. A set of hyperplanes J is a δ-sheaf if there exists a vertical
segment s of length δ such that all the hyperplanes of J stab s. The vertical segment
s is the axis of J .2 A 0-sheaf is referred to as a sheaf; in this case all hyperplanes
in J pass through a common point, which is referred to as the focal point of J . See
Figure 3.1.

Using the above splitting approach, together with Lemma 3.1, implies the follow-
ing theorem.

Theorem 3.3. Given a set J of n hyperplanes in R
d and parameters k, ε > 0, one

can compute, in O(n+1/ε) time, a partition of J into m = O(1/ε) sets, J0, . . . ,Jm,
such that, with high probability, |J0| = O(k), and Ji is an (ε∆

opt(J , k))-sheaf for
i = 1, . . . ,m.

2We will refer to it as the axis of evil when appropriate.
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Fig. 3.1. (a) A δ-sheaf in R
2 with axis pq. (b) A sheaf in R

3 with focal point v.

Lemma 3.4. Let J = ∪m
i=0Ji, and let J ′ = ∪m

i=0J ′
i , where J ′

i ⊆ Ji is a (k, ε, δ)-
coreset for Ji for i = 0, . . . ,m. Then J ′ is a (k, ε, δ)-coreset for J .

Proof. Fix any r ≤ k and consider any point x ∈ R
d−1. Let p = (x,LJ ,r(x)), and

let i0, . . . , im be the number of hyperplanes lying below p in J0, . . . ,Jm, respectively,
such that i0 + · · ·+ im = r. Observe that LJ ,r(x) = maxj LJj ,ij (x) and that for any
subset Q ⊆ J , we have LJ ,r(x) ≤ LQ,r(x) and UJ ,r(x) ≥ UQ,r(x), implying that
EQ,k(x) ≤ EJ ,k(x). Therefore,

LJ ,r(x) ≤ LJ ′,r(x) ≤ m
max
j=1

LJ ′
j ,ij
(x)

≤ m
max
j=1

(
LJj ,ij (x) + εEJj ,k(x) + δ

)
≤
(

m
max
j=1

LJj ,ij (x)

)
+ εEJ ,k(x) + δ

= LJ ,r(x) + εEJ ,k(x) + δ.

A symmetric argument proves the claim for UJ ,r(x).
The above lemma implies that if we can compute a (k, ε, δ)-coreset of a small size

for each Hi, then we can easily compute such a coreset for H.
Lemma 3.5. For a set J of n hyperplanes in R

d and a parameter δ > 0, let J be
the set of hyperplanes resulting by translating each hyperplane h of J downward by a
vertical distance δh, where 0 ≤ δh ≤ δ. Then for any x ∈ R

d−1 and 1 ≤ r, k ≤ n, we
have

(i) LJ ,r(x)− δ ≤ LJ ,r(x) ≤ LJ ,r(x) and UJ ,r(x)− δ ≤ UJ ,r(x) ≤ UJ ,r(x).
(ii) EJ ,k(x)− δ ≤ EJ ,k(x) ≤ EJ ,k(x) + δ.
Proof. The second part follows immediately from the first one. As for the first

claim, observe that LJ ,r(x) ≤ LJ ,r(x) holds since all the planes of J are copies of
hyperplanes of J which were translated downward.

Next, fix any x ∈ R
d−1, and let h1, . . . , hn−r be the hyperplanes of J lying

above LJ ,r(x), and let h0, . . . , hn−r be the corresponding hyperplanes in J . Clearly,
h0, . . . , hn−r lie above point (x,LJ (x)− δ), as each hyperplane was translated down
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δ

L2 L1

(a) (b)

Fig. 3.2. (a) L is a δ-sheaf. By shifting all lines downward we have L in (b). L′ is composed
of L1, the set of k lines with smallest slope; and L2, the set of k lines with largest slope. Thick
segments form the ≤ k-levels of L.

by a distance at most δ. Thus LJ ,r(x)− δ ≤ LJ ,r(x).

Observation 3.6. Given a set H of hyperplanes in R
d, and a (k, ε, δ)-coreset H′

for H, the set H′ is a (k, µ)-coreset for H, where µ = ε+ δ/∆opt(H, k).
3.3. The two-dimensional case.

Lemma 3.7. Let L be a set of n lines in the plane which is a δ-sheaf. Given
k > 0, one can compute, in O(n + k) time, a subset L′ ⊆ L such that (i) |L′| = 2k,
and (ii) L′ is a (k, 0, δ)-coreset for L.

Proof. Translate each line in L downward so that it passes through the point q,
where q is the bottom endpoint of the axis of the δ-sheaf. Call the resulting set L; L
is a sheaf in the plane with focal point q. Let L′ be the union of the set of k lines of
L with the largest slope and the set of k lines of L with the smallest slope. It is easy
to verify that L′ is a (k, 0)-coreset for L (i.e., A(L) and A(L′) have the same top and
bottom k levels), and

∣∣L′∣∣ = 2k. See Figure 3.2.
Let L′ ⊆ L be the set of original lines that corresponds to the lines of L′. By

Lemma 3.5, for any x ∈ R and 0 ≤ r ≤ k, we have

LL,r(x) ≤ LL′,r(x) ≤ LL′,r(x) + δ = LL,r(x) + δ ≤ LL,r(x) + δ

and

UL,r(x) ≥ UL′,r(x) ≥ UL′,r(x) = UL,r(x) ≥ UL,r(x)− δ.

Theorem 3.8. Given a set L of n lines in the plane and parameters k, ε > 0,
one can compute, in O(n + k/ε) time, with high probability, a set L′ ⊆ L such that
(i) L′ is a (k, ε)-coreset for L, and (ii) |L′| = O(k/ε).

Proof. Apply Theorem 3.3 to L, and let L = ∪m
i=0Li be the resulting set, where

m = O(1/ε). With high probability, the sets L1, . . . , Lm are δ-sheaves, and L0 has
size O(k), where δ = ε∆opt(L, k). Apply Lemma 3.7 to each Li for i = 1, . . . ,m, and
let L′

i ⊆ Li ⊆ L be the resulting (k, 0, δ)-coreset. It then follows from Lemma 3.4
that L′ = L0 ∪

⋃m
i=1 L

′
i is a (k, 0, δ)-coreset for L. By Observation 3.6 the set L

′ is a
(k, ε)-coreset for L.
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LL′

�,r(p)

(a) (b)

Fig. 3.3. (a) Illustration of the plane S and line ζ; (b) The set of lines L′
� (dashed lines) is a

(k, ε)-coreset for the set of lines L� if and only if for an arbitrary point p on �, which is different
from the origin, L′

� is a (k, ε)-coreset at p.

3.4. The three-dimensional case.
Lemma 3.9. Given a sheaf J of n planes in three dimensions with its focal

point at the origin o and parameters k, 0 < ε < 1, one can compute, in O(n + k/ε)
time, a subset J ′ such that, with high probability, J ′ is a (k, ε)-coreset for J and
|J ′| = O(k/ε).

Proof. Consider the plane S ≡ (x = −1) ≡ {(−1, y, z)
∣∣∣ y, z ∈ R}. Let ζ ⊆ S be

the line

(x = −1) ∩ (z = 0) ≡
{
(−1, y, 0)

∣∣∣ y ∈ R

}
,

that is, the intersection between plane S and the xy-plane (see Figure 3.3(a)). Con-
sider the set Lζ of lines obtained by intersecting S with the planes of J . By Theo-
rem 3.8, one can compute a subset L′

ζ ⊆ Lζ of size O(k/ε) which is a (k, ε)-coreset for
Lζ . Let J ′ be set of planes of J corresponding to L′

ζ . We claim that J ′ is a (k, ε)-
coreset for J at any point in the xy-plane, which implies that it is a (k, ε)-coreset for
J .

Indeed, let � be any line on the xy-plane that passes through the origin, and let
h� be the vertical plane perpendicular to the xy-plane, with � being its intersection
with the xy-plane. Let L� be the set of lines formed by the intersection of h� and
planes of J . Clearly, L� form a sheaf structure on h�, as illustrated in Figure 3.3(b).

We claim that if J ′ ⊂ J is a (k, ε)-coreset at p for any p ∈ � (different from
the origin), then it is (k, ε)-coreset at all points in �. Indeed, first observe that
LL�,r(p) = LJ ,r(p) and LL′

�,r
(p) = LJ ′,r(p), where L

′
� is the set of lines induced by

the intersection of h� with planes of J ′. Now since J ′ is a (k, ε)-coreset at p, we have

LL�,r(p) ≤ LL′
�,r
(p) ≤ LL�,r(p) + εEL�,k(p)

for any 1 ≤ r ≤ k, which implies that, for any q ∈ � (without loss of generality, we
assume that q and p are on the same side of the origin on �), we have LL�,r(q) ≤
LL′

�,r
(q) ≤ LL�,r(q)+εEL�,k(q). The last step follows from similarity of triangles since

LL�,r(p)

LL�,r(q)
=

LL′
�,r
(p)

LL′
�,r
(q)

=
EL�,k(p)

EL�,k(q)
,
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as illustrated in Figure 3.3(b).
Now consider any line � that passes through the origin and assume that it inter-

sects ζ at point u. Recall that L′
ζ is a (k, ε)-coreset for Lζ , implying that J ′ is a

(k, ε)-coreset at point u. Hence, by the above discussion, J ′ is a (k, ε)-coreset for all
points on �. It then follows that J ′ is a (k, ε)-coreset for all points on the xy-plane,
except the points lying on the y-axis. It is now straightforward to use a limit argument
to show that J ′ is a (k, ε)-coreset for all the points in the xy-plane, as required.

Note that for the sake of simplicity, we argued only about LL�,r in the preceding
discussion, since the same analysis holds for UL�,r by symmetry.

Lemma 3.10. Given a δ-sheaf J of n planes in three dimensions and parameters
k, 0 < ε < 1, one can compute, in O(n+ k/ε) time, a subset J ′ such that, with high
probability, J ′ is a (k, ε, 2δ)-coreset for J , and |J ′| = O(k/ε).

Proof. Translate the planes of J downward by a distance at most δ such that
they all pass through o, which is the bottom vertex of the axis of J . Let J denote the
resulting sheaf, and assume that the focal point o of J is in the origin. By Lemma 3.9,
one can compute a subset J ′ ⊆ J , which is a (k, ε)-coreset for J , ∣∣J ′∣∣ = O(k/ε),
and this set can be computed in O(n+ k/ε) time.

Let J ′ be the set of original planes that corresponds to the planes of J ′. Then
J ′ is a (k, ε, 2δ)-coreset for J . Indeed, by Lemma 3.5, for any p ∈ R

2,

LJ ,r(p) ≤ LJ ′,r(p) ≤ LJ ′,r(p) + δ ≤ LJ ,r(p) + εEJ ,k(p) + δ

≤ LJ ,r(p) + εEJ ,k(p) + δ ≤ LJ ,r(p) + εEJ ,k(p) + 2δ,

since EJ ,k(p) ≤ EJ ,k(p) + δ and ε < 1.
Theorem 3.11. Given a set H of n planes in three dimensions and parameters

k, ε, one can compute, in O(n + k/ε2) time, a subset H′ ⊆ H such that, with high
probability, it holds that (i) H′ is a (k, ε)-coreset for H, and (ii) |H′| = O(k/ε2).

Proof. Apply Theorem 3.3 to H with ε/4 and k. This results in a partition of H
into sets H0,H1, . . . ,Hm ⊆ H, where H1, . . . ,Hm are δ-sheafs, δ = (ε/4)∆opt(H, k),
m = O(1/ε), and |H0| = O(k) with high probability.

Applying Lemma 3.10 to Hi for i = 1, . . . ,m results in a (k, ε/2, 2δ)-coreset H′
i

for Hi, where |H′
i| = O(k/ε).

Let H′ = H0 ∪
⋃m

i=1H′
i. By Lemma 3.4, H′ is a (k, ε/2, 2δ)-coreset for H, which

in turn implies that H′ is a (k, ε)-coreset for H, by Observation 3.6.
Finally, |H′| = |H0| +

∑m
i=1 |H′

i| = O(k + (1/ε)(k/ε)) = O(k/ε2). The overall
running time is O(n+ 1/ε+ n+ k/ε2) = O(n+ k/ε2).

3.5. The higher-dimensional case. Let f(n, k, ε, d) denote a bound on the
size of (k, ε)-coreset of n hyperplanes in R

d. We know that f(n, k, ε, 2) = O(k/ε)
and f(n, k, ε, 3) = O(k/ε2) by Theorems 3.8 and 3.11, respectively. Let T (n, k, ε, d)
denote the time needed to compute such a set.

The proof of the following lemma is a direct extension of the proof of Lemma 3.10.
Lemma 3.12. Given a δ-sheaf J of n hyperplanes in R

d and parameters k, ε > 0,
then one can compute, in O(T (n, k, ε, d − 1)) time, a subset J ′ such that J ′ is a
(k, ε, 2δ)-coreset for J , and |J ′| = f(n, k, ε, d− 1).

Theorem 3.13. Given a set H of n hyperplanes in R
d and parameters k, ε > 0,

with high probability, one can compute, in T (n, k, ε, d) = O(n+k/εd−1) time, a subset
H′ such that (i) H′ is a (k, ε)-coreset for H, and (ii) f(n, k, ε, d) = |H′| = O(k/εd−1).

Proof. The proof of the theorem is a straightforward extension of the proof of
Theorem 3.11, and as such we verify only the bounds on the coreset size and running
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time. We have

f(n, k, ε, d) = O(k) +O

(
1

ε
f(n, k, ε, d− 1)

)
= O

(
k

εd−1

)
.

As for the running time, we have

T (n, k, ε, d) = O

(
n+

1

ε

)
+

O(1/ε)∑
i=1

T (ni, k, ε, d− 1),

where
∑

i ni ≤ n and T (n, k, ε, 3) = O(n+k/ε2), by Theorem 3.11. Thus, T (n, k, ε, d) =
O(n+ k/εd−1), as claimed.

4. Polynomials and their roots. In this section, we extend previous results
to the extent of a family of polynomials and their roots.

4.1. Polynomials. Let F = {f1, . . . , fn} be a family of d-variate polynomials
and let u1, . . . , ud be the variables over which the functions of F are defined. Each
fi corresponds to a surface in R

d+1. For example, any d-variate linear function can
be considered as a hyperplane in R

d+1 (and vice versa). We extend, in the natural
way, the definitions of k-level, (k, r)-extent, ε-approximation, and (k, ε, δ)-coreset for
the arrangement A(F).

Each monomial over u1, . . . , ud appearing in F can be mapped to a distinct vari-
able xi. Let x1, . . . , xs be the resulting variables. As such F can be linearized into a
set H = {h1, . . . , hn} of linear functions over R

s. In particular, H is a set of n hyper-
planes in R

s+1. Note that the surface induced by fi in R
d+1 corresponds only to a

subset of the surface of hi in R
s+1. This technique is called linearization and has been

widely used in fields such as machine learning [11] and computational geometry [5].

For example, consider a family of polynomials F = {f1, . . . , fn}, where fi(x, y) =
ai(x

2 + y2) + bix + ciy + di, and ai, bi, ci, di ∈ R for i = 1, . . . , n. This family of
polynomials defined over R

2 can be linearized to a family of linear functions defined
over R

3, by hi(x, y, z) = aiz + bix+ ciy + di, and setting H = {h1, . . . , hn}. Clearly,
H is a set of hyperplanes in R

4, and fi(x, y) = hi(x, y, x
2 + y2). Thus, for any

point (x, y) ∈ R
2, instead of evaluating F on (x, y), we can evaluate H on η(x, y) =

(x, y, x2 + y2), where η(x, y) is the linearization image of (x, y). The advantage of
this linearization is that H, being a family of linear functions, is now easier to handle
than F . There is a general technique for finding the best possible linearization (i.e., a
mapping η with the target dimension as small as possible); see [5] for details. Observe
that X = η(R2) is a subset of R

3 (this is the “standard” paraboloid), and we are
interested in the value of H only on points belonging to X. In particular, the set X is
not necessarily convex. The set X resulting from the linearization is a semialgebraic
set of constant complexity, and as such basic manipulation operations of X can be
performed in constant time.

Note that for each 1 ≤ i ≤ n, fi(p) = hi(η(p)) for p ∈ R
d. As such, if H′ ⊆ H is a

(k, ε)-coreset for H, then clearly the corresponding subset in F is a (k, ε)-coreset for
F . The following theorem is a restatement of Theorem 3.13 in this settings.

Theorem 4.1. Given a family of d-variate polynomials F = {f1, . . . , fn} and
parameters k and ε, one can compute, in O(n + k/εs) time, a subset F ′ ⊆ F of
O(k/εs) polynomials such that F ′ is a (k, ε)-coreset for F , with high probability. Here
s is the number of different monomials present in the polynomials of F .
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4.2. Roots of polynomials. It turns out that for roots of polynomials the
definition of coreset (Definition 2.4) is somewhat too restrictive. However, we can get
a similar notion of a coreset by slightly relaxing the requirements.

Definition 4.2. Let F be a set of nonnegative functions defined over R
d. A

subset F ′ ⊆ F is (k, ε)-sensitive if, for any r ≤ k and x ∈ R
d, we have

LF,r(x) ≤ LF ′,r(x) ≤ LF,r(x) +
ε

2
F|kr (x),

UF,r(x)− ε

2
F|rk(x) ≤ UF ′,r(x) ≤ UF,r(x).

Note that any (k, ε)-coreset is (k, 2ε)-sensitive (while the inverse is not necessarily
true).

Lemma 4.3. If F ′ is (k, ε)-sensitive for F , then

(1− ε)F|tr(x) ≤ F ′|tr(x) ≤ F|tr(x)

for any t, r ≤ k and x ∈ R
d.

Proof.

F|tr(x) ≥ F ′|tr(x) = UF ′,t(x)− LF ′,r(x)

≥
(
UF,t(x)− ε

2
F|tk(x)

)
−
(
LF,r(x) +

ε

2
F|kr (x)

)
=(UF,t(x)− LF,r(x))− ε

2

(
F|tk(x) + F|kr (x)

)
≥ F|tr(x)− εF|tr(x) =(1− ε)F|tr(x).

Theorem 4.4. Let F = {f1/2
1 , . . . , f

1/2
n } be a family of d-variate functions defined

over R
d, where fi is a d-variate polynomial for i = 1, . . . , n. Given k and 0 < ε <

1, one can compute, in O(n + k/ε2s) time, a subset F ′ ⊆ F such that, with high
probability, F ′ is (k, ε)-sensitive for F and |F ′| = O(k/ε2s), where s is the number of
distinct monomials present in the polynomials of F .

Proof. Let G = {fi | f1/2
i ∈ F} denote the set of d-variate polynomials which are

the square of the functions in F . Let H be the set of hyperplanes in R
s+1 obtained by

linearization of fi’s, and let η : R
d → R

s be the linearization used. Given any k, ε > 0,
one can compute in O(n+ k/δs) time, a (k, δ)-coreset H′ ⊆ H of size O(k/δs) for H,
where δ = ε2/32. Clearly, H′ is (k, 2δ)-sensitive for H.

Let G′ ⊆ G be the set of functions of G that corresponds to H′. Let α be any point
in R

d, and let x = η(α) ∈ R
s be the linearized image of α. Let a = LG,r(α) = LH,r(x),

A = LG′,r(x) = LH′,r(x), b = UG,k(α) = UH,k(x). By the definition of (k, 2δ)-

sensitivity, we have that A− a ≤ δ G|kr (x) = δ(b− a).
Now, if

√
A+

√
a ≤ 2(δ/ε)(√b+√a), then √A+√a ≤ 4√bδ/ε ≤ √

bε/8. Thus,

√
A−√

a ≤
√
A+

√
a ≤

√
bε

8
≤
(ε
2
− ε

8

)√
b =

ε

2

√
b− ε

8

√
b ≤ ε

2

√
b−√

a

≤ ε

2
(
√
b−√

a),

since
√
a ≤ √

A+
√
a ≤ √

bε/8.
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Otherwise,
√
A+

√
a ≥ 2(δ/ε)(√b+√a) and

LF ′,r(α)− LF,r(α) =
√
A−√

a =
A− a√
A+

√
a
≤ δ(b− a)√

A+
√
a
≤ δ(b− a)
2(δ/ε)(

√
b+

√
a)

= (ε/2)(
√
b−√

a)

≤ ε

2
F|kr (α).

5. Applications. In this section, we briefly present some of the results that
follow from our technique for various shape fitting problems with outliers. Some of the
other results mentioned in the introduction follow by a straightforward application
of our techniques, as demonstrated in this section. To avoid tedious repetition we
present only the more interesting ones here.

The general framework is as follows: First, reduce the problem of finding the best
fitting shape to that of computing the smallest extent over a family of polynomials or
roots of polynomials. Next, apply the following theorems to approximate the smallest
extent with outliers. The details are described later in this section.

Theorem 5.1. Given a (k, ε/2)-sensitive subset F ′ of a family F of d-variate
functions, where 0 < ε < 1, one can compute

(i) a point x′ ∈ R
d and δ′ = EF,k(x

′) such that ∆opt(F , k) ≤ δ′ ≤ (1+ε)∆opt(F , k);
(ii) a point x̂ ∈ R

d and δ̂ = F|r̂t̂ (x̂) such that r̂ + t̂ = k and ω∗ ≤ δ̂ ≤ (1 + ε)ω∗,
where ω∗ = minx∈Rd,r+t=k F|rt (x).

The running time is O(n+ C(F ′)2), where n = |F| and C(F ′) is the complexity of the
arrangement A(F ′).

Proof. We prove the first claim, as the second claim follows from a similar argu-
ment.

Each function in F induces a surface in R
d+1. Set x′ ∈ R

d to be the point
such that EF ′,k(x

′) = ∆opt(F ′, k) = minx∈Rd EF ′,k(x). Note that δ
′ = EF,k(x

′) can be
computed in linear time once x′ is specified, while x′ can be obtained by computing the
levels LF ′,≤k and UF ′,≤k and then searching, by brute force, for the shortest extent
in the arrangement A(F ′). It is easy to verify that this can be done in O(n+ C(F ′)2)
time.

Let x∗ ∈ R
d be the point realizing EF,k(x

∗) = ∆opt(F , k). Since F ′ is a (k, ε/2)-
sensitive, and ε < 1, then by Lemma 4.3 we have

∆opt(F , k) ≤ δ′ = EF,k(x
′) ≤ EF ′,k(x

′)
1− ε/2

≤ (1 + ε)EF ′,k(x
′) ≤ (1 + ε)EF ′,k(x

∗)
≤ (1 + ε)EF,k(x

∗) = (1 + ε)∆opt(F , k).

Note that the above theorem implies that we not only can approximate the value
of the smallest extend, but we can also find an instance that achieves the approximate
value. The running time of Theorem 5.1 can be slightly improved by being more
careful in the analysis, and by applying the Clarkson–Shor technique [10] to bound
more tightly the number of pairs of facets of the arrangement that should be considered
when computing ∆opt(F ′, k).

All the results in the remainder of this section hold with high probability, as they
all rely on the randomized algorithm of Lemma 3.1.
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p1

p2

p3

x w

(a) (b)

Fig. 5.1. (a) Annulus with center x (dark region) has a width w. p1, p2, and p3 are outliers.
(b) After linearization, the thick vertical segment is the shortest extent with 3 outliers, with dotted
lines corresponding to outliers p1, p2, and p3.

5.1. Minimum-width annulus/spherical shell. Given a set P = {p1, . . . , pn}
of points in R

d and parameters k, ε > 0, let ωopt,k denote the width of the thinnest
annulus containing all but k points in P . See Figure 5.1. We would like to com-
pute the annulus that contains at least n − k points of P and whose width is at
most (1+ ε)ωopt,k. More precisely, let d(x, p) denote the distance between two points
x, p ∈ R

d and

µ(x, P, k) = min
P ′⊆P,|P ′|=n−k

(
max
p∈P ′

d(x, p)− min
p∈P ′

d(x, p)

)
.

We omit k from the notation when k = 0. We have ωopt,k = minx∈Rd µ(x, P, k), and
we wish to compute a subset P ∗ ⊆ P of size at least n− k and a point x∗ ∈ R

d such
that µ(x∗, P ∗) ≤ (1 + ε)ωopt,k.

Let pi = (ξ1, . . . , ξd) be a point from the set P , and let x = (x1, . . . , xd) be an
arbitrary point in R

d. Under the Euclidean distance, we define

fi(x) = d(pi, x) =

√ ∑
1≤j≤d

x2
j − 2

∑
1≤j≤d

ξjxj +
∑

1≤j≤d

ξ2j .

Let F = {f1, . . . , fn} denote the set of functions defined by the points of P .
Observe that ωopt,k is in fact the shortest (r, t)-extent for F such that r + t = k.

By Theorem 4.4, we can compute, in O(n+ k/ε2d) time, a subset F ′ ⊆ F which is a
(k, ε)-sensitive for F and |F ′| = O(k/ε2d). Since the image of each function of F is a
cone in R

d+1, one can thus approximate ωopt,k in

O
(
n+ |F ′|2(d+1)

)
= O

(
n+

k2(d+1)

ε4d(d+1)

)
time using the algorithm of Theorem 5.1.

Theorem 5.2. Given a set P of n points and parameters k, ε > 0, one can
compute an x∗ ∈ R

d, and P ∗ ⊆ P , where |P ∗| ≥ n − k such that µ(x∗, P ∗) ≤
(1 + ε)ωopt,k in O(n+ k

2d+1/ε4d(d+1)) time.

5.2. Minimum-volume annulus/spherical shell. Let B(x,R, r) denote the
shell between two concentric balls, centered at point x, with radiiR and r, respectively.
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That is, B(x,R, r) is composed of all points inside the outer ball and outside the inner
ball. Given a set of points P ∈ R

d, we would like to find a spherical shell whose
volume is minimized, and which contains at least n − k points of P , over all x ∈ R

d

and R, r ∈ R. Let SSopt,k(P ) denote the volume of this spherical shell. This problem
is easier than the minimum-width variant, as it can be reduced to linear programming
(this is folklore; it is also described in [1]).

The current fastest algorithm for the exact problem, in two dimensions, with k
outliers is due to Chan [7], and it works in O

(
n log k + k11/4n1/4 logc k

)
time.

Theorem 5.3. Given a set P of n points and parameters k, ε > 0, one can
compute a set P such that (i) P ′ ⊆ P , (ii) P is a (k, ε)-coreset for the minimum area
spherical shell measure, and (iii) |P ′| = O(k/εd).

In particular, one can compute a spherical shell whose volume ε-approximates

SSopt,k(P ) in O(n+k
2(d+1)/ε2d(d+1)) time for d > 2 and in O(n+ k

ε2 log
k
ε+

k3

ε1/2 log
c k)

time for d = 2, where c is a constant.

Proof. Using linearization, computing SSopt(P ) is reduced to computing the
extent of n hyperplanes in R

d+1 [4]. Thus, by Theorem 3.13, there is a subset P ′ of
P , which is (k, ε)-sensitive for the measure SSopt(·), and |P ′| = O(k/εd).

For d > 2, the running time is just the result of applying Theorem 5.1. As for
d = 2, we use the algorithm of Chan [7] on the subset P ′.

5.3. Minimum-width cylindrical shell. Given a line � in R
d and two real

numbers 0 ≤ r ≤ R, the cylindrical shell S(�, r, R) is the closed region lying between
the two coaxial cylinders of radii r and R, respectively, with � as their axis. The width
of shell S(�, r, R) is R − r. Given a set of n points P , let CS∗ denote the minimum
width among all cylindrical shells that enclose at least n − k points of P . In the
approximate minimum-width cylindrical shell with outliers problem, we would like to
compute a cylindrical shell containing at least n− k points from P whose width is at
most (1 + ε)CS∗.

Theorem 5.4. Given a set P of n points in R
d and parameters k, ε > 0, one can

compute in O(n + kcd
2

/εc
′d4

) time a line �∗ and P ∗ ⊆ P , where |P ∗| ≥ n − k, such
that the minimum width of the cylindrical shell containing P ∗ with axis �∗ is smaller
than (1 + ε)CS∗. Here c, c′ are constants independent of d, ε, and n.

Proof. Using linearization, computing CS∗ is reduced to computing the extent of
n hyperplanes in R

O(d2) [4]. Thus, by Theorem 3.13, there is a subset P ′ of P , which
is (k, ε)-sensitive for the width measure, and |P ′| = O(k/εO(d2)). The running time
is just the result of applying Theorem 5.1 to this set.

5.4. Moving points. The same technique can also be extended to approximate
various measures of moving points. More precisely, given a set P of n points moving
in R

d, for each p ∈ P , let p(t) = (ξ1(t), . . . , ξd(t)) denote the position of point p at
time t, and let P (t) denote the set P at time t. We say that the motion of P is
algebraic of degree ν if the functions ξ1(t), . . . , ξd(t) are polynomials of degree at most
ν for all the points of P . For simplicity, we assume in the remaining part that ν = 1;
i.e., each point moves along a straight line.

Let µk(P ) denote some measure of the point set P , such as width (with at most k
outliers). For any ε > 0, we say that a subset Q ⊆ P ε-approximates P with respect
to µk if at any time t, (1− ε)µk(P (t)) ≤ µk(Q(t)) ≤ µk(P (t)). Arguing as in [4], we
get the following result.

Theorem 5.5. Given a point-set P with n linearly moving points and parameters
k, ε > 0, one can compute, in O(n+ k/εc) time, a subset Q ⊆ P of size O(k/εc) such
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that Q is an ε-approximation to P under measures with k outliers such as diameter,
width, minimum-radius enclosing ball, projection width, minimum-width annulus, and
minimum-width cylindrical shell. Here c is a constant that depends on the dimension
d and the measure considered.

5.5. Handling updates—insertions and deletions. By building a balanced
binary tree over the given point set and maintaining in each node the coreset of all
the points in its subtree, one can maintain a coreset under insertions and deletions,
where every insertion and deletion is handled in polylogarithmic time. The following
theorem follows in a plug-and-play fashion by combining the techniques of [3] with
our techniques.

Theorem 5.6. Let P be a set of points in R
d, let k and ε > 0 be parameters, and

let µ(·) be one of the measures discussed before. Suppose that for any Q ⊆ P , we can
compute a (k, ε)-sensitive (for µ(·)) subset S of Q of size O(k/ερ) in O(|Q| + f(ε))
time. Then we can maintain a (k, ε)-sensitive subset of P of size O(k/ερ) under
insertion/deletion operations in O(((logn)/ε)ρ + f(ε/ log n) log n) time per update.

Note that Theorem 5.6 implies that we can maintain the approximate optimal
solution for all of the measures discussed above, under insertions and deletions, with
k outliers. The time to handle an update is O(poly(k, 1/ε, log n)), where poly(· · · ) is
a constant degree polynomial in its parameters, where the constant is a function of d
and the measure being approximated.

6. Conclusions. We presented a general approximation algorithm for shape
fitting that can handle outliers efficiently with near linear running time when the
number of outliers is small. The main contribution of this paper is the proof that there
exists a small coreset for various shape fitting problems when considering outliers. The
authors believe that the existence of such a small coreset is quite surprising.

6.1. Comparison to linear programming with violations. It is beneficial
to compare our result to the algorithms known for linear programming with violations.
Mulmuley [23] showed, using the Clarkson–Shor technique, that in an arrangement
of n hyperplanes in d dimensions, there are at most O(kd) local minima in the top
k-level. The argument relies on picking a random sample of n/k hyperplanes and
showing that the probability that a local minima in the top k-level is the minimum of
the sample (i.e., the lowest point on the upper envelope of the sample of hyperplanes)
is Ω(1/kd), and since there is only one local minima in the upper envelope of the
sample, it follows that the global number of local minima in the first top k-levels is
O(kd). Matoušek [22] solves the linear programming with violations by generating
all those local minima explicitly (in amortized O(n) time for each one by solving
instances of linear programming) and returning the best one.

A straightforward adaption of this argument shows that there areO(kd+1) minima
to the k-extent function EH,k. In our setting, since we are interested only in the extent
in a subspace X ⊆ R

d−1, it is no longer true that such a bound (that depends only on
k) holds on the number of minima of the extent when restricted toX. Specifically, it is
easy to find examples where the number of local minima of the k-extent is Ω(n) when
restricted to X. We briefly describe such an example below. Imagine a set of functions
F where each f ∈ F is a parabola f(x) = ax2+bx+c (see Figure 6.1). The number of
local minima of the 0-extent is Ω(n), as indicated by the dotted vertical segments in
Figure 6.1. Now we linearize each f into a plane h(x, y) = ay+ bx+ c in R

3, with the
linearization image being η(x) = (x, x2); call the resulting set of planes H. The set X,
in this case, is the image of the linearization, namely, X = η(R) = {(x, x2) |x ∈ R}.
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Fig. 6.1. The graphs of a set of functions F , with each being a parabola. Dotted vertical
segments depict the local minima of 0-extent in the arrangement of F .

Observe, that the number of local minima of the 0-extent along η(R) for H remains
the same. Therefore, while the number of minima of the 0-extent with respect to R

2

is O(1) (i.e., there is one minimum in the upper and lower envelop of the arrangement
of H), the number of minima when restricted to X is Ω(n). Furthermore, the problem
of finding the shortest vertical segment when restricted to X (even without outliers)
is no longer an LP-type problem, and as such we can no longer move efficiently from
one minimum to another using Matoušek’s approach.

Nevertheless, this gives a new interpretation of our result. It implies that if we are
interested only in approximation, the number of approximate local minima is bounded
by a polynomial in k (while the exact one is not). Furthermore, our coreset result
yields a direct way to generate those local minima.

6.2. General discussion. A limitation of our technique is that the number of
outliers has to be moderately small (i.e., O(n1/2d)) to achieve near linear running
time. Erickson and Seidel [17, 16] show that to determine whether a set of n points in
R

d contains d + 1 points on a common hyperplane requires Ω(nd) sidedness queries.
(Given d+1 points p0, . . . , pd, the sidedness query decides on which side of the oriented
hyperplane defined by p1, . . . , pn the point p0 lies.) This lower bound holds in a
decision tree model of computation in which every decision is based on the result
of a sidedness query, which they argue is a reasonable model. Their result implies
that when the number of outliers is huge (i.e., k = n − d − 1), a near-linear time
approximation algorithm cannot be achieved. We leave the problem of improving the
running time of our algorithm as an open question for further research.

This raises the question whether one can find “universal” approximation algo-
rithms with outliers—namely, approximation algorithms that have near-linear run-
ning time independent of the number of outliers. Currently, the only case the authors
are aware of that such an algorithm exists is for the case of minimum enclosing circles
with k outliers; see [21] for the currently fastest algorithm known for this problem.

Of course, using standard ε-sampling techniques, one can achieve combinatorial
approximation of k levels for relatively large k efficiently. However, this provides a
different and weaker type of approximation than the one presented in the paper. In
particular, our results imply that we can compute an approximation when the number
of outliers is fixed, while the geometric measure is approximated. Using ε-sampling
implies a result where the number of outliers is approximated. This is acceptable only
when the number of outliers is relatively large.

Another limitation of our technique (which is inherent in almost all the work
concerning outliers [13]) is that the number of outliers, k, has to be specified in the
input. In practice, there are situations when this information is not known beforehand.
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How to formulate a reasonable problem without k being the input, and then solving
it, are among some of the future directions of research.

Finally, note that, for k = 0, this paper provides an alternative construction to
the techniques of [4]. The approximation techniques presented here are simpler to
implement, but the resulting coresets (not surprisingly) are larger.
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[5] P. K. Agarwal and J. Matoušek, On range searching with semialgebraic sets, Discrete Com-
put. Geom., 11 (1994), pp. 393–418.

[6] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley-Interscience, New York,
2000.

[7] T. M. Chan, Low-dimensional linear programming with violations, in Proceedings of the 43th
Annual IEEE Symposium Found. Comput. Sci., IEEE Computer Society Press, Los Alami-
tos, CA, 2002, pp. 570–579.

[8] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, Algorithms for facility
location problems with outliers, in Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2001, pp. 642–651.

[9] B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, UK, 2000.
[10] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geom-

etry, II, Discrete Comput. Geom., 4 (1989), pp. 387–421.
[11] N. Cristianini and J. Shaw-Taylor, Support Vector Machines, Cambridge University Press,

Cambridge, UK, 2000.
[12] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid, Static and dynamic algorithms for

k-point clustering problems, J. Algorithms, 19 (1995), pp. 474–503.
[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed., Wiley-Interscience,

New York, 2001.
[14] J. Dunagan and S. Vempala, Optimal outlier removal in high-dimensional spaces, in Pro-

ceedings of the 33rd Annual ACM Symposium on Theory of Computing, ACM Press, New
York, 2001, pp. 627–636.

[15] D. Eppstein and J. Erickson, Iterated nearest neighbors and finding minimal polytopes, Dis-
crete Comput. Geom., 11 (1994), pp. 321–350.

[16] J. Erickson, New lower bounds for convex hull problems in odd dimensions, SIAM J. Comput.,
28 (1999), pp. 1198–1214.

[17] J. Erickson and R. Seidel, Better lower bounds on detecting affine and spherical degeneracies,
Discrete Comput. Geom., 13 (1995), pp. 41–57.

[18] J. Gao and L. J. Guibas, Staying in the middle: Approximate medians in R
1 and R

2 for
moving points.

[19] S. Har-Peled and K. R. Varadarajan, Approximate shape fitting via linearization, in Pro-
ceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Los Alamitos, CA, 2001, pp. 66–73.

[20] S. Har-Peled and Y. Wang, Shape fitting with outliers, www.uiuc.edu/˜sariel/research/
papers/02/outliers/, 2002.
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Abstract. We consider the model of “adversarial queuing theory” for packet networks intro-
duced by Borodin et al. [J. ACM, 48 (2001), pp. 13–38]. We show that the scheduling protocol
first-in-first-out (FIFO) can be unstable at any injection rate larger than 1/2 and that it is always
stable if the injection rate is less than 1/d, where d is the length of the longest route used by any
packet. We further show that every work-conserving (i.e., greedy) scheduling policy is stable if the
injection rate is less than 1/(d+ 1).
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1. Introduction. Recent years have seen a growing amount of work being con-
centrated on analyzing packet networks under nonprobabilistic scenarios rather than
under probabilistic assumptions (see, e.g., [7, 4, 1, 14, 12, 13, 3, 5]). Much of this work
makes use of the model of “adversarial queuing theory” proposed by Borodin et al.
[7]. The model can be briefly described as follows. Time proceeds in discrete steps.
In each step, packets are injected into the network with their routes. Each packet
traverses its respective route hop by hop in a store-and-forward fashion. In each time
step, one packet may cross each link, and all other packets waiting for that link are
stored in a buffer at the tail of that link. The behavior of the system is determined
by the queuing policy. The queuing policy chooses, at each time step, for each link,
which of the competing packets should be forwarded over that link. One of the main
questions in the adversarial queuing model is the question of stability. That is, under
what conditions is there a bound on the size of the link buffers, as opposed to them
growing to infinity as time proceeds? The conditions involve the topology of the net-
work, the queuing policy used, and the injection pattern of the packets. The latter
is characterized in the framework of adversarial queuing theory by the rate at which
packets are injected. Intuitively, the rate of injection is said to be r if, for every link e
in the network, the average number of packets requiring e, injected by the adversary
in any time step, is at most r (a formal definition of the model is given in section 2).
Note that in this model one does not assume any probabilistic assumptions on the
behavior of the traffic. Rather, answers are sought under the only assumption that
the total bandwidth requested by the adversary is not more than the total bandwidth
the network provides.

In the framework of adversarial queuing theory, it is known that some networks
are stable for every greedy protocol as long as the rate of injection is less than 1,
while other networks do not exhibit this phenomenon [7, 4]. The networks which
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are always stable have been named “universally stable” networks [7] and have been
fully characterized [14, 2]. From the point of view of protocols, some protocols are
known to be universally stable; i.e., they are stable on any network topology for any
rate of injection r < 1. Such protocols are, for example, longest-in-system (LIS) and
furthest-to-go (FTG). Other natural protocols, however, are known not to always be
stable, e.g., first-in-first-out (FIFO), nearest-to-go (NTG), last-in-first-out (LIFO),
and furthest-from-source (FFS) [4]. Furthermore, the protocol NTG (and FFS and
LIFO) exhibit the phenomenon of being unstable on certain networks even at arbi-
trarily low injection rates [7]. Previous papers in this area mentioned as one of the
main interesting open problems the question of determining the rate at which the
(very commonly used) FIFO policy is guaranteed to be stable and if such rate exists
at all. Prior to the present work, it was known that FIFO is not universally stable
and that it can be unstable for r > 0.85 [4]. This bound was improved to 0.8357
by Dı́az et al. [11] and further improved to 0.749 by Koukopoulos, Nikoletseas, and
Spirakis [15]. Dı́az et al. [11] also presented a formula to calculate, for any given
network, a bound so that FIFO is stable on that network if the injection rate is below
that bound. In particular, they consider as parameters the number of edges in the
network, denoted m, the length of the longest route used by any packet, denoted d,
and the maximum in-degree in the network, denoted α; their bound is at most 1

2dmα
for any network.

The contribution of this paper is twofold. First, we show that FIFO can be
unstable for any rate greater than 1/2 and that, on the other hand, FIFO is always
stable if the rate is less than 1/d. Second, we extend the stability proof for FIFO to
show that any greedy policy is stable if the injection rate is less than 1/(d+1), while
previously it was only known for general greedy protocols that the system is stable
if the injection rate is bounded by 1/m [6].1 We remark that our stability proofs do
not only show that the buffers have bounded size if the rate is sufficiently low. They
show, in addition, that the buffer size in this case has an upper bound independent
of network parameters (depending only on the parameters of the adversary).

Our instability proof entails new techniques that greatly simplify the analysis of
the FIFO policy. In particular, we develop a technique that enables us to construct
adversaries for some acyclic parameterized networks that we call “gadgets” and then
compose these gadgets and adversaries to form a cyclic network and a single adver-
sary that together show instability. Furthermore, we simplify the specification of the
adversary by defining conditions under which the adversary is allowed to “reroute”
packets, thus allowing us to specify routes for the packets “on the fly.”

Recently, subsequent to the initial publication of the present work [17], Bhat-
tacharjee and Goel proved that FIFO can be unstable at arbitrarily low injection
rates [8]. Some of the techniques used in their work (such as concatenation of pa-
rameterized gadgets and packet rerouting) are similar to the techniques we use in the
present work.

Organization. The rest of this paper is organized as follows. In section 2 we define
the model formally. In section 3 we prove that FIFO can be unstable for any rate
greater than 1/2. In section 4 we prove our stability results. We conclude with some
remarks in section 5.

2. Formal model. We use the adversarial queuing model [7], defined as follows.
The communication network is modeled by a directed graph G = (V,E), and we

1Recently, we learned that Zhang, Duan, and Hou [18] proved that FIFO is stable for injection
rates less than 1/d. This result was obtained independently of ours.



288 ZVI LOTKER, BOAZ PATT-SHAMIR, AND ADI ROSÉN

denote |V | = n, |E| = m. Each node v ∈ V represents a communication switch, and
each edge e ∈ E represents a link between two switches. In each node, there is a
buffer associated with each outgoing link. Buffers store packets. Packets are injected
into the network with a route, which is a simple directed path in G. When a packet is
injected, it is placed in the buffer of the first link on its route. The system proceeds in
global time steps numbered 0, 1, . . .. Each time step is divided into two substeps. In
the first substep, one packet is sent from each nonempty buffer over its corresponding
link. In the second substep, packets are received by the nodes at the other end of the
links; they are absorbed (eliminated) if that node is their destination, and otherwise
they are placed in the buffer of the next link on their respective routes. In addition,
new packets are injected in the second substep.

The task of the protocol is to select which packet to send over a link if there
is more than one packet in the buffer associated with that link. We remark that
we are interested in greedy protocols (in fact, the definitions above allow only such
protocols), in which a link cannot be idle in a time step if its buffer is nonempty in
the first substep. The protocol FIFO selects the packets to be sent from a buffer in
the same order as their arrival order at that buffer.

The injection of the packets into the network is modeled as being done by an
adversary. Following [7], we use the following parameterized definition for the adver-
sary.

Definition 2.1. Let A be an adversary. A is called a (w, r) adversary if, for
some r ≤ 1, called the rate of A, and some integer w ≥ 1, called the window size of
A, the following holds. For any time t ∈ N , let It be the set of packets injected during
the w time steps from t to t + w − 1, inclusive. Let Πt be the set of paths that the
packets in It have to follow. Then the maximum number of times any edge appears
in Πt is at most rw.

For our instability results we use a weaker adversary, which is not allowed to inject
bursty traffic. We call this adversary a rate-r adversary [4]: for every interval of time
of length t and every edge e, a rate-r adversary may inject at most 	rt
 packets whose
routes require e.

3. Instability of FIFO. In this section we prove that FIFO can be unstable
at rate 1

2 + ε for any ε > 0. The high level view of the proof is as follows. First, we
define a small acyclic graph called “gadget,” which has special “ingress” and “egress”
edges. Gadgets can be composed in series by identifying the egress edge of one gadget
with the ingress edge of its successor, getting a “daisy chain.” We show that a rate-r
adversary (for r > 1

2 ) can increase the size of a given queue in the ingress edge of the
chain by any desired factor to get a large queue at the egress edge of the chain (using
a sufficiently long chain). We then prove that a queue in the egress edge of the chain
can be translated to a queue of fresh packets in the ingress edge of the chain by losing
only a fraction of the size of the queue.

Since in our construction packets have long routes, we find it more convenient to
specify the routes in an “on-line” fashion. That is, when we construct the adversary,
we do not specify the complete routes of the packets when they are injected (even
though we can, in principle). Rather, we prove below some conditions that allow us
to reroute packets without violating the capacity constraints. Formally, this is done
by altering the adversary. We find this technique useful in the sense that it makes the
construction more “localized.” We stress that this is just a matter of representation:
the actual adversary used to prove the results is the same rate-r adversary used, e.g.,
in [4, 11, 15].
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The proof is structured as follows. In section 3.1 we specify the conditions under
which packets can be rerouted. In section 3.2 we specify and analyze a rate-r adversary
for two daisy-chained gadgets. Some small adversaries used for “gluing” and the
overall adversary are specified in section 3.3.

3.1. Packet rerouting. In this section we prove a technical lemma that allows
us to construct adversaries “on the fly” for FIFO. Informally, it says that if there is a
set of packets that have routes that already share a single edge, then these packets can
be arbitrarily rerouted as long as they are routed to new edges. In fact, the rerouting
technique can be applied to a large class of queuing policies defined below.

Definition 3.1. A queue policy is called historic if the scheduling decisions are
independent of the remaining routes beyond the next edge of each packet.

Note that policies that are based on the arrival time at the buffer (such as FIFO
and LIFO), on the injection time (e.g., LIS and NIS), or on the route from the source
(e.g., FFS) are examples of historic policies. Note that a historic queue policy must
not even depend on the destinations of the packets. For example, FTG and NTG are
not historic. (Historic policies are called nonpredictive in [16].)

First, we define formally the notion of new edges.
Definition 3.2. Let G be a graph, Q a queuing policy, and A a rate-r adversary.

Let t be a time step in the execution of Q in G under A. Let P be a subset of the
packets that are in the network at time t. Let t∗ be the minimum injection time of all
packets in P . An edge e is new to P if e is not a member of any route of a packet
(either in P or not) injected by A at times τ ≥ t∗ − ⌈ 1

r

⌉
.

We remark that since in this paper we deal with rates larger than 1
2 , then

⌈
1
r

⌉ ≤ 2.
We can now state and prove our rerouting claim.
Lemma 3.3. Let Q be a deterministic historic queue policy, G a graph, A a rate-r

adversary, and t a time step. Let P (t) be the set of packets in the network at time
t. For each p ∈ P (t), denote the next edge to be traversed by p at time t by ep, and
denote the complete path of p by qpeprp. Let P0 ⊆ P (t) be a set of packets whose
routes have at least one edge common to all. Then for any set of paths

{
r′p | p ∈ P0

}
that consist of edges that are new to P (t), there exists a rate-r adversary A′ such that
the following holds true.

(1) The execution of the system under A and A′ is identical until time t.
(2) For every packet p injected by A there is a packet p injected by A′ at the same

time.
(3) If p ∈ P0, then its route under A′ is qpepr′p.
(4) If p /∈ P0, then its route under A′ is qpeprp.
Proof. Define A′ as follows. A′ injects the same number of packets as A and at

the same times. For p ∈ P0, set the route of p to qpepr
′
p. For p /∈ P0 set the route of

p to qpeprp. Clearly, claims (1), (2), (3), and (4) follow directly from the assumption
that Q is historic and by the construction. We need only to verify that A′ is a rate-r
adversary. To see this, first note that the load on any non-new edge may have only
been reduced. Now, consider any edge e in

⋃
p∈P0

r′p. Let ê be the edge common to
the routes of all p ∈ P0. Let t∗ be the minimum injection time over all packets in
P (t).

Consider any time interval [t1, t2]. If t2 < t
∗, then the number of packets injected

in [t1, t2] by A′ and that require e is equal to the number of packets injected in
[t1, t2] by A and that require e. If t2 ≥ t∗ we consider time intervals I = [t1, t

∗) and
I ′ = [t∗, t2]. For interval I the number of packets injected by A′ and that require e is
the same as for A′, which is at most

⌈
((t∗ − ⌈ 1

r

⌉
)− t1)r

⌉
, since e is a new edge with
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Fig. 3.1. The graph F 2
n: two Fn gadgets glued together. The left gadget is called F , and the

right gadget is called F ′. Edge a′ is the egress of F and the ingress of F ′.

respect to P0 ⊆ P (t) and time t∗ is the minimum injection time of all packets in P (t)
(see Definition 3.2). For interval I ′ the number of packets injected in I ′ by A′ and
that require e is at most the number of packets injected in I ′ by A and that require
ê. This is at most 	(t2 − t∗ + 1)r
. The total number of packets injected by A′ in
[t1, t2] and that require e is therefore at most

⌈
((t∗ − ⌈ 1

r

⌉
)− t1)r

⌉
+ 	(t2 − t∗ + 1)r
.

This is at most 	(t2 − t1 + 1)r
, as required.
Remark 1. Lemma 3.3 allows us to use a “dynamic” adversary that changes

the routes of packets on-line. However, this is only a matter of presentation: we
do not change the power of the adversary; we only construct it in a succession of
refinements. The main advantage of the lemma is that it allows us to modify the
remainder of the routes arbitrarily, under the specified restrictions (shared edge in
old routes, new edges in modified routes, and historic policy); we do not have to
worry about capacity constraints of new edges.

Remark 2. Note that a packet may be rerouted several times, as long as the
number of reroutings is finite.

3.2. Gadgets and their adversaries. We now define the gadgets that we use
and their local adversaries.

Definition 3.4. A gadget is a directed acyclic graph with one edge called ingress
emanating from a degree-1 source, and one edge called egress, leading to a degree-
1 sink. Given two gadgets G,H, define G ◦ H to be the gadget that results from
identifying the egress of G with the ingress of H. The ingress of G ◦H is the ingress
of G, and the egress of G ◦H is the egress of H.

For any gadget F , let F 0 denote the single edge graph which is both ingress and
egress. For i > 0, we denote F i = F i−1 ◦F . We call the “◦” operation daisy-chaining.

We will use a parametric gadget denoted Fn, which consists of ingress edge a,
egress edge a′, and two parallel paths of length n from the ingress edge to the egress
edge, whose edges are denoted e1, . . . , en and f1, . . . , fn. Figure 3.1 shows F 2

n .

We will construct an adversary that maintains the following gadget invariant.

Definition 3.5. C(S, Fn) is said to be true at a given time if the following holds
at that time on graph Fn.

(1) The total number of packets in the buffers of e1, . . . , en is S.
(2) For each i = 1, . . . , n, the buffer of ei is nonempty, and the packets in ei have

remaining routes ei, ei+1, . . . , en, a
′.

(3) There are S packets in the buffer of edge a, all with the same remaining route
a, f1, . . . , fn, a

′.
(4) There are no other packets in Fn.

In our construction, we use a daisy chain of many gadgets. However, we start by
considering two daisy-chained gadgets, namely the graph F 2

n (Figure 3.1). We denote
the first gadget of F 2

n by F , and the second by F ′, and add a prime to the name of
all edges in F ′. The conditions of the following lemma are designed to allow repeated
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rerouting, but essentially the idea is to have the condition C(S, F ) carry over from
one gadget to the next, with a larger value S.

Lemma 3.6. Let r = 1
2 + ε for some ε > 0. There exist numbers n and S0 that

depend on ε, such that for any S > S0, if in the graph F
2
n we have that for some time

τ , all packets present at time τ were injected after time τ0, and

• C(S, F ) holds at time τ , and
• F ′ is empty at time τ , and
• no packets using edges in F ′ were injected in the time interval [τ0−	1/r
 , τ ],

then there exists a rate-r adversary for F 2
n such that at time τ + 2S + n, C(S′, F ′)

holds for some S′ ≥ S(1 + ε), and F is empty.

Proof. To define the adversary, we use the notation Ri
def
= 1−r

1−ri for 1 ≤ i ≤ n.
Note, for later reference, that for all i,

Ri

r +Ri
= Ri+1 .(3.1)

We first choose parameters under the constraints below:

n > max

(
log ε− 2

log r
, 1− 1

log r

)
,

S0 > max

(
2n,

n

2(Rn −Rn+1)

)
.

We remark that for small ε values, we get n = Θ(log 1
ε ) and S0 = Θ(nr−n) =

Θ( 1
ε log

1
ε ) (see the appendix for a detailed derivation of the asymptotic bounds).

Let us assume, for simplicity of notation, that τ = 0. We now specify the adver-
sary that will create a situation where C(S′, F ′) holds for S′ = 2S(1 − Rn). In the
adversary specification, as well as in the ensuing analysis, we ignore floors and ceilings
for the sake of simplicity of presentation. We remark that carrying these throughout
the computations would add only additive terms that can be compensated for by
using a larger S0 value (cf. [4, 11, 15]).

The adversary is as follows.

(1) Extend the routes of all packets stored in F at time 0 by adding the path
e′1, . . . , e

′
n, a

′′.
(2) For every edge e′i in F ′ (i = 1, . . . , n), packets are injected at rate r in the

time steps i, i + 1, . . . , i + ti, where ti
def
= 2S

r+Ri
. The route of each of these

packets is the single edge e′i.
(3) In the time interval [1, S], rS packets are injected, at rate r, with route

a, f1, . . . , fn, a
′, f ′1, . . . , f

′
n, a

′′ .
(4) Let X = S′ − rS + n. X packets are injected in the first X · 1

r time steps of
the interval [S + n + 1, S + n + S], with routes a′, f ′1, . . . , f

′
n, a

′′. (We show
later that 0 ≤ X ≤ rS.)

First, note that this is a rate-r adversary: part (1) is justified by Lemma 3.3, since
the routes of all packets stored in F share the edge a′, and the extensions are for new
edges as defined in Definition 3.2.

Edges e′1, . . . , e
′
n are used only by part (2) at rate r. Edges f ′1, . . . , f

′
n and a′′ are

used at rate r in parts (3) and (4), which cover disjoint time intervals. It remains to
show that 0 ≤ X ≤ rS.

Claim 3.7. For every r < 1, we have 0 < X ≤ rS.
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Proof. First we prove that X > 0. By definitions,

X > X − n = S′ − rS
= 2S(1−Rn)− rS
= S

(
2− 2− 2r

1− rn − r
)
.

Now,

2− 2− 2r

1− rn − r =
r − 2rn + rn+1

1− rn
>
r − 2rn

1− rn
> 2r(1− 2rn−1)

> 0 ,

since rn < rn−1 < 1/2 by the choice of n, and hence X > 0. Next we prove that
X ≤ rS. By the definitions,

rS −X = rS − (2S(1−Rn)− rS + n)

= 2S(r +Rn − 1)− n .
Since S ≥ S0 >

n
2(Rn−Rn+1)

≥ n
2(r+Rn−1) by assumption, we get rS −X > 0.

We now show that in fact at time 2S + n, C(S′, F ′) holds and that F is empty.
This will be sufficient, since by the definition of S′ we have that

S′ = 2S(1−Rn)

= 2S

(
r

1− rn −
rn

1− rn
)

≥ 2S(r − 2rn)

≥ 2S

(
1

2
+ ε− ε

2

)
= S(1 + ε) .

(The inequalities follow from the fact that 1− rn ≤ 1 and since rn ≤ 1/2 and 4rn < ε
by the choice of n.)

We now proceed to prove that C(S′, F ′) holds at time 2S + n. Let us call the
packets described in part (1) of the definition of the adversary old packets, the packets
described in part (2) new short packets, and the packets described in parts (3) and
(4) new long packets.

We start with the following straightforward property.
Claim 3.8. In each step in the time interval [1, 2S], one old packet crosses a′.
Proof. Since there are S old packets in the buffers of edges ei, there are no other

packets in these buffers, and none of them is empty at time 0, then these S packets
will arrive at the tail of a′ one in each time step in time interval [1, S]. The S packets
stored at the tail of a at time 0 will arrive at the tail of a′, one in each time step, in
the time interval [n, S + n]. Since S > n, the claim follows.

The next claim shows that old packets cross edges e′i at rates that decrease as i
grows. This is due to the injection of the new short packets.

Claim 3.9. The following holds for any edge e′i, i ∈ [1, n].



NEW STABILITY RESULTS FOR ADVERSARIAL QUEUING 293

(1) At times [0, i], no packet arrives at the tail of e′i.
(2) At times [i+ 1, 2S + i], old packets arrive at the tail of e′i at rate Ri.
(3) At time i+ 2S + 1, there are no new short packets in the buffer of e′i.
Proof. Part (1) is straightforward by the fact that old packets must cross at least

i+ 1 edges before they arrive at the tail of e′i and because no new packet is injected
for e′i before time i. Part (2) is proven by induction on i. For the basis i = 1 we have
that packets arrive at the tail of e′1 at rate R1 = 1 by Claim 3.8. For the induction
step, let i > 1. The induction hypothesis says that packets arrive at the tail of e′i−1 at
rate Ri−1. By part (2) of the definition of the adversary, new packets are injected at
the tail of e′i−1 at rate r. Note that Ri−1 + r > 1. Since the queue policy is FIFO, it

follows that old packets cross e′i−1, and hence arrive at the tail of e′i, at rate
Ri−1

Ri−1+r .

By (3.1) this is exactly Ri. This proves part (2). To see that part (3) is true, note
that as a consequence of part (2), we have that short new packets cross e′i at rate

r
Ri+r . The last short new packet for e′i is injected at time i+ ti = i+

2S
r+Ri

, in which
time there are ti(r + Ri − 1) packets in the buffer of e′i. Using the definition of ti, it
follows that all new short packets of e′i will be absorbed by time

i+ ti + ti(r +Ri − 1) = i+ ti(r +Ri) = i+ 2S .

Using the above claims, we show that C(S′, F ′) holds at time 2S + n. We start
with part (1) of C(S′, F ′).

Claim 3.10. At time 2S+n, there is a total of S′ old packets stored in the buffers
of edges e′i.

Proof. By Claim 3.9, 2S · Rn old packets cross a′′ by time 2S + n. On the
other hand, by Claim 3.8, all the 2S old packets crossed a′ by time 2S. The claim
follows.

Next, we prove that part (2) of C(S′, F ′) holds.
Claim 3.11. If S > S0, then none of the buffers of e

′
i is empty at time 2S + n.

Moreover, the route of any packet stored in e′i at that time is e
′
i, . . . , e

′
n, a

′′.
Proof. The claim on the remaining routes is obvious from the construction. We

now prove that the buffer of e′i is not empty. The last short packet for e′i is injected in
e′i at time i+ ti, and, as argued in the proof of Claim 3.9, it crosses e′i at time 2S+ i.
Hence all packets that arrive at the buffer of e′i in the time interval [i+ ti, 2S + i] are
still in the buffer of e′i at time 2S + i. All these packets are old packets that arrive

from ei−1. By Claim 3.9, there are (2S − ti)Ri such packets. Let Qi
def
= (2S − ti)Ri

be the number of packets in the buffer of e′i at time 2S + i. Note that by definition,
ti ≤ ti+1 and Ri ≥ Ri+1, and hence Qi ≥ Qi+1 for 1 ≤ i < n. In addition, since
only n− i packets may leave the buffer of e′i in the time interval [2S + i, 2S + n], it is
sufficient to prove that Qn ≥ n. Substituting the values we get

Qn = (2S − tn)Rn

= 2SRn − tnRn

= 2S

(
Rn − Rn

r +Rn

)
= 2S (Rn −Rn+1) .

Since S ≥ S0 >
n

2(Rn−Rn+1)
, we get that Qn ≥ n.

We now prove that part (3) of C(S′, F ′) holds.
Claim 3.12. The number of packets at the tail of a′ at time 2S + n is S′.



294 ZVI LOTKER, BOAZ PATT-SHAMIR, AND ADI ROSÉN

Proof. First, observe that in time interval [1, S + n] the number of packets that
arrive at the tail of a′ is exactly 2S, and they start arriving at time 1. Therefore at
time S + n there are exactly S − n packets in the buffer of a′. In addition, by part
(3) of the definition of the adversary, rS new long packets are injected at the tail
of a in the time interval [1, S]. These packets start crossing a at time S + 1, since
they are queued behind the S old packets stored in a at time 0. Hence the new long
packets start arriving at a′ at time S+n+1. In addition, part (4) of the definition of
the adversary says that X new long packets are injected at the tail of a′ during time
interval [S + n, 2S + n]. In conclusion, there are X + rS new long packets arriving at
a′ in the interval [S + n, 2S + n]. Together with the S − n packets stored at the tail
of a′ at time S + n, we have that at time 2S + n, the number of packets stored in the
buffer of a′ is exactly rS+X −n = S′, by definition of X. All these packets have the
paths that are required by C(S′, F ′).

To conclude the proof of Lemma 3.6, we argue that F is empty at time 2S + n.
This follows from the fact that there are no injections into edges of F during time
interval [0, 2S + n] and that all the 2S packets present in F at time 0 arrive at the
tail of the ingress of F ′ by time S + n.

3.3. Putting the gadgets together. In this section we describe how to con-
struct the overall adversary, using the gadget adversary described in section 3.2, and
a few other simple adversaries used to glue things together.

The idea of the proof is to use a sufficiently long daisy chain of gadgets that
blows up the queue size by a sufficiently large factor (that depends on the length of
the chain and r) and then “stitch together” the egress of the chain to its ingress,
getting a queue of fresh packets. The stitching process loses a fraction (that depends
on r) of the queue size, but this loss is more than compensated by the chain of gadgets.

Fix r = 1
2 + ε for ε > 0 and S0 and n as in the proof of Lemma 3.6. Consider the

graph FM
n that consists of a daisy chain of M Fn gadgets, where M is a parameter.

Let the kth gadget be denoted by F (k) for 1 ≤ k ≤ M . We now prove the following
lemma.

Lemma 3.13. Let M be a positive integer, and consider the graph FM
n . If for

some time τ we have that all packets present in the network were injected after time
τ0, and

• C(S, F (1)) holds at time τ for S ≥ S0,
• there are no other packets in FM

n at time τ , and
• the edges of FM

n \ F (1) were not used by any injection in the time interval
[τ0 − 	1/r
 , τ ],

then there is a rate-r adversary such that at some time t > τ , there are S′ packets at
the egress of FM

n , for S′ ≥ S(1 + ε)M−1/2, and there are no other packets in FM
n .

Proof. We first prove the following claim.

Claim 3.14. Let 1 ≤ i ≤ n. If at time τ we have that all packets present in the
network were injected after time τ0, and

• C(S, F (1)) holds for S ≥ S0,
• there are no other packets in F (1), . . . , F (i), and
• the edges of F (2), . . . , F (M) were not used by any injection in the time in-
terval [τ0 − 	1/r
 , τ ],

then there is a rate-r adversary and time ti ≥ τ such that
• C(S′, F (i)) holds for S′ ≥ S(1 + ε)i−1 at time ti,
• there are no other packets in FM

n , and
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• the edges of F (i + 1), . . . , F (M) were not used by any injection in the time
interval [τ0 − 	1/r
 , ti].

Proof. The proof is by induction on i. For i = 1 the claim is trivial with t1 = τ .
For the induction step, assume that the lemma holds for 1 < i < M , i.e., that
there exists an adversary Ai and time ti such that at time ti, C(Si, F (M)) holds for
Si ≥ S(1+ε)i−1. Consider now the subgraph that consists of F (i) and F (i+1). By the
induction hypothesis, we may apply Lemma 3.6 to know that there exists an adversary
A such that at time ti +2Si + n, C(S

′, F (i+1)) holds for S′ ≥ Si(1 + ε) ≥ S(1 + ε)i.
We note that the packets injected by A (as specified in Lemma 3.6) do not use any
edge in F (i + 2), . . . , F (M) and that the application of this adversary leaves F (i)
empty of packets. This proves the claim with ti+1 = ti + 2Si + n and the adversary
that results from concatenating the adversaries Ai and A.

To complete the proof of Lemma 3.13, we observe that if at time t we have that
C(S, Fn) holds for some gadget Fn and S ≥ S0, and if no injections are done in the
interval [t, t+ S + n], then at time t+ S + n there are at least S/2 packets queued at
the egress of Fn. This is true since during time interval [t + 1, t + S + n] exactly 2S
packets arrive at the tail of the egress of Fn, and, therefore, at time t + S + n there
are S − n ≥ S0 − n ≥ S/2 packets in the egress buffer.

Note that a packet may be rerouted in the whole construction at most M − 1
times: once for each gadget F (2), . . . , F (M). This completes the proof of Lemma
3.13.

We now specify two more constructions. The first shows how to establish C(S, Fn)
starting from a state in which the only packets in Fn are in the buffer of the ingress
of Fn. The second construction shows how to replace a queue of packets with another
queue of fresh packets. This is necessary so we can stitch the end of the daisy chain
to its beginning.

We now claim the existence of an adversary that establishes C(S, Fn) starting
from a single buffer. The construction is a variant of the adversary presented in the
proof of Lemma 3.6.

Lemma 3.15. For any ε > 0, let n and S0 be as in Lemma 3.6. Let S > S0,
and let τ be a time step. Suppose that at time τ all the packets in the network are
2S packets stored in the ingress edge of Fn, they all have remaining routes of length
1, and they were all injected after time τ0 for some τ0. If the other edges of Fn were
not used by any injection in the time interval [τ0 − 	1/r
 , τ ], then there is a rate-r
adversary for r = 1

2 + ε such that at time τ + 2S + n condition C(S′, Fn) holds for
S′ ≥ S(1 + ε).

Proof. Let us again assume for convenience of notation that τ = 0. We use the
notations and definitions of ti and Ri from the proof of Lemma 3.6. We also define
S′ = 2S(1−Rn). The adversary is defined as follows.

(1) Extend the route of the packets stored in the ingress edge a to be a, e1, e2, . . . ,
en, a

′.
(2) For each 1 ≤ i ≤ n, inject packets at rate r with the single edge route ei in

the time interval [i, ti].
(3) In the first (S′ + n)/r time steps of time interval [1, 2S] inject S′ + n packets

at rate r. The first n packets have path of length 1 (i.e., a only), and the rest
have the path a, f1, . . . , fn, a

′. Observe that indeed (S′ + n)/r ≤ 2S, by the
choice of n and S0.

We first note that this is a rate-r adversary by Lemma 3.3. We now prove that
C(S′, Fn) holds at time 2S+n. First, observe that in each step of the interval [1, 2S],
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Fig. 3.2. The graph used in the proof of Theorem 3.17. The edge between F (i) and F (i+ 1) is
the egress of F (i) and the ingress of F (i+ 1), and it is part of both F (i) and F (i+ 1).

a single packet crosses a. By the same arguments as those in the proofs of Claims
3.9, 3.10, and 3.11 (applied here to Fn, instead of F ′ there), we have that at time
2S+n there are S′ packets in the buffers of edges e1, . . . , en, that none of these buffers
is empty, and that the packets in ei have remaining routes ei, ei+1, . . . , en, a

′. Next,
consider a. After 2S time steps, all old packets leave a; after additional n time steps
all packets with path of length 1 injected in step (3) disappear too, and therefore,
at time 2S+n, we have exactly S′ packets in a, with remaining routes a, f1, . . . , fn, a

′,
as required.

We now show the existence of an adversary that replaces a queue of old packets
with another (smaller) queue of fresh packets. To do this, we consider a graph of
three edges in series, called a0, a1, and a2. The routes that will be traversed by old
packets will all end at a0, and the fresh packets all start at the tail of a2. (We use
three edges instead of two so as to avoid cyclic routes in our final construction.)

Lemma 3.16. Suppose that at time τ there are S packets stored in the buffer of a0
with remaining routes of length 1. Then for any r > 0 there exists a rate-r adversary
such that at time τ + S + rS + r2S there are r3S packets stored in the buffer of a2
and there are no other packets in the network. Moreover, all the packets stored in the
buffer of a2 were injected at the tail of a2 after time τ + S.

Proof. Let us assume for convenience of notation that τ = 0. Call the packets
that exist in the network at time 0 old packets. The execution is as follows.

(1) In the time interval [1, S], rS packets are injected at the tail of a0. These
packets have routes a0, a1, a2. All these packets are queued behind the old
packets, and they start to move only at time S.

(2) In the time interval [S+1, S+ rS], r2S packets are injected at the tail of a2.
These packets mix with the packets that were injected in step (1). At time
S + rS, there is a queue of r2S packets waiting for a2, and no other packets
exist in the network.

(3) In the time interval [S + rS, S + rS + r2S], r3S new packets are injected at
the tail of a2. These packets are queued behind the packets injected in steps
(1) and (2).

Note that by time S+rS+r2S, all packets from steps (1) and (2) are absorbed.
We are now ready to prove our main result. Note that the assumption of a specific

initial state does not restrict the generality of the statement (see, e.g., [4]).
Theorem 3.17. For every ε > 0 there exists a graph Gε, a rate-r adversary for

r = 1
2 + ε, and an initial configuration such that FIFO is unstable on Gε under that

adversary starting from that initial configuration.
Proof. The graph is defined as follows. Let S0 and n be as required by Lemma

3.6 for ε. Choose M such that r3(1+ε)M

4 > 1. The graph consists of FM
n (i.e., M

daisy-chained gadgets), with one additional edge called e0 connecting the head of the
egress edge of the last gadget in the chain (F (M)) to the ingress edge of the first
gadget in the chain (F (1)). See Figure 3.2.

In the initial configuration, there are S∗ > 2S0 packets in the ingress edge of
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F (1), all with paths of length 1 (i.e., their paths are composed of the ingress of
F (1)). The adversary is defined by an iterative construction that works as follows.
Let S1 = S∗.

(1) Apply the adversary of Lemma 3.15 to get a configuration where C(S2, F (1))
holds for S2 ≥ S1

2 (1 + ε).
(2) Apply the adversary of Lemma 3.13 to get a configuration where S3 packets

are stored in the egress of F (M) for S3 ≥ S2
(1+ε)M−1

2 .
(3) Apply the adversary of Lemma 3.16 to the three-edge path that consists of

the egress of F (M), then e0, and then the ingress of F (1). This results in S4

packets stored at the tail of the ingress of F (1), all with paths of length 1,
for S4 ≥ r3S3. Let S1 ← S4, and go to step (1).

We first claim that the above construction is indeed a valid rate-r adversary. We
claim inductively that the conditions that allow the construction of each adversary
by Lemmas 3.15, 3.13, and 3.16 hold when these constructions are applied. We base
the proof for each iteration of the adversary on the following condition, which we will
prove by induction on time to hold at the start of each iteration. The condition is that
when the iteration starts at time τ , then it holds that all the buffers in the network
are empty except the buffer of the ingress of F (1); that all packets in this buffer have
routes of length 1; and that in time interval [τ0 − 	1/r
, τ ] there were no injections of
packets requiring any other edge in the network, where τ0 is the earliest injection time
of any packet residing in the buffer of the ingress of F (1) at time τ . This condition
clearly holds for time τ = 0 when we start with the initial configuration as described
above.

Now assume that the above condition holds at time τ when an iteration starts.
Then the conditions of Lemma 3.15 hold. We therefore can apply the adversary of
Lemma 3.15. The resulting situation is the situation as required by the conditions
of Lemma 3.13. Observe that the adversary of Lemma 3.15 does not use any edge
in the network beyond the edges of F (1); therefore the conditions of that lemma on
the nonuse of the edges of FM

n \ F (1) hold. We can therefore apply the adversary of
Lemma 3.13. The resulting situation is the situation in the conditions of Lemma 3.16.
Observe also that by Lemma 3.13 there are no other packets in the network at that
time. We can now apply the adversary of Lemma 3.16. This results in a set of packets
in the buffer of the ingress of F (1). Note that now there are no other packets in the
network. Further observe that all the packets at the ingress of F (1) were injected at
least S time steps into the activation of the adversary of Lemma 3.16 and that once
they start being injected, no other packet is injected. Therefore it follows that no
edge of the graph, except the ingress of F (1), was used by the adversary after time
τ0−	1/r
, where τ0 is the earliest injection time of the packets at the ingress of F (1).
We therefore have that the condition for the start of the iteration holds again.

We note that no packet is rerouted more than M times: once in step (1) and at
most M − 1 times in step (2).

Finally, we show that S1 grows unboundedly under this adversary. After step
(1) is executed, we have that S2 ≥ S1

2 · (1 + ε). Hence, after step (2) we have that

S3 ≥ S2
(1+ε)M−1

2 ≥ S1
(1+ε)M

4 . Finally, after step (3), we have that the number of

packets stored at the tail of the ingress edge of F (1) is S4 ≥ r3S3 ≥ S1
r3(1+ε)M

4 . By
the choice of M we have that S4 > S1.

4. Stability under low injection rates. In this section we show that FIFO,
and in fact any greedy protocol, is stable if the injection rate is below some threshold.
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We start with the case where the network is initiated with empty buffers. We later
consider the case where the adversary starts the system with an arbitrary initial
configuration of an arbitrary set of packets in the buffers.

We start with the case where the network starts with empty buffers. We prove
that any network is stable with any greedy protocol in the face of a (w, r) adversary,
if r ≤ 1/(d + 1), where d denotes the length (in edges) of the longest path followed
by any packet. In particular, we prove below that any packet stays in any one queue
no more that �wr� time steps. For a certain class of protocols, which includes the
protocol FIFO, the bound can be improved to 1/d.

Theorem 4.1. For any network, if the sequence of packets is injected by a (w, r)
adversary, with r ≤ 1/(d + 1), and the schedule is a greedy schedule, then no packet
stays in the same buffer more than �wr� time steps.

Proof. We prove, by induction on t, that any packet that arrives at a buffer at
time step t leaves this buffer by time t+ �wr�.

The base of the induction is any t ≤ dwr+1. Let p be a packet that arrives at the
buffer at the tail of edge e at time t ≤ dwr+1. Assume towards a contradiction that p
is in the same buffer at the end of time step t+ �wr�. This means that for each of the
�wr� time steps in [t+ 1, t+ �wr�] some other packet was sent over edge e (since we
consider a greedy protocol). Therefore we can identify �wr� + 1 packets that require
edge e and are injected into the network by the end of time step t+ �wr� − 1 (these
are the packet p itself and the �wr� packets that were sent over e). Since t ≤ dwr+1,
we have t+ �wr� − 1 ≤ (d+ 1)wr. By the definition of the adversary the number of
packets that require e and are injected by the end of any time step t′ ≤ (d+ 1)wr is
at most 	(d+ 1)r
�wr�. Since we assume r ≤ 1/(d+ 1) this is at most �wr�. This is
a contradiction to the fact that we identified �wr�+ 1 packets.

We now prove the claim for any t > dwr+1. This is done based on the induction
hypothesis that for any packet that arrives at some buffer at time t′ < t, this packet
leaves the buffer by time step t′+�wr�. Let p be a packet that arrives at the buffer at
the tail of edge e at some time step t. Consider any packet that requires edge e and was
injected by time step t− d�wr�. Using the induction hypothesis we know that such a
packet left the buffer into which it was injected by time step t−d�wr�+�wr�, left the
next buffer by time step t−d�wr�+2�wr�, and left the ith buffer on its path by time
step t−d�wr�+ i�wr�. It therefore arrived at its destination by time step t−d�wr�+
d�wr� = t (since the length of its path is at most d, and all its “arrival times” are earlier
than t, so the induction hypothesis holds). It follows that any packet that can delay
packet p from going over edge e must be injected at time step t− d�wr�+ 1 or later.
Now assume towards a contradiction that packet p is still at the tail of edge e at the end
of time step t+�wr�. That is, there are �wr� other packets that crossed edge e in [t+
1, t+�wr�]. As before, this identifies �wr�+1 distinct packets that require edge e, are
present in the network at the end of time step t or later, and are injected by time step
t+�wr�−1. However, we know that any packet injected by time step t−d�wr� already
left the network by the end of time step t. Therefore those �wr�+1 packets must have
been injected in [t−d�wr�+1, t+�wr�−1]. There are �wr�(d+1)−1 time steps in this
interval; therefore the number of packets that require e and can be injected during this
interval is bounded by 	(d + 1)r
�wr�. Since r ≤ 1/(d + 1) this is at most �wr�, a
contradiction.

For protocols where a packet arriving at a certain buffer at time t has priority
over any packet injected after time t, we can relax the condition that r ≤ 1/(d + 1)
to be r ≤ 1/d. Note that among such protocols are the protocols FIFO and LIS.



NEW STABILITY RESULTS FOR ADVERSARIAL QUEUING 299

Specifically, we define the following concept.

Definition 4.2. A time priority protocol is a greedy protocol under which a
packet arriving at a buffer at time t has priority over any other packet that is injected
after time t.

For time priority protocols, we have the following.

Theorem 4.3. For any network, if the sequence of packets is injected by a (w, r)
adversary, with r ≤ 1/d, and the protocol is a time priority protocol, then no packet
stays in the same buffer more than �wr� time steps.

The proof of Theorem 4.3 is the same as the proof of Theorem 4.1 with one change
applied at two places: in the present case, when assuming towards a contradiction
that packet p is still in the same buffer at the end of time step t+�wr� and identifying
the packets that cause this delay, we know that those packets must have been injected
no later than time step t (rather than time t + �wr� − 1). This is because packets
injected after time step t will not delay packet p if the protocol is a time priority
protocol. This allows us to prove the lemma with the relaxed condition that r ≤ 1/d.
For completeness we give below the full proof.

Proof. We prove that any packet that arrives at any buffer at time step t leaves
this buffer by time step t+ �wr�. The proof is by induction on t.

We prove the base of the induction for any t ≤ dwr. Let p be a packet that arrives
at the buffer at the tail of edge e at time t ≤ dwr. Assume towards a contradiction
that p is in the same buffer at the end of time step t+ �wr�. This means that during
the �wr� time steps in [t+1, t+�wr�] some other packet was sent over edge e (since we
consider a greedy protocol). We can therefore identify �wr� + 1 packets that require
edge e (these packets are the packet p itself and the �wr� packets that were sent over
e). These packets must have been injected into the system by the end of time step
t; any packet injected after t will not delay p according to a time priority protocol.
Now, by the definition of the adversary the number of packets that require e and are
injected by the end of any time step t ≤ dwr is at most 	dr
�wr�. Since we assume
r ≤ 1/d this is at most �wr�. This is a contradiction to the fact that we identified
�wr�+ 1 packets.

We now prove the claim for any t > dwr. This is done based on the induction
hypothesis that for any packet that arrives at some buffer at time t′ < t, this packet
leaves this buffer by time step t′ + �wr�. Let p be a packet that arrives at the buffer
at the tail of edge e at some time step t. Consider any packet that requires edge e and
was injected by time step t − d�wr�. Using the induction hypothesis we know that
such a packet left the buffer into which it was injected by time step t− d�wr�+ �wr�,
left the next buffer by time step t − d�wr� + 2�wr�, and left the ith buffer on its
path by time step t − d�wr� + i�wr�. It therefore arrived at its destination by time
step t − d�wr� + d�wr� = t (since the length of its path is at most d, and all its
“arrival times” are earlier than t, so the induction hypothesis holds). It follows that
any packet that can delay packet p from going over edge e must be injected at time
step t− d�wr�+1 or later. Now assume towards a contradiction that packet p is still
at the tail of edge e at the end of time step t + �wr�. That is, there are �wr� other
packets that crossed edge e in [t + 1, t + �wr�]. As before, this identifies �wr� + 1
distinct packets that require edge e and are injected by the end of time step t; any
packet injected after t will not delay p since the protocol is a time priority protocol.
However, we know that any packet injected by time step t − d�wr� already left the
network by the end of time step t. Therefore those �wr�+ 1 packets must have been
injected in [t−d�wr�+1, t]. There are �wr�d time steps in this interval; therefore the
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number of packets that require e and can be injected during this interval is bounded
by 	dr
 �wr�. Since r ≤ 1/d this is at most �wr�, a contradiction.

We now show that similar results hold when the adversary is allowed to initiate the
system with an arbitrary set of packets in the network. In this case, the requirement
for the rate is that it is less than (rather than at most) 1/(d + 1) (or 1/d for time
priority protocols). This follows from the fact that if an adversary starts the system
with some initial set of packets and then injects packets as a (w, r) adversary, then
the same sequence of packets can be given by an adversary that starts the system
with an empty initial configuration and then injects packets as a (w∗, r∗) adversary
for any r∗ > r and an appropriately chosen w∗. In the following we call an initial
configuration an S-initial-configuration, for S ≥ 0, if S is the maximum, over the
edges e ∈ E, of the number of packets requiring e, in the initial configuration. We
now give the following observation.

Observation 4.4. Any sequence of packets given by a (w, r) adversary that starts
with an S-initial-configuration can be given by a (w∗, r∗) adversary that starts with a
0-initial-configuration (i.e., with empty buffers) for any r∗ > r and w∗ = 	S+w+1

r∗−r 
.
Proof. We show that indeed a (w∗, r∗) adversary can inject the same sequence of

packets without the need of an initial nonempty configuration. The new adversary
will start with an empty configuration, will inject the packets of the initial state in
time step 1, and will later inject in every time step t the same packets that the old
adversary injected in time step t−1. By construction the new adversary starts with an
empty configuration. It remains therefore to show that it is a valid (w∗, r∗) adversary.

To see that we show that in every consecutive w∗ time steps the adversary injects
at most �w∗r∗� packets requiring any particular edge. We first note that

�w∗r∗�−w∗r > w∗r∗−1−w∗r = w∗(r−r∗)−1 =

⌈
S + w∗ + 1

r∗ − r
⌉
(r−r∗)−1 ≥ S+w .

Therefore,

�w∗r∗� > S + w + w∗r ≥ S + wr + w∗r ≥ S +

⌈
w∗

w

⌉
�wr� .

We have two types of time intervals: one time interval that includes time step
1 (i.e., [1, w∗]) and any other time interval of w∗ consecutive time steps. For the
latter case, the new adversary injects in some time interval [τ, τ + w∗ − 1] the same
packets as the old adversary injected in time interval [τ −1, τ −1+w∗−1]. For every
edge e the maximum number of packets requiring e injected by the (w, r) adversary
is at most 	w∗

w 
�wr�, so the new adversary does not violate its constraints. For time
interval [1, w∗], the number of packets requiring any particular edge given by the
(w, r) adversary, either in the initial configuration or the first w∗ time steps, is at
most S + 	w∗

w 
�wr�.
The following two corollaries now follow immediately from the above observation

and from Theorems 4.1 and 4.3.
Corollary 4.5. For any network, if the system is started with an S-initial-

configuration, the sequence of packets is injected by a (w, r) adversary with r < 1/(d+
1) and the schedule is a greedy schedule, then no packet stays in the same buffer more
than �	S+w+1

1
d+1−r


 · 1
d+1� time steps.

Corollary 4.6. For any network, if the system is started with an S-initial-
configuration, the sequence of packets is injected by a (w, r) adversary with r < 1/d
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and the protocol is a time priority protocol, then no packet stays in the same buffer
more than �	S+w+1

1
d−r


 · 1
d� time steps.

5. Conclusions. In this paper we show upper and lower bounds on the rates at
which FIFO is stable. These results improve upon previous bounds [4, 11, 15]. We
note that our lower bounds use shortest-paths (and hence noncircular) routes.

We also show that any greedy protocol is always stable against a (w, r) adversary
for r < 1/(d + 1), where d is the length of the longest route used (or r < 1/d for a
certain class of protocols). Results in [7] show that the protocol FTG (and in fact
also LIFO and NTS) can be unstable for arbitrarily low rates. The proofs there use a
network and a set of paths such that in order to show that FTG is unstable for rate
r, packets with paths of length 16/r are used. In view of these results, our bounds on
r, in terms of d, are optimal up to a small constant factor. Furthermore, our stability
results indicate that in order to show that FIFO can be unstable at arbitrarily low
rates, one would need correspondingly long paths for the packets, as opposed to the
(small) constant size networks (and hence constant size packet routes) used to prove
previous results on the instability of FIFO.

The technique we use for the instability result, of constructing gadgets and chain-
ing them, can be applied to various gadgets. For example, one can extract a gadget
structure from the constructions of [4] or [11], compose them as in Theorem 3.17,
and improve on the original bounds. Conceptually, our lower bound consists of two
elements: the chain idea and a “good” gadget. We believe that this technique may
lead to further improvements.

Appendix: Asymptotic bounds for Lemma 3.6. In this appendix we give
asymptotic bounds for the parameters n and S0 used in Lemma 3.6. Specifically, we
show the following. Let ε > 0 be given. We define the following quantities:

r =
1

2
+ ε ,(5.1)

Ri =
1− r
1− ri for all i ≥ 0 ,(5.2)

n = max

(
log ε− 2

log r
, 1− 1

log r

)
,(5.3)

S0 = max

(
2n,

n

2(Rn −Rn+1)

)
.(5.4)

We prove that n = Θ(log 1
ε ) and S0 = Θ(nr−n) = Θ(1

ε log
1
ε ) when ε→ 0+ (i.e., since

all quantities are functions of ε, we may consider the case when ε→ 0+).
We remark that in what follows we do not attempt to get tight constant factors.

We use only crude estimates that, however, allow us to prove tight asymptotic bounds.
We start with n. Note first that by (5.1), log ε < log r, and hence log ε − 2 <

log r − 1. For ε < 1
2 , we also have log r < 0, and hence log ε−2

log r > 1 − 1
log r . It follows

from (5.3) that for ε < 1/2, n = log ε−2
log r . Moreover, for 0 < ε < 1/

√
2− 1/2, we have

1/2 < r < 1/
√
2, and therefore

log ε− 2

−1 < n <
log ε− 2

−1/2 .

The latter bounds are equivalent to

log
1

ε
+ 2 < n < 2 log

1

ε
+ 4 ,(5.5)



302 ZVI LOTKER, BOAZ PATT-SHAMIR, AND ADI ROSÉN

and hence, for ε→ 0+, we have that

n = Θ

(
log

1

ε

)
.(5.6)

We now consider S0. To show the claim, we bound S0 for 0 < ε < 1/4. We start
by estimating the difference Rn −Rn+1. Using (5.2) we have

Rn −Rn+1 =
1− r
1− rn −

1− r
1− rn+1

=
(1− r)(1− rn+1)− (1− r)(1− rn)

(1− rn)(1− rn+1)

=
1− rn+1 − r + rn+2 − 1 + rn + r − rn+1

(1− rn)(1− rn+1)

= rn · 1 + r2 − 2rn+1

(1− rn)(1− rn+1)
.(5.7)

Using (5.7), we bound (Rn − Rn+1)/r
n from both sides by constants as follows. For

0 < ε < 1/4 we have 1
2 < r <

3
4 , and by (5.5) we have n > 4. Hence

1 < 1 + r2 − 2rn+1 <
1 + r2 − 2rn+1

(1− rn)(1− rn+1)
<

1 + r2 − 2rn+1

1
4

< 8 .(5.8)

Therefore, Rn − Rn+1 = Θ(rn) for ε → 0+. Moreover, for 0 < ε < 1/32 we have by
(5.7), (5.8), and (5.5) that Rn −Rn+1 <

1
4 , and hence 2n < n

2(Rn−Rn+1)
. It therefore

follows from (5.4) that for ε→ 0+,

S0 =
n

2(Rn −Rn+1)
= Θ(nr−n) ,(5.9)

as desired. Finally, note that by (5.3) we have that for ε < 1/2,

nr−n = nr−
log ε−2
log r = 4n2− log ε =

4n

ε
.(5.10)

Combining (5.6), (5.9), and (5.10), we conclude that S0 = Θ
(

1
ε log

1
ε

)
for ε→ 0+.
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Abstract. It is shown that in the infinite square grid the density of every (r,≤ 2)-identifying
code is at least 1/8 and that there exists a sequence Cr of (r,≤ 2)-identifying codes such that the
density of Cr tends to 1/8 when r → ∞. In the infinite triangular grid a sequence C′

r of (r,≤ 2)-
identifying codes is given such that the density of C′

r tends to 0 when r →∞.
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1. Introduction. Assume that G is an undirected graph and r > 0. Denote
by V the set of vertices of G. The graphic distance d(x, y) between any two vertices
x, y ∈ V is the number of edges on any shortest path from x to y. A subset C ⊆ V
is called an (r,≤ l)-identifying code in G if for every subset F ⊆ V of size at most l,
the set of codewords (i.e., elements of C) that are within graphic distance r from at
least one element in F uniquely identifies F . In other words, if we denote

Br(v) = {x ∈ V | d(x, v) ≤ r},

and

Ir(v) = Br(v) ∩ C

for all v ∈ V , and

Ir(F ) =
⋃
v∈F

Ir(v)

for all F ⊆ V , then C is (r,≤ l)-identifying in G if the sets Ir(F ) are different for
all F of size at most l. In particular, since Ir(∅) = ∅, this implies that Ir(F ) 	= ∅
whenever F 	= ∅. The set Ir(F ) is called the I-set of F .

Such codes were introduced in [15]. The motivation is that G represents a multi-
processor architecture: each vertex corresponds to a processor and each edge to a
dedicated link between two processors. When maintaining the system, some proces-
sors (the codewords) are assigned the task of testing their r-neighbors, and each of
them sends the central controller one bit of information telling whether it detected
any problems or not. Based on the complete set of answers, the central controller
should be able to identify the problem points under the assumption that there are
at most l of them. The requirement is clearly that the codewords should form an
(r,≤ l)-identifying code.
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The architectures that have been mainly studied are the (infinite) square grid (in
which V = Z

2, and two vertices are adjacent if their Euclidean distance is 1), the
(infinite) king grid (in which V = Z

2, and two vertices are adjacent if their Euclidean
distance is 1 or

√
2), the (infinite) triangular grid T (in which

V =

{
i(1, 0) + j

(
1

2
,

√
3

2

)
| i, j ∈ Z

}
,

and two vertices are adjacent if their Euclidean distance is 1), and finally the hexagonal
mesh and binary hypercubes, which will not be considered in this paper.

Denote Rn = {(x, y) ∈ Z
2 | |x| ≤ n, |y| ≤ n}. In the square and king grids the

density D of a code C is defined as

D = lim sup
n→∞

|C ∩Rn|
|Rn| .

Quite a lot is known about how small the density D of an (r,≤ l)-identifying code
can be in the king grid, as summarized in the following table:

King grid
l = 1 l = 2 l ≥ 3

r = 1 2
9

[7, 3] 9
22
≤ D ≤ 3

7
[11] do not exist [11]

r = 2 1
4r

[2] 31
120
≤ D ≤ 3

10
[11] do not exist [11]

r ≥ 3 1
4r

[2] 1
4

[11] do not exist [11]

An entry like 2
9 means that there is such an identifying code with density 2

9 , and that
the density of any such code is at least 2

9 ; the entry 9
22 ≤ D ≤ 3

7 means that the
density must be at least 9

22 and that there exists a code with density D = 3
7 .

The purpose of this paper is to consider the triangular and square grids in the
case l = 2 and r ≥ 2.

In the triangular grid we denote

v(i, j) = i(1, 0) + j

(
1

2
,

√
3

2

)
and

Tn = {v(i, j) | |i| ≤ n, |j| ≤ n},
and the density D of a code C is

D = lim sup
n→∞

|C ∩ Tn|
|Tn| .

For the triangular grid, the corresponding table reads as follows:

Triangular grid
l = 1 l = 2 l ≥ 3

r = 1 1
4

[15] 9
16

[12] do not exist [12]

r ≥ 2 2
6r+3

≤ D ≤
{

1
2r+4

if 4 | r
1

2r+2
otherwise

[1] D → 0 when r →∞ do not exist [12]

For l = 1, r = 3, D ≤ 2
17

and for l = 1, r = 5, D ≤ 1
13

; see [3].
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By the entry D → 0, when r → ∞, we mean that there is a sequence of (r,≤ 2)-
identifying codes with densities Dr such that Dr → 0 when r →∞ (see Theorem 1).

Finally, we have the corresponding table for the square grid:

Square grid
l = 1 l = 2 l ≥ 3

r = 1 15
43
≤ D ≤ 7

20
[4, 5, 8] 1

2
[10]

1 if l = 3 [10]
do not exist if l ≥ 4 [10, 16]

r ≥ 2 3
8r+4

≤ D ≤
{

2
5r

if 2 | r
2r

5r2−2r+1
if 2 � | r [1, 14] D → 1

8
when r →∞ do not exist

For l = 1, r = 2, D ≤ 5
29

by [14];

for l = 1, r = 3, 4, 5, 6, we have the upper bounds 1
8
, 8
85

, 2
25

, 3
46

from [3].

Here the entryD → 1
8 when r →∞ comes from Theorems 3 and 5; see also Theorem 6.

To be precise, what we prove is that for all r, the density of an (r,≤ 2)-identifying
code in the square grid must be at least 1

8 , and that there is a sequence of (r,≤ 2)-
identifying codes with densities Dr such that Dr → 1

8 when r →∞.
For results in the hexagonal mesh, we refer to [1, 3, 6, 8, 13, 15].
In a closely related problem, the requirement is that the sets Ir(v) for v ∈ V \C are

nonempty and no two are the same set; such a code is called r-locating-dominating.
For results on such codes, see, e.g., [9, 17, 18].

2. On the triangular grid. The following theorem shows that in the triangular
grid we have a sequence of (r,≤ 2)-identifying codes with densities Dr such that
Dr → 0 when r →∞.

Theorem 1. In the triangular grid there is an (r,≤ 2)-identifying code with
density 3r+1

(2r+1)(r+1) .

Proof. Denote

Lk = {v(i, k(r + 1)) | i ∈ Z}
and

C1 =
⋃
k∈Z

Lk.

Denote further

C2 = {v(i, j) | i ≡ 0 mod 2r + 1}.
We claim that C1 ∪ C2 is (r,≤ 2)-identifying. It is easy to check that it has the
required density.

We first make two preliminary observations: if v = v(a, k(r + 1) + h), then
• Ir(v)∩Lk is trivially empty if |h| > r, and Ir(v)∩Lk has cardinality 2r+1−|h|
if |h| ≤ r, and

• the set Ir(v)∩Lk is symmetric with respect to the vertical line passing through
v.

Assume that F ⊆ V has cardinality at most two and is unknown to us, but that
we know Ir(F ).

Obviously Ir(F ) is empty if and only if F is empty.
Assume first that Ir(F ) contains elements from at least three different lines Lk;

the lines Lhigh and Llow being the highest and lowest among them. Then |F | = 2,
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and only the vertex vhigh in F with higher y-coordinate affects Ir(F )∩Lhigh. The two
observations made above now immediately tell us the x- and y-coordinates of vhigh.
In the same way we find the other vertex in F by considering Ir(F ) ∩ Llow.

Assume then that Ir(F ) contains only vertices from one of the lines Lk, say
Ls. Then F ⊆ Ls. If v(imin, s(r + 1)) and v(imax, s(r + 1)) are the vertices in
Ir(F ) ∩ Ls with the smallest and largest x-coordinates, then F consists of the points
v(imin + r, s(r + 1)) and v(imax − r, s(r + 1)) (which may coincide).

Assume finally that Ir(F ) contains elements from exactly two different lines Lk. If
they are Ls and Ls+j for some j ≥ 2, then F consists of the middle point in Ir(F )∩Ls

and the middle point in Ir(F ) ∩ Ls+j . So assume that they are Ls and Ls+1. Then
F ⊆ A, where A = {v(i, j) | s(r + 1) ≤ j ≤ (s+ 1)(r + 1)}.

We now define four lines H1, H2, K1, and K2 as follows:
• By considering the leftmost point in Ir(F ) ∩ Ls+1, we find a line H1 with
slope

√
3 such that H1 ∩ A must contain a point in F—and the other point

in F (if there is one) belongs to H1 ∪ Ls or lies to the right of H1.
• By considering the rightmost point in Ir(F ) ∩ Ls, we find a line H2 with
slope

√
3 such that H2 ∩ A must contain a point in F—and the other point

in F (if there is one) belongs to H2 ∪ Ls+1 or lies to the left of H2.
• By considering the leftmost point in Ir(F )∩Ls, we find a line K1 with slope
−√3 such that K1 ∩A must contain a point in F—and the other point in F
(if there is one) is in K1 ∪ Ls+1 or lies to the right of K1.
• By considering the rightmost point in Ir(F ) ∩ Ls+1, we find a line K2 with
slope −√3 such that K2 ∩A must contain a point in F—and the other point
in F (if there is one) is in K2 ∪ Ls or lies to the left of K2.

If H1 = H2, then by the above description F is a subset of the set consisting of H1∩A,
the part of Ls which lies to the left of H1 ∩ Ls and of the part of Ls+1 which lies to
the right of H1∩Ls+1. But due to the structure of this path (and C1), the points in F
are the one obtained by taking r steps to the right along this path from the leftmost
codeword in Ir(F )∩Ls, and the one obtained by taking r steps to the left along this
path from the rightmost codeword in Ir(F ) ∩ Ls+1 (and these two points of F may
coincide).

In the same way we find F if K1 = K2; so assume that H1 	= H2 and K1 	= K2.
Since H1, H2, K1, and K2 each contain at least one point of F , we know that

either F is the set F1 consisting of the vertices in H1 ∩K2 and H2 ∩K1 (the top and
bottom corners of the parallelogram formed by H1, H2, K1, and K2) or F is the set
F2 consisting of the vertices in H1 ∩K1 and H2 ∩K2.

But we can separate between these two remaining cases using C2. Denote Ai =
{v(i, j) | j ∈ Z}. Then H1 = Ai and H2 = Aj for some i < j. By the definition of
C2, there is an index k such that Ak ⊆ C2 and |k − i| ≤ r. If k < j, then the highest
point in Ir(F1)∩Ak is not in Ir(F2); if k ≥ j, then the lowest point in Ir(F1)∩Ak is
not in Ir(F2).

3. On the square grid. We now consider the square grid.
Because always Ir((−1,−1), (1, 1)) = Ir((−1,−1), (0, 0), (1, 1)) for r ≥ 2, there

cannot exist an (r,≤ l)-identifying code with r ≥ 2 and l ≥ 3.
The following theorem gives a useful sufficient condition for a code to be (r,≤ 2)-

identifying in the square grid.
Theorem 2. Assume that E ⊆ Z

2. If every translate of the set

A = {(−r − 1, 0), (−r, 0), (0, r + 1), (0, r), (r + 1, 0), (r, 0), (0,−r − 1), (0,−r)},
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every translate of the set

B = {(−r, 0), (−r + 1, 1), (−r + 2, 2), . . . , (0, r)},
and every translate of the set

C = {(0, r), (1, r − 1), (2, r − 2), . . . , (r, 0)}
contain at least one element of E, then E is (r,≤ 2)-identifying in the square grid.

Proof. If F 	= ∅, say v ∈ F , then (v + B) ∩ E 	= ∅ by the assumption, and hence
Ir(F ) 	= ∅.

Assume that F1 and F2 are two different nonempty subsets of Z
2 each containing

at most two elements and that Ir(F1) = Ir(F2). Let R be the smallest rectangle which
contains F1 ∪ F2 and whose sides have slopes 1 and −1; possibly R reduces to a line
segment.

Assume first that R is a line segment. Assume, for instance, that R has slope −1
and the upper left-hand endpoint v is in F1 but not F2 (the other cases are treated
similarly). Then (v+B)∩E 	= ∅, and any codeword in (v+B)∩E belongs to Ir(F1)
but not to Ir(F2).

Assume therefore that R does not reduce to a line segment.
Each side of R must contain a point from both F1 and F2. Indeed, assume that,

for instance, the upper left-hand side contains a vertex v ∈ F1 but no point of F2 (the
other cases are similar). By assumption, the set v+B contains a codeword of E, and
clearly this codeword belongs to Ir(F1) but not to Ir(F2).

But since each side of R contains a point from F1, and |F1| ≤ 2, the only possibility
is that F1 consists of two diagonally opposite corners of R. By the same argument,
F2 must then consist of the other two diagonally opposite corners.

If any of the sides of R contains more than r + 1 grid points, say the upper left-
hand side (the other cases are similar), and v ∈ F2, say, is its upper endpoint, then
v+B contains a codeword, by assumption, and this codeword is in Ir(F2) but not in
Ir(F1).

Assume therefore that each side of R contains at most r+1 grid points. Without
loss of generality, the leftmost corner of R is the point (−1, 0), and this point belongs
to F1. In particular, this point belongs to Br−1((−r, 0)). The bottom corner belongs
to F2 and is one of the points (0,−1), (1,−2), . . . , (r− 1,−r); in particular, it lies in
the ball Br−1((0,−r)). The top corner of R also belongs to F2 and is one of the points
(0, 1), (1, 2), . . . , (r − 1, r); in particular it lies in the ball Br−1((0, r)). Finally the
rightmost corner of R must be one of the grid points in the square with the corners
(1, 0), (r, r − 1), (r,−r + 1), (2r − 1, 0), so it lies in the ball Br−1((r, 0)). Now the
claim follows from the fact that A contains at least one codeword. Any two points in
A which are not neighbors in the graph are at least graphic distance 2r apart. This,
the triangle inequality, and what we have just proved show that every element of A is
within distance r from a unique corner of R, and any codeword in A therefore belongs
to Ir(F1) \ Ir(F2) or Ir(F2) \ Ir(F1).

The following theorem is useful when we want to determine the asymptotic be-
havior of the density of (r,≤ 2)-identifying codes.

Theorem 3. For all r, if a code is (r,≤ 2)-identifying in the square grid, then
its density is at least 1

8 .
Proof. The set A of Theorem 2 always contains at least one codeword of an (r,

≤ 2)-identifying code since the I-sets of the sets {(−1, 0), (1, 0)} and {(0,−1), (0, 1)}
(and any of their translates) must be distinct. Because A consists of eight elements,
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independently of r, the claim follows by going through all translates of the set A;
cf. [1, section 2].

For small values of r we get a better lower bound.
Theorem 4. If a code is (r,≤ 2)-identifying in the square grid, then its density

is at least 1
(2r+1) .

Proof. The I-sets of {(−1,−1)} and {(−1,−1), (0, 0)} (and any of their translates)
must be distinguishable. The symmetric difference ofBr((−1,−1)) andBr((−1,−1))∪
Br((0, 0)) contains 2r + 1 vertices. The claim follows for a fixed r as in the previous
proof.

Theorem 5. There is a sequence (Dr) such that Dr → 1
8 when r →∞, and for

every r there exists an (r,≤ 2)-identifying code in the square grid with density Dr.
Proof. Denote by H the set of residue classes of 0, 2, 4, . . . , 2r modulo 4r + 1,

and by K the set of residue classes of 0, 1, 2, . . . , 2r + 1 modulo 4r + 1.
We claim that the code C1 = {(a, b) | a+ b ∈ H, a− b ∈ K} has the property that

every set (x, y) +A (where A is as in Theorem 2) contains at least one codeword; the
density of C1 is clearly 2(r + 1)2/(4r + 1)2. It is easy to check that for any integer n
the set {n − r − 1, n − r, n + r, n + r + 1} contains an element of H. Apply this to
n = x + y. If x + y − r − 1 ∈ H, then at least one of the points (x − r − 1, y) and
(x, y− r− 1) of (x, y)+A belong to C1, because x− y− r− 1 or x− y+ r+1 belongs
to K. If x+ y− r ∈ H, then (x− r, y) ∈ C1 or (x, y− r) ∈ C1; if x+ y+ r ∈ H, then
(x + r, y) ∈ C1 or (x, y + r) ∈ C1; if x + y + r + 1 ∈ H, then (x + r + 1, y) ∈ C1 or
(x, y + r + 1) ∈ C1.

To complete the construction, we take C2 = {(a, b) | a ≡ 0 mod r + 1}. Then
C1∪C2 clearly satisfies the conditions of Theorem 2, and is hence (r,≤ 2)-identifying,
and its density tends to 1

8 , when r tends to infinity.
The previous proof was quite simple, because we did not pay too much attention

to the density of the resulting codes.
Theorem 6. Let r ≡ 2 mod 8, r ≥ 18. Then there exists an (r,≤ 2)-identifying

code in the square grid with density r+1
8r+4 .

Proof. Suppose r ≡ 2 mod 8 and r ≥ 18. Denote (see Figure 1 for the case
r = 18)

S = {(−r − 1, 0) + k(8, 8) | k ∈ Z}
and further

F =
⋃
i∈Z

(S + i(2, 1)).

In what follows, by a line with slopes 1 and −1 we always mean a diagonal which
intersects with Z

2.
Obviously, every eighth point in a line with slope 1 belongs to F . Also in any line

with slope −1 every eighth point is in F . Indeed, if f ∈ F , then f + q(8,−8) ∈ F for
q ∈ Z (also f + q(2,−3) ∈ F and thus every diagonal with slope −1 has an element
of F ).

Let

E0 =

 ⋃
i∈{0,1,...,2r}

(S + i(2, 1))

 ∪ {(r − 1 + 3 + 8k, 3 + 8k) | k ∈ Z}.

Thus E0 consists of a part of F with some additional points on the diagonal (r −
1, 0) + (a, a), a ∈ Z.
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S E 0

Fig. 1. A part of the code E for r = 18. Codewords are the large black circles and the circled
dot is the origin.

We define the code

E = Er =
⋃
j∈Z

(E0 + j(2r + 1 + 2, 2)).

Hence E consists of translates of E0 shifted diagonally up by j(2, 2) and horizontally
by j(2r + 1, 0).

Observe that E0 is periodic with period (8, 8) and hence the density of E equals
2r+2

8(2r+1) =
r+1
8r+4 .

In what follows we show that E is (r,≤ 2)-identifying. This is done by checking
the conditions of Theorem 2. We will use the same notation in this theorem for the
sets A, B, and C.

Every translate of B contains trivially at least one codeword of E, since at least
every eighth point in a diagonal with slope 1 belongs to E.



ON IDENTIFYING CODES IN GRIDS 311

Every translate of C also contains at least one codeword. Indeed, there can be
at most 14 consecutive noncodewords in a line with slope −1. This follows since
in E0 ∩ F there can be a gap of at most seven noncodewords and in its translate
E0 +(2r+1+2, 2) there can be another seven. Because |C| = r+1 ≥ 19, there must
be a codeword in every translate of C.

Consider an arbitrary translate (s+ a, a) +A.
The part

A1 = (s+ a, a) + {(−r − 1, 0), (−r, 0), (0, r), (0, r + 1)}
of (s + a, a) + A consists of points on two diagonals (s − r − 1, 0) + (b, b) and (s −
r, 0) + (b, b), b ∈ Z, and the other half

A2 = {(s+ r + 1, 0) + (a, a), (s+ r + 1, 0) + (a− r − 1, a− r − 1)}

∪{(s+ r, 0) + (a, a), (s+ r, 0) + (a− r, a− r)}
of (s + a, a) + A consists of points on two other diagonals, which are the same two
diagonals shifted diagonally up by (2, 2) and horizontally by (2r+1, 0). Shifting back,
we know that A2 contains at least one codeword if and only if the set

A3 := {(s− r, 0) + (a− 2, a− 2), (s− r, 0) + (a− r − 3, a− r − 3)}

∪{(s− r − 1, 0) + (a− 2, a− 2), (s− r − 1, 0) + (a− r − 2, a− r − 2)}
does. We now consider A1 ∪A3 instead.

If s 	≡ 2r mod 2r + 1, then our two diagonals are from the same translate of E0.
If none of the four points of A1 ∪A3 in

(s− r, 0) + {(a, a), (a+ r, a+ r), (a− 2, a− 2), (a− r − 3, a− r − 3)}
is in the code, then (shifting back by (2, 1)) none of the points in

(s−r−1, 0) + {(a−1, a−1), (a+r−1, a+ r−1), (a−3, a−3), (a−r−4, a−r−4)}
is in the code either. But then at least one of the points of A1 ∪A3 in

(s− r − 1, 0) + {(a, a), (a+ r + 1, a+ r + 1), (a− 2, a− 2), (a− r − 2, a− r − 2)}
(1)

must be in the code, because

a, a+ r + 1, a− 2, a− r − 2, a− 1, a+ r − 1, a− 3, a− r − 4

belong to distinct residue classes modulo eight when r ≡ 2 mod 8.
If s ≡ 2r mod 2r + 1, then our two diagonals are the rightmost diagonal in a

translate of E0 and the leftmost diagonal in the next translate of E0. Choose j so
that s− r−1 = r−1+ j(2r+1). Then E contains all the points (s− r−1, 0)+(b, b),
where b ≡ 3+2j mod 8 or b ≡ 4+2j mod 8; and in particular, for all b ≡ 4+2j mod 8
also the point obtained by shifting by −2r(2, 1) is in E. From (1) and the fact that the
residue classes of a, a+r+1, a−2, and a−r−2 are a, a+3, a+4, and a+6, we see that
the only way none of the points in (1) would be in the code is if 3+ 2j ≡ a+1 mod 8
and 4 + 2j ≡ a+ 2 mod 8, and then (s− r − 1, 0) + (a+ 2r − 2, a+ 2r − 2) ∈ E, and
hence v = (s−r−1, 0)+(a+2r−2, a+2r−2)−2r(2, 1) ∈ E (as we observed earlier),
and finally (s− r, 0)+(a, a) = v+(2r+1+2, 2) ∈ E, which proves the claim, because
this point is in A1 ∪A3.
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Abstract. We study contention-resolution protocols for multiple-access channels. We show
that every backoff protocol is transient if the arrival rate, λ, is at least 0.42 and that the capacity of
every backoff protocol is at most 0.42. Thus, we show that backoff protocols have (provably) smaller
capacity than full-sensing protocols. Finally, we show that the corresponding results, with the larger
arrival bound of 0.531, also hold for every acknowledgment-based protocol.
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1. Introduction. A multiple-access channel is a broadcast channel that allows
multiple users to communicate with each other by sending messages onto the channel.
If two or more users simultaneously send messages, then the messages interfere with
each other (collide), and the messages are not transmitted successfully. The channel
is not centrally controlled. Instead, the users use a contention-resolution protocol to
resolve collisions. Thus, after a collision, each user involved in the collision waits a
random amount of time (which is determined by the protocol) before resending.

Following previous work on multiple-access channels, we work in a time-slotted
model in which time is partitioned into discrete time steps. At the beginning of each
time step, a random number of messages enter the system, each of which is associated
with a new user which has no other messages to send. The number of messages that
enter the system is drawn from a Poisson distribution with mean λ. During each time
step, each message chooses independently whether to send to the channel. If exactly
one message sends to the channel during the time step, then this message leaves the
system and we call this a success. Otherwise, all of the messages remain in the system
and the next time step is started. Note that when a message sends to the channel
this may or may not result in a success, depending on whether any other messages
send to the channel.

The quality of a protocol can be measured in several ways. Typically, one mod-
els the execution of the protocol as a Markov chain. If the protocol is good (for a
given arrival rate λ), the corresponding Markov chain will be recurrent (with proba-
bility 1, it will eventually return to the empty state in which no messages are waiting).
Otherwise, the chain is said to be transient (and we also say that a protocol is tran-
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sient). Note that transience is a very strong form of instability. In particular, if we
focus on any finite set of “good” states, then if the chain is transient, the probability
of visiting these states at least N times during the infinite run of the protocol is expo-
nentially small in N . (This follows because the relevant Markov chain is irreducible
and aperiodic.)

Another way to measure the quality of a protocol is to measure its capacity. A
protocol is said to achieve full throughput at rate λ if, when it is run with input rate λ,
the average success rate is λ. The capacity of the protocol [4] is the maximum arrival
rate at which it achieves full throughput.

The protocols that we consider in this paper are acknowledgment-based protocols.
In the acknowledgment-based model, the only information that a user receives about
the state of the system is the history of its own transmissions. An alternative model
is the full-sensing model, in which every user listens to the channel at every step,
regardless of whether it sends during the step.1

One particularly simple and easy-to-implement class of acknowledgment-based
protocols is the class of backoff protocols. A backoff protocol is a sequence of prob-
abilities p0, p1, . . . . If a message has sent unsuccessfully i times before a time step,
then, with probability pi, it sends during the time step. Otherwise, it does not send.
Kelly and MacPhee [13, 14, 17] gave a formula for the critical arrival rate, λ∗, of a
backoff protocol, which is the minimum arrival rate for which the expected number
of successful transmissions that the protocol makes is finite.2

Perhaps the best-known backoff protocol is the binary exponential backoff protocol
in which pi = 2−i. This protocol is the basis of the Ethernet protocol of Metcalfe and
Boggs [18].3 Kelly and MacPhee showed that the critical arrival rate of this protocol
is ln 2. Thus, if λ > ln 2, then binary exponential backoff achieves only a finite
number of successful transmissions (in expectation). Aldous [1] showed that the binary
exponential backoff protocol is not a good protocol for any positive arrival rate λ. In
particular, it is transient and the expected number of successful transmissions in
t steps is o(t). MacPhee [17] posed the question of whether there exists a backoff
protocol which is recurrent for some positive arrival rate λ.

In this paper, we show that there is no backoff protocol which is recurrent for
λ ≥ 0.42. (Thus, every backoff protocol is transient if λ ≥ 0.42.) Also, every backoff
protocol has capacity at most 0.42. As far as we know, our result is the first proof
showing that backoff protocols have smaller capacity than full-sensing protocols. In
particular, Mosely and Humblet [20] have discovered a full-sensing protocol with ca-
pacity 0.48776.4 Finally, we show that no acknowledgment-based protocol is recurrent
for λ ≥ 0.530045.

1In practice, it is possible to implement the full-sensing model when there is a single channel,
but this becomes increasingly difficult in situations where there are multiple shared channels, such
as optical networks. Thus, acknowledgment-based protocols are sometimes preferable to full-sensing
protocols. For work on contention-resolution in the multiple-channel setting, see [6].

2If λ > λ∗, then the expected number of successes is finite, even if the protocol runs forever.
They showed that the critical arrival rate is 0 if the expected number of times that a message sends
during the first t steps is ω(log t).

3There are several differences between the “real-life” Ethernet protocol and “pure” binary expo-
nential backoff, but we do not describe these here.

4Mosely and Humblet’s protocol is a “tree protocol” in the sense of Capetanakis [3] and Tsybakov
and Mikhailov [25]. For a simple analysis of the protocol, see [26]. Vvedenskaya and Pinsker have
shown how to modify Mosely and Humblet’s protocol to achieve an improvement in the capacity (in
the seventh decimal place) [27].
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1.1. Related work. Backoff protocols and acknowledgment-based protocols
have also been studied in an n-user model, which combines contention-resolution
with queueing. In this model, it is assumed that n users maintain queues of mes-
sages, and that new messages arrive at the tails of the queues. At each step, the
users use contention-resolution protocols to try to send the messages at the heads of
their queues. It turns out that the queues have a stabilizing effect, so some protocols
(such as “polynomial backoff”) which are unstable in our model [14] are stable in the
queueing model [12]. We will not describe queueing-model results here but refer the
reader to [2, 9, 12, 22].

Much work has gone into determining upper bounds on the capacity that can
be achieved by a full-sensing protocol. The current best result is due to Tsybakov
and Likhanov [24], who have shown that no protocol can achieve capacity higher
than 0.568. (For more information, see [4, 10, 19, 23].) In the full-sensing model, one
typically assumes that messages are born at real “times” which are chosen uniformly
from the unit interval. Recently, Loher [15, 16] has shown that if a protocol is required
to respect these birth times, in the sense that packets must be successfully delivered
in their birth order, then no protocol can achieve capacity higher than 0.4906. Intu-
itively, the “first-come-first-served” restriction seems very strong, so it is somewhat
surprising that the best-known algorithm without the restriction (that of Vvedenskaya
and Pinsker) does not beat this upper bound. The algorithm of Humblet and Mosely
satisfies the first-come-first-served restriction.

2. Markov chain background. A Markov chain X = {X0, X1, . . .} with a
countable state space Ω (see [11]) is time-homogeneous if its transition probabilities
are independent of time so Pr(Xn+1 = j | Xn = i) = Pr(X1 = j | X0 = i) for all
n, i, j. It is irreducible if every pair (i, j) of states is connected in the sense that
there is an n > 0 such that Pr(Xn+m = j | Xm = i) > 0. It is aperiodic if every
state i satisfies gcd{n | Pr(Xn+m = i | Xm = i) > 0} = 1. If the chain is irreducible
and aperiodic, then we say that it is recurrent if it returns to its start state with
probability 1. That is, it is recurrent if for some state i (and therefore for all i),
Prob[Xt = i for some t ≥ 1 | X0 = i] = 1. Otherwise, X is said to be transient. X is
positive recurrent (or ergodic) if the expected number of steps that it takes before
returning to its start state is finite. A chain is positive recurrent if and only if it has
a unique stationary distribution. The standard way to prove that a Markov chain is
positive recurrent is Foster’s theorem.

Theorem 1 (Foster [7]). A time-homogeneous irreducible aperiodic Markov
chain X with a countable state space Ω is positive recurrent if and only if there exists
a positive function f(ρ), ρ ∈ Ω, a number ε > 0, and a finite set A ⊆ Ω such that the
following inequalities hold:

E[f(X(t+ 1))− f(X(t)) | X(t) = ρ] ≤ −ε, ρ /∈ A,(1)

E[f(X(t+ 1)) | X(t) = ρ] <∞, ρ ∈ A.(2)

Basically, the idea is to use a “potential function” f to follow the progress of the
chain. The chain is positive recurrent if and only if there is a potential function f
which

1. usually decreases (equation (1)), and
2. cannot increase much (equation (2))

in a single step. Equation (1) implies that, from any state ρ /∈ A, the expected time to
reach A from ρ is at most f(ρ)/ε. This (combined with (2)) implies that the expected
return time to A is finite, which in turn implies that the chain is positive recurrent.
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(For more details, see [5].) Theorems like Theorem 1 are called “drift theorems”
because the progress of the Markov chain X is studied by focusing on the “drift” of
the potential function f . The function f is sometimes called a Lyapunov function or
a test function.

We can also use drift theorems to show that a Markov chain is not positive
recurrent. To do this we want to find a potential function f which “drifts” towards
larger potentials. Here is the theorem that we will use.

Theorem 2 (Fayolle, Malyshev, and Menshikov [5]). An irreducible aperiodic
time-homogeneous Markov chain X with countable state space Ω is not positive re-
current if there is a function f with domain Ω and there are constants C and d such
that

1. there is a state x with f(x) > C, and a state y with f(y) ≤ C,
2. E[f(X1)− f(X0) | X0 = x] ≥ 0 for all x with f(x) > C, and
3. E[ |f(X1)− f(X0)| | X0 = x] ≤ d for every state x.
We will use a similar theorem to show that a Markov chain is transient (which is

stronger than saying that it is not positive recurrent).
Theorem 3 (Fayolle, Malyshev, and Menshikov [5]). An irreducible aperiodic

time-homogeneous Markov chain X with countable state space Ω is transient if there
is a positive function f with domain Ω and there are positive constants C, d, and ε
such that

1. there is a state x with f(x) > C, and a state y with f(y) ≤ C,
2. E[f(X1)− f(X0) | X0 = x] ≥ ε for all x with f(x) > C, and
3. if |f(x) − f(y)| > d, then the probability of moving from x to y in a single

move is 0.

3. Stochastic domination and monotonicity. Suppose that X is a Markov
chain and that the (countable) state space Ω of the chain is a partial order with
binary relation ≤. If A and B are random variables taking states as values, then
B dominates A if and only if there is a joint sample space for A and B in which the
value of A is always less than or equal to the value of B. Note that there will generally
be other joint sample spaces in which the value of A can exceed the value of B. We
write A ≤ B to indicate that B dominates A. We say that X is monotonic if for any
states x ≤ x′, the next state conditioned on starting at x′ dominates the next state
conditioned on starting at x. (Formally, (X1 | X0 = x′) dominates (X1 | X0 = x).)

When an acknowledgment-based protocol is viewed as a Markov chain, the state
is just the collection of messages in the system. (Each message is identified by the
history of its transmissions.) Thus, the state space is countable and forms a partial
order with respect to the subset inclusion relation ⊆ (for multisets). We say that a
protocol is deletion resilient [8] if its Markov chain is monotonic with respect to the
subset-inclusion partial order.

Observation 4. Every acknowledgment-based protocol is deletion resilient.
Proof. Consider the states x and x′ with x ⊆ x′. Recall that each state is a set of

messages, each message being identified by its transmission history. Thus, x′ contains
all of the messages in x and possibly others. Now consider one step of the protocol.
We wish to show that the random variable denoting the next state z′ = (X1 | X0 = x′)
dominates the random variable z = (X1 | X0 = x). z′ does dominate z because we
can draw z and z′ from a joint sample space in which

• the messages in x do the same thing in both copies, and
• both copies have the same number of new arrivals, which make the same
number of send attempts in both copies.
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Now consider any message m which is either a new arrival or a member of x.
1. If m is silent during the step, then its transmission history in z′ is the same
as in z.

2. If m has a collision during the transition to z, then it also has a collision
during the transition to z′, so its transmission history in z′ is the same as
in z.

Thus, z ⊆ z′.
As we indicated earlier, we will generally assume that the number of messages

entering the system at a given step is drawn from a Poisson process with mean λ.
However, it will sometimes be useful to consider other message-arrival distributions. If
I and I ′ are message-arrival distributions, we write I ≤ I ′ to indicate that the number
of messages generated under I is dominated by the number of messages generated
under I ′.

Observation 5. If the acknowledgment-based protocol P is recurrent under the
message-arrival distribution I ′ and I ≤ I ′, then P is also recurrent under I.

Proof. Let X be the Markov chain corresponding to protocol P with arrival
distribution I with X0 as the empty state. Let X

′ be the analogous Markov chain
with arrival distribution I ′. Consider the evolution of the stochastic process (X0, X

′
0),

(X1, X
′
1), . . . . We will choose the random variable (Xi, X

′
i) from a joint probability

distribution in which
1. every message which is common to Xi and X

′
i does the same thing in both

copies;
2. the new arrivals which are drawn from I arrive in both copies and make the
same number of send attempts in both copies;

3. some additional messages may arrive in X ′
i (according to I

′).
Note that items (2) and (3) are possible since I ≤ I ′. We can now show by induction
on t that X ′

t dominates Xt. That is, when this joint distribution is used, Xt is a
subset of X ′

t. This holds for t = 0 since X0 = X ′
0. The inductive step is the same

as in the proof of Observation 4. Consider any message m which is in Xt or arrives
(according to I) just before step t+ 1.

1. If m is silent during the step, then its transmission history in X ′
t+1 is the

same as in Xt+1.
2. If m has a collision during the transition to Xt+1, then it also has a collision
during the transition to X ′

t+1.
Thus, Xt+1 ⊆ X ′

t+1. Finally, since X
′
t dominates Xt, the recurrence of X

′
t implies the

recurrence of Xt.

4. Backoff protocols. In this section, we will show that there is no backoff
protocol which is recurrent for λ ≥ 0.42. Our method will be to use the drift theorems
in section 2. Let p0, p1, . . . be a backoff protocol. Without loss of generality, we can
assume p0 = 1, since we can ignore new arrivals until they first send.5 Let λ = 0.42.
Let X be the Markov chain described in section 3 which describes the behavior of the
protocol with arrival rate λ. First, we will construct a potential function (Lyapunov
function) f which satisfies the conditions of Theorem 2, that is, a potential function
which has a bounded positive drift. We will use Theorem 2 to conclude that the chain
is not positive recurrent. Next, we will consider the behavior of the protocol under a
truncated arrival distribution, and we will use Theorem 3 to show that the protocol

5Since the arrivals are Poisson, and Poisson random variables are additive, the number of mes-
sages making their very first send on a given time step is Poisson, and the mean of this distribution
approaches λ.
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is transient. Using Observation 5 (domination), we will conclude that the protocol is
also transient with Poisson arrivals at rate λ or higher. Finally, we will show that the
capacity of every backoff protocol is at most 0.42.

We will use the following technical lemma.
Lemma 6. Let 1 ≤ ti ≤ d for i ∈ [1, k] and ∏k

i=1 ti = c. Then
∑k

i=1(ti − 1) ≤
(d− 1) log c

log d .

Proof. Let S =
∑k

i=1 ti. S can be viewed as a function of k − 1 of the ti’s;
for example, S =

∑k−1
i=1 ti + c/

∏k−1
i=1 ti. For i ∈ {1, . . . , k − 1}, the derivative of S

with respect to ti is 1 − c/(ti
∏k−1

j=1 tj). Thus, the derivative is positive if ti > tk.
Thus, S is maximized (subject to c) by setting some ti’s to 1, some ti’s to d, and at
most one ti to some intermediate value t ∈ [1, d). Given this, the maximum value of∑k

i=1(ti − 1) is s(d − 1) + t − 1, where c = dst and s = �(log c)/(log d). Let α be
the fractional part of (log c)/(log d), that is, α = (log c)/(log d)− s. We want to show
that s(d− 1) + t− 1 ≤ (d− 1)(log c)/(log d). This is true, since

(d− 1) log c
log d

− s(d− 1)− (t− 1) = α(d− 1)− c/ds + 1
= α(d− 1)− dα + 1
≥ 0.

The final inequality holds since we have equality for d = 1, and the partial derivative
with respect to d proves that the inequality holds for d > 1.

We now define some parameters of a state x. Let k(x) denote the number
of messages in state x. If k(x) = 0, then p(x) = r(x) = u(x) = 0. Other-
wise, let m1, . . . ,mk(x) denote the messages in state x, with send probabilities ρ1 ≥
· · · ≥ ρk(x). Let p(x) = ρ1 and let r(x) denote the probability that at least one of
m2, . . . ,mk(x) sends on the next step. Let u(x) denote the probability that exactly
one of m2, . . . ,mk(x) sends on the next step. Clearly u(x) ≤ r(x). If p(x) < r(x),
then we use the following (tighter) upper bound for u(x).

Lemma 7. If p(x) < r(x), then u(x) ≤ r(x)−r(x)2/2
1−p(x)/2 .

Proof. Fix a state x. We will use k, p, r, . . . to denote k(x), p(x), r(x), . . . . Since
p < r, we have k ≥ 2.

u =
k∑

i=2

ρi
1− ρi

k∏
i=2

(1− ρi) =
k∑

i=2

(ti − 1)(1− r),

where ti = 1/(1− ρi). Let d = 1/(1− p), and note that 1 ≤ ti ≤ d. By Lemma 6

u ≤ (1− r)(d− 1) log(
∏k

i=2 ti)

log d
= (1− r) p

1− p
log(1/(1− r))

log d

= (1− r) p

1− p
(− log(1− r))
(− log(1− p)) .

Now we wish to show that

(1− r) p

1− p
(− log(1− r))
(− log(1− p)) ≤

r − r2/2
1− p/2 ,

i.e., that

(1− r) (− log(1− r))
r − r2/2 ≤ (1− p) (− log(1− p))

p− p2/2
.
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This is true, since the function (1− r) (− log(1−r))
r−r2/2 is decreasing in r. To see this, note

that the derivative of this function with respect to r is y(r)/(r − r2/2)2, where
y(r) = (1− r + r2/2) log(1− r) + (r − r2/2)

≤ (1− r + r2/2)(−r − r2/2) + (r − r2/2) = −r4/4.
Let S(x) denote the probability that there is a success when the system is run

for one step starting in state x. (Recall that a success occurs if exactly one message
sends during the step. This single sender might be a new arrival, or it might be an
old message from state x.) Let

g(r, p) = e−λ

[
(1− r)p+ (1− p)min

{
r,
r − r2/2
1− p/2

}
+ (1− p)(1− r)λ

]
.

We now have the following corollary of Lemma 7.
Corollary 8. For any state x, S(x) ≤ g(r(x), p(x)).
Let s(x) denote the probability that at least one message in state x sends on the

next step. That is, s(x) is the probability that at least one existing message in x
sends. New arrivals may also send. There may or may not be a success. (Thus, if x is
the empty state, then s(x) = 0.) Let A = 0.9 and B = 0.41. For every z ∈ [0, 1], let
c(z) = max(0,−Az+B). For every state x, let f(x) = k(x)+c(s(x)). The function f
is the potential function alluded to earlier, which plays a leading role in Theorems 2
and 3. To a first approximation, f(x) counts the number of messages in the state x,
but the small correction term is crucial. Finally, let

h(r, p) = λ− g(r, p)− [1− e−λ(1− p)(1− r)(1 + λ)]c(r + p− r p) + e−λp(1− r)c(r).
Now we have the following.
Observation 9. For any state x, E[ |f(X1)− f(X0)| | X0 = x] ≤ 1 +B.
Lemma 10. For any state x, E[f(X1)− f(X0) | X0 = x] ≥ h(r(x), p(x)).
Proof. The result follows from the following chain of inequalities, each link of

which is justified below:

E[f(X1)− f(X0) | X0 = x]

= λ− S(x) + E[c(s(X1)) | X0 = x]− c(s(x))
≥ λ− g(r(x), p(x)) + E[c(s(X1)) | X0 = x]− c(s(x))
≥ λ− g(r(x), p(x)) + e−λ(1− p(x))(1− r(x))(1 + λ)c(s(x))

+ e−λp(x)(1− r(x))c(r(x))− c(s(x))
= h(r(x), p(x)).

The first inequality follows from Corollary 8. The second comes from substituting
exact expressions for c(s(X1)) whenever the form of X1 allows it, and using the
bound c(s(X1)) ≥ 0 elsewhere. If none of the existing messages sends and there is at
most one arrival, then c(s(X1)) = c(s(x)), giving the third term; if message m1 alone
sends and there are no new arrivals, then c(s(X1)) = c(r(x)), giving the fourth term.
The final equality uses the fact that s(x) = p(x) + r(x)− p(x)r(x).

Lemma 11. For any r ∈ [0, 1] and p ∈ [0, 1], h(r, p) ≥ 0.003.
Proof. We defer the proof of this lemma to the appendix. Figure 1 contains a

(Mathematica-produced) plot of −h(r, p) over the range r ∈ [0, 1], p ∈ [0, 1]. The plot
suggests that −h(r, p) is bounded below zero.
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Fig. 1. −h(r, p) over the range r ∈ [0, 1], p ∈ [0, 1].

We note here that our proof of the lemma (in the appendix) involves evaluating
certain polynomials at about 40,000 points, and we did this using Mathematica.

We now have the following theorem.
Theorem 12. No backoff protocol is positive recurrent when the arrival rate is

λ = 0.42.
Proof. This follows from Theorem 2, Observation 9, and Lemmas 10 and 11.

The value C in Theorem 2 can be taken to be 1 and the value d can be taken to be
1 +B.

Now we wish to show that every backoff protocol is transient for λ ≥ 0.42. Once
again, fix a backoff protocol p0, p1, . . . with p0 = 1. Notice that our potential func-
tion f almost satisfies the conditions in Theorem 3. The main problem is that there
is no absolute bound on the amount that f can change in a single step, because
the arrivals are drawn from a Poisson distribution. We get around this problem by
first considering a truncated-Poisson distribution, TM,λ, in which the probability of
r inputs is e−λλr/r! (as for the Poisson distribution) when r < M , but r = M for
the remaining probability. By choosing M sufficiently large we can have E[TM,λ]
arbitrarily close to λ.

Lemma 13. Every backoff protocol is transient for the input distribution TM,λ

when λ = 0.42 and λ′ = E[TM,λ] > λ− 0.001.
Proof. The proof is almost identical to that of Theorem 12, except that the first

term, λ, in the definition of h(r, p) (for Lemmas 10 and 11) must be replaced by λ′.
The corresponding function h′ satisfies h′(r, p) ≥ h(r, p) − 0.001. Thus Lemma 11
shows that h′(r, p) ≥ 0.002 for all r ∈ [0, 1] and p ∈ [0, 1].

The potential function f(x) is defined as before, but under the truncated input
distribution we have the property required for Theorem 3. If |f(x)− f(y)| > M +B,
then the probability of moving from x to y in a single move is 0.

The lemma follows from Theorem 3, where the values of C, ε, and d can be taken
to be 1, 0.002, and M +B, respectively.



BACKOFF AND ACKNOWLEDGMENT-BASED PROTOCOLS 321

We now have the following theorem.
Theorem 14. Every backoff protocol is transient under the Poisson distribution

with arrival rate λ ≥ 0.42.
Proof. The proof is immediate from Lemma 13 and Observation 5.
Finally, we bound the capacity of every backoff protocol.
Theorem 15. The capacity of every backoff protocol is at most 0.42.
Proof. Let p0, p1, . . . be a backoff protocol, let λ

′′ ≥ 0.42 be the arrival rate, and
let λ = 0.42. View the arrivals at each step as Poisson(λ) “ordinary” messages and
Poisson(λ′′ − λ) “ghost” messages. We will show that the protocol does not achieve
average success rate λ′′. Let Y0, Y1, . . . be the Markov chain describing the protocol.
Let k(Yt) be the number of ordinary messages in the system after t steps. Clearly,
the expected number of successes in the first t steps is at most λ′′t − E[k(Yt)]. Now
let X1, X2, . . . be the Markov chain describing the evolution of the backoff protocol
with arrival rate λ (with no ghost messages). By deletion resilience (Observation 4),
E[k(Yt)] ≥ E[k(Xt)]. Now by Lemmas 10 and 11, E[k(Xt)] ≥ E[f(Xt)] − B ≥
0.003 t − B. Thus, the expected number of successes in the first t steps is at most
(λ′′ − 0.003)t + B, which is less than λ′′t if t is sufficiently large. (If X0 is the
empty state, then we do not require t to be sufficiently large, because E[f(Xt)] ≥
0.003t+B.)

4.1. Improvements. We choose λ = 0.42 in order to make the proof of Lem-
ma 11 (see the appendix) as simple as possible. The lemma seems to be true for
λ down to about 0.41 and presumably the parameters A and B could be tweaked to
get λ slightly smaller.

5. Acknowledgment-based protocols. We will prove that every acknowledg-
ment-based protocol is transient for all λ > 0.531; see Theorem 21 for a precise
statement of this claim.

An acknowledgment-based protocol can be viewed as a system which, at every
step t, decides which subset of the old messages to send. The decision is a probabilistic
one dependent on the histories of the messages held. As a technical device for proving
our bounds, we introduce the notion of a “genie,” which (in general) has more freedom
in making these decisions than a protocol.

Since we consider only acknowledgment-based protocols, the behavior of each new
message is independent of the other messages and of the state of the system until after
its first send. This is why we ignore new messages until their first send—for Poisson
arrivals this is equivalent to the convention that each message sends at its arrival time.

A genie is a random variable over the natural numbers, dependent on the complete
history (of arrivals and sends of messages) up to time t − 1, which gives a natural
number representing the number of messages that the genie will send at time t. Note
that the number of messages that the genie sends at step t is independent of the
number of newly arriving messages which send at step t. Also, the genie may send
any number of messages at step t—possibly even more than the number of messages
that arrived during steps 1, . . . , t− 1. It is clear that for every acknowledgment-based
protocol there is a corresponding genie. However, there are genies which do not behave
like any protocol; e.g., a genie may give a cumulative total number of “sends” up to
time t which exceeds the actual number of arrivals up to that time.

First, we consider the class of all genies. In Lemma 16, we show that if the
arrival rate, λ, exceeds 0.567, then the backlog of messages (the difference between
the cumulative number of arrivals and the cumulative number of successes) tends to
infinity as time goes on. This implies that no genie has capacity greater than 0.567.
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To get a better result, we consider a constrained class of genies called bucket genies.
An ordinary genie (as defined previously) has no control over new inputs making their
first send but has complete control over any other messages. (In particular, it can
even send a message if none has arrived.) A bucket genie has no control over new
inputs or over the “bucket” of messages that have already tried exactly once but has
complete control over any other messages. We consider a particular type of bucket
genie called an “eager” bucket genie. In Lemma 18 we show that for λ ≥ 0.531, the
backlog tends to infinity for eager bucket genies. In Lemma 19 we show how any
bucket genie (including the acknowledgment-based protocol under consideration) can
be coupled with an eager bucket genie in such a way that the the arbitrary bucket
genie doesn’t have many more successes than the eager bucket genie. This, combined
with Lemma 16 (which shows that the eager genie doesn’t have enough successes),
proves the theorem.

Let I(t), G(t) be the number of arrivals and the genie’s send value, respectively,
at step t. It is convenient to introduce some indicator variables to express various
outcomes at the step under consideration. We use i0, i1 for the events of no new
arrival, or exactly one arrival, respectively, and g0, g1 for the events of no send and
exactly one send from the genie. The indicator random variable S(t) for a success at
time t is given by S(t) = i0g1 + i1g0. Let In(t) =

∑
j≤t I(j) and Out(t) =

∑
j≤t S(j).

Define Backlog(t) = In(t) − Out(t). Let λ = λ0 ≈ 0.567 be the (unique) root of
λ = e−λ.

Lemma 16. For any genie and input rate λ > λ0, there exists ε > 0 such that

Prob[Backlog(t) > εt for all t ≥ T ]→ 1 as T →∞.
Proof. Let 3ε = λ − e−λ > 0. At any step t, S(t) is a Bernoulli variable with

expectation 0, e−λ, λe−λ, according to whether G(t) > 1, G(t) = 1, G(t) = 0, respec-
tively, which is dominated by the Bernoulli variable with expectation e−λ. Therefore
E[Out(t)] ≤ e−λt, and also Prob[Out(t) − e−λt < εt for all t ≥ T ] → 1 as T → ∞.
(To see this note that, by a Chernoff bound, Prob[Out(t) − e−λt ≥ εt] ≤ e−δt for a
positive constant δ. Thus,

Prob[∃t ≥ T such that Out(t)− e−λt ≥ εt] ≤
∑
t≥T

e−δt,

which goes to 0 as T goes to ∞.)
We also have E[In(t)] = λt and Prob[λt− In(t) ≤ εt for all t ≥ T ]→ 1 as T →∞,

since In(t) = Poisson(λt).
Since

Backlog(t) = In(t)−Out(t)
= (λ− e−λ)t+ (In(t)− λt) + (e−λt−Out(t))
= εt+ (εt+ In(t)− λt) + (εt+ e−λt−Out(t)),

the result follows.
Corollary 17. No acknowledgment-based protocol is recurrent for λ > λ0 or

has capacity greater than λ0.
To strengthen the above result we introduce a restricted class of genies. We think

of the messages which have failed exactly once as being contained in the bucket. (More
generally, we could consider an array of buckets, where the jth bucket contains those
messages which have failed exactly j times.) A 1-bucket genie, here called simply
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a bucket genie, is a genie which simulates a given protocol for the messages in the
bucket and is required to choose a send value which is at least as great as the number
of sends from the bucket. Thus, on a given step, some number, say b, of the messages
in the bucket will decide to send. Each of these decisions is made independently by
each message, which is simulating the protocol. Then the genie will choose a number
x ≥ b, which is the number of sends that it will make. As before, g0 is the indicator for
x = 0 and g1 is the indicator for x = 1. The indicator for success is S(t) = i0g1+ i1g0.
At the end of the step, the b messages from the bucket which have sent leave the
bucket. Also, any new arrivals which have collided join the bucket. Note that if the
messages in the bucket decide not to send (i.e., b = 0) and there are no new arrivals
(i.e., i0 = 1), then S(t) can be either 1 or 0, depending on whether or not x = 1. No
matter what x is, no messages enter or leave the bucket during this step. For such
constrained genies, we can improve the bound of Corollary 17.

For the range of arrival rates we consider, an excellent strategy for a genie is to
ensure that at least one message is sent at each step. Of course a bucket genie has to
respect the bucket messages and is obliged sometimes to send more than one message
(inevitably failing). An eager genie always sends at least one message, but otherwise
sends as few as possible. In particular, it sends x = min(1, b).

An eager bucket genie is easy to analyze, since every arrival is blocked by the
genie and enters the bucket.

Let λ = λ1 ≈ 0.531 be the (unique) root of λ = (1 + λ)e−2λ.
Lemma 18. For any eager bucket genie and input rate λ > λ1, there exists ε > 0

such that

Prob[Backlog(t) > εt for all t ≥ T ]→ 1 as T →∞.
Proof. Let Eager be an eager bucket genie. Let ri be the probability that a

message in the bucket sends for the first time (and hence exits from the bucket)
i steps after its arrival. Assume

∑∞
i=1 ri = 1; otherwise there is a positive probability

that the message never exits from the bucket, and the result follows trivially.
The generating function for the Poisson distribution with rate λ is eλ(z−1) (i.e.,

the coefficient of zk in this function gives the probability of exactly k arrivals; see,
e.g., [11]). Consider the sends from the bucket at step t. Since Eager always blocks
arriving messages, the generating function for messages entering the bucket i time
steps in the past, 1 ≤ i ≤ t, is eλ(z−1). Some of these messages may send at step t;
the generating function for the number of sends is eλ[(1−ri)+riz−1] = eλri(z−1). Finally,
the generating function for all sends from the bucket at step t is the convolution of
all these functions, i.e.,

t∏
i=1

exp(λri(z − 1)) = exp

[
λ(z − 1)

t∑
i=1

ri

]
.

For any δ > 0, we can choose t sufficiently large so that
∑t

i=1 ri > 1 − δ.
The number of sends from the bucket at step t is distributed as Poisson(λ′), where
(1 − δ)λ < λ′ ≤ λ. The number of new arrivals sending at step t is independently
Poisson(λ). The only situation in which a message succeeds under Eager is when
there are no new arrivals and the number of sends from the bucket is zero or one.
Thus the success probability at step t is e−λe−λ′

(1 + λ′). For sufficiently small δ,
we have λ1 < λ′ ≤ λ, and so e−λ′

(1 + λ′) < e−λ1(1 + λ1) = eλ1λ1 < eλλ. Hence
e−λe−λ′

(1+ λ′) ≤ λ− 3ε for ε sufficiently small. Thus the success event is dominated
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by a Bernoulli variable with expectation λ− 3ε. Hence, as in the previous lemma,
Prob[Backlog(t) > εt for all t ≥ T ]→ 1 as T →∞,

completing the proof.
Let Any be an arbitrary bucket genie and let Eager be the eager bucket genie

based on the same bucket parameters. We may couple the executions of Eager and
Any so that the same arrival sequences are presented to each. At any stage the set of
messages in Any ’s bucket is a subset of those in Eager ’s bucket, with any differences
arising from steps when there is exactly one arrival, there are no sends from the
bucket, and Eager sends but Any is silent. We may further couple the behavior of
the common subset of messages.

Let λ = λ2 ≈ 0.659 be the (unique) root of λ = 1− λe−λ.
Lemma 19. For the coupled genies Any and Eager defined above, if OutA and

OutE are the corresponding output functions, we define

∆Out(t) = OutE(t)−OutA(t).
For any λ ≤ λ2 and any ε > 0,

Prob[∆Out(t) ≥ −εt for all t ≥ T ]→ 1 as T →∞.
Proof. Let c0 be the indicator for the event that no common messages are sent. Let

c1 be the indicator for the event that exactly one common message is sent. Let c∗ be
the indicator for the event that more than one common message is sent. In addition,
for the messages which are only in Eager ’s bucket, we use the similar indicators
e0, e1, e∗. Let a0, a1 represent Any not sending, or sending, additional messages,
respectively. (Note that Eager ’s behavior is fully determined since it will always send
exactly one additional message if none of the messages in its bucket send. Otherwise,
it will send no additional messages.)

We write Z(t) for ∆Out(t)−∆Out(t−1), for t > 0, so Z represents the difference
in success between Eager and Any in one step. In terms of the indicators we have

Z(t) = SE(t)− SA(t)

= i0gE1(t) + i1gE0(t)− i0gA1(t)− i1gA0(t),

where SE(t) is the indicator random variable for a success of Eager at time t and
gE1(t) is the event that Eager sends exactly one message during step t (and so on) as
in the paragraph before Lemma 16. Thus,

Z(t) ≥ i0c0(a0(e0 + e1)− a1e∗)− i0c1(e1 + e∗)− i1c0a0.

Note that if the number of arrivals plus the number of common bucket sends
is more than 1, then neither genie can succeed. We also need to keep track of the
number, ∆B, of extra messages in Eager ’s bucket. At any step, at most one new extra
message can arrive; the indicator for this event is i1c0a0, i.e., there is a single arrival
and no sends from the common bucket, so if Any does not send, then this message
succeeds but Eager ’s send will cause a failure. The number of “extra” messages
leaving Eager ’s bucket at any step is unbounded, given by a random variable we
could show as e = 1 · e1+2 · e2+ · · · . However, e dominates e1+ e∗ and it is sufficient
to use the latter. The change at one step in the number of extra messages satisfies

∆B(t)−∆B(t− 1) = i1c0a0 − e ≤ i1c0a0 − (e1 + e∗).
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Next we define Y (t) = Z(t)−α(∆B(t)−∆B(t− 1)) for some positive constant α
to be chosen below. Note that X(t) =

∑t
j=1 Y (j) = ∆Out(t) − α∆B(t). We also

define

Y ′(t) = i0c0(a0(e0 + e1)− a1e∗)− i0c1(e1 + e∗)− i1c0a0 − α(i1c0a0 − (e1 + e∗))

and X ′(t) =
∑t

j=1 Y
′(j). Note that Y (t) ≥ Y ′(t). That is, Y (t) dominates Y ′(t).

We can identify five (exhaustive) cases A, B, C, D, E, depending on the values of
the c’s, a’s, and e’s, such that in each case Y ′(t) dominates a given random variable
depending only on I(t):

A. c∗: Y ′(t) ≥ 0.
B. (c1 + c0a1)(e1 + e∗): Y ′(t) ≥ α− i0.
C. (c1 + c0a1)e0: Y ′(t) ≥ 0.
D. c0a0(e0 + e1): Y ′(t) ≥ i0 − (1 + α)i1.
E. c0a0e∗: Y ′(t) ≥ α− (1 + α)i1.

For example, the correct interpretation of case B is “conditioned on (c1 + c0a1)(e1 +
e∗) = 1, the value of Y ′(t) is at least α − i0.” Since E[i0] = e−λ and E[i1] = λe−λ,
we have E[Y ′(t)] ≥ 0 in each case, provided that max{e−λ, λe−λ/(1− λe−λ)} ≤ α ≤
1/λ − 1. There exists such an α for any λ ≤ λ2; for such λ we may take the value,
say, α = e−λ.

Let Ft be the σ-field generated by the first t steps of the coupled process. Let
Ŷ (t) = Y ′(t)−E[Y ′(t) | Ft−1] and let X̂(t) =

∑t
i=1 Ŷ (t). The sequence X̂(0), X̂(1), . . .

forms a martingale (see Definition 4.11 of [21]) since E[X̂(t) | Ft−1] = X̂(t− 1). Fur-
thermore, there is a positive constant c such that |X̂(t)− X̂(t−1)| ≤ c. Thus, we can
apply the Hoeffding–Azuma inequality (see Theorem 4.16 of [21]).

Theorem 20 (Hoeffding–Azuma). Let X0, X1, . . . be a martingale sequence such
that for each k

|Xk −Xk−1| ≤ ck,

where ck may depend upon k. Then, for all t ≥ 0 and any λ > 0,

Prob[ |Xt −X0| ≥ λ] ≤ 2 exp
(
− λ2

2
∑t

k=1 c
2
k

)
.

In particular, we can conclude that

Prob[X̂t ≤ −εt] ≤ 2 exp
(
− ε

2t

2c2

)
.

Our choice of α above ensured that E[Y ′(t) | Ft−1] ≥ 0. Hence Y ′(t) ≥ Ŷ (t) and
X ′(t) ≥ X̂(t). We observed earlier that X(t) ≥ X ′(t). Thus, X(t) ≥ X̂(t) so we have

Prob[Xt ≤ −εt] ≤ 2 exp
(
− ε

2t

2c2

)
.

Since
∑

t≥0 2 exp(− ε2t
2c2 ) converges, we deduce that

Prob[X(t) ≥ −εt for all t ≥ T ]→ 1 as T →∞.
Since ∆Out(t) = X(t) + α∆B(t) ≥ X(t) for all t, we obtain the required conclu-
sion.
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Finally, we can prove the main results of this section.
Theorem 21. Let P be an acknowledgment-based protocol. Let λ = λ1 ≈ 0.531

be the (unique) root of λ = (1 + λ)e−2λ. Then
1. P is transient for arrival rates greater than λ1;
2. P has capacity no greater than λ1.
Proof. Let λ be the arrival rate, and suppose λ > λ1. If λ > λ0 ≈ 0.567, then the

result follows from Lemma 16. Otherwise, we can assume that λ < λ2 ≈ 0.659. If E is
the eager genie derived from P , then the corresponding Backlogs satisfy BacklogP (t) =
BacklogE(t) +∆Out(t). The results of Lemmas 18 and 19 show that, for some ε > 0,
both Prob[BacklogE(t) > 2εt for all t ≥ T ] and Prob[∆Out(t) ≥ −εt for all t ≥ T ]
tend to 1 as T →∞. The conclusion of the theorem follows.

Appendix. Proof of Lemma 11. Let j(r, p) = −h(r, p). We will show that
for any r ∈ [0, 1] and p ∈ [0, 1], j(r, p) ≤ −0.003.

Case 1. r + p− rp ≥ r ≥ B/A and p ≥ r. In this case we have

g(r, p) = e−λ((1− r)p+ (1− p)r + (1− p)(1− r)λ),
j(r, p) = g(r, p)− λ.

Observe that

j(r, p) = e−λ
1∑

i=0

1∑
j=0

ci,jp
irj ,

where the coefficients ci,j are defined as follows:

c0,0 = λ(1− eλ),
c1,0 = 1− λ,
c0,1 = 1− λ,
c1,1 = −2 + λ.

Note that the only positive coefficients are c1,0 and c0,1. Thus, if p ∈ [p1, p2] and
r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

e−λ(c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1).

Now we need only check that for all r1 ∈ (B/A − 0.01, 1) and p1 ∈ [r1, 1) such
that p1 and r1 are multiples of 0.01, U(p1, p1 + 0.01, r1, r1 + 0.01) is at most −0.003.
This is the case. (The highest value is U(0.45, 0.46, 0.45, 0.46), which is −0.00366228.)

Case 2. r + p− rp ≥ r ≥ B/A and p < r. Now we have

g(r, p) = e−λ

(
(1− r)p+ (1− p)r − r

2/2

1− p/2 + (1− p)(1− r)λ
)
,

j(r, p) = g(r, p)− λ.

Observe that

(1− p/2)j(r, p) = e−λ
2∑

i=0

2∑
j=0

ci,jp
irj ,
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where the coefficients ci,j are defined as follows:

c0,0 = λ(1− eλ),
c1,0 = 1− 3λ/2 + eλλ/2,

c0,1 = 1− λ,
c1,1 = −2 + 3λ/2,
c2,0 = −1/2 + λ/2,

c0,2 = −1/2,
c2,1 = 1/2− λ/2,
c1,2 = 1/2,

c2,2 = 0.

Note that the only positive coefficients are c1,0, c0,1, c2,1, and c1,2. Thus, if p ∈ [p1, p2]
and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2 + c2,2p

2
1r

2
1

eλ(1− p2/2)
.

Now we need only check that for all r1 ∈ (B/A−0.005, 1) and p1 ∈ [0, r1] such that
p1 and r1 are multiples of 0.005, U(p1, p1+0.005, r1, r1+0.005) is at most −0.003. This
is the case. (The highest value for these parameters is U(0.45, 0.455, 0.455, 0.46) =
−0.00479648.)

Case 3. r + p− rp ≥ B/A ≥ r and p ≥ r. In this case we have

g(r, p) = e−λ((1− r)p+ (1− p)r + (1− p)(1− r)λ),
j(r, p) = g(r, p)− λ− (−Ar +B)e−λ(1− r)p.

Observe that

j(r, p) = e−λ
2∑

i=0

2∑
j=0

ci,jp
irj ,

where the coefficients ci,j are defined as follows:

c0,0 = λ(1− eλ),
c1,0 = 1−B − λ,
c0,1 = 1− λ,
c1,1 = −2 +A+B + λ,

c2,0 = 0,

c0,2 = 0,

c2,1 = 0,

c1,2 = −A,
c2,2 = 0.

Note that the only positive coefficients are c1,0 and c0,1. Thus, if p ∈ [p1, p2] and
r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
1r1 + c1,2p1r

2
1 + c2,2p

2
1r

2
1

eλ
.
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Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [0, p1] such that p1 and r1
are multiples of 0.01, U(p1, p1+0.01, r1, r1+0.01) is at most −0.003. This is the case.
(The highest value is U(0.44, 0.45, 0.44, 0.45) = −0.00700507.)

Case 4. r + p− rp ≥ B/A ≥ r and p < r. Now we have

g(r, p) = e−λ

(
(1− r)p+ (1− p)r − r

2/2

1− p/2 + (1− p)(1− r)λ
)
,

j(r, p) = g(r, p)− λ− (−Ar +B)e−λ(1− r)p.

Observe that

j(r, p) = e−λ(1/2)

∑2
i=0

∑2
j=0 ci,jp

irj

1− p/2 ,

where the coefficients ci,j are defined as follows:

c0,0 = 2λ(1− eλ),
c1,0 = 2− 2B − 3λ+ λeλ,

c0,1 = 2− 2λ,
c1,1 = −4 + 2A+ 2B + 3λ,

c2,0 = −1 +B + λ,

c0,2 = −1,
c2,1 = 1−A−B − λ,
c1,2 = 1− 2A,
c2,2 = A.

Note that the coefficients are all negative except c1,0, c0,1, and c2,2. Thus, if p ∈ [p1, p2]
and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
1r1 + c1,2p1r

2
1 + c2,2p

2
2r

2
2

2eλ(1− p2/2)
.

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [p1, 1) such that p1 and r1
are multiples of 0.01, U(p1, p1+0.01, r1, r1+0.01) is at most −0.003. This is the case.
(The highest value is U(0.44, 0.45, 0.44, 0.45) = −0.00337716.)

Case 5. B/A ≥ r + p− rp ≥ r and p ≥ r. In this case we have

g(r, p) = e−λ((1− r)p+ (1− p)r + (1− p)(1− r)λ),
j(r, p) = g(r, p)− λ

+ (−A(r + p− rp) +B)(1− (1− r)(1− p)e−λ(1 + λ))

− (−Ar +B)e−λ(1− r)p.

Observe that

j(r, p) = e−λ
2∑

i=0

2∑
j=0

ci,jp
irj ,
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where the coefficients ci,j are defined as follows:

c0,0 = −B +Beλ + λ−Bλ− eλλ,
c1,0 = 1 +A−Aeλ − λ+Aλ+Bλ,

c0,1 = 1 +A+B −Aeλ − λ+Aλ+Bλ,

c1,1 = −2− 2A+Aeλ + λ− 3Aλ−Bλ,
c2,0 = −A−Aλ,
c0,2 = −A−Aλ,
c2,1 = 2A+ 2Aλ,

c1,2 = A+ 2Aλ,

c2,2 = −A−Aλ.
Note that the only positive coefficients are c1,0, c0,1, c2,1, and c1,2. Thus, if p ∈ [p1, p2]
and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2 + c2,2p

2
1r

2
1

eλ
.

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [0, p1] such that p1 and r1
are multiples of 0.01, U(p1, p1+0.01, r1, r1+0.01) is at most −0.003. This is the case.
(The highest value is U(0.19, 0.2, 0.19, 0.2) = −0.0073656.)

Case 6. B/A ≥ r + p− rp ≥ r and p < r. Now we have

g(r, p) = e−λ

(
(1− r)p+ (1− p)r − r

2/2

1− p/2 + (1− p)(1− r)λ
)
,

j(r, p) = g(r, p)− λ
+ (−A(r + p− rp) +B)(1− (1− r)(1− p)e−λ(1 + λ))

− (−Ar +B)e−λ(1− r)p.
Observe that

(1− p/2)j(r, p) = e−λ
3∑

i=0

2∑
j=0

ci,jp
irj ,

where the coefficients ci,j are defined as follows:

c0,0 = −B +Beλ + λ−Bλ− eλλ,
c1,0 = 1 +A+B/2−Aeλ −Beλ/2− 3λ/2 +Aλ+ 3Bλ/2 + eλλ/2,

c0,1 = 1 +A+B −Aeλ − λ+Aλ+Bλ,

c1,1 = −2− 5A/2−B/2 + 3Aeλ/2 + 3λ/2− 7Aλ/2− 3Bλ/2,
c2,0 = −1/2− 3A/2 +Aeλ/2 + λ/2− 3Aλ/2−Bλ/2,
c0,2 = −1/2−A−Aλ,
c2,1 = 1/2 + 3A−Aeλ/2− λ/2 + 7Aλ/2 +Bλ/2,

c1,2 = 1/2 + 3A/2 + 5Aλ/2,

c2,2 = −3A/2− 2Aλ,
c3,0 = A/2 +Aλ/2,

c3,1 = −A−Aλ,
c3,2 = A/2 +Aλ/2.
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Note that the only positive coefficients are c1,0, c0,1, c2,1, c1,2, c3,0, and c3,2. Thus, if
p ∈ [p1, p2] and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2

+ c2,2p
2
1r

2
1 + c3,0p

3
2 + c3,1p

3
1r1 + c3,2p

3
2r

2
2

divided by eλ(1− p2/2).
Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [p1, 1) such that p1 and r1

are multiples of 0.005, U(p1, p1 + 0.005, r1, r1 + 0.005) is at most −0.003. This is the
case. (The highest value is U(0.01, 0.015, 0.3, 0.305) = −0.00383814.)

REFERENCES

[1] D. Aldous, Ultimate instability of exponential back-off protocol for acknowledgement-based
transmission control of random access communication channels, IEEE Trans. Inform. The-
ory, 33 (1987), pp. 219–233.

[2] H. Al-Ammal, L.A. Goldberg, and P. MacKenzie, An improved stability bound for binary
exponential backoff, Theory Comput. Syst., 34 (2001), pp. 229–244.

[3] J.I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Trans. Inform. Theory,
25 (1979), pp. 505–515.

[4] A. Ephremides and B. Hajek, Information theory and communication networks: An uncon-
summated union, IEEE Trans. Inform. Theory, 44 (1998), pp. 2416–2432.

[5] G. Fayolle, V.A. Malyshev, and M.V. Menshikov, Topics in the Constructive Theory of
Countable Markov Chains, Cambridge University Press, Cambridge, UK, 1995.

[6] L.A. Goldberg and P.D. MacKenzie, Analysis of practical backoff protocols for contention
resolution with multiple servers, J. Comput. System Sci., 58 (1999), pp. 232–258.

[7] F.G. Foster, On the stochastic matrices associated with certain queueing processes, Ann.
Math. Statist., 24 (1953), pp. 355–360.

[8] L.A. Goldberg, P.D. MacKenzie, M. Paterson, and A. Srinivasan, Contention resolution
with constant expected delay, J. ACM, 47 (2000), pp. 1048–1096.

[9] J. Goodman, A.G. Greenberg, N. Madras, and P. March, Stability of binary exponential
backoff, J. ACM, 35 (1988), pp. 579–602.

[10] A.G. Greenberg, P. Flajolet and R. Ladner, Estimating the multiplicities of conflicts to
speed their resolution in multiple access channels, J. ACM, 34 (1987), pp. 289–325.

[11] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, 2nd ed., Oxford
University Press, New York, 1992.
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Abstract. We study the problem of optimizing the performance of a system shared by selfish,
noncooperative users. We consider the concrete setting of scheduling small jobs on a set of shared
machines possessing latency functions that specify the amount of time needed to complete a job,
given the machine load. We measure system performance by the total latency of the system.

Assigning jobs according to the selfish interests of individual users, who wish to minimize only the
latency that their own jobs experience, typically results in suboptimal system performance. However,
in many systems of this type there is a mixture of “selfishly controlled” and “centrally controlled”
jobs. The congestion due to centrally controlled jobs will influence the actions of selfish users, and we
thus aspire to contain the degradation in system performance due to selfish behavior by scheduling
the centrally controlled jobs in the best possible way.

We formulate this goal as an optimization problem via Stackelberg games, games in which one
player acts a leader (here, the centralized authority interested in optimizing system performance)
and the rest as followers (the selfish users). The problem is then to compute a strategy for the leader
(a Stackelberg strategy) that induces the followers to react in a way that (approximately) minimizes
the total latency in the system.

In this paper, we prove that it is NP-hard to compute an optimal Stackelberg strategy and
present simple strategies with provably good performance guarantees. More precisely, we give a
simple algorithm that computes a strategy inducing a job assignment with total latency no more
than a constant times that of the optimal assignment of all of the jobs; in the absence of centrally
controlled jobs and a Stackelberg strategy, no result of this type is possible. We also prove stronger
performance guarantees in the special case where every machine latency function is linear in the
machine load.

Key words. selfish routing, Stackelberg equilibria, scheduling

AMS subject classifications. 68Q25, 68W25, 90B35, 91A65
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1. Introduction.

Coping with selfishness. One of the most basic problems arising in the man-
agement of a set of resources is that of optimizing system performance. A concrete
example of such a problem is as follows: given a large set of small jobs to be as-
signed to a set of machines, each with a latency function that specifies the amount of
time needed to complete a job given the machine load, find the allocation of jobs to
machines minimizing the total latency of the system.

In many such systems, including the Internet and other large-scale communication
networks, there is no central authority controlling the allocation of shared resources;
instead, system users are free to act in a selfish manner [7]. This observation has led
many authors (e.g., [13, 26, 30, 37, 45, 48]) to model the behavior of users in such a
system by a noncooperative game and to study the resulting Nash equilibria. (See [38]
for an introduction to basic game-theoretic concepts.)

Motivated by the well-known fact that Nash equilibria may be inefficient [16]
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(i.e., they need not optimize system performance), researchers have proposed sev-
eral different approaches for coping with selfishness—that is, for ensuring that selfish
behavior results in a desirable outcome. Recent examples abound in the computer
science literature: to name a few, Korilis, Lazar, and Orda [27, 28] give methods
for improving system performance by adding additional capacity to system resources,
Cocchi et al. [8] and Cole, Dodis, and Roughgarden [9, 10] investigate the control
of selfish users through various pricing policies, Shenker [48] demonstrates that an
appropriate (centralized) protocol at a network switch induces selfish users to exhibit
good flow control behavior, and Roughgarden [42] studies the problem of designing
networks that exhibit good performance when used selfishly.

A related area of research concerned with controlling selfish behavior with efficient
algorithms is that of algorithmic mechanism design [2, 19, 35, 36, 41], which in turn
is inspired by classical mechanism design (see, e.g., Mas-Colell, Whinston, and Green
[33, Chap. 23]). In this setting, an algorithm is designed to collect data from users and
compute an outcome using this data. For example, the algorithm might compute the
set of users that will receive some good, perhaps a movie multicast over the Internet,
based on the bids of the users of the system. The difficulty of these problems stems
from the assumptions that the algorithm is publicly known and that users are selfish
and may report false data, if doing so improves their personal objective function. This
problem is typically resolved via a payment scheme, where the algorithm distributes
payments to users according to the outcome and the data collected so that all users
have a strong incentive to report truthful data.

In this paper, we pursue a different approach. In many systems, there will be a mix
of “selfishly controlled” and “centrally controlled” jobs—that is, the shared resource is
used by both selfish individuals and some central authority. For example, clients of a
system may be charged at two different prices: clients paying the higher price are given
access to the system and the ability to schedule their own tasks (presumably in a way
that accomplishes them as quickly as possible), while clients paying only the “bargain
rate” can use the system but have no control over which resources their jobs consume
(and thus these jobs qualify as centrally controlled). A more concrete example of such
a system arises in networks that allow a large customer to set up a so-called virtual
private network consisting of guaranteed and preassigned virtual paths for ongoing
use [6, 17, 20, 22, 26]. The bandwidth needed for the virtual private network may be
viewed as centrally controlled (its routes may be chosen by the network manager),
while individual users of the network continue to behave in a selfish and independent
fashion.

We investigate the following question: Given a system with centrally and selfishly
controlled jobs, how should centrally controlled jobs be assigned to resources to induce
“good” (albeit selfish) behavior from the noncooperative users? This approach has
several appealing aspects: no communication is required between the system users
and an algorithm, no notion of currency is needed, no resources need to be added to
or removed from the system, and the assignment of centrally controlled jobs is often
easily modified as the amount of job traffic evolves over time.

Stackelberg games. We are thus led to consider a type of game in which the
roles of different players are asymmetric. One player, responsible for assigning the
centrally controlled jobs to resources and interested in optimizing social welfare, acts
as a leader. The leader may hold its assignment (its strategy) fixed while all other
agents (the followers) react independently and selfishly to the leader’s strategy, reach-
ing a Nash equilibrium relative to the leader’s strategy. These types of games, called
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Stackelberg games, and the resulting Stackelberg equilibria have been well studied in
the game theory literature (see, e.g., [3, sect. 2.3] or [4, sect. 3.6] for an introduction
and [49] for their origin) and have been previously studied in the contexts of both
competitive facility location [40] and networking [14, 15, 18, 26]. With the excep-
tion of [26], however, the leader/follower hierarchy has been used to model classes of
selfish agents with different priority levels; this setting differs from ours in that no
agent is interested in optimizing system performance.1 The paper of Korilis, Lazar,
and Orda [26], while more similar in spirit to ours, focuses on deriving necessary and
sufficient conditions (on the number of selfish users, the fraction of the job traffic
that is centrally controlled, etc.) for the existence of a leader strategy inducing an
optimal assignment of jobs to resources; moreover, only one type of latency function
is considered. By contrast, we are interested in simple leader strategies that always
induce optimal or near-optimal behavior from the system users for any set of latency
functions.

Problems studied in this paper. We focus on the problem, described at the
beginning of the paper, of scheduling jobs on a set of machines with load-dependent
latencies in order to minimize the total latency. In addition to being one of the
most commonly studied models [11, 12, 18, 26, 29, 30, 34, 35, 36, 41], occasionally in
the equivalent formulation of routing on a set of parallel links, the simple setting of
scheduling jobs on machines permits a study of the effects of different leader strategies
in Stackelberg games without any additional complications, such as the issue of path-
selection in a complicated network. We also focus on a scenario in which there is a
large number of jobs, each of very small size. We note that this differs from nearly
all scheduling research in the theoretical computer science and discrete optimization
communities (surveyed in, for example, Hall [23]). This assumption is, however,
consistent with a large body of existing literature on Nash equilibria in congested
systems—see [5, 13, 44, 47] and the references therein—and greatly aids our analysis.
For example, this assumption ensures the existence and essential uniqueness of the
equilibrium reached by selfish users relative to any Stackelberg strategy. While it
is clearly desirable to study more general networks as well as jobs of nonnegligible
size, we nonetheless feel that the simple model considered in this paper is sufficient
to illustrate the main issues that arise in centrally scheduling traffic in the presence
of selfish users.

We may now restate our central questions quantitatively:
(1) Among all leader strategies for a given set of machines and jobs, can we

characterize and/or compute the strategy inducing the Stackelberg equilibrium—i.e.,
the equilibrium of minimum total latency?

(2) What is the worst-case ratio between the total latency of the Stackelberg
equilibrium and that of the optimal assignment of jobs to machines?

Our results. We give a simple polynomial-time algorithm for computing a leader
strategy that induces a job assignment with total latency no more than 1

α times that
of the optimal assignment of jobs to machines, where α denotes the fraction of jobs
that are centrally controlled. We also exhibit, for each value of α, an instance in
which no strategy can achieve a better performance guarantee. This result stands in
sharp contrast to known results about Nash equilibria in this model; in particular,
the total latency of the Nash equilibrium may be arbitrarily larger than that of the

1Typically, Stackelberg games model selfish agents with asymmetric roles; our use of them is
somewhat unconventional.
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optimal assignment of jobs to machines, even in the special case of two machines [45].
In the well-studied special case where every machine possesses a latency function

linear in the congestion, we give a simple O(m2) algorithm for computing a strategy
inducing a job assignment with total latency no more than 4

3+α times that of the
optimal assignment, where α is the fraction of centrally controlled jobs, and m is the
number of machines. We again give instances in which no strategy can provide a
stronger guarantee.

Finally, we consider the optimization problem of computing the strategy inducing
the Stackelberg equilibrium and show that it is NP-hard, even in the special case where
every latency function is linear.

We note that our results give a (sharp) trade-off between the optimal assignment
and the Nash equilibrium, as a function of the fraction of centrally controlled jobs,
in the following sense. Roughgarden and Tardos [45], motivated by a paper of Kout-
soupias and Papadimitriou [30], showed that in general the Nash equilibrium can be
arbitrarily more costly than the optimal assignment, but if every machine latency
function is linear, then the total latency of the Nash equilibrium is no more than
4
3 times that of the optimal assignment. Thus, our results reduce to those of [45]
when α = 0, give the trivial result that the Stackelberg equilibrium for α = 1 is
the optimal assignment, and quantify the worst possible ratio between the cost of
the Stackelberg equilibrium—in some sense, a “mixture” of the Nash equilibrium and
the optimal assignment—and the cost of the optimal assignment for all intermediate
values of α.

Our approach also adds an algorithmic dimension to the existing studies com-
paring Nash equilibria and optimal solutions [1, 11, 12, 24, 29, 30, 34, 43, 45, 46], in
that one aspect of our analysis of Stackelberg equilibria is the design of algorithms for
efficiently computing good Stackelberg strategies. Further, while Nash and optimal
assignments in our model can be characterized and computed efficiently via convex
programming [13, 45]—a fact that is crucial for existing comparisons of optima and
equilibria [43, 45, 46]—our hardness result implies that no such characterization of
Stackelberg equilibria is possible. With the central approach of earlier works ruled
out, new techniques are required for our results.

Organization. In section 2 we formalize our model and state several preliminary
lemmas. In section 3 we introduce three simple algorithms for computing Stackelberg
strategies. In sections 4 and 5, we prove that our third algorithm achieves the best
possible worst-case performance guarantee for instances with general and linear la-
tency functions, respectively. In section 6, we prove that computing the optimal
strategy is NP-hard, even when every latency function is linear. Section 7 concludes
with directions for future work.

2. Preliminaries.

2.1. The model. We consider a setM ofmmachines 1, 2, . . . ,m, where machine
i is endowed with a latency function �i(·) that measures the load-dependent time
required to complete a job. We require that each latency function be nonnegative,
continuous, and nondecreasing in its argument. For our algorithms to be implemented
efficiently, we also require the weak condition that xi · �i(xi) is a convex function for
each machine i (where xi denotes the machine load).2 We assume a finite and positive
rate r of job arrivals; an assignment of the jobs to the machines is anm-vector x ∈ Rm

+

2Thus, �i(xi) may be any convex function, or log(1 + xi), etc. Continuous approximations of
step functions, however, do not satisfy this condition.
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such that
∑m

i=1 xi = r. When we are interested in the total load on a subset M ′ ⊆M
of the machines, we write x(M ′) =

∑
i∈M ′ xi. We measure system performance via

the cost or total latency C(x) of an assignment x, defined by C(x) =
∑m

i=1 xi�i(xi).
We note that all jobs assigned to the same machine experience the same latency;
again, this differs from much of the traditional scheduling literature but agrees with
common models of equilibria in congested systems where a particular allocation of
resources represents a “steady-state solution” with jobs arriving continuously over
time.

We will consider instances with and without centrally controlled jobs. We denote
an instance with machines M , rate r, and no centrally controlled jobs by (M, r). An
instance with centrally controlled jobs (a Stackelberg instance) will be denoted by
(M, r, α), where the third parameter α ∈ (0, 1) indicates the fraction of the overall
traffic that is centrally controlled.

2.2. Nash equilibria and optimal assignments. If jobs are generated and
assigned to machines by noncooperative agents who wish to minimize the amount of
time it takes for their work to complete, we expect the assignment to be “stable”
or “at equilibrium” in the following sense: no job can strictly decrease the latency
it experiences by changing machines. The following definition is motivated by this
notion of a stable assignment by noncooperative agents.

Definition 2.1. An assignment x to M is at Nash equilibrium (or is a Nash
assignment) if whenever i, j ∈M with xi > 0, �i(xi) ≤ �j(xj).

In particular, all machines in use by an assignment at Nash equilibrium have
equal latency. We may thus express the cost of a Nash assignment in the following
simple form.

Lemma 2.2. If x is an assignment at Nash equilibrium for (M, r) such that all
machines in use have common latency L, then

C(x) = rL.

Example 2.3. An assignment at Nash equilibrium does not in general optimize
the system performance. To see this, consider a two-machine example, in which the
first machine has constant latency function �1(x1) = 1 and the second has latency
function �2(x2) = x2. If we put r = 1, we see that the (optimal) assignment ( 1

2 ,
1
2 )

has total latency 3
4 , whereas the (unique) assignment at Nash equilibrium assigns all

work to the second machine, thereby incurring a cost of 1.
We end our preliminary discussion of Nash assignments by noting that they exist

and are essentially unique.
Lemma 2.4 (see [5, 13, 45]). Suppose M is a set of machines with continuous,

nondecreasing latency functions. Then
(a) for any rate r > 0 of job traffic, there exists an assignment of jobs to M at

Nash equilibrium;
(b) if x, x′ are assignments at Nash equilibrium for (M, r), then �i(xi) = �i(x

′
i)

for each machine i.
In particular, Definition 2.1 and Lemma 2.4(b) imply that any two Nash assign-

ments for an instance (M, r) have equal cost.
For our final preliminary result, we give an analogous characterization of optimal

assignments that will be useful in section 5. For a machine i with differentiable
latency function �i, define �∗i as the marginal cost of increasing the load of machine
i—formally, by �∗i (xi) = [ d

dy (y · �i(y))](xi) = �i(xi) + xi · �′i(xi). We will call �∗i the
marginal cost function of machine i. Then the following lemma holds.
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Lemma 2.5 (see [5, 13, 45]). Suppose M is a set of machines with differentiable
latency functions � and that xi · �i(xi) is a convex function for each machine i. Then
an assignment x to M is optimal if and only if, whenever i, j ∈ M with xi > 0,
�∗i (xi) ≤ �∗j (xj). Moreover, the optimal assignment can be computed in polynomial
time.

Lemma 2.5 clearly gives a characterization of locally optimal assignments; in
particular, if the condition fails, moving a few jobs from a machine with a large
marginal cost to a machine with a small marginal cost yields a new assignment with
smaller cost. That it also characterizes globally optimal solutions follows from the
fact that the optimal assignment minimizes a convex function (C(x)) over a convex
set (the polytope of assignments) and that the local and global minima of a convex
function on a convex set coincide (see, for example, [39, Thm. 2.3.4]). This observation
also implies that the optimal solution can be computed in polynomial time via convex
programming.

Definition 2.1 and Lemma 2.5 yield the following useful corollary.
Corollary 2.6 (see [5, 13, 45]). Suppose M is a set of machines with differ-

entiable latency functions � and that xi · �i(xi) is a convex function for each machine
i. Then an assignment x to M is optimal if and only if x is a Nash assignment with
respect to latency functions �∗.

Remark 2.7. We will typically denote the optimal assignment for an instance
by x∗. The marginal cost functions are denoted by �∗ as they are “optimal latency
functions” in a sense made precise by Corollary 2.6: the optimal assignment x∗ arises
as an assignment at Nash equilibrium with respect to latency functions �∗.

2.3. Stackelberg strategies and induced equilibria. In this subsection we
define our notion of a Stackelberg game and consider two examples. Recall that
we desire a hierarchical game, where a leader assigns centrally controlled jobs to
machines and, holding this strategy fixed, the selfish users of the system react in a
noncooperative and selfish manner. This idea is formalized in the next two definitions.

Definition 2.8. A (Stackelberg) strategy for the Stackelberg instance (M, r, α)
is an assignment feasible for (M,αr).

Definition 2.9. Let s be a strategy for Stackelberg instance (M, r, α) where
machine i ∈ M has latency function �i, and let �̃i(xi) = �i(si + xi) for each i ∈ M .
An equilibrium induced by strategy s is an assignment t at Nash equilibrium for the
instance (M, (1− α)r) with respect to latency functions �̃. We then say that s+ t is
an assignment induced by s for (M, r, α).

Existence and essential uniqueness of induced equilibria follow easily from Lem-
mas 2.2 and 2.4.

Lemma 2.10. Let s be a strategy for a Stackelberg instance with continuous,
nondecreasing latency functions. Then there exists an assignment induced by s, and
any two such induced assignments have equal cost.

The following simple observation will be useful in sections 4 and 5.
Lemma 2.11. Let s be a strategy for Stackelberg instance (M, r, α) inducing

equilibrium t. Let M ′ denote the machines on which ti > 0. Then s+ t, restricted to
M ′, is an assignment at Nash equilibrium for the instance (M ′, s(M ′) + t(M ′)). In
particular, all machines on which ti > 0 have a common latency with respect to s+ t.

We next consider two examples that demonstrate both the usefulness and the
limitations of Stackelberg strategies.

Example 2.12. Recall that in Example 2.3, with two machines with latency func-
tions �1(x1) = 1 and �2(x2) = x2, in the absence of centrally controlled jobs the
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assignment at Nash equilibrium incurs total latency 4
3 times that of the optimal as-

signment. Suppose instead that half of the jobs are controlled by the system manager
(i.e., that α = 1

2 ) and consider the strategy s = ( 1
2 , 0). Then, as all remaining jobs

will be assigned to the second machine in the equilibrium induced by s, the assign-
ment induced by s is precisely the optimal assignment of all of the jobs. Thus, in this
particular instance, system performance can be optimized via a Stackelberg strategy.

Example 2.13. Now modify Example 2.12 by replacing the latency function of
the second machine with the latency function �2(x2) = 2x2. The assignment at
Nash equilibrium puts half of the jobs on each machine (for a cost of 1) while the
optimal assignment is ( 3

4 ,
1
4 ) (with a cost of 7

8 ). On the other hand, if we again allow
the system manager to assign half of the jobs, we see that for any strategy s, the
assignment induced by s is ( 1

2 ,
1
2 ) and hence is not optimal. In this example, there is

no available strategy by which the system manager can improve system performance.

3. Three Stackelberg strategies.

3.1. Two natural strategies. We initiate our investigation of Stackelberg strat-
egies by considering two natural approaches that provide suboptimal performance
guarantees. To motivate our results in the simplest possible way, throughout this
subsection we will consider examples in which all latency functions are linear and half
of the jobs are centrally controlled (α = 1

2 ). We are thus hoping for strategies that
always induce an assignment of cost at most 8

7 times that of the optimal assignment
(this is the best possible by Example 2.13).

First consider the following strategy for an instance (M, r, 1
2 ): if x∗ is the optimal

assignment for instance (M, 1
2r), put s = x∗. In words, we choose the strategy of

minimum cost, ignoring the existence of jobs that are not centrally controlled. We
call this the aloof strategy since it refuses to acknowledge the rest of the jobs in the
system. Example 2.3 shows that this strategy performs quite poorly: the strategy is
(0, 1

2 ) and the induced assignment is (0, 1), an assignment that we have seen to incur
total latency 4

3 times that of the optimal assignment.
A second attempt for a good strategy might be as follows: if x∗ is the optimal

assignment for (M, r), put s = 1
2x

∗. We call this the scale strategy, since it is simply
the optimal assignment of all the jobs, suitably scaled. Unfortunately, a simple exam-
ple shows that the scale strategy also fails to provide the performance guarantee of 8

7
that we are looking for: in a two-machine example with latency functions �1(x1) = 1
and �2(x2) = 3

2x2 and rate 1, the optimal assignment is (2
3 ,

1
3 ) (with total cost 5

6 ),
and thus the scale strategy will be (1

3 ,
1
6 ), which induces the assignment ( 1

3 ,
2
3 ) having

cost 1. Hence, the scale strategy may result in an induced assignment with total
latency 6

5 times the cost of the optimal assignment.3

3.2. The largest latency first (LLF) strategy. Intuitively, both the aloof
and scale strategies suffer from a common flaw: both allocate jobs to machines that
will subsequently be inundated in any induced equilibrium while assigning too little
work to machines that selfish users are prone to ignore. This observation suggests
that a good strategy should give priority to the machines that are least appealing
to selfish users—machines with relatively high latency. With this intuition in mind,
the following strategy for a Stackelberg instance (M, r, α), which we call the largest
latency first (LLF) strategy, should seem natural:

(1) Compute the optimal assignment x∗ for (M, r).

3In addition, the aloof and scale strategies can perform arbitrarily badly for instances with general
latency functions.



STACKELBERG SCHEDULING STRATEGIES 339

(2) Index the machines of M so that �1(x
∗
1) ≤ · · · ≤ �m(x∗m).

(3) Let k ≤ m be minimal with
∑m

i=k+1 x
∗
i ≤ αr.

(4) Put si = x∗i for i > k, sk = αr −∑m
i=k+1 x

∗
i , and si = 0 for i < k.

We will say that a machine i is saturated by a strategy s if si = x∗i . The LLF strategy
thus saturates machines one by one, in order from the largest latency with respect to
x∗ to the smallest, until there are no centrally controlled jobs remaining. Note that
Lemma 2.5 implies that the LLF strategy can be computed in polynomial time (the
bottleneck is step (1)); in section 5 we will see that it can be computed in O(m2) time
when every latency function is linear.

The next two sections are devoted to proving that the LLF strategy always induces
an assignment with near-optimal total latency.

4. A 1
α

performance guarantee for arbitrary latency functions. In this
section we prove that the LLF strategy induces a near-optimal assignment for any
set of latency functions and any number of machines. We note that no performance
guarantee is possible in the absence of centrally controlled jobs: without additional
restrictions on machine latency functions, the Nash assignment may incur arbitrarily
more latency than the optimal assignment [45]. Thus, the benefit of a leader (and of
a carefully chosen leader strategy) is particularly striking in this general setting.

A simple variation on previous examples demonstrates the limits of Stackelberg
strategies. In a two-machine instance with α = 1

2 and latency functions �1(x1) = 1
and �2(x2) = 2kxk2 for k ∈ Z+, any Stackelberg strategy induces the assignment
( 1
2 ,

1
2 ) (having total latency 1) while the optimal assignment is (1

2 + δk,
1
2 − δk) having

cost 1
2 + εk, where δk, εk → 0 as k → ∞. Thus the best induced assignment may

be (arbitrarily close to) twice as costly as the optimal assignment. Similar examples
show that for any α ∈ (0, 1), the best induced assignment may be 1

α times as costly
as the optimal assignment.

The main result of this section is that the LLF strategy always induces an as-
signment of cost no more than 1

α times that of the optimal assignment. A rough
outline of the proof is as follows. Our goal is to exploit the iterative structure of
the LLF strategy and proceed by induction on the number of machines. If the LLF
strategy first saturates the mth machine, a natural idea is to apply the inductive
hypothesis to the remainder of the LLF strategy on the first m−1 machines to derive
a performance guarantee. This idea nearly succeeds, but there are two difficulties.
First, it is possible that the LLF strategy fails to saturate any machines; we will see
below that this case is easy to analyze and causes no trouble. Second, in order to
obtain a clean application of the inductive hypothesis to the first m− 1 machines, we
require that the optimal and LLF-induced assignments place the same total amount
of jobs on these machines—i.e., that the LLF-induced equilibrium eschews the mth
machine.4 We resolve this difficulty with the following lemma, which states that if the
LLF strategy saturates the mth machine, then some induced equilibrium assigns all
jobs to the first m− 1 machines; this suffices for our purposes, since different induced
assignments have equal cost.

Lemma 4.1. Let (M, r, α) denote a Stackelberg instance with optimal assignment
x∗ and index the machines of M so that �m(x∗m) ≥ �i(x

∗
i ) for all i. If s is a strategy

with sm = x∗m, then there exists an induced equilibrium t with tm = 0.

4To see a trivial example in which this does not occur, put r = 1, α = 1
2

and consider two
machines each with the constant latency function �i(xi) = 1. One particular optimal assignment
is ( 2

3
, 1
3
), and a corresponding LLF strategy is ( 1

6
, 1
3
); one particular induced assignment is ( 1

3
, 2
3
).

Even though the LLF strategy saturated the second machine, the induced equilibrium uses it.
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Proof. Consider an arbitrary induced equilibrium t and suppose tm > 0. Roughly
speaking, the idea is to prove that this scenario occurs only when several latency func-
tions (that of the mth machine, and others) are locally constant; then jobs assigned
to machine m in the induced equilibrium can be evacuated to other machines with
locally constant latency functions to provide a new induced equilibrium.

Formally, let L = �m(sm + tm) = �m(x∗m + tm) denote the common latency with
respect to s + t of every machine with ti > 0 (see Lemma 2.11). We must have
�m(x∗m) ≥ L; otherwise �i(x

∗
i ) < L for all i, yet �i(si + ti) ≥ L for all i, contradicting

that x∗ and s+ t are assignments at the same rate. Thus, since �m is nondecreasing,
�m is locally constant: �m is equal to L in the interval [x∗m, x

∗
m + tm].

Next, let M ′ denote the machines on which si + ti < x∗i ; since sm + tm > x∗m,
M ′ is nonempty. For each i ∈M ′, we know that �i(si+ti) ≥ L, �i(x

∗
i ) ≤ �m(x∗m) = L,

and �i is nondecreasing, so �i is equal to L on [si + ti, x
∗
i ]. Since x∗ and s + t are

assignments at the same rate, we must have
∑

i∈M ′ [x∗i − (si + ti)] ≥ tm. Finally,
consider modifying t as follows: move all jobs previously assigned to machine m to
machines in M ′, subject to the constraints si + ti ≤ x∗i . We have already observed
that there is sufficient “room” on machines in M ′ for this operation, and that all
latency functions are constant in the domain of our modifications. We have thus
exhibited a new induced equilibrium with no jobs assigned to machine m, completing
the proof.

We are now prepared to prove the main result of this section.
Theorem 4.2. Let I = (M, r, α) denote a Stackelberg instance. If s is an LLF

strategy for I inducing equilibrium t and x∗ is an optimal assignment for the instance
(M, r), then C(s+ t) ≤ 1

αC(x∗).
Proof. We proceed by induction on the number of machines m (for each fixed

m, we will prove the theorem for arbitrary �, r, and α). The case of one machine is
trivial.

Fix a Stackelberg instance I = (M, r, α) with at least two machines, and let x∗

denote an optimal assignment to the instance (M, r) and s the corresponding LLF
strategy. Index the machines so that �1(x

∗
1) ≤ �2(x

∗
2) ≤ · · · ≤ �m(x∗m). By scaling,

we may assume that r = 1 (use latency functions �̃ with �̃i(xi) = �i(rxi)). Let L
denote the common latency with respect to s + t of every machine with ti > 0 (see
Lemma 2.11).

Case 1. Suppose tk = 0 for some machine k. Let M1 denote the machines i for
which ti = 0 and M2 the machines for which ti > 0; both of these sets are nonempty.
For i = 1, 2 let αi denote the amount of centrally controlled jobs assigned to machines
in Mi (so αi = s(Mi)) and Ci the cost incurred by s + t on machines in Mi. By
Lemma 2.11, C2 = (1 − α1)L and C1 ≥ α1L. Further, since x∗ restricted to M2 is
an optimal assignment for (M2, 1−α1), s restricted to M2 is an LLF strategy for the
instance I2 = (M2, 1− α1, α

′), where α′ = α2

1−α1
.

Applying the inductive hypothesis to I2 and using the fact that x∗i ≥ si = si + ti
for all i ∈M1, we obtain

C(x∗) ≥ C1 + α′C2.

Proving that C(s+ t) ≤ 1
αC(x∗) thus reduces to showing

α(C1 + C2) ≤ C1 + α′C2.

Since α ≤ 1 and C1 ≥ α1L, it suffices to prove this inequality with C1 replaced by
α1L. Writing C2 = (1 − α1)L and α′ = α2

1−α1
and dividing through by L, we need
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only check that

α(α1 + (1− α1)) ≤ α1 +
α2

1− α1
(1− α1),

which clearly holds (both sides are equal to α).
Case 2. Suppose ti > 0 for every machine i, so C(s + t) = L. We may assume

that the LLF strategy failed to saturate machine m; otherwise, by Lemma 2.10, we
can finish by applying the previous case to the better-behaved induced assignment
guaranteed by Lemma 4.1. Thus, α < x∗m.

As in the proof of Lemma 4.1, we must have �m(x∗m) ≥ L; otherwise, �i(x
∗
i ) < L

for all machines i, while �i(si + ti) = L for all i, contradicting that x∗ and s + t are
assignments at the same rate. Having established that machine m has large latency
with respect to x∗ and that x∗m is fairly large, it is now a simple matter to lower
bound C(x∗):

C(x∗) ≥ x∗m�m(x∗m) ≥ αL = αC(s+ t).

5. A 4
3+α

performance guarantee for linear latency functions.

5.1. Properties of the Nash and optimal assignments. In this subsection
we undertake a deeper study of the Nash and optimal assignments for instances with
linear latency functions. The results of this subsection will be instrumental in proving
a stronger performance guarantee for the LLF strategy for these instances.

Fix a set of machines M with latency functions �i(xi) = aixi + bi for each i
(ai, bi ≥ 0) and index them so that b1 ≤ b2 ≤ · · · ≤ bm. We may assume that at
most one machine has a constant latency function (ai = 0) since all but the fastest
may be safely discarded; under this assumption, the Nash and optimal assignments
are always unique. We may similarly assume that a machine with a constant latency
function is the last machine.

Our first goal is to understand the structure of the Nash assignment x̄ as a function
of the rate r. It is useful to imagine r increasing from 0 to a large value, with
the corresponding Nash assignment changing in a continuous fashion; an intuitive
description of this process is as follows. Initially, when r is nearly zero, all jobs will
be assigned to the machine having the smallest constant term. Once the first machine
is sufficiently loaded, the second machine looks equally attractive. This occurs when
a1x̄1 + b1 = b2—when the load on machine 1 is b2−b1

a1
. At this point, new jobs will be

assigned to both of the first two machines, at rates proportional to 1
a1

and 1
a2

so that

these two machines continue to have equal latency. Once (b3 − b2)( 1
a1

+ 1
a2

) further
units of work have arrived and been assigned to the first two machines, machine 3 will
be equally attractive and new jobs will be spread out among the first three machines,
and so on. We may thus envision the Nash assignment as being constructed in phases:
within phase i jobs are assigned to the first i machines according to fixed relative
proportions and at the end of the phase, after enough new jobs have been assigned,
an additional machine is put into use.

We now formalize this intuitive description of the Nash assignment x̄. For i =
1, . . . ,m, let vi denote the m-vector ( 1

a1
, 1
a2
, . . . , 1

ai
, 0, 0, . . . , 0) ∈ Rm

+ ; if am = 0, put
vm = (0, 0, . . . , 1). The vector vi should be interpreted as a specification of the way
jobs are assigned to the first i machines during the ith phase. Next, define δi for i =
0, 1, . . . ,m− 1 inductively by δ0 = 0 and δi = min{(bi+1− bi)‖vi‖1, r−

∑i−1
j=0 δi} ≥ 0,

where ‖·‖1 denotes the L1-norm. We also put δm = r−∑m−1
j=0 δi. The scalar δi is the

amount of jobs assigned in the ith phase. We can then describe x̄ as follows.
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Lemma 5.1. Let I be an instance with linear latency functions, as above. Then
the Nash assignment for I is given by

x̄ =

m∑
i=1

δi
vi
‖vi‖1

.

Our characterization of optimal assignments (Lemma 2.5 and Corollary 2.6) yields
an analogous result for computing them by an explicit formula. Note that when a
latency function has the form �i(xi) = aixi+bi, the corresponding marginal cost func-
tion is �∗i (xi) = 2aixi + bi. Recalling from Corollary 2.6 that an optimal assignment
is simply a Nash assignment with respect to latency functions �∗, we see that the
optimal assignment is created by the same process as the Nash assignment, except
that new machines are incorporated at a more rapid pace so as to spread jobs over a
wider range of machines and thus achieve a smaller total latency.

Formally, let vi be as above and define δ∗i inductively by δ∗0 = 0, δ∗i = min{ 1
2 (bi+1−

bi)‖vi‖1, r−
∑i−1

j=0 δ
∗
i }, and δ∗m = r−∑m−1

j=0 δ∗i . Letting x∗ denote the optimal assign-
ment to (M, r), the analogue of Lemma 5.1 is as follows.

Lemma 5.2. Let I be an instance with linear latency functions, as above. Then
the optimal assignment for I is given by

x∗ =

m∑
i=1

δ∗i
vi
‖vi‖1

.

Lemmas 5.1 and 5.2 have several useful corollaries. We summarize them below.
Corollary 5.3. Let M be a set of machines with latency functions {�i(xi) =

aixi + bi}i∈M and at most one machine with a constant latency function. Let bi be
nondecreasing in i. Then

(a) if x∗ and x̄ denote the optimal and Nash assignments to (M, r), then
x∗m ≥ x̄m;

(b) if x∗ and x̄ denote the optimal and Nash assignments to (M, r), then x∗1 ≤
x̄1 ≤ 2x∗1;

(c) if x∗ is the optimal assignment for (M, r1) and y
∗ is the optimal assignment

for (M, r2) with r1 ≥ r2, then x∗i ≥ y∗i for each i;
(d) for any rate r, the optimal and Nash assignments of (M, r) can be computed

in O(m2) time.
Proof. Parts (c) and (d) are immediate from Lemmas 5.1 and 5.2. For the

remaining parts, fix an instance (M, r) and define vi, δi, and δ∗i as in Lemmas 5.1
and 5.2. Our first observation is that, for any i ∈ {1, 2, . . . ,m}, the Nash assignment
schedules at least as many jobs in the first i phases as the optimal assignment—
formally, that

∑i
k=1 δk ≥

∑i
k=1 δ

∗
k for all i. Since

∑m
k=1 δk =

∑m
k=1 δ

∗
k = r, we obtain

δ∗m ≥ δm and hence x∗m ≥ xm, proving (a).
It remains to prove part (b) of the corollary. We may assume that m > 1 (other-

wise x̄1 = x∗1 = r). Letting m′ equal m if there is no machine with constant latency
function and m− 1 otherwise, Lemmas 5.1 and 5.2 give

x∗1 =
1

a1

m′∑
i=1

δ∗i
‖vi‖1

and

x̄1 =
1

a1

m′∑
i=1

δi
‖vi‖1

.
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By the definitions of δi and δ∗i , we have δi ≤ 2δ∗i for i = 1, 2, . . . ,m and hence x̄1 ≤ 2x∗1.
For the other inequality, we recall that

∑i
k=1 δ

∗
k ≤

∑i
k=1 δk for each i and observe

that ‖vi‖1 is increasing in i (for i ∈ {1, 2, . . . ,m′}); it follows that x∗1 ≤ x̄1.
Corollary 5.3(d) implies that the LLF strategy can be computed in O(m2) time

for instances with linear latency functions.

5.2. Proof of performance guarantee. In subsection 2.3 we saw an example
with linear latency functions and α = 1

2 in which no strategy can induce an assignment
with cost less than 8

7 times that of the optimal assignment. This example is easily
modified to show that, for any α ∈ (0, 1), the minimum-cost induced assignment for
a Stackelberg instance (M, r, α) with linear latency functions may be 4

3+α times as
costly as the optimal assignment for (M, r). The main result of this section is a
matching upper bound for the LLF strategy.

Before proving this result, we give an alternative description of LLF that is more
convenient for our analysis. This description is based on the following lemma.

Lemma 5.4. Let x∗ be an optimal assignment for (M, r) where machine i has
latency function �i(xi) = aixi + bi. Then �i(x

∗
i ) ≥ �j(x∗j ) if and only if bi ≥ bj.

Proof. The lemma is clear when x∗i = x∗j = 0. Otherwise, we will make use
of our characterization of optimal assignments via machine marginal cost functions
(Lemma 2.5). If exactly one of x∗i , x

∗
j is 0 (say x∗i ), then by Lemma 2.5 we know

that the marginal cost �∗i (x
∗
i ) = �∗i (0) = bi of machine i is at least the marginal cost

�∗j (x
∗
j ) = 2ajx

∗
j + bj of machine j. Thus we necessarily have both �i(x

∗
i ) ≥ �j(x∗j ) and

bi ≥ bj . Finally, if x∗i , x
∗
j > 0, then by Lemma 2.5 we have 2aix

∗
i +bi = 2ajx

∗
j +bj = L∗

for some L∗; thus bi ≥ bj if and only if aix
∗
i ≤ ajx

∗
j . The lemma follows by writing

�i(x
∗
i ) = L∗ − aix∗i and �j(x

∗
j ) = L∗ − ajx∗j .

Lemma 5.4 gives the following equivalent description of the LLF strategy: satu-
rate machines one by one, in decreasing order of constant terms, until no centrally
controlled jobs remain. It may seem surprising that the LLF strategy makes no use
of the ai-values in ordering the machines; however, this is consistent with our obser-
vation in subsection 5.1 that the order in which machines are used by the optimal
assignment, if we think of the rate as increasing from 0 to some large value, depends
only on the constant terms of the machines’ latency functions.

We are finally prepared to prove a 4
3+α performance guarantee for the LLF strat-

egy for instances with linear latency functions. The general approach is similar to
that of Theorem 4.2 and is again by induction on the number of machines. However,
new difficulties arise in proving a stronger performance guarantee. The case in which
there is some machine k on which the induced equilibrium assigns no jobs (i.e., tk = 0
for some k) is nearly identical to the first case of Theorem 4.2: the desired perfor-
mance guarantee can easily be extracted from the inductive guarantee for the smaller
instance of machines on which ti > 0. The second case, in which the induced equi-
librium assigns jobs to all machines, is substantially more complicated. In particular,
the simple approach in the proof of Theorem 4.2 does not use any inductive guarantee
in this case and is thus not strong enough to prove a guarantee better than 1

α . For
this reason, much of the proof is devoted to defining an appropriate smaller instance
that allows for clean application of the inductive hypothesis and for extending the
inductive guarantee into one for the original instance.

Theorem 5.5. Let I = (M, r, α) denote a Stackelberg instance with linear latency
functions. If s is an LLF strategy for I inducing equilibrium t and x∗ is an optimal
assignment for (M, r), then C(s+ t) ≤ 4

3+αC(x∗).
Proof. We proceed by induction on the number of machines m (for each fixed m,
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we will prove the theorem for arbitrary (linear) �, r, and α). The case of one machine
is trivial.

Fix a Stackelberg instance I = (M, r, α) with at least two machines and let
�i(xi) = aixi + bi (with ai, bi ≥ 0). Let x∗ denote an optimal assignment to (M, r).
We begin with several simplifying assumptions, each made with no loss of generality.
As in Theorem 4.2, we may assume that r = 1. We assume as usual that there is
at most one machine with a constant latency function. It will also be convenient to
assume that some machine i has constant term 0. To enforce this assumption we may
subtract mini bi from every latency function before applying our argument: assuming
r = 1, this modification decreases the cost of every assignment by precisely mini bi
and will only increase the ratio in costs between any two assignments. Finally, we
assume that no machine has latency function �i(xi) = 0 (otherwise the instance is
trivial).

Let s denote an LLF strategy for I and t the induced equilibrium. Let L > 0
denote the common latency of every machine used by t (see Lemma 2.11). Index the
machines of M as in the second description of the LLF strategy (see Lemma 5.4),
so that 0 = b1 ≤ b2 ≤ · · · ≤ bm and a1 > 0. We will need to apply the inductive
hypothesis in two different ways, and our analysis breaks into two cases.

Case 1. Suppose tk = 0 for some k. Our argument will be essentially identical
to the first case in the proof of Theorem 4.2. Let M1 denote the machines on which
ti = 0 and M2 the machines on which ti > 0. For i = 1, 2, let αi denote the amount
of centrally controlled jobs on machines in Mi. For i = 1, 2 let Ci denote the cost
incurred by s + t on machines in Mi. Observe that C1 ≥ α1L and C2 = (1 − α1)L.
Since x∗ restricted to M2 is an optimal assignment for (M2, 1 − α1), s restricted to
M2 is an LLF strategy for I2 = (M2, 1 − α1, α

′), where α′ = α2

1−α1
. The inductive

hypothesis, applied to I2, and the fact that x∗i ≥ si = si + ti for all i ∈M1 imply that

C(x∗) ≥ C1 +
3 + α′

4
C2.

Proving that C(s+ t) ≤ 4
3+αC(x∗) thus reduces to showing

(3 + α)(C1 + C2) ≤ 4C1 + (3 + α′)C2.

Since α ≤ 1 and C1 ≥ α1L, it suffices to prove this inequality with C1 replaced by
α1L. Writing C2 = (1 − α1)L, α′ = α2

1−α1
, and dividing through by L verifies the

result.
Case 2. Suppose ti > 0 for all machines i ∈M . This implies that s+ t is a Nash

assignment for (M, 1); by Corollary 5.3(a) we have sm < sm+ tm ≤ x∗m (in particular,
we must have x∗m > 0). It follows that the LLF strategy s failed to saturate machine
m, so sm = α and si = 0 for i < m.

Our first goal is to show that s is an LLF strategy not only for I but also for I ′ =
(M ′, 1− t1, α

1−t1
), where M ′ = M \ {1} (we may then apply the inductive hypothesis

to s in this smaller instance). Toward this end, let y∗ denote the optimal assignment
to the instance (M ′, 1 − t1). Since s + t restricted to M ′ is a Nash assignment for
(M ′, 1 − t1), we must have y∗m ≥ sm + tm (see Corollary 5.3(a)); since α = sm <
sm + tm ≤ y∗m, the LLF strategy for I ′ is precisely s (restricted to M ′).

Let C∗
1 , C

∗
2 denote the total latency incurred by x∗ on machine 1 and in M ′,

respectively. The next claim gives a lower bound on C∗
2 , as a function of the amount

of jobs assigned to machines in M ′ in the optimal assignment.
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Claim. If r′ ≥ 1− t1, then the cost of the optimal assignment for (M ′, r′) is at
least

3 + α′

4
(1− t1)L+ (r′ − 1 + t1)L,

where α′ = α
1−t1

.
Proof. The claim is proved for r′ = 1 − t1 by applying the inductive hypothesis

to the instance I ′ = (M ′, 1− t1, α′) and using the fact that s is an LLF strategy for
M ′ inducing an assignment of cost (1− t1)L. Suppose now that r′ > 1− t1. We again
denote the optimal assignment for (M ′, 1 − t1) by y∗. Since y∗ and s + t (restricted
to M ′) are assignments at the same rate (namely, 1− t1) and the common latency of
every machine with respect to s + t is L, there is some machine i with y∗i > 0 and
�i(y

∗
i ) ≥ L. Since the marginal cost of a machine is at least its latency, Lemma 2.5

implies that the marginal cost of every machine in M ′ is at least L with respect to
y∗. By Corollary 5.3(c) and the observation that marginal costs are nondecreasing
functions of the machine load, extending y∗ from an optimal assignment for (M ′, 1−t1)
to an optimal assignment for (M ′, r′) involves the assignment of r′ − (1− t1) units of
jobs, all assigned at a marginal cost of at least L. Thus, the overall cost of an optimal
assignment to (M ′, r′) must be at least C(y∗) + (r′ − 1 + t1)L ≥ 3+α′

4 (1 − t1)L +
(r′ − 1 + t1)L.

Our goal is to prove that (3+α)C(s+ t) ≤ 4C(x∗) = 4(C∗
1 +C∗

2 ); with the claim
in hand, we have reduced the proof of the theorem to proving the inequality

(3 + α)L ≤ (3 + α′)(1− t1)L+ 4(t1 − x∗1)L+ 4a1(x
∗
1)

2,

where α′ = α
1−t1

(recall that �1(x1) = a1x1 and hence C∗
1 = a1(x

∗
1)

2). For any fixed

value of t1, x
∗
1 ∈ [ 12 t1, t1] (see Corollary 5.3(b)). Using the identity a1t1 = L and

differentiating, we find that the right-hand side is minimized by x∗1 = 1
2 t1. Since the

left-hand side is independent of x∗1, it suffices to prove that

(3 + α)L ≤ (3 + α′)(1− t1)L+ 2t1L+ a1t
2
1.

Substituting for α′, using the identity a1t1 = L, and dividing by L gives

3 + α ≤
(

3 +
α

1− t1

)
(1− t1) + 3t1,

which clearly holds, proving the theorem.

6. The complexity of computing optimal strategies. Thus far, we have
measured the performance of a Stackelberg strategy by comparing the cost of the
corresponding induced assignment to the cost of the optimal assignment of all of the
jobs. Another natural approach for evaluating a strategy is to compare the cost of the
induced assignment to that of the least costly assignment induced by some Stackelberg
strategy, i.e., to the cost of the assignment induced by the optimal strategy. Motivated
by the latter measure, in this section we study the optimization problem of computing
the optimal Stackelberg strategy.

We have seen that the LLF strategy provides the best possible (worst-case) per-
formance guarantee relative to the cost of the optimal assignment, and in particular
that the algorithm of subsection 3.2 may be viewed as a 1

α -approximation algorithm5

5A c-approximation algorithm for a minimization problem runs in polynomial time and returns
a solution no more than c times as costly as an optimal solution. The value c is the approximation
ratio or performance guarantee of the algorithm.



346 TIM ROUGHGARDEN

for computing the optimal strategy, and a 4
3+α -approximation algorithm for instances

with linear latency functions. However, simple examples show that the LLF strategy
is not always the optimal strategy, and thus our algorithm fails to solve this optimiza-
tion problem exactly.6 Our main result in this section is strong evidence that no such
polynomial-time algorithm exists.

Theorem 6.1. The problem of computing the optimal Stackelberg strategy is
NP-hard, even for instances with linear latency functions.

Proof. We reduce from a problem we call 1
3 -

2
3 Partition: given n positive integers

a1, a2, . . . , an, is there a subset S ⊆ {1, 2, . . . , n} satisfying
∑

i∈S ai = 1
3

∑n
i=1 ai? The

canonical reduction from the NP-complete problem Subset Sum to Partition is
easily modified to show that 1

3 -
2
3 Partition is NP-hard; see Garey and Johnson [21]

for problem definitions and Karp [25] or Kozen [31, p. 129] for the canonical reduction.
We will show that deciding the problem 1

3 -
2
3 Partition reduces to deciding whether

or not a given Stackelberg scheduling instance with linear latency functions admits a
Stackelberg strategy inducing an assignment with a given cost.

Given an arbitrary instance I of 1
3 -

2
3 Partition specified by positive integers

a1, . . . , an, put A =
∑n

i=1 ai and define a Stackelberg scheduling instance I ′ =
({1, 2, . . . , n+1}, 2A, 1

4 ) with n+1 machines and with linear latency functions �i(xi) =
xi

ai
+4 for i = 1, . . . , n and �n+1(xn+1) = 3xn+1

A . It is clear that I ′ can be constructed
from I in polynomial time. We claim that I is a “yes instance” (that is, admits a
1
3 -

2
3 partition) if and only if there is a Stackelberg strategy for instance I ′ inducing

an assignment with cost at most 35
4 A.

First suppose I is a “yes instance” of 1
3 -

2
3 Partition, with S ⊆ {1, 2, . . . , n}

satisfying
∑

i∈S ai = 2
3A, and consider the strategy defined by si = 3

4ai for i ∈ S

and si = 0 otherwise (since
∑n+1

i=1 si = 3
4

∑
i∈S ai = 3

4
2
3A = 1

2A, this defines a
Stackelberg strategy). The induced equilibrium is then ti = 0 for i ∈ S, ti = 1

4ai for
i ∈ {1, 2, . . . , n} \ S, and tn+1 = 17

12A. In the induced assignment s+ t, the A/2 units
of jobs on machines corresponding to S experience 19

4 units of latency, while the other
3A/2 units of jobs experience 17

4 units of latency. The cost of s+ t is thus

A

2

19

4
+

3A

2

17

4
=

35

4
A.

Now suppose that I is a “no instance” of 1
3 -

2
3 Partition, and consider any

Stackelberg strategy s for I ′, inducing equilibrium t. We need to show that C(s+t) >
35
4 A. Call machine i heavy if ti = 0 and light otherwise. Our first observation is that
machine n + 1 must be light (even if all centrally controlled jobs are assigned to
machine n + 1, some selfishly controlled jobs are subsequently assigned to it). Next,

we note that for i, j ∈ {1, 2, . . . , n}, the marginal cost 2(si+ti)
ai

+ 4 of machine i is at

most the marginal cost
2(sj+tj)

aj
+ 4 of machine j if and only if the latency �i(si + ti)

of machine i is at most �j(sj + tj). We may assume that all heavy machines have
the same marginal cost with respect to s+ t, as reassigning some centrally controlled
jobs from a heavy machine with large marginal cost to a heavy machine with small
marginal cost does not affect the induced equilibrium and can only decrease the cost
of the induced assignment. All heavy machines must then have equal latency with

6For example, consider a three-machine instance with latency functions �1(x1) = x1, �2(x2) =
1+x2, �3(x3) = 1+x3, with r = 1 and α = 1

6
. The optimal assignment is ( 2

3
, 1
6
, 1
6
) and thus the LLF

strategy is (0, 0, 1
6
) inducing the assignment ( 5

6
, 0, 1

6
) with cost 8

9
. On the other hand, the strategy

(0, 1
12

, 1
12

) induces the assignment ( 5
6
, 1
12

, 1
12

) having cost 7
8
.
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respect to s + t. Naturally, Lemma 2.11 implies that all light machines possess a
common latency with respect to s + t. That all machines have one of two latencies
will make the cost of s+ t easy to compute.

With the induced assignment s+ t still fixed, let S ⊆ {1, 2, . . . , n} denote the set
of heavy machines. If S = ∅, then s+ t is the Nash assignment for I ′ with si + ti = ai

2
for i ∈ {1, 2, . . . , n} and sn+1 + tn+1 = 3

2A, satisfying C(s + t) = 9A > 35
4 A. So

suppose S is nonempty and define β ∈ (0, 1] by the equation
∑

i∈S ai = βA. Define
γ ∈ (0, 1

2 ] by the equation
∑

i∈S si = γA. Our aim is to lower bound the cost of s+ t
as a function of the parameters β and γ.

Since all heavy machines have equal latency, for i heavy we must have si + ti =
si = γ

βai with �i(si + ti) = 4 + γ
β . Since all light machines have equal latency, we

must have

si + ti = ai
2− 3γ

4− 3β

with

�i(si + ti) = 4 +
2− 3γ

4− 3β

for i ∈ {1, 2, . . . , n} \ S and

sn+1 + tn+1 = A

(
4

3
+

2− 3γ

12− 9β

)
with

�n+1(sn+1 + tn+1) = 4 +
2− 3γ

4− 3β
.

The total cost of this solution is

C(s+ t) = γA

(
4 +

γ

β

)
+ (2− γ)A

(
4 +

2− 3γ

4− 3β

)
= A

(
8 +

(4− 3β)γ2 + β(2− γ)(2− 3γ)

β(4− 3β)

)
.

Holding β fixed and differentiating with respect to γ, we find that this expression has
unique minimizer γ = β when β ≤ 1

2 and γ = 1
2 when β ≥ 1

2 (subject to the condition
γ ∈ (0, 1

2 ]). There are now two cases to analyze. First suppose that β ≤ 1
2 . Setting

γ = β we obtain

C(s+ t) = A

(
8 +

4− 4β

4− 3β

)
;

differentiating with respect to β, we see that the expression has a unique minimizer
β = 1

2 (subject to the condition β ∈ (0, 1
2 ]) yielding cost A(8 + 4

5 ) >
35
4 A. Finally,

assume that β ≥ 1
2 . Setting γ = 1

2 we find that the cost of s+ t is given by

C(s+ t) = A

(
8 +

1

β(4− 3β)

)
;

differentiating with respect to β, we find that this expression has unique minimizer
β = 2

3 , at which point the equation reads C(s+ t) = 35
4 A. However, since I is a “no

instance” of 1
3 -

2
3 Partition, we must have β �= 2

3 and hence C(s + t) > 35
4 A. We

have exhausted all possible cases, and the reduction is complete.
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7. Directions for future work. The results of this paper suggest a number
of problems deserving further study. An important and general open question is to
what extent our machine-scheduling results carry over to the more complex domain
of general networks. For example, given a directed graph G with a source vertex s
and a sink t, a rate r of network traffic that wishes to travel from s to t, a latency
function on each arc, and a parameter α specifying the fraction of traffic that is
centrally controlled, how should the managed traffic be routed so as to induce the
best possible equilibrium?7 On the one hand, an example in a four-vertex network
shows that a worst-case performance guarantee as small as 1/α is impossible to attain
with general latency functions [44]. On the other hand, the example does not rule
out the possibility of a guarantee that is a larger function of α. Is it always possible
to induce an assignment with cost no more than a constant—depending on α, but
not on the size of the network—times that of the optimal assignment of traffic to
s-t paths? Is a performance guarantee of 4

3 − ε possible for the special case of linear
latency functions?

There are also unexplored avenues in the machine-scheduling setting. In sec-
tion 6, we considered the optimization problem of computing the optimal Stackelberg
strategy and observed that the LLF strategy achieves the best approximation ratio
possible using the cost of the optimal assignment as a lower bound. Can a better
approximation ratio be proved for LLF via a better lower bound on the cost of the
assignment induced by the optimal strategy? In a different direction, to what extent
do the results of this paper extend to systems with jobs of nonnegligible size?

Another natural question is whether more sophisticated approximation algorithms
can achieve a better approximation ratio. This question has been resolved in the
affirmative by Kumar and Marathe [32], who have given a fully polynomial-time
approximation scheme8 for the problem under mild conditions on the machine latency
functions.
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Abstract. The principal aim of model checking is to provide efficient decision procedures for
the evaluation of certain logical formulae over finite relational structures. Graphs and hypergraphs
are important examples of such structures. If no restrictions are imposed on the logical formulae
and on the structures under consideration, then this problem of model checking has a very high
computational complexity. Hence, several restrictions have been proposed in the literature on the
logical formulae and/or on the structures under consideration in order to guarantee the tractability
of this decision problem, e.g., acyclicity, bounded tree-width, query-width and hypertree-width in
the case of queries, as well as bounded tree-width and clique-width in the case of structures. The
aim of this paper is a detailed comparison of the expressive power of these restrictions.
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1. Introduction. Model checking is the problem of deciding whether a logical
formula or query Q is satisfied by a finite structure S, which is formally written as
S |= Q. Qmay be a formula in first-order logic, monadic second-order logic, existential
second-order logic, and so on. Model checking is a central issue in database systems [1],
where S represents a database and the formula Q represents a database query. If Q
is a closed formula, then Q is a Boolean query; otherwise Q(x) with free variables x
represents the query whose output consists of all tuples of domain values a such that
S |= Q(a). Model checking is also a basic issue in the area of constraint satisfaction,
which is essentially the same problem as conjunctive query evaluation [5, 33]. Finally,
model checking is used in computer-aided verification [13], where S represents a state
transition graph and Q is typically a formula of modal logic describing some temporal
system behavior. The results of the present paper are, however, more relevant to the
former applications, namely, conjunctive database queries and constraint satisfaction.

Without any further restriction on the form of the structures and/or the queries,
these problems have a very high computational complexity. Hence, several restrictions
have been proposed in the literature both for the structures and the queries in order
to make these problems tractable. In particular, the evaluation problem for acyclic
queries or for queries whose tree-width, query-width, or hypertree-width is bounded
by some fixed constant k is tractable on arbitrary finite structures (combined complex-
ity). On the other hand, arbitrary but fixed formulae of monadic second-order logic
(precisely, so-called MS1 formulae) can be evaluated in polynomial time on graphs
whose tree-width or clique-width is bounded by some fixed constant k [16, 18, 19].
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In other words, MS1 queries have polynomial data complexity in the case of bounded
tree-width or bounded query-width. MS1 extends first-order logic by the possibility
of quantifying over monadic relational variables representing sets of vertices. Note
that only the concept of bounded tree-width has so far been applied both to the
queries and the structures. On the other hand, acyclicity, bounded query-width, and
hypertree-width have primarily been investigated as restrictions on the queries, while
bounded clique-width has been considered only as a restriction on the structures. In
this paper, we apply all of these restrictions both to the queries and to the structures.
For reasons to be explained in section 2, we consider the clique-width of a hypergraph
as the clique-width of its incidence graph (for definitions, see section 2.1). We shall
thus answer the following questions:

(i) Question 1: How do the various notions of acyclicity and of bounded hyper-
tree-width relate to the concept of bounded clique-width?

(ii) Question 2: Are Boolean conjunctive queries tractable if their clique-width
is bounded by some fixed constant k?

(iii) Question 3: Bounded clique-width is currently the most general restriction
on structures which makes the model checking problem for MS1 formulae tractable.
Can the tractability barrier be pushed any further by using known generalizations of
acyclicity that are more powerful than clique-width?

As for the first question, we provide an exact classification of the expressive power
of the various restrictions. The result is depicted in Figure 1.1. (Definitions of all
these concepts are provided in section 2.1.) The arrows in the figure point from the
less powerful concept to the more powerful one. In particular, it is shown in this paper
that if a class C of hypergraphs is of bounded clique-width, then C is of bounded query-
width (and, hence, also of bounded hypertree-width). Moreover, it is also shown, e.g.,
that β-acyclicity is uncomparable with bounded clique-width.

In [29] it was shown that the evaluation of a class C of Boolean conjunctive
queries is tractable (actually, it is even in LOGCFL) if C is of bounded hypertree-
width. Putting this together with our new result that bounded clique-width implies
bounded query-width (see Figure 1.1), we immediately obtain that the evaluation of
a class C of Boolean conjunctive queries is tractable if C is of bounded clique-width.
Thus Question 2 is positively answered.
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Fig. 1.1. Expressive power of various restrictions on hypergraphs.

As for the third question, we prove that the restriction to hypergraphs of bounded
query-width or bounded β-hypertree-width is not sufficient to guarantee tractability
of MS1 queries. Thus bounded clique-width remains so far the most general restriction
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on structures that guarantees the tractability of arbitrary fixed MS1 queries.
While tree-width can be recognized in linear time [7], it is currently unclear

whether bounded clique-width can be recognized in polynomial time. We therefore
propose generalized tree-width (gtw), a cyclicity measure located between tree-width
and clique-width. It will be easy to see that bounded gtw is recognizable in polynomial
time. Moreover, we shall prove that the evaluation of MS1 queries over structures of
bounded gtw is indeed tractable.

This paper is structured as follows: In section 2 we recall some basic notions and
results. Restrictions on the form of the queries and of the structures will be considered
in sections 3 and 4, respectively. In section 5, we show how the considerations of
section 4 can be used for defining generalized tree-width. Finally, in section 6, we
give some concluding remarks.

2. Preliminaries.

2.1. Various notions of width and acyclicity. A graph is a pair G = 〈V, E〉
consisting of a set V of vertices (or nodes) and a set E of edges. We consider only
undirected graphs without self-loops and without multiple edges here. Hence, in
particular, every edge E ∈ E is a two-element subset of V. Two vertices are called
adjacent iff they are the endpoints of an edge in E . A set W ⊆ V is a module of a
graph iff the elements in W cannot be distinguished by the other vertices; i.e., every
vertex in V − W is adjacent either to all vertices W ∈ W or to none. A subgraph
is a graph 〈V ′, E ′〉 such that (s.t.) V ′ ⊆ V and E ′ ⊆ E hold. A subgraph is induced
iff E ′ is the restriction of E to those edges with both endpoints in V ′. In a labeled
graph, every vertex has exactly one label. A k-graph is a labeled graph with k labels.
Usually, these labels are taken from the set {1, . . . , k}. A k-graph can be represented
as 〈V, E ,V1, . . . ,Vk〉, where V is a set of vertices, E is a set of edges, and the sets
V1, . . . ,Vk are (possibly empty) subsets of V that form a partition of V.

A hypergraph is a pair H = 〈V, E〉 consisting of a set V of vertices and a set E of
hyperedges. A hyperedge H ∈ E is a subset of V. A subhypergraph 〈V ′, E ′〉 of 〈V, E〉
is obtained by deleting vertices and/or hyperedges; i.e., V ′ ⊆ V and there exists a
subset F ⊆ E s.t. E ′ = {H ∩ V ′ |H ∈ F}. With every hypergraph H = 〈V, E〉,
we can associate the following two graphs: The primal graph (which is also called
the Gaifmann graph) P(H) has the same vertices V as H. Moreover, two vertices
V1, V2 ∈ V are connected by an edge in P(H) iff there is a hyperedge H ∈ E s.t. both
V1 and V2 are contained in E . The incidence graph I(H) is a bipartite graph with
vertices in V ∪E . Moreover, there is an edge in I(H) between two vertices V ∈ V and
H ∈ E iff (in the hypergraph H) V occurs in the hyperedge H. The incidence graph
can be considered either as an unlabeled graph or as a 2-graph, with the labels V and
E , respectively.

In order to determine the clique-width of a (labeled or unlabeled) graph, we
have to deal with so-called k-expressions t and the graphs G(t) generated by such
k-expressions:

(i) Let i ∈ {1, . . . , k} and let V be a vertex. Then i(V ) is a k-expression. The
corresponding graph consists of a single vertex V whose label is i.

(ii) Let r and s be k-expressions that have no vertices in common. Then r ⊕ s
is also a k-expression. The graph thus generated is the (disjoint) union of the graphs
G(r) and G(s).

(iii) Let i, j ∈ {1, . . . , k} with i �= j and let r be a k-expression. Then ηi,j(r)
is also a k-expression. The corresponding graph is the same as G(r) augmented by
edges from every vertex with label i to every vertex with label j.
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(iv) Let i, j ∈ {1, . . . , k} with i �= j and let r be a k-expression. Then ρi→j(r)
is also a k-expression whose graph is the same as G(r) except that all vertices with
label i in G(r) are relabeled to j.

The graph generated by a k-expression t can be considered either as a labeled
graph with labels in {1, . . . , k} or as an unlabeled graph (by ignoring the labels as-
signed by t). Every subexpression s of a k-expression t generates a subgraph G(s) of
G(t) (when considered as an unlabeled graph). The clique-width cw(G) of a (labeled
or unlabeled) graph G is the minimum k s.t. there exists a k-expression that generates
G. Obviously, cw(G) ≤ n for every graph with n vertices. It can be shown that every
clique has clique-width 2; e.g., the clique with four nodes V1, V2, V3, V4 can be gener-
ated by the 2-expression η1,2(2(V4) ⊕ ρ2→1(η1,2(2(V3) ⊕ ρ2→1(η1,2(2(V2) ⊕ 1(V1)))))).

A tree decomposition of a graph 〈V, E〉 is a pair 〈T, λ〉, where T = 〈N,F 〉 is a tree
and λ is a labeling function with λ(p) ⊆ V for every node p ∈ N s.t. the following
conditions hold:

(i) ∀V ∈ V, ∃p ∈ N s.t. V ∈ λ(p).
(ii) ∀E ∈ E with endpoints V1 and V2, ∃p ∈ N s.t. V1 ∈ λ(p) and V2 ∈ λ(p).
(iii) ∀V ∈ V, the set {p ∈ N : V ∈ λ(p)} induces a connected subtree of T .
The width of a tree decomposition 〈T, λ〉 is max({|λ(p)| − 1 : p ∈ N}). The

tree-width tw(G) of a graph G is the minimum width over all its tree decompositions.
A join tree of a hypergraph 〈V,H〉 is a labeled tree 〈T, λ〉 with T = 〈N,F 〉 and

a labeling function λ with λ(p) ∈ H for every node p ∈ N . Moreover, the following
conditions hold:

(i) ∀H ∈ H, ∃p ∈ N s.t. λ(p) = H.
(ii) “Connectedness condition”: Let λ(p1) = H1 and λ(p2) = H2 for two distinct

nodes p1 and p2. Moreover, suppose that some vertex V ∈ V occurs in both hyperedges
H1 and H2. Then V must also occur in all hyperedges that are used as labels on the
path from p1 to p2.

A hypergraph is α-acyclic iff it has a join tree.
In [12], a query decomposition of a hypergraph 〈V,H〉 is defined as a pair 〈T, λ〉

where T = 〈N,F 〉 is a tree and λ is a labeling function with λ(p) ⊆ (V ∪H) for every
p ∈ N and

(i) ∀H ∈ H ∃p ∈ N s.t. H ⊆ {V |V ∈ λ(p)∩V or ∃H ′ ∈ λ(p)∩H with V ∈ H ′};
(ii) “Connectedness condition”: ∀V ∈ V, the set {p ∈ N : V ∈ λ(p)} ∪ {q ∈ N :

∃H ∈ H s.t. H ∈ λ(q) and V occurs in the hyperedge H} induces a connected subtree
of T .1

The width of a query decomposition 〈T, λ〉 is max({|λ(p)| : p ∈ N}). The query-
width qw(H) of a hypergraph H is the minimum width over all its query decomposi-
tions. From [12] we know that a hypergraph H is α-acyclic iff qw(H) = 1 holds.

In [29], a hypertree decomposition of a hypergraph 〈V,H〉 is defined as a triple
〈T, χ, λ〉 where T = 〈N,F 〉 is a tree and χ and λ are labeling functions with χ(p) ⊆ V
and λ(p) ⊆ H for every p ∈ N . Moreover, the following conditions hold:

(i) ∀H ∈ H, ∃p ∈ N s.t. H ⊆ χ(p) i.e., “p covers H.”
(ii) “Connectedness condition”: ∀V ∈ V, the set {p ∈ N : V ∈ χ(p)} induces a

connected subtree of T .
(iii) ∀p ∈ N , χ(p) contains only vertices that actually occur in at least one

hyperedge of λ(p).

1Note that in the original definition in [12], it is also required that ∀H ∈ H, the set {p ∈ N : H ∈
λ(p)} is a connected subtree of T . However, this restriction is of no use as far as the tractability of
the evaluation of queries is concerned. We have therefore omitted this condition here.
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(iv) For every p ∈ N , if a vertex V occurs in some hyperedge H ∈ λ(p) and if
V is contained in χ(q) for some node q in the subtree below p, then V must also be
contained in χ(p).

The width of a hypertree decomposition 〈T, χ, λ〉 is max({|λ(p)| : p ∈ N}). The
hypertree-width hw(H) of a hypergraph H is the minimum width over all its hypertree
decompositions.

A conjunctive query Q is a first-order formula in prenex form whose only con-
nectives are ∃ and ∧. With every conjunctive query, we can associate a hypergraph
H, whose vertices V1, . . . , Vn correspond to the variables x1, . . . , xn occurring in Q.
Moreover, for every atom A with variables Var(A) = {xi1 , . . . , xiα}, there is a hy-
peredge H = {Vi1 , . . . , Viα} in the hypergraph, and vice versa. Then the notions of
hypertree-width, query-width, and acyclicity carry over in a natural way from hyper-
graphs to conjunctive queries. Likewise, the incidence graph or the primal graph of a
conjunctive query Q is simply the corresponding graph of the associated hypergraph
H. Actually, the clique-width or tree-width of a hypergraph H can be defined as
the corresponding width of either the incidence graph or the primal graph. If not
indicated otherwise, we shall assume that the clique-width and the tree-width of a
hypergraph H refer to the incidence graph (considered as an unlabeled graph). As
a justification of this choice, note that there are NP-hard classes of queries s.t. the
clique-width of their primal graphs is bounded by some fixed constant k. Consider,
for example, the class C of conjunctive queries CLIQUEm asking whether a graph
(V, E) has a clique of size m for integers m. This class of queries is well known
to be NP-hard (cf. [26, problem GT19]). CLIQUEm is expressed by the formula
∃x1,∃x2, . . . ,∃xm :

∧
1≤i<j≤m( (xi �= xj) ∧ E(xi, xj) ). The primal graph associated

to CLIQUEm is a clique of m vertices and has clique-width k = 2 for any m > 1.
Thus, Question 2 asked in the introduction has a trivial negative answer in case the
clique-width of a query is defined based on its primal graph. The question becomes
highly nontrivial if instead, as done in the present paper, we define the clique-width
of a query (or of a hypergraph) on the basis of its incidence graph.

Clique-width and tree-width are hereditary properties in that cw(G′) ≤ cw(G)
and tw(G′) ≤ tw(G) hold for every induced subgraph G′ of a graph G. Moreover, any
subhypergraph H′ of a hypergraph H gives rise to an induced subgraph I(H′) of the
incidence graph I(H). Hence, if H′ is an arbitrary subhypergraph of H, then cw(H′) ≤
cw(H) and tw(H′) ≤ tw(H) hold, where cw and tw are defined via the incidence
graph of a hypergraph. In contrast, α-acyclicity, query-width, and hypertree-width
do not share this property, e.g., a hypergraph H can be α-acyclic even though some
subhypergraph H′ is not. Likewise, H can have a subhypergraph H′ s.t. qw(H) <
qw(H′) or hw(H) < hw(H′) hold. The notions of β-acyclicity and β-hypertree-width
can be regarded as the hereditary counterparts of α-acyclicity and hypertree-width:
In [24], a hypergraph H is defined to be β-acyclic iff every (not necessarily induced)
subhypergraph H′ of H is α-acyclic. Analogously, we can define the β-hypertree-width
of H as the max({hw(H′) : H′ is a subhypergraph of H}). In [24], another notion of
acyclicity is presented, namely, γ-acyclicity. Any hypergraph that is γ-acyclic is also
β-acyclic. An algorithmic definition of γ-acyclicity will be given in section 4.1.

In this work, we shall compare the expressive power of the above defined notions
of width. Let x, y ∈ {tree, clique, query, hypertree, β-hypertree}. Moreover, let C be
a class of hypergraphs (or graphs). We say that C is of bounded x-width if there exists
some constant k s.t. every hypergraph (or graph, respectively) in C has x-width less
than or equal to k. Moreover, we say that bounded x-width implies bounded y-width if
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Fig. 2.1. H, I(H), and QD.

every class C of hypergraphs (or graphs) that is of bounded x-width is also of bounded
y-width.

We conclude this section with an example, which should help to illustrate some
of the main concepts used in this paper.

Example. Consider the conjunctive query Q = A(x1, x2, x3)∧B(x2, x4)∧C(x3, x4)
consisting of 3 atoms and 4 variables. Consequently, the corresponding hypergraph
H = 〈V, E〉 is made up of 4 vertices V = {V1, V2, V3, V4} and 3 hyperedges E =
{H1, H2, H3} with H1 = {V1, V2, V3}, H2 = {V2, V4}, and H3 = {V3, V4}. Then the
incidence graph I(H) is the bipartite graph with vertices in {V1, V2, V3, V4, H1, H2, H3}
s.t. 2 nodes Vi and Hj are adjacent in I(H) iff, in the hypergraph H, Vi occurs in the
hyperedge Hj .

The hypergraph H and the incidence graph I(H) are displayed in Figure 2.1.
Moreover, a query decomposition QD of H is shown there also. Note that QD has
width 2. Due to the cycle {V2, V3}, {V3, V4}, {V4, V2}, the hypergraph H is not acyclic
and, therefore, H cannot have a query decomposition of width 1. Hence, we have in
fact qw(H) = 2. Finally, a k-expression t (with k = 5) generating the graph I(H) can
be obtained via the following algorithm:

Initialization (nodes Hi): First we introduce all nodes H1, H2, and H3 with
pairwise distinct labels; i.e., we set s0 := 1(H1) ⊕ 2(H2) ⊕ 3(H3).

Iteration (nodes Vj): In a loop over all nodes V1, . . . , V4, we carry out the following
steps: Introduce the node Vj with label 4, draw all required edges between Vj and the
Hi’s and relabel Vj to 5, i.e.,

s1 := ρ4→5(η4,1(4(V1) ⊕ s0)), s2 := ρ4→5(η4,1(η4,2(4(V2) ⊕ s1))),

s3 := ρ4→5(η4,1(η4,3(4(V3) ⊕ s2))), s4 := ρ4→5(η4,2(η4,3(4(V4) ⊕ s3))).

Then s4 is the desired k-expression that generates I(H). Note that the above
algorithm is applicable to any bipartite graph. Hence, in any bipartite graph B with
nodes in N1 ∪N2, the condition cw(B) ≤ min(|N1|, |N2|) + 2 is fulfilled.

2.2. Tractability via bounded width or acyclicity. In model checking, one
is interested in the (efficient) evaluation of certain logical formulae (= “queries”) over
finite relational structures. To this end, the various notions of width and acyclicity
recalled in the previous section have been explored in two principal ways: They have
been used to restrict either the relational structures or the queries. Restrictions on the
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structures in terms of tree-width and clique-width have been investigated in the area
of graph grammars and graph algorithms. On the other hand, restrictions imposed
on the queries such as the various forms of acyclicity as well as bounded query-width
and hypertree-width have been mainly analyzed in database theory and constraint
satisfaction. Note that, so far, only tree-width is common ground for both directions
of research.

In this paper, we shall first deal with restrictions on the form of the queries. Recall
that the evaluation of arbitrary first-order queries is PSPACE-complete (cf. [34, 35]).
Actually, even if we restrict the form of first-order queries to conjunctive queries
(where only conjunctions and existential quantification are allowed), then the query
evaluation is still NP-complete (see [11]). If conjunctive queries are further restricted
to α-acyclic conjunctive queries, then this problem becomes tractable (cf. [36]). How-
ever, acyclicity is a very severe restriction. Hence, in recent years, several attempts
to deal with “almost acyclic queries” have been made. In particular, several notions
of width have been introduced in order to extend the class of tractable conjunctive
queries, namely, tree-width, query-width, and hypertree-width (cf. [12, 25, 29, 31, 33]).
In [28] and [29], it has been shown that, for some fixed k, the class of conjunctive
queries with hypertree-width ≤ k properly contains the classes where the tree-width
(of the incidence graph or of the primal graph) or the query-width, respectively, is
bounded by k. Moreover, the concept of hypertree-width is a generalization of α-
acyclicity in that a conjunctive query is acyclic iff it has hypertree-width 1.

In [15], the complexity of testing certain graph properties is investigated. In
terms of model checking, this corresponds to evaluating a fixed query over finite
graphs. If the queries are (arbitrary but fixed) first-order formulae, then this problem
is tractable for all finite graphs without any further restrictions. However, the ex-
pressive power of first-order logic is comparatively weak. Hence, attempts were made
to investigate larger classes of queries. In fact, many interesting graph properties
like 3-colorability, Hamiltonian circuit, partition into triangle, etc. (cf. [15, 26]), are
expressible as monadic second-order queries. Note that there are basically two ways
of representing a graph by a logical structure, namely, either the domain consists of
both vertices and edges or the domain consists of vertices only. In the former case,
quantified variables of a monadic second-order formula may refer to edges or vertices,
whereas in the latter case, only quantification over vertices is allowed. Formulae in
the former case are referred to as MS1 formulae, while formulae in the latter case
are called MS2 formulae. It has been shown that MS2 formulae can be evaluated in
polynomial time (in fact, even linear time suffices) over a class C of graphs if C is of
bounded tree-width. The restriction to bounded clique-width has proved to allow for
a much larger class of structures than bounded tree-width. In particular, bounded
tree-width implies bounded clique-width (cf. [19]), while the converse is in general not
true; e.g., the class of cliques is of bounded clique-width (where the bound is simply
2) but of unbounded tree-width. It has been shown that the evaluation of fixed MS1

formulae over a class C of graphs is tractable if C is of bounded clique-width (cf.
[15, 16, 17]).

3. Restricting the form of the queries. In this section we consider the case
of conjunctive queries over arbitrary relational structures, where the queries are sub-
jected to restrictions that guarantee tractability. It has already been noted in the
previous section that bounded hypertree-width is the most powerful concept studied
so far. We shall now show that bounded clique-width does not allow for a bigger class
of conjunctive queries than does bounded hypertree-width. More precisely, in the
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proof of Theorem 3.1, we shall provide an algorithm that, when given a k-expression
for (the incidence graph of) some hypergraph H, constructs a query decomposition of
H whose width is ≤ k.

It is convenient to introduce some additional notation first. In the proof of Theo-
rem 3.1, we are going to deal with three kinds of graphs or hypergraphs, respectively,
i.e., a hypergraph H′, the incidence graph I ′ of H′, and the query decomposition
QD′ of H′. We shall therefore speak about H-vertices, I-vertices, and Q-vertices (or,
equivalently, H-nodes, I-nodes, and Q-nodes) when referring to the vertices in H′,
I ′, or QD′, respectively. Likewise, we shall encounter two kinds of labels, namely,
the labels assigned by the k-expression t′ and the labels of the Q-nodes in the query
decomposition QD′. In order to avoid confusion, we shall refer to these labels as
t-labels (for the labels of the I-vertices according to the k-expression t′) and Q-labels
(in case of the Q-nodes), respectively. Strictly speaking, t′ assigns t-labels to the
nodes in I ′ (i.e., the I-nodes). However, every I-node uniquely corresponds either
to a hyperedge or to an H-vertex in H′. Hence, as an abbreviation, we shall speak
about the “t-label of a hyperedge” or the “t-label of an H-vertex” when we refer to
the t-label of the I-vertex corresponding to this hyperedge or H-vertex, respectively.
We shall say that a Q-node q of the query decomposition QD′ “covers” an H-vertex
V iff either V is contained in the Q-label λ′(q) or λ′(q) contains some hyperedge H
s.t. V is an H-vertex occurring in this hyperedge H. Finally, for every � ∈ {1, . . . , k},
we define the set Q�(QD

′) of Q-nodes as Q�(QD
′) = {p : p is a Q-node in QD′ and

the Q-label of p contains a hyperedge or an H-vertex with t-label �}.
Theorem 3.1 (query-width is bounded by clique-width). Let H be an arbitrary

hypergraph with incidence graph I(H). Then qw(H) ≤ cw(I(H)) holds.

Proof. Let H be a hypergraph with incidence graph I and let t be a k-expression
that generates I. Note that every subexpression t′ of t generates a subgraph I ′ of the
incidence graph I. Moreover, every such I ′ uniquely defines a hypergraph H′. Then
we construct a query decomposition QD′ of H′ inductively on the structure of t′ with
the following properties:

1. QD′ is a query decomposition of H′ of width ≤ k.
2. For every � ∈ {1, . . . , k}, the above defined set Q�(QD

′) of Q-vertices, if not
empty, forms a connected subtree of QD′ s.t. the root of this subtree coincides with
the root of QD′ itself. Moreover, if the incidence graph I ′ actually contains an I-node
with t-label �, then the Q-label λ(r) of the root r of QD′ also contains at least one
I-node with t-label �.

3. Suppose that p is a Q-node in QD′, V is an H-vertex with t-label �, and p
covers V . Moreover, let the Q-node q be the parent of p in QD′. Then either q also
covers V or the Q-label λ′(q) contains some I-node N whose t-label is �.

For the construction of QD′, we consider each of the four basic operations of a
k-expression separately.

Introduction of a new vertex. Let t′ = i(N) for some node N in I; i.e., N either
corresponds to a hyperedge or to an H-vertex in H′. In either case, the corresponding
query decomposition QD′ consists of a single node r whose Q-label is the singleton
{N}. Thus, QD′ trivially fulfills the above conditions 1 through 3.

Disjoint union. Let t′ = s1 ⊕ s2. Moreover, let J1 and J2 be the (disjoint)
subgraphs of I defined by s1 and s2, respectively, and let H1 and H2 be the corre-
sponding hypergraphs. By the induction hypothesis, there exist query decompositions
QD1 = 〈T1, λ1〉 and QD2 = 〈T2, λ2〉 of H1 and H2, respectively, for which the above
three conditions hold. Let r1 and r2 denote the root nodes of T1 and T2, respectively.
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Then we construct the new query decomposition QD′ = 〈T ′, λ′〉 in the following way:
T ′ has a new root node r and the subtrees T1 and T2 s.t. r1 and r2 are the child nodes
of r. As for the labeling function λ′, the Q-labels of the Q-nodes in QD1 and QD2

are left unchanged. The Q-label λ′(r) of the new root r is defined from the Q-labels
of r1 and r2 as follows: Let R = λ1(r1) ∪ λ2(r2). By assumption, the H-vertices and
hyperedges in R are assigned at most k different t-labels by t′. Then we construct
the Q-label λ′(r) by selecting one representative from R for each t-label according to
t′. Of course, there can be at most k such representatives. We shall now show that
conditions 1 through 3 hold for QD′:

(i) Condition 1. By the above construction of λ′ and by the induction hypoth-
esis, the width of QD′ is clearly ≤ k. It remains to prove that QD′ is indeed a query
decomposition of H′. By the induction hypothesis, every hyperedge of H1 occurs in
some Q-label of QD1 and every hyperedge of H2 occurs in some Q-label of QD2 and,
thus, also in some Q-label of QD′. Moreover, the connectedness condition follows
from the induction hypothesis and the fact that I ′ is obtained as the disjoint union
of J1 and J2. Hence, in particular, the hypergraphs H1 and H2 have no H-vertices
in common.

(ii) Condition 2. Let � ∈ {1, . . . , k}. By the induction hypothesis, Q�(QD1)
and Q�(QD2) form connected subtrees of the query decompositions QD1 and QD2,
respectively. Moreover, the roots of these subtrees coincide with the roots of QD1

and QD2, respectively, and if J1 or J2 contains an I-node with label �, then λ1(r1)
or λ1(r2), respectively, indeed contains an I-node with t-label �. By our construction,
Q�(QD

′) is obtained as follows:

Q�(QD
′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q�(QD1)

∪ Q�(QD2) ∪ {r} if s1 and s2 contain an I-node with t-label �,
Q�(QD1) ∪ {r} if only s1 contains an I-node with t-label �,
Q�(QD2) ∪ {r} if only s2 contains an I-node with t-label �,
∅ otherwise.

In all of these four cases, condition 2 clearly holds.
(iii) Condition 3. Let p be a Q-node in QD′ and let q be the parent of p in QD′.

In particular, p is not the new root node r in QD′ and, therefore, p already existed
before, say, in QD1. Now suppose that V is an H-vertex with t-label � s.t. p covers
V in QD′. If p is the root r1 of QD1, then q is the new root r in QD′, which (by
condition 2) contains some I-node N with t-label �. On the other hand, if p �= r1,
then also q is a Q-node of QD1 and condition 3 holds by the induction hypothesis.

Introduction of edges. Let t′ = ηi,j(s1). Moreover, let J1 be the subgraph of
I defined by s1 and let H1 be the corresponding hypergraph. Note that the ηi,j
operation may have added some new edges in the incidence graph and, therefore, a
hyperedge H in H′ will, in general, contain more H-vertices than if we consider H
as a hyperedge in H1. In fact, we may assume without loss of generality (w.l.o.g.)
that the application of ηi,j to s1 indeed creates a new edge in I ′, which did not
exist in J1. Otherwise, the hypergraphs H′ and H1 would be identical and the query
decomposition QD1 of H1 would also be the desired query decomposition of H′.

In order to distinguish between hyperedges in H′ and H1, we shall write H and
H−, respectively; i.e., by H−, we denote a hyperedge in H1 and by H we denote the
corresponding hyperedge in H′. Of course, we have H− ⊆ H but, in general, H− = H
is not true.

By the induction hypothesis, there exists a query decomposition QD1 = 〈T1, λ1〉
of H1 for which the above three conditions hold. Then we construct the query de-
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composition QD′ = 〈T1, λ
′〉 of H′ in such a way that the tree T1 is left unchanged.

As for the labeling function λ′ of QD′, recall that I ′ is a bipartite graph. More-
over, by assumption, ηi,j creates at least one new edge in I ′. Hence, we may assume
w.l.o.g. that i is the t-label of H-vertices only and j is the t-label of hyperedges only.
By condition 2 of the induction hypothesis, Qj(QD1) is a connected subtree of QD1

whose root coincides with the root r1 of QD1. Thus, the Q-label λ1(r1) contains a
hyperedge G− with t-label j. Then λ′ is defined as follows: The Q-label of the root
r1 is left unchanged, i.e., λ′(r1) := λ1(r1). Likewise, if the Q-label of some Q-node
p �= r1 does not contain an H-vertex with label i, then we do not alter this Q-label.
In the Q-label of all other Q-nodes, we replace the H-vertices with t-label i by the
hyperedge G.2

Now it can be easily checked that condition 2 holds for QD′; i.e., by our con-
struction of the labeling function λ′, the sets Q�(QD

′) are obtained from Q�(QD1)
for � ∈ {1, . . . , k} in the following way:

Q�(QD
′) =

⎧⎨⎩
{r1} if � = i,
Qi(QD1) ∪Qj(QD1) if � = j,
Q�(QD1) otherwise.

In all of these three cases, condition 2 obviously holds.
For the proof of condition 3, let p be a Q-node in QD′ and let q be the parent

of p in QD′. Moreover, let V be an H-vertex with t-label � s.t. p covers V . Then we
have to show that either q also covers V or the Q-label λ′(q) contains some I-node N
whose t-label is �. Of course, p and q are also Q-nodes in QD1. Then we distinguish
the following cases:

Case 1. Suppose that � �= i. If V occurs in some hyperedge H of the Q-label
λ′(p) s.t. the corresponding hyperedge H− already occurred in the Q-label λ1(p) in
QD1, then condition 3 follows immediately from the induction hypothesis. Likewise,
if V itself is contained in λ′(p), then V was already contained in λ1(p), and we may
again conclude by the induction hypothesis that condition 3 still holds for QD′. On
the other hand, suppose that V occurs in some hyperedge H from the Q-label λ′(p)
s.t. the corresponding hyperedge H− did not occur in the Q-label λ1(p) in QD1. In
other words, H = G and G was introduced into λ′(p) when we replaced the H-vertices
with label i by the hyperedge G in the Q-labels of all Q-nodes except for the root
node r1 of QD′. If q = r1, then condition 3 clearly holds, since λ′(q) also contains G.
Otherwise, by condition 2 of the induction hypothesis, the parent node q of p in QD1

also contains some I-node N with t-label i in its Q-label λ1(q). By our construction,
N is replaced by the hyperedge G in λ′(q). Hence, V is also covered by q in QD′.

Case 2. Suppose that � = i. W.l.o.g., we may assume that q �= r1, since otherwise
q contains some I-node with t-label i by condition 2, and we are done. By our
construction, V (with t-label i) itself cannot occur in the Q-label of the Q-node
p �= r1 in QD′. Hence, there exists some hyperedge H in H′ s.t. V occurs in H and
H ∈ λ′(p). We distinguish two subcases for the t-label of H:

(i) If H has the t-label j, then, by condition 2, λ′(q) also contains some hy-
peredge H ′ with t-label j. Moreover, by the application of the ηi,j operation in the

2Actually, this formulation is slightly inaccurate. Recall that, in general, a hyperedge H in H′
may have some additional vertices, which are not contained in the corresponding hyperedge H− in
H1; e.g., strictly speaking, we would have to write λ′(r1) := {H : H− ∈ λ1(r1)} ∪ {V ∈ λ1(r1)}
rather than λ′(r1) := λ1(r1). However, the meaning of the latter formulation is clear. Moreover, as
far as the incidence graph is concerned, H− and H refer to exactly the same I-node, anyway.
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incidence graph I ′, the hyperedge H ′ in H′ indeed contains all H-vertices with t-label
i. Thus, q clearly covers V in QD′.

(ii) Finally, suppose that H has a t-label different from j. Then H− already
existed in λ1(p) and the H-vertex V already occurred in the hyperedge H− of the
hypergraph H1. Hence, we may apply condition 3 of the induction hypothesis; i.e.,
either V occurs in some hyperedge F− in H1 s.t. F− ∈ λ1(q) or λ1(q) contains some
I-node N whose t-label is i. In the former case, F ∈ λ′(q) and, therefore, q also covers
V in QD′. In the latter case, N is replaced by G in λ′(q) and, again, q covers V in
QD′.

It remains to prove that also condition 1 still holds; i.e., QD′ indeed is a query
decomposition of H′ with width ≤ k. Actually, the bound on the width follows
immediately from the induction hypothesis and the fact that |λ′(p)| ≤ |λ1(p)| holds
for every Q-node p ∈ T1. Moreover, for every hyperedge H in H′, QD1 contains a
Q-node p with H− ∈ λ1(p) and, therefore, H ∈ λ′(p) also holds. The only difficult
part of the proof is to show that QD′ fulfills the connectedness condition. In fact, this
is the only place in the whole proof of Theorem 3.1 where we actually need conditions
2 and 3 of our construction.

Now let V be an arbitrary H-vertex of H′ and let � denote the t-label of V . Then
we have to show that the set of Q-nodes that cover V form a connected subtree in
QD′. To this end we distinguish the following cases:

Case 1. Let � �= i. In this case, for every hyperedge H in H′ with V ∈ H, we
know that V ∈ H− also holds. Moreover, by the induction hypothesis, the set of
Q-nodes P1 = {p ∈ T1 : V ∈ λ1(p)} ∪ {q ∈ T1 : ∃H− s.t. H− is a hyperedge in
H1, H

− ∈ λ1(q) and V ∈ H−} induces a connected subtree of T1. First, suppose
that V does not occur in the hyperedge G by which all H-vertices with t-label i
were replaced when we constructed λ′ from λ1. In this case, the set of Q-nodes
P ′ = {p ∈ T1 : V ∈ λ′(p)} ∪ {q ∈ T1 : ∃H s.t. H is a hyperedge in H′, H ∈ λ′(q)
and V ∈ H} coincides with P1, and we are done. So suppose that V occurs in the
hyperedge G. But then, by our construction, P ′ = Qi(QD1) ∪ P1 holds, where both
of the sets Qi(QD1) and P1 are connected subtrees of T1 containing the root r1 of T1.
Thus, P ′ is also connected.

Case 2: Suppose that � = i. It suffices to show the following fact: Let q be an
arbitrary Q-node that covers V and let q0, q1, . . . , qm for some m ≥ 0 denote the path
in QD′ from the root r1 = q0 of T1 to the Q-node q = qm. Then every Q-node qα
along this path covers V .

Of course, the root r1 = q0 covers V , since λ′(r1) contains the hyperedge G with
t-label j, which (by the ηi,j operation) is adjacent to the H-vertex V in I ′. For the
other Q-nodes qα with α > 0, we know that they can no longer contain the H-vertex
V itself in their Q-label λ′(qα). Hence, in particular, λ′(qm) contains some hyperedge
H s.t. the H-vertex V occurs in H. Similarly to Case 2 in the proof of condition 2
above, we have to distinguish two subcases depending on whether the t-label of H
equals j or not.

(i) If H has the t-label j, then we know by condition 2 that every Q-node qα on
the path from qm to the root r1 of QD′ contains some hyperedge H ′ with t-label j in
its Q-label λ′(qα). Moreover (by the ηi,j operation), the hyperedge H ′ in H′ contains
all H-vertices with t-label i. Hence, in this case, every such Q-node qα in QD′ indeed
covers V .

(ii) On the other hand, suppose that the t-label of H is different from j. Then
no H-vertex is added to this hyperedge by the ηi,j operation. Hence, V already



362 GEORG GOTTLOB AND REINHARD PICHLER

occurred in the corresponding hyperedge H− of the hypergraph H1 and also the Q-
label λ1(qm) in QD1 already contained the hyperedge H−. Hence, we may apply
condition 3 of the induction hypothesis; i.e., either V occurs in some hyperedge F−

in H1 s.t. F− ∈ λ1(qm−1) or λ1(qm−1) contains some I-node N whose t-label is i.
In the former case, F ∈ λ′(qm−1) and, therefore, q also covers V in QD′. In the
latter case, N is replaced by G in λ′(qm−1) and, hence, again q covers V in QD′.
By an easy induction argument, we can show that in fact every Q-node qm−β with
β ∈ {1, . . . ,m− 1} covers V in QD′.

Renaming of labels. Let t′ = ρi→j(s1). Moreover, let J1 be the subgraph of
I defined by s1 and let H1 be the corresponding hypergraph. By the induction
hypothesis, there exists a query decomposition QD1 of H1 for which the above three
conditions hold. We claim that then QD1 is also the desired query decomposition QD′

of H′. Note that by the renaming of labels, no new vertices or edges are introduced in
I ′. Hence, H′ is identical to H1 and, therefore, QD1 is clearly a query decomposition
of H′, i.e., condition 1 holds.

The sets of Q-nodes Q�(QD
′) with � ∈ {1, . . . , k} are obtained from the sets

Q�(QD1) in the following way:

Q�(QD
′) =

⎧⎨⎩
∅ if � = i,
Qi(QD1) ∪Qj(QD1) if � = j,
Q�(QD1) otherwise.

Hence, condition 2 also follows immediately from the induction hypothesis.
As for condition 3, let p be a Q-node in QD′ and let q be the parent of p in QD′.

Moreover, let V be an H-vertex with t-label � s.t. p covers V . The only interesting
case is that the t-label of V was changed from i to j by the ρi→j operation. But then,
by the induction hypothesis, either q covers V in QD1 or the Q-label λ1(q) contains
some I-node N whose t-label (in s1) is i. In the former case, q still covers V in QD′

and in the latter case the Q-label λ′(q) contains the I-node N , which now has the
t-label j. Hence, in either case, condition 3 holds.

The converse of Theorem 3.1 is clearly not true. This is due to the fact that the
clique-width is a hereditary property with respect to (w.r.t.) induced subgraphs (and
any subhypergraph H′ of a hypergaph H indeed gives rise to an induced subgraph
I(H′) of the incidence graph I(H)), whereas α-acyclicity, query-width, and hypertree-
width are not. In particular, we can take any hypergraph H′ with high clique-width
and possibly high hypertree-width and transform it into the following hypergraph H:
Let H be a new hyperedge that contains all vertices of H′ and let H be the result of
adding H to H′. Then H is α-acyclic and, therefore, qw(H) = hw(H) = 1 holds. On
the other hand, the incidence graph of H′ is an induced subgraph of the incidence
graph of H. Hence, the clique-width of H is at least as high as in the case of H′.

The following example will help to illustrate the construction in the proof of
Theorem 3.1.

Example. Consider the conjunctive query A(x1, x2, x3) ∧ B(x2, x3, x4). The cor-
responding hypergraph H has 4 vertices, {V1, V2, V3, V4}, and 2 hyperedges, H1 =
{V1, V2, V3} and H2 = {V2, V3, V4}. The incidence graph I of H and the tree repre-
sentation of a k-expression t (with k = 3) generating I are displayed in Figure 3.1.

Now let us traverse the tree representation of t bottom-up and see what the
various subexpressions of t and the corresponding query decompositions look like.
Actually, we shall discuss only the subexpressions si along the left-most path of the
tree representation of t in detail. The corresponding query decompositions QDi are
depicted in Figure 3.2.
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Fig. 3.1. I and t.

The query decomposition QD1 corresponding to s1 = 1(V1) consists of a single
node labeled by V1. Likewise, from 3(H1) we get a query decomposition with a single
node labeled by H1. Hence, the labeling of the new root in the query decomposition
QD2 corresponding to s2 = 1(V1) ⊕ 3(H1) contains both V1 and H1 from its child
nodes, since they have different labels in s2. In the query decomposition QD3 obtained
from s3 = η1,3(s2), we have to replace all occurrences of V1 outside the root of QD2 by
the hyperedge H1. Actually, in this case, this step was not really necessary. However,
when we discuss the k-expression s6 below, it will become clear why this replacement
is, in general, required.

Now consider the query decomposition QD4 corresponding to the k-expression
s4 = s3 ⊕ η1,3[1(V4) ⊕ 3(H2)]. The subtree in QD4 corresponding to η1,3[1(V4) ⊕
3(H2)] is obtained analogously to the query decomposition QD3 corresponding to s3.
Moreover, in the root of QD4, we are only allowed to select one representative from
the sets {V1, V4} and {H1, H2}, respectively, since V1 and V4 (when considered as
nodes in the graph generated by s4), on the one hand, and H1 and H2, on the other
hand, have the same label in s4.

No new ideas are required for the construction of the query decomposition QD5

corresponding to the k-expression s5 = s4 ⊕ (2(V2) ⊕ 2(V3)). Note that in the query
decomposition QD6 corresponding to s6 = t = η2,3(s5), it is indeed necessary to
replace the occurrences of V2 and V3 by the hyperedge H1. In particular, QD5 is no
longer a valid query decomposition after the η2,3 operation has been applied to the
incidence graph. This is due to the fact that after this operation, the hyperedge H1

contains the vertex V3 in the corresponding hypergraph. But then the connectedness
condition would be violated by QD5, since the root covers the vertex V3 (since this
vertex is now contained in H1) and also the right-most leaf node of QD5 covers the
vertex V3. However, in QD5, the node lying in between them contains only V2.

Recall from [29] that qw(H) ≥ hw(H) holds for every hypergraph H. Hence, by
Theorem 3.1, we immediately get the following corollary.

Corollary 3.2 (hypertree-width is bounded by clique-width). Let H be an
arbitrary hypergraph with incidence graph I(H). Then hw(H) ≤ cw(I(H)) holds.

Moreover, by the correspondence between queries and hypergraphs, we have the
following.
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Fig. 3.2. Query decompositions QD1, . . . , QD6.

Corollary 3.3 (width of a conjunctive query). Let Q be a conjunctive query
with incidence graph I(Q). Then hw(Q) ≤ qw(Q) ≤ cw(I(Q)) holds.

The above corollary has another interesting aspect: Apart from the special case
of k ≤ 3, it is not known whether graphs with clique-width ≤ k can be recognized in
polynomial time for fixed k (cf. [14]). In contrast, conjunctive queries (or, equivalently,
hypergraphs) with hypertree-width ≤ k actually can be recognized in polynomial
time. In fact, this decision problem is highly parallelizable since it is even contained
in the low complexity class LOGCFL (cf. [29]). In other words, apart from being the
more general concept, bounded hypertree-width also has better properties as far as
recognizing such conjunctive queries is concerned.

4. Restricting the form of the structures. In this section we consider mona-
dic second-order queries over hypergraphs, where quantification is allowed over vari-
ables that stand for vertices or hyperedges. Moreover, there are two unary predicates
PV , PH and a binary predicate edg with the following meaning: PV (x), PH(x) state
that the argument x is a vertex or a hyperedge, respectively, of the hypergraph. By
edg(v, h) we can express that the vertex v is contained in the hyperedge h. Clearly,
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these formulae correspond to MS1 formulae that are evaluated over the incidence
graphs (when considered as a labeled graph with two labels) of hypergraphs. Thus,
the evaluation of such formulae is tractable if the incidence graphs under considera-
tion are of bounded clique-width. From [16] we know that a class of labeled graphs
with p labels (for fixed p ≥ 1) is of bounded clique-width iff the same graphs without
labels are of bounded clique-width. Hence, in what follows, we shall ignore the two
different labels of the nodes of the incidence graph, since they have no effect on the
tractability of the evaluation of MS1 formulae.

It has already been mentioned that clique-width is a hereditary property, while α-
acyclicity and hypertree-width are not. In case of restrictions on the queries, this does
not matter. However, if we look for appropriate restrictions on the structures, then
it can be easily verified that α-acyclicity or bounded hypertree-width will clearly not
suffice to make the evaluation of any fixed MS1 formula tractable. Instead, we shall
consider β-acyclicity and β-hypertree-width here as well as γ-acyclicity, which is even
slightly more restrictive than β-acyclicity. It will turn out that γ-acyclic hypergraphs
have clique-width ≤ 3 and that the β-hypertree-width of any hypergraph is less than
or equal to the clique-width (of the incidence graph). Hence, γ-acyclicity of a class
of hypergraphs implies bounded clique-width (w.r.t. the incidence graph), which, in
turn, implies bounded β-hypertree-width. In other words, γ-acyclicity and bounded
β-hypertree-width can be considered as “lower and upper bounds,” respectively, on
the expressive power of the notion of bounded clique-width. However, we shall also
show that bounded β-hypertree-width is not sufficient to ensure the tractability of
the evaluation of an arbitrary but fixed MS1 formula.

In the second part of this section, we shall have a brief look at the primal graph
of hypergraphs.

4.1. Clique-width of the incidence graph. In [20], D’Atri and Moscarini
provided an algorithm for recognizing γ-acyclic hypergraphs. (For details, see the
original paper or [24].) In terms of the incidence graph of a hypergraph, we get an
algorithm consisting of the following rules:

1. Deletion of isolated nodes: If a node N in I has no adjacent node, then N
may be deleted.

2. Deletion of “ear nodes”: If a node N in I has exactly one adjacent node,
then N may be deleted.

3. Contraction of two-element modules: If two nodes N and N ′ in I are adjacent
to exactly the same nodes in V − {N,N ′}, then one of them may be deleted.

Moreover, we assume that an edge is deleted from the incidence graph if one of
its endpoints is deleted by one of these rules. Then a hypergraph H is γ-acyclic iff the
exhaustive, nondeterministic application of the above rules transforms the incidence
graph I(H) into the empty graph.

As far as the clique-width (of the incidence graphs) of γ-acyclic hypergraphs is
concerned, several known results can be combined to get the following.

Theorem 4.1 (γ-acyclicity implies bounded clique-width). Every γ-acyclic hy-
pergraph has clique-width ≤ 3 (w.r.t. the incidence graph).

Proof. (See [8].) Let H be an arbitrary γ-acyclic hypergraph. We know from [2]
that the incidence graph I(H) is “(6,2)-chordal.” Building upon a characterization
of “distance-hereditary” graphs in [4], it was shown in [21] that a graph is bipartite,
(6,2)-chordal iff it is bipartite, distance-hereditary. Finally, in [27], it is shown that
any distance-hereditary graph has clique-width ≤ 3.



366 GEORG GOTTLOB AND REINHARD PICHLER

When we define the notion of generalized tree-width in section 5, we shall re-
visit the algorithm from [27], which constructs a 3-expression of any given distance-
hereditary graph. In particular, this algorithm can be used to compute a 3-expression
for the incidence graph of a given γ-acyclic hypergraph. The example in section 5 for
a modified version of this algorithm will also help to illustrate the above theorem.

In the remainder of this section, we compare the clique-width (of the incidence
graph) with β-acyclicity and β-hypertree-width.

Theorem 4.2 (clique-width of the incidence graph versus β-acyclicity). The class
of β-acyclic hypergraphs is of unbounded clique-width (w.r.t. the incidence graph).

Proof. Consider the sequence (Hn)n≥1 of hypergraphs, where Hn has the vertices
V = {y1, . . . , yn} ∪ {xij : 1 ≤ i < j ≤ n} and n hyperedges H1, . . . , Hn with

Hl = {yl} ∪ {xαβ : α < β ≤ l} ∪ {xlγ : l < γ ≤ n} for l ∈ {1, . . . , n};

i.e., H1 = {y1, x12, x13, . . . , x1n}, H2 = {y2, x12, x23, . . . , x2n}, H3 = {y3, x12, x13, x23,
x34, . . . , x3n}, . . . , Hn = {yn, x12, . . . , x1n, x23, . . . , x2n, . . . , x(n−1)n}. The β-acyclici-
ty of Hn can be shown via the following observation: Let Hi, Hj , Hk be hyperedges
of Hn with i < j < k. Then the relation Hi ∩ Hj ⊆ Hk holds. Now let H′ be
a subhypergraph of Hn with vertices V ′ ⊆ V and m hyperedges H ′

i1
, . . . , H ′

im
s.t.

Hi1 , . . . , Him are hyperedges in Hn and H ′
ij

= Hij ∩V ′ holds for every j ∈ {1, . . . ,m}.
W.l.o.g., let 1 ≤ i1 < i2 < · · · < im ≤ n. Then H′ is α-acyclic, since a join tree of H′

can be obtained by labeling the root node with H ′
im

and attaching m− 1 child nodes
with the labels H ′

i1
, . . . , H ′

i(m−1)
to the root.

It remains to prove that the incidence graphs (In)n≥1 of (Hn)n≥1 are of un-
bounded clique-width. In fact, we show that cw(In) ≥ n holds for every n ≥ 2.
Suppose on the contrary that In is defined by some k-expression t with k ≤ n − 1.
Moreover, let t′ be a subexpression in t s.t. for some i ∈ {1, . . . , n} the nodes Hi

and yi as well as at least n − 2 nodes from the set {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}
(consisting of n− 1 nodes) have already been introduced in t′, and let t′ be minimal
with this property; i.e., no proper subexpression t′′ of t′ has this property. By the
minimality of t′, this subexpression t′ is of the form t′ = r⊕s for appropriately chosen
k-expressions r and s. Then we derive a contradiction in the following way.

Fact 1. Suppose that two vertices Hα and Hβ with α �= β have been intro-
duced by the k-expression t′. Then Hα and Hβ have different labels in the graph
generated by t′. This can be seen as follows: Suppose on the contrary that Hα

and Hβ have the same label. W.l.o.g., let α < β. Then the vertices in Vβ =
{yβ} ∪ {x1β , . . . , x(α−1)β , x(α+1)β , . . . , x(β−1)β , xβ(β+1), . . . , xβn} distinguish the ver-
tices Hα and Hβ . Hence, all of the edges connecting Hβ with the vertices in Vβ must
already exist in t′. Thus, all of the vertices in {Hβ} ∪ Vβ must have already been
introduced in one of the subexpressions r or s of t′, which contradicts the minimality
of t′.

Fact 2. Suppose that the vertices Hα and xβγ with arbitrary α, β, and γ have
been introduced by the k-expression t′. Note that Hα is adjacent to all of the vertices
in Vα = {yα}∪{x1α, . . . , x(α−1)α, xα(α+1), . . . , xαn}, while xβγ is not. Hence, one can
show analogously to Fact 1 above that Hα and xβγ have different labels.

Fact 3. If the vertices Hα and yβ with arbitrary α and β have been introduced
by the k-expression t′, then Hα and yβ have different labels, since Hα and yβ are also
distinguished by the vertices in the above set Vα.

In order to conclude the proof, we define a set S of n vertices of t′ s.t. these
vertices have pairwise distinct labels in t′.
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(i) Hi is in S.
(ii) Let X denote those vertices in {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}, which al-

ready exist in the k-expression t′. By assumption, X has at least n−2 elements. Now
we traverse X from right to left. If the label of some xαβ ∈ X does not occur in X to
the right of xαβ , then we add xαβ to S. Otherwise, suppose that xγδ is a vertex to
the right of xαβ s.t. xαβ and xγδ have the same label. Then we distinguish two cases:
If α < i and β = i hold, then Hα distinguishes the nodes xαi and xγδ. Hence, Hα

already exists in t′ and we may add Hα to S. Otherwise (i.e., α = i and β > i hold),
Hβ distinguishes the nodes xiβ and xγδ. Hence, Hβ already exists in t′ and we add
Hβ to S.

(iii) Finally we consider yi. LetX ⊆ {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin} be defined
as above. If the label of yi does not occur in X, then we add yi to S. Otherwise,
let xαβ denote the right-most vertex in X that has the same label as yi. Then we
distinguish the same cases as above: If α < i and β = i hold, then Hα distinguishes
the nodes xαi and yi. Hence, we may add Hα to S. Otherwise (i.e., α = i and β > i
hold), we add Hβ to S.

Then S contains n vertices. In particular, all of the vertices Hα and Hβ that
are added to S by the above construction are pairwise distinct. Moreover, by the
construction of S and by Facts 1 through 3 above, all of the vertices in S have
pairwise distinct labels.

Actually, the above lower bound on the clique-width of the incidence graphs
(In)n≥1 is quite tight. This follows from the fact that the incidence graphs (In)n≥1 are
bipartite graphs, where one part of the partition has n nodes (namely, {H1, . . . , Hn}).
Hence, as we have seen in the example in section 2.1, In has clique-width ≤ n+ 2.

Remark. Theorem 4.2 was shown independently in [8] as follows: It was shown in
[2] that β-acyclic hypergraphs have bipartite, “chordal” incidence graphs. Moreover,
we know from [9] that bipartite permutation graphs are a subclass of bipartite, chordal
graphs. Finally, in [10] it was shown that the clique-width of bipartite permutation
graphs is unbounded.

Now recall from Corollary 3.2 that the hypertree-width of any hypergraph H is less
than or equal to the clique-width of the incidence graph of a hypergraph. Moreover,
as has already been mentioned, the incidence graph I(H′) of any subhypergraph H′ of
H is an induced subgraph of I(H). Thus, cw(I(H′)) ≤ cw(I(H)) holds. We therefore
immediately get the following corollary.

Corollary 4.3 (β-hypertree-width is bounded by clique-width). Let H be a hy-
pergraph with clique-width = k (w.r.t. the incidence graph). Then H has β-hypertree-
width ≤ k.

It has already been recalled from [29] that α-acyclic hypergraphs have hypertree-
width = 1. Consequently, the β-acyclic hypergraphs have β-hypertree-width = 1.
Thus, by Theorem 4.2 and Corollary 4.3, we know that bounded clique-width im-
plies bounded β-hypertree-width, while the converse is not true. Now the question
naturally arises as to whether bounded β-hypertree-width of the structures under con-
sideration suffices to guarantee the tractability of the evaluation of any MS1 formula.
Unfortunately, the answer given in Theorem 4.5 below is negative. Thus, bounded
clique-width remains the concept with the highest expressive power known so far s.t.
MS1 queries are still tractable (cf. Figure 1.1). The proof of this result will be based
on the following lemma.

Lemma 4.4 (β-hypertree-width of hypergraphs with big hyperedges). Let H =
〈V, E〉 be a hypergraph, where every hyperedge H ∈ E has at least |V| − 2 vertices.



368 GEORG GOTTLOB AND REINHARD PICHLER

Then the β-hypertree-width of H is ≤ 3.
Proof. Let H′ = 〈V ′, E ′〉 be an arbitrary subhypergraph of H, i.e., H′ is obtained

from H by deleting some hyperedges and/or vertices. Note that then H′ also contains
only “big” hyperedges; i.e., every hyperedge H ′ ∈ E ′ has at least |V ′| − 2 vertices.

We have to show that H′ has a hypertree decomposition of width ≤ 3. In fact, we
show that H′ even has a query decomposition of width ≤ 3. Let H ∈ E ′ be an arbitrary
hyperedge. Then |V ′ −H| ≤ 2 holds. Let V1, V2 ∈ V ′ s.t. H ∪ {V1, V2} = V ′. Now we
can construct a query decomposition QD of width ≤ 3 for H′ as follows: Let the root
r of QD be labeled with λ(r) = {H,V1, V2}. Moreover, for every H ′ ∈ H′ − {H}, we
attach one child node p to r with label λ(p) = {H ′}.

Theorem 4.5 (MS1 queries and bounded β-hypertree-width). The evaluation of
an arbitrary fixed MS1 query over a class C of hypergraphs is, in general, not tractable,
even if C is of bounded β-hypertree-width.

Proof. Let G = 〈V,E〉 be an arbitrary graph and let H = 〈V,H〉 be a hypergraph,
where the set H of hyperedges is defined as follows: H = {V − {x, y} : {x, y} is
an edge in E}; i.e., every edge e of G is encoded by a hyperedge which contains all
vertices of V except for the endpoints of e. Then every hyperedge of H has |V | − 2
vertices. Thus, by Lemma 4.4 above, this hypergraph H has β-hypertree-width at
most 3. Moreover, the well-known NP-complete problem of graph-3-colorability can
be expressed as an MS1 query on the incidence graph of H (when considered as a
labeled graph with two distinct labels for the nodes corresponding to vertices and
hyperedges in H, respectively; the unary predicates PV and PH refer to these labels)
in the following way:

(∃C1)(∃C2)(∃C3) “C1, C2, and C3 provide a partition of V ”
∧ (∀x)(∀y)[ (PV (x) ∧ PV (y) ∧ (∃h)(PH(h) ∧ ¬edg(x, h) ∧ ¬edg(y, h)))

→ “x and y have different colors”].

Of course, the sentences “C1, C2, and C3 provide a partition of V ” and “x and y have
different colors” can be easily expressed as MS1 formulae, namely,

(∀x)[x ∈ C1∧x �∈ C2∧x �∈ C3]∨ [x ∈ C2∧x �∈ C1∧x �∈ C3]∨ [x ∈ C3∧x �∈ C1∧x �∈ C2]
and [x ∈ C1 ∧ y �∈ C1] ∨ [x ∈ C2 ∧ y �∈ C2] ∨ [x ∈ C3 ∧ y �∈ C3], respectively.

4.2. Clique-width of the primal graph. In this section we compare the β-
acyclicity and β-hypertree-width with clique-width of the primal graph. By Corol-
lary 4.3, we know that bounded clique-width of the incidence graph implies bounded
hypertree-width. It can be easily checked that this implication is no longer true if
we consider the clique-width of the primal graph instead. This can be seen by in-
specting the class of cliques, whose primal graphs (which coincide with the cliques
themselves) have clique-width 2. On the other hand, the class of cliques is of un-
bounded tree-width and, therefore, also of unbounded β-hypertree-width, since—in
contrast to hypergraphs—bounded tree-width and bounded hypertree-width coincide
on graphs. This is due to the fact that, for every graph, a hypertree decomposition
〈T, χ, λ〉 of width k corresponds to a tree decomposition 〈T, χ〉 of width ≤ 2k.

Now the question naturally arises as to whether bounded clique-width of the
primal graphs allows for a strictly larger class of hypergraphs than bounded hypertree-
width or at least than bounded β-hypertree-width. Below, we give a negative answer.

Theorem 4.6 (clique-width of the primal graph versus β-acyclicity). The class
of β-acyclic hypergraphs is of unbounded clique-width w.r.t. the primal graphs.

Proof. We consider again the class (Hn)n≥1 of β-acyclic hypergraphs of Theorem
4.2, where Hn has the vertices V = {y1, . . . , yn} ∪ {xij : 1 ≤ i < j ≤ n} and the
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hyperedges H1, . . . , Hn with Hl = {yl} ∪ {xαβ : α < β ≤ l} ∪ {xlγ : l < γ ≤ n} for
l ∈ {1, . . . , n}.

Similarly to Theorem 4.2, we show that the clique-width of the primal graph Pn

of Hn increases with n. Note, however, that the situation here is a bit different from
Theorem 4.2. In particular, Pn contains only nodes yi and xij , but no Hi’s. Moreover,
the xij ’s form a big clique in Pn, since all of these vertices occur in the hyperedge
Hn. Nevertheless, we can show that cw(Pn) ≥ n−1

2 holds for every n ≥ 2.

Suppose on the contrary that Pn is defined by some k-expression t with k < n−1
2 .

Moreover, let t′ be a subexpression in t s.t. for some i ∈ {1, . . . , n} the node yi and
at least n− 2 nodes from the set {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin} have already been
introduced in t′. Moreover, let t′ be minimal with this property. Then t′ is again of
the form t′ = r ⊕ s. We derive a contradiction in the following way.

Fact 1. Suppose that two vertices yα and yβ with α �= β have been introduced
by the subexpression t′ of t. Then yα and yβ have different labels in the graph
generated by t′. This is due to the fact that, for α < β, the vertices in Xβ =
{x1β , . . . , x(α−1)β , x(α+1)β , . . ., x(β−1)β , xβ(β+1), . . . , xβn} distinguish the vertices yα
and yβ .

Fact 2. Let Xi be defined as Xi = {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}. Moreover,
suppose that xαi and xγδ are nodes in Xi s.t. α < γ (i.e., xαi occurs in Xi “to the
left” of xγδ) and both nodes already exist in t′. Then either xαi and xγδ have distinct
labels in t′ or yα already exists in t′. This follows immediately from the fact that xαi
is adjacent to yα in Pn, whereas xγδ is not.

Fact 3. Let Xi be defined as above and suppose that xiβ and xγδ are vertices in
Xi s.t. both vertices already exist in t′ and β < δ holds (i.e., again xiβ occurs in Xi

“to the left” of xγδ). Then either xiβ and xγδ have distinct labels in t′ or yβ already
exists in t′, since yβ is adjacent to xiβ in Pn but not to xγδ.

Now we define two sets X and Y of vertices which have already been introduced
by t′. These two sets together will contain n− 1 vertices in total. Moreover, we can
show that the vertices contained in each of these sets have pairwise distinct labels.

(i) Initially, we set X := ∅ and Y := {yi}.
(ii) Let X denote the set of those vertices in {x1i, . . . , x(i−1)i, xi(i+1), . . . , xin}

that already exist in the k-expression t′. By assumption, there are n−2 such vertices.
Now we traverse the elements in X from right to left. If the label of some xαβ ∈ X
does not occur in X to the right of xαβ , then we add xαβ to X . Otherwise, suppose
that xγδ is a vertex to the right of xαβ s.t. xαβ and xγδ have the same label. Then
we distinguish two cases: If α < i and β = i hold, then yα already exists in the
k-expression t′ by Fact 2. Hence, we may add yα to Y. Otherwise (i.e., α = i and
β > i hold), yβ must already exist in t′ by Fact 3 and we add yβ to Y.

We have |X |+ |Y| = n− 1. Thus, one of the sets X or Y must have at least n−1
2

vertices. Moreover, these vertices have pairwise distinct labels in t′ by the construction
(in the case of X ) and by Fact 1 above (in the case of Y).

By Theorem 4.6 above and the fact that β-acyclic hypergraphs have β-hypertree-
width 1, we know that bounded β-hypertree-width does not necessarily imply bounded
clique-width of the primal graph. Moreover, it has already been explained above that
bounded clique-width of the primal graph does not necessarily imply bounded β-
hypertree-width. We thus get the following result.

Corollary 4.7 (uncomparability). The concepts of bounded β-hypertree-width
of hypergraphs and bounded clique-width of the corresponding primal graphs are un-
comparable; i.e., on the one hand, there exists a class C1 of hypergraphs s.t. the β-
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hypertree-width of the hypergraphs in C1 is bounded by some fixed constant k, while the
corresponding class of primal graphs is of unbounded clique-width. On the other hand,
there exists a class C2 of hypergraphs s.t. the β-hypertree-width of the hypergraphs in
C2 is unbounded while the clique-width of the corresponding primal graphs is bounded
by some fixed constant k.

5. Generalized tree-width. As was already mentioned in section 2, clique-
width is much more powerful than tree-width. On the other hand, the lack of an
efficient procedure for recognizing graphs with clique-width ≤ k for some arbitrary
but fixed k is a major drawback of clique-width. Hence, it is worth trying to extend the
notion of tree-width to some kind of “generalized tree-width,” which is more powerful
than tree-width and which is still efficiently recognizable. One such generalization is
proposed below.

Recall from [23] that the existence of a big complete bipartite graph as a subgraph
of a graph G has a very bad effect on the tree-width of G, e.g., consider the sequence
(Hn)n≥1 of hypergraphs, where Hn has vertices V = {x1, . . . , xn}∪{y1, . . . , yn} and n
hyperedges H1, . . . , Hn with Hi = {yi, x1, . . . , xn}. Then, for every n, the (incidence
graph In of the) hypergraph Hn has tree-width n, since it contains the complete bi-
partite graph with nodes {x1, . . . , xn} and {H1, . . . , Hn}, respectively. On the other
hand, for every n, Hn is γ-acyclic; i.e., the simple transformations of the γ-acyclicity
algorithm in [20] (recalled in section 4.1) suffice to reduce the incidence graph of Hn

to the empty graph. In particular, the complete bipartite graph contained in the
incidence graph of any such hypergraph can be eliminated by these simple trans-
formations. It therefore makes sense to consider the following generalization of the
tree-width.

Definition 5.1 (generalized tree-width). Let G be an arbitrary graph and let G′

be the graph that results from exhaustive application of the following rules: deletion of
isolated nodes, deletion of ear nodes, and contraction of two-element modules. Then
we define the generalized tree-width of G as gtw(G) = tw(G′).

In order to make sure that gtw(G) is well defined, we need the following property
of the above transformation rules.

Proposition 5.2. Let G be an arbitrary graph and let G′ and G′′ be graphs that
result from exhaustive application of the following rules: deletion of isolated nodes,
deletion of ear nodes, and contraction of two-element modules. Then G′ and G′′ are
isomorphic.

Proof. The number of possible applications of the above transformation rules is
clearly finite. Hence, by general considerations on rewrite systems (cf. [3, 22]), it
suffices to prove the following “local confluence” property: Let G1 and G2 be graphs
that can be obtained from some graph G via a single rule application. Then there
exist graphs G′

1 and G′
2 s.t. G′

1 and G′
2 are isomorphic and Gi can be transformed into

G′
i (for i ∈ {1, 2}) via finitely many applications of the above transformation rules.

This can be easily shown by a case distinction over all 3× 3 possibilities of rules that
lead to G1 and G2, respectively; e.g., suppose that G1 is obtained from G via the first
rule (i.e., deletion of isolated nodes) and that G2 is obtained from G via the third rule
(i.e., contraction of two-element modules). Moreover, let Ni with i ∈ {1, 2} denote
the node that is deleted from G in order to arrive at Gi. Then G′

1 = G′
2 is simply

obtained from G1 by deleting also N2 (via the third rule) and by deleting N1 from G2

(via the first rule), respectively. The remaining cases are handled similarly.

A polynomial time algorithm for recognizing the graphs with gtw ≤ k for some
fixed k can be constructed in the obvious way, namely: First, an input graph G is
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transformed into G′ via the transformation given in Definition 5.1 above. Then we
can apply the algorithm of [6], which decides in linear time whether tw(G′) ≤ k holds.

For our considerations on the tractability of evaluating MS1 formulae, we are
ultimately interested in the relationship between generalized tree-width and clique-
width. In Theorem 5.7 we shall show that bounded generalized tree-width implies
bounded clique-width. For the proof of this result, we have to revisit and appropriately
modify the algorithm in [27] for constructing a 3-expression of an arbitrary distance-
hereditary graph.

The notions of “pruning sequence” and “pruning tree” are central to the algorithm
in [27]. By slightly modifying these notions for our purposes here, we get the following
definitions.

Definition 5.3 (pruning sequence). Let G0 = G, G1, . . . ,Gn = G′ be a sequence
of graphs s.t., for every i ≥ 1, Gi is obtained from Gi−1 by deleting some node Vαi

via one of the following rules: deletion of isolated nodes, deletion of ear nodes, and
contraction of two-element modules. Then S = s1, . . . , sn is called a pruning sequence
from G to G′, where si with 1 ≤ i ≤ n is defined as follows:3

(i) If Vαi is an isolated node in Gi−1, then si = 〈(Vαi , ∗), isolated 〉.
(ii) If Vαi

is an ear node in Gi−1 s.t. its only neighbor is Vβi , then si = 〈(Vαi , Vβi),
ear〉.

(iii) If Vαi
and Vβi

form a two-element module in Gi−1 s.t. Vαi
and Vβi

are
adjacent, then si = 〈(Vαi , Vβi), true〉. In this case, Vαi is called a true twin of Vβi in
Gi−1.

(iv) If Vαi
and Vβi

form a two-element module in Gi−1 s.t. Vαi
and Vβi

are not
adjacent, then si = 〈(Vαi , Vβi

), false〉. In this case, Vαi
is called a false twin of Vβi

in Gi−1.
Definition 5.4 (pruning trees). Let G0 = G,G1, . . . ,Gn = G′ be a sequence of

graphs with G = (V, E) and G′ = (V ′, E ′). Moreover, let S = s1, . . . , sn be a pruning
sequence from G to G′ and let V ′′ ⊆ V be defined as

V ′′ = {Vαi
| si = 〈(Vαi

, ∗), isolated 〉}
∪{Vβi | si = 〈(Vαi , Vβi), x〉 with x ∈ {ear, true, false} and Vβi ∈ V ′};

i.e., V ′′ contains those nodes from V that were eventually deleted as isolated nodes
plus those nodes which were “responsible” for the deletion of other nodes (i.e., of ear
nodes or true/false twins) without ever being deleted themselves.

Now let m = |V ′′|. Moreover, w.l.o.g., we assume that V ′′ = {V1, . . . , Vm}. Then
there exist m pruning trees T1, . . . , Tm corresponding to the pruning sequence S. These
pruning trees are directed, edge-labeled trees. They are obtained by the algorithm
construct-pruning-trees given below.

Algorithm construct-pruning-trees.

begin
/* initialization of the pruning trees */

for i := 1 to m do
Ti := the tree consisting of the root node Vi only;

od;
/* adding the nodes deleted from G to the pruning trees */

3In [27] and [32], emphasis is put on the introduction of nodes rather than on their deletion.
Hence, in the former papers, the order of the elements in a pruning sequence is reversed w.r.t. the
definition here. However, the pruning trees defined next have essentially the same form as in [27].
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Fig. 5.1. G and T .

for i := n downto 1 do
if si = 〈(Vαi , Vβi), ear〉 then append Vαi as right-most child to Vβi and

label the edge from Vβi
to Vαi

as “ear”;
elsif si = 〈(Vαi

, Vβi
), true〉 then append Vαi

as right-most child to Vβi
and

label the edge from Vβi
to Vαi

as “true”;
elsif si = 〈(Vαi

, Vβi
), false〉 then append Vαi as right-most child to Vβi and

label the edge from Vβi
to Vαi

as “false”;
fi;

od;
end.

This algorithm is illustrated by the following example.
Example. Let the graph G = (V, E) be defined as V = {V1, . . . , V11} and E =

{{V1, V8}, {V1, V11}, {V2, V4}, {V2, V7}, {V2, V8}, {V3, V8}, {V3, V11}, {V4, V7}, {V5,
V6}, {V5, V7}, {V5, V8}, {V6, V8}, {V6, V9}, {V6, V10}, {V9, V10}}. The graph G is
displayed in Figure 5.1(a).

The nodes {V1, V3, V6, V9, V10, V11} can be deleted via the following pruning
sequence: 〈(V1, V3), false〉, 〈(V11, V3), ear〉, 〈(V3, V8), ear〉, 〈(V10, V9), true〉, 〈(V9, V6),
ear〉, 〈(V6, V8), true〉. We thus get the graph G′ = (V ′, E ′) with V ′ = {V2, V4, V5,
V7, V8} and E ′ = {{V2, V4}, {V2, V7}, {V2, V8}, {V4, V7}, {V5, V7}, {V5, V8}}. Note
that no isolated node was thus deleted. Moreover, V8 is the only node in G′ that was
responsible for the deletion of other nodes. Hence, by the algorithm construct-

pruning-trees, only one pruning tree T can be constructed, which is depicted in
Figure 5.1(b).

In [27], several fundamental properties of pruning trees are proven. In particular,
it is shown how a pruning tree T can be used to construct a 3-expression for the
subgraph of G that is induced by the nodes of T . Before we come to this algorithm,
we recall the following terminology from [27]: For a node V in the pruning tree T ,
we write TV to denote the set of nodes of the subtree of T rooted at V . Moreover,
we call a node U in TV a twin descendant of V iff either V = U or all the edges along
the path from V to U are labeled with “true” or “false.” Finally, by G[TV ] we denote
the subgraph of G that is induced by the nodes in TV .

Lemma 5.5 (pruning tree and adjacency). Let G = (V, E) and G′ = (V ′, E ′) be
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graphs and let S be a pruning sequence from G to G′. Moreover, let T with root V be a
pruning tree that is obtained from S via the algorithm construct-pruning-trees.
Finally let U and U ′ be nodes in V s.t. U is in T and U ′ is outside T . Then U and
U ′ are adjacent in G iff V is adjacent to U ′ in G and U is a twin descendant of V .

Proof. The proof is implicit in the proof of Lemma 3.7 in [27].
Example. Recall the graph G and the pruning tree T with root V8 in Figure 5.1.

The only twin descendants of V8 are the nodes V6 and V8 itself. On the one hand, the
nodes V6 and V8 are indeed adjacent to exactly the same nodes outside T , namely,
V2 and V5. On the other hand, the other nodes in T (namely, V1, V3, V9, V10, V11) are
not adjacent to any node outside T .

Lemma 5.6 (3-expressions). Let G = (V, E) and G′ = (V ′, E ′) be graphs and let
S be a pruning sequence from G to G′. Moreover, let T denote a pruning tree that is
obtained from S via the algorithm construct-pruning-trees. Finally, let V be an
arbitrary node in T with child nodes U1, . . . , Ul from left to right. Then there exists a
3-expression tV that defines the graph G[TV ] s.t. all twin descendants of V are labeled
with 2 in G[TV ] and all other nodes in TV are labeled with 1. Such a 3-expression can
be computed inductively by the algorithm construct-3-expression given below.

Proof. See Claim 3.9 in [27].

Algorithm construct-3-expression.

begin
t := 2(V );
let U1, . . . , Ul denote the child nodes of V from left to right;
for i := l downto 1 do

if the edge from V to Ui is labeled with “ear” then
t := ρ3→1(η2,3(ρ2→3(tUi) ⊕ t));

if the edge from V to Ui is labeled with “true” then
t := ρ3→2(η2,3(ρ2→3(tUi

) ⊕ t));
if the edge from V to Ui is labeled with “false” then
t := tUi

⊕ t;
fi;

od;
tv := t;

end.

Note that if the pruning sequence from G to G′ contains the deletion of an isolated
node V , then the subgraph G[TV ] of G is a distance-hereditary connected component
of G. As has already been noted in section 4.1, the incidence graphs of γ-acyclic
hypergraphs are precisely the distance-hereditary, bipartite graphs. Hence, the above
algorithm can be used to compute the 3-expression of (every connected component of)
the incidence graph of any γ-acyclic hypergraph. Moreover, it is now also clear why
we never had to delete an isolated node in the example above, since the graph G of
Figure 5.1(a) consists of a single connected component, and this connected component
is not distance-hereditary.

Example. We put the algorithm construct-3-expression to work by continu-
ing the above example. The 3-expressions tV for the nodes V in the pruning tree T
of Figure 5.1(b) are obtained as follows. As a shorthand notation, we shall write ti
to denote the 3-expression tVi

for any i.

t1 = 2(V1),

t11 = 2(V11),
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t3 = ρ3→1(η2,3(ρ2→3(t11) ⊕ (t1 ⊕ 2(V3)))),

t10 = 2(V10),

t9 = ρ3→2(η2,3(ρ2→3(t10) ⊕ 2(V9))),

t6 = ρ3→1(η2,3(ρ2→3(t9) ⊕ 2(V6))),

t8 = ρ3→2(η2,3(ρ2→3(t6) ⊕ ρ3→1(η2,3(ρ2→3(t3) ⊕ 2(V8))))).

We are now ready to prove the following desirable property of the generalized
tree-width.

Theorem 5.7 (bounded generalized tree-width implies bounded clique-width).
Let C be a class of graphs and let k be some fixed constant s.t. gtw(G) ≤ k for all
G ∈ C. Then there exists a constant k′ s.t. cw(G) ≤ k′ for all G ∈ C.

Proof. Let G = (V, E) be an arbitrary graph and let G′ = (V ′, E ′) be the graph
obtained from G by exhaustive application of the rules in Definition 5.1 (i.e., deletion
of isolated nodes, deletion of ear nodes, and contraction of two-element modules).
Moreover, let gtw(G) ≤ k; i.e., the condition tw(G′) ≤ k holds. Recall from [19]
that then we have cw(G′) ≤ τ with τ = 2k+1 + 1. It suffices to show that then also
cw(G) ≤ k′ with k′ = τ + 1 holds.

Let t′ be a τ -expression that generates G′. We assume that t′ uses the τ la-
bels {2, . . . , k′}. Let S be a pruning sequence from G to G′ and let T1, . . . , Tm de-
note the corresponding pruning trees with root nodes V1, . . . , Vm. Moreover, for ev-
ery i ∈ {1, . . . ,m}, let ti denote the 3-expression obtained by the above algorithm
construct-3-expression for the subgraph G[Ti] of G. From these 3-expressions
t1, . . . , tm together with t′, we construct a k′-expression s for G as follows.

First we transform t′ into t′′ by the following replacement steps: For every Vi with
i ∈ {1, . . . ,m} s.t. Vi is still contained in G′, we know that Vi is eventually introduced
in t′ by some subexpression of the form �(Vi). By Lemma 5.6, Vi has the label 2 in
ti. Then we replace the subexpression �(Vi) in t′ either by ti (if � = 2) or by ρ2→�(ti)
(if � �= 2).

Finally, all 3-expressions in {t1, . . . , tm}, whose root node does not occur in G′

anymore, are added to t′′ via the ⊕-operator. We thus set

s := t′′ ⊕
⊕
Vi �∈V′

ti.

Obviously, t′ is thus transformed into a k′-expression s using the labels {1, . . . , k′}. It
remains to show that s indeed generates the original graph G.

As far as the nodes are concerned, every node in V either is introduced by some
3-expression ti or is still contained in V ′. In the latter case, it is introduced by t′.
Hence, by construction, s indeed introduces every node V ∈ V. On the other hand,
no node of G is introduced twice in s. This is due to the fact that any two distinct
pruning trees Ti and Tj have no nodes from V in common, and for any pruning tree
Ti, only the root node of Ti can be contained in V ′.

As far as the edges of G are concerned, we know that each 3-expression ti clearly
introduces all edges in the subgraph G[Ti] of G. Likewise, t′ introduces the edges in
E ′. Hence, in order to show that s indeed introduces all edges {U, V } it remains only
to consider the following cases:
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(i) Suppose that the nodes U and V occur in two distinct pruning trees Ti and
Tj , respectively. Moreover, let Vi and Vj denote the root nodes of these pruning trees.
It follows from Lemma 5.5 that then Vi and Vj are also adjacent. Moreover, Vi and Vj
must still be contained in V ′. Hence, this edge {Vi, Vj} is eventually introduced by t′

and thus by s. Moreover, by our construction of s and by Lemma 5.6, we know that
U has the same label � as Vi when the subexpression �(Vi) in t′ is replaced by ti (if
� = 2) or by ρ2→�(ti) (if � �= 2). Likewise, U gets the same label as Vj . Hence, when
eventually the edge between Vi and Vj is introduced in s, then the edge between U
and V will be introduced as well.

(ii) Suppose that the node U occurs in some pruning tree Ti with root node Vi
and that V is contained in V ′. By the same considerations as above, we know from
Lemma 5.5 that then Vi and V are also adjacent. Moreover, U is introduced with the
same label � as Vi when the subexpression �(Vi) in t′ is replaced by ti or by ρ2→�(ti),
respectively. Hence, when eventually the edge between Vi and V is introduced in s,
then the edge between U and V will be introduced as well.

Now consider also the opposite direction; i.e., we have to show that all edges
{U, V } introduced by s indeed exist in G. Again, if both nodes U and V are in the
same pruning tree Ti or if both nodes are left in V ′, then this is obviously the case.
As above, it remains to consider the following two cases:

(i) Suppose that the nodes U and V occur in two distinct pruning trees Ti and
Tj , respectively. Moreover, let Vi and Vj denote the root nodes of these pruning trees.
In order to introduce the edge {U, V }, the expression s and, therefore, t′ actually
introduces the edge {Vi, Vj}. Hence, Vi and Vj are indeed adjacent in G. Moreover, U
must have the same label as Vi in ti. Likewise, V and Vj have the identical labels in tj .
Hence, by Lemma 5.6, U is a twin descendant of Vi in the pruning tree Ti and V is a
twin descendant of Vj in Tj . Thus, by Lemma 5.5, U and V are indeed adjacent in G.

(ii) Suppose that the node U occurs in some pruning tree Ti with root node Vi
and that V is contained in V ′. By the same considerations as above, we may conclude
by Lemmas 5.5 and 5.6 that Vi and V are indeed adjacent, that Vi is a twin descendant
of Vi in the pruning tree Ti, and, finally, that U and V are indeed adjacent in G.

In other words, the k′-expression s introduces exactly the nodes in V and exactly
the edges in E . Hence, s is indeed the desired k′-expression.

Example. Let G and G′ be the graphs from the example above. The graph G
together with the pruning tree T are shown in Figure 5.1. Recall that G′ has the form
G′ = (V ′, E ′) with V ′ = {V2, V4, V5, V7, V8} and E ′ = {{V2, V4}, {V2, V7}, {V2, V8},
{V4, V7}, {V5, V7}, {V5, V8}}. A 4-expression t′ of G′ can be constructed as follows.

(introduce V4) s1 := 2(V4), (introduce V2) s2 := 3(V2) ⊕ s1,

(connect V2, V4) s3 := η2,3(s2), (introduce V7) s4 := 4(V7) ⊕ s3,

(connect V4, V7) s5 := η2,4(s4), (connect V2, V7) s6 := η3,4(s5),

(introduce V8) s7 := 5(V8) ⊕ s6, (connect V2, V8) s8 := η3,5(s7),

(relabel V2) s9 := ρ3→2(s8), (introduce V5) s10 := 3(V5) ⊕ s9,

(connect V5, V7) s11 := η3,4(s10), (connect V5, V8) s12 := η3,5(s11).
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Then s12 is the desired 4-expression t′ using the labels {2, . . . , 5}.
Now recall that the 3-expression t of G[T ] has already been computed above.

The 5-expression s that generates G can be constructed according to the proof of
Theorem 5.7 by redefining s7 as s7 := ρ2→5(t) ⊕ s6. Then s12 yields the 5-expression
s that generates G. Note that in s, the η3,5 operation applied to s7 introduces not
only the edge {V2, V8} but also {V2, V6}. Likewise, by the η3,5 operation applied to
s11, the edge {V5, V6} is introduced.

By the tractability results recalled in section 2.2, Theorem 5.7 immediately yields
the following.

Corollary 5.8 (MS1 queries and generalized tree-width). The evaluation of
an arbitrary fixed MS1 query over a class C of graphs is tractable if C is of bounded
generalized tree-width.

By Theorem 5.7, bounded generalized tree-width implies bounded clique-width,
while the converse is clearly not true. Just consider the class of cliques, whose gener-
alized tree-width is unbounded while the clique-width of all these graphs is 2. Hence,
the concept of bounded generalized tree-width does not allow us to push the tractabil-
ity barrier for the evaluation of MS1 queries any further. However, the advantage of
this new concept is that, in contrast to bounded clique-width, it can be efficiently
recognized.

6. Conclusion. In this paper, we have compared query-width, hypertree-width,
and several notions of acyclicity of hypergraphs with clique-width. Note that we have
mainly considered the clique-width of the incidence graph here. When considering
restrictions on conjunctive queries, this choice is somehow justified by the fact that
the clique-width of the primal graph is irrelevant for the tractability. In particular, as
we have pointed out in section 2, there are NP-hard classes of queries whose primal
graphs are of bounded clique-width. On the other hand, when considering restrictions
on the form of the structures, the primal graphs also play an important role. Actually,
we have shown that β-acyclicity and bounded clique-width of the primal graph are
uncomparable. However, the exact position of bounded clique-width of the primal
graph in Figure 1.1 has yet to be determined.

In section 5 we have shown how the insights from the comparison of γ-acyclicity
with bounded clique-width can be used for an easy generalization of the tree-width.
As long as no polynomial time algorithm for recognizing graphs with clique-width
≤ k (for some arbitrary but fixed k) has been found, the search for an appropriate
generalization of the tree-width is an interesting research area. We have provided a
first and very simple step in this direction, to which further steps should be added; e.g.,
rather than just considering two-element modules, we might take arbitrary modules
and investigate recursively the generalized tree-width of such a module. Likewise,
rather than just deleting ear nodes, we might consider the splitting of a graph into
its biconnected components. Here we also have the effect that a single biconnected
component may contain a module, which was not a module in the overall graph.
Likewise, contraction of a module to a single node may allow us to further decompose
a graph into biconnected components. The interplay between these two kinds of
decompositions deserves further research efforts.
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Abstract. The minimum all-ones problem was shown to be NP-complete for general graphs.
Therefore, it becomes an interesting problem to identify special classes of graphs for which one can
find polynomial time algorithms. In this paper we consider this problem for trees. First, for any
solution to the all-ones problem for a tree, we give a characterization of the elements in the solution
by introducing the concept of the quasi all-ones problem. Then we give the enumeration for the
number of solutions in a tree. By using the minimum odd (even) sum problem as subprocess, we
obtain a linear time algorithm for the minimum all-ones problem for trees. We also get a linear time
algorithm for finding solutions to the all-ones problem in a unicyclic graph.
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1. Introduction. The term all-ones problem was introduced by Sutner [9]. The
problem has applications in linear cellular automata (see [10] and the references
therein) and is cited as follows: Suppose each square of an n×n chessboard is equipped
with an indicator light and a button. If the button of a square is pressed, the light
of that square will change from off to on, and vice versa; the same happens to the
lights of all the edge-adjacent squares. Initially all lights are off. Now, consider the
following questions: is it possible to press a sequence of buttons in such a way that in
the end all lights are on? This is referred to as the all-ones problem. If there is such
a solution, how can we find it? And finally, how can we find a solution that presses
as few buttons as possible? This is referred to as the minimum all-ones problem. All
the above questions can be asked for arbitrary graphs. Here and in what follows, we
consider connected simple undirected graphs only. One can deal with disconnected
graphs component by component. For all terminology and notation on graphs, we re-
fer to [6]. An equivalent version of the all-ones problem was proposed by Peled in [7],
where it was called the lamp lighting problem. The rule of the all-ones problem is
called the σ+ rule on graphs, which means that a button lights not only its neighbors
but also its own light. If a button lights only its neighbors but not its own light, this
rule on graphs is called the σ rule.

The all-ones problem has been extensively studied recently; see Sutner [11, 12],
Barua and Ramakrishnan [1], and Dodis and Winkler [2]. Using linear algebra, Sut-
ner [10] proved that it is always possible to light every lamp in any graph by the
σ+ rule. Lossers [5] gave another beautiful proof also by using linear algebra. A
graph-theoretic proof was given by Erikisson, Eriksson, and Sjöstrand [3]. So, the
existence of solutions of the all-ones problem for general graphs was solved already.
Galvin [4] gave a graph-theoretic algorithm of linear time to find solutions for trees.
In [8], Sutner proved that the minimum all-ones problem is NP-complete in general.
Therefore, it becomes an interesting question to identify special classes of graphs for
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which one can find polynomial time algorithms. It is the main result of this paper
that there exists a linear time algorithm for the minimum all-ones problem for trees.

In graph-theoretic terminology, a solution to the all-ones problem with σ+-rule
can be stated as follows: Given a graph G = (V,E), where V and E denote the
node-set and the edge-set of G, respectively, a subset X of V is a solution if and only
if for every node v of G the number of nodes in X adjacent to or equal to v is odd.
Such a subset X is called an odd parity cover in [10]. So, the all-ones problem can
be formulated as follows: Given a graph G = (V,E), does a subset X of V exist such
that for all nodes v ∈ V −X, the number of nodes in X adjacent to v is odd, while
for all nodes v ∈ X, the number of nodes in X adjacent to v is even? If there exists
a solution, how can one find it with minimum cardinality?

This paper is organized as follows. In section 2, we give, for any solution to
the all-ones problem for a tree, a characterization of the elements in the solution by
introducing the concept of the quasi all-ones problem. This leads to an enumeration
for the number of solutions in a tree. In section 3, we give a linear time algorithm to
the minimum all-ones problem for trees. In the concluding section, section 4, we give a
linear time algorithm for constructing solutions to the all-ones problem in a unicyclic
graph. An open problem on the all-colors problem is also proposed, generalizing the
concept of the all-ones problem.

2. Characterization and enumeration of solutions for trees. It is easy to
see that if a given graph G can be partitioned into two disjoint subgraphs G1 and G2

such that G1 is Eulerian and every node of G2 is adjacent to an odd number of nodes
of G1, then by pressing all the buttons on the nodes of G1 all the lights will be on,
and vice versa. However, it is very difficult to find an Eulerian subgraph with such
a property in a large graph G. Sutner [9] posed the question of whether there is a
graph-theoretic method to find a solution for the all-ones problem for trees. Galvin [4]
solved this question in the following way: Consider a rooted tree, drawn like a family
tree, with the root at the top. The nodes will be divided into 3 classes: outcasts,
oddballs, and rebels. The classification is defined inductively, from the bottom up, as
follows:
• All of the childless nodes or leaves are rebels.
• A node, other than a leaf, is called a rebel if it has no oddball children and an

even number of its children are rebels.
• A node is called an oddball if it has no oddball children and an odd number of

its children are rebels.
• A node is called an outcast if at least one of its children is an oddball.
We sometimes simply call a node r-type, b-type, or o-type if it belongs to the rebel

class, the oddball class, or the outcast class, respectively. For examples, see Figure 1.

Fig. 1. The roots of the rooted trees are r-type, b-type, and o-type.

Galvin algorithm [4]. Membership in a solution C is defined inductively from
the top down. An outcast is excluded from the membership in C. A rebel will be
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a member of C if and only if its parent is not a member of C; in particular, if the
parentless node (the root) is a rebel, then it will be a member of C. The oddballs will
join C in whatever numbers are needed to make their parents’ closed neighborhood
contain an odd number of members. It is easy to check that C is a solution.

In this section, from the idea of the Galvin algorithm we determine whether or
not the root of a tree is in a solution of the all-ones problem and the quasi all-ones
problem, defined next. This will be used in enumerating the number of solutions for
the all-ones problem. This will also be used in solving the minimum all-ones problem
for trees and in constructing solutions to the all-ones problem for unicyclic graphs.

Definition 2.1. For a rooted tree, the quasi all-ones problem is to find a subset
C of nodes such that for every node v except for the root of the tree, the number of
nodes in C adjacent to v or equal to v is odd, while for the root, the number is even.
C is called a solution to the quasi all-ones problem.

Theorem 2.1. For a rooted tree,

(1) if the root is a rebel, then
(1.1) the all-ones problem has a solution if and only if the root belongs to the

solution;
(1.2) the quasi all-ones problem has a solution if and only if the root does not

belong to the solution;
(2) if the root is an oddball, then

(2.1) the all-ones problem has a solution no matter whether the root belongs
to the solution;

(2.2) the quasi all-ones problem does not have any solution no matter whether
the root belongs to the solution;

(3) if the root is an outcast, then
(3.1) the all-ones problem has a solution if and only if the root does not belong

to the solution;
(3.2) the quasi all-ones problem has a solution if and only if the root does not

belong to the solution.

Proof. We prove this theorem by induction on the depth s of the rooted tree,
which is defined as the maximal distance from root to leaves. In particular, a rooted
tree with only one node is of depth 0. It is easy to see that if the root of a tree is
a rebel, then the depth can be any nonnegative integer. For a tree with an oddball
root, the depth will be at least 1, while for a tree with an outcast root, the depth will
be at least 2.

If a rooted tree is of depth 0, then the root must be a rebel node. Any solution
to the all-ones problem must contain the root and any solution to the quasi all-ones
problem does not contain the root, which means that (1.1) and (1.2) hold when the
depth is 0. It is also easy to check that (2.1) and (2.2) hold when the (least possible)
depth is 1, and (3.1) and (3.2) hold when the (least possible) depth is 2.

Next, suppose that for any rooted tree whose depth is less than s, all the state-
ments of the theorem are true. Then, for a rooted tree whose depth is s, we distinguish
three cases.

Case 1. The root is a rebel. Assume that the children of the root are t
(r)
1 , . . . , t

(r)
2k ,

t
(o)
2k+1, . . . , t

(o)
m , where k ≥ 0, the subtree rooted at t

(r)
i (1 ≤ i ≤ 2k), denoted by T

(r)
i ,

is a subtree with a rebel root and with depth less than s, and the subtree rooted at

t
(o)
j (2k + 1 ≤ j ≤ m), denoted by T

(o)
j , is a subtree with an outcast root and with

depth less than s. Then, from the induction hypothesis, for an outcast-rooted tree
the all-ones problem or quasi all-ones problem has a solution if and only if the outcast
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root does not belong to the solution. So we can ignore the case for outcast-rooted
subtree.

Suppose that the all-ones problem for the rebel-rooted tree has a solution, denoted

by C. If the root r /∈ C, then C(T
(r)
i ) (1 ≤ i ≤ 2k) (which is the restriction of C on

the subtree T
(r)
i ) is the solution to the all-ones problem for the rebel-rooted subtree

T
(r)
i with depth less than s. From the induction hypothesis, t

(r)
i ∈ C(T

(r)
i ), and so

t
(r)
i ∈ C. However, we know that the number of rebel children of the rebel root is

even. So, the root cannot be covered odd times by C, and hence C is not an odd
parity cover, a contradiction. Thus, if the all-ones problem for a rebel-rooted tree
with depth s has a solution, then the root must belong to the solution.

Conversely, consider each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k) and each outcast-

rooted subtree T
(o)
j (2k + 1 ≤ j ≤ m), whose root t

(r)
i , t

(o)
j is a rebel child and an

outcast child of the root r, respectively. Then the quasi all-ones problem for each of

them has a solution, denoted by C(T
(r)
i ), C(T

(o)
j ), respectively. Note that

t
(r)
i /∈ C(T

(r)
i ) (1 ≤ i ≤ 2k), t

(o)
j /∈ C(T

(o)
j ) (2k + 1 ≤ j ≤ m).

It is easy to check that C = {r}⋃ (
⋃2k

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k+1 C(T
(o)
j )) is a solution

to the all-ones problem for the original rebel-rooted tree with depth s. So (1.1) holds
when the depth is s.

Similarly we can prove (1.2).
Case 2. The root is an oddball. Assume that the children of the root are

t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1, the subtree rooted at t

(r)
i (1 ≤ i ≤ 2k − 1),

denoted by T
(r)
i , is a rebel-rooted subtree with depth less than s, and the subtree

rooted at t
(o)
j (2k ≤ j ≤ m), denoted by T

(o)
j , is an outcast-rooted subtree with depth

less than s. Similar to the above discussion, we can ignore the case for outcast-rooted
subtree.

Suppose that the quasi all-ones problem for the oddball-rooted tree has a solution,

denoted by C. If the root r ∈ C (or r /∈ C), then C(T
(r)
i ) (1 ≤ i ≤ 2k − 1) is a

solution to the quasi all-ones problem (or the all-ones problem) for the rebel-rooted

subtree T
(r)
i with depth less than s. From the induction hypothesis, we have that

t
(r)
i /∈ C(T

(r)
i ) (or t

(r)
i ∈ C(T

(r)
i )), and so t

(r)
i /∈ C (or t

(r)
i ∈ C ). However, we know

that the number of rebel children of the oddball root is odd. So, the root is covered
odd times by C, which means that C is a solution to the all-ones problem for the
original oddball-rooted tree, a contradiction. Thus (2.2) holds when the depth is s.

Next, we prove (2.1). Consider each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k − 1)

and each outcast-rooted subtree T
(o)
j (2k ≤ j ≤ m), whose root t

(r)
i , t

(o)
j is a rebel

child and an outcast child of the root r, respectively. We discuss the following two
cases.

First, the quasi all-ones problem for each of them has a solution, denoted by

C(T
(r)
i ), C(T

(o)
j ), respectively. Note that

t
(r)
i /∈ C(T

(r)
i ) (1 ≤ i ≤ 2k − 1), t

(o)
j /∈ C(T

(o)
j ) (2k ≤ j ≤ m).

It is easy to check that C = {r}⋃ (
⋃2k−1

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k C(T
(o)
j )) is a solution to

the all-ones problem for the original oddball-rooted tree with depth s. Here the root
belongs to the solution.
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Second, the all-ones problem for each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k − 1)

has a solution, denoted by C(T
(r)
i ). Then the all-ones problem for each outcast-rooted

subtree T
(o)
j (2k ≤ j ≤ m) has a solution, denoted by C(T

(o)
j ). Note that

t
(r)
i ∈ C(T

(r)
i ) (1 ≤ i ≤ 2k − 1), t

(o)
j /∈ C(T

(o)
j ) (2k ≤ j ≤ m).

It is easy to check that C = (
⋃2k−1

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k C(T
(o)
j )) is a solution to the

all-ones problem for the original oddball-rooted tree with depth s. Here the root does
not belong to the solution. Thus (2.1) holds when the depth is s.

Case 3. The root is an outcast. Assume that the children of the root are
t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where k ≥ 1, the subtree rooted at t

(b)
i (1 ≤

i ≤ k), denoted by T
(b)
i , is an oddball-rooted subtree with depth less than s, the

subtree rooted at t
(r)
i (k + 1 ≤ i ≤ l), denoted by T

(r)
i , is a rebel-rooted subtree with

depth less than s, and the subtree rooted at t
(o)
i (l + 1 ≤ i ≤ m), denoted by T

(o)
i , is

an outcast-rooted subtree with depth less than s. A similar argument can cover the
proof of this case.

From the theorem, we have the following remarks.
Remark 2.1.

1. For any solution to the all-ones problem for a rooted tree,
(a) if the root is a rebel, it must belong to the solution;
(b) if the root is an outcast, it cannot belong to the solution;
(c) if the root is an oddball, both cases are possible; i.e., it may or may not

belong to the solution.
2. If there exists a solution to the quasi all-ones problem for a rooted tree, then

the root cannot be an oddball and
(a) if the root is a rebel, then it cannot belong to the solution;
(b) if the root is an outcast, then it cannot belong to the solution.

Remark 2.2. If there exists a solution to the all-ones problem or the quasi all-ones
problem for a rooted tree, then

1. if the root is a rebel or an oddball, both cases are possible; i.e., it may or may
not belong to the solution;

2. if the root is an outcast, it cannot belong to the solution.
From the above clear analysis, we can get the following enumeration result.
Theorem 2.2. If a rooted tree has p oddball nodes and q outcast nodes, then the

number of solutions to the all-ones problem for the tree is 2p−q.
Proof. From Theorem 2.1 and Remarks 2.1 and 2.2, we can deduce the following

facts: First, for a rebel node v, if its parent node is not contained in a solution C,
then v is contained in C, whereas if its parent node is contained in C, then v is not
contained in C. Second, the outcast nodes cannot be contained in any solution.

If the root of the tree is a rebel or an outcast node, then every outcast node
needs one of its oddball children to match its rebel children so that the outcast node
will be lighted without itself in the solution. So, at each outcast node, its oddball
children have degrees of freedom equal to the number of oddball children minus 1.
Therefore, the number of solutions to the all-ones problem for a tree is exactly 2p−q.
If the root of the tree is an oddball, since the root can have two choices, i.e., in a
solution, or not, we have that the number of solutions is 2(2p−1−q) = 2p−q. The proof
is complete.

From the results so far, we can say that the all-ones problem for trees has a
satisfactory solution. It is natural to ask about the minimum all-ones problem for
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trees. The minimum all-ones problem is NP-complete for general graphs [8]. However,
it can be solved easily for some special classes of graphs; for example, a path with
n nodes has an optimal solution with �n3 � nodes, and a cycle with n nodes has an
optimal solution with n

3 nodes if n = 0 mod 3, and n nodes otherwise. For an
arbitrary tree, no such succinct formula has been known for the number of nodes
in an optimal solution. However, we can ask whether there is a polynomial time
algorithm for trees. At first look, we cannot see if there is such an algorithm, because
from our Theorem 2.2 we know that the number of solutions could be exponentially
large. However, we do obtain a polynomial time algorithm for trees by using the
characterization in Theorem 2.1 and Remarks 2.1 and 2.2. Actually, what we get is a
linear time algorithm.

3. The minimum all-ones problem for trees. In order to give our algorithm,
we need to introduce a new problem, called the minimum odd (even) sum problem,
which is described as the following linear program.

For the matrix M2×n = (mij)2×n, i ∈ {0, 1}, j ∈ {1, 2, · · · , n}, mij ∈ Z+, the
minimum odd sum problem is defined as

min
n∑

j=1

m0jx0j +m1jx1j ,

⎧⎨⎩
∑n

j=1 x1j = 1 mod 2

x0j + x1j = 1, j = 1, 2, . . . , n
xij ∈ {0, 1}, i ∈ {0, 1}.

Note that m0jx0j +m1jx1j is equal to m1j if x1j = 1, or m0j if x1j = 0. So m0jx0j +
m1jx1j can be written as mx1jj . For convenience, we replace x1j by yj . Then it is
easy to see that the above linear program is equivalent to the following one:

min
n∑

j=1

myjj ,

{ ∑n
j=1 yj = 1 mod 2

yj ∈ {0, 1}

Algorithm for the minimum odd sum problem.

Input. A matrix M2×n.
Step 1. Choose a minimum element from every column of M2×n (if both elements

in a column are the same, choose one of the them). Then sum up the first
subscripts of all the chosen elements, denoted by S. If S = 1 mod 2, go to
Step 3; otherwise, go to Step 2;

Step 2. Calculate the absolute value of the difference of the two elements in every
column. Choose one of the columns with the minimum absolute values. In
this column, we choose the hitherto unselected element and forget about the
chosen element, then go to Step 3;

Step 3. Sum up all the chosen elements, which gives the optimal value min
∑n

j=1myjj .
Theorem 3.1. The above algorithm correctly solves the minimum odd sum prob-

lem, and the time complexity is linear.
Proof. The first statement of the theorem is proved as follows. Since the minimum

odd sum problem asks for a unique element from every column, our greedy algorithm
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picks up the minimum element from every column. If the sum of the first subscripts
of all the chosen elements satisfies that

∑n
j=1 yj = 1 mod 2, then the sum of all the

chosen elements is exactly the optimal value min
∑n

j=1myjj . If
∑n

j=1 yj �= 1 mod 2,
we only need to adjust the elements slightly so that the sum of the first subscripts of
all the chosen elements satisfies that

∑n
j=1 yj = 1 mod 2. Because we adjust elements

in the column where the minimum absolute value of the difference of the two elements
is attained from Step 2, it is easy to see that the chosen elements after adjusting have
the minimum sum among the feasible solutions to the odd sum problem; i.e., the
chosen elements consist of an optimal solution.

For the second statement of the theorem, since every step uses linear time, the
total time is O(n). The proof is complete.

From the above discussion, we can enumerate the number of optimal solutions to
the minimum odd sum problem. Suppose that the absolute value of the difference of
the two elements in the ith column is |di|.

If min{|di| | i = 1, 2, . . . , n} = s > 0, then

1. if the sum of the first subscripts of all the chosen elements satisfies that∑n
j=1 yj = 1 mod 2 in Step 1, it is straightforward to see that the problem has a

unique optimal solution;

2. if
∑n

j=1 yj �= 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in the set of the columns {i | |di| = s, i = 1, 2, . . . , n}, say, r such
columns in all. Since we can do the adjustment in any one of the r such columns, the
problem has r optimal solutions.

If min{|di| | i = 1, 2, . . . , n} = s = 0, and supposing |{i | |di| = 0, i = 1, 2, . . . , n}|
= r, then

1. if
∑n

j=1 yj = 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in an even number of the columns {i | |di| = 0, i = 1, 2, . . . , n}. So,
the problem has T0 optimal solutions, where T0 =

(
r
0

)
+
(
r
2

)
+
(
r
4

)
+ · · · = 2r−1;

2. if
∑n

j=1 yj �= 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in an odd number of the columns {i | |di| = 0, i = 1, 2, . . . , n}. So,
the problem has T1 optimal solutions, where T1 =

(
r
1

)
+
(
r
3

)
+
(
r
5

)
+ · · · = 2r−1.

Replacing
∑n

j=1 yj = 1 mod 2 in the minimum odd sum problem by
∑n

j=1 yj =
0 mod 2, we then get a new problem, called the even sum problem. It can be solved
in the same way as above. The details are omitted.

Now we give our linear time algorithm to the minimum all-ones problem for trees.
The algorithm uses induction on the number of layers of a tree and the minimum odd
or even sum algorithm as subprocess.

First of all, we give the definition of layers for a rooted tree as follows: The
ith layer of the tree is composed of the nodes with distance i from the root for
i = 0, 1, 2, . . . . Suppose the tree has s layers. Then for any i < s, every node except
the leaves in the ith layer can be considered the root of a small tree with depth 1,
which is simply called a small tree in what follows. We divide the small trees into the
following three types.

Type I. A type I small tree has an r-type root. For such a small tree, we can

assume that the children of its root are t
(r)
1 , . . . , t

(r)
2k , t

(o)
2k+1, . . . , t

(o)
m , where k ≥ 0, the

subtree rooted at t
(r)
i (1 ≤ i ≤ 2k) is denoted by T

(r)
i , and the subtree rooted at t

(o)
j

(2k + 1 ≤ j ≤ m) is denoted by T
(o)
j . An example of type I small trees is shown in

Figure 2(a).

Type II. A type II small tree has a b-type root. For such a small tree, we can
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Fig. 2. Examples of small trees of types I, II, and III.

assume that the children of its root are t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1, the

subtree rooted at t
(r)
i (1 ≤ i ≤ 2k − 1) is denoted by T

(r)
i , and the subtree rooted at

t
(o)
j (2k ≤ j ≤ m) is denoted by T

(o)
j . An example of type II small trees is shown in

Figure 2(b).
Type III. A type III small tree has an o-type root. For such a small tree, we can

assume that the children of its root are t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where

k ≥ 1, the subtree rooted at t
(b)
i (1 ≤ i ≤ k) is denoted by T

(b)
i , the subtree rooted at

t
(r)
i (k + 1 ≤ i ≤ l) is denoted by T

(r)
i , and the subtree rooted at t

(o)
i (l + 1 ≤ i ≤ m)

is denoted by T
(o)
i . An example of type III small trees is shown in Figure 2(c).

By executing our algorithm layer by layer, from the bottom up, we are going to
tag each node v in the present layer with a pair of sets of nodes. Then we can get an
optimal solution in linear time. If v is a leaf, it is tagged by Step 0 of our algorithm;
if not, its tagged pair of sets can be obtained from the following three cases.

Case 1. For every r-type leaf tri of the small trees rooted at v, since the leaf is

in the previous layer, we have an optimal solution C1(T
(r)
i ) to the all-ones problem

for the subtree rooted at t
(r)
i and an optimal solution C2(T

(r)
i ) to the quasi all-ones

problem for the same subtree.
Case 2. For every b-type leaf tbi of the small trees rooted at v, we have an optimal

solution C1(T
(b)
i ) to the all-ones problem for the subtree rooted at tbi such that the

root of the subtree belongs to C1(T
(b)
i ) and an optimal solution C2(T

(b)
i ) to the all-

ones problem for this subtree such that the root of the subtree does not belong to

C2(T
(b)
i ).
Case 3. For every o-type leaf toi of the small trees rooted at v, we have an optimal

solution C1(T
(o)
i ) to the all-ones problem for the subtree rooted at toi and an optimal

solution C2(T
(o)
i ) to the quasi all-ones problem for the subtree.

Note that the above pair for every leaf of a tree is clearly determined at the
beginning of our algorithm.

Algorithm for the minimum all-ones problem for trees.

Input. A rooted tree T with s layers, and a pair {C1(v), C2(v)} of sets for each node
v of the tree.

Step 0. Initially, for every leaf t(r) of T , set {{t(r)}, ∅}, which means that {t(r)} is
the optimal solution to the all-ones problem for the subtree with the single
node t(r), and ∅ is the optimal solution to the quasi all-ones problem for the
single node subtree.

Step 1. Inductively generate the pair for every node of T layer by layer, from the
bottom up, till we arrive at the root of the tree. Suppose that the present
layer is the ith layer. If i ≥ 0, go to Step 2; otherwise, go to Step 4;
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Step 2. We distinguish the following three cases to generate the pairs. For every
small tree rooted in the ith layer, the algorithm works as follows:

1. The tree is type I. Denote its root by r∗. Suppose that the children of

r∗ are t
(r)
1 , . . . , t

(r)
2k , t

(o)
2k+1, . . . , t

(o)
m , where k ≥ 0. We already knew that

C1(t
(r)
i ) = C1(T

(r)
i ) and C2(t

(r)
i ) = C2(T

(r)
i ) for every r-type leaf as a

root for the subtree T
(r)
i , where 1 ≤ i ≤ 2k, and C1(t

(o)
i ) = C1(T

(o)
i ) and

C2(t
(o)
i ) = C2(T

(o)
i ) for every o-type leaf as a root for the subtree T

(o)
i ,

where 2k + 1 ≤ i ≤ m. Then set

C1(r
∗) = {r∗}

⋃(
2k⋃
i=1

C2(t
(r)
i )

)⋃(
m⋃

j=2k+1

C2(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
r∗, and set

C2(r
∗) =

(
2k⋃
i=1

C1(t
(r)
i )

)⋃(
m⋃

j=2k+1

C1(t
(o)
j )

)

as the optimal solution to the quasi all-ones problem of the subtree
rooted at r∗.

2. The tree is type II. Denote its root by b∗. Suppose that the children of

b∗ are t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1. We already knew that

C1(t
(r)
i ) = C1(T

(r)
i ) and C2(t

(r)
i ) = C2(T

(r)
i ) for every r-type leaf as a

root for the subtree T
(r)
i , where 1 ≤ i ≤ 2k− 1, and C1(t

(o)
i ) = C1(T

(o)
i )

and C2(t
(o)
i ) = C2(T

(o)
i ) for every o-type leaf as a root for the subtree

T
(o)
i , where 2k − 1 ≤ i ≤ m. Then set

C1(b
∗) = {b∗}

⋃(
2k−1⋃
i=1

C2(t
(r)
i )

)⋃(
m⋃

j=2k

C2(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
b∗ such that b∗ belongs to the optimal solution, and set

C2(b
∗) =

(
2k−1⋃
i=1

C1(t
(r)
i )

)⋃(
m⋃

j=2k

C1(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
b∗ such that b∗ does not belong to the optimal solution.

3. The tree is type III. Denote its root by o∗. Suppose that the children

of o∗ are t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where k ≥ 1. Use the

pairs of sets on the nodes t
(b)
1 , . . . , t

(b)
k to make a two-dimensional matrix

C2×k = (cij)2×k such that |C2(t
(b)
i )| is the value of the element c0i in

(cij)2×k and |C1(t
(b)
i )| is the value of the element c1i.

Remark 3.1. From Theorem 2.1 and Remarks 2.1 and 2.2, any solution to the
all-ones problem (or the quasi all-ones problem) of the subtree rooted at o∗ cannot
contain the o-type root o∗. This means that all the r-type children of the o-type
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root must be contained in the solution. Because the solution must contain an odd (or
even) number of children of the o-type root, we have to employ our minimum odd sum
algorithm or the minimum even sum algorithm to choose some of the b-type children
into an optimal solution, according to the parity of l − k.
Step 2 (cont’d). If l − k is even (odd), we use the minimum odd (even) sum al-

gorithm to choose the elements in (cij)2×k. Suppose that the union of the
elements chosen from the 0th row in (cij)2×k is

⋃n1

p=1 c0jp , and the union of the

elements chosen from the first row in (cij)2×k is
⋃n2

q=1 c1jq , where n1+n2 = k.
Then we set

C1(o
∗)=

(
n1⋃
p=1

C2(t
(b)
jp

)

)⋃( n2⋃
q=1

C1(t
(b)
jq

)

)⋃( l⋃
i=k+1

C1(t
(r)
i )

)⋃( m⋃
i=l+l

C1(t
(o)
i )

)
as the optimal solution to the all-ones problem of the subtrees rooted at o∗.
Next, we use the minimum even (odd) sum algorithm to choose the elements
in (cij)2×k. Suppose that the union of the elements chosen from the 0th row
in (cij)2×k is

⋃n1

p=1 c0jp , and the union of the elements chosen from the first

row in (cij)2×k is
⋃n2

q=1 c1jq , where n1 + n2 = k. Then we set

C2(o
∗)=

(
n1⋃
p=1

C2(t
(b)
jp

)

)⋃( n2⋃
q=1

C1(t
(b)
jq

)

)⋃( l⋃
i=k+1

C1(t
(r)
i )

)⋃( m⋃
i=l+l

C1(t
(o)
i )

)
as the optimal solution to the quasi all-ones problem of the subtrees rooted
at o∗.

Step 3. i := i− 1, go to Step 1;
Step 4. We are now ready to give an optimal solution for the rooted tree T from the

pair on the root by distinguishing the following three cases: (i) If the root is of
r-type, denoted by r∗, then the C1(r

∗) of the pair is an optimal solution. (ii) If
the root is of b-type, denoted by b∗, then the C1(b

∗) of the pair is a candidate
for the optimal solution such that b∗ belongs to the candidate solution, and
the C2(b

∗) of the pair is another candidate for the optimal solution such
that b∗ does not belong to the candidate solution. Now, compare the values
of |C1(b

∗)| and |C2(b
∗)|. Suppose that |Ct(b

∗)| = min{|C1(b
∗)|, |C2(b

∗)|},
t ∈ {1, 2}. Then we choose Ct(b

∗) as an optimal solution. (iii) If the root is
of o-type, denoted by o∗, then the C1(o

∗) of the pair is an optimal solution.
Theorem 3.2. The above algorithm outputs an optimal solution to the all-ones

problem of a given tree T , and the time complexity is linear.
Proof. In Step 0, we regard every leaf in the bottom of the tree as a subtree

whose unique optimal solution to the all-ones problem and the quasi all-ones problem
contains exactly the node itself and nothing, respectively. Then the initial values of
all the leaves of the tree can be completely determined. The algorithm now proceeds
inductively on the number of layers of the tree. Then from the method for constructing
solutions in the proof of Theorem 2.1 and from Remarks 2.1, 2.2, and 3.1, it is easy
to conclude that the algorithm ensures that all the leaves v of the small trees of all
types I, II, and III in every layer have recorded the right information, i.e., the pairs
{C1(v), C2(v)}. From these pairs of sets, we can choose the optimal solution for the
given tree according to the type of the root of the tree. The first statement of the
theorem is thus proved.

For the second statement of the theorem, it is not hard to see that for every
layer, the algorithm uses time linear in the number of nodes in the layer, even though
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r1 r2 r3 r4 r5 r6 r7

r8 r9

r10

r11

b1 b2 b3

b4

o1

Fig. 3. Labeling the type for every node.

r1 r2 r3 r4 r5 r6 r7

r8 r9

r10

r11

b1 b2 b3

b4

o1

{r1, ∅} {r2, ∅} {r3, ∅} {r4, ∅} {r5, ∅}{r6, ∅} {r7, ∅}

{r8, ∅} {r9, ∅}

{r10, r6 ∪ r7}

{r11, r8 ∪ r9}

{b1, r1} {b2, r2} {b3, r3 ∪ r4 ∪ r5}

{b1 ∪ r2 ∪ b3 ∪ r10, b1 ∪ b2 ∪ b3 ∪ r10}

{b4 ∪ b1 ∪ b2 ∪ b3 ∪ r10 ∪ r8 ∪ r9, b1 ∪ r2 ∪ b3 ∪ r10 ∪ r11}

Fig. 4. An example of our algorithm for the minimum all-ones problem for trees.

sometimes the minimum odd or even sum algorithm has to be used. Therefore, the
total time used by the algorithm is linear for the minimum all-ones problem of the
given tree. The proof is complete.

An example to show our algorithm at work is given in Figures 3 and 4. For every
node in Figure 3, the label, by ignoring its subscript, is the type of that node. In
Figure 4 we simply use x to denote the set {x} with a single element x. Initially,
our algorithm sets a pair {v, ∅} for every leaf v. Then, from the bottom up, the pair
for each node in every layer can be generated. Note that the children of o1 are b1,
b2, b3, and r10, and the pairs on the b-type nodes can form a matrix as described
in our algorithm: P23 =

( r1 r2 r3∪r4∪r5
b1 b2 b3

)
. The corresponding numerical matrix is

C23 =
(

1 1 3
1 1 1

)
, which will be used in the minimum odd (even) sum algorithm. Note

that only r10 is an r-type node. Then use the minimum even sum algorithm to get
b1 ∪ r2 ∪ b3 (possibly, r1 ∪ b2 ∪ b3) union r10 and form C1(o1). Use the minimum odd
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sum algorithm to get b1 ∪ b2 ∪ b3 (possibly, r1 ∪ r2 ∪ b3) union r10 and form C2(o1).
In the end, by comparing |C1(b4)| = 7 with |C2(b4)| = 5, we get an optimal solution
C2(b4) = b1 ∪ r2 ∪ b3 ∪ r10 ∪ r11. The details about the pair {C1(v), C2(v)} for every
node v are recorded in Figure 4.

4. Concluding remarks. Although the existence of solutions to the all-ones
problem for general graphs was proved by linear algebraic methods (see [10, 5]),
in [10] Sutner asked whether there is a graph-theoretic proof for the existence. Eriks-
son, Eriksson, and Sjöstrand [3] gave such a proof. However, how to find a solution
efficiently by graph-theoretic algorithms remains unknown. Although, based on the
result in [3], one can get a graph-theoretic algorithm inductively, the time complex-
ity is not polynomial, which is upper bounded by O(n!). It is easy to see that for
the empty graph with n nodes, their algorithm runs in time O(n!). So, to find a
graph-theoretic algorithm of polynomial time for general graphs, some other ideas are
needed. For trees, Galvin [4] gave a graph-theoretic algorithm of linear time. In this
concluding section, based on the discussion in section 2 we would like to give such an
algorithm of linear time for unicyclic graphs.

For convenience, we say that the truth value of a node in G is 1 if it belongs
to the solution to the all-ones problem (or the quasi all-ones problem) for G, and 0
otherwise. Recall that a graph G is called unicyclic if it contains a unique cycle. In
other words, we can regard a unicyclic graph as a cycle attached with each node to
a rooted tree, called a suspended tree. Note that the depth of a suspended tree can
be 0. For simplicity, we say that a node t in the cycle has the same type as the type
of the root t of the suspended tree.

Algorithm for unicyclic graphs.

Input. A unicyclic graph G, each node in the unique cycle being labeled by types.
Step 1. If none of the nodes on the cycle is an outcast, then let the truth values of all

nodes on the cycle be 1; i.e., take the union of the solutions, each of which is
a solution to the all-ones problem for each suspended tree whose root belongs
to the solution. Then the union is a solution to the all-ones problem for the
whole unicyclic graph.

Step 2. If there are outcast nodes, we fix an order to the nodes on the cycle. Then
we cut the cycle by deleting the edge between an outcast node u and the
node v before it on the cycle. The unicyclic graph becomes a tree with root
v, denoted as T , and the type of every node on the original cycle will be
changed as in Figure 5, where the changing of the type of each node is from
on the original cycle to on the tree T , and the changing rule is just the same
as that in the Galvin method.

By Galvin’s algorithm, we can construct a solution X for the tree T . Then we
add an edge to connect the node u and the node v in T ; then the tree T returns to the
original unicyclic graph with a solution X. Because u is an outcast node, no matter
whether it is in the unicyclic graph or in the tree, it will not belong to the solution,
and hence will not affect the other nodes’ truth values, while u’s on or off status will
probably be affected by v if v belongs to X. If v does not belong to X, then X is
a solution to the all-ones problem for the unicyclic graph; otherwise, we only need
to change the solution to the all-ones problem into the solution to the quasi all-ones
problem, or the other way around for the suspended tree with root u according to
the construction method in the proof of Theorem 2.1; then the modified solution is
a solution to the all-ones problem for the unicyclic graph. An example is shown in
Figure 6.
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Fig. 5. Changing of types.

Fig. 6. An example of our algorithm for unicyclic graphs.

So, we get the following result.
Theorem 4.1. The above algorithm outputs solutions to the all-ones problem for

unicyclic graphs, and the time complexity is linear.
To end this paper, we propose the following problem.

All-colors problem. The so-called all-colors problem on graphs is described as
follows, which is a natural generalization for the all-ones problem:

For any node of a graph G, it has a color value between 0 and r− 1. If a node is
pressed one time, then the color values of the node and its neighbors are added by 1
under the meaning of modular r. If the initial status is that the color value of every
node is 0, then we ask how to press some nodes (maybe many times) to make the
color value of every node equal to r−1 (or any fixed k such that 1 ≤ k ≤ r−1) under
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the meaning of modular r. If we ask that the sum of color values of all nodes attains
the minimum, the problem is called the minimum all-colors problem.
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Abstract. In many scheduling applications it is required that the processing of some job be
postponed until some other job, which can be chosen from a pregiven set of alternatives, has been
completed. The traditional concept of precedence constraints fails to model such restrictions. There-
fore, the concept has been generalized to so-called and/or precedence constraints which can cope
with this kind of requirement. In the context of traditional precedence constraints, feasibility, tran-
sitivity, and the computation of earliest start times for jobs are fundamental, well-studied problems.
The purpose of this paper is to provide efficient algorithms for these tasks for the more general model
of and/or precedence constraints. We show that feasibility as well as many questions related to tran-
sitivity can be solved by applying essentially the same linear-time algorithm. In order to compute
earliest start times we propose two polynomial-time algorithms to cope with different classes of time
distances between jobs.
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1. Introduction.

Definition and motivation of AND/OR precedence constraints. For a
given set V of jobs, a precedence constraint comprehends the requirement that a
job j cannot be started before another job i has been completed. Precedence con-
straints are usually given by a set A of ordered pairs (i, j), i �= j ∈ V , inducing
an acyclic digraph D = (V,A) where each node corresponds to a job and each arc
represents a precedence constraint. In a feasible implementation of the project, the
jobs have to be executed in accordance with the partial order defined by D. Since,
in this setting, each job j can only start after the completion of all its predeces-
sors in D, we call these precedence constraints and-constraints. However, there are
many applications where jobs can be executed as soon as any of its predecessors has
been completed; we refer to such temporal restrictions as or-constraints. Traditional
precedence constraints fail to model this requirement and consequently, the model
has been generalized to so-called and/or precedence constraints. and/or precedence
constraints can be represented by a set W of pairs (X, j) with the meaning that job
j ∈ V cannot be executed before some job i ∈ X ⊆ (V \{j}) has been completed. We
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call such (X, j) pairs waiting conditions and job j the waiting job for (X, j). Notice
that for a singleton X = {i}, the constraint (X, j) is a traditional and-constraint
(i, j).

An intuitive motivation for and/or precedence constraints is noted by Gillies
and Liu [12]. An engine head has to be fixed by four bolts. However, one of the
bolts may secure the engine head well enough to allow further work on it. If the
set X consists of the four jobs to secure the bolts and j represents the further work
on the engine head, then the waiting condition (X, j) obviously models the desired
temporal dependencies among the jobs. Another motivation is studied by Goldwasser
and Motwani [13]. They consider the problem of partially disassembling a given
product to reach a single part (or component). In order to remove a certain part,
one previously may have to remove other parts which can be modeled by traditional
(and) precedence constraints. However, one may choose to remove that same part of
the product from another geometric direction, in which case some other parts must be
removed previously. This freedom of choice can be modeled by and/or precedence
constraints. A third motivation is given by Dinic [6], who considers the setup of new
technologies and products. In his model, a new technology requires certain products;
on the other hand, a new product can be obtained as an output of one of several
new technologies. The latter requirement leads to an or-constraint, while the first
requirement is a classical and-constraint.

Our research is motivated by problems occurring in resource-constrained project
scheduling. Resource constraints can be represented by so-called minimal forbidden
sets, i.e., inclusion-minimal sets of jobs that cannot be scheduled simultaneously. In
order to resolve the resource conflict that occurs due to a minimal forbidden set
F , one may choose a job j ∈ F to be a waiting job for F \ {j} and introduce the
corresponding waiting condition (F \ {j}, j). Thus, we are able to represent solutions
of project scheduling problems by a set W of waiting conditions. For details we refer
to [26].

Connections to other fields and related work. The combinatorial structure
of a system W of waiting conditions occurs in different fields of discrete mathematics
and theoretical computer science. In the context of directed hypergraphs each (X, j) ∈
W represents a hyperarc with a set X of source nodes and a single target node j.
Ausiello, d’Atri, and Saccà [3] (see also [4]) generalize transitive closure and reduction
algorithms from directed graphs to directed hypergraphs. Another related class of
combinatorial objects are antimatroids (special greedoids) which can be defined via
a set of waiting conditions; see, e.g., [17, page 22]. Furthermore, many problems
stemming from artificial intelligence can be formulated by hierarchies of subproblems
where different alternatives exist to solve these subproblems; see, e.g., [23]. There, a
graphical representation of such hierarchies is called an and/or graph.

In the context of scheduling, Goldwasser and Motwani [13] derive inapproxima-
bility results for two single-machine scheduling problems with and/or precedence
constraints. Gillies and Liu [12] consider single- and parallel-machine scheduling
problems with different structures of and/or precedence constraints; they prove
NP-completeness of finding feasible schedules in some settings that are polynomially
solvable with traditional precedence constraints. Moreover, they give approximation
algorithms for some makespan minimization problems.

A basic, important task in scheduling applications is the computation of earliest
start times of jobs. The research on this topic will be discussed in more detail in
section 7.1.
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Contribution of this paper. For and-constraints, fundamental problems such
as deciding feasibility, finding transitive and-constraints, and computing earliest start
times of jobs can be solved efficiently by applying simple well-known graph algorithms.
Most important for the algorithmic treatment is the fact that and-constraints define
acyclic structures on the set V of jobs such that many problems can be solved by
considering jobs in the order of a topological sort. Since this is not the case for
and/or precedence constraints, the algorithms for and-constraints cannot be applied
in that setting.

In the first part of the paper we provide efficient algorithms and structural insights
for the more general and complex model of and/or precedence constraints. We show
that feasibility as well as questions related to generalized transitivity can be solved by
applying essentially the same linear-time algorithm. Moreover, we discuss a natural
generalization of and/or precedence constraints and prove that the same problems
become NP-complete in this setting.

The second part of this paper is concerned with the computation of earliest start
times if and/or precedence constraints are imposed among jobs. We consider differ-
ent ranges of minimal time distances (or time lags) dij between the start times of two
jobs i and j that are coupled within a precedence constraint. For and/or precedence
constraints, the problem then reduces to finding a solution to a system of min-max-
inequalities which also has applications in many other fields. We discuss polynomial
equivalence to finding optimal strategies for a class of two-person games played on
directed graphs. For the case that such time lags are strictly positive (nonnegative)
we devise polynomial-time algorithms.

Outline. The paper is organized as follows. After stating some basic require-
ments in section 2, we discuss feasibility and aspects of transitivity as well as an
application thereof in sections 3 to 5. A generalization of and/or precedence con-
straints is considered in section 6. While we consider only the combinatorial structure
of and/or precedence constraints in sections 3 to 6, we additionally deal with tem-
poral data such as job processing times or time lags between jobs in section 7, where
we provide algorithms for computing earliest job start times.

2. Preliminaries. In order to illustrate the presentation we use the following
example throughout the paper.

Example 1. Let V := {j1, . . . , j7} be the set of jobs andW := {w1 = ({j1, j5}, j4),
w2 = ({j2, j6}, j4), w3 = ({j4, j3}, j6), w4 = ({j4}, j5), w5 = ({j4, j5, j6}, j7)} the set
of waiting conditions.

Graph representation. We use a natural representation of and/or precedence
constraints by a directed graph D on the set V = V ∪W of nodes. The set A of arcs
is constructed in the following way: For every waiting condition w = (X, j) ∈ W, we
introduce arcs (i, w), for each i ∈ X, and one additional arc (w, j). Notice that the size
of the resulting digraph D is linear in the input size of the problem. The sets V andW
form a bipartition of D. Similar digraphs are used to represent directed hypergraphs;
see, e.g., [10] and [9]. For a node j ∈ V ∪W, we use in(j) and out(j) to denote the
sets {i ∈ V ∪ W : (i, j) ∈ A} and {i ∈ V ∪ W : (j, i) ∈ A}, respectively. We also
sometimes use the notation inD(j) and outD(j) to stress the underlying digraph D.

The digraph resulting from Example 1 is depicted in Figure 2.1. For the moment,
the numbers associated with the arcs can be ignored; they come into play in section 7
when earliest job start times are computed. As usual, a cycle in D is a sequence
(v0, v1, . . . , vk, v0), v� ∈ V, where (v0, v1, . . . , vk) is a directed path and there exists an
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Fig. 2.1. The digraph resulting from Example 1. Circular nodes correspond to jobs (and-
nodes), while square nodes represent waiting conditions (or-nodes). Numbers associated with arcs
define time lags used in section 7 (the time lags of arcs without a number are 0).

arc from vk to v0. We also consider generalized cycles, which are induced subgraphs
D′ of D that consist of node sets V ′ ⊆ V and W ′ ⊆ W such that inD(j)∩W ′ �= ∅ for
each j ∈ V ′ and ∅ �= inD(w) ⊆ V ′ for each w ∈ W ′.

Realizations. Given a set V of jobs and a setW of waiting conditions, an imple-
mentation of the corresponding project requires a decision for each waiting condition
(X, j): One has to determine a job i ∈ X that job j should wait for. The entirety
of these decisions must lead to a partial order R = (V,≺R) on the set V of jobs (the
introduction of a cycle would lead to infeasibility) such that

for each (X, j) ∈ W, there exists an i ∈ X with i ≺R j.(2.1)

Conversely, every partial order R with property (2.1) defines an implementation of
the project and is therefore called a realization for the set W of waiting conditions.
In what follows, a set W of waiting conditions is called feasible if and only if there
exists a realization for W. Since any extension R′ = (V,≺R′) of a realization R (i.e.,
if i ≺R j, then i ≺R′ j) fulfills property (2.1), R′ is also a realization. In particular,
a set of and/or precedence constraints is feasible if and only if there exists a total
order of the jobs which is a realization; we call such a realization linear.

Possible linear realizations of Example 1 are, for instance, j1 ≺ · · · ≺ j7 and
j3 ≺ j6 ≺ j7 ≺ j2 ≺ j1 ≺ j4 ≺ j5.

3. Feasibility. In order to check whether a given set W of and/or precedence
constraints is feasible, we try to construct a linear realization L in a greedy way:
While there exists a job i ∈ V that is not a waiting job of any waiting condition
in W, it is inserted at the end of L. Whenever a waiting condition (X, j) becomes
satisfied (which is the case if some i ∈ X is being added to L), (X, j) is deleted from
W. Computational details are provided in Algorithm 1. We use a data structure Q
to temporarily store jobs from V . Implementing Q as a stack or a queue leads to a
linear-time algorithm.

Theorem 3.1. A set of and/or precedence constraints is feasible if and only if
the list L obtained from Algorithm 1 contains all jobs of V .
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Algorithm 1: Feasibility check of a set of waiting conditions.

Input : A set V of jobs and waiting conditions W.

Output: A list L of jobs from V .

Q := ∅; L := ∅;
for jobs j ∈ V do

a(j) := |{(X, j) ∈ W}|;
if a(j) = 0 then add j to Q;

while Q �= ∅ do
remove a job i from Q;
insert i at the end of L;

1 for waiting conditions (X, j) ∈ W with i ∈ X do
decrease a(j) by 1;
if a(j) = 0 then add j to Q;
remove (X, j) from W;

return L;

Proof. If L contains all jobs, it follows from the construction of Algorithm 1
that, for each waiting condition (X, j) ∈ W, there is at least one job i ∈ X with
i ≺L j; therefore, according to (2.1), L is a linear realization. Suppose now that
the algorithm returns an incomplete list L although the set of waiting conditions is
feasible. Consider a linear realization R and let j ∈ V \L be minimal with respect to
the total order ≺R. Since the algorithm was not able to add j to L, there is a waiting
condition (X, j) ∈ W with X ⊆ V \ L. Since R is a realization, there exists a job
i ∈ X with i ≺R j which is a contradiction of the minimal choice of j.

As a consequence of Theorem 3.1 we can formulate the following structural char-
acterization of feasible waiting conditions. The lemma appears implicitly already in
the work of Igelmund and Radermacher [14] within the context of stochastic resource-
constrained project scheduling.

Lemma 3.2. A set of and/or precedence constraints is feasible if and only if
there exists no generalized cycle in the associated digraph D.

Note that Example 1 is feasible (recall that we already stated two linear realiza-
tions). However, if w1 = ({j1, j5}, j4) is replaced by ({j5}, j4), the instance becomes
infeasible because V ′ = {j4, j5} and W ′ = {({j5}, j4), ({j4}, j5)} form a generalized
cycle.

The following corollary states an algorithmic consequence of the structural insight
of Lemma 3.2.

Corollary 3.3. Job j ∈ V is not contained in the list L returned by Algorithm 1
if and only if j is contained in a set V ′ ⊆ V such that for all i ∈ V ′ there is a waiting
condition (X, i) ∈ W with X ⊆ V ′.

In particular, L as a set does not depend on the individual jobs chosen from Q
in the while-loop of Algorithm 1.

In the proof of Theorem 3.1 we have shown that, for a feasible set of and/or

precedence constraints W, the list L returned by Algorithm 1 is a linear realization
of W. In fact, it is an easy observation that Algorithm 1 can generate every linear
realization of W through an appropriate choice of jobs from Q in the while-loop.

Remark. The problem of checking feasibility of W can alternatively be solved
by transforming it into a satisfiability problem (Sat) where each clause is of Horn
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type. Such Sat instances are well known to be solvable in linear time; see [7]. The
transformation and more details can be found in [26].

4. Detecting implicit AND/OR precedence constraints.

4.1. Problem definition and related work. We now focus on detecting “new”
waiting conditions that can be deduced from the given set W of constraints. For
U ⊂ V and j ∈ V \U , we say that the waiting condition (U, j) is implied by W if and
only if

for every realization R = (V,≺R) of W, there exists some i ∈ U with i ≺R j.(4.1)

By property (2.1), this is equivalent to the requirement that adding the waiting con-
dition (U, j) to W does not change the set of realizations for W. Notice that it is
sufficient to claim property (4.1) for every linear realization of W.

For traditional precedence constraints the detection of implied waiting condi-
tions is an easy task because the transitive closure which represents all such implicit
constraints can be efficiently computed by standard graph algorithms. However, in
general, the total number of implicit and/or precedence constraints is exponential
in the input size of V and W. In particular, it is not possible to compute all implicit
constraints efficiently. For the restricted case of and/or precedence constraints where
the associated digraph D is acyclic, Gillies [11] proposes an algorithm to determine
jobs that have to wait for a single job i.

In the context of directed hypergraphs, Ausiello, d’Atri, and Saccà [3] (see also
[4]) consider problems similar to those discussed in this section and in section 5 below.
However, the results we present are not contained in their work because their definition
of implicit hyperarcs differs from our definition of implicit waiting conditions. Their
definition is based on three rules which are known as Armstrong’s axioms within
the context of functional dependencies in relational databases (see, e.g., [27]). In
particular, [3, Definition 4] does not cover implications that can be deduced from the
requirement of feasibility. For instance, in Example 1, the waiting condition ({j1}, j4)
is implied by W, but it is not implied according to [3, Definition 4].

4.2. Result. For a given set U ⊆ V we show that Algorithm 1 can be used
to detect all implicit waiting conditions of the form (U, j). For an arbitrary subset
Y ⊆ V the set WY of induced waiting conditions is given by WY := {(X ∩ Y, j) |
(X, j) ∈ W, j ∈ Y }. For (X, j) ∈ W with j ∈ Y and X ∩ Y = ∅, the resulting waiting
condition (∅, j) ∈ WY means that job j cannot be planned at all with respect to WY ;
in particular, WY is infeasible in this case.

Theorem 4.1. For given U ⊂ V let L be the output of Algorithm 1 with input
V \ U and WV \U . The set of waiting conditions of the form (U, j) which are implied
by W is precisely {(U, j) | j ∈ V \ (L ∪ U)}.

The proof is deferred to section 4.3 below. For Example 1 and U := {j2, j3},
the algorithm computes L = {j1}, while for U := {j1, j2} we obtain L = {j3, j6, j7}.
Thus, the waiting condition ({j2, j3}, j7) is implied by W, while ({j1, j2}, j7) is not.

We can directly deduce the following corollary.
Corollary 4.2. Given U ⊂ V , the set of waiting conditions of the form (U, j)

that are implied by W can be computed in linear time.

4.3. Correctness. We next state some rather technical lemmas which directly
show the validity of Theorem 4.1. The theorem can alternatively be proved by a
simpler argumentation (similar to the proof of Theorem 3.1), but we need the lemmas
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to establish other results in section 5 below. In addition, with the extended argu-
mentation, we are able to strengthen Theorem 4.1 slightly (see Corollary 4.6). The
following definition will be useful throughout the discussion: For a given feasible set
W of waiting conditions and a set U ⊆ V let

YU := {j ∈ V \ U | (U, j) is not implied by W},
ZU := {j ∈ V \ U | (U, j) is implied by W} = V \ (U ∪ YU ) .

Lemma 4.3. Let W be a feasible set of waiting conditions and let U ⊆ V . Then
there exists a (linear) realization R = (V,≺R) of W such that YU is an order ideal of
R; i.e., R “starts” with the jobs in YU .

Proof. Let R′ = (V,≺R′) be a linear realization of W that maximizes the car-
dinality of the largest order ideal J of R′ with J ⊆ YU . To show that J = YU , by
contradiction, we assume that there is a job j′ ∈ YU \J . Since, by definition of YU , the
waiting condition (U, j′) is not implied byW, there is a linear realization R = (V,≺R)
of W with j′ ≺R U (j′ precedes all elements in U). Let j ∈ YU \ J be minimal with
respect to R. By maximality of J , job j cannot be moved to the position directly
after J in R′ without violating a waiting condition. Thus, there exists (X, j) ∈ W
with X ⊆ V \ J . By (2.1), there exists an i ∈ X with i ≺R j. Notice that we have
i �∈ U because i ≺R j 	R j′ ≺R U . Moreover, due to the minimal choice of j and the
fact that i �∈ J it follows that i �∈ YU . As a consequence we obtain i ∈ X \ (U ∪ YU ).
By definition of ZU , this yields i ∈ ZU . Thus, the waiting condition (U, i) is implied
by W, which is a contradiction of i ≺R j 	R j′ ≺R U .

Let us call a set Y ⊆ V feasible with respect to W if and only if the induced set
WY of waiting conditions is feasible. The result in Corollary 3.3 can then be restated
as follows.

Corollary 4.4. Algorithm 1 returns the unique maximal feasible subset of V
with respect to W.

In conjunction with the following lemma, Corollary 4.4 provides an efficient way of
detecting waiting conditions implied by W. This concludes the proof of Theorem 4.1
(in fact, the lemma essentially is a reformulation of Theorem 4.1).

Lemma 4.5. Let W be a feasible set of and/or precedence constraints, U ⊂ V ,
and j ∈ V \ U . Then the waiting condition (U, j) is implied by W if and only if j is
not contained in the unique maximal feasible subset of V \ U with respect to WV \U .

Proof. We have to show that YU is the unique maximal feasible subset F of V \U
with respect toWV \U . By Lemma 4.3, there exists a linear realization R ofW starting
with the jobs in YU . This induces a linear realization of WYU

and consequently, by
definition, YU is feasible with respect to W. Moreover, since WYU

= (WV \U )YU
, the

subset YU is feasible with respect to WV \U , which yields YU ⊆ F .
To show that F ⊆ YU , by contradiction, assume that F \YU �= ∅. Since F ∩U = ∅

we then have F ∩ZU �= ∅. Let R′ = (F,≺R′) be a linear realization ofWF and choose
i ∈ F ∩ZU minimal with respect to R′. Since i ∈ ZU , by definition of ZU , the waiting
condition (U, i) is implied byW. Therefore, moving job i to the position directly after
YU in R violates a waiting condition (X, i) ∈ W with X ⊆ U ∪ ZU . Let us consider
the induced waiting condition (X ∩F, i) ∈ WF . It follows from the minimal choice of
i that i′ �∈ F ∩ ZU for all i′ with i′ ≺R′ i. With F ∩ U = ∅, this implies i′ �∈ X ∩ F ,
which is a contradiction of the fact that R′ is a realization for WF .

Finally, notice that there may exist (implicit) waiting conditions (X, j) inside the
considered set U , i.e., X ⊂ U and j ∈ U \X. Theorem 4.1 can be strengthened in the
following way. Consider the situation after the execution of Algorithm 1 with input
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V \ U and WV \U and let L be the resulting list of jobs. Furthermore, let U ′ ⊆ U
denote the set of jobs from U that can be added to L without violating any waiting
condition of W.

Corollary 4.6. For given U ⊆ V the set of waiting conditions (U ′, j) which is
implied by W is precisely {(U ′, j) | j ∈ V \ (L ∪ U ′)}.

Proof. We show that the maximal feasible subsets F and F ′ of V \U and V \U ′,
respectively, coincide. The corollary then follows from Lemma 4.5. It is clear that
F ⊆ F ′ since U ′ ⊆ U . Conversely, suppose by contradiction that F ′ \ F �= ∅. Denote
by R = (V,≺R) and R′ = (V,≺R′) linear realizations of W where F and F ′ are order
ideals, respectively (the existence of R and R′ follows from Lemmas 4.3 and 4.5). Let
j ∈ F ′ \ F be the smallest job in F ′ \ F with respect to R′. Since j �∈ F , moving
job j in R to the position directly after F violates a waiting condition (X, j) with
X ∩ F = ∅. Since R′ is a realization there must exist some i ∈ X with i ≺R′ j. But
i ∈ F ′ \ F , which contradicts the minimal choice of j.

The results presented in this section turn out to be useful in the context of minimal
representations of and/or precedence constraints discussed in section 5. Besides this,
Corollary 4.6 led to a considerable speedup of computation time within branch-and-
bound procedures for stochastic resource-constrained project scheduling; see [26] for
details.

5. Minimal representations of AND/OR precedence constraints. While
for traditional precedence constraints a minimal representation without redundancies
is given by the transitive reduction and can be computed by simply removing re-
dundant (i.e., transitive) constraints, the situation is slightly more complicated for
and/or precedence constraints. In order to obtain a unique minimal representation,
it is not sufficient to iteratively remove redundant waiting conditions that are implied
by the others.

Definition 5.1. A set W of waiting conditions is called minimal if
(i) no waiting condition (X, j) ∈ W is implied by W \ {(X, j)}, and
(ii) for each waiting condition (X, j) ∈ W, the set X is minimal with respect to

inclusion; i.e., for all i ∈ X, the waiting condition (X \ {i}, j) is not implied by
W.

Two sets W and W ′ of waiting conditions are called equivalent if their sets of (lin-
ear) realizations coincide. Moreover, if W ′ is minimal, then W ′ is called a minimal
reduction of W.

The setW from Example 1 is not minimal: If the waiting condition ({j4, j5, j6}, j7)
is replaced by ({j4, j6}, j7), the resulting instance is equivalent to Example 1. This
follows from waiting condition ({j4}, j5), which ensures that whenever j5 ≺R j7 in
some realization R = (V,≺R) we also have j4 ≺R j5 and j4 ≺R j7. Note that if we
additionally replace ({j1, j5}, j4) by ({j1}, j4), the resulting set of waiting conditions
is minimal (and still equivalent to Example 1).

Theorem 5.2. Each feasible set of waiting conditions has a unique minimal
reduction.

To prove the theorem we need the following technical lemma.
Lemma 5.3. Let W be a feasible set of waiting conditions with (U, j) ∈ W. The

waiting condition (U, j) is implied by W ′ := W \ {(U, j)} if and only if there exists
some (X, j) ∈ W ′ with X ⊆ U ∪ ZU .

Proof. If (U, j) is implied by W ′, then any ordering of V where YU is an ideal
and j is placed directly after YU is not a realization of W ′. Thus, there exists some
(X, j) ∈ W with X ⊆ U ∪ZU . Contrarily, suppose that there exists some (X, j) ∈ W ′
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Algorithm 2: Computation of a minimal reduction.

Input : A set V of jobs and waiting conditions W.

Output: A minimal reduction of W
for each (U, j) ∈ W do

L := call Algorithm 1 with input V \ U and WV \U and
compute a(i) for each i ∈ V ;

if a(j) > 1 then
delete (U, j) from W;

else for i ∈ U do
if a(i) > 0 then delete i from U ;

return W;

with X ⊆ U ∪ZU but (U, j) is not implied by W ′. Then there exists some h ∈ X \U
and a linear realization R′ = (V,≺R′) of W ′ with YU ≺R′ h ≺R′ j ≺R′ U . Since W
is feasible, there exists some i ∈ U that can be moved to the position directly after
h without violating a waiting condition of W ′ (this follows from Corollary 4.6). In
addition, the resulting linear realization R = (V,≺R) satisfies the waiting condition
(U, j) and thus should be a realization with respect to W. However, we have h ≺R

i ≺R j ≺R U \ {i}, which is a contradiction of h ∈ ZU .

Proof of Theorem 5.2. Let W andW ′ be equivalent and both minimal. It suffices
to show that (U, j) ∈ W implies (U, j) ∈ W ′. By Lemma 4.3, there exists a linear
realization R of W starting with YU . Since the order obtained by moving j to the
position directly after YU in R is not a realization, there exists a waiting condition
(X, j) ∈ W ′ with X ⊆ U ∪ZU . We show next that U ⊆ X. By minimality of W ′ this
implies X = U , which concludes the proof.

Assume that X �⊇ U and let i ∈ U \ X. We obtain a linear realization R′ by
moving i to the position directly after YU in R; otherwise, there exists a waiting
condition (Z, i) ∈ W with Z ⊆ U ∪ ZU . Since all jobs in ZU have to wait for a job in
U , the waiting condition (U \ {i}, i), and thus (U \ {i}, j), is implied by W, which is
a contradiction of the minimality of W.

Since moving j to the position directly after YU ∪ {i} in R′ violates the waiting
condition (X, j), there exists a waiting condition (Z, j) ∈ W with Z ⊆ (U \ {i})∪ZU .
However, by Lemma 5.3, the set W \ {(U, j)} implies the waiting condition (U, j),
which is a contradiction of the minimality of W.

Let us next consider the following straightforward polynomial-time algorithm to
compute a minimal reduction of a set W of waiting conditions. For each (X, j) ∈ W,
apply Algorithm 1 with input V \X andWV \X . If, besides (X, j), some other waiting
condition prevents j from being added to L, then remove (X, j) from W. Otherwise,
remove all i from X, which cannot be added to L because some waiting condition ofW
is violated. Finally, output the resulting set of waiting conditions. An implementation
of this rough scheme is given in Algorithm 2. There, a(j), j ∈ V , denotes the number
of waiting conditions of the form (X, j) that are left in WV \U after Algorithm 1 was
called with input V \U andWV \U . Notice that a(j) is computed within the execution
of Algorithm 1. In the following theorem we prove the correctness of the algorithm
(as defined earlier, A is the set of arcs in the digraph induced by W).

Theorem 5.4. Algorithm 2 computes the minimal reduction of a setW of waiting
conditions in O( |W| · |A| ) time.
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Proof. We first show that, through the procedure, the transformed set of waiting
conditions is equivalent to W given as input. We then argue that, once the algorithm
has finished, the obtained set of waiting conditions is minimal.

Denote by Wk, k ∈ {1, . . . , |W|}, the set of waiting conditions after the kth
iteration of the outer for-loop of Algorithm 2. Furthermore, let W0 := W. Suppose
that some (U, j) is removed from Wk−1 in the kth iteration of the algorithm. Since
a(j) > 1 in the kth iteration, there exists a waiting condition (X, j) ∈ Wk−1 with
X �= U and X ⊂ U ∪ZU . With Lemma 5.3, (U, j) is implied byWk =Wk−1 \{(U, j)}
and can thus be deleted from Wk−1. Now assume that, in (U, j), some job i was
deleted from U in the kth iteration. Then a(i) > 0 and with Corollary 4.6 it follows
that (U \ {i}, i) is implied by Wk−1. Together with (U, j) this shows that (U \ {i}, j)
is implied by Wk−1. Thus, Wk−1 is equivalent to Wk for all k ∈ {1, . . . , |W|}, which
directly implies that W and W ′ :=W |W| are equivalent.

We now show that W ′ is minimal. Let us first suppose that some (U, j) ∈ W ′ is
implied byW ′ \{(U, j)}. Then, by Lemma 5.3, there exists another waiting condition
(X, j) ∈ W ′\{(U, j)} with X ⊆ U∪ZU . Notice that ZU in dependence ofW ′\{(U, j)}
and all Wk, k ∈ {0, . . . , |W|}, is constant because the associated sets of realizations
coincide. The waiting conditions (U, j) and (X, j) have been constructed in some
iterations k and k′, respectively, in which waiting conditions (U ′, j) ∈ W with U ⊆ U ′

and (X ′, j) ∈ W with X ⊆ X ′ have been treated by the algorithm. If (X, j) ∈ Wk−1,
then, by Lemma 5.3, (U ′, j) would have been removed from Wk−1. Consequently,
k′ > k. Since U was obtained from U ′ (in the kth iteration of the algorithm), by
Corollary 4.6, there exists a linear realization R which starts with YU and is followed
first by an arbitrary job i ∈ U and then by job j. Since, by assumption, Wk−1 and
W ′ \ {(U, j)} are equivalent, (X, j) must be respected by R; hence U ⊆ X. But
then (X ′, j) is deleted in iteration k′ > k, a contradiction. Next, suppose that W ′

contains a waiting condition (U, j) such that, for some i ∈ U , the waiting condition
(U \ {i}, j) is implied by W ′. Since i was not removed from U ′ in the kth iteration of
the algorithm, it follows from Corollary 4.6 that (U ′ \ {i}, j) is not implied by Wk−1.
Thus there exists a linear realization R = (V,≺R) of Wk−1 with j ≺R (U ′ \ {i}) and
in particular j ≺R (U \{i}). Since R is also a realization forW ′, the waiting condition
(U \ {i}, j) is not implied by W ′—a contradiction.

The above argumentation shows that W ′ is minimal and thus Algorithm 2 com-
putes a minimal reduction of W. Finally, the running time follows from the fact that
Algorithm 1 is called |W| times.

Notice that the cardinality of a minimal set of waiting conditions might still be
exponential in the number of jobs |V |: Let V = {1, 2, . . . , 2�+ 1}; in order to model
the constraint that job 2�+ 1 can be planned only after at least � other jobs, we need
exactly

(
2�
�

)
waiting conditions.

6. An NP-complete generalization. Suppose that we generalize the defini-
tion of waiting conditions from (X, j), X ⊂ V , j ∈ V \X to (X,X ′) with X,X ′ ⊂ V
and X ∩X ′ = ∅. The generalized waiting condition (X,X ′) is fulfilled if at least one
job j ∈ X ′ is waiting for at least one job i ∈ X. We show in the theorem below that
the problems considered in sections 3 and 4 become NP-complete in this generalized
setting.

Theorem 6.1. Given a set of jobs with generalized waiting conditions, it is NP-
complete to decide whether or not a waiting condition ({i}, {j}) is implied for two
jobs i and j.
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Proof. We construct a reduction from the satisfiability problem Sat. Given an
instance of Sat, we introduce for each Boolean variable x two jobs which correspond
to the two literals x and x̄ (negation of x); to keep notation simple, we denote these
jobs also by x and x̄. Moreover, for each clause C we introduce a corresponding job
(also denoted by C) and a waiting condition (XC , {C}), where XC denotes the set
of literals in clause C; in other words, job C may not be started before at least one
job corresponding to a literal of clause C has been completed. Finally, we introduce
two additional jobs s and t together with the following waiting conditions: For each
variable x, at least one of the jobs x and x̄ has to wait for s; i.e., we have the waiting
condition ({s}, {x, x̄}). For each clause C, job t has to wait for the corresponding job,
which is given by the waiting condition ({C}, {t}).

It is easy to check that in the constructed scheduling instance job t has to wait
for job s if and only if the underlying instance of Sat does not have a satisfying
truth assignment. If there is a satisfying truth assignment, then we can construct
a linear realization where t precedes s in the following way: First we take all jobs
corresponding to literals with value “true” in an arbitrary order; next we append all
jobs corresponding to clauses in some order; afterwards we add t, then s, and finally all
remaining jobs corresponding to literals with the value “false.” On the other hand, if
there is a linear realization where t precedes s, we can define a corresponding satisfying
truth assignment in the following way: For each variable x, assign x the value true
(false) if the job corresponding to x (x̄) precedes s; notice that at most one of the two
cases can happen: if neither job x nor x̄ precedes s, we assign an arbitrary value to
the variable x.

As a consequence of Theorem 6.1, we obtain that the problem of deciding fea-
sibility for a set of generalized waiting conditions is also NP-complete. To see this,
add to the construction in the proof the waiting condition ({t}, {s}). Then the given
instance of Sat is feasible if and only if the constructed instance of the scheduling
problem with generalized waiting conditions is feasible.

7. Computing earliest job start times. This section is concerned with the
computation of earliest job start times subject to and/or precedence constraints.
The underlying problem is to find a solution to a system of min-max-inequalities.
There are several other applications of such systems of inequalities; we will mention
some of them below.

7.1. Problem definition and related work. For the remainder of the paper
we assume that together with each waiting condition w = (X, j) ∈ W and each job
i ∈ X we are given an integral time lag −M < diw < M , M � 0. We aim at finding
a vector of earliest start times S = (S1, . . . , Sn) such that for each waiting condition
(X, j) ∈ W the constraint

Sj � min
i∈X

(Si + diw)(7.1)

is satisfied. Job processing times pi can be modeled by setting diw := pi for all
w = (X, j) with i ∈ X. Negative values diw represent so-called maximal time lags
that define latest possible start times of jobs i ∈ X relative to j.

In order to simplify the presentation, we sometimes interpret nodes of the digraph
D that represent waiting conditions as dummy jobs. We then assume that the vector
S also contains start times of these dummy jobs and constraint (7.1) is replaced by

Sw � min
i∈X

(Si + diw) and Sj � Sw.
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We call the jobs in V and-nodes and the jobs in W or-nodes of the digraph D. We
assume that a dummy and-node s precedes all other and-nodes; i.e., we introduce a
waiting condition ({s}, j) for all j ∈ V . In D, time lags can easily be integrated by
associating each diw as a weight to the arc (i, w); see Figure 2.1.

The problem of finding earliest start times can then be formulated onD as follows:
Find a componentwise minimal schedule S ∈ Z

|V| fulfilling Ss � 0 and

Sj � max
(w,j)∈A

(Sw + dwj), j ∈ V ,

Sw � min
(j,w)∈A

(Sj + djw), w ∈ W.
(ES)

In the above formula we added the term dwj for symmetry reasons. Without loss
of generality we assume that dwj = 0. The case dwj �= 0 can be handled by replacing
dwj �= 0 by 0 and diw by diw + dwj for all i ∈ in(w). Besides schedules S ∈ Z

|V|

we also consider partial schedules S ∈ (Z ∪ {∞})|V| where the start time of a job
may be infinite, meaning that the job is not planned. As usual, a (partial) schedule
fulfilling the constraints of (ES) is called feasible. In particular, the partial schedule
S = (∞, . . . ,∞) fulfills all inequalities of (ES) and is thus feasible. Moreover, it is
easy to see that if S′ and S′′ are feasible partial schedules, then their component-
wise minimum S := min{S′, S′′} is also feasible. In particular, there always exists a
(unique) componentwise minimal partial schedule S∗, called the optimal partial sched-
ule (notice that S∗ � 0 for all and-nodes). It follows that, instead of considering the
above system of inequalities, we alternatively may consider the corresponding system
of equations (which is obtained from (ES) by replacing each “�” by “=”).

Presuming different restrictions on the range of arc weights, several algorithms
have been suggested to solve (ES). Note that all restrictions on arc weights are meant
to refer to arcs (j, w) between and-nodes j and or-nodes w only. For the case
of nonnegative arc weights without cycles of zero length in D, a modification of
Dijkstra’s shortest path algorithm can be applied. An algorithm suggested by Knuth
[16] has running time O( |V| log |V|+ |A| ). Other approaches are proposed in [6], [10],
and, in the context of resource-constrained project scheduling, [14] (see also [22]).
Levner, Sung, and Vlach [18] consider a generalized model of and/or precedence
constraints where a so-called threshold value 1 � �w � |X| is associated with each
waiting condition w = (X, j), indicating that j may start if at least �w jobs from X
have been completed. They show that Dijkstra’s shortest path algorithm can also be
generalized to solve their model (with positive arc weights). For a discussion of the
case with nonnegative arc weights and cycles of zero length we refer to subsection 7.4.
The general case −M < djw < M is a frequently studied problem with applications in
many different areas, e.g., game theory [29] and interface timing verification (see [24]
and [20]). Moreover, there are applications stemming from online optimization; see
[29, section 7] for a collection of examples. Interestingly, although a pseudopolynomial
algorithm to solve this case of (ES) is easily obtained, no algorithm polynomial in |V|
and log(M) is currently known.

7.2. Arbitrary arc weights. In this section we study the case of arbitrary arc
weights −M < djw < M .

7.2.1. Feasibility. For arbitrary arc weights the feasibility results stated in sec-
tion 3 are no longer valid. They are based on the requirement that all djw = pj > 0,
and, consequently, an and-node j can start if and only if for all (X, j) ∈ W at least
one i ∈ X has previously been started (compare with condition (2.1)). However, if we
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allow djw � 0, this is no longer the case. In what follows we derive a necessary and
sufficient feasibility criterion for (ES) with arbitrary arc weights which generalizes the
feasibility criterion given in Lemma 3.2. For the remainder of the section we call a
set W of waiting conditions feasible if and only if there exists a feasible schedule for
(ES).

Before we derive the criterion, we discuss how a given instance can be simplified
without changing the optimal partial schedule S∗. First, we make the problem more
restrictive by removing all but one incoming arc of each or-node w. If the remaining
arc (j, w) fulfills S∗

j + djw � S∗
w, clearly, all inequalities of (ES) are still satisfied.

Consequently, S∗ and the optimal (partial) schedule of the more restrictive instance
coincide. In a similar fashion we can remove all but one incoming arc (w, j) of each
and-node j without changing the earliest start times. However, removing such arcs
means relaxing the problem, and some more work has to be done in order to obtain
the desired result.

Lemma 7.1. For each digraph D representing a set of and/or precedence con-
straints, there exists a subdigraph D̄ on the same set V of nodes with |inD̄(j)| � 1
for all and-nodes j ∈ V such that S∗ = S̄∗, where S̄∗ denotes the optimal (partial)
schedule of D̄.

Proof. We construct D̄ by iteratively removing arcs (w, j) from D that do not
affect the earliest start time of the and-node j. By contradiction, assume that once
all such arcs have been removed, there is some and-node j with |inD̄(j)| > 1. Thus,
removing any incoming arc of j reduces the earliest start time of j. Denote by S1 and
S2 the optimal (partial) schedules obtained if two different incoming arcs (w1, j) and
(w2, j) are removed from D̄; then S∗

j > S1
j and S∗

j > S2
j . Without loss of generality

let S1
j � S2

j ; we define a new (partial) schedule S through

Si := min{S1
i + S2

j − S1
j , S

2
i } for all i ∈ V.

By definition, S � S2 and Sj = S2
j . For each arc (w, j) with w �= w2 we have

S2
j � S2

w, which yields Sj = S2
j � S2

w � Sw. For w = w2 we get Sj = S1
j + S2

j − S1
j �

S1
w + S2

j − S1
j � Sw. We obtain Sj � max(w,j)∈A(Sw). Furthermore, S also fulfills all

other inequalities of (ES), because both S1 + S2
j − S1

j and S2 fulfill the inequalities
and so does its minimum S. Consequently, S is a feasible (partial) schedule, which is
a contradiction of the minimality of S∗ since Sj < S∗

j .
For the subsequent presentation, recall the definition of a (generalized) cycle from

section 2. Note that we assume all cycles to be directed cycles.
Corollary 7.2. Let D̄ be as in Lemma 7.1. Then all cycles in D̄ have strictly

positive length.
Proof. Assume that there is a cycle (w1, j1, w2, j2, . . . , wk, jk, w1) of nonpositive

length in D̄. By definition of D̄, (w�, j�) is the only incoming arc for node j�, � =
1, . . . , k. Thus, one can construct a feasible partial schedule for D̄ satisfying

Sw1 = Sj1 = −1 and Sw�
= Sj� = −1 +

�∑
q=2

djq−1wq for � = 2, . . . , k.

With Lemma 7.1, this is also possible for the original digraph D, which yields a
contradiction of the requirement S∗

j1
� 0.

Lemma 7.3. A set of and/or precedence constraints with arbitrary arc weights
is feasible if and only if each generalized cycle in D contains a cycle of nonpositive
length.
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Proof. Let C be a generalized cycle which contains only cycles of positive length
and suppose that some node v ∈ C can be scheduled at Sv <∞. Since v has at least
one incoming arc, there must exist a node u ∈ in(v) with Sv � Su + duv. Iterating
this argument, since |C| is finite, we obtain a cycle in C with nonpositive length—a
contradiction.

Conversely, suppose that the given instance is infeasible. Let Z �= ∅ denote the set
of nodes whose earliest start times are ∞. By Lemma 7.1, we can relax the problem
by removing all but one incoming arc of each and-node such that the earliest start
times remain unchanged for the resulting digraph D̄. Remove all or-nodes from Z
whose out-degree is 0 in D̄ and denote the resulting set of nodes by Z ′. Then Z ′

induces a generalized cycle C in D. Moreover, by definition of Z ′, every cycle in C is
also contained in D̄ and therefore has positive length by Corollary 7.2.

Lemma 7.3 reduces to Lemma 3.2 if all the arc weights djw are strictly positive.
Lemma 7.3 enables us to show that the decision problem of (ES) is in both NP and
co-NP. The decision problem corresponding to (ES) is to decide whether or not a
feasible schedule S <∞ for (ES) exists.

Lemma 7.4. The decision problem corresponding to (ES) is in NP ∩ co-NP.
Proof. It is clear that the decision problem corresponding to (ES) is in NP because,

for a given feasible schedule S of some instance I, it is easy to verify all constraints
of W. Moreover, it follows from Lemma 7.3 that the decision problem corresponding
to (ES) is in co-NP. We can guess a generalized cycle violating the condition in
Lemma 7.3, which can be verified in polynomial time by, for example, some standard
minimum mean weight cycle algorithm.

7.2.2. A simple pseudopolynomial time algorithm. For the case of (ES)
with arbitrary arc weights several pseudopolynomial algorithms (partly independent
of each other) have been proposed; see, e.g., [5] and [25] as well as [24] and [29].
A very simple (pseudopolynomial) algorithm is as follows: First, initialize Sj := 0
for all j ∈ V . Then, while S violates some waiting condition w = (X, j) ∈ W, set
Sj := mini∈X(Si + diw). If Sj becomes larger than a given time horizon T , then stop
and return that the given instance is infeasible. The time horizon T can be chosen
as T :=

∑
j∈V (maxw∈out(j) |djw|). One can show straightforwardly by induction that

S � S∗ in each iteration of the algorithm. If the recurrence stops with Sj � T for
all j ∈ V , then all constraints are obviously fulfilled. Hence S � S∗ and thus we
have S = S∗. Moreover, at least one start time of a job is increased by 1 in each
iteration. Thus the number of iterations is O( |V | · T ). Finding a violated waiting
condition obviously requires at most O( |A| ) time and thus the total complexity is
O( |V | · |A| · T ). Note that for the special case that D is acyclic, earliest job start
times can easily be computed in linear time along a topological sort. Moreover, if each
and-node (or-node) has at most one incoming arc, node start times can be computed
by, for example, a slight modification of the Bellman–Ford shortest (longest) path
algorithm in time O( |V | · |A| ).

7.2.3. A game-theoretic application. We next consider a class of two-player
games played on bipartite directed graphs which are directly related to the problem
(ES). There exists substantial literature on different variations of this game; see, e.g.,
[29], [8], [15], [28], and references therein. Each player is identified with one of the node
partitions of the graph. The game starts at a fixed node j0 and the player associated
with that node chooses an incoming arc (w0, j0). Then, at node w0, the other player
chooses an incoming arc (j1, w0) and so on. The objective and the stopping criterion
depend on the considered variation of the game.



SCHEDULING WITH AND/OR PRECEDENCE CONSTRAINTS 407

One variant is the so-called mean payoff game (MPG), where an integer weight
is associated to each arc of the digraph. Furthermore, it is assumed that each node
has at least one incoming arc. The MPG is finished as soon as the path P resulting
from the game contains a cycle and the outcome ν of the game is the mean weight of
the arcs of that cycle. One player wants to maximize the outcome, while the other
player wants to minimize it. It has been shown by Ehrenfeucht and Mycielski [8] that
both players have positional optimal strategies; that is, the decisions of both players
depend on neither previous choices nor the start node j0. In the following we always
assume that j0 is associated with the maximization player.

The decision problem corresponding to MPG is to decide whether the outcome
of the game is positive. Zwick and Paterson [29] have noted that this problem is in
NP ∩ co-NP. Even more, Jurdziński [15] showed that the problem is in UP ∩ co-UP.
It seems to be intuitively clear that MPG and (ES) are closely related. We next show
that this is indeed the case.

Lemma 7.5. The decision problems corresponding to MPG and (ES) are polyno-
mially equivalent.

Proof. Given an instance of (ES), we construct an instance of MPG in the follow-
ing way. First, we add an additional job t and a waiting condition wj = ({j}, t) with
djwj

= 0 for every job j ∈ V ; moreover, we add a waiting condition w = ({t}, s) with
dtw = −T , where T is the time horizon discussed in section 7.2.2. Notice that there
exists a feasible schedule for the original instance of (ES) if and only if the earliest
start time of the new job t is finite. The game digraph D is now the digraph represent-
ing the new scheduling instance. The starting node is j0 := t and the maximization
player starts. We show that the set of and/or precedence constraints is feasible if
and only if ν � 0.

Only if : Based on an optimal schedule S∗ < ∞, we give a strategy for the
minimization player which ensures ν � 0: In each or-node w, choose an incoming arc
(j, w) with S∗

j + djw = S∗
w. Then, for two vertices v1 and v2 on the path formed by

the game, the weight of the (directed) subpath from v1 to v2 is at most S∗
v2
−S∗

v1
(for

each arc (w, j) on the path we have S∗
j � S∗

w and for each arc (j, w) on the path we
have S∗

w = S∗
j + djw). In particular, the length of the cycle terminating the game is

at most 0 (choose v1 = v2).

If : For an infeasible scheduling instance it follows from Lemma 7.3 that there ex-
ists a generalized cycle C in D which contains only cycles of positive length. Without
loss of generality, C contains the node t (if t is not in C, then consider the generalized
cycle where all waiting conditions ({j}, t) with j in C are added to C). We give a
strategy for the maximization player which ensures ν > 0: In each step, choose an arc
which starts at a node in C. Such an arc always exists by the definition of general-
ized cycles. Moreover, again by the definition of generalized cycles, the minimization
player is not able to leave C. This yields ν > 0.

Given a digraph D representing an instance of MPG, we construct an instance I
of (ES) in the following way. First, we assume without loss of generality that every
node in D associated to the minimization player has out-degree one—it is an easy
observation that a node with out-degree q > 1 can be replaced by q copies with out-
degree one without changing the outcome of the game. Moreover, we assume that
the weight of the only arc (w, j) leaving a node w associated to the minimization
player is 0. The case of dwj �= 0 can be handled by replacing dwj �= 0 by 0 and diw
by diw + dwj for all i ∈ in(w); recall the transformation in the second paragraph of
section 7.1.
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The set V of jobs in the instance I of (ES) is the set of nodes associated to
the maximization player. For each node w of the minimization player, we introduce
a waiting condition w = (inD(w), j) where outD(w) = {j}. The time lag diw for
i ∈ inD(w) is given by the corresponding arc weight in D. Moreover, we add a dummy
start node a preceding all other and-nodes. We refer to this scheduling instance as
I ′. Finally, in order to obtain the instance I, we modify every waiting condition
w = (X, j) with j �= j0 and j0 �∈ X by adding j0 to X and setting dj0w = T + 1;
in other words, if job j0 can be planned, then all other jobs can be planned, too. In
particular, instance I is feasible if and only if the earliest start time S∗

j0
of job j0 in

instance I ′ is finite. Thus, it remains to show that S∗
j0
<∞ if and only if ν � 0.

Only if : Consider instance I ′. Based on the optimal partial schedule S∗ of
instance I ′ (Sj0 < ∞), we give a strategy for the minimization player which ensures
ν � 0: In each or-node w with S∗

w <∞, choose an incoming arc (j, w) with S∗
j +djw =

S∗
w. As a consequence, S∗

i <∞ for all nodes i visited during the game. Moreover, for
two vertices v1 and v2 on the path formed by the game, the weight of the (directed)
subpath from v1 to v2 is at most S∗

v2
− S∗

v1
. In particular, the length of the cycle

terminating the game is at most 0.

If : For an infeasible scheduling instance I, by Lemma 7.3, there exists a general-
ized cycle C in the corresponding digraph DI which contains only cycles of positive
length. Without loss of generality, C contains the node j0. Notice that C also forms
a generalized cycle for the digraph D. We give a strategy for the maximization player
which ensures ν > 0: In each step, choose an arc which starts at a node in C. Such
an arc always exists by the definition of generalized cycles. Moreover, again by the
definition of generalized cycles, the minimization player is not able to leave C. This
yields ν > 0.

With Lemma 7.5, it follows from [15] that the decision problem corresponding
to the scheduling problem (ES) is in UP ∩ co-UP. Moreover, MPG and hence also
(ES) can be computed in subexponential time: Zwick and Paterson [29] have shown
that so-called simple stochastic games are at least as hard as MPGs. The outcome of
simple stochastic games can be computed in subexponential time, as has been shown
by Ludwig [19]. Despite these observations, there is no polynomial-time algorithm for
(ES) with arbitrary arc weights known.

7.3. Positive arc weights. In this section we restrict ourselves to the case
of positive arc weights or, more generally, nonnegative arc weights without cycles
of length 0 in D. As in [16] and [6] we basically obtain a slight generalization of
Dijkstra’s shortest path algorithm. During the course of the algorithm we call a job
planned as soon as its start time has been fixed.

The algorithm maintains a partial schedule S ∈ (Z ∪ {∞})|V| where initially
Sw =∞ for all or-nodes w. All or-nodes which are not yet planned are maintained
in a heap where the sorting key for node w is its tentative start time Sw (initially
Sw =∞).

Having set Ss = 0 (and also Sw = 0 for all w ∈ out(s)) we proceed over time by
always choosing an or-node w = (X, j) with minimum start time from the heap and
plan w at its tentative start time Sw. If all other or-nodes (X ′, j) preceding j have
already been planned, we also plan j at the current time. In this case, the start times
of all or-nodes w′ with w′ ∈ out(j) are updated to Sw′ := min{Sw′ , Sj + djw′}. If
after termination some or-node w is started at Sw = ∞, the considered instance is
infeasible. Implementational details are given in Algorithm 3.

If we apply Algorithm 3 to Example 1 (arc weights are given in Figure 2.1), we
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Algorithm 3: Computation of earliest job start times for digraphs without cycles
of length 0.

Input : A directed graph D representing a set V of jobs and waiting con-
ditions W with positive arc weights on the arcs in V ×W.

Output: A feasible (partial) schedule S ∈ (Z ∪ {∞})|V|.

Heap := ∅;
for and-nodes j ∈ V do a(j) := |in(j)|;

1 Ss := 0; // and-node s is planned at time 0
for or-nodes w ∈ W do

if w ∈ out(s) then insert w in Heap with key Sw := 0;
else insert w in Heap with key Sw :=∞;

while Heap �= ∅ do
2 remove next or-node w0 = (X, j) from Heap; // or-node is planned

reduce a(j) by 1;
if a(j) = 0 then

3 Sj := maxw∈in(j) Sw; // and-node is planned
for or-nodes w ∈ out(j) do

Sw := min{Sw, Sj + djw};
decrease key of w in Heap to Sw;

delete node w0 and all incident arcs from D;

return S;

obtain the start times (0, 0, 0, 2, 3, 2, 3) for and-nodes and (2, 1, 2, 3, 3) for or-nodes.
One possible order in which start times get fixed is j1 ≺ j2 ≺ j3 ≺ w2 ≺ w1 ≺ j4 ≺
w3 ≺ j6 ≺ w5 ≺ j7 ≺ w4 ≺ j5.

Theorem 7.6. For a given set of and/or precedence constraints represented by a
digraph D = (V ∪W, A) with nonnegative arc weights and without cycles of length 0,
Algorithm 3 computes an optimal partial schedule S. In particular, the instance is
infeasible if and only if Sw =∞ for some or-node w.

Proof. In this proof we say that an and-node is planned if its start time is fixed
(lines 1 and 3), while an or-node is planned if it is removed from the heap (line 2).

By construction of Algorithm 3, S is a feasible partial schedule. Assume that S is
not optimal and let v be a node with Sv > S∗

v and S∗
v minimal. If v is an and-node,

then there must exist an or-node w = (X, v) with Sw = Sv > S∗
v � S∗

w and we set
v := w. Otherwise, if v is an or-node (X, j), then there must exist an and-node
i ∈ X with S∗

v = S∗
i + div (otherwise S∗ is not minimal). Moreover, Si > S∗

i . To see
this suppose that Si = S∗

i . Then, at the stage of Algorithm 3 where Si is planned, v
has already been removed from D. Since start times (in the order in which nodes are
planned) are nondecreasing we have Sv � S∗

i , and hence Sv � Sv+div � S∗
i +div = S∗

v ,
a contradiction of Sv > S∗

v .

Since v was chosen such that S∗
v is minimal, we have S∗

i � S∗
v = S∗

i + div. Thus
div = 0 and we set v := i. Iterating this argument, we can construct a cycle (since
there are only finitely many nodes) of length 0—a contradiction.

Lemma 7.7. Algorithm 3 can be implemented to run in O( |W| log |W|+|A|+|V | )
time.

Proof. Since each or-node enters the heap precisely once, the while-loop is exe-
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cuted |W| times. Each and-node is planned only once and therefore the inner for-loop
is executed at most |A| times. If we choose a Fibonacci-heap for maintaining the or-
nodes, the cost of line 2 is log |W| and we obtain the claimed running time.

In contrast to previously proposed algorithms, the heap data structure maintains
only or-nodes, which leads to the improved running time O( |W| log |W|+ |A|+ |V | )
instead of O( (|V |+ |W|) log(|V |+ |W|) + |A| ).

7.4. Nonnegative arc weights. As an extension of the case discussed in sec-
tion 7.3 we present an O( |V | + |A| · |W| ) algorithm that is capable of dealing with
arbitrary arc weights djw � 0 and thus with cycles of length 0 in D. Levner, Sung,
and Vlach [18] observed that the algorithm proposed by Knuth [16] fails to compute
earliest job start times when cycles of length 0 occur.

After submission of this paper for publication, we learned that Adelson-Velsky
and Levner [1] also discovered a polynomial-time algorithm for the problem. Their
algorithm proceeds over time starting at time t = 0. For each t, the algorithm
determines all jobs to be started at t by an appropriate labeling procedure which
runs in O( |A| ) time. Thereafter, t is increased to the next tentative start time of
some job. It may happen, however, that for some t considered, no job is started.
Adelson-Velsky and Levner [1], [2] show that the number of times t is increased is
bounded by |A|. Consequently, they obtain an O( |A|2 ) algorithm. Due to a more
careful update of (tentative) start times of jobs, our algorithm’s worst-case running
time is O( |V |+ |A| · |W| ).

Adelson-Velsky and Levner [2] misleadingly claim that our algorithm solves only a
special case of the problem (in which only a single arc leaves each or-node). A digraph
D with multiple arcs (w, j) leaving an or-node w can obviously be polynomially
transformed into a digraph where only a single arc leaves each or-node as follows:
Add a new and-node i, a new arc (w, i), and add a waiting condition (i, {j}) for each
arc (w, j). Then remove all arcs (w, j). With this transformation our algorithm’s
worst-case complexity is also O( |A|2 ) in the original input size. However, in Lemma
7.9 below we argue that our algorithm can also handle the case of multiple arcs leaving
an or-node directly without a transformation.

A rough scheme of the algorithm is as follows. Analogously to Algorithm 3 we
maintain all or-nodes w in a heap where the sorting key is its tentative start time Sw

(initially Sw =∞). Furthermore, whenever an and-node j is planned, the start times
of all or-nodes w ∈ out(j) are updated to Sw = min{Sw, Sj + djw}. We proceed over
time starting at t = 0. For the current time t we compute a set U of (nonstarted)
nodes that can be started at t. The set U is computed by maintaining the induced
subgraph D0 of D where all planned nodes and all arcs of positive weight have been
deleted. In D0, the set U is computed as a set of nodes such that for each and-node
j, all predecessors w ∈ inD0(j) are also in U , and for each or-node w, at least one
predecessor j ∈ inD0(w) is also in U . Then, as we will prove in Theorem 7.8 below,
all nodes of U can be started at the current time t. Next we remove a new or-node
w from the heap and increase t to Sw. If t =∞, the algorithm stops. Then either no
or-node was left in the heap (and we have computed a feasible schedule) or all or-
nodes w in the heap fulfill Sw =∞ (indicating that the given instance is infeasible).
Details are provided in Algorithm 4.

If we apply Algorithm 4 to Example 1 with arc weights as in Figure 2.1 except
d5w1

= 0 and d4w4
= 0, we get the following:

Iteration 1: U = {j1, j2, j3}, w = w2, t := 1.
Iteration 2: U = {j4, j5, w1, w4}, w = w3, t := 2.
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Algorithm 4: Computation of earliest job start times for nonnegative time lags.

Input : A directed graph D representing a set V of jobs and waiting con-
ditions W with nonnegative arc weights on the arcs in V ×W.

Output: A feasible (partial) schedule S ∈ (Z ∪ {∞})|V|.

set D0 := D and remove all arcs with positive weight from D0;
t := 0;
Heap := ∅;
for or-nodes w ∈ W do

Sw :=∞;
insert w in Heap with key Sw;

while t <∞ do
compute U ⊆ V(D0) maximal with

1 (inD0(j) ⊆ U ∀ j ∈ U ∩ V ) and (inD0(w) ∩ U �= ∅ ∀w ∈ U ∩W);
for and-nodes j ∈ U (j ∈ U ∩ V ) do

Sj := t; // node j is planned at time t
for or-nodes w ∈ outD(j) do

2 Sw := min{Sw, Sj + djw};
3 decrease key of w in Heap to Sw;

for or-nodes w ∈ U (w ∈ U ∩W) do
4 Sw := t; // node w is planned at time t

remove w from Heap;

Delete all nodes from U in D and D0;
if Heap �= ∅ then

5 remove the next or-node w from Heap;
6 t := Sw;
7 remove w from D and D0; // node w is planned at time t

else t :=∞;

return S;

Iteration 3: U = {j6}, w = w5, t := 2.
Iteration 4: U = {j7}, Heap = ∅, t :=∞.

Thus, we obtain start times (0, 0, 0, 1, 1, 2, 2) for and-nodes and (1, 1, 2, 1, 2) for or-
nodes.

Theorem 7.8. For a given set of and/or precedence constraints represented by
a digraph D = (V ∪W, A) with nonnegative weights on the arcs, Algorithm 4 computes
an optimal partial schedule S. In particular, the instance is infeasible if and only if
Sw =∞ for some or-node w.

Proof. We first prove that the variable t never decreases; i.e., the algorithm
proceeds over time and tries to plan the jobs (and remove them from D and D0)
as early as possible in order of nondecreasing start times. Assume that t decreases
in line 6 of the algorithm and let t0 denote its value before the decrease. Since the
or-node w determining t was not chosen in line 5 during the last iteration of the
while-loop (when t was set to t0), its tentative start time Sw has decreased during the
current iteration in lines 2 and 3. This is a contradiction of Sj = t0 and djw � 0.

Observe that the start time Si of any node i ∈ V is never changed after the node
is planned (and thus deleted from the graphs D and D0).
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We can now prove that the partial schedule S returned by Algorithm 4 is feasible
by verifying all constraints of (ES). By construction of the algorithm, for an and-node
j ∈ V , every or-node w ∈ in(j) either has been planned before or is planned together
with j in the same iteration of the while-loop; this follows from the first property of
U in line 1. Thus, the constraint in (ES) corresponding to j is fulfilled.

Consider now an arbitrary or-node w ∈ W. If w is planned as part of a subset
U in line 4, it follows from the second property of U in line 1 that there is a job
j ∈ in(w) with djw = 0, and j is planned at the same time as w. Otherwise, if w is
planned in line 7 and Sw < ∞, the start time Sw of w must have been decreased in
some iteration of the while-loop in line 2; since the start time Sj of the node j ∈ V
causing the last decrease of Sw has not changed since then, Sw = Sj +djw in the final
partial schedule S. Thus, the constraint in (ES) corresponding to w is fulfilled.

Next we prove that the partial schedule S returned by Algorithm 4 is optimal.
Let S∗ be the optimal partial schedule and assume that there are nodes i ∈ V with
S∗
i < Si; we choose such an i′ with minimum S∗

i′ and set t0 := S∗
i′ ; let U0 = {i ∈ V |

t0 = S∗
i < Si}. We distinguish two cases.

First case. In some iteration of Algorithm 4, t adopts the value t0. We consider
the iteration of the while-loop in which t is increased above t0 in line 6. Let D0 be the
digraph at the beginning of the iteration and U the set computed at the start of this
iteration. Then U ∩U0 = ∅ and, by maximality of U , the set U ∪U0 cannot satisfy the
conditions in line 1. Since S∗ is a feasible partial schedule, the first condition of line 1
is valid for U ∪ U0, i.e., inD0(j) ⊆ U ∪ U0 for all j ∈ (U ∪ U0) ∩ V . Thus, the second
condition is violated: there exists a node w ∈ U0 ∩W with inD0(w) ∩ (U ∪ U0) = ∅.
Moreover, by optimality of S∗, there exists a node j ∈ inD(w) with S∗

w = S∗
j + djw,

in particular S∗
j � t0. We next show that Sj = S∗

j . If S∗
j < t0, the claim follows from

the minimality of t0. Otherwise, observe that j �∈ U0 (if j ∈ U0, we have j ∈ inD0(w),
which contradicts inD0(w) ∩ (U ∪ U0) = ∅). Then with S∗

j = t0 and j �∈ U0 it follows
from the definition of U0 that Sj = S∗

j . In particular, Sw has been set to Sj+djw = S∗
w

in line 2 after j was planned. Since Sw is never increased in Algorithm 4, we get a
contradiction of Sw > S∗

w.

Second case. The variable t never adopts the value t0 in Algorithm 4; in particular,
t0 > 0 and U0 = {i ∈ V | S∗

i = t0}. Since S∗ is optimal, decreasing all start times
S∗
j for j ∈ U0 to t0 − 1 violates a constraint of (ES). Thus, there exists a node
w ∈ U0 ∩ W such that S∗

w = S∗
j + djw for some j ∈ V with djw > 0, i.e., S∗

j < t0.
Therefore, Sj = S∗

j and Sw has been set to Sj+djw = S∗
w in line 2 after j was planned.

Since Sw is never increased in Algorithm 4, we get a contradiction of Sw > S∗
w.

The bottleneck for the running time of Algorithm 4 is the computation of the
set U in each iteration of the while-loop. In fact, it turns out that the linear-time
algorithm for checking feasibility of a set of and/or precedence constraints (for the
case of positive arc weights) provides an elegant and fast solution for this problem.

Lemma 7.9. Given a bipartite digraph D with node set N ∪M and arc set A,
the (unique) maximal set U ⊆ N ∪ M with inD(w) ⊆ U for all w ∈ U ∩ N and
inD(j) ∩ U �= ∅ for all j ∈ U ∩M can be computed in linear time.

Proof. First, for U and U ′ fulfilling the conditions given in the lemma, their union
U∪U ′ also fulfills those conditions. Therefore, such a unique maximal subset U exists.

We show that U can be computed by applying essentially Algorithm 1 to an
appropriately constructed instance. Define the set V = M of jobs and the following set
W of waiting conditions: For each w ∈ N and each j ∈ outD(w), introduce a waiting
condition (inD(w), j). Notice that the input size of this instance is not necessarily
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linear in the input size of the given digraph D since the set inD(w) is stored once
for every j ∈ outD(w). We can avoid this undesired increase in the input size by
storing, for each w ∈ N , the corresponding waiting conditions as (inD(w), outD(w))
with the interpretation that every job in the second set is a waiting job for the first
set. Algorithm 1 can easily be adapted to handle this compactified input in linear
time by replacing the for-loop starting in line 1 with

for waiting conditions (X,Y ) ∈ W with i ∈ X do
for j ∈ Y do

decrease a(j) by 1;
if a(j) = 0 then add j to Q;

remove (X,Y ) from W;

By Corollary 3.3, Algorithm 1 computes a set L ⊆ V such that V ′ := V \ L is a
maximal subset of V with the following property: For all j ∈ V ′ there exists a waiting
condition (X, j) ∈ W with X ⊆ V ′. Thus, the set

U =
({w ∈ N | in(w) ⊆ V ′} ∪ V ′) ⊆ N ∪M

fulfills the conditions given in the lemma, i.e., inD(w) ⊆ U for all w ∈ U ∩ N and
inD(j)∩U �= ∅ for all j ∈ U ∩M . Assume that there is a bigger set U∗ ⊃ U that also
fulfills these conditions. By construction of U , there exists a node j ∈M ∩ (U∗ \ U).
Since the set U∗ ∩M of jobs has the property described in Corollary 3.3, we get a
contradiction of the maximality of V ′.

With the help of this lemma, we can now give a bound on the running time of
Algorithm 4.

Corollary 7.10. Algorithm 4 can be implemented to run in O( |W| · |A|+ |V | )
time.

Proof. First, all isolated and-nodes are planned and thus removed from D0 in
the first iteration of the while-loop. Moreover, in each iteration, at least one or-node
is removed from D0 and the number of iterations is thus bounded by |W|. Finally,
the running time of each iteration is dominated by the computation of U , which can
be done in O( |A| ) time.

Notice that, in the sense of Lemma 7.9, Algorithm 4 and its worst-case complexity
(Corollary 7.10) are both valid for digraphs D where or-jobs have multiple outgoing
arcs (of length 0).

8. Concluding remarks. The contribution of the paper is twofold. On the one
hand we have provided efficient algorithms for various basic problems that occur when
scheduling jobs subject to and/or precedence constraints (i.e., generalized feasibil-
ity, transitivity, and the computation of earliest start times of jobs for nonnegative
arc weights). On the other hand we have provided further insights for solving the
problem (ES) with arbitrary arc weights (−M ≤ djw ≤ M) that may help to design
a polynomial-time algorithm for this important problem. In particular, the feasibility
criterion (Lemma 7.3) and the algorithm for nonnegative arc weights (Algorithm 4)
may be helpful.
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Abstract. Cooper, Dyer, and Frieze [J. Algorithms, 39 (2001), pp. 117–134] studied the problem
of sampling H-colorings (nearly) uniformly at random. Special cases of this problem include sampling
colorings and independent sets and sampling from statistical physics models such as the Widom–
Rowlinson model, the Beach model, the Potts model and the hard-core lattice gas model. Cooper et
al. considered the family of “cautious” ergodic Markov chains with uniform stationary distribution
and showed that, for every fixed connected “nontrivial” graph H, every such chain mixes slowly. In
this paper, we give a complexity result for the problem. Namely, we show that for any fixed graph H
with no trivial components, there is unlikely to be any polynomial almost uniform sampler (PAUS)
for H-colorings. We show that if there were a PAUS for the H-coloring problem, there would also
be a PAUS for sampling independent sets in bipartite graphs, and, by the self-reducibility of the
latter problem, there would be a fully polynomial randomized approximation scheme (FPRAS) for
#BIS—the problem of counting independent sets in bipartite graphs. Dyer, Goldberg, Greenhill,
and Jerrum have shown that #BIS is complete in a certain logically defined complexity class. Thus,
a PAUS for sampling H-colorings would give an FPRAS for the entire complexity class. In order to
achieve our result we introduce the new notion of sampling-preserving reduction which seems to be
more useful in certain settings than approximation-preserving reduction.
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1. Introduction. Let H = (V (H), E(H)) be any fixed graph. An H-coloring
of a graph G = (V (G), E(G)) is just a homomorphism from G to H: The vertices
of H correspond to “colors,” and the edges of H specify which colors may be adjacent.
Thus, an H-coloring of G is a function C from V (G) to V (H) such that for every
edge (u, v) ∈ E(G) the corresponding edge (C(u), C(v)) is in E(H). Informally, colors
C(u) and C(v) are allowed to be adjacent in the coloring C of G because the edge
(C(u), C(v)) is an edge of H.

Many combinatorial problems can be viewed as special cases of H-coloring. For
example, if H is a k-clique with no self-loops, then H-colorings of G correspond to
proper k-colorings of G. (In such a coloring, k colors are available for coloring the
vertices of G, but no color may be adjacent to itself.) Here is another example. If H is
the graph depicted in Figure 1, then H-colorings of G correspond to independent sets
of G—vertices which are colored “a” are in the independent set, and vertices which
are colored “b” are not. Several models from statistical physics are special cases of H-
coloring, including the Widom–Rowlinson model, the Beach model, and (for weighted
H-colorings) the Potts model and the hard-core lattice gas model. See [2, 10] for
details.

The complexity of H-coloring has been well studied. Many papers considered the
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ba

Fig. 1. Homomorphisms from G to this graph are independent sets of G.

following problem: Given a fixed graph H, determine, for an input graph G, whether
G has an H-coloring. Hell and Nešetřil [14] completely characterized the set of graphs
for which this problem is NP-complete. They observed that the problem is in P if
H has a loop or is bipartite, and they showed that it is NP-complete for any other
fixed H. See [14] for references to earlier work on this question and [13] for extensions
to the case in which the maximum degree of G is bounded. See [4, 5] for extensions
to parameterized complexity.

Dyer and Greenhill [10] considered the problem of counting H-colorings. Intrigu-
ingly, they were able to completely characterize the graphs H for which this problem is
#P-complete. A connected component of H is said to be “trivial” if it is a complete
graph with all loops present or a complete bipartite graph with no loops present.1

Dyer and Greenhill showed that counting H-colorings is #P-complete if H has a non-
trivial component and that it is in P otherwise. They also extended their result to
the case in which the maximum degree of G is bounded.

Other work has focused on the complexity of sampling H-colorings (nearly) uni-
formly at random.2 Positive results for particular graphs H (specifically for the case
in which H-colorings are independent sets and for the case in which H-colorings
are proper colorings) appear in works such as [9, 15, 18]. A negative result for the
independent-set case appears in [6]. The first paper to study the complexity of sam-
pling H-colorings in the general case was Cooper, Dyer, and Frieze [3]. They focused
on connected graphs H for which the decision problem “Is there an H-coloring?” is
in P, but the counting problem “How many H-colorings are there?” is #P-complete.
They showed that for any such H, H-colorings cannot be sampled efficiently using
“cautious” Markov chains, which are Markov chains which can change only a constant
fraction of the colors of the vertices in a single step. In particular, the mixing time of
all such chains is exponential in the number of vertices of G. They also give positive
results for certain weighted cases, which are extended in [12]. In particular, [12] shows
that for every fixed “dismantleable” H and every degree bound ∆ there are positive
vertex weights which can be assigned to the vertices of H so that weighted H-colorings
can be sampled for degree-∆ graphs G. Borgs et al. [1] consider the problem of sam-
pling H-colorings on rectangular subsets of the hypercubic lattice. They show that
for every nontrivial connected H there is an assignment of weights to colors for which
cautious chains are slowly mixing.

In this work, we study the complexity of sampling H-colorings. We show that
if H has no trivial components, then the problem of nearly uniformly sampling H-
colorings is intractable in a complexity-theoretic sense. In particular, we show that for

1Following the usual notation in the area, we will treat self-loops specially, so it makes sense to
refer to bipartite graphs with or without loops. The loop-free single vertex is viewed as a complete
bipartite graph.

2Some of this work has been motivated by the well-known connection between almost uniform
sampling and approximate counting [17, 8]. For some graphs H, it can be shown that the problem
of approximately counting H-colorings is equivalent to the problem of sampling H-colorings (nearly)
uniformly at random. See section 8.
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any fixed H with no trivial components there is unlikely to be any polynomial almost
uniform sampler (PAUS) for H-colorings. We show that if there were a PAUS for
the H-coloring problem, there would also be a PAUS for sampling independent sets
in bipartite graphs, and, by the self-reducibility of the latter problem, there would
be a fully polynomial randomized approximation scheme (FPRAS) for #BIS—the
problem of counting independent sets in bipartite graphs. Dyer, Goldberg, Greenhill
and Jerrum have shown that #BIS is complete in a certain logically defined subclass of
#P which includes problems such as counting downsets in partial orders and counting
satisfying assignments in “restricted Horn” CNF Boolean formulas. Thus, a PAUS for
sampling H-colorings would give an FPRAS for the entire complexity class. In fact,
our result holds even if the input G is restricted to be a connected bipartite graph.

In order to achieve our result we introduce the new notion of sampling-preserving
reduction. The notion of approximation-preserving reduction (AP-reducibility) from
[11] seems to be too demanding. In particular, since AP-reducibility is about count-
ing (as opposed to sampling), an AP-reduction is not allowed to inflate the size of
the set of structures by a factor which is difficult to compute. Sampling-preserving
reductions allow this flexibility while achieving the same final result. The definition of
sampling reduction (section 2) is essentially many-one. Nevertheless, the reductions
get used in a “Turing reduction” way. In particular, our reduction from SampleBIS

to SampleH-Col takes an instance of SampleBIS and constructs many SampleH-

Col instances. Since the resulting maps between H-colorings and independent sets
are many-one, several reductions can be combined even though they may involve
different amounts of inflation of the state space.

The paper is structured as follows. Section 2 gives the relevant definitions includ-
ing the definition of a sampling-preserving reduction. Section 3 presents some techni-
cal lemmas which we need in our proofs. Section 4 outlines a general proof technique
for demonstrating the existence of an SP-reduction. Section 5 uses the new proof tech-
nique to reduce SampleBIS to a crucial intermediate problem, SampleFixedH-Col.
Section 6 proves the main result. Sections 7 and 8 discuss extensions.

2. Definitions. The total variation distance between two distributions π and π′

on a countable set Ω is given by

dTV(π, π′) =
1

2

∑
ω∈Ω

|π(ω)− π′(ω)| = max
A⊆ω
|π(A)− π′(A)|.

A sampling problem X maps each instance σ to a set of structures X(σ). The
goal is to produce a member of X(σ) uniformly at random. The size of each structure
in X(σ) is at most a polynomial in |σ |. For a given graph H, the sampling problem
SampleH-Col will be defined as follows.

Name. SampleH-Col.
Instance. A loop-free graph G.
Output. An H-coloring of G chosen uniformly at random.

We will be particularly interested in the special case of this problem in which the
input graph, G, is connected and bipartite.

Name. SampleBH-Col.
Instance. A loop-free connected bipartite graph G.
Output. An H-coloring of G chosen uniformly at random.

The problem SampleBIS will be defined as follows.
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Name. SampleBIS.
Instance. A loop-free connected bipartite graph G.
Output. An independent set of G chosen uniformly at random.

An almost uniform sampler [8, 16, 17] for X is a randomized algorithm that
takes input σ and accuracy parameter ε ∈ (0, 1] and gives an output such that the
variation distance between the output distribution of the algorithm and the uniform
distribution on X(σ) is at most ε. We will say that algorithm is a polynomial almost
uniform sampler (PAUS) if its running time is bounded from above by a polynomial
in the size of the instance |σ| and 1/ε.

A sampling-preserving reduction (SP-reduction) from a sampling problem X to a
sampling problem Y (denoted X ≤SP Y ) consists of the following:

1. A function f which takes an input (σ, ε), in which σ is an instance of X and
ε ∈ (0, 1] is an accuracy parameter, and produces an instance f(σ, ε) of Y . If
X(σ) is nonempty, then Y (f(σ, ε)) must be nonempty.

2. A function g which maps each tuple (σ, ε, y) with y ∈ Y (f(σ, ε)) to a member
of X(σ) ∪ {⊥}, where “⊥” is an error symbol and for every (σ, ε) and every
x ∈ X(σ),

e−ε |Y (f(σ, ε))|
|X(σ)| ≤ |{y ∈ Y (f(σ, ε)) | g(σ, ε, y) = x}| ≤ eε |Y (f(σ, ε))|

|X(σ)| .(1)

Equation (1) says that for every x ∈ X(σ) the number of y ∈ Y (f(σ, ε)) which are

mapped to x by g is roughly |Y (f(σ,ε))|
|X(σ)| . Thus, each x ∈ X(σ) is roughly equally repre-

sented, and the error symbol ⊥ is represented by only about an ε-fraction of Y (f(σ, ε)).
The functions f and g must be computable in time which is bounded by a poly-

nomial in |σ| and 1/ε.
The motivation for this definition is the following lemma.
Lemma 1. If X ≤SP Y and Y has a PAUS, then X has a PAUS.
Proof. Let (f, g) be the reduction from X to Y , and let A be a PAUS for Y .

Here is a PAUS for X: On input (σ, ε), let y be the output of A when it is run with
inputs f(σ, ε/4) and ε/2; return g(σ, ε/4, y). We must show that the variation distance
between the output distribution of this algorithm and the uniform distribution on
X(σ) is at most ε. Let σ be an input with |X(σ)| ≥ 1. Consider any subset Ax

of X(σ). Let

Ay = {y ∈ Y (f(σ, ε/4)) | g(σ, ε/4, y) ∈ Ax}.

Then the probability that A gives an output in Ay is at most

|Ay|
|Y (f(σ, ε/4))| +

ε

2

≤ eε/4|Ax|
|X(σ)| +

ε

2

≤ (1 + ε/2)|Ax|
|X(σ)| +

ε

2

≤ |Ax|
|X(σ)| +

(ε/2)|Ax|
|X(σ)| +

ε

2

≤ |Ax|
|X(σ)| + ε.
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Also, the probability that A gives an output in Ay is at least

|Ay|
|Y (f(σ, ε/4))| −

ε

2

≥ e−ε/4|Ax|
|X(σ)| −

ε

2

≥ (1− ε/2)|Ax|
|X(σ)| − ε

2

≥ |Ax|
|X(σ)| −

|Ax|(ε/2)

|X(σ)| −
ε

2

≥ |Ax|
|X(σ)| − ε.

The problem #BIS is defined as follows.
Name. #BIS.
Instance. A loop-free bipartite graph G.
Output. The number of independent sets of G.

A component of H is trivial if it is a complete graph with all loops present or a
complete bipartite graph with no loops present. Recall from Dyer and Greenhill [10]
that counting H-colorings is in P if H is trivial. The main result of this paper is as
follows.

Theorem 2. Suppose that H is a fixed graph with no trivial components. If
SampleBH-Col has a PAUS then SampleBIS has a PAUS, and #BIS has an
FPRAS. Thus, every problem which is AP-interreducible with #BIS (see [11]) has
an FPRAS.

3. Technical lemmas. Let ν(a, b) denote the number of onto functions from a
set of size a to a set of size b. We need to use the following lemma, which is Lemma 18
of [11].

Lemma 3 (DGGJ). If a and b are positive integers and a ≥ 2b ln b, then

ba (1− exp(−a/(2b))) ≤ ν(a, b) ≤ ba.
We also need the following technical lemma.
Lemma 4. Suppose c1 and c2 are fixed positive reals with c1 < c2. For any δ > 0

and any nonnegative integers q and a0, there are nonnegative integers a and b with
a ≥ a0 which are in O((a0 + q)/δ) and satisfy

e−δca+q
2 ≤ cb+q

1 ≤ eδca+q
2 .

Proof. First, note that it would suffice to find nonnegative integers a′ and b′ which
are in O(q′/δ) and satisfy

e−δca
′+q′

2 ≤ cb′+q′
1 ≤ eδca′+q′

2 ,

where q′ = q + a0 because we could simply set a = a′ + a0 and b = b′ + a0 which
would imply a′ + q′ = a+ q and b′ + q′ = b+ q.

Taking logarithms, what we need is∣∣∣∣b′ − a′ log c2 + q′ log(c2/c1)

log c1

∣∣∣∣ ≤ δ

log c1
.(2)
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Now let ρ be defined by c2 = c1+ρ
1 . Then we want

|b′ − (a′(1 + ρ) + q′ρ)| ≤ δ

log c1
.(3)

For a positive integer r, we will choose a′ = q′r, so we want

|b′ − a′ − ρq′(r + 1)| ≤ δ

log c1
.(4)

Let R = �2 log c1/δ�. Lemma 19 of [11] says the following: For any real z > 0
and any positive integer R there is an x ∈ [1, . . . , R] such that

min(zx− �zx	, �zx� − zx) ≤ 1/R.

Thus, there is an x ∈ [1, . . . , R] such that ρq′x is within 1/R of a nonnegative
integer. If x > 1 we will set r + 1 = x. If x = 1, then note that ρq′2 is within 2/R of
a nonnegative integer, so we will set r = 1.

Now recall that a′ = q′r, so a′ ∈ O(q′/δ) as required.

4. Demonstrating the existence of SP-reductions: A proof technique.
When we introduce an SP-reduction from a sampling problem X to a sampling prob-
lem Y , we will need to show that (1) is satisfied. We will typically do this by parti-
tioning Y (f(σ, ε)) into disjoint sets Y0, . . . , Yk. We will show that each of Y1, . . . , Yk
is fairly representative of X(σ). In particular, for every x ∈ X(σ) and every i ∈ [1, k],

e−ε/2 |Yi|
|X(σ)| ≤ |{y ∈ Yi | g(σ, ε, y) = x}| ≤ eε/2 |Yi||X(σ)| .(5)

For every y ∈ Y0, we will have g(σ, ε, y) = ⊥, but we will show that Y0 is a small
part of Y (f(σ, ε)). In particular,

k∑
i=1

|Yi| ≥ e−ε/2|Y (f(σ, ε))|.(6)

Together, (5) and (6) imply (1). Note that (6) follows from

|Y0| ≤ (ε/4)|Y (f(σ, ε))|,(7)

since (7) implies |Y | − |Y0| ≥ (1− ε/4)|Y (f(σ, ε))| ≥ e−ε/2|Y (f(σ, ε))|.
Quite often the reduction X ≤SP Y will involve several subproblems Z1, Z2, . . .

such that, for each of these, an SP-reduction (fi, gi) from X to Zi is already known.
The instance f(σ, ε) of Y is then formed by “gluing” together instances f1(σ, ε/2)
of Z1, f2(σ, ε/2) of Z2, and so on. Yi is (roughly) the portion of Y (f(σ, ε)) for which,
within each y ∈ Yi, we can “zoom in” on a structure z ∈ Zi(fi(σ, ε/2)). Each structure
in Zi(fi(σ, ε/2)) is represented by an equal number of y ∈ Yi so we can get (5) by
referring to the SP-reduction from X to Zi. Establishing (7) is essentially showing
that, although Y (f(σ, ε)) has some structures which do not allow us to “zoom in” on
an appropriate subproblem to find our sample, these are not so numerous.

Finally, let Yi(x) = {y ∈ Yi | g(σ, ε, y) = x}. Suppose that no y ∈ Yi has
g(σ, ε, y) = ⊥. In this case we can show (5) by showing that for all x, x′ ∈ X(σ),

|Yi(x)| ≤ eε/2|Yi(x′)|.(8)

To see this, note that

|Yi|
|X(σ)| =

∑
x′∈X(σ) |Yi(x′)|
|X(σ)| ≥ e−ε/2

∑
x′∈X(σ) |Yi(x)|
|X(σ)| = e−ε/2|Yi(x)|.
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5. Sampling fixed H-colorings. Suppose that H is connected, loop-free, and
bipartite. Denote the vertex partition of H by (VL(H), VR(H)). We will define the
fixed H-coloring problem as follows.
Name. SampleFixedH-Col.
Instance. A loop-free connected bipartite graphG with vertex partition (VL(G), VR(G)).
Output. An H-coloring of G chosen uniformly at random from the set of H-colorings

in which vertices of VL(G) receive colors from VL(H).
We will study the problem SampleFixedH-Col as an intermediate step on the way
to the proof of Theorem 2.

A vertex in VL(H) is said to be full if it is adjacent to every vertex in VR(H).
Similarly, a vertex in VR(H) is said to be full if it is adjacent to every vertex in VL(H).
The graph H is said to be full if both VL(H) and VR(H) contain at least one full
vertex. The following lemma is the key ingredient in the proof of Theorem 2.

Lemma 5. Suppose that H is a connected nontrivial full loop-free bipartite graph.
Then SampleBIS ≤SP SampleFixedH-Col.

Proof. We will prove the lemma by induction on the number of vertices in H. For
the base case, suppose that H has at most 4 vertices. The only connected nontrivial
full loop-free bipartite graphH with at most 4 vertices is the path of length 3. LetG be
an input to SampleBIS. There is a one-to-one correspondence between independent
sets of G and fixed H-colorings of G: The endpoints of H point out the vertices which
are in the independent set (see the proof of Theorem 5 of [11]).

We will now move on to the inductive step. The high-level idea is the following.
By considering the graph H, we will construct several graphs HS1 , . . . , HSj+k

, each of
which is smaller thanH and satisfies certain conditions. By induction, for each i, there
is an SP-reduction from SampleBIS to SampleFixedHSi

-Col. If we apply this re-
duction to our instanceG of SampleBIS, we get an instanceGi of SampleFixedHSi

-

Col. Our goal is to construct an instance f(G, ε) of SampleFixedH-Col. We do
this by “gluing together” the various Gi’s. Now consider the constructed instance
f(G, ε) of SampleFixedH-Col. When we sample from the output distribution
SampleFixedH-Col(f(G, ε)), we would like to recover the output distribution of
SampleBIS(G). Curiously, we cannot determine during the reduction itself the rela-
tive weights of the subinstances G1, G2, . . . . Nevertheless, once we have an output to
SampleFixedH-Col(f(G, ε)), the output itself tells us which Hi is relevant. From
this, we can recover an output to SampleFixedHSi-Col(Gi) and from this we can re-
cover an output to SampleBIS(G). The main technical difficulty lies in showing that
the distributions are correct. In particular, since the subreductions are SP-reductions
(i.e., the equations in section 4 are satisfied in the construction of G1, G2, . . . ), the
combined reduction is also an SP-reduction.

We now describe the details. Let FL be the set of full vertices in VL(H), and let
FR be the set of full vertices in VR(H). Let fL = |FL| and fR = |FR| and vL = |VL(H)|
and vR = |VR(H)|. For a subset S of VR(H), let N(S) be the set of mutual neighbors
of S:

N(S) = {v ∈ VL(H) | ∀u ∈ S, (u, v) ∈ E(H)}.

Note that FL ⊆ N(S) ⊆ VL(H). S is said to be left-reducing if FL ⊂ N(S) ⊂
VL(H). If S is left-reducing, let HS be the subgraph of H induced by vertex partition
(N(S), VR(H)). Note that HS has fewer vertices than H. Also, it is connected, full,
and nontrivial: The set of full vertices in VL(HS) is FL; the set of full vertices in
VR(HS) includes all of FR, but it does not equal VR(H) since N(S) ⊃ FL.
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Fig. 2. The construction of f(G, ε) in the proof of Lemma 5.

Similarly, a subset S of VL(H) is right-reducing if FR ⊂ N(S) ⊂ VR(H). If S is
right-reducing, letHS be the subgraph ofH induced by vertex partition (VL(H), N(S)).
HS has fewer vertices than H and is connected, full, and nontrivial.

Now, let S1, . . . , Sk be the left-reducing subsets of VR(H), and let Sk+1, . . . , Sk+j

be the right-reducing subsets of VL(H). (Either or both of k and j could be zero.)
For every i ∈ {1, . . . , k + j}, let (fi, gi) be an SP-reduction from SampleBIS to
SampleFixedHSi

-Col. Take the input (G, ε) to SampleBIS, and letGi = fi(G, ε/2).

Let ai = |VL(Gi)|, and let bi = |VR(Gi)|. Let q =
∑k+j

i=1 (ai + bi), and let n =
|VL(G)|+ |VR(G)|.

Let f(G, ε) be the graph which is constructed as follows, where a and b will be
chosen later to satisfy

a ≥ 2vL �q ln(vR/fR) + ln(16n/ε)�(9)

and

b ≥ 2vR �q ln(vL/fL) + ln(16n/ε)� .(10)

See Figure 2. For every vertex u of G, put a size-a set L(u) into VL(f(G, ε)) and
a size-b set R(u) into VR(f(G, ε)). Also, add edges L(u) × R(u) to E(f(G, ε)). If
u ∈ VL(G) is connected to v ∈ VR(G) by an edge of G, then add edges R(u) × L(v)
to E(f(G, ε)).

Also, for every vertex u of G and every i ∈ [1, . . . , k+j], let Ai,u and Bi,u be copies
of Gi, and let A′

i,u and B′
i,u be copies of Gi in which left vertices and right vertices

are switched (so the vertices in VL(A′
i,u) correspond to the vertices in VR(Gi) and the

vertices in VR(A′
i,u) correspond to the vertices in VL(Gi)). Add edges L(u)×VR(Ai,u)

and L(u)× VR(A′
i,u) and R(u)× VL(Bi,u) and R(u)× VL(B′

i,u) to E(f(G, ε)).
Let

VL(f(G, ε)) =
⋃
u

L(u) ∪
⋃
u,i

{VL(Ai,u) ∪ VL(A′
i,u) ∪ VL(Bi,u) ∪ VL(B′

i,u)},

and let Y be the set of fixed H-colorings of f(G, ε). We will partition Y into sets
Y0, . . . , Yk+j+1.
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For i ∈ [1, . . . , k], Yi is the set of colorings which are not in Y1, . . . , Yi−1 but
in which some u ∈ VL(G) has R(u) colored with (exactly) the colors in Si. For
i ∈ [k + 1, . . . , k + j], Yi is the set of colorings which are not in Y1, . . . , Yi−1 but in
which some v ∈ VR(G) has L(v) colored with Si.

The high-level structure of our construction is as follows. For every i ∈ {1, . . . , k+
j}, we will use the colorings in Yi by focusing on the induced colorings of the sub-
graph Gi. These are HSi

-colorings of Gi and from these we can (by induction) recover
a random independent set of G. As usual, the colorings in Y0 are not useful for point-
ing out independent sets, but there are not too many of these. Every coloring in
Yk+j+1 has a special form—every vertex u of G has either R(u) colored VR(H) or has
L(u) colored VL(H). These colorings point out independent sets of G in a natural
way, and each independent set comes up about the same number of times in this way.

We now look at the details. Note that for any colorings in Y0 or Yk+j+1 we have
the following property—every vertex u ∈ VL(G) has R(u) colored with a set S of
colors such that N(S) is either FL or VL(H). Similarly, every vertex v ∈ VR(G) has
L(v) colored with a set S of colors such that N(S) is either FR or VR(H).

Consider a coloring y. Vertex u ∈ VL(G) satisfies Condition (A) if R(u) is colored
with a set S of colors with N(S) = FL but S ⊂ VR(H). It satisfies Condition (B) if
R(u) is colored with a set S of colors with N(S) = VL(H) but L(u) is colored with
a proper subset of VL(H). Vertex v ∈ VR(G) satisfies Condition (C) if L(v) colored
with a set S of colors with N(S) = FR but S ⊂ VL(H). It satisfies Condition (D) if
L(v) is colored with a set S of colors with N(S) = VR(H) but R(v) is colored with a
proper subset of VR(H).

We now define

Y0 = {y ∈ Y−{Y1∪· · ·∪Yk+j} | some vertex satisfies Condition (A), (B), (C), or (D)}.
Now note that colorings in Yk+j+1 have the following property. Every vertex u

of G has either R(u) colored VR(H) or has L(u) colored VL(H).
We will first work on establishing (7). Let Yu,A denote the subset of Y in which

u satisfies (A). Define Yu,B , Yu,C , and Yu,D similarly. We will show that the size of
each of Yu,A, Yu,B , Yu,C , and Yu,D is at most (ε/(16n))|Y |. Equation (7) follows since

|Y0| ≤
∑

u∈V (G)

|Yu,A|+ |Yu,B |+ |Yu,C |+ |Yu,D|.

First, let us show that |Yu,A| ≤ (ε/(16n))|Y |. Consider the set of colorings in
Y in which all neighbors of vertices in R(u) have colors from FL, and let ψ be the
number of induced colorings on vertices other than the vertices of R(u). If ψ = 0,
then |Yu,A| = 0, so the claim is trivial. Otherwise, |Yu,A| ≤ ψ(vbR − ν(b, vR)) which
is at most ψvbR exp(−b/(2vR)) by Lemma 3. On the other hand, |Y | ≥ ψvbR, so the
claim follows from (10). The proof that |Yu,C | is sufficiently small is similar.

Next, let us show that |Yu,B | ≤ (ε/(16n))|Y |. Consider the set of colorings in Y in
whichR(u) is colored with a subset of FR, and let ψ be the number of induced colorings
on all vertices except those in L(u) and Ai,u and A′

i,u (for i ∈ [1, . . . , j+k]). If ψ = 0,
then |Yu,B | = 0, so the claim is trivial. Otherwise, |Yu,B | ≤ ψ(vaL − ν(a, vL))vqRv

q
L

which is at most ψvaL exp(−a/(2vL))vqRv
q
L by Lemma 3. On the other hand, |Y | ≥

ψvaLf
q
Rv

q
L, so the claim follows from (9). The proof that |Yu,D| is sufficiently small is

similar.
We will now work on establishing (5). First consider i ∈ [1, . . . , k]. Let Yu,i

be the set of colorings in Yi for which u ∈ VL(G) is the first vertex in VL(G) with
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R(u) colored Si. Let Γ be the set of induced colorings on Bi,u. Note that Γ is the
set of fixed HSi-colorings of Gi = fi(G, ε/2). Also, each coloring in Γ comes up ψ
times in Yu,i for some ψ. (In particular, ψ is the number of colorings of vertices other
than Bi,u which are induced by colorings in Yu,i.) For coloring y ∈ Yu,i we will let
g(G, ε, y) = gi(Gi, ε/2, y

′), where y′ is the induced coloring on Bi,u. Then for every
independent set x in the set I(G) of independent sets of G,

|{y ∈ Yu,i | g(G, ε, y) = x}| = ψ |{y′ ∈ Γ | gi(Gi, ε/2, y
′) = x}|.(11)

Since (fi, gi) is an SP-reduction, (1) gives

e−ε/2 |Γ|
|I(G)| ≤ |{y

′ ∈ Γ | gi(Gi, ε/2, y
′) = x}| ≤ eε/2 |Γ|

|I(G)| ,(12)

and (5) follows for Yu,i from (11) and (12) since |Yu,i| = ψ |Γ|. Colorings in Yk+1, . . . ,
Yk+j are handled similarly except that we look at induced colorings of Ai,u rather
than Bi,u.

It remains to satisfy (5) for i = k + j + 1. Note that any coloring y in Yk+j+1

points out an independent set of G. A vertex u ∈ VL(G) is in the independent set if
R(u) is colored VR(H). A vertex v ∈ VR(G) is in the independent set if L(v) is colored
VL(H). We will define g(G, ε, y) to be this independent set. Let us focus attention on
a given independent set containing wL vertices in VL(G) and wR vertices in VR(G).
We will now calculate how many colorings in Yk+j+1 correspond to this independent
set.

For any bipartite graph G′ with vertex partition (VL(G′), VR(G′)), let φH(G′)
denote the number of fixed H-colorings of G′. Then the number of times that this
independent set comes up as a coloring in Yk+j+1 is the product of the following two
quantities: (

ν(b, vR)faL

k+j∏
i=1

φH(Ai,u)φH(A′
i,u)fai+bi

L vai+bi
R

)wL+vR−wR

,

(
f bRν(a, vL)

k+j∏
i=1

φH(Bi,u)φH(B′
i,u)vai+bi

L fai+bi
R

)vL−wL+wR

.

Now note that φH(Ai,u) = φH(Bi,u) and φH(A′
i,u) = φH(B′

i,u). So if we let

Z =

(
k+j∏
i=1

φH(Ai,u)φH(A′
i,u)

)vL+vR

(faLν(b, vR)fqLv
q
R)

vR
(
f bRν(a, vL)vqLf

q
R

)vL
,

the contribution of the independent set becomes

Z(ν(b, vR)faLf
q
Lv

q
R)

wL−wR
(
f bRν(a, vL)vqLf

q
R

)wR−wL
,

which is

Z

(
ν(b, vR)vaL
vbRν(a, vL)

)wL−wR
((

vR
fR

)b+q(
fL
vL

)a+q
)wL−wR

.
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To get (8) we will show that a and b can be chosen so that

e−ε/(8n) ≤
(
ν(b, vR)vaL
vbRν(a, vL)

)
≤ eε/(8n)(13)

and

e−ε/(8n) ≤
(
vR
fR

)b+q(
fL
vL

)a+q

≤ eε/(8n).(14)

This guarantees that the contribution of this independent set is in the range
[e−ε/4Z, eε/4Z], and (8) follows for Yk+j+1. To establish (13), use Lemma 3 to observe
that (

ν(b, vR)vaL
vbRν(a, vL)

)
≤ 1

1− exp(−a/(2vL))
.

Since (9) gives 1− exp(−a/(2vL)) ≥ 1− ε/(16n) ≥ e−ε/(8n), the right-hand inequality
of (13) follows. The left-hand inequality is similar.

We will now show how to choose the values of a and b to satisfy (14). If vR/fR =
vL/fL, then simply choose a = b and make them large enough to satisfy (9) and (10).
Suppose that vR/fR < vL/fL. Then use Lemma 4 with c1 = vR/fR, c2 = vL/fL,
δ = ε/(8n), and

a0 = 2vL �q ln(vR/fR) + ln(16n/ε)�+ 2vR �q ln(vL/fL) + ln(16n/ε)� .
The lemma gives values of a and b which are in O((a0 + q)/δ), which is not too large.
Thus, our reduction is sampling-preserving. Note that the reduction can be done in
polynomial time—the calculation of a and b does not involve computing Z. The case
where vL/fL < vR/fR is similar.

6. The proof of Theorem 2. We start with some definitions. First, for every
graph H we will define a loop-free bipartite graph B[H] (this construction was used
in [10]). Let the vertices of H be v1, . . . , vh. The vertex set of B[H] is {x1, . . . , xh}∪
{y1, . . . , yh}. The edge set of B[H] is

{(xi, yj) | (vi, vj) ∈ E(H)}.
Thus, a loop (vi, vi) in H corresponds to the edge (xi, yi) in B[H], and a nonloop
(vi, vj) in H (for which i �= j) corresponds to two edges (xi, yj) and (yi, xj) in B[H].
For every edge (vi, vj) of H, let

VL(Hi,j) = {x� | (v�, vj) ∈ E(H)}
and

VR(Hi,j) = {y� | (vi, v�) ∈ E(H)},
and let Hi,j be the subgraph of B[H] induced by vertex set VL(Hi,j)∪VR(Hi,j). Note
that xi ∈ VL(Hi,j) and yj ∈ VR(Hi,j) and xi is adjacent to all of VR(Hi,j) in Hi,j and
yj is adjacent to all of VL(Hi,j). Thus, Hi,j is connected and full. Let ∆1(H) be the
degree of H. That is,

∆1(H) = max{deg(v) | v ∈ V (H)}.
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Similarly, let ∆2(H) be the maximum degree amongst neighbors of vertices with
degree ∆1(H):

∆2(H) = max{deg(v) | for some u ∈ V (H) with deg(u) = ∆1(H), (u, v) ∈ E(H)}.

Let

R(H) = {(vi, vj) | ((vi, vj) ∈ E(H) and deg(vi) = ∆1(H) and deg(vj) = ∆2(H)}.

We will start with the following lemma.
Lemma 6. Let H be any fixed graph with no trivial components. Then R(H) is

nonempty, and ∆1(H) > 1 and ∆2(H) > 1. Also, for all (vi, vj) ∈ R(H), Hi,j is
connected, loop-free, bipartite, full, and nontrivial.

Proof. Since H has no trivial components, R(H) is nonempty, and ∆1(H) > 1
and ∆2(H) > 1. Suppose (vi, vj) ∈ R(H). Recall that Hi,j is connected, loop-free,
bipartite, and full. Suppose for contradiction that Hi,j is a complete bipartite graph
(so vertices in VL(Hi,j) have degree ∆1(H) in Hi,j and vertices in VR(Hi,j) have
degree ∆2(H) in Hi,j).

This assumption guarantees that Hi,j is a connected component of B[H]: B[H]
cannot have an edge with exactly one endpoint in VL(Hi,j)—the endpoint would then
have degree exceeding ∆1(H) in B[H], which is a contradiction; similarly, B[H] cannot
have an edge with exactly one endpoint in VR(Hi,j).

Thus, for any x� ∈ VL(Hi,j),

{vr | (v�, vr) ∈ E(H)} = {vr | yr ∈ VR(Hi,j)}.(15)

Similarly, for any y� ∈ VR(Hi,j),

{vr | (v�, vr) ∈ E(H)} = {vr | xr ∈ VL(Hi,j)}.(16)

Now if H has a vertex v� such that (vi, v�) ∈ E(H) and (vj , v�) ∈ E(H), then
x� ∈ VL(Hi,j) and y� ∈ VR(Hi,j), so (15) and (16) imply that

{vr | yr ∈ VR(Hi,j)} = {vr | xr ∈ VL(Hi,j)}.

Thus, Hi,j corresponds to a component of H, and that component is a looped clique,
which contradicts the fact that H has no trivial component.

On the other hand, if there is no v� with (vi, v�) ∈ E(H) and (vj , v�) ∈ E(H),
then Hi,j corresponds to a connected component of H which is a complete bipartite
graph, again giving a contradiction.

We can now prove the main lemma.
Lemma 7. Suppose that H is a fixed graph with no trivial components. Then

SampleBIS ≤SP SampleBH-Col.
Proof. Let (G, ε) be an input to SampleBIS. For each (vi, vj) ∈ R(H), Lemma 6

and Lemma 5 guarantee that there is a sampling-preserving reduction (fi,j , gi,j) from
SampleBIS to SampleFixedHi,j-Col. Let Gi,j = fi,j(G, ε/2). Let f(G, ε) be the
graph which is constructed as follows. See Figure 3. Let q =

∑
(vi,vj)∈R(H) |VL(Gi,j)|+

|VR(Gi,j)|. Let

VL(f(G, ε)) = A ∪ {wL} ∪
⋃

(vi,vj)∈R(H)

VL(Gi,j)
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Fig. 3. The construction of f(G, ε) in the proof of Lemma 7.

and

VR(f(G, ε)) = B ∪ {wR} ∪
⋃

(vi,vj)∈R(H)

VR(Gi,j),

where A and B are sets of vertices with

|A| =
⌈
q ln(|V (H)|) + ln(8|E(H)|/ε)

ln(∆2(H)/(∆2(H)− 1))

⌉
and

|B| =
⌈

(q + |A|+ 1) ln(|V (H)|) + ln(8|V (H)|/ε)
ln(∆1(H)/(∆1(H)− 1))

⌉
.

Note that there is no division by zero, since ∆1(H) and ∆2(H) are bigger than one
(by Lemma 6). In addition to the edges in the graphs Gi,j , we add edge (wL, wR)
and wL×B and wR×A and, for all (vi, vj) ∈ R(H), we add edges wL×VR(Gi,j) and
wR × VL(Gi,j).

Let Y be the set of H-colorings of f(G, ε). Y0 will be the set of colorings in Y in
which (wL, wR) is not colored with an edge (vi, vj) from R(H). We will now establish
(7). For every v ∈ V (H) with deg(v) < ∆1(H) let Y0(v) be the set of colorings in Y
in which wL is colored v. Now

|Y0(v)| ≤ (∆1(H)− 1)
|B||V (H)|q+|A|+1

.

Now consider any (vi, vj) ∈ R(H). There are at least ∆2(H)|A|∆1(H)|B| color-
ings of f(G, ε) with (wL, wR) colored (vi, vj) (for example, the colorings in which
all of the vertices of the graphs Gi,j are colored with either vi or vj). Thus, |Y | ≥
∆2(H)|A|∆1(H)|B| ≥ ∆1(H)|B|. We conclude that

|Y0(v)| ≤ (ε/(8|V (H)|))|Y |.(17)
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Now consider any edge (vi, vk) ∈ E(H) such that deg(vi) = ∆1(H) but deg(vk) <
∆2(H). Let Y0(vi, vk) be the set of colorings in Y in which (wL, wR) is colored (vi, vk).
Now

|Y0(vi, vk)| ≤ ∆1(H)|B|(∆2(H)− 1)
|A||V (H)|q.

Also, from before |Y | ≥ ∆2(H)|A|∆1(H)|B|, so

|Y0(vi, vk)| ≤ (ε/(8|E(H)|))|Y |.(18)

Equations (17) and (18) imply (7) since |Y0| ≤
∑

v∈V (H) Y0(v) +
∑

(vi,vk) |Y0(vi, vk)|.
For an edge (vi, vj) ∈ R(H), let Yi,j be the set of colorings of f(G, ε) with (wL, wR)

colored (vi, vj). Let Γ be the set of induced colorings on Gi,j . Note that Γ is the set of
fixed Hi,j-colorings of Gi,j . Also, each coloring in Γ comes up ψ times in Yi,j , where
ψ is the number of induced colorings on the vertices other than Gi,j . For a coloring
y ∈ Yi,j we will set g(G, ε, y) = gi,j(Gi,j , ε/2, y

′), where y′ is the induced coloring
on Gi,j . Then (5) follows from the fact that (fi,j , gi,j) is an SP-reduction.

Theorem 2 follows from Lemma 1 and Lemma 7 and from Lemma 8 below. Recall
the following definitions. A randomized approximation scheme (RAS) for a counting
problem F is a randomized algorithm that takes input σ and accuracy parameter
ε ∈ (0, 1) and produces as output an integer random variable Y satisfying the con-
dition Pr(e−εF (σ) ≤ Y ≤ eεF (σ)) ≥ 3/4. It is a “fully polynomial” randomized
approximation scheme (FPRAS) if it runs in time poly(|σ|, ε−1). The problem #BIS

is “self-reducible,” so the following lemma follows from [17].

Lemma 8 (JVV). If SampleBIS has a PAUS, then #BIS has an FPRAS.

Proof. The lemma is a special case of Theorem 6.4 of [17]. In order to apply
Theorem 6.4 directly we would need to define “self-reducible” formally and to deal
with some easy (though annoying) issues:

(i) Inputs to #BIS may be disconnected, but inputs to SampleBIS may not.
(ii) In order to apply Theorem 6.4 we technically need a fully polynomial almost

uniform sampler (FPAUS) for SampleBIS. This can be obtained from a
PAUS, as [17] explains.

Rather than dealing with these issues, we prefer to simply provide a proof for the
lemma. The details given here are from the proof of Proposition 3.4 of [16]. Techni-
cally, Jerrum’s proof from [16] is about counting matchings, but the few changes that
are needed to yield our lemma are completely routine.

Let (G, ε) be an input to #BIS. Suppose that G has components G1, . . . , Gk.
For each i, let the two parts of the vertex set be VL(Gi) and VR(Gi), and let the
sizes of these parts be 
i and ri, respectively. Let Ni = 
iri, and let E(Gi) =
{ei(1), . . . , ei(mi)}. Denote the nonedges of Gi by {ei(mi + 1), . . . , ei(Ni)}. For
j ∈ {1, . . . , Ni}, let Gi(j) be the graph (V (Gi), {ei(1), . . . , ei(j)}). For any graph G′,
let I(G′) denote the set of independent sets of G′. Let

ρi(j) =
|I(Gi(j + 1))|
|I(Gi(j))| .

Note that

|I(Gi)| = (ρi(mi)ρi(mi + 1) · · · ρi(Ni − 1))
−1|I(Gi(Ni))|.
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Also, the number of independent sets of the complete bipartite graph Gi(Ni) is 2�i +
2ri − 1, so

|I(Gi)| = (2�i + 2ri − 1)

Ni−1∏
j=mi

ρi(j)
−1
.(19)

Furthermore,

|I(G)| =
k∏

i=1

|I(Gi)| =
k∏

i=1

(2�i + 2ri − 1)

Ni−1∏
j=mi

ρi(j)
−1
.(20)

Now let z =
∑k

i=1(Ni −mi). In order to estimate |I(G)|, we need to estimate the z
ratios ρi(j).

For each ratio ρi(j) we can make some observations.
(i) ρi(j) ≤ 1, since I(Gi(j + 1)) ⊆ I(Gi(j)).
(ii) ρi(j) ≥ 1/2, since I(Gi(j))\I(Gi(j + 1)) can be mapped injectively into
I(Gi(j + 1)) by removing the lexicographically least endpoint of ei(j + 1).

(iii) Let A be a PAUS for SampleBIS. For i ∈ [1, . . . , k] and j ∈ [mi, . . . , Ni−1],
let Zi(j) be the indicator variable for the event that, when we run A with
input Gi(j) and accuracy parameter δ, the output is an independent set of
Gi(j+1). Note that ρi(j)−δ ≤ E[Zi(j)] ≤ ρi(j)+δ. This follows immediately
from the definition of PAUS, but it is important to note that the input to A,
Gi(j), is connected (since all inputs to SampleBIS must be connected).

Let Zi(j) be the result obtained by calling A �74ε−2z� times with input Gi(j)
and accuracy parameter δ = ε/(6z) and averaging the value of Zi(j) which occurs
each time. Jerrum shows in his proof that with probability at least 3/4,

e−ε
k∏

i=1

Ni−1∏
j=mi

ρi(j) ≤
k∏

i=1

Ni−1∏
j=mi

Zi(j) ≤ eε
k∏

i=1

Ni−1∏
j=mi

ρi(j).

Thus, the quantity

k∏
i=1

(2�i + 2ri − 1)

Ni−1∏
j=mi

Zi(j)
−1

is a sufficiently accurate estimate of |I(G)|.
For each of the z pairs (i, j), O(ε−2z) samples were needed, each of which is pro-

duced in time poly(|G|, z/ε). Since z ≤ |V (G)|2, the total running time is poly(|G|, ε−1),
and we have an FPRAS.

7. The presence of trivial components. Theorem 2 shows that sampling H-
colorings is difficult if every component ofH is nontrivial. Recall from [10] that exactly
counting H-colorings is #P-complete if H has even one nontrivial component. Thus,
it might appear that Theorem 2 can be improved. In this section, we show that the
existence of a single nontrivial component is not enough to make sampling difficult.
In particular, we give an example of a graph H with a nontrivial component for which
SampleH-Col has a PAUS. Specifically, let H be the graph depicted in Figure 4.

Observation 9. Suppose thatH is the graph depicted in Figure 4. SampleH-Col

has a PAUS.
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Fig. 4. An H with a nontrivial component for which SampleH-Col has a PAUS.

Proof. Here is a PAUS for SampleH-Col. The input is an instance (G, ε) where
G has n vertices and, without loss of generality,3 is connected. If ε < 2n/(2n + 3n)
then the algorithm simply runs for 5n steps, constructs all of the H-colorings of G
(and counts them) and selects one uniformly at random. Note that the running time
is at most poly(1/ε) in this case. Otherwise, the algorithm chooses i uniformly at
random from 1, . . . , 3n + 2n. If i ≤ 3n, then the algorithm outputs the i’th coloring
from the 3n colorings with colors “a”, “b”, and “c”. Otherwise, let C be the (i−3n)th
of the 2n (proper and improper) colorings with colors “d” and “e”. If C is a legal
H-coloring of G, then the algorithm outputs it. Otherwise, it outputs the error
symbol ⊥. The variation distance between the output distribution of the algorithm
and the uniform distribution on H-colorings of G is at most the probability that the
algorithm outputs ⊥, which is at most 2n/(2n + 3n) ≤ ε.

8. Sampling and counting. Let #BH-Col be defined as follows.

Name. #BH-Col.
Instance. A loop-free connected bipartite graph G.
Output. The number of H-colorings of G.

For certain graphs H, the problem #BH-Col can be expressed as the counting
problem associated with a “self-reducible p-relation.” For such an H, Theorem 6.3
of Jerrum, Valiant, and Vazirani’s paper [17] guarantees that if there is an FPRAS
for #BH-Col, then there is a PAUS for SampleBH-Col. If H has no trivial
components, this in turn guarantees (by Theorem 2) an FPRAS for #BIS. Dyer and
Greenhill [8] have given a more general framework in which these ideas work: If, for
a given graph H, the problem #BH-Col is “self-partitionable,” then an FPRAS for
#BH-Col can be turned into a PAUS for SampleBH-Col. It is not clear for which
graphs H these ideas can be applied, and this is an interesting open question.

A related problem (which is also open) is to determine for which graphs H an
FPRAS for counting H-colorings can be turned into a PAUS for SampleH-Col.
Dyer, Goldberg, and Jerrum [7] have shown that for every fixed H a PAUS for
SampleH-Col can be turned into an FPRAS for counting H-colorings.

Acknowledgments. We thank Martin Dyer, Paul Goldberg, and Mark Jerrum
for useful conversations.

3We can assume that the input is a connected graph without losing generality because we can ob-
tain an H-coloring of a k-component graph G by independently calling our PAUS for each component,
specifying accuracy parameter ε/k. The final variation distance (between the output distribution and
the uniform distribution on H-colorings of G) is at most ε.
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Abstract. Developing certain techniques for the approximation method, we establish precise
versions of the following statements concerning lower bounds for circuits that detect cliques of size s in
a graph with m vertices: For 5 ≤ s ≤ m/4, a monotone circuit computing CLIQUE(m, s) contains at

least (1/2)1.8min(
√
s−1/2,m/(4s)) gates: If a nonmonotone circuit computes CLIQUE using a “small”

amount of negation, then the circuit contains an exponential number of gates. The former is proved
by using so-called bottleneck counting argument within the framework of approximation, and the
latter is verified by introducing a notion of restricting negation in circuits and generalizing these
arguments to nonmonotone cases.
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1. Introduction. Since Razborov introduced the approximation method [9] and
used it successfully to prove a superpolynomial lower bound on the size of monotone
circuits computing the clique function, much effort has been devoted to exploring the
method and to deriving good lower bounds using it (e.g., [1, 2, 7, 8, 9, 10, 11, 13]).
Alon and Boppana [1] obtained an exponential lower bound on the size of monotone
circuits that compute the clique function, through a clever use of the approximation
method. Using an apparently different argument, called bottleneck counting, Haken
[4] derived an exponential lower bound on the size of monotone circuits that compute
a variant of the clique function. Razborov, in subsequent work, showed that the
approximation method can, in principle, provide tight lower bounds for nonmonotone
circuits [10]. In spite of these advances, it remains a challenging problem to apply the
method successfully to obtain good lower bounds on the size of circuits computing a
given problem. This is especially hard when we deal with nonmonotone circuits.

In this paper, we extend our knowledge of the method in two ways. First, we
show how to use the bottleneck counting argument within the framework of the ap-
proximation method. This allows us to present better lower bounds for a certain
clique problem and to simplify considerably the proof both for the clique problem
and for a problem that Alon and Boppana addressed. Second, we extend the method
for nonmonotone circuits for the clique problem, although we must restrict ourselves
to circuits with a restricted amount of negation.

More precisely, the results obtained in these ways are as follows. First, denoting
by CLIQUE(m, s) the clique function detecting cliques of size s in a graph with m

vertices, we obtain a lower bound of (1/2)1.8min(
√
s−1/2,m/(4s)) for 5 ≤ s ≤ m/4. This

lower bound should be contrasted with the best current lower bound for the clique
function, (1/8)(m/(4s3/2 logm))

√
s+1/2 for 3 ≤ s ≤ (1/4)(m/ logm)2/3, obtained by
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Alon and Boppana [1]. So, as for the largest monotone lower bound for the clique
function, our bound is exp(Ω(m1/3)) for s = �m2/3�, whereas the one due to Alon and
Boppana is exp(Ω((m/ logm)1/3)) for s = (1/4)(m/ logm)2/3. To derive these lower
bounds, we define approximators, instead of relying on the sunflower contraction, in
terms of DNF and CNF formulas such that the size (or the length) of terms and
clauses in the formulas is limited appropriately. In this way, we succeeded in simpli-
fying greatly the proofs to obtain these bounds, using only elementary combinatorics.
The similarity between the method of approximations and the bottleneck counting
arguments were independently found by Berg and Ulfberg [3], Jukna [6], and Simon
and Tsai [12]. More recently, Harnik and Raz [5] proved a higher lower bound of

2Ω((n/ logn)1/3) on the monotone circuit size of an explicit function by introducing the
monotone switching lemma between DNF and CNF approximators.

Second, we extend the method discussed in the first part of this paper so as to
apply for the case of nonmonotone circuits, provided that the amount of negation in
circuits is restricted. To do so, we introduce a notion of restricting negation used
in a circuit. For circuit C with input variables x1, . . . xn, x̄1, . . . x̄n, let its monotone
analogue, denoted Cex, be the monotone circuit obtained by replacing each negated
variable x̄i in C with a new input variable yi. There exists an obvious correspondence
between minterms of the function computed by a circuit C and those of the function
computed by the corresponding circuit Cex. When we deal with circuit Cex we pay
attention only to such minterms. Then we consider the maximum number of variables
y1, . . . , yn appearing in such a minterm computed by Cex as the parameter indicating
an amount of negation used in C. Setting the parameter to an integer between 0 and
n, we get a variety of restricted negation circuits, ranging from monotone circuits to
general Boolean circuits. Based on the notion of restricting negation, we verify that
if a nonmonotone circuit C computes CLIQUE(m,mc) with the parameter at most
mc/2−ε, then the size of the circuit C is given by exp(Ω(mc/2)), where c and ε are
any constants such that 0 < c ≤ 2/3 and 0 < ε < c. One might think of the result
as showing the extent to which an argument based on bottleneck counting can be
generalized to apply in nonmonotone cases.

2. Preliminaries. A Boolean circuit is a directed acyclic graph where each node
has indegree 0 or 2. The nodes of indegree 0 are called input nodes, and are labeled
with a variable xi or its negation x̄i. The nodes of indegree 2 are called gates and are
labeled with the Boolean functions AND and OR. AND and OR gates are also called
∧ and ∨ gates, respectively. A circuit represents a Boolean function computed at a
node in the circuit designated as the output node. In particular, a Boolean circuit
without input nodes labeled with negated variables is called monotone. The size of a
circuit C is the number of gates in the circuit C.

For ease of arguments, in section 3 a monotone circuit is further assumed to
satisfy the following conditions: Any input of an ∨ gate is connected to either an
output of ∧ gate or an input node, and any input of an ∧ gate is connected to either
an output of ∨ gate or an input node. The output gate is an ∧ gate. Any monotone
circuit can be easily converted to the one satisfying these conditions by replacing, if
necessary, a line connecting gates by a dummy gate (that can be thought of as an ∨
gate or an ∧ gate, appropriately) with their two inputs being connected to an output
of the same gate and hence by at most doubling the size of the circuit. The circuit
complexity (monotone circuit complexity) of a function f is the size of the smallest
circuit (monotone circuit) computing f .
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3. Lower bounds for monotone circuit complexity based on CNF and
DNF based approximators. In this section, we derive lower bounds for the clique
problem and also those for a problem defined in terms of polynomials. The clique
function, denoted CLIQUE(m, s), of m(m − 1)/2 variables {xi,j | 1 ≤ i < j ≤ m}
is defined to take value 1 if and only if the undirected graph on m vertices, with
adjacency matrix X such that xi,j is the upper triangular submatrix of X, contains
a clique of size s. The graphs will be identified with the assignments to the variables
specifying the graphs.

Theorem 3.1. If 5 ≤ s ≤ m/4, then any monotone circuit that computes the

function CLIQUE(m, s) contains at least (1/2)1.8min(
√
s−1/2,m/(4s)) gates. In partic-

ular, the monotone circuit complexity of CLIQUE(m, �m2/3�) is exp(Ω(m1/3)).
We now proceed to proving Theorem 3.1 in the framework of approximation

method. We define good and bad graphs which are used as test inputs to compare
the circuit’s behavior with the behavior of the clique function. A graph is called good
if it consists of a clique on some set of s vertices and no other edges. A graph is
called bad if there exists a partition of the vertices into m mod (s − 1) sets of size
�m/(s− 1)� and s− 1− (m mod (s− 1)) sets of size �m/(s− 1)� such that any two
vertices chosen from different sets have an edge between them, and no other edges
exist. Note that the function CLIQUE(m, s) outputs value 1 on every good graph
and outputs 0 on every bad graph. The following fact is obvious.

Fact 3.2. There are

m!

s!(m− s)!
good graphs and

m!

(�m/(s− 1)�!)w(�m/(s− 1)�!)s−1−ww!(s− 1− w)!

bad graphs, where w = m mod(s− 1).
Let t be a term or a clause. The endpoint set of t is a set of all endpoints of the

edges corresponding to variables in t. The size of t is the cardinality of the endpoint
set of t.

We are ready to define an approximator circuit to approximate a monotone circuit.
An approximator circuit C for a Boolean circuit C is the same graph as C, with ∨ and
∧ gates replaced by ∨ and ∧ gates. The nodes of the approximator circuit compute
approximators defined as follows: the approximator corresponding to input variable
xi is defined to be xi itself. The functions of an ∨ gate and an ∧ gate are defined as
follows (the integers l and r in the definition are chosen later):

∨: Let fD1 and fD2 be two approximators, represented by monotone DNF for-
mulas, feeding into an ∨ gate. The approximate OR of these approximators
is the monotone CNF formula obtained by transforming the monotone DNF
formula fD1 ∨fD2 into the equivalent monotone CNF formula and then taking
away all the clauses whose sizes exceed r.

∧: Let fC1 and fC2 be two approximators, represented by monotone CNF formu-
las, feeding into an ∧ gate. The approximate AND of these approximators
is the monotone DNF formula obtained by transforming the monotone CNF
formula fC1 ∧ fC2 into the equivalent monotone DNF formula and then taking
away all the terms whose sizes exceed l.

Since we assumed that no output of an ∨ (resp., ∧) gate is connected to an ∨
(resp., ∧) gate, an approximator computed at an ∨ gate is given by a monotone CNF
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formula, and an approximator computed at an ∧ gate is given by a monotone DNF
formula, where both formulas satisfy the size requirements. For Boolean functions f
and g, let us denote f ≤ g if and only if f(x) ≤ g(x) holds for any input vector x.
Note that the definition (f1 ∨ f2) ≥ (f1 ∨ f2) holds for any monotone DNF formulas
f1 and f2. Similarly, (f1 ∧ f2) ≤ (f1 ∧ f2) holds for any monotone CNF formulas f1
and f2.

Let C be a monotone circuit computing CLIQUE(m, s), and let C (called the
approximator circuit corresponding to C) denote the circuit obtained by replacing all
of the ∨ and ∧ gates in C by ∨ and ∧ gates, respectively. Since the computation in
C proceeds from bottom to top, it is easy to see that for any good graph that makes
approximator circuit C output 0, there exists an ∧ gate that outputs 0 for the good
graph due to taking the terms away in defining its output approximator. So, an ∧
gate feeds the same input approximators as those to the ∧ gate outputs 1. Similarly,
for any bad graph that makes approximator circuit C output 1, there exists an ∨ gate
that outputs 1 for the bad graph because of taking the clauses away in defining its
output approximator.

The proof of Theorem 3.1 proceeds as follows: First, show that either of the
number of good graphs that are incorrectly classified by the approximator circuit or
the number of bad graphs incorrectly classified is large (Lemma 3.3). Second, show
that the number of bad graphs for which an approximate gate ∨ (i.e., ∨ gate) be-
haves differently from an ∨ gate is small (Lemma 3.4) and similarly the number of
good graphs for which an approximate ∧ gate (i.e., ∧ gate) behaves differently from
a ∧ gate is small (Lemma 3.5). Finally, calculate the numbers obtained by dividing
the numbers of bad and good graphs incorrectly classified by an approximator circuit
by the numbers of graphs for which the corresponding approximate gates behaves
differently, respectively, and show that the larger of the two numbers calculated be-
comes large, completing the proof of Theorem 3.1. It is worthwhile to note that it is
straightforward to extend our proofs to arbitrary fan-in circuit without changing the
lower bounds we obtained.

The parameters l and r are chosen to be l = �√s− 1/2� and r = �m/(4s)�.
Lemma 3.3. An approximator circuit either outputs identically 0 or outputs 1 on

at least one half of the bad graphs.
Proof. Let f be the approximator function that an approximator circuit com-

putes. Because of the assumption that the output gate of an approximator cir-
cuit is ∧ gate, f can be represented by a monotone DNF formula consisting of
terms of size at most l. If f is identically 0, then the first conclusion holds. If
not, then there is a term t whose size is less than or equal to l such that f ≥ t
holds. In what follows, bad graphs are represented as one-to-one mappings from ver-
tex set {v1, . . . , vm} to {(1, 1),. . .,(1, �m/(s− 1)�), . . .,(w, 1),. . .,(w, �m/(s− 1)�), (w+
1, 1), . . . , (w + 1, �m/(s− 1)�), (w + 2, 1), . . . , (s − 1, �m/(s− 1)�)}. Such a mapping
specifies a bad graph in the obvious way: Two vertices in the graph have an edge
between them if and only if the mapping assigns to the vertices a pair with different
first components. Note that there exist many mappings corresponding to one bad
graph. It is easy to see that the ratio of mappings that satisfy the condition that
there is a variable x in the term t such that two vertices incident to x are assigned a
pair with the same first component, i.e., the term t outputs 0 on bad graphs specified
by such mappings, is at most (l(l− 1)/2)(�m/(s− 1)�/m). Recalling l = �√s− 1/2�,
the quantity above is bounded from above by 1/2. Therefore, the ratio of bad graphs
such that f outputs 1 on them is at least 1/2.



POTENTIAL OF APPROXIMATION METHOD 437

Lemma 3.4. Suppose that an ∨ gate and an ∨ gate are given as input the same
monotone DNF formulas such that the size of terms in the formulas is equal to or less
than l. Then the number of bad graphs for which the ∨ and ∨ gates produce different
outputs (the ∨ gate produces 0, whereas the ∨ gate produces 1) is at most

(m/2)r+1(m− r − 1)!

(�m/(s− 1)�!)w(�m/(s− 1)�!)s−1−ww!(s− 1− w)!
.(3.1)

Proof. Suppose that an ∨ gate and an ∨ gate are given as input the same monotone
DNF formulas, denoted fD1 and fD2 , such that the size of any term in the formulas
is equal to or smaller than l. Let fD1 ∨ fD2 and fD1 ∨ fD2 be denoted by fD and fC ,
respectively. Let t1, . . . , tq be the complete list of terms in fD. Then each ti contains
at most l(l − 1)/2 variables. We shall count the number of bad graphs x such that
both fD(x) = 0 and fC(x) = 1 hold. As in the proof of Lemma 3.3, bad graphs are
represented as mappings described there. Instead of counting bad graphs directly, we
count mappings corresponding to bad graphs. The number in question is bounded
from above by the number of the mappings corresponding to bad graphs x such that
fD(x) = 0 and fC(x) = 1 divided by the number of mappings corresponding to one
bad graph. (The number of mappings is independent of the bad graph chosen.) Since
the latter is given by the denominator of (3.1), it suffices to estimate the former. The
former is the number of mappings corresponding to bad graphs x that do not satisfy
any of t1, . . . , tq but satisfy all clauses in fC . We count how many ways one could
choose variables from terms t1 up to tq and assign pairs of integers to the endpoints
associated with the variables chosen so that the corresponding bad graphs x satisfy
fD(x) = 0 and fC(x) = 1.

Suppose that we proceed to term ti, and hence some of the endpoints associated
with variables from terms t1 to ti−1 are already assigned distinct pairs of integers.
This partial assignment assigns 0 and 1 to some of variables in the way mentioned
above. We first consider the extreme cases. If there exists a variable in term ti already
assigned 0 by the partial assignment, we skip to the next term ti+1. The other extreme
case occurs when all the variables in term ti are assigned 1 so far. In this case term
ti will never take value 0, hence we don’t need to consider the case.

If neither of these extreme cases happens, choose a variable from term ti such
that at least one of the vertices associated with the variable is not assigned a pair of
integers. There are two cases to consider: If exactly one of the vertices is assigned
so far, then assign to the remaining vertex a pair whose first component is identical
to the first component of the pair of integers assigned to the other vertex so that
the variable associated with the two vertices is assigned 0. In this case, there are at
most �m/(s− 1)� − 1 ≤ m/(s − 1) ways of assigning pairs of integers to the vertex.
On the other hand, if both of the vertices have not been chosen so far, assign to
these vertices pairs of integers with the same first components, so that the variable
associated with the two vertices is assigned 0. So, for the two vertices, there are at
most (s− 1)(�m/(s− 1)�)(�m/(s− 1)� − 1) ≤ 2m2/(s− 1) ways of assigning pairs of
integers.

Suppose that there exist k variables in term ti such that exactly one of the vertices
corresponding to the variables is assigned a pair of integers so far. Then there exist at
most l(l− 1)/2− k variables in term ti such that none of the vertices associated with
the variables is assigned a pair of integers so far. So the number of ways of choosing
an unassigned vertex in the endpoints of variables in ti and assigning a pair of integers
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to the chosen vertex is bounded from above by

max
k

(km/(s− 1) +
√

(l(l − 1)/2− k)(2m2/(s− 1))),(3.2)

where integer k ranges from 0 to l(l − 1)/2. This is because doing something to two
vertices in i ways can be regarded as doing something to a vertex appropriately in

√
i

ways twice successively. Because of l ≤ √s− 1/2, a simple calculation shows that the
quantity above is maximized when k = 0, and is bounded from above by m/2.

By the definition of ∨ gate, it is easy to see that the graphs x corresponding to
the mappings specified in this way satisfy fD(x) = 0 and fC(x) = 1 only if there
exist more than r vertices assigned pairs of integers in the above procedure. So the
number of mappings corresponding to such bad graphs is bounded from above by the
number of mappings such that r+1 vertices are assigned pairs of integers multiplied by
the number of ways of assigning arbitrarily distinct pairs of integers to the remaining
m−r−1 vertices. The resulting number is given by the numerator of (3.1), completing
the proof.

Lemma 3.5. Suppose that an ∧ gate and an ∧ gate are given as input the same
monotone CNF formulas such that the size of terms in the formulas is equal to or less
than r. Then the number of good graphs for which the ∧ gate and the ∧ gate produce
different outputs (the ∧ gate produces 1, whereas the ∧ gate produces 0) is at most

(m/2)l+1(m− l − 1)!

s!(m− s)! .

Proof. The proof is similar to that of Lemma 3.4. Suppose that an ∧ gate and an
∧ gate are given as input the same monotone CNF formulas, denoted fC1 and fC2 , as in
the lemma. Let fC = fC1 ∧ fC2 and fD = fC1 ∧ fC2 . Let c1, . . . , cq be the complete list
of clauses in fC , where each ci contains at most r(r− 1)/2 variables. The number in
question is equal to the number of good graphs x such that fC(x) = 1 and fD(x) = 0
hold.

Instead of the mappings from vertices to the integer pairs in the case of Lemma
3.4, we consider one-to-one mappings from the vertex set {v1, . . . , vm} to the integer
set {1, . . . ,m}. Such a mapping can be thought of as specifying a good graph such
that the set of vertices assigned integers from 1 to s forms a clique. The number
mentioned in the lemma is at most the number of mappings corresponding to good
graphs x that satisfy all clauses of c1, . . . , cq but do not satisfy any term in fD divided
by the number of mappings corresponding to one good graph.

As in the case of Lemma 3.4, we count how many ways one could choose variables
each from clauses of c1, . . . , cq and assign integers to the vertices associated with the
variables chosen so that all of the clauses are satisfied but the disjunctive normal form
formulas fC1 ∧ fC2 is not satisfied. Suppose that we proceed to clause ci and, hence,
some of the vertices are assigned integers from 1 to s so that all of the clauses from
c1 to ci−1 are satisfied. Such an assignment is called a partial assignment. If there
exists a variable in ci assigned 1 by the partial assignment, we skip to the next clause
ci+1.

The variable xj,k is said to be incident to vertices vj and vk. To count the number
of ways of making clause ci take value 1, there are two cases to consider: Choose
a variable in ci incident to two vertices; one is assigned an integer by the partial
assignment and the other is not. Choose a variable in ci incident to two vertices that
are not assigned integers so far.
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As in the proof of Lemma 3.4, the number of ways of choosing unassigned vertices
and assigning integers to the vertices so as to make clause ci take value 1 is bounded
from above by

r(s− 1) +
√

(r(r − 1)/2)s(s− 1) < 2rs.(3.3)

Since r ≤ m/(4s), this quantity is bounded from above by m/2. The rest of the proof
is similar to that of Lemma 3.4.

Now we proceed to the proof of Theorem 3.1.
Proof of Theorem 3.1. In view of Fact 3.2 and Lemmas 3.3, 3.4, and 3.5, the size

of a monotone circuit that computes CLIQUE(m, s) is at least

min

(
m!

2(m/2)r+1(m− r − 1)!
,

m!

(m/2)l+1(m− l − 1)!

)
,

which is bounded from below by

min

(
(m− r)r+1

2(m/2)r+1
,

(m− l)l+1

(m/2)l+1

)
.(3.4)

Since 5 ≤ s ≤ m/4, we have r ≤ m/10 and l ≤ m/10. Hence, m − r ≥ 9m/10 and
m− l ≥ 9m/10 hold. Therefore, (3.4) is bounded from below by

min(1.8r+1/2 , 1.8l+1).

Thus, noticing r + 1 ≥ m/(4s) and l + 1 ≥ √s− 1/2, the proof is completed.
One might expect that the definitions of approximate operations in the proof

of Theorem 3.1 can be simplified by replacing “size” with “length,” which is the
number of variables appearing in terms and clauses. However, it turns out that such
a simplification yields a weaker (although still exponential) lower bound.

Consider that we define the approximate operations based on “length” with suit-
able choices of l and r and apply the same argument as in the proof of Theorem 3.1.
By the same counting argument as in the proof of Lemmas 3.4 and 3.5, the upper
bound of the number of choices corresponding to (3.2) in the proof of Lemma 3.4 is

maxk{km(s− 1) +
√

(l − k)(2m2/(s− 1))},(3.5)

and the one corresponding to (3.3) in the proof of Lemma 3.5 is

maxk{k(s− 1) +
√

(r − k)s(s− 1)}.(3.6)

It is easy to see that if r = �m/(4s)� and l = �(s− 1)/8�, then the quantities of
(3.5) and (3.6) are both smaller than m/2. It is also easy to see that the Lemma 3.3
holds for such l. However, Lemmas 3.4 and 3.5 may not hold this time. For example,
in the proof of Lemma 3.4, the condition that there exist more than r vertices assigned
pairs of integers in the procedure described in the proof is not a necessary condition
to satisfy fD(x) = 0 and fC(x) = 1. Because if r′(r′ − 1)/2 > r, then there is
a clause with more than r variables corresponding to the assignment that only r′

vertices assigned pairs of integers. So we must replace the variable r in the statement
of Lemma 3.4 with r′ such that r′(r′− 1)/2 ≤ r. By a similar reason, we also have to
replace the variable l in the statement of Lemma 3.5 with l′ such that l′(l′− 1)/2 ≤ l.
By using these lemmas and the similar argument as in the proof of Theorem 3.1,
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we can obtain the exp(Ω(min(r′, l′))) = exp(Ω(min(
√
m/s,

√
s))) lower bound for the

size of a monotone circuit that computes CLIQUE(m, s). This lower bound is an
exponential in m for a suitable choice of s; however, it is slightly weaker than the
exp(Ω(min(m/s,

√
s))) lower bound of Theorem 3.1.

We now consider another problem to show that our CNF and DNF based approx-
imators make lower bound proofs simple.

Let n = q2 and x = {xi,j | 1 ≤ i, j ≤ q}, where q is a prime. Let G(x)
be the bipartite graph on V = {v1, . . . , vq} and W = {w1, . . . , wq} with edge set
{(vi, wj) | xi,j = 1}. The function POLY(q, s)(x) of q2 variables {xi,j} is defined as
POLY(q, s)(x) = 1 if and only if there is a polynomial p over the field Zq of degree at
most s− 1 such that G(x) includes all edges (vi, wp(i)) for 1 ≤ i ≤ q.

The next theorem gives the same lower bound as the one due to Alon and Boppana
[1].

Theorem 3.6 (Alon and Boppana [1]). If s ≤ (1/2)
√
q/ ln q, then any monotone

circuit that computes the function POLY(q, s) contains qΩ(s) gates.
To prove Theorem 3.6, we need a few lemmas. A graph is called good if there

exists a polynomial p of degree at most s− 1 such that the set of edges of the graph
is given as {(vi, wp(i)) | 1 ≤ i ≤ q}. Notice that the number of good graphs is qs. For
0 ≤ ε ≤ 1/2, let NGε be the probability distribution on bipartite graphs with each
edge appearing independently with probability 1− ε. We choose ε = (2s ln q)/q. It is
easy to see that

Pr
x∈NGε

[POLY(q, s)(x) = 1] ≤ qs(1− ε)q ≤ qse−εq = 1/qs ≤ 1/4.(3.7)

So a graph x chosen according to NGε makes the value of the function POLY(q, s) to
0 with probability at least 3/4. These graphs serve as the bad graphs in the previous
case.

Instead of defining approximators in terms of the size of terms and clauses, we
define approximators this time in terms of the length of terms and clauses, i.e., the
number of variables appearing in terms and clauses. Approximate operations of ∨
gate and ∧ gate are defined exactly the same way as the previous case except that
“size” is replaced with “length.” As in the previous case, approximators are defined
in bottom-up fashion, taking the approximator corresponding to input variable xi to
be xi itself. The parameters l and r are put this time as l = s and r = �√q ln q�.

To prove Theorem 3.6, we need Lemmas 3.7, 3.8, and 3.9, which correspond to
Lemmas 3.3, 3.4, and 3.5, respectively. We now proceed to the proof of the theorem.

Lemma 3.7. Let f be a function computed by an approximator circuit. Then f
is identically 0 or

Pr
x∈NGε

[POLY(q, s)(x) = 0 and f(x) = 1] ≥ 1/4.

Proof. If f is identically 0, then the first conclusion holds. If not, then there
exists a term t of length at most l such that f ≥ t. Recall that the output gate is
assumed to be an ∧ gate, and, hence, f is given as a monotone DNF formula. Since
ε = (2s ln q)/q, l = s and s ≤ (1/2)

√
q/ ln q, we have εl ≤ 1/2. Since 0 ≤ ε1/2, we

therefore have

Pr
x∈NGε

[f(x) = 1] ≥ (1− ε)l ≥ (1/4)εl ≥ (1/4)1/2 = 1/2.(3.8)

Thus the lemma follows from (3.8) and (3.7).
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Lemma 3.8. Let fD1 and fD2 be monotone DNF formulas such that the length of
each term in them is at most l. Then

Pr
x∈NGε

[(fD1 ∨ fD2 )(x) = 0 and (fD1 ∨ fD2 )(x) = 1] ≤ (1/2)r.

Proof. Let fD denote the monotone DNF formula fD1 ∨ fD2 . We construct a
decision tree computing fD as follows. We start with a vertex associated with fD,
which becomes the root of the decision tree we shall construct. Take a term whose
length is, say i, out of terms in fD, and construct the path consisting of i vertices
labeled with variables in the term and a leaf labeled 1. Furthermore, all the edges on
the path is labeled with 1. Draw i edges out of all the vertices except the leaf together
with distinct endpoints added and label these edges with 0. Each path from the root
to one of the i vertices added specifies in the obvious way an assignment of 1 and 0 to
the variables on the path except the endpoint of the path. Associate these endpoints
with the functions obtained by substituting the Boolean values to the variables of fD

according to the corresponding assignments. Then repeat the procedure mentioned
above with the vertices added until all the vertices are assigned with the constant
functions.

Let pathx denote the path from the root to a leaf specified, in the obvious way,
by assignment x. Let (u, v) be an arbitrary edge labeled with 0 on pathx. Clearly,
the probability that the pathx doesn’t pass any edge labeled with 0 after (u, v) on
the condition that pathx passes edge (u, v) is at least (1− ε)l. This is because pathx
has at most l consecutive edges labeled with 1. Therefore, the probability that pathx
passes more that r edges labeled with 0 is at most (1 − (1 − ε)l)r. Clearly, if both
(fD1 ∨ fD2 )(x) = 0 and (fD1 ∨ fD2 )(x) = 1 hold, then pathx passes more than r edges
labeled with 0. So the probability mentioned in the lemma is bounded from above by
(1 − (1 − ε)l)r. From the inequality (1 − ε)l ≥ 1/2 in (3.8), this quantity is at most
(1− 1/2)r = (1/2)r. This completes the proof.

Lemma 3.9. Let an ∧ gate and an ∧ gate be given as input the same monotone
CNF formulas such that the length of clauses in the formulas is equal to or less than r.
Then the number of good graphs for which the ∧ gate and the ∧ gate produce different
outputs is at most rl.

Proof. The proof is similar to that of Lemma 3.5. Suppose that an ∧ gate and
an ∧ gate are given as input the same monotone CNF formulas, denoted fC1 and fC2 ,
such that the size of any clause in the formulas is equal to or less than r. Let fC1 ∧fC2
be denoted by fC and let c1, . . . , cq be the complete list of clauses of fC . Let fD

denote the DNF formula equivalent to fC . Clearly, fD is the Boolean sum of terms
of distinct variables, each being chosen from c1 up to cp. Since fC1 ∧fC2 is equal to the
DNF formula obtained from fD by taking away all the terms whose sizes exceed l and
l(= s) variables xi,j with distinct first indices i’s specify a polynomial with degree
s− 1, hence a good graph, it is easily seen that the number of good graphs x’s such
that (fC1 ∧ fC2 )(x) = 1 and (fC1 ∧ fC2 )(x) = 0 is bounded from above by the number
of ways of choosing a variable out of r variables (appearing in a clause) l times. Thus
the number of such good graphs is at most rl, completing the proof.

Theorem 3.6 easily follows from Lemmas 3.7, 3.8, and 3.9.
Proof of Theorem 3.6. In view of Lemmas 3.7, 3.8, and 3.9, it is concluded that

the size of the monotone circuit computing POLY(q, s) is at least min((q/r)l, (1/4)2r).
Thus, the equations l = s and r = �√q ln q� give the desired bound, completing the
proof.
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4. Lower bounds for nonmonotone circuit complexity based on
negation-based approximators. For two vectors v and v′ in {0, 1}n, we denote
v′ � v if v 
= v′ and v′i ≤ vi for any 1 ≤ i ≤ n, where vi denotes the ith component
of v. A vector v is called a minimal true vector for a Boolean function f if f(v) = 1
and, for any v′ � v, f(v′) = 0. Let Min(f) be the set of all minimal true vectors of
f . Similarly, when circuit C computes a function f , Min(C) denotes Min(f). Given
a nonmonotone circuit C with input literals x1, . . . , xn, x̄1, . . . , x̄n, let Cex denote the
monotone circuit obtained from C by simply replacing each negated input variable x̄i
in C with a new input variable yi for 1 ≤ i ≤ n without making any further modifica-
tion. In what follows, Cex will be called the monotone analogue of the original circuit
C. Let the input vectors to circuits C and Cex be denoted by (x1, . . . , xn, x̄1, . . . , x̄n)
and (x1, . . . , xn, y1, . . . , yn), respectively. Obviously, these circuits produce the same
output values for inputs represented as (x1, . . . , xn, x̄1, . . . , x̄n).

Suppose that a circuit C computes a function f . When an input vector is given,
all the wires in C are assigned 0 or 1 in the obvious way. We call a wire assigned the
value 1 an activated wire. Given a positive vector, i.e., a vector that makes circuit C
output 1, we have the collection of activated wires in the circuit C which contains at
least one path from an input node to the output node. On the other hand, in the case
of a negative vector, i.e., a vector that makes C output 0, such a collection of wires
does not contain any path from an input node to the output node.

Now suppose that a positive vector x is given to the circuit C. In the nonmonotone
case, not only the wires connected to inputs xi with xi = 1, but also the ones connected
to inputs x̄i with xi = 0, which do not appear in monotone circuits, are activated.
Since the circuit C contains only AND and OR gates in its inside, the entire collection
of activated wires increases monotonically as the collection of activated wires at the
input level increases. Hence, viewing the computation of a circuit like this, one might
imagine that the more negated variables we are allowed to use, the more economically
the collections of activated wires can reach the output node. These considerations lead
us to the following definition, which formalizes a measure of the amount of negation
used in the process of computation in a circuit.

Definition 4.1. Let C be a circuit computing a monotone function f on n
variables and let Cex be the monotone analogue of C. For v and u in {0, 1}n, |v|1
denotes the number of 1’s among v, and v ◦ u denotes the concatenation of v and u.
For 0 ≤ k ≤ n, we define Mink(C) as follows:

Mink(C) = {v ∈ Min(f) |∃y ∈ {0, 1}n(|y|1 ≤ k) ∧ (v ◦ y ∈ Min(Cex))} .

In other words, a minterm v in f is in Mink(C) when the minimum number of vari-
ables y1, . . . , yn appearing in the minterm of the function computed by Cex, which
corresponds to the minterm v, is at most k.

Note that by the definition

Min0(C) ⊆ Min1(C) ⊆ · · · ⊆ Minn(C) = Min(f).

In particular, if C is monotone, then Min0(C) = Min(f). We can think of the mini-
mum i satisfying Mini(C) = Min(f) as a sort of measure indicating an amount of nega-
tion used in computing f . The condition Minmc/2−ε(C) = Min(CLIQUE(m,mc)) in
the theorem below can be thought of as saying that C uses a “small” amount of nega-
tion in the sense of Definition 4.1 becausemc/2−ε is much smaller than n = m(m−1)/2,
namely the number of variables of CLIQUE. So, roughly, the theorem says that if a
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nonmonotone circuit computes the clique function using a small amount of negation,
then the circuit has an exponential number of gates.

Theorem 4.2. Let c and ε be constants such that 0 < c ≤ 2/3 and 0 < ε < c/2.
Suppose that a circuit C computes the function CLIQUE(m,mc). If Minmc/2−ε(C) =
Min(CLIQUE(m,mc)) holds, then the size of C is exp(Ω(mc/2)).

The proof of the theorem will be done by a generalized argument based on the
approximation method.

Let f be the function CLIQUE(m, s), where s = mc. Let C be a circuit computing
f whose monotone analogue is denoted by Cex. Without loss of generality, we assume
that m is divisible by s. Note that Cex is assumed to be layered with alternating
AND and OR layers, i.e., every AND gate is connected to an OR gate and vice versa,
and the output gate of Cex is an AND gate. Let n =

(
m
2

)
be the number of input

variables of CLIQUE. A vector v ◦y of length 2n is called a good vector if v ∈ Min(f),
|y|1 ≤ k, and v ◦ y ∈ Min(Cex), where k is an integer whose value will be determined
later. By the definition of Min(Cex), if v ◦ y is a good vector, then v ◦ y′ 
∈ Min(Cex)
for any y′ � y. Let V be the set of m vertices of the graph associated with CLIQUE.
A one-to-one mapping from V to the set {0, 1, . . . , s − 1} × {1, . . . ,m/s} is called a
bad mapping. The definition of the bad mapping is the same to that for the monotone
case except that we added the value 0 to the range of the first component of the bad
mapping. We consider a bad mapping φ as the graph that has an edge between u
and v whenever the first elements of φ(u) and φ(v) are different and both of them
are not 0. For each bad mapping φ, the bad vector associated with φ is the vector
u ◦ ū, where ū = (ū1, ū2, . . . , ūn). Note that every good vector makes the circuit Cex

output 1, whereas every bad vector makes the circuit Cex output 0. The following
fact is obvious.

Fact 4.3. There are at least |Mink(Cex)| good vectors and m! bad mappings.
We are now ready to define approximators as well as approximate operations. Put

X = {x1, . . . , xn} and Y = {y1, . . . , yn}. Let N (k) denote the collection of subsets
of Y of size at most k. For a set of variables L ⊆ X, let �L� denote the set of
all endpoints of the edges corresponding to variables in L. For W ⊆ V , the set of
variables whose both endpoints are in W is denoted by �W �. �W � can be thought of
as the subset of X which corresponds to the clique on W . As in the previous section,
the size of a term or a clause t is the cardinality of the endpoint set of variables in t.
In what follows, for a set of literals L, the product of all literals in L is denoted by
∧L.

An approximator is defined to be a set of monotone functions denoted {fY }Y ∈N (k),
where all of fY ’s are either monotone DNF formulas on X or monotone CNF formulas
on X. We interpret the approximator {fY }Y ∈N (k) to represent the function written
as ∨Y ∈N (k)(∧Y · fY ).

∨: Let {fD1,Y }Y ∈N (k) and {fD2,Y }Y ∈N (k) be two approximators, each being sets
of monotone DNF formulas. The approximate OR of these approximators,
denoted {fD1,Y }Y ∈N (k)∨{fD2,Y }Y ∈N (k), is defined as the set of monotone CNF

formulas, denoted {fCY }Y ∈N (k), where, for each Y ∈ N (k), fCY is the mono-
tone CNF formula obtained by transforming fD1,Y ∨ fD2,Y into the equivalent
monotone CNF formula and then taking away all the clauses whose size
exceed r.

∧: Let {fC1,Y }Y ∈N (k) and {fC2,Y }Y ∈N (k) be two approximators, each being sets
of monotone CNF formulas. The approximate AND of these approximators,
denoted {fC1,Y }Y ∈N (k)∧{fC2,Y }Y ∈N (k), is defined as the set of monotone DNF
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formulas, denoted {fDY }Y ∈N (k), where, for each Y ∈ N (k), fDY is defined as
follows:

1. For each Y1, Y2 ∈ N (k), let fDY1,Y2
be the DNF formula obtained from

the CNF formula fCY1
∧fCY2

by transforming into the equivalent monotone
DNF formula and then taking away all the clauses whose size exceed l.

2. For each Y ∈ N (k), set f ′DY to

f ′DY =
∨

Y1,Y2:Y =Y1∪Y2

fDY1,Y2
.

3. For each Y ∈ N (k), let fDY be the monotone DNF formula obtained by
replacing each term ∧L of f ′DY with the term ∧��L��.

In what follows, an approximator {fY }Y ∈N (k) will be simply denoted by {fY }Y .
Note that ({fD1,Y }Y ∨{fD2,Y }Y ) ≥ ({fD1,Y }Y ∨ {fD2,Y }Y ) holds for any approximators

{fD1,Y }Y and {fD2,Y }Y and that ({fC1,Y }Y ∧{fC2,Y }Y ) ≤ ({fC1,Y }Y ∧ {fC2,Y }Y ) holds for

any approximators {fC1,Y }Y and {fC2,Y }Y .
Now that the approximate operations are defined for nonmonotone circuits, ap-

proximators computed by gates are determined from the bottom to the top. In order
to get approximators determined in this way, we need to specify the approximator
corresponding to input variables: The approximator corresponding to xi is simply
defined to be xi itself.

The proof of Theorem 4.2 proceeds in a similar way to those in the previous
section. We first prove that the total error in an approximator circuit is large (Lemma
4.4) and then prove that the local error at any single gate is small (Lemmas 4.5 and
4.6). Using these lemmas, the theorem follows from a simple calculation; let s = mc,
l = mc/2/4, k = mc/2−ε, and r = m1−c/4.

Lemma 4.4. Let f be a function computed by an approximator circuit. Then f is
identically 0 or the number of bad mappings for which f outputs 1 on the corresponding
bad vector is at least (1/2)(1/2s)k.

Proof. If f is identically 0, then the first conclusion of the lemma holds. If not,
because of the assumption that the output gate of an approximator circuit is ∧ gate,
f ≥ ∧Y �W � for some Y ∈ N (k) and for some W ⊆ V with |W | ≤ l. Then a bad
mapping φ satisfying the following conditions makes the approximator f take the
value 1 : (i) For every variable y ∈ Y , at least one endpoint of y has value 0 on the
first element of φ, and (ii) the first elements of φ(v) for v ∈ W are all distinct and
none of them are 0. The number of such bad mappings is at least(

s− 1

l

)(m
s

)l (m/s
k

)
(m− k − l)! = m!

(
s−1
l

) (
m
s

)l (m/s
k

)
(m− k − l)!

m!

≥
l−1∏
i=0

(
(m/s)(s− 1− i)!

m− i
) k−1∏

i=0

(
m/s− i
m− k − i

)

≥
(

(m/s)(s− l)
m− l + 1

)l (
m/s− k + 1

m− l − k + 1

)k

≥
(

(m/s)(s− l)
m

)l (
m/s− k + 1

m− l − k + 1

)k

≥
(

1− l

sm

)l (
m/s− k + 1

m− l − k + 1

)k
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≥
(

1− 1

m

)l (
m/s− k + 1

m− l − k + 1

)k

≥ 1

2

(
1

2s

)k

.

This completes the proof of Lemma 4.4.
Lemma 4.5. Suppose that an ∨ gate and an ∨ gate are given as input the same

pair of approximators. Then the number of bad mappings for which the ∨ and the ∨
gates produce different outputs on the corresponding bad vectors is at most

m2k(m/2)r+1(m− r − 1)!.

Proof. Suppose that an ∨ gate and an ∨ gate are given as input the same pair of
approximators, denoted {fD1,Y }Y and {fD2,Y }Y , respectively. Let {fD1,Y }Y ∨{fD2,Y }Y be

denoted by {fCY }Y .
Let Y ∈ N (k) be fixed arbitrarily. We first estimate the number of bad mappings

for which fD1,Y ∨ fD2,Y outputs 0 and fCY outputs 1 on the corresponding bad vectors

by following the arguments in the proof of Lemma 3.4. The condition l ≤ √s− 1/2
in the proof of Lemma 3.4 is satisfied. Thus we can estimate the number of such bad
mappings by using the same argument to the proof of the lemma except for replacing
all the formulas (s− 1) in that proof by s. This modification is needed since the size
of the ranges of the first components of the bad mappings is changed from s− 1 to s.
Thus we can verity that, for each Y ∈ N (k), the number of bad mappings for which
fD1,Y ∨ fD2,Y outputs 0 and fCY outputs 1 on the corresponding bad vectors is at most

(m/2)r+1(m− r − 1)!. Thus, since the number of elements in |N (k)| is at most m2k,
we obtain the desired bound.

Lemma 4.6. Suppose that an ∧ gate and an ∧ gate are given as input the same
approximators. Then the number of good vectors for which the ∧ and the ∧ gates
produce different outputs is at most

m4k(m/2)l+1(m− l − 1)!

s!(m− s)! .

Proof. Suppose that an ∧ gate and an ∧ gate are given as input the same approxi-
mators, denoted {fC1,Y }Y and {fC2,Y }Y , respectively. Let {fDY }Y = {fC1,Y }Y ∧{fD2,C}Y .
It is easy to observe that steps 2 and 3 in the definition of the approximator ∧ intro-
duce no error on good vectors. Thus we have only to estimate the amount of errors on
good vectors introduced by replacing the product of two CNF formulas fC1,Y1

∧ fC2,Y2

by a DNF formula fDY1,Y2
for each Y1, Y2 ∈ N (k).

Consider Y1, Y2 ∈ N (k) to be arbitrarily fixed. We estimate the number of good
vectors for which fC1,Y1

∧ fC2,Y2
outputs 1 and fDY1,Y2

outputs 0 by the argument of the
proof of Lemma 3.4. Note that the condition r ≤ m/(4s) in the proof of Lemma
3.4 holds. Thus we can verify that the number of such good vectors is at most
(m/2)l+1(m− l − 1)!/{(s!(m− s)!} by the same argument as in the proof of Lemma
3.4. Thus, since the number of choices of Y1 and Y2 is at most |N (k)|2 ≤ m4k, we
obtain the desired bound.

We now proceed to the proof of Theorem 4.2. Instead of proving Theorem 4.2, we
prove Theorem 4.7, which claims a stronger statement. Intuitively, Theorem 4.7 says
that the condition “Mink(C) is identical to Min(CLIQUE(m, s)),” which appears in
Theorem 4.2, can be replaced by the somewhat weaker condition, “the cardinality of
Mink(C) is not too small.”
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Theorem 4.7. Let c and ε be constants such that 0 < c ≤ 2/3 and 0 < ε < c/2.
Suppose that a circuit C computes the function CLIQUE(m,mc) and suppose that
h = h(m) = o(mc/2−ε). If

|Minmc/2−ε(C)| > 1

mh
|Min(CLIQUE(m,mc))|

holds, then the size of C is exp(Ω(mc/2)).
Proof. Recall that s = mc, l = mc/2/4, k = mc/2−ε and r = m1−c/4. Let C

be a circuit which computes the function CLIQUE(m, s) and let f be the function
computed by the approximator circuit of the monotone analogue of the circuit C.
Suppose that h = h(m) = o(mc) and |Mink(C)| > 1

mh |Mink(CLIQUE(m, s))| =
1

mh
m!

s!(m−s)! . By Fact 4.3 and Lemmas 4.5 and 4.6, the size of the circuit C is at least

min

(
m!

mhm4k(m/2)l+1(m− l − 1)!
,

m!

2(2s)km2k(m/2)r+1(m− r − 1)!

)
.

This is lower bounded by

min

(
(m− l)l+1

m5k(m/2)l+1
,

(m− r)r+1

m3k(m/2)r+1

)
=

1

m5k
exp(Ω(min(l, r)))

= exp(Ω(mc/2 − 5k logm)) = exp(Ω(mc/2)).

The second equality holds since 1 − c ≥ c/2 if c ≤ 2/3. This completes the proof of
Theorem 4.7.

Before closing this section we comment on how our results relate to Razborov’s
results [11] pointing out the limitations of the approximation method. His result says
that ω(n2) lower bounds for nonmonotone circuits could not be obtained using the
approximation method. Our results, which establish exponential lower bounds for
nonmonotone circuits, apparently conflict with the results due to Razborov. From
these conflicting results we may conclude that the amount of negations in the circuits
we deal with in this paper is too small to make Razborov’s arguments valid. It is an
interesting open problem to show a bound on the amount of negation beyond which
we have to go to make Razborov’s arguments valid.

Acknowledgment. We would like to thank anonymous referees for making many
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Abstract. Our work is motivated by the problem of managing data on storage devices, typically
a set of disks. Such high-demand storage servers are used as Web servers or as multimedia servers
for handling high demand for data. As the system is running, it needs to dynamically respond to
changes in demand for different data items. In this work we study the data migration problem, which
arises when we need to quickly change one storage configuration into another. We show that this
problem is NP-hard. In addition, we develop polynomial-time approximation algorithms for this
problem and prove a worst-case bound of 9.5 on the approximation factor achieved by our algorithm.
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1. Introduction. To handle high demand, especially for multimedia data, a
common approach is to replicate data objects within the storage system. Typically,
a large storage server consists of several disks connected by a dedicated network,
called a storage area network. Disks typically have constraints on storage as well as
the number of clients that can access data from a single disk simultaneously. With
the recent interest in autonomic computing,1 a relevant goal is to have the system
automatically respond to changes in demand patterns and to recompute data layouts.

Approximation algorithms have been developed [24, 25, 9, 17] to map known
demand for data to a specific data layout pattern to maximize utilization, where the
utilization is the total number of clients that can be assigned to a disk that contains
the data they want. In the layout, we compute not only how many copies of each item
we need but also a layout pattern that specifies the precise subset of items on each
disk. The problem is NP-hard, but there are polynomial-time approximation schemes
[9, 25, 17]. Given the relative demand for data, the algorithm computes an almost
optimal layout.

Over time as the demand for data changes, the system needs to create new data
layouts. The problem we are interested in is the problem of computing a data migra-
tion plan for the set of disks to convert an initial layout to a target layout. We assume
that data objects have the same size (these could be data blocks, or files) and that
it takes the same amount of time to migrate any data item from one disk to another
disk. The crucial constraint is that each disk can participate in the transfer of only
one item—either as a sender or as a receiver. Our goal is to find a migration schedule
to minimize the time taken to complete the migration (makespan).

A special case of this was studied by Hall et al. [11]—they compute a movement
schedule, but this does not allow the creation of new copies of any data object. It
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addresses only the data movement problem. (So, for example, one cannot create extra
copies of any data item, but can only change which disks they are stored on.) The
problem they studied is formally defined as follows: Given a set of disks, with each
storing a subset of items and a specified set of move operations (each move operation
specifies which data object needs to be moved from one disk to another), how do
we schedule these move operations? If there are no storage constraints, then this
is exactly the problem of edge coloring the following multigraph. Create a graph
that has a node corresponding to each disk, and a directed edge corresponding to
each move operation that is specified. Algorithms for edge-coloring multigraphs can
now be applied to produce a migration schedule since each color class represents a
matching in the graph that can be scheduled simultaneously. Computing a solution
with the minimum number of rounds is NP-hard, but several good approximation
algorithms are available for edge coloring. With space constraints on the disk, the
problem becomes challenging. Hall et al. [11] showed that with the assumption that
each disk has one spare unit of storage, very good constant factor approximations can
be developed. The algorithms use at most 4�∆G/4� colors with at most n/3 bypass
nodes, or at most 6�∆G/4� colors without bypass nodes, where ∆G is the maximum
degree of a node and n is the number of nodes. Note that a bypass node is a node
that is not the target of a move operation but is used as an intermediate holding point
for a data item.

On the other hand, to handle high demand for popular objects, new copies will
have to be dynamically created and stored on different disks. This means that we
crucially need the ability to have a “copy” operation in addition to “move” operations.
In fact, one of the crucial lower bounds used in the work on data migration [11] is
based on a degree property of the multigraph. For example, if the maximum degree
of a node is δ, then this is a lower bound on the number of rounds that are required,
since in each round at most one transfer operation involving this node may be done.
For copying operations, clearly this lower bound is not valid. For example, suppose
we have a single copy of a data item on a disk. Suppose we wish to create δ copies of
this data item on δ distinct disks. Using the transfer graph approach, we could specify
a “copy” operation from the source disk to each of the δ disks. Notice that this would
take at least δ rounds. However, by using newly created copies as additional sources,
we can create δ copies in �log(δ+1)� rounds, as in the classic problem of broadcasting
by using newly created copies as sources for the data object. (Essentially each copy
spawns a new copy in each round.)

The most general problem of interest is the data migration problem with cloning
when data item i resides in a specified (source) subset Si of disks and needs to be
moved to a (destination) subset Di. In other words, each data item that initially
belongs to a subset of disks needs to be moved to another subset of disks. (We might
need to create new copies of this data item and store it on an additional set of disks.)
See Figure 1.1 for an example. If each disk had exactly one data item and needs to
copy this data item to every other disk, then it is exactly the problem of gossiping.
We show that this problem is NP-hard by reduction from edge coloring and develop
a polynomial-time 9.5-approximation algorithm for it. For all our algorithms, we
move data only to disks that need the data. Thus we use no bypass nodes. The
total number of data transfers performed is thus the minimum possible. In addition,
we have implemented our algorithm and compared its performance to several other
heuristics [10].

Different communication models can be considered based on how the disks are
connected. We use the same model as in the work by Hall et al. [11] and Anderson
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Target Layout

Initial Layout

disk 1 disk 2 disk 3

S1={2,3} D1={1}

S2={1,2} D2={3}

S3={3} D3={1,2}

S4={1} D4={3}

S5={1,2,3} D5={}

Fig. 1.1. An initial and target layout and their corresponding Si’s and Di’s.

et al. [1] where the disks may communicate on any matching; in other words, the un-
derlying communication graph allows for communication between any pair of devices
via a matching (a switched storage network with unbounded backplane bandwidth).
Moreover, to model the limited switching capacity of the network connecting the disks,
one could allow for choosing any matching of bounded size as the set of transfers that
can be done in each round. We call this a bounded-size matching model. Using the
constant factor approximation algorithm for the unbounded matching model, we can
also develop a constant factor approximation algorithm for the bounded-size matching
model.

One interesting generalization would be for the situation when clusters of disks
are connected in a wide area network. The time required to transfer one unit of data
between a pair of disks in different clusters may be an order of magnitude higher than
the time required to transfer data between a pair of disks in the same cluster. We can
model this by a communication graph model where the number of rounds required
to transfer one unit of data between a pair of disks in different clusters is a certain
number of rounds, and one round is required to transfer one unit of data between a
pair of disks in the same cluster.

1.1. Relationship to gossiping and broadcasting. The problems of gossip-
ing and broadcasting have been the subject of extensive study [19, 13, 15, 3, 4, 16, 7, 8].
These play an important role in the design of communication protocols in various
kinds of networks. The gossip problem is defined as follows: There are n individuals.
Each individual has an item of gossip that they wish to communicate to everyone
else. Communication is typically done in rounds, where in each round an individual
may communicate with at most one other individual. Some communication models
allow for the full exchange of all items of gossip known to each individual in a sin-
gle round. Other models allow the sending of only one item of gossip from one to
the other (half-duplex) or allow each individual to send an item to the individual
they are communicating with in this round (full-duplex). In addition, there may be
a communication graph whose edges indicate which pairs of individuals are allowed
to communicate directly in each round. (In the classic gossip problem, also called
the telephone model, communication may take place between any pair of individuals;
in other words, the communication graph is the complete graph.) In the broadcast
problem, one individual needs to convey an item of gossip to every other individual.
The two parameters typically used to evaluate the algorithms for this problem are
(i) the number of communication rounds, and (ii) the total number of telephone calls
placed.

The problems we study are generalizations of the above-mentioned gossiping
and broadcasting problems. The basic generalizations we are interested in are of
three kinds: (a) each item of gossip needs to be communicated to only a subset of
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individuals; (b) several items of gossip may be known to an individual; and (c) a
single item of gossip can initially be shared by several individuals.

The communication model we use is the half-duplex model, where only one item
of gossip may be communicated between two communicating individuals during a
single round. Each individual may communicate (either send or receive an item of
data) with at most one other individual in a round. This model best captures the
connection of parallel storage devices that are connected on a network and is most
appropriate for our application. This model is one of the most widely used in all the
work related to gossiping and broadcasting.

1.2. Contributions and outline of paper. In section 2 we define the basic
model of communication and the notation used in the paper.

This is the first work that relates broadcasting and gossiping with the data migra-
tion problem. In section 3 we develop a 9.5-approximation algorithm for the general
data migration problem. This is the first approximation algorithm for this problem.
While two of the lower bounds used are quite simple, we develop a new lower bound
using network flows and use this in the algorithm. (Without this lower bound, the
best bound we can obtain is a O(log n) factor.) We show the data migration problem
is NP-hard at the end of section 3.

In section 4 we develop a constant factor approximation algorithm for the bounded-
size matching model.

1.3. Other related work. The paper by Liben-Nowell [21] considers a problem
very similar to multisource multicast, which is exactly the data migration problem
with restrictions that each disk contain at most one source item and that each item
have at most one source. However, the model used is different than the one that
we use. In that model, in each telephone call, a pair of users can exchange all the
items of gossip that they know. The objective is to simply minimize the total number
of phone calls required to convey item i of gossip to set Di of users. In our case,
since each item of gossip is a data item that might take considerable time to transfer
between two disks, we cannot assume that an arbitrary number of data items can be
exchanged in a single round. Several other papers use the same telephone call model
[2, 6, 12, 16, 28].

Other related problems that have been studied are the set-to-set gossiping problem
[20, 23], where we are given two possibly intersecting sets A and B of gossipers and
the goal is to minimize the number of calls required to inform all gossipers in A of
all the gossip known to members in B. Liben-Nowell [21] generalizes this work by
defining for each gossiper i the set of relevant gossip that they need to learn. This
is just like our multisource multicast problem when the number of items is equal to
the number of disks, except that the communication model is different, as well as the
objective function.

We have also studied several special cases of the data migration problem with
cloning, where each data item has only one copy initially, and have developed algo-
rithms with better performance guarantees [18]. One special case we studied is the
multisource multicast problem. We showed that this problem is NP-hard by a reduc-
tion from a restricted version of 3SAT and gave a polynomial-time algorithm with
approximation ratio of 3 + o(1) using a simplified version of the algorithm developed
in this paper.2 Allowing bypass nodes, we improved the approximation ratio to 3.

2The work in [18] presents a 4-approximation algorithm. The improvement to 3 + o(1) can be
obtained from the full version of [18], available at http://www.cs.umd.edu/projects/smart/papers/
multicast.pdf.
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Another special case is the multisource broadcast problem, which is the same as the
multisource multicast problem except that all disks demand all items; i.e., Di is all
the disks minus its source. We developed a polynomial-time algorithm using at most
3 more rounds than the optimal. The last special case we studied is the single-source
multicast problem, when ∆ data items, each having only one copy, are all stored on
the same disk, and data item i needs to be sent to a specified subset Di of disks. We
developed a polynomial-time algorithm using at most ∆ more rounds than the opti-
mal. Farley [8] solved a simpler case optimally, namely, the single-source broadcast
problem, where ∆ data items are stored on a single disk, and all items need to be
broadcast to all disks.

2. Models and definitions. In the data migration problem, we have N disks
and ∆ data items. For each item i, there is a subset of disks Si and Di. Initially only
the disks in Si have item i, and all disks in Di want to receive i. Note that after a disk
in Di receives item i, it can be a source of item i for other disks in Di that have not
received the item as yet. Our goal is to find a migration schedule using the minimum
number of rounds, that is, to minimize the total amount of time to finish the schedule.
We assume that the underlying network is fully connected and the data items are all
the same size; in other words, it takes the same amount of time to migrate an item
from one disk to another. The crucial constraint is that each disk can participate in
the transfer of only one item—either as a sender or receiver. Moreover, as we do not
use any bypass nodes, all data is sent only to disks that desire it.

Our algorithms make use of known results on edge coloring of multigraphs. Given
a graph G with max degree ∆G and multiplicity µ, the following results are known
(see Bondy and Murty [5], for example). Let χ′ be the edge chromatic number of G.

Theorem 2.1 (Vizing [29]). If G has no self-loops, then χ′ ≤ ∆G + µ.
Theorem 2.2 (Shannon [26]). If G has no self-loops, then χ′ ≤ � 32∆G�.
3. The data migration algorithm. Define βj as |{i|j ∈ Di}|, i.e., the number

of different sets Di to which a disk j belongs. We then define β as maxj=1,...,N βj . In
other words, β is an upper bound on the number of items a disk may need. Note that
β is a lower bound on the optimal number of rounds, since the disk j that attains the
maximum needs at least β rounds to receive all the items i such that j ∈ Di, since it
can receive at most one item in each round.

Moreover, we may assume that Di �= ∅ and Di ∩ Si = ∅. This is because we can
define the destination set Di as the set of disks that need item i and do not currently
have it.

Since the algorithm is somewhat complex, we first give a high-level description
of the algorithm and then discuss the various steps in the following lemmas. Dealing
with multiple data items sharing common disks causes some difficulty.

Data migration algorithm.

1. For an item i decide a source si ∈ Si so that α = maxj=1,...,N (|{i|j = si}|+βj)
is minimized. In other words, α is the maximum number of items for which
a disk may be a source (si) or destination. Note that α is also a lower bound
on the optimal number of rounds. In Lemma 3.1 we will show how we can
find a source for each item.

2. Find a transfer graph for items that have |Di| ≥ β as follows:
(a) We first compute a disjoint collection of subsets Gi, i = 1, . . . ,∆. More-

over, Gi ⊆ Di and |Gi| = � |Di|
β �. Figure 3.1(a) shows an example of

choosing sets Gi. (In Lemma 3.2, we will show how such Gi’s can be
obtained.)



ALGORITHMS FOR DATA MIGRATION WITH CLONING 453

D6

D1

D4

D5

D2

D3

D6

D1

D4

D5

(a) (b)

Gi

Di

D3

D2

Fig. 3.1. (a) An example of choosing Gi in step 2(a), where ∆ = 6 and β = 3. (b) Transfer
graph constructed in step 2(c). Disks marked as black do not receive some data items and will be
taken care of in step 3.

(b) We have each item i sent to the set Gi as shown in Lemma 3.5.
(c) We create a transfer graph as follows. Each disk is a node in the graph.

We add directed edges from disks in Gi to (β− 1)� |Di|
β � disks in Di \Gi

such that the out-degree of each node in Gi is at most β − 1 and the
in-degree of each node in Di \ Gi from Gi is 1. Figure 3.1(b) shows an
example of the transfer graph constructed in this step. We redefine Di

as the set of |Di \Gi| − (β − 1)� |Di|
β � disks which do not receive item i

so that they can be taken care of in step 3. Note that the redefined set
Di has size < β.

3. Find a transfer graph for items such that |Di| < β as follows:
(a) For each item i, find a new source s′i in Di. A disk j can be a source

s′i for several items as long as
∑

i∈Ij
|Di| ≤ 2β − 1, where Ij is a set of

items for which j is a new source. See Lemma 3.7 for the details of this
step.

(b) Send each item i from si to s′i.
(c) Create a transfer graph. We add a directed edge from s′i to all disks in

Di \ {s′i}. Lemma 3.9 will show that the out-degree of a disk does not
exceed 2β − 4.

4. We now find an edge coloring of the transfer graph obtained by merging two
transfer graphs in steps 2(c) and 3(c). The number of colors used is an upper
bound on the number of rounds required to ensure that each disk in Di gets
item i. In Lemma 3.10 we derive an upper bound on the number of required
colors.

Lemma 3.1. We can find a source si ∈ Si for each item i so that maxj=1,...,N (|{i|j
= si}|+ βj) is minimized, using a flow network.

Proof. We create a flow network with a source s and a sink t as shown in Figure 3.2.
We have two sets of nodes corresponding to disks and items. Add directed edges from s
to nodes for items and also directed edges from item i to disk j if j ∈ Si. The capacities
of all these edges is one. Finally we add an edge from the node corresponding to disk
j to t with capacity α − βj . We want to find the minimum α so that the maximum
(integral) flow of the network is ∆. We can do this by checking if there is a flow of
∆ with α starting from maxβj and increasing by one until it is satisfied. If there is
outgoing flow from item i to disk j, then we set j as si.
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Fig. 3.2. Flow network to find α.
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�|Di|/β�

Fig. 3.3. Flow network to find Gi.

Lemma 3.2. There is a way to choose disjoint sets Gi for each i = 1, . . . ,∆ such

that |Gi| = � |Di|
β � and Gi ⊆ Di.

Proof. First note that the total size of the sets Gi is at most N .

∆∑
i=1

|Gi| ≤
∆∑
i=1

|Di|
β

=
1

β

∆∑
i=1

|Di|.

Note that
∑∆

i=1 |Di| is at most βN by definition of β. This proves the upper bound
of N on the total size of all sets Gi.

We now show how to find the sets Gi. As shown in Figure 3.3, we create a flow
network with a source s and sink t. In addition we have two sets of vertices U and
W . The first set U has ∆ nodes, each corresponding to an item. The set W has N
nodes, each corresponding to a disk in the system. We add directed edges from s to

each node in U such that the edge (s, i) has capacity � |Di|
β �. We also add directed

edges with unit capacity from node i ∈ U to j ∈ W if j ∈ Di. We add unit capacity
edges from nodes in W to t. We find a max-flow from s to t in this network. The
min-cut in this network is obtained by simply selecting the outgoing edges from s.
To see this, note that we can find a fractional flow of this value as follows: saturate
all the outgoing edges from s. From each node i there are |Di| edges to nodes in W .

Suppose λi = � |Di|
β �. Send 1

β units of flow along λiβ outgoing edges from i. Note that
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Fig. 3.4. An example of constructing Fm where ∆ = 6.

since λiβ ≤ |Di| this can be done. Observe that the total incoming flow to a vertex
in W is at most 1 since there are at most β incoming edges, each carrying at most
1
β units of flow. An integral max-flow in this network will correspond to |Gi| units of
flow going from s to i and from i to a subset of vertices in Di before reaching t. The
vertices to which i has nonzero flow will form the set Gi.

For step 2(b), a simple solution would be to broadcast the data to each group Gi

from the chosen source, since the groups are disjoint. The only thing we have to be
careful of is that the sources for many data items are shared. However, this broadcast
takes at least maxi log |Gi| rounds. Unfortunately, we cannot argue that this is a valid
lower bound since even though Di is large, if Si is large, then there could be a solution
using O(1) rounds. This would give us an O(logN) approximation guarantee. The
method described below develops stronger lower bounds for this situation.

Let M be the number of steps required to send all items i to all disks in Gi in an
optimal schedule of step 2(b). To find a lower bound for M , we construct the following
flow network Fm (parameterized by an integer m) as shown in Figure 3.4. We have
a source s and two sets of nodes U and V . U has N · m nodes xjk (j = 1, . . . , N ,
k = 1, . . . ,m). V has ∆ nodes yi (i = 1, . . . ,∆) and yi has demand |Gi|. There is an
edge eijk from xjk to yi and its capacity cijk is 2m−k if a disk j has item i initially.
There are edges from s to nodes xjk in U with capacity 2m−k.

Lemma 3.3. If m′ is the smallest number such that we can construct a solution
of Fm′ that satisfies all demands |Gi|, then M ≥ m′.

Proof. Suppose that M < m′. Given an optimal schedule of step 2(b), we can
construct a solution of the flow network FM as follows. If a disk j sends item i to
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a disk in Gi at round t ≤ M , which makes f copies in Gi subsequently, we send
a flow f from xjt to yi. Note that f cannot be more than 2M−t, and therefore it
does not violate the capacity constraint. Since all disks in Gi receive item i after
M rounds with this schedule, the corresponding flow satisfies all demands |Gi|. This
is a contradiction to the assumption that m′ is the smallest number to satisfy all
demands |Gi|.

In the solution of the flow network Fm′ , a node xjk may send flow to several
nodes. But since in our schedule, a disk can copy only one item to a disk in a round,
the solution of the flow in Fm′ may not correspond to a valid schedule.

Lemma 3.4. Given a solution of Fm′ , we can convert it to a solution satisfying
the following properties:

• Node xjk sends flow to at most one node in V .

• The solution satisfies at least |Gi| − 2m
′−1 demands for each item i.

Proof. First, we define a variable zijk for an edge from xjk to yi and set zijk =
fijk/cijk, where fijk is the flow through eijk in solution Fm′ . We substitute nodes yil
(l = 1, . . . , �∑j,k zijk�) for each node yi in V . We distribute edges having nonzero flow
to yi as follows. Sort edges in nonincreasing order of their capacities. Assign edges to
yi1 until the sum of z values of assigned edges is greater than or equal to one. If the
sum is greater than one, we split the last edge (denote as eij′k′) into eij′k′

1
and eij′k′

2
.

Assign eij′k′
1

to yi1 and define zij′k′
1

so that the sum of z values of edges assigned to
yi1 is exactly one. Set zij′k′

2
= zij′k′ − zij′k′

1
. We repeat this so that for all nodes yil,

the sums of z values of the assigned edges are one. Let Eil be the set of edges assigned
to yil and let cmax

il (cmin
il ) be the maximum (minimum) capacity of the edges in Eil.

In addition, we denote the edges not assigned to any yil (l = 1, . . . , �∑j,k zijk�) as
Eil′ and the maximum capacity of edges in Eil′ as cmax

il′ , where l′ is �∑j,k zijk�+ 1.

In the resulting bipartite graph with U and V ′ = {yil}, z makes a fractional
matching which matches all vertices in V ′ but not necessarily all vertices in U . There-
fore, we can find an integral matching that matches all vertices in V ′, and the matching
satisfies the first property in the lemma.

Now we merge nodes yil into yi. Then each yi matches exactly �∑j,k zijk� edges.
We prove that the sum of capacities of edges matched to yi is at least |Gi| − cmax,
where cmax is the maximum capacity of any edge from U to V , using an analysis
similar to that in Shmoys and Tardos [27]. The sum of capacities of edges matched
to yi is at least

�∑j,k zijk�∑
l=1

cmin
il ≥

�∑j,k zijk�+1∑
l=2

cmax
il

=

�∑j,k zijk�+1∑
l=1

cmax
il − cmax

i1

≥
�∑j,k zijk�+1∑

l=1

∑
eijk∈Eil

cijkzijk − cmax
i1

=

�∑j,k zijk�+1∑
l=1

∑
eijk∈Eil

fijk − cmax
i1

≥ |Gi| − cmax.
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Since cmax ≤ 2m
′−1, the second property can be satisfied by setting flow through eijk

as cijk if eijk is matched.
Lemma 3.5. Step 2(b) can be done in α+ 2m′ + 1 rounds.
Proof. We can do this with the following schedule. First we choose min(�∑j,k zijk�

+ 1, |Gi|) disks in Gi and denote those disks as Hi. Disk j sends item i to a disk in
Hi if edge eijk is matched for some k. If |Hi| > �

∑
j,k zijk�, there is one disk in Hi

which cannot receive item i. The disk receives item i from si. Then the maximum
degree of a disk is at most m′ + α and the multiplicity of the undirected version of
the transfer graph is 2, since the out-degree of disk j is at most m′ + α− βj and the
in-degree is at most min(βj , 1). By Theorem 2.1, it can be done in m′ +α+2 rounds.

Now |Hi| nodes in Gi have item i. Since |Gi|/|Hi| ≤ (
∑�∑j,k zijk�

l=1 cmin
il + cmax)/

(�∑j,k zijk� + 1) ≤ cmax ≤ 2m
′−1, we can make all disks in Gi have item i in an

additional m′ − 1 rounds.
Lemma 3.7 will show how step 3(a) works. The lemma uses the following result

from Shmoys and Tardos [27].
Theorem 3.6 (Shmoys and Tardos [27]). We are given a collection of jobs J ,

each of which is to be assigned to exactly one machine among the setM; if job j ∈ J
is assigned to machine i ∈M, then it requires pij units of processing time and incurs
a cost cij. Suppose that there exists a fractional solution (that is, a job can be assigned
fractionally to machines) with makespan P and total cost C. Then in polynomial time
we can find a schedule with makespan P + max pij and total cost C.

Lemma 3.7. For each item i we wish to choose a source disk s′i from Di. Let Ij
be the set of items for which disk j is chosen as a source. There is a way to choose
the sources such that the following properties hold:

• If i ∈ Ij, then j ∈ Di.
• ∑i∈Ij

|Di| ≤ 2β − 1.

Proof. We use Theorem 3.6 for this step. For example, we can create an instance
of the problem of scheduling machines with costs. Items correspond to jobs and
disks correspond to machines. For each item i we define a cost function as follows.
C(i, j) = 1 if and only if j ∈ Di; otherwise it is a large constant. The processing time
of job i (corresponding to item i) is |Di| (uniform processing time on all machines).
Using Theorem 3.6 [27], the scheduling algorithm finds a schedule that assigns each job
(item) to a machine (disk) to minimize the makespan. They show that the makespan
is at most the makespan in a fractional solution plus the processing time of the largest
job. Moreover, the cost of their solution is at most the cost of the optimal solution,
namely, the number of items. We cannot assign an item (job) to a disk (machine) if
the disk is not in the destination set for the item.

In our case, it is easy to see that the maximum processing time of any job is β−1.
We will argue that there is a fractional solution with makespan β. It thus follows that
by defining Ij to be the set of items (jobs) assigned to disk (machine) j, the result
follows. The fractional solution is obtained by assigning each job fractionally to each
machine by setting the assignment variable for job i on machine j to 1

|Di| if j ∈ Di;

then the job is fully assigned fractionally and the fractional load on each machine is
at most β. This also gives us a way of finding a fractional solution efficiently.

Lemma 3.8. Step 3(b) can be done in � 32α� rounds.
Proof. Since disk j can be s′i in step 3(a) only if j ∈ Di, |Ij | ≤ βj . Therefore,

a disk j may need to send α − βj items and receive βj items. That means the
maximum degree is α and this transfer can make a multigraph. Given a multigraph
with maximum degree ∆G, we can find an edge coloring using � 32∆G� colors (see
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Fig. 3.5. An example of step 3 where α = 4 and β = 4. (a) Migration from si to s′i. (b) Mi-
gration from s′i to Di \ {s′i}.

Theorem 2.2) and the lemma follows.

Lemma 3.9. The maximum out-degree of a disk in the transfer graph in step 3(c)
is at most 2β − 4.

Proof. If disk j is a new source for k items (in other words, |Ij | = k), then the
out-degree of disk j is

∑
i∈Ij
|Di \ {s′i}| =

∑
i∈Ij
|Di| − k.

It is easy to see that the lemma is true for k ≥ 3 since
∑

i∈Ij
|Di| ≤ 2β − 1. For

k = 1, the lemma is also true since
∑

i∈Ij
|Di| ≤ β − 1 and β ≥ 2 (otherwise, there is

no set with size less than β). For k = 2,
∑

i∈Ij
|Di| ≤ 2β − 2, and therefore we have

the lemma.

Figure 3.5 shows an example of migrations in step 3.

Lemma 3.10. The number of colors we need for the final transfer graph in step 4
is (4β − 5) + (β + 2).

Proof. The out-degree of a disk j can be at most 3β − 5 (β − 1 in step 2(c) and
2β − 4 in step 3(c)). The in-degree is at most β by definition. We claim that the
multiplicity of the undirected version of the final transfer graph is β+ 2. Consider all
the edges added in step 2(c); we will show the multiplicity induced by these edges is 2.
Since all Gi’s are disjoint and each disk in Gi sends only item i to disks in Di \ Gi,
for any pair of disks j1 and j2, there can be at most one edge in each direction. Now
consider all the edges added in step 3(c); if there is an edge between disk j1 and disk
j2, no matter which disk is the sender, both disks belong to Di for some i. Thus,
there are at most β edges between j1 and j2 since a disk can belong to at most β
different Di’s. Therefore, the result follows by Theorem 2.1.

Theorem 3.11. The total number of rounds required for the data migration is at
most α+ 2m′ + � 32α�+ 5β − 2.

Proof. We need α+ 2m′ + 1 rounds for step 2(b) by Lemma 3.5 and � 32α� rounds
for step 3(b) by Lemma 3.8. Migration according to the coloring of the final transfer
graph needs (4β−5)+(β+2) by Lemma 3.10. Therefore, we have the theorem.

Corollary 3.12. Our algorithm is 9.5-approximation for the data migration
problem.

Proof. Since α, β,m′ are lower bounds for the problem, the corollary follows.

Theorem 3.13. The data migration problem (with copy operation) is NP-hard.



ALGORITHMS FOR DATA MIGRATION WITH CLONING 459

Proof. We give a reduction from the problem of edge coloring a simple graph
with the smallest number of colors (which is known to be NP-hard [14]). Given a
graph G = (V,E), we create an instance of a data migration problem with N = |V |
disks. For each edge ei = (u, v) in the graph, we create a new item i, where Si is {u}
and Di is {v}. It is not difficult to see that the minimum number of colors required
in the edge coloring instance is the same as the minimum number of rounds in the
corresponding data migration instance.

3.1. A bad example. Here we give an example when our data migration algo-
rithm does not perform very well. Consider the problem where there are ∆ source
disks, each disk having a separate item; in addition, there are ∆−1 destination disks,
and each disk requests all ∆ items. Thus N is equal to 2∆− 1, β is equal to ∆, and
|Di|, the number of disks requesting item i, is equal to β − 1 for all i. In step 3 of
our data migration algorithm, we need to find ∆ new sources s′i, but we have only
∆ − 1 destination disks. At least one disk d has to be a new source for two items.
Therefore step 3(b) takes at least 2 rounds. In disk d, each item in d has to be sent
to the remaining ∆ − 2 destination disks. The out-degree is exactly 2∆ − 4. The
in-degree is ∆ − 2. So, we have a node of degree 3∆ − 6 in the transfer graph, and
the total number of rounds is at least 3∆− 4. The optimal strategy is to have ∆− 1
of ∆ source disks sending items to destination disks in a round-robin fashion. This
method takes only ∆ rounds. Therefore, our algorithm cannot perform better than
(3− ε)-approximation.

4. Bounded-size matching model. The following algorithm gives a constant
factor approximation when at most C transfers are allowed in each round. Let Ei be
the transfers in the ith round in the algorithm for the full matching model. Then we
split each Ei into �|Ei|/C� sets of size at most C and perform each set in a round.

Theorem 4.1. Given ρ-approximation algorithm for the full matching model, we
have a 1 + ρ(1− 1/C)-approximation algorithm for the bounded-size matching model,
where C is the maximum number of transfers allowed in a round.

Proof. Let us denote the number of rounds required in an optimal solution for
the full matching model and bounded-size matching model as OPT and OPT ′, re-
spectively. Denote the number of rounds in our algorithm as t and t′.

Note that since we move data only to disks that need the data, the total number
of data transfers performed by the algorithm is the minimum possible. Thus OPT ′ ≥∑

i |Ei|/C. Since t ≤ ρOPT and OPT ≤ OPT ′, we have t ≤ ρOPT ′.
Therefore,

t′ =

t∑
i=1

⌈ |Ei|
C

⌉

≤
t∑

i=1

( |Ei| − 1

C
+ 1

)

=
1

C

t∑
i=1

|Ei|+ t

(
1− 1

C

)
≤ OPT ′ + ρOPT ′

(
1− 1

C

)
=

(
1 + ρ

(
1− 1

C

))
OPT ′.
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Corollary 4.2. We have a 1 + 9.5(1 − 1/C)-approximation algorithm for the
bounded-size matching model.

When we consider only move operations, we can obtain better bounds for the
bounded-size matching model. Without space constraints, the problem can be re-
duced to edge-coloring multigraphs, which has a 1.1-approximation algorithm with a
0.8 additive term [22].

Corollary 4.3. With only move operations, we have a 1 + 1.1(1 − 1/C)-
approximation algorithm with a 0.8 additive term for the bounded-size matching model.

With space constraints, the algorithm by Hall et al. [11] gives 3
∆G
�∆G

2 �-approxi-
mation. We thus obtain the following.

Corollary 4.4. With only move operations and space constraints, we have a
1 + 3

∆G
�∆G

2 �(1− 1
C )-approximation algorithm for the bounded-size matching model.

In addition, using at most n/3 bypass nodes, Hall et al. [11] obtained algo-
rithms which give 2

∆G
�∆G

2 �-approximation without space constraints and 4
∆G
�∆G

4 �-
approximation with space constraints. The algorithms add one transfer for every
odd cycle. For a transfer graph with sets of cycles of length 3, the algorithms take
4 rounds, while OPT ′ may take only 3 rounds. Thus we have 4OPT ′/3 ≥∑ |Ei|/C.

Theorem 4.5. When we allow only move operations and use at most n/3 bypass
nodes, there is a 4

3 + 2
∆G
�∆G

2 �(1 − 1
C )-approximation algorithm without space con-

straints and a 4
3 + 4

∆G
�∆G

4 �(1− 1
C )-approximation algorithm with space constraints.

Proof. We use the same notation as in Theorem 4.1. Since 4OPT ′/3 ≥∑ |Ei|/C,
we have

t′ =

t∑
i=1

⌈ |Ei|
C

⌉

≤
t∑

i=1

( |Ei| − 1

C
+ 1

)

=
1

C

t∑
i=1

|Ei|+ t

(
1− 1

C

)
≤ 4

3
OPT ′ + ρOPT ′

(
1− 1

C

)
=

(
4

3
+ ρ

(
1− 1

C

))
OPT ′.

Acknowledgments. We would like to thank Sudarshan Chawathe, Leana Gol-
ubchik, Liviu Iftode, and John Kubiatowicz for useful discussions related to the defi-
nition of the problem considered.

REFERENCES

[1] E. Anderson, J. Hall, J. Hartline, M. Hobbes, A. Karlin, J. Saia, R. Swaminathan,

and J. Wilkes, An experimental study of data migration algorithms, in Proceedings of the
Workshop on Algorithm Engineering, Lecture Notes in Comput. Sci. 2141, Springer-Verlag,
New York, 2001, pp. 145–158.

[2] B. Baker and R. Shostak, Gossips and telephones, Discrete Math., 2 (1972), pp. 191–193.
[3] J. Bermond, L. Gargano, and S. Perennes, Optimal sequential gossiping by short messages,

Discrete Appl. Math., 86 (1998), pp. 145–155.
[4] J. Bermond, L. Gargano, A. A. Rescigno, and U. Vaccaro, Fast gossiping by short mes-

sages, in Proceedings of the International Colloquium on Automata, Languages and Pro-



ALGORITHMS FOR DATA MIGRATION WITH CLONING 461

gramming, Lecture Notes in Comput. Sci. 944, Springer-Verlag, New York, 1995, pp. 135–
146.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New
York, 1977.

[6] R. T. Bumby, A problem with telephones, SIAM J. Algebraic Discrete Methods, 2 (1981),
pp. 13–18.

[7] E. J. Cockayne and A. G. Thomason, Optimal multimessage broadcasting in complete graphs,
Utilitas Math., 18 (1980), pp. 181–199.

[8] A. M. Farley, Broadcast time in communication networks, SIAM J. Appl. Math., 39 (1980),
pp. 385–390.

[9] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu, Approximation al-
gorithms for data placement on parallel disks, in Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), ACM, New
York, SIAM, Philadelphia, 2000, pp. 223–232.

[10] L. Golubchik, S. Khuller, Y. A. Kim, S. Shargorodskaya, and Y. C. Wan, Data Migration
on Parallel Disks, Technical Report CS-TR-4547, University of Maryland, 2003.

[11] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, On algorithms for efficient
data migration, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (Washington, DC, 2001), ACM, New York, SIAM, Philadelphia, 2001, pp.
620–629.

[12] A. Hajnal, E. C. Milner, and E. Szemeredi, A cure for the telephone disease, Canad. Math.
Bull., 15 (1972), pp. 447–450.

[13] S. M. Hedetniemi, S. T. Hedetniemi, and A. Liestman, A survey of gossiping and broad-
casting in communication networks, Networks, 18 (1988), pp. 129–134.

[14] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718–720.
[15] J. Hromkovic, R. Klasing, B. Monien, and R. Peine, Dissemination of information in

interconnection networks (broadcasting and gossiping), in Combinatorial Network The-
ory, D.-Z. Du and D. F. Hsu, eds., Kluwer Academic, Dordrecht, The Netherlands, 1996,
pp. 125–212.

[16] C. A. J. Hurkens, Spreading gossip efficiently, Nieuw Arch. Wiskd. (5), 1 (2000), pp. 208–210.
[17] S. Kashyap and S. Khuller, Algorithms for non-uniform size data placement on parallel disks,

in Proceedings of the 23rd Conference on Foundations of Software Technology and Theo-
retical Computer Science, Mumbai, India, Lecture Notes in Comput. Sci. 2914, Springer-
Verlag, New York, 2003, pp. 265–276.

[18] S. Khuller, Y. A. Kim, and Y. C. Wan, On generalized gossiping and broadcasting, in
Proceedings of the 11th Annual European Symposium on Algorithms (ESA), Lecture Notes
in Comput. Sci. 2832, Springer-Verlag, New York, 2003, pp. 373–384.

[19] W. Knodel, New gossips and telephones, Discrete Math., 13 (1975), p. 95.
[20] H. M. Lee and G. J. Chang, Set to set broadcasting in communication networks, Discrete

Appl. Math., 40 (1992), pp. 411–421.
[21] D. Liben-Nowell, Gossip is synteny: Incomplete gossip and an exact algorithm for syntenic

distance, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (Washington, DC, 2001), ACM, New York, SIAM, Philadelphia, 2001, pp. 177–185.

[22] T. Nishizeki and K. Kashiwagi, On the 1.1 edge-coloring of multigraphs, SIAM J. Discrete
Math., 3 (1990), pp. 391–410.

[23] D. Richards and A. L. Liestman, Generalizations of broadcasting and gossiping, Networks,
18 (1988), pp. 125–138.

[24] H. Shachnai and T. Tamir, On two class-constrained versions of the multiple knapsack prob-
lem, Algorithmica, 29 (2001), pp. 442–467.

[25] H. Shachnai and T. Tamir, Polynomial time approximation schemes for class-constrained
packing problems, in Approximation Algorithms for Combinatorial Optimization (Saar-
brücken, 2000), Lecture Notes in Comput. Sci. 1913, Springer-Verlag, Berlin, 2000, pp. 238–
249.

[26] C. E. Shannon, A theorem on colouring lines of a network, J. Math. Phys., 28 (1949), pp.
148–151.

[27] D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment
problem, Math. Programming, A 62 (1993), pp. 461–474.

[28] R. Tijdeman, On a telephone problem, Nieuw Arch. Wisk. (3), 19 (1971), pp. 188–192.
[29] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz., 3 (1964),

pp. 25–30 (in Russian).



AN OPTIMAL COMPETITIVE STRATEGY FOR
WALKING IN STREETS∗

CHRISTIAN ICKING† , ROLF KLEIN‡ , ELMAR LANGETEPE‡ ,
SVEN SCHUIERER§ , AND INES SEMRAU¶

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 462–486

Abstract. A simple polygon P with two distinguished vertices, s and t, is called a street if the
two boundary chains from s to t are mutually weakly visible. We present an on-line strategy that
walks from s to t, in any unknown street, on a path at most

√
2 times longer than the shortest path.

This matches the best lower bound previously known and settles an open problem in the area of
competitive path planning. (The result was simultaneously and independently obtained by the first
three authors and by the last two authors. Both papers, [C. Icking, R. Klein, and E. Langetepe,
Proceedings of the 16th Symposium on Theoretical Aspects in Computer Science, Lecture Notes in
Comput. Sci. 1563, Springer-Verlag, Berlin, 1999, pp. 110–120] and [S. Schuierer and I. Semrau,
Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science, pp. 121–131], were
presented at STACS’99. The present paper contains a joint full version.)
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on-line navigation, path planning, polygon, street
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1. Introduction. The path planning problem of autonomous mobile robots has
received a lot of attention in the communities of robotics, computational geometry,
and on-line algorithms; see, e.g., Rao et al. [37], Blum, Raghavan, and Schieber [6],
and the surveys by Berman [4] in Fiat and Woeginger [15] and by Mitchell [35] in
Sack and Urrutia [38].

In on-line navigation one has to perform a certain task in an initially unknown
environment. We are interested in strategies that are correct, in that the objective
will always be achieved whenever this is possible, and in performance guarantees of
the following kind. Given a navigation problem Q, we want to relate the cost of
solving any problem instance P ∈ Q by means of strategy S to the cost of solving
P optimally, using an off-line strategy. If the former never exceeds the latter times
a certain constant factor, c, then strategy S is said to be a c-competitive solution of
Q; this notion was coined by Sleator and Tarjan in their seminal paper [43]. Surveys
on general on-line algorithms can be found in Fiat and Woeginger [15] and Ottmann,
Schuierer, and Hipke [36].

Given an on-line problem Q, three questions arise: Does a competitive solution
exist? If S is a solution, what is its true competitive factor, i.e., the smallest c such that
S is c-competitive? And finally, what is the smallest factor c that can be attained
by any strategy solving Q? This number is called the competitive complexity of
problem Q.

There are not so many navigation tasks we are aware of whose competitive com-
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plexities are precisely known. One of them is searching for a point on m halflines
that meet at the start point; see Baeza-Yates, Culberson, and Rawling [2] and also
Bellman [3], Gal [16], Schuierer [39], López-Ortiz and Schuierer [34], and Alpern and
Gal [1].

Another one is looking around a corner in a wall; see Icking, Klein, and Ma
[22]. Recently, matching lower and upper bounds for some restricted on-line TSP
problems where shown by Blom et al. [5]. More often, there is a gap between the
smallest competitive factor known and the best lower bound, such as in the polygon
exploration problem; see Hoffmann et al. [18].

In this paper we prove that walking in an unknown street is of competitive com-
plexity

√
2, thus settling a problem that has been open for a decade. A street is a

simple polygon P with two vertices, s and t, that mark the start and target point of the
walk, subject to the condition that the two boundary chains connecting s to t are mu-
tually weakly visible1; see Figure 1.1 for an example. This is equivalent to saying that
from each s-to-t path inside P , each point of P can be seen at least once. Streets were
introduced in Klein [24] to model racetracks and rivers like the Rhine that may contain
curves and bays but no cul-de-sacs winding away from the main route. It was shown
in [24, 25] that there exists a strategy that is competitive with a factor of 5.72, and
that no factor smaller than

√
2 can be achieved, not even by a randomized strategy.

s

t

SP

L

R

Fig. 1.1. A street.

Since then, the street problem has attracted considerable attention. Some re-
search was devoted to structural properties. Tseng, Heffernan, and Lee [44] have
shown how to report all pairs of vertices (s, t) of a given polygon for which it is a
street; for star-shaped polygons many such vertex pairs exist. Das, Heffernan, and
Narasimhan [10] have improved on this result by giving an optimal linear time algo-
rithm. Ghosh and Saluja [17] have described how to walk an unknown street with a
minimum number of turns.

For arbitrary polygons it is quite easy to see that in general no strategy can
guarantee a search path whose length is at most a constant times the length of the
shortest path from start to target.2 Therefore, some researchers have designed com-
petitive search strategies for classes of polygons more general than streets; see Datta

1Two sets are mutually weakly visible if each point of one set can see at least one point of the
other.

2If n L-shaped legs of unit length lead away from a central place, the search path can be of length
2n− 1, in the worst case, while the shortest path is of length 1.
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and Icking [13, 14], Datta, Hipke, and Schuierer [12], and López-Ortiz and Schuierer
[30, 33].

Other authors have shown that more general search problems can be solved for
the original street polygons. Indeed, not only can we walk to vertex t starting from
vertex s, where s, t are the two special vertices defining the street, but it has also been
shown in Bröcker and Schuierer [8] and Bröcker and López-Ortiz [7] that one can find
any boundary point from any starting point on the boundary of a street by means of
a 69.216-competitive strategy.

Carlsson and Nilsson [9] have shown that the art gallery problem remains NP-
hard for street polygons. However, the problem of computing the minimum number
of guards located on a given watchman route can be solved very efficiently for streets,
while it is NP-hard for general polygons.

Other research has addressed the gap between the
√

2 lower bound and the first
upper bound of 5.72 for the original street problem. The upper bound was low-
ered to 4.44 in Icking [19], then to 2.61 in Kleinberg [26], to 2.05 in López-Ortiz
and Schuierer [29], and to 1.73 in López-Ortiz and Schuierer [31]. López-Ortiz and
Schuierer [32] showed that a particular strategy called CAB has the true competitive
ratio 1.6837. Using different search strategies, the upper bound was further decreased
to 1.57 in Semrau [42], and to 1.51 in Icking et al. [23]. Further attempts were made
by Dasgupta, Chakrabarti, and DeSarkar [11] and by Kranakis and Spatharis [27].

But it remained an open question whether there existed a search strategy with
optimal competitive factor

√
2; this was mentioned open problem no. 13 in Mitchell

[35].
In this paper the problem is finally solved. We introduce a new strategy and prove

that the search path it generates, in any particular street, is at most
√

2 times the
length of the shortest path from s to t. Unlike many approaches discussed in previous
work, the optimal strategy we are presenting here is not a mere artifact. Rather, its
definition is well motivated by backward reasoning, as we shall now explain.

The crucial subproblem can be parametrized by a single angle, φ. For each
possible value of φ a lower bound can be established; see section 3.1. For the maximum
value φ = π the existence of a strategy matching this bound follows from the properties
of a street. We state a requirement in section 3.2 that would allow us to extend an
optimal strategy from a given value of φ to smaller values. From this requirement we
can infer how the strategy should proceed; see section 3.3. One of the problems is to
prove that the requirement can be fulfilled; see section 3.4.

2. Definitions and basic properties. First, we briefly recall some basic defi-
nitions.

A simple polygon P is considered as a room, with its edges as opaque walls. By
∂P we denote the boundary of polygon P . Two points inside P are mutually visible,
i.e., see each other, if the connecting line segment is contained within P . As usual,
two sets of points are said to be mutually weakly visible if each point of one set can
see at least one point of the other set.

Definition 2.1. A simple polygon P in the plane with two distinguished vertices
s and t is called a street if the two boundary chains from s to t are weakly mutually
visible; for an example, see Figure 1.1. Streets are sometimes also called LR-visible
polygons [10, 44], where L and R denote the left and the right boundary chains from
s to t, respectively.

A strategy for searching a target in an unknown street is an on-line algorithm for
a mobile robot, modeled by a point, that starts at vertex s, moves around inside the
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polygon, and eventually arrives at the target, t. The robot is equipped with a vision
system that provides the visibility polygon for its actual position at each time, and
everything that has been visible is memorized. When the target becomes visible the
robot goes there, and its task is accomplished.

As the room’s floor plan is not known in advance, the robot’s path can be longer
than the shortest path, SP , from s to t inside P . Our goal is to bound that detour.

Definition 2.2. A strategy for searching a target, t, in a street is called compet-
itive with factor c (or c-competitive, for short) if its path is never longer than c times
the length of the shortest path from s to t.

All existing algorithms for walking along a street are making use of some geo-
metric properties that can be derived from the definition of a street; these facts and
their complete proofs can be found in [25]. For the convenience of the reader these
properties, together with an outline of their proofs, will now be stated.

First, we consider the situation at the beginning. As the robot starts from vertex
s, it may not be able to see the whole polygon. The parts invisible to the robot are
called caves. Each cave is hidden behind a reflex vertex, v, which is one whose internal
angle exceeds 180◦. Such a reflex vertex—and its associated cave—is called left if its
adjacent edges in ∂P lie to the left of the ray emanating from the robot’s position
through v. Right reflex vertices are defined analogously.

If s is the start point of a street, these caves can occur only in a certain order.
As the robot scans ∂P in a clockwise direction, it encounters a consecutive sequence
of left caves with left reflex vertices v−a

l , v−a+1
l , . . . , v0

l , v
1
l followed by a consecutive

sequence of right caves with right reflex vertices v1
r , v

0
r , . . . , v

−b+1
r , v−b

r ; see Figure 2.1.
Either sequence can be empty. The reason for this ordering is that a right cave cannot
be predecessor of a left cave. Assuming the contrary, let v be a right reflex vertex
that appears before the left reflex vertex w in clockwise order on ∂P . Let v− be the
predecessor vertex of v, and let w+ denote the successor of w. If v were a vertex of
chain L, then v− would not be able to see a point of chain R, in contradiction to the
street property. Thus, v ∈ R holds. Similarly, we have w ∈ L. But this is impossible
since L and R are connected and meet at s.

Of all the left caves visible from s only the clockwise-most can contain the target;
see Figure 2.1. The reason is similar to the proof above. In fact, the reflex vertex vl of
the clockwise-most left cave cannot belong to chain R, or its successor on the boundary
would not be able to see a point of L. Analogously, only the counterclockwise-most
right cave with reflex vertex vr can contain the target vertex t.

Consequently, if only vl exists, then its cave must contain the target, and the
robot walks straight to vl; see Figure 2.1(ii). We observe that this reflex vertex must
also be visited by the shortest path from s to t. The same holds if only vr exists.

A more interesting situation arises if both vl and vr exist. Then the target can
be situated in either of their caves, but the robot does not know in which one; see
Figure 2.1(i). We call this a funnel situation. The angle, φ, between the directions
from the actual position to vl and to vr is called the opening angle; it is always smaller
than π, as another consequence of the street property. Most search strategies cause
the robot to walk into this funnel of angle φ. They differ in choosing the direction
into the funnel.

As the robot leaves the start vertex s, the vertices vl and vr are maintained by
the robot. Essentially, vl is the reflex vertex of the clockwise-most left cave in front
of the robot, and vr is the entrance vertex of the counterclockwise-most right cave.
The vertices vl and vr are known to belong to L and R, respectively; but the horizon,
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(i)

φ

v3
l

v2
l

SP
q

L

R

s

vr=v
1
r

vl=v
1
l

v2
r

t

L R

(ii)
s

t vl=v
1
l

v0
l

v0
r

v−1
r

SP

v0
l

v−1
l

Fig. 2.1. Typical situations in streets.

that is, the boundary part between vl and vr, can belong to either chain, depending
on the position of the target.

To summarize, the robot behaves as follows. If the target is visible from the
robot’s current position, the robot walks straight to the target. If only one of the
vertices vl, vr exists, then the robot walks straight to this vertex, which is also visited
by the shortest path. If both vl and vr exist, then the robot walks into the funnel
defined by its current position, c0, and by vl and vr.

As the robot moves into the funnel, three events can happen. The most important
event occurs when a new reflex vertex, say vl

′, appears behind vertex vl. In this case,
we know from the discussion above that the target cannot be contained in the cave
of vl

′; it must be situated in the caves of vl
′ or vr. Now the robot proceeds with vl

′

and vr. This event can occur repeatedly on both sides. It generates convex chains of
reflex vertices v1

l , v
2
l , . . . , v

m
l and v1

r , v
2
r , . . . , v

n
r that form a funnel with apex c0.

Another event can occur when one of the two innermost caves, say the left, be-
comes completely visible. In this case, the target must be situated in the right cave,
and the robot walks to its associated reflex vertex, vnr . On reaching vnr , the funnel
situation is resolved, and we know that the chain v1

r , v
2
r , . . . , v

n
r belongs to the shortest

path from s to t.
The third event occurs when the target becomes visible, e.g., in the right cave;

then the robot walks straight to t, visiting the reflex vertex vnr on the way.
This analysis shows that detour is only caused by funnels, and that the overall

competitive factor of a search strategy for streets depends only on its performance in
funnels.

As a consequence, we can restrict our attention to the subclass of funnel polygons.
They consist of two chains of reflex vertices with a common start point s; see Figure 2.2
for an example. The two reflex chains end in vertices tl and tr, respectively, and the
line segment tl tr closes the polygon. A funnel polygon represents a funnel situation
in which the target t lies arbitrarily close behind either tl or tr, and the strategy will
know which case applies only when the line segment tltr is reached. For analyzing
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vl

tr

tl

vr

s

φ0

φ

Fig. 2.2. A funnel.

a strategy, both cases have to be considered and the worse of them determines the
competitive factor. Other funnel situations, which end before line segment tltr is
reached or where the goal is further away from tl or tr, will produce a smaller detour.

Since the walking direction is always within the opening angle, φ is always strictly
increasing. It starts at the angle, φ0, between the two edges adjacent to s, and reaches,
but never exceeds, 180◦ when finally the goal becomes visible. By this property, it is
quite natural to take the opening angle φ for parameterizing a strategy.

3. A strategy which always takes the worst case into account. In the
previous section we have seen that a crucial situation occurs when the robot is faced
with two caves, one left and one right, and does not know in which of them the target,
t, is situated. This situation can be parametrized by the funnel’s opening angle φ.

Let us assume that π
2 ≤ φ holds. We will see in section 3.1 that for each value of

φ, a lower bound for the competitive ratio is given by

Kφ =
√

1 + sinφ.

If φ = π, then Kπ = 1. The street properties ensure that the robot is able to look
into the caves and see the target. Hence, the optimal strategy is given by walking
straight to t. That means, for φ = π we have a strategy matching the lower bound.

Now assume that π
2 ≤ φ1 < φ2 < π holds, and that we have already found a strat-

egy with (optimum) competitive factor Kφ2 for all opening angles ≥ φ2. We would
like to extend it to a Kφ1

-competitive strategy for opening angles φ1. This is possible
iff a certain geometric condition can be met, which will be stated in section 3.2. This
condition gives rise to a certain curve (see section 3.3), and this curve will then be
shown to have the required properties in section 3.4. Finally, in section 3.5, we deal
with opening angles less than π.

3.1. A generalized lower bound. We start with a generalized lower bound
for initial opening angles ≥ π

2 . For an arbitrary angle φ, let

Kφ :=
√

1 + sinφ .

Lemma 3.1. Assume an initial opening angle φ0 ≥ π
2 . Then no strategy can

guarantee a smaller competitive factor than Kφ0 .
Proof. We take an isosceles triangle with an angle φ0 at vertex s; the other vertices

are tl and tr; see Figure 3.1.
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φ0

s

m trtl

Fig. 3.1. Establishing a generalized lower bound.

The goal becomes visible only when the line segment tl tr is reached. If this
happens to the left of the midpoint m, the goal may be to the right, and vice versa.
In any case the path length is at least the distance from s to m plus the distance
from m to tl. For the ratio, c, of the path length to the shortest path we obtain by
simple trigonometry

c ≥ cos
φ0

2
+ sin

φ0

2
=
√

1 + sinφ0 = Kφ0 .

For φ0 = π
2 , we have the well-known lower bound of

√
2 stemming from a rectan-

gular isosceles triangle; see Klein [25].
Note that the lower bound Kφ0 also applies to any nonsymmetric situation, since

at the start the funnel is unknown except for the two edges adjacent to s, and it may
turn into a nearly symmetric case immediately after the start. In other words this
means that for an initial opening angle φ0, a competitive factor of Kφ0

is always the
best we can hope for.

In the following we develop a strategy that is Kφ-competitive in all funnel poly-
gons of opening angle φ.

3.2. Sufficient requirements for an optimal strategy. In a funnel with
opening angle π the goal is visible and there is a trivial strategy that achieves the
optimal competitive factor Kπ = 1. So we look backwards to decreasing angles.

Let us assume for the moment that the funnel is a triangle, and that we have a
strategy with a competitive factor of Kφ2

for all triangular funnels with initial opening
angle φ2. How can we extend this to initial opening angles φ1 with π ≥ φ2 > φ1 ≥ π

2 ?
Starting with an angle φ1 at point p1 we walk a certain path of length w until we

reach an angle of φ2 at point p2, from where we can continue with the known strategy;
see Figure 3.2. We assume for the moment that the left and right reflex vertices, vl
and vr as defined in section 2, do not change.

vl vr

w

φ2

φ1

p1

p2

l1

r2l2

r1

Fig. 3.2. Getting from angle φ1 to φ2.
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Let l1 and l2 denote the distances from p1, respectively, p2, to vl at the left side,
and r1 and r2 the corresponding distances at the right. If t = vl, the length of the
robot’s path from p1 to t is not greater than w +Kφ2

l2. If now Kφ1
l1 ≥ w +Kφ2

l2
holds and the analogous inequality Kφ1r1 ≥ w +Kφ2r2 for the right side, we have a
competitive factor not bigger than Kφ1

for triangles with initial opening angle φ1. By
combining the two inequalities we can express the condition as

w ≤ min(Kφ1 l1 −Kφ2
l2,Kφ1

r1 −Kφ2
r2) ,(3.1)

which will prove useful later on.
Note that condition (3.1) is additive in the following sense. If it holds for a

path w12 from φ1 to φ2 and for a continuing path w23 from φ2 to φ3, it is also true
for the combined path w12 +w23 from φ1 to φ3. This will turn out to be very useful:
if (3.1) holds for arbitrarily small, successive steps w, then it is also true for all bigger
ones.

vl

φ2

w

φ0 p1

p2

l2 r2
l1

l′2

v′l trW

φ1

r1
r0

vr

l0

s

rend
pend

lendtl

Fig. 3.3. When p2 is reached, the most advanced visible point to the left jumps from vl to v′l.

Now let us go further backwards and observe what happens if one of the current
vertices vl or vr change. We assume that condition (3.1) holds for path w from p1 to
p2 and that vl changes at p2; see Figure 3.3. The visible left chain is extended by l′2.
Nothing changes on the right side of the funnel, and for the left side of the funnel we
have

w ≤ Kφ1 l1 −Kφ2 l2 = Kφ1 l1 −Kφ2 l2 +Kφ2 l
′
2 −Kφ2 l

′
2(3.2)

≤ Kφ1
(l1 + l′2)−Kφ2

(l2 + l′2) .

The last inequality holds because Kφ =
√

1 + sinφ is decreasing with increasing φ ∈
[π2 , π]. Here, l1 + l′2 and l2 + l′2 are the lengths of the shortest paths from p1 and p2

to v′l, respectively. But (3.2) in fact means that (3.1) remains valid even if changes of
vl or vr occur.

Under the assumption that (3.1) holds for all small steps where vl and vr do not
change we can make use of the additivity of (3.1) and obtain the following expression
for the path length, W , from an initial opening angle φ0 to the point pend where the
line segment tl tr is reached; see Figure 3.3.

W ≤ min
(
Kφ0(length of left chain)−Kπlend,

Kφ0(length of right chain)−Kπrend

)
.
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But, since Kπ = 1, this inequality exactly means that we have a competitive factor
not larger than Kφ0 . Only a curve remains to be found that satisfies (3.1) for small
steps.

3.3. Developing the curve. One could try to satisfy condition (3.1) by ana-
lyzing, for fixed p1, φ1, and φ2, which points p2 meet that requirement. To avoid this
tedious task, we argue as follows. For fixed φ2, the point p2 lies on a circular arc
Uφ2

through vl and vr. While p2 moves along the arc Uφ2 , the length l2 is strictly
increasing while r2 is strictly decreasing. Heuristically, we maximize our chances to
satisfy (3.1) if we require that

Kφ1
l1 −Kφ2

l2 = Kφ1r1 −Kφ2r2

or, equivalently,

Kφ2
(l2 − r2) = Kφ1(l1 − r1) .(3.3)

We claim that inside the triangle defined by φ1 and segments of length l1 and r1
there exists a point p2 on Uφ2

that satisfies (3.3). Indeed, while p2 moves along Uφ2

between the intersections of Uφ2
with the segments of length l1 and r1, the continuous

expression Kφ2(l2 − r2) − Kφ1(l1 − r1) changes its sign; see Figure 3.4. If p2 is the
intersection of Uφ2

with the segment of length r1, we have r2 < r1 and Kφ2 < Kφ1 ,
and Kφ2(l2 − r2) −Kφ1(l1 − r1) is positive if Kφ1 l1 ≤ Kφ2 l2. Using the law of sine,

Kφ1
l1 ≤ Kφ2

l2 is equivalent to
Kφ1

sinφ1
≤ Kφ2

sinφ2
. The expression

Kφ

sinφ is monotonically

increasing for π
2 ≤ φ < π. For the same reason Kφ2

(l2 − r2)−Kφ1
(l1 − r1) < 0 holds

if p2 is the intersection of Uφ2 with the segment of length l1.

vl vr

φ2Uφ2

p1

l1
r1φ1

φ2

r2l2

Fig. 3.4. Kφ2
(l2 − r2)−Kφ1

(l1 − r1) changes its sign along the circular arc Uφ2
.

Altogether, if we start with the initial values φ0, l0, r0, we define the fixed constant
A := Kφ0

(l0 − r0), and for any φ0 ≤ φ ≤ π with corresponding lengths lφ and rφ we
want that

Kφ(lφ − rφ) = A(3.4)

holds as long as vl and vr do not change. In the symmetric case l0 = r0 this condition
means that we walk along the bisector of vl and vr. Otherwise, condition (3.4) defines a
curve which can be determined in the following way. We choose a coordinate system
with horizontal axis vl vr, the midpoint being the origin. We scale the coordinate
system so that the distance from vl to vr equals 1. With this choice we have

|A| = |Kφ(lφ − rφ)| ≤ Kφ =
√

1 + sinφ(3.5)

for every lφ, rφ, and Kφ in the triangle defined by φ0, l0, r0.
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vrvl

φ
lφ

r0

φ0

p

(0, 0)

rφ

l0

(− 1
2 , 0
)

Fig. 3.5. The right arc of the hyperbola defined by vl, vr, and (l − r) = A
Kφ

and the circle

through vl and vr defined by angle φ meet in p = (X(φ), Y (φ)).

W.l.o.g. let l0 > r0. For any φ0 ≤ φ < π the corresponding point of the curve is
the intersection of the hyperbola

X2(
A

2Kφ

)2 −
Y 2(

1
2

)2 − ( A
2Kφ

)2 = 1(3.6)

with the circle

X2 +

(
Y +

cotφ

2

)2

=
1

4 sin2 φ
;(3.7)

see Figure 3.5 and the details found in section A.1 of the appendix.
Solving these equations leads us, after some transformations, to the following

solutions (for details see section A.2 of the appendix):

X(φ) =
A

2
· cot φ

2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2,(3.8)

Y (φ) =
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
.(3.9)

Since |A| < √1 + sinφ < 1 + tan φ
2 holds, the functions X(φ) and Y (φ) are well

defined and continuous while the curve stays below the line segment vlvr.
Figure 3.6 shows how these curves look for all possible values of φ and A. All

points with an initial opening angle of π
2 lie on the lower half circle.

Two cases can be distinguished. If |A| < 1, then the curves can be continuously
extended to a point (A2 , 0) on the line segment vl vr. For |A| > 1 the curves end up in
vl and vr, respectively, with a limit of opening angles φ = π − arcsin(A2 − 1), which
satisfies X(φ) = ± 1

2 , Y (φ) = 0, and |A| = Kφ. The curves for the limiting cases
|A| = 1 are emphasized with a thick line in Figure 3.6.
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-0.5

0

Y

-0.5 0.5X

Fig. 3.6. The curves fulfilling condition (3.4) for all values of φ and A.

3.4. Checking the requirements. We want to check that the curve defined
by (3.8) and (3.9) in section 3.3 satisfies condition (3.1). The arc length of the curve
from angle φ1 to φ2 has to be compared to the right side of (3.1). Because of (3.3)
the min in (3.1) can be dropped.

For l0 = r0 we trivially have equality in (3.1). W.l.o.g. we can assume l0 > r0
and A > 0. The other case is symmetric. It suffices to check

∫ φ2

φ1

√
X ′(φ)2 + Y ′(φ)2 dφ ≤ Kφ1 lφ1 −Kφ2 lφ2 for all

π

2
≤ φ1 < φ2 < π .

Here, X ′(φ) and Y ′(φ) denote the derivatives of X(φ) and Y (φ) from (3.8) and (3.9)
in φ. The inequality is equivalent to

∫ φ2

φ1

√
X ′(φ)2 + Y ′(φ)2 dφ ≤

∫ φ2

φ1

−(Kφlφ)′ dφ for all
π

2
≤ φ1 < φ2 < π ,(3.10)

since Kφlφ is a differentiable function in φ. It is sufficient to show that in (3.10) one
integrant dominates the other. In the following we will try to simplify this task.

By some transformations (for details see section A.3 of the appendix), we obtain

lφ =
Kφ

A
X(φ) +

A

2Kφ
and therefore Kφlφ =

K2
φ

A
X(φ) +

A

2
.(3.11)

Thanks to an idea by Seidel [41] we can make use of the substitution t = tan φ
2
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in Kφ, X(φ), Y (φ), and Kφlφ. Thus, we get the functions

K(t) :=

√
(1 + t)2

1 + t2
,

X(t) :=
A

2tK
2
(t)

√
(1 + t)2 −A2 =

A(1 + t2)
√

(1 + t)2 −A2

2t(1 + t)2
,

Y (t) :=

(
A2

K
2
(t)
− 1

)
1

2t
=
A2(1 + t2)− (1 + t)2

2t(1 + t)2
,

Kl(t) :=
K

2
(t)

A
X(t) +

A

2
=

√
(1 + t)2 −A2

2t
+
A

2

with the identities K(tan φ
2 ) = Kφ, X(tan φ

2 ) = X(φ), Y (tan φ
2 ) = Y (φ), and

Kl(tan φ
2 ) = Kφlφ. The simple identities are proven in section A.4 of the appendix.

We will now simplify (3.10) using terms of the identities above. The left-hand
side of (3.10) is equivalent to

∫ φ2

φ1

√(
d

dφ

(
X (tan(φ/2))

))2

+

(
d

dφ

(
Y (tan(φ/2))

))2

dφ

(3.12)

=

∫ φ2

φ1

d

dφ
(tan(φ/2))

√((
d

dt
X

)
(tan(φ/2))

)2

+

((
d

dt
Y

)
(tan(φ/2))

)2

dφ,

whereas the right-hand side of (3.10) is equivalent to∫ φ2

φ

− d

dφ

(
Kl (tan(φ/2))

)
dφ =

∫ φ2

φ

− d

dφ
(tan(φ/2))

(
d

dt
Kl

)
(tan(φ/2)) dφ.(3.13)

By applying the rule of substitution to (3.12) and (3.13), (3.10) is equivalent to

∫ tan
φ2
2

tan
φ1
2

√(
d

dt
X(t)

)2

+

(
d

dt
Y (t)

)2

dt ≤
∫ tan

φ2
2

tan
φ1
2

− d

dt
Kl(t) dt .(3.14)

The function tan φ
2 is positive, continuous, and monotonically increasing for π

2 ≤
φ < π. Then it suffices to show that in (3.14) one integrand dominates the other one
for every t in the integration interval [tan φ1

2 , tan φ2

2 ] for all π
2 ≤ φ1 < φ2 < π. We

make use of the following facts. For every t ∈ [tan φ1

2 , tan φ2

2 ] there is always a unique

φ ∈ [φ1, φ2] with t = tan φ
2 . Additionally we can assume A <

√
1 + sinφ from (3.5).

Altogether, it suffices to prove that√
X

′
(t)2 + Y

′
(t)2 ≤ −Kl′(t)(3.15)

holds for t = tan φ
2 , π

2 ≤ φ < π, and 0 < A <
√

1 + sinφ. Here for convenience X
′
(t),

Y
′
(t), and Kl

′
(t) denote the derivatives of the corresponding functions in t. We insert

the following identities (see section A.5 of the appendix for details) into (3.15).

−Kl′(t) =
(1 + t)−A2

2t2
√

(1 + t)2 −A2
,
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X
′
(t) =

A
(
A2
(
(1 + t)3 − 4t2

)− 1− 4t− 4t2 + t4
)

2(1 + t)3t2
√

(1 + t)2 −A2
,

Y
′
(t) =

(1 + t)3 −A2
(
(1 + t)3 − 4t2

)
2(1 + t)3t2

.

Note that −Kl′(t) > 0 follows from t ≥ tan π
4 = 1 and A2 < 2; see (3.5). Thus, after

squaring, the following remains to be shown:

F (t, A) ≥ 0 for all t = tan
φ

2
,
π

2
≤ φ < π, and 0 < A <

√
1 + sinφ where

F (t, A) :=
(
Kl

′
(t)
)2

−
(
X

′
(t)2 + Y

′
(t)2

)
=
−(t− 1)A2

(
(A2 − 1)(t2 + 3)− 4t

)
4(1 + t)3t2 ((1 + t)2 −A2)

.

The last inequality is proven in section A.6 of the appendix. The denominator of
F (t, A) is positive since t ≥ tan π

4 = 1 and A2 < 2 holds; see (3.5). Therefore it
suffices to show that

(A2 − 1)(t2 + 3)− 4t ≤ 0 .(3.16)

We minimize our chances to satisfy (3.16) if A achieves a maximal value greater than 1.
Substituting A2 by 1 + sin(φ), the greatest possible value for A2, and t by tan φ

2 , the
inequality (3.16) holds if

2 cosφ tan
φ

2
≤ 0 .

The details are given in section A.7 of the appendix. The last inequality holds for
π
2 ≤ φ < π. This proves (3.15) and therefore (3.1) for the curves of section 3.3.

3.5. Opening angles below 90◦. So far we have seen that there is a strategy
that is competitive with factor

√
2 for opening angles greater than or equal to π

2 .
There are already methods to accomplish the task for funnels with opening angles
running from an initial angle φ0 <

π
2 to an opening angle of π

2 . As was already shown

by Semrau [42] and also in López-Ortiz [28], any strategy which achieves a factor ≥ √2
for all funnels with φ0 ≥ π

2 can be adapted to the general case without changing its
factor. They suggest a walk along the fixed angular bisector of the current pair vl
and vr until an opening angle of π

2 is reached. If the opening angle of π
2 is reached,

one can proceed, for example, with the strategy given in section 3.3. So we are done
here.

In the following we show that our idea is universal, and for completeness we
consider the case 0 < φ < π

2 analogously. Looking backwards as in section 3.2 we can

assume that there is a strategy which is competitive with factor
√

2 starting at point
p2 with a opening angle π

2 ≥ φ2 > 0. Again we want to extend the strategy to initial
opening angles φ1 at starting points p1 with π

2 ≥ φ2 > φ1 > 0; see again Figure 3.2.
The only difference to the former consideration is that the factor need not vary any
longer with respect to the opening angle. The worst-case factor of

√
2 is already in

use, and we want to achieve this factor when starting at p1.
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Thus, with the same arguments and notation as in section 3.2, it suffices to show
that there is a strategy so that

w ≤ min(
√

2 l1 −
√

2 l2,
√

2 r1 −
√

2 r2)(3.17)

holds between the changes of vl and vr as long as the opening angle is smaller than π
2 .

Again, similar to section 3.3, we want to satisfy (3.17) and therefore require that

√
2 (l1 − l2) =

√
2 (r1 − r2) or, equivalently, (l2 − r2) = (l1 − r1) .(3.18)

We consider two cases: For l0 = r0 we follow the fixed angular bisector in the triangle
defined by l0, r0, and φ0. In this case, as already stated in the beginning of section 3.4
with l0 = r0, the equality

w = Kφ1 l1 −Kφ2 l2 = Kφ1r1 −Kφ2r2

holds. Then (3.17) follows from Kφ1
≤ Kφ2

≤ √2 for π
2 ≥ φ2 > φ1 > 0.

If we start with an initial difference 1 > D := (l0−r0) > 0 at point s, (3.18) means
that we follow the current angular bisector (CAB) of vl and vr, and the resulting curve
is a hyperbola through s with fix-points vl and vr; see Icking, Klein, and Langetepe
[20]. For the street problem the strategy CAB was already successfully analyzed for
small angles in López-Ortiz and Schuierer [31]. We show that our approach works
as well. The transformations of sections 3.3 and 3.4 become much easier since the
constant does not depend on φ, and all transformations are presented in detail in
section A.8 of the appendix. We proceed as before and obtain the coordinates

X(φ) =
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2,

Y (φ) =
1

2
cot

φ

2
(D2 − 1).

Now Kφlφ simplifies to

√
2 lφ =

√
2

D
X(φ) +

D√
2
.

In this case there is no need to simplify the terms by a substitution. In analogy to the
previous section it suffices to prove that in (3.10) one integrand dominates the other
one; that is, √

X ′(φ)2 + Y ′(φ)2 ≤ −(Kφlφ)′(3.19)

for all π
2 ≥ φ > 0 and 0 < D < 1. Altogether it suffices to show

F (φ,D) ≥ 0 for all 0 < φ ≤ π

2
and 0 < D < 1, where

F (φ,D) := X ′(φ)2
(

2

D2
− 1

)
− Y ′(φ)2

=
(D2 − 1)2

(
1− tan2 φ

2

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) .
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It remains to be shown that

1− tan2 φ

2
≥ 0 and 1 + tan2 φ

2
−D2 ≥ 0

holds, which follows from D2 < 1 and tan φ
2 ≤ 1 for π

2 ≥ φ > 0. See section A.8 of
the appendix for all details.

3.6. The main result. To summarize, our strategy for searching a goal in an
unknown street works as follows.

Strategy WCA (worst-case aware). If the initial opening angle is less than π
2 , walk

along the current angular bisector of vl and vr until a right opening angle is
reached.
Depending on the actual parameters φ0, l0, and r0, walk along the corre-
sponding curve from section 3.3 until one of vl and vr changes. Switch over
to the curve corresponding to the new parameters φ1, l1, and r1. Continue
until the line tl tr is reached.

Theorem 3.2. By using strategy WCA we can search a goal in an unknown
street with a competitive factor of

√
2 at the most. This is optimal.

The proof can be found in sections 3.1 through 3.5. In Figure 3.7 a complete path
of WCA inside a street is shown.

s

t

Fig. 3.7. A street and the path generated by WCA.

4. Conclusions. We have developed a competitive strategy for walking in streets
which guarantees an optimal factor of

√
2 at the most in the worst case, thereby set-

tling an old open problem. Furthermore, the strategy is even better for an initial
opening angle φ0 >

π
2 , in which case an optimal factor Kφ0 =

√
1 + sinφ0 between

1 and
√

2 is achieved.
It would be interesting to see if there are substantially different but also optimal

strategies.

Appendix. Formal calculations. This appendix contains the formal calcu-
lations needed in the main text. They are presented in a resolution that makes it
possible to follow step by step. Nevertheless, the reader might prefer to enter start
and target formulae into some math-tool, for example, Maple or Mathematica, and
have correctness checked automatically.



AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 477

A.1. Definition of the circle and the hyperbola. We choose a coordinate
system with horizontal axis vl vr, the midpoint being the origin. We scale the coordi-
nate system so that the distance from vl to vr equals 1. Let p be the point at a fixed
opening angle φ on the curve we want to construct. Then two constraints must be
met. First, the difference l(p)−r(p) of the length from p to vl and vr, correspondingly,
must equal A

Kφ
. The locus of all such points p is a hyperbola. Second, p sees vl and

vr at the angle φ. The locus of all these points p is a circle; see Figure A.1.

vrvl

φ

p

r(p)
a

b

φ
2

1
4

π − φ

(0, 0)

1
2

z x

l(p)

Fig. A.1. The right arc of the hyperbola defined by vl, vr, and (l(p) − r(p)) = A
Kφ

and the

circle through vl and vr defined by angle φ.

The hyperbola reads

X2

a2
− Y 2

b2
= 1 ,

where 2a = (l(p) − r(p)) = A
Kφ

and b2 + a2 = e2 = 1
4 hold. So we have a2 = ( A

2Kφ
)2

and b2 = 1
4 − ( A

2Kφ
)2. The circle is defined by

X2 + (Y − x)2 = z2 .(A.1)

It remains to compute the parameters of the circle, x and z. From the law of sine we
get

z

sin π
2

=
1

2 sin(π − φ)
=

1

2 sinφ
,

z − x
sin
(
π − π

2 − φ
2

) =
z − x
cos φ

2

=
1

2 sin φ
2

,

and therefore z = 1
2 sinφ and

x = z − 1

2
cot

φ

2
=

1

2 sinφ
− 1

2
cot

φ

2
=

1− 2 cos2 φ
2

4 sin φ
2 cos φ

2

= −cotφ

2
.
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A.2. Intersection of the circle and the hyperbola. In order to verify the
expressions

X(φ) =
A

2
· cot φ

2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2,(A.2)

Y (φ) =
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
,(A.3)

we insert them into the equations

X2(
A

2Kφ

)2 −
Y 2(

1
2

)2 − ( A
2Kφ

)2 = 1,(A.4)

X2 +

(
Y +

cotφ

2

)2

=
1

4 sin2 φ
.(A.5)

For (A.4) we have(
A
2 ·

cot φ
2

1+sinφ

√(
1 + tan φ

2

)2

−A2

)2

(
A

2Kφ

)2 −
(

1
2 cot φ

2

(
A2

1+sinφ − 1
))2

(
1
2

)2 − ( A
2Kφ

)2

=

(
cot φ

2

Kφ

)2((
1 + tan

φ

2

)2

−A2

)
−

cot2 φ
2

((
A
Kφ

)2

− 1

)2

1−
(

A
Kφ

)2

=

(
cot φ

2

Kφ

)2((
1 + tan

φ

2

)2

−A2

)
+ cot2

φ

2

((
A

Kφ

)2

− 1

)

= cot2
φ

2

⎛⎜⎝
(
1 + tan φ

2

)2

1 + sinφ
− 1

⎞⎟⎠ = 1 .

The conclusion is true since the identity

1 + sinφ = 1 +
2 tan φ

2

1 + tan2 φ
2

=

(
1 + tan φ

2

)2

1 + tan2 φ
2

(A.6)

holds.
For proving (A.5) we argue as follows:⎛⎝A

2
· cot φ

2

1 + sinφ

√(
1 + tan

φ

2

)2

−A2

⎞⎠2

+

(
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

)
+

cotφ

2

)2

=

(
A

2
· cot φ

2

1 + sinφ

)2((
1 + tan

φ

2

)2

−A2

)
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+

(
1

2
cot

φ

2

(
A2

1 + sinφ
− 1

))2

+ cot
φ

2

(
A2

1 + sinφ
− 1

)
cotφ

2
+

(
cotφ

2

)2

=

(
A

2
· cot φ

2

1 + sinφ

)2(
1 + tan

φ

2

)2

+

(
1

2
cot

φ

2

)2(
−2

A2

1 + sinφ
+ 1

)
+ cot

φ

2

(
A2

1 + sinφ
− 1

)
cotφ

2
+

(
cotφ

2

)2

=

(
cot φ

2

2
− cotφ

2

)2

+
A2 cot2 φ

2

4(1 + sinφ)

⎛⎜⎝
(
1 + tan φ

2

)2

1 + sinφ
− 2 + 2

cotφ

cot φ
2

⎞⎟⎠
=

1

4 sin2 φ
+

A2 cot2 φ
2

4(1 + sinφ)

(
tan2 φ

2
+ 1− 2 +

1− tan2 φ
2

tan φ
2

tan
φ

2

)

=
1

4 sin2 φ
+

A2 cot2 φ
2

4(1 + sinφ)
· 0 =

1

4 sin2 φ
.

Here we made use of (A.6) and the identities(
cot φ

2

2
− cotφ

2

)2

=
1

4

(
sinφ

1− cosφ
− cosφ

sinφ

)2

=
1

4

1

sin2 φ

and

cotφ =
1− tan2 φ

2

2 tan φ
2

.

A.3. Representation of lφ. Considering the hyperbola (see Figure 3.5), we
have

lφ =

√(
X(φ) +

1

2

)2

+ Y 2(φ)

(3.6)
=

√√√√√(X(φ) +
1

2

)2

−X2(φ)−
(

1

2

)2

+

(
A

2Kφ

)2

+

(
1
2

)2(
A

2Kφ

)2X
2(φ)

=

√(
Kφ

A

)2

X2(φ) +X(φ) +

(
A

2Kφ

)2

=

√(
Kφ

A
X(φ) +

A

2Kφ

)2

=
Kφ

A
X(φ) +

A

2Kφ
.

A.4. Applying the substitution t = tan φ
2
. Applying (A.6) and t = tan φ

2
we have

Kφ =
√

1 + sinφ =

√
(1 + t)2

1 + t2
=: K(t) .(A.7)
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A straightforward application of (A.7) and t = tan φ
2 to (A.2) and (A.3) leads to

X(φ) =
A

2tK
2
(t)

√
(1 + t)2 −A2 =

A(1 + t2)
√

(1 + t)2 −A2

2t(1 + t)2
=: X(t) ,

Y (φ) =

(
A2

K
2
(t)
− 1

)
1

2t
=

A2(1 + t2)− (1 + t)2

2t(1 + t)2
=: Y (t) .

Using the representations of X(t) and K(t) we conclude that

Kφlφ =
Kφ

A
X(φ) +

A

2Kφ
=
K

2
(t)

A
X(t) +

A

2
=

√
(1 + t)2 −A2

2t
+
A

2
=: Kl(t)

holds.

A.5. Computing the derivatives in t. We apply simple derivation rules:

−Kl′(t) = −
(

(1 + t)

2t
√

(1 + t)2 −A2
−
√

(1 + t)2 −A2

2t2

)

= −
(
t(1 + t)− (1 + t)2 +A2

2t2
√

(1 + t)2 −A2

)

=
(1 + t)−A2

2t2
√

(1 + t)2 −A2
,

Y
′
(t) =

(
A2(1 + t2)

2t(1 + t)2
− 1

2t

)′

=
2tA2

2t(1 + t)2
+A2(1 + t2)

(
− (1 + t)2 + 2(1 + t)t

2(1 + t)4t2

)
+

1

2t2

=
(1 + t)3 −A2

(−2t2(1 + t) + (1 + t2)(1 + 3t)
)

2(1 + t)3t2

=
(1 + t)3 −A2

(
(1 + t)3 − 4t2

)
2(1 + t)3t2

,

X
′
(t) =

(
A(1 + t2)

2t(1 + t)2

√
(1 + t)2 −A2

)′

=

(
2tA

2t(1 + t)2
+A(1 + t2)

(
− (1 + t)2 + 2(1 + t)t

2(1 + t)4t2

))√
(1 + t)2 −A2

+
1 + t√

(1 + t)2 −A2

A(1 + t2)

2t(1 + t)2

=
−A((1 + t)3 − 4t2)

2(1 + t)3t2
√

(1 + t)2 −A2
((1 + t)2 −A2) +

t(1 + t)2A(1 + t2)

2(1 + t)3t2
√

(1 + t)2 −A2
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=
−A((1 + t)3 − 4t2)((1 + t)2 −A2) + t(1 + t)2A(1 + t2)

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
)−A (((1 + t)3 − 4t2)(1 + t)2 − t(1 + t)2(1 + t2)

)
2(1 + t)3t2

√
(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
)−A((1 + t)5 − (1 + t)2(4t2 + t+ t3))

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
)−A((1 + t)5 − (1 + 2t+ t2)(4t2 + t+ t3))

2(1 + t)3t2
√

(1 + t)2 −A2

=
A(A2

(
(1 + t)3 − 4t2

)
)−A((1 + t)5 − t− 6t2 − 10t3 − 6t4 − t5)

2(1 + t)3t2
√

(1 + t)2 −A2

=
A
(
A2
(
(1 + t)3 − 4t2

)− 1− 4t− 4t2 + t4
)

2(1 + t)3t2
√

(1 + t)2 −A2
.

A.6. How to get F (t, A). We will make use of the following identities:

2(t2 − 2t− 1)− (4t2 − (1 + t)3) + 2(1 + t) = (1 + t)(t2 + 1),(A.8)

(t2 − 2t− 1)(1 + t)2 = (t4 − 1− 4t− 4t2),(A.9)

(t− 1)(t+ 3)t2 = −3t2 + 2t3 + t4

= −2(1 + t)3 − (t2 − 2t− 1)2

+(1 + t)2 − 8t2(1 + t) + 2(1 + t)4,(A.10)

(1 + t)3 + (4t2 − (1 + t)3)(t2 + 1) = t2(1− t)(t2 + 3) .(A.11)

F (t, A) := Kl
′
(t)2 −X ′

(t)2 − Y ′
(t)2

=

(
(1 + t)−A2

2t2
√

(1 + t)2 −A2

)2

−
(
A
(
A2
(
(1 + t)3 − 4t2

)− 1− 4t− 4t2 + t4
)

2(1 + t)3t2
√

(1 + t)2 −A2

)2

−
(

(1 + t)3 −A2
(
(1 + t)3 − 4t2

)
2(1 + t)3t2

)2

=

(
((1 + t)−A2)(1 + t)3

)2
(2(1 + t)3t2)

2
((1 + t)2 −A2)

−
(
A
(
A2
(
(1 + t)3 − 4t2

)− 1− 4t− 4t2 + t4
))2

(2(1 + t)3t2)
2
((1 + t)2 −A2)

−
(
(1 + t)3 −A2

(
(1 + t)3 − 4t2

))2 (
(1 + t)2 −A2

)
(2(1 + t)3t2)

2
((1 + t)2 −A2)

=
(1 + t)6A4 − 2(1 + t)7A2 + (1 + t)8

(2(1 + t)3t2)
2
((1 + t)2 −A2)
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− ((1 + t)3 − 4t2)2A6 + 2(t4 − 1− 4t− 4t2)((1 + t)3 − 4t2)A4

(2(1 + t)3t2)
2
((1 + t)2 −A2)

− (t4 − 1− 4t− 4t2)2A2

(2(1 + t)3t2)
2
((1 + t)2 −A2)

−−((1 + t)3 − 4t2)2A6 + (−2(1 + t)3(4t2 − (1 + t)3) + (4t2 − (1 + t)3)2(1 + t)2)A4

(2(1 + t)3t2)
2
((1 + t)2 −A2)

− (−(1 + t)6 + 2(1 + t)5(4t2 − (1 + t)3))A2 + (1 + t)8

(2(1 + t)3t2)
2
((1 + t)2 −A2)

(A.9)
= A4 (1 + t)6 + 2(t2 − 2t− 1)(1 + t)2(4t2 − (1 + t)3)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A4−(−2(1 + t)3(4t2 − (1 + t)3) + (4t2 − (1 + t)3)2(1 + t)2)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2−2(1 + t)7 − (t2 − 2t− 1)2(1 + t)4 − (−(1 + t)6 + 2(1 + t)5(4t2 − (1 + t)3))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

= A4 (1 + t)6 + (1 + t)2(4t2 − (1 + t)3)(2(t2 − 2t− 1)− (4t2 − (1 + t)3) + 2(1 + t))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2−2(1 + t)7 − (1 + t)4(t2 − 2t− 1)2 + (1 + t)6 − 2(1 + t)5(4t2 − (1 + t)3))

(2(1 + t)3t2)
2
((1 + t)2 −A2)

(A.8)
= A4 (1 + t)6 + (1 + t)2(4t2 − (1 + t)3)(1 + t)(t2 + 1)

(2(1 + t)3t2)
2
((1 + t)2 −A2)

+A2 (1 + t)
(−2(1 + t)3 − (t2 − 2t− 1)2 + (1 + t)2 − 8t2(1 + t) + 2(1 + t)4

)
(1 + t)3(2t2)2 ((1 + t)2 −A2)

(A.10)
= A4 (1 + t)3 + (4t2 − (1 + t)3)(t2 + 1)

(1 + t)3(2t2)2 ((1 + t)2 −A2)
+A2 (1 + t)(t− 1)(t+ 3)t2

(1 + t)3(2t2)2 ((1 + t)2 −A2)

(A.11)
= A4 −t2(t− 1)(t2 + 3)

(1 + t)3(2t2)2 ((1 + t)2 −A2)
+A2 (1 + t)(t− 1)(t+ 3)

4t2(1 + t)3 ((1 + t)2 −A2)

=
−(t− 1)A2

(
(A2 − 1)(t2 + 3)− 4t

)
4(1 + t)3t2 ((1 + t)2 −A2)

.

A.7. Transformation of the nominator of F (t, A).

sinφ

(
tan2 φ

2
+ 3

)
− 4 tan

φ

2
= sinφ

(
2 tan φ

2

sinφ
+ 2

)
− 4 tan

φ

2
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= 2 sinφ− 2 tan
φ

2

= 2 sin
φ

2

(
2 cos

φ

2
− 1

cos φ
2

)

= 2 sin
φ

2

(
2 cos2 φ

2 − 1

cos φ
2

)

= 2 sin
φ

2

(
cosφ

cos φ
2

)
= 2 cosφ tan

φ

2
.

A.8. The simple case φ < π
2
. In order to obtain

X(φ) =
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2,

Y (φ) =
1

2
cot

φ

2
(D2 − 1),

and

Kφlφ :=
√

2 lφ =

√
2

D
X(φ) +

D√
2
,

we simply replace A
Kφ

by D in (3.8), (3.9), and (3.11). For (3.8), which corresponds

to X(φ), we have to make use of identity (A.6).
Since we did not make use of a substitution here, the derivatives in φ are given

as follows:

−(Kφlφ)′ = −
√

2

D
X ′(φ),

Y ′(φ) = − 1

4 sin2 φ
2

(D2 − 1)

=
(D2 − 1)

2(cosφ− 1)
,

X ′(φ) =

(
D

2
cot

φ

2

√(
1 + tan2 φ

2

)
−D2

)′

=
D

2(cosφ− 1)

√(
1 + tan2 φ

2

)
−D2 +

D

2
cot

φ

2

⎛⎜⎜⎝ − tan φ
2

1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2

⎞⎟⎟⎠
=

D
(cosφ−1)

((
1 + tan2 φ

2

)
−D2

)
− D

2
1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2

=

D(1−D2)
(cosφ−1) +

D tan2 φ
2

(cosφ−1) − D
2

1

cos2 φ
2

2

√(
1 + tan2 φ

2

)
−D2
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=
D(1−D2)

2(cosφ− 1)

√(
1 + tan2 φ

2

)
−D2

.

It remains to compute F (φ,D).

F (φ,D) := (Kφlφ)2 − (X ′(φ))2 − (Y ′(φ))2

= X ′(φ)2
(

2

D2
− 1

)
− Y ′(φ)2

=
D2(1−D2)2

(
2
D2 − 1

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) − (D2 − 1)2

4(cosφ− 1)2

=
(D2 − 1)2

(
(2−D2)−

((
1 + tan2 φ

2

)
−D2

))
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

)
=

(D2 − 1)2
(
1− tan2 φ

2

)
4(cosφ− 1)2

((
1 + tan2 φ

2

)
−D2

) .
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[8] C. Bröcker and S. Schuierer, Searching rectilinear streets completely, in Algorithms and
Data Structures (Vancouver, BC, 1999), Lecture Notes in Comput. Sci. 1663, Springer-
Verlag, Berlin, 1999, pp. 98–109.

[9] S. Carlsson and B. J. Nilsson, Computing vision points in polygons, Algorithmica, 24 (1999),
pp. 50–75.

[10] G. Das, P. Heffernan, and G. Narasimhan, LR-visibility in polygons, Comput. Geom. The-
ory Appl., 7 (1997), pp. 37–57.

[11] P. Dasgupta, P. P. Chakrabarti, and S. C. DeSarkar, A new competitive algorithm for
agent searching in unknown streets, in Foundations of Software Technology and Theoret-
ical Computer Science (Hyderabad, 1996), Lecture Notes in Comput. Sci. 1180, Springer-
Verlag, Berlin, 1996, pp. 147–155.

[12] A. Datta, C. A. Hipke, and S. Schuierer, Competitive searching in polygons: Beyond gener-
alised streets, in Algorithms and Computations (Cairns, 1995), Lecture Notes in Comput.
Sci. 1004, Springer-Verlag, Berlin, 1995, pp. 32–41.

[13] A. Datta and C. Icking, Competitive searching in a generalized street, in Proceedings of the
10th Annual ACM Symposium on Computational Geometry, ACM Press, New York, 1994,
pp. 175–182.

[14] A. Datta and C. Icking, Competitive searching in a generalized street, Comput. Geom. Theory
Appl., 13 (1999), pp. 109–120.

[15] A. Fiat and G. Woeginger, eds., Online Algorithms: The State of the Art, Lecture Notes in
Comput. Sci. 1442, Springer-Verlag, Berlin, 1998.



AN OPTIMAL COMPETITIVE STRATEGY FOR STREETS 485

[16] S. Gal, Search Games, Math. Sci. Engrg. 149, Academic Press, New York, 1980.
[17] S. K. Ghosh and S. Saluja, Optimal on-line algorithms for walking with minimum number

of turns in unknown streets, Comput. Geom. Theory Appl., 8 (1997), pp. 241–266.
[18] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, The polygon exploration problem, SIAM

J. Comput., 31 (2001), pp. 577–600.
[19] C. Icking, Motion and Visibility in Simple Polygons, Ph.D. thesis, Department of Computer

Science, FernUniversität Hagen, Germany, 1994.
[20] C. Icking, R. Klein, and E. Langetepe, Searching for the Kernel of a Polygon: A Com-

petitive Strategy Using Self-approaching Curves, Tech. Rep. 211, Department of Computer
Science, FernUniversität Hagen, Germany, 1997.

[21] C. Icking, R. Klein, and E. Langetepe, An optimal competitive strategy for walking in
streets, in Proceedings of the 16th Symposium on Theoretical Aspects in Computer Science,
Lecture Notes in Comput. Sci. 1563, Springer-Verlag, Berlin, 1999, pp. 110–120.

[22] C. Icking, R. Klein, and L. Ma, How to look around a corner, in Proceedings of the 5th Cana-
dian Information Processing Society Congress, University of Waterloo, Waterloo, Canada,
1993, pp. 443–448.
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Abstract. We consider the problem of learning a matching (i.e., a graph in which all vertices
have degree 0 or 1) in a model where the only allowed operation is to query whether a set of vertices
induces an edge. This is motivated by a problem that arises in molecular biology. In the deterministic

nonadaptive setting, we prove a ( 1
2

+ o(1))
(
n
2

)
upper bound and a nearly matching 0.32

(
n
2

)
lower

bound for the minimum possible number of queries. In contrast, if we allow randomness, then we
obtain (by a randomized, nonadaptive algorithm) a much lower O(n logn) upper bound, which is
best possible (even for randomized fully adaptive algorithms).

Key words. matchings in graphs, combinatorial search problems, genome sequencing, finite
projective planes
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1. Introduction. This paper is motivated by an important and timely problem
in computational biology that arises in whole-genome shotgun sequencing. Shotgun
sequencing is a high throughput technique that has resulted in the sequencing of
a large number of bacterial genomes (over 70 at the time of this writing), as well
as Drosophila (fruit fly) and mouse genomes and the celebrated human genome (at
Celera). In all such projects, we are left with a collection of contigs (long DNA
sequences) that for various biological or computational reasons cannot be assembled
with even the best sequence assembly algorithms. The contigs must be ordered and
oriented and the gaps between them must be sequenced using slower, more tedious
methods. When the number of gaps is small (e.g., less than ten) biologists often
use polymerase chain reaction (PCR). This technique initiates a set of “bidirectional
molecular walks” along the gaps in the sequence; these walks are facilitated by PCR.

In order to initiate the molecular walks biologists use primers.1 Primers are
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designed so that they bind to unique (with respect to the entire DNA sequence)
templates occurring at the end of each contig. A primer (at the right temperature and
concentration) anneals to the designated unique DNA substring and promotes copying
of the template starting from the primer binding site, initiating a one-directional walk
along the gap in the DNA sequence. A PCR reaction occurs, and can be observed as
a DNA ladder, when two primers that bind to positions on two ends of the same gap
are placed in the same test tube.

If we are left with N contigs, the combinatorial (exhaustive) PCR technique tests
all possible pairs (quadratically many) of 2N primers by placing two primers per tube
with the original uncut DNA strand. PCR products can be detected using gels, or
they can be read using sequencing technology or DNA mass-spectometry. When the
number of gaps is large, the quadratic number of PCR experiments is prohibitive, so
primers are pooled using K > 2 primers per tube; this technique is called multiplex
PCR.2 Our paper provides optimal strategies for pooling the primers to minimize the
number of biological experiments needed in the gap-closing process.

Our gap-closing problem can be stated more generally as follows. We are given
a set of chemicals, a guarantee that each chemical reacts with at most one of the
others (because only primers on opposite sides of the same gap create a reaction),
and an experimental mechanism to determine whether a reaction occurs when several
chemicals are combined in a test tube. We wish to determine which pairs of chemicals
react with each other with a minimum number of experiments.

Our problem can be modeled as the problem of identifying or learning a hidden
matching given a vertex set and an allowed query operation ([9, 2]; see [5, 6] for an
alternative formulation). A vertex will represent a chemical, an edge of the matching
will represent a reaction, and a query will represent checking for a reaction when a set
of chemicals are combined in a test tube. Let V = {1, 2, . . . , n}. We wish to identify
an unknown (not necessarily perfect) matching M on V by asking a small number of
queries of the form

QF : does F contain at least one edge of M?(1.1)

where F is a subset of V . This problem is of interest even in the deterministic,
fully nonadaptive case. We say that a family F of subsets of V solves the matching
problem on V if for any two distinct matchings M1 and M2 on V there is at least one
F ∈ F that contains an edge of one of the matchings and does not contain any edge
of the other. Obviously, any such family enables us to learn an unknown matching
deterministically and nonadaptively by asking the questions QF defined in (1.1) for
each F ∈ F .

Our objective is to estimate the minimum possible cardinality of a family that
solves the matching problem on a set of n vertices. Toward this end, we will generalize
the matching problem to finding matchings contained in a graph H (not necessarily
complete) and produce an H for which we can solve the matching problem with a
family of size roughly half the number of edges of H. By applying a partitioning
theorem of Wilson, we can then solve the matching problem on n vertices with a
family of size ( 1

2 + o(1))
(
n
2

)
.

2The earliest reference to multiplex PCR is [3]. Since then hundreds of papers report using the
multiplex PCR technique to answer a diverse set of questions in molecular biology. Multiplex PCR
using a simple, nonoptimal pooling strategy has recently been applied successfully at The Institute
for Genomic Research (TIGR) to close gaps in a number of genomes, including Streptococcus [9].
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We show that our construction is tight up to a constant factor, as stated in the
following theorem.

Theorem 1.1. For every n > 2, every family F that solves the matching problem
on n vertices satisfies

|F| ≥ 49

153

(
n

2

)
.

The proof of the lower bound is presented in sections 3 and 4.
Next we consider randomized nonadaptive algorithms. In contrast to the 1-round

deterministic case we produce, somewhat surprisingly, an O(n log n) solution in this
model. This solution is asymptotically optimal up to a constant factor, because of the
information-theoretic Ω(n log n) lower bound, even if we do not restrict the number of
rounds. We believe that the sharp difference between deterministic and randomized
nonadaptive algorithms here is remarkable; while one can hardly beat the trivial

(
n
2

)
bound in the deterministic case, the randomized fully nonadaptive algorithm is already
as efficient (up to a constant factor) as the best possible fully adaptive algorithm for
the problem. Moreover, the same technique shows that a hidden copy of any sparse
graph, that is, a graph with a linear number of edges in which all degrees are O(

√
n),

can be found, with high probability, in a 1-round randomized algorithm making only
O(n log n) queries.

Finally we present a deterministic k-round algorithm for learning a hidden match-
ing which makes O(kn1+1/(2(k−1))polylogn) queries. Our deterministic 2-round algo-
rithm asks 5

4n
3/2(1 + o(1)) queries of size at most n1/4 each. This is optimal up to a

factor of 5/4 among all algorithms that make queries of size at most n1/4, which may
be useful in view of practical limitations on multiplexing. For k ≥ 3 our algorithms
are based on a coloring lemma for projective planes that may be interesting in its own
right.

Our techniques combine combinatorial and probabilistic tools with results about
graph decomposition and about the existence of certain designs. Throughout the pa-
per, we omit all floor and ceiling signs, whenever these are not crucial. All logarithms
are in base 2, unless otherwise specified.

2. Related work. In an earlier paper with Fortnow and Apaydin [2] we obtained
a randomized, adaptive algorithm that solves the matching problem in 8 rounds with
an expected number of approximately 0.72n log2 n queries. Our results here improve
the number of rounds to 1 in the randomized case. (This comes at the cost of doubling
the number of queries. If we allow 2 rounds, we can, in fact, keep the total number
of queries to be roughly 0.72n log2 n.) We further show here that in the 1-round,
deterministic case, far more queries are needed, though some saving over the trivial
algorithm is possible.

Grebinski and Kucherov [5, 6] consider the problem of finding a Hamilton cycle.
They obtain an O(n log n) adaptive algorithm. (They also have an O(n) purely non-
adaptive solution using more powerful queries, i.e., queries that report the number of
edges induced by a set of vertices. See [4, 7] as well.) Using our methods here we can
show that Ω(n2) queries are needed for finding a Hamilton cycle in the deterministic
nonadaptive case in our model. A similar Ω(n2) lower bound can be proved for the
problem of determining the number of edges of a hidden matching, as well as for the
problem of finding a hidden copy of any given bounded degree graph with Ω(n) edges.

3. Sparse families. A family of sets A = {A1, . . . , Ak} is sparse if there is a

collection of pairwise disjoint pairs of members of V =
⋃k

i=1Ai such that each Ai
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contains at least one of the pairs. Therefore, A is sparse iff there is a matching on V
such that the answer to each question QA for A ∈ A is “yes.” It is easy to see that
any set of more than (p2 +p+1)/2 lines in a projective plane of order p (in which each
line is of size p + 1) is not sparse, and our results here will imply that every family
consisting of at most 0.32

(
m+2

2

)
sets, each of size at least m, is sparse.

For a family F of subsets define the t-weight of the family, denoted wt(F), as
follows:

wt(F) =
∑
F∈F

1(|F |+t
2

) .
The 2-weight is simply called the weight and is denoted, for short, by w(F). The main
lemma of this section is the following.

Lemma 3.1. Every family F of sets whose weight is at most 49/153 is sparse.
Proof. If F contains a set of size 1, then w(F) ≥ 1/3 > 49/153. Thus we may and

will assume that all sets in F are of size at least 2. Let M ∈ F be a set of minimum
cardinality, |M | = m.

For a pair of distinct elements p, q, define

F(p, q) = {F − {p, q} : F ∈ F , {p, q} �⊆ F}.
Note that if we pick the pair {p, q} as a member of the matching we are trying to
construct to show that F is sparse, then the members of F(p, q) are precisely those
that will have to be handled by the rest of the matching. This suggests proving the
following claim.

Claim. There exists a pair of distinct elements p, q of M such that w(F(p, q)) ≤
w(F).

To prove the claim we choose p, q randomly and uniformly among all pairs of
distinct members of M and show that the expected value E(w(F(p, q))) is at most
w(F).

Henceforth F will denote an element of F − {M}. Let κ(F ) denote |F ∩M |. We
have that E(w(F(p, q))) equals

= w(F)− 1(
m+2

2

) +
∑
F �=M

(
κ(F )(m− κ(F ))(

m
2

) (
1(|F |+1
2

) − 1(|F |+2
2

))− (κ(F )
2

)(
m
2

) 1(|F |+2
2

))

= w(F)− 1(
m+2

2

) +
∑
k<m

∑
κ(F )=k

(
k(m− k)(

m
2

) (
1(|F |+1
2

) − 1(|F |+2
2

))− (
k
2

)(
m
2

) 1(|F |+2
2

))

= w(F)− 1(
m+2

2

) +
1(
m
2

) ∑
k<m

∑
κ(F )=k

(
k(m− k)

((|F |+2
2

)(|F |+1
2

) − 1

)
−
(
k

2

))
1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

) ∑
k<m

∑
κ(F )=k

(
2k(m− k)
|F | −

(
k

2

))
1(|F |+2
2

)
≤ w(F)− 1(

m+2
2

) +
1(
m
2

) ∑
k<m

∑
κ(F )=k

(
2k(m− k)

m
−
(
k

2

))
1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

) ∑
k<m

(
2k(m− k)

m
−
(
k

2

)) ∑
κ(F )=k

1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

) ∑
k<m

µ(m, k)
∑

κ(F )=k

1(|F |+2
2

) ,
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where we define µ(m, k) = 2k(m−k)
m − (k2). For all m, we have µ(m, 0) = 0, µ(m, 1) =

2 − 2/m, µ(m, 2) = 3 − 8/m, and k ≥ 2 ⇒ µ(m, k) ≤ µ(m, 2). Thus µ(m, k) is
maximized at k = 1 or k = 2. Define µ(m) = maxk<m µ(m, k). Now we have

E(w(F(p, q))) ≤ w(F)− 1(
m+2

2

) +
1(
m
2

) ∑
k<m

µ(m, k)
∑

κ(F )=k

1(|F |+2
2

)
≤ w(F)− 1(

m+2
2

) +
1(
m
2

) ∑
k<m

µ(m)
∑

κ(F )=k

1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

)µ(m)
∑
k<m

∑
κ(F )=k

1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

)µ(m)
∑
F �=M

1(|F |+2
2

)
= w(F)− 1(

m+2
2

) +
1(
m
2

)µ(m)

(
w(F)− 1(

m+2
2

))

= w(F)− 1(
m+2

2

) +
1(

m+2
2

) (m+ 2)(m+ 1)

m(m− 1)
µ(m)

(
w(F)− 1(

m+2
2

)) .
Thus it suffices to prove that

(m+ 2)(m+ 1)

m(m− 1)
µ(m)

(
w(F)− 1(

m+2
2

)) ≤ 1

or, equivalently, that

w(F) ≤ m(m− 1)

(m+ 2)(m+ 1)µ(m)
+

1(
m+2

2

) .
As noted above, µ(m) is either µ(m, 1) or µ(m, 2). In the first case, we have

m(m− 1)

(m+ 2)(m+ 1)µ(m)
+

1(
m+2

2

) =
m2 + 4

2(m+ 2)(m+ 1)
≥ 13

40

for m > 1 (with equality at m = 3). In the second case, we have

m(m− 1)

(m+ 2)(m+ 1)µ(m)
+

1(
m+2

2

) =
1

3

m2(m− 1) + 6m− 16

(m+ 2)(m+ 1)(m− 8/3)
≥ 49

153

for m > 2 (with equality at m = 16). By assumption, w(F) ≤ 49/153 < 13/40,
completing the proof of the claim.

By repeatedly applying the claim we get smaller and smaller families of sets whose
weights remain bounded by 49/153. This process must terminate with a matching
that captures all members of F , showing that F is sparse and completing the proof
of the lemma.

4. The proof of the main result for the fully nonadaptive case. In this
short section we present the proof of Theorem 1.1. We need the following simple fact.

Lemma 4.1. Let F be a family of subsets of V = {1, 2, . . . , n} that solves the
matching problem on V . Then, for every two distinct a, b ∈ V , the family Fa,b =
{F − {a, b} : F ∈ F and {a, b} ⊆ F} is not sparse.
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Proof. Assume that this is false, and that Fa,b is sparse for some a, b ∈ V . Then
there is a matching M in V − {a, b} so that each member of Fa,b contains an edge
of M . But then the answers to each question QF with F ∈ F for the two matchings
M and M ∪ {a, b} are identical, contradicting the fact that F solves the matching
problem.

Proof of Theorem 1.1. Let F be a family of subsets of V = {1, 2, . . . , n} that
solves the matching problem on V . Let a, b be any pair of distinct vertices in V . We
know by Lemma 4.1 that the family Fa,b = {F − {a, b} : F ∈ F and {a, b} ⊆ F} is
not sparse. Therefore, by Lemma 3.1,∑

F∈F,{a,b}⊆F

1(|F |
2

) =
∑

F ′∈Fa,b

1(|F ′|+2
2

) > 49

153
.

We can now assign, for each F ∈ F a weight of 1/
(|F |

2

)
to each pair of distinct

elements a, b ∈ F . The total weight distributed in this way is precisely |F|, as the
total contribution of each F ∈ F is 1. On the other hand, the total weight assigned
to each pair a, b ∈ V is at least 49

153 , implying that |F| ≥ 49
153

(
n
2

)
, as needed.

Note that the same proof supplies a 49
153

(
n
2

)
lower bound for the number of queries

in any 1 round deterministic algorithm that determines the number of edges of a
hidden matching on n vertices.

5. Other hidden graphs. In this section we show how to extend the methods
described in the previous two sections and obtain a lower bound for the number of
queries needed to find a hidden copy of a member of a given family of graphs with
certain properties. Throughout the section, we make no attempt to optimize the
absolute constants in our various estimates.

Let H be a family of labeled graphs on the set V = {1, 2, . . . , n}, and suppose H
is closed under isomorphism. Thus, for example, H may be the set of all Hamilton
cycles on V , or all matchings on V , or all perfect matchings on V . Our objective is
to learn a hidden copy of some member of H by asking a small number of queries QF

as given in (1.1). We say that a family F solves the H-problem if for any two distinct
members H1 and H2 in H there is at least one F ∈ F that contains an edge of one of
the graphs Hi and does not contain any edge of the other. Obviously, any such family
enables us to learn an unknown member of H deterministically and nonadaptively by
asking the questions QF defined in (1.1) for each F ∈ F .

Theorem 5.1. There exists an absolute constant c > 0 such that the following
holds. Let H be a family of graphs on V , closed under isomorphism, and suppose
that there are two distinct graphs H1, H2 ∈ H and a set of vertices D ⊂ V , |D| = d
satisfying the following:

(i) The graphs obtained from H1 and from H2 by omitting all edges connecting
two vertices of D are identical; and

(ii) there is a matching of at least pn edges in H1 which contains no vertices of
D (clearly this matching is also a matching in H2).

Then, if 1/p > d, every family F that solves the H-problem satisfies |F| ≥ cp2

d2

(
n
2

)
.

Note that this result provides an Ω(n2) lower bound for the problem of learning
a perfect matching or a Hamilton cycle, and, more generally, the problem of learning
a hidden copy of any fixed, bounded-degree graph with Ω(n) edges. It also provides
an Ω(n2) lower bound for the problem of finding a hidden copy of a vertex disjoint
union of a clique of size n− 3 and a single edge, but not for the problem of finding a
hidden copy of a vertex disjoint union of a clique of size n− 2 and a single edge (and
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indeed it is easy to see that O(n) queries suffice for the latter problem).
A family F of subsets of V is p-sparse if there is a collection of at most pn pairwise

disjoint pairs of members of V such that each F ∈ F contains at least one of the pairs.
Therefore, F is p-sparse iff there is a matching on V consisting of at most pn edges
such that the answer to each query QF for F ∈ F is “yes.”

Lemma 5.2. There is an absolute constant c1 > 0 such that every family F of
subsets of V of weight at most c1p

2 is p-sparse.
Proof. Let V1 be a random subset of V obtained by picking each v ∈ V , randomly

and independently, to lie in V1 with probability p. As the expected size of V1 is pn,
it follows that with probability at least one-half, its size is at most 2pn. For each
set F ∈ F , the expected size of F ∩ V1 is clearly p|F |, and as this size is a binomial
random variable, it follows, by the standard estimates for binomial distributions (see,
e.g., [1, Appendix A, Theorem A.1.13], that the probability that it is less than p|F |/2
does not exceed e−p|F |/8. Since the weight of F is at most c1p

2 for some (small) c1, we
conclude that each set in F is of size at least, say, 100/p. As e−px/8 < 1/p2

(
x+2
2

)
for

all x > 100/p, it follows that the probability that there is some set F ∈ F such that

|F∩V1| < p|F |/2 is smaller than w(F)
p2 ≤ c1 < 1/2. Therefore, there exists a set V1 ⊂ V

of cardinality at most 2pn so that |F ∩ V1| ≥ p|F |/2 for all F ∈ F . As |F | > 100/p
for each F ∈ F , this implies that the weight of the family F1 = {F ∩ V1 : F ∈ F} is
at most, say, 8

p2w(F) ≤ 8c1 < 49/153 (assuming c1 is sufficiently small). By Lemma

3.1, F1 is sparse, and as |V1| ≤ 2pn, it follows that F is p-sparse.
Lemma 5.3. Let H, V , n, d, and p be as in Theorem 5.1. Let F be a family of

subsets of V = {1, 2, . . . , n} that solves the H-problem. Then, for every subset D ⊂ V ,
|D| = d, the family FD = {F −D : F ∈ F , |F ∩D| ≥ 2} is not p-sparse.

Proof. Assume this is false, and suppose FD is p-sparse for someD′ ⊂ V , |D′| = d.
Then there is a matching M of size at most pn in V −D′ so that each member of FD′

contains an edge of M . The matching M can be completed to a graph with no edges
in D′ which is isomorphic to the graph obtained from H1 (or H2) by omitting the
edges inside D, where the isomorphism maps D onto D′. It is now possible to extend
this graph to a copy of H1, or to a copy of H2, only by adding edges inside D′. But
then the answers to each question QF with F ∈ F for these two distinct members of
H are identical, contradicting the fact that F solves the H-problem.

Proof of Theorem 5.1. Let F be a family of subsets of V = {1, 2, . . . , n} that solves
the H-problem. By Lemmas 5.2 and 5.3, for every set D consisting of d vertices of
V , the weight of the family FD = {F −D : F ∈ F , |F ∩D| ≥ 2} is at least c1p

2. We
claim that ∑

F∈F,|F∩D|≥2

1(|F |
2

) ≥ c2p2

for every D as above (and for an appropriately chosen c2 > 0). Indeed, if there is a
set F ∈ F of size at most, say, 10/p, that intersects D in at least 2 elements, this
follows immediately. Otherwise, by the assumption that 1/p > d,

1(|F |−d+2
2

) ≤ 2
1(|F |
2

) ,
and the claim follows from the fact that the weight of FD is at least c1p

2.
If D is a random subset of d vertices of V , then for every F ∈ F , the probability

that |D ∩ F | ≥ 2 is at most
(
d
2

)(|F |
2

)
/
(
n
2

)
. It follows that the expected value of the
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random variable ∑
F∈F,|F∩D|≥2

1(|F |
2

)
is at most

(
d
2

)|F|/(n2), and as this random variable is always at least c2p
2, the desired

result follows.

6. An upper bound for the fully nonadaptive case. In this section we
show how to design families of size ( 1

2 + o(1))
(
n
2

)
to solve the matching problem on n

vertices. It will be helpful if we first generalize the matching problem. We say that
a family F of cliques contained in G solves the matching problem on G if for any two
distinct matchings contained in G there is at least one clique in F that contains an
edge of one of the matchings and does not contain any edge of the other. (Note, for
example, that if G is triangle free, then F must be a set of edges.) The matching
problem on n vertices is thus the same as the matching problem on Kn. Let f(G)
denote the size of the smallest family that solves the matching problem on G.

Throughout this section, let E(H) denote the edge set of a graph H, and let
gcd(H) denote the greatest common divisor of the degrees of all vertices in H.

Theorem 6.1 (Wilson [10]). For every graph H there exists a constant N such
that for all n ≥ N , Kn is the union of

(
n
2

)
/|E(H)| pairwise edge-disjoint graphs

isomorphic to H iff
(
n
2

)
is divisible by |E(H)| and n− 1 is divisible by gcd(H).

Corollary 6.2. For every fixed graph H,

f(Kn) ≤ f(H)

|E(H)|
(
n

2

)
+O(n).

Furthermore, for fixed H, the solution to the matching problem for Kn is constructive.
Proof. By Wilson’s theorem, Kn is the union of

(
n
2

)
/|E(H)| graphs isomorphic

to H. Solve the matching problem in each of those graphs with a family of size
f(H).

We say that a family F determines the status of an edge e if for every pair of
matchings M1,M2 such that e ∈ M1 and e /∈ M2 there is at least one clique F that
contains an edge of one of the matchings and does not contain any edge of the other.

The reader may easily verify the following lemma.
Lemma 6.3 (two-thirds). Let a, b, c, x be four distinct vertices. Assume that F

determines the status of {a, b} and {b, c}. If F contains the two triangles {a, b, x} and
{b, c, x}, then F also determines the status of {a, x}, {b, x}, and {c, x}.

We note in passing that one may easily apply the two-thirds lemma to obtain a
solution of size 2

3

(
n
2

)
+O(n).

Definition 6.4 (HEX+
s ). Let s ≥ 1. Tile a hexagon having side length s with

unit equilateral triangles. Add one more vertex Z and edges from Z to every vertex
in the tiling. Call the resulting graph HEX+

s .
The tiling above, depicted in Figure 6.1, contains v = 3s2 + 3s + 1 vertices,

e = 9s2 + 3s edges, and f = 6s2 triangles. Therefore the graph HEX+
s contains

v + e = 12s2 + 6s + 1 edges. We solve the matching problem on HEX+
s with the

following tests:
Tetrahedra T ∪ {Z} for every triangle T in the tiling.
Boundary every boundary edge of the tiling, and every edge from Z to a point on

the boundary.



LEARNING A HIDDEN MATCHING 495

Z

Fig. 6.1. The graph HEX+
s .

Z
Fig. 6.2. Locate Z’s mate (if it exists).

As a warm-up, let us see why these tests suffice, assuming that Z is unmatched.
In this case, the tetrahedra queries are equivalent to triangles, and we just apply the
two-thirds lemma repeatedly, starting at the boundary of the tiling.

Now let us see why these tests suffice in general. Try the following cases in order.
Case 1. For some Y on the boundary of the tiling, ZY ∈M . This edge is tested,

so we know ZY ∈M . Finish as in the warm-up.
Case 2. For some Y in the interior of the tiling, ZY ∈ M . In this case all six

tests containing Y say yes (see Figure 6.2). Call that the 6-triangle property for Y . If
only one point has the 6-triangle property, then we know that that point is matched
to Z. If three distinct points have the 6-triangle property, it is easy to check that
they must be adjacent in a straight line, and the middle one must be matched to Z.
Consequently, no more than three points can have the 6-triangle property. In either
of those subcases we finish as in the warm-up (see Figures 6.3 and 6.4).

If exactly two points have the 6-triangle property, then they must be adjacent;
we proceed as in the warm-up until we reach the 10 triangles containing those two
points. With the aid of the tests already performed, a simple case analysis tells us
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Z

Fig. 6.3. Test corners using Lemma 6.3.

Z

Fig. 6.4. Continue, using Lemma 6.3.

which point is matched to Z.
Case 3. For all Y in the tiling, ZY /∈ M . Then no point has the 6-triangle

property, so we know that Z is unmatched. Proceed as in the warm-up.
The total number of tests is f + 12s = 6s2 + 12s. The ratio of tests to edges is

(6s2 + 12s)/(12s2 + 6s+ 1) =
1

2
+

18s− 1

24s2 + 12s+ 2
.

Combining this with the corollary of Wilson’s theorem, we see that f(Kn) = (1/2 +
O(1/s))

(
n
2

)
. Letting s be a slowly growing function of n, we obtain the following.

Corollary 6.5.

f(Kn) ≤
(

1

2
+ o(1)

)(
n

2

)
.

7. Probabilistic nonadaptive algorithms. In this section we present a very
efficient randomized algorithm for the matching problem. The simplest version of the
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algorithm queries bn log n random subsets of size c
√
n each. The analysis below shows

that for an appropriate choice of b and c, the algorithm solves, with high probability,
the matching problem in one round. Since we believe that this algorithm and some of
its variants may be of practical interest, we do make here some efforts to optimize the
absolute constant obtained in the estimate for the total number of queries. It turns
out that in order to improve the constant, it is better to ask the queries according to
randomly shifted (modified) projective planes. The details follow. For completeness,
we include a brief description of the relevant properties of finite projective planes.
A projective plane PG(2, p) of order p consists of p2 + p + 1 points and p2 + p + 1
lines. Each line contains exactly p + 1 points and each point lies in precisely p + 1
lines. Every two distinct points are contained in a unique common line, and every two
distinct lines intersect in a unique common point. Such a plane exists for every prime
power p and can be constructed by the following simple algebraic description. Let B
denote the set of all nonzero vectors x̄ = (x0, x1, x2) of length 3 over the finite field
GF (p), and define an equivalence relation on B by calling two vectors equivalent if
one is a multiple of the other by an element of the field. The points of PG(2, p) as well
as the hyperplanes can be represented by the equivalence classes of B with respect
to this relation, where a point x̄ = (x0, x1, x2) lies in the hyperplane ȳ = (y0, y1, y2)
iff their inner product 〈x, y〉 = x0y0 + x1y1 + x2y2 over GF (p) is zero. More details
about projective planes can be found, for example, in [8].

Procedure RPP: Testing according to a random projective plane. We assume now
that n = p2 + p+1 for some prime p. Testing according to a random projective plane
consists of the following: Randomly permute our n vertices and identify them with
the points of the projective plane P of order p. Perform one test for each line.

Now consider a pair (x, y). Exactly one line in P contains x and y. The probability
that that line contains no (other) edge of M is at least the value of this probability
when the matching is perfect and xy is not a matching edge. It is not difficult to see
that in this case, the probability is precisely

(n− 4)(n− 6) . . . (n− 2p)

(n− 2)(n− 3) . . . (n− p) .

Indeed, the number is the number of ways to choose an ordered set of the other p− 1
points of the line (besides x and y) without containing any matching edge, as after i
points (including x and y) have already been chosen, there are n− 2i possibilities for
choosing the next point, which has to be different from the chosen points and their
mates. The denominator is the total number of possibilities for choosing an ordered
set of p− 1 points. The last expression is at least

e−(1−o(1)) p2

2n = e−1/2(1− o(1)).

Testing according to d log n random projective planes. Perform procedure RPP
d log n times independently in parallel, for some real number d. The probability
that every line containing x and y contains an edge of M (other than possibly
(x, y)) is at most π(d) = ((1 − e−1/2)d(1 + o(1)))log n. If we choose d = (1 +
o(1)) ln 2/ ln (1/(1− e−1/2)) ≈ 0.74, then π(d) ≤ 1/n.

Consequently, those tests suffice to identify all but n/2 nonmatching edges on
average. Those remaining nonedges and all matching edges can be identified in a
second round with only n tests. Thus we have a 2-round algorithm for the matching
problem that makes an expected number of approximately 0.74n log n tests and makes
no errors.
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If we choose d twice as large, i.e., d = 2 ln 2/ ln (1/(1− e−1/2)) + ε for some arbi-
trarily small ε (say d ≈ 1.49), then π(d) = o(1/n2). Consequently, those tests suffice
to identify all nonmatching edges with high probability. Once we have identified all
nonedges, the same reasoning shows that all the matching edges are identified with
high probability as well. Thus we have a 1-round algorithm for the matching prob-
lem that makes an expected number of approximately 1.49n log n tests and makes no
errors.

Point doubling. These constants can be improved. When every vertex is in the
same number of tests, the ideal test size is approximately

√
(2 ln 2)n, but there are

no designs like the projective plane with sets of size greater than
√
n. Fortunately, we

do not need every pair of points to belong to exactly one set. It suffices to construct
designs in which every pair of points belongs to at least one set, provided that we do
not generate too many sets in the process. This can be accomplished rather easily by
randomly “doubling” some of the points in the projective plane. We double a point
x by adding a new point x′ to each line that contains x.

To be precise, we assume now that n = �(2 ln 2)m�, where m = p2 + p + 1 and
p is prime. We start with the projective plane of order p and double �(2 ln 2− 1)m�
randomly chosen points. This results in n points. We still have m ≈ n/(2 ln 2) lines.
By standard estimates, with high probability each of those lines has approximately
2 ln 2

√
m ≈√(2 ln 2)n points.

Now, let us look at a single design and a single pair of points x, y. Consider
a “line” containing x and y. (If x and y are not the duplicates of a single point,
there is one such line; otherwise, there are p + 1 such lines, and then it suffices to
consider one of them.) Let t ≈√(2 ln 2)n be the number of points on this line. The
probability that it contains no (other) edge of M—besides, possibly, xy—is, by the
same reasoning described above, at least

(n− 4)(n− 6) . . . (n− 2t+ 2)

(n− 2)(n− 3) . . . (n− t+ 1)
= e−(1+o(1)) t2

2n = (1/2)(1 + o(1)).

Now take d log n random projective planes with doubled points of the type above. The
probability that every “line” containing x and y contains an edge of M (other than
possibly (x, y)) is at most π′(d) =

(
(1/2)d

(
1 + o(1)))log n. Thus π′(1 + o(1)) = 1/n

and π′(2 + o(1)) = 1/n2. Since each design contains approximately n/(2 ln 2) “lines,”
we obtain the following.

Theorem 7.1. The matching problem on n vertices can be solved by probabilistic
algorithms with the following parameters:

• 2 rounds and (1/(2 ln 2))n log n(1 + o(1)) ≈ 0.72n log n tests;
• 1 round and (1/ ln 2)n log n(1 + o(1)) ≈ 1.44n log n tests.

Note that the algorithms make no errors in the sense that when we get the answers
we know which edges are matching edges and which are not. With high probability,
we get all the information in the 1-round algorithm; in the rare event we do not, we
know it, and we can make an additional set of queries for all the edges whose status
has not been determined. In the 2-round algorithm we always get all the information,
but with positive probability we will have to ask more than n queries in the second
round.

Note also that the algorithms described here can be easily modified to find a
hidden copy of any graph with O(n) edges and with maximum degree O(

√
n) in one

randomized round, using O(n log n) queries.
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8. Deterministic k-round algorithms. In this section we present determinis-
tic k-round algorithms that make at most O(n1+1/(2(k−1))polylogn) queries per round.
In the special case k = 2, we do not need the polylogn factor. All of our deterministic
algorithms are constructive.

A lemma about the chromatic number of the graph consisting of all edges con-
tained in half the lines of a projective plane will allow us to reduce the general problem
to a bipartite matching problem. The lemma, which may be interesting in its own
right, is proved by considering the eigenvalues of the plane’s incidence matrix.

Lemma 8.1 (coloring). Let P be a finite projective plane with n points. Obtain Q
by deleting at least n/2 of P ’s lines. Let G = (V,E), where V is P ’s point set and E
consists of all pairs (x, y) such that there is a line in Q containing both x and y. Then
G is

√
n lnn(1 + o(1)) colorable using color classes of size less than

√
n. Furthermore

such a coloring can be found in time polynomial in n.
Proof. The basic idea in the proof of this lemma is as follows. Consider a set B

of points. On average, a line will contain about |B|/√n points. We will show that
if B is not very small, then most lines contain at least half that number of points.
This will allow us to greedily choose our color classes from among the lines that were
deleted from P . We need the following lemma, whose proof is essentially identical to
that of Lemma 9.2.4 of [1].

Lemma 8.2. Let G = (U, V ;E) be a d-regular bipartite graph with classes of
vertices U and V of size n each. Let A = (Au,v : u ∈ U, v ∈ V ) be the (bipartite)
adjacency matrix of G given by Au,v = 1 iff uv ∈ E, and Au,v = 0 otherwise. Suppose,
further, that every eigenvalue of AtA except the largest (which is d2) is at most λ2.
Then, for every B ⊆ V ,

∑
u∈U

(
|N(u) ∩B| − d |B|

n

)2

≤ λ2|B|
(

1− |B|
n

)
.

Let P be a projective plane of order p. Thus it has n = p2 + p+ 1 points. Let G
be the incidence graph of P , i.e., the bipartite graph with classes of vertices U and
V , with |U | = |V | = n, in which V is the set of points and U is the set of lines, where
uv is an edge iff the line u contains the point v. If A is the adjacency matrix of G,
then AtA is a matrix in which all diagonal entries are p+1 and all other entries are 1.
Consequently, the largest eigenvalue of AtA is (p+1)2 and all its other eigenvalues are
equal to p. It follows that for every set of points B ⊂ U , we can bound the number

of lines v containing less than d|B|
2n points of B by the above lemma. Namely,∣∣∣∣{v ∈ V : |N(v) ∩B| < d

2

|B|
n

}∣∣∣∣ < 4λ2

d2

n2

|B|
=

4p

(p+ 1)2
n2

|B|

≤ 4n3/2

|B| .

Therefore, if |B| > 10
√
n, then every set consisting of 0.4n lines contains a line that

contains at least
√
n

2
|B|
n = |B|

2
√
n

elements of B. Now we are in a position to prove the

following.
Corollary 8.3. Every set S consisting of at least 0.4n lines contains a subset

consisting of at most
√
n lnn lines covering all but at most 10

√
n points.
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Proof. Initially, let B = V . As long as |B| ≥ 10
√
n, we may choose a line in S

that contains at least a 1
2
√
n

fraction of the points in B and then remove those points

from B. After at most 2
√
n ln[n/(10

√
n)] <

√
n lnn iterations, we will have reduced

B to size at most 10
√
n.

To complete the proof of the coloring lemma, we take our set of lines to be the
ones deleted from P . Our color classes are the

√
n lnn lines promised by the preceding

corollary as well as the 10
√
n singletons not covered by those lines. If a point belongs

to more than one of those lines, then we can choose its color class arbitrarily from
among them.

Lemma 8.4 (first bipartite). Assume that M is a nonempty matching on V . Let
V be the disjoint union of L and R, where |R| ≥ 2, and assume we know that neither
L nor R contains an edge of M . We can learn M with a k-round algorithm that
makes at most |M ||L|1/k log |R| tests per round.

Proof. The proof is by induction on k. If k = 1, then we can perform a parallel
binary search for each element of L to find its match, if any, in R. The number of
tests performed is |L| log |R|.

Now let k ≥ 2 and assume we have a (k − 1)-round algorithm that makes at
most |M ||L|1/(k−1) log |R| tests per round. Let t = |L|1/k. Partition L into t pieces
L1, . . . , Lt of size |L|/t. In round 1, test Li ∪R for each i. At most |M | of those sets
can contain an edge, say Li1 ∪R, . . . , Lim ∪R, where m ≤ |M |. Apply the inductive
hypothesis to the matching problems on those m sets. Let ej denote the number of
edges in Lij . The number of tests per round is at most

∑
j

ej(|L|/t)1/(k−1) log |R| = |M ||L|1/k log |R|

Lemma 8.5 (second bipartite). Assume that M is a nonempty matching on V .
Let V be the disjoint union of L and R, and assume we know that neither L nor R
contains an edge of M . Let c be a real number such that 0 < c < 1, c|L|1/k ≥ 1. Let
k ≥ 2. We can learn M with a k-round algorithm that makes at most c|L|1/k tests in
the first round and at most |M ||L|1/k log |R|/c1/(k−1) tests in each subsequent round.

Proof. Let t = c|L|1/k. Partition L into t pieces L1, . . . , Lt of size |L|/t. In
round 1, test Li ∪ R for each i. At most |M | of those sets can contain an edge, say
Li1∪R, . . . , Lim∪R, where m ≤ |M |. Apply the first bipartite lemma to the matching
problems on those m sets. Let ej denote the number of edges in Lij . The number of

tests performed in round 1 is t = c|L|1/k, and in each subsequent round it is at most∑
j

ej(|L|/t)1/(k−1) log |R| = |M ||L|1/k log |R|/c1/(k−1)

Theorem 8.6. For 3 ≤ k ≤ log n, there is a deterministic k-round algorithm for
the matching problem that asks O(n1+1/(2(k−1))(log n)1+1/(k−1)) queries per round.

Proof. After adding o(n) virtual unmatched points we may assume that n is of
the form p2 + p + 1, where p is prime; these virtual points will be omitted from any
actual tests. In round 1, construct a projective plane with n points, and perform one
test for each line. Delete every line that contains no edge of the matching. Construct
G and its color classes as in the coloring lemma. If (x, y) ∈ M , then x and y must
belong to distinct color classes of G. For each pair of color classes apply the bipartite
lemma with c = log n1/(k−1)/ log n and the number of rounds = k − 1. The number
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of tests in round 2 is at most

O

((√
n log n

2

)
c
√
n

1/(k−1)
)

= O(n1+1/(2(k−1))(log n)1+1/(k−1)).

The number of tests performed in any of the rounds 3 through k is bounded by

O
(
(n/2)

√
n

1/(k−1)
log
√
n/c1/(k−2)

)
= O(n1+1/(2(k−1))(log n)1+1/(k−1)).

Our 2-round deterministic algorithm uses finite projective spaces of dimension
4 in a somewhat different way. It has the advantage of using queries whose size is
approximately n1/4 or less.

Theorem 8.7. There is a deterministic 2-round algorithm that asks 5
4n

3/2(1 +

o(1)) queries of size at most n1/4 each.
Proof. Choose m ≈ n1/4 such that Kn is the disjoint union of approximately n3/2

copies of Km. (Use a projective or affine space of dimension 4 where each line has
length m.) (1) Ask one query for each copy of Km. At most n/2 of them can contain
an edge. (2) Use brute force to find those edges.

9. Open problems.
• Determine the smallest possible constant c such that there is a deterministic

nonadaptive algorithm for the matching problem on n vertices that makes
c
(
n
2

)
(1 + o(1)) queries.

• Find more efficient deterministic k-round algorithms or prove lower bounds
for the number of queries in such algorithms.
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Abstract. The celebrated LKS algorithm by Lehmer, Knuth, and Schönhage, combined with
the product tree technique, enables an equivalently rapid alternative to our recent modification of
the extended Euclidean algorithm for the reconstruction of a rational number from its modular as
well as numerical approximations.
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Our algorithm in [7] uses O(M(d) log d) bit-operations to solve the rational num-
ber reconstruction problem of recovering a unique rational number x/y from three
integers k, v, and u = (x/y) mod v, where it is assumed that k, v, |x|, and y are inte-
gers in 2O(d), v and y are coprime, k > 2|x|, v/k > y > 0, the problem has a solution,
and M(d) bit-operations suffice to multiply two integers modulo 2d. In a dual varia-
tion, our algorithm solves the rational number approximation problem; that is, for a
given triple of positive integers k,m, and n > m, it computes a unique pair of coprime
integers p and q such that 0 < q < k + 1 and |m/n− p/q| < 1/(2k2). The bit-cost is
in O(M(d) log d) provided k,m, and n are in 2O(d) and the problem has a solution.
(For more details see [7] and the bibliography therein.)

Now we wish to point out an alternative solution algorithm for both problems
which also uses O(M(d) log d) bit-operations. It relies on the well-known LKS algo-
rithm by Lehmer, Knuth, and Schönhage (see [5], [3], [6]), which uses O(M(d) log d)
bit-operations to compute all partial quotients in the extended Euclidean algorithm
applied to two positive integers u and v in 2O(d) (the quotients are represented by
2-by-2 matrices Pi in [7], and our algorithm computes only some selected quotients).
Having all the quotients available, one may apply the product tree technique [3, The-
orem 1] and easily arrive at the desired solutions x/y and p/q to the problems of the
rational number reconstruction and approximation, respectively. Namely, one may
apply this technique to compute (within the desired time bound of O(M(d) log d)) an
appropriate positive integer j and a pair of 2-by-2 matrices Qj and Qj−1 (which are
the products of the matrices Pi from 1 to j and j − 1, respectively) such that the
desired ratio x/y is recovered from them immediately, e.g., in the same way as in [7].
Similarly the ratio p/q can be computed. We refer the readers to the paper [1] and
the bibliography therein (also see the relevant chapters in the books [4] and [2]) for
the detailed technical and historical account on the LKS algorithm and the product
tree technique.
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Abstract. A family of functions F that map [0,m − 1] into [0, n − 1] is said to be κ-wise
independent if any tuple of κ distinct points in [0,m−1] have a corresponding image, for a randomly
selected f ∈ F , that is uniformly distributed in [0, n− 1]κ. This paper shows that for suitably fixed
ε < 1 and any κ < mε, there are families of κ-wise independent functions that can be evaluated
in constant time for the standard random access model of computation. It is also proven that any
such family requires a storage array of mδ random seeds for a suitable δ < 1. These seeds can
be pseudorandom values precomputed from an initial O(κ) random seeds. A simple adaptation
yields nε-wise independent functions that require nδ storage in many cases where m � n. Lower
bounds are presented to show that neither storage requirement can be materially reduced. Previous
constructions of random functions having constant evaluation time and sublinear storage exhibited
only a constant degree of independence. Unfortunately, the explicit randomized constructions, while
requiring a constant number of operations, are far too slow for any practical application. However,
nonconstructive existence arguments are given, which suggest that this factor might be eliminated.
The problem of eliminating this factor is shown to be equivalent to a fundamental open question
in graph theory. As a consequence of these constructions, many probabilistic algorithms—from
traditional hashing to Ranade’s emulation of common PRAM algorithms—can for the first time be
shown to achieve, up to constant factors, their expected asymptotic performance for a programmable,
albeit formal and currently impractical, model of computation, and a research direction is now
available that may eventually lead to implementations that are fast and provably sound.

Key words. hash functions, universal hash functions, hashing, limited independence, optimal
speedup, PRAM emulation, storage-time tradeoff

AMS subject classifications. 86R10, 68Q10, 68Q22, 68Q30

DOI. 10.1137/S0097539701386216

1. Introduction. Hash functions have been a mainstay in the design of many
randomized and high performance algorithms, and their use has been especially impor-
tant for theoretical developments in large-scale parallel and distributed computation.
In particular, storage is often hashed to distribute data evenly across memory mod-
ules, to balance access patterns to memory, and to balance load requirements across
networks. Although some algorithms can achieve optimal performance improvements
via precomputed randomization, and others can exploit adaptive methods to achieve
maximum performance, many fundamental problems have yet to be solved without
the statistically uniform randomness supported by idealized or by (the more prag-
matic) universal classes of hash functions. Ranade, for example, uses polynomials of
degree 8 log n to randomize routing and memory accesses in his emulation scheme for
the common PRAM [20]. To date, his results have yet to be matched without such a
hashing procedure.

Of course, good hash functions are also important for sequential computation.
For example, it is well known that for uniform hashing, the expected cost to insert
the (αn + 1)st item into a table of size n is 1

1−α − o(1) probes when fully random
hash functions are used [12]. Yet the significance of even this performance bound
is by no means clear. The difficulty is that the result has been proven for idealized
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fully independent hash functions, which cannot be efficiently computed. Suppose, for
example, we wish to select a random mapping from [0, n2 − 1] into [0, n − 1]. Since

there are nn
2

such mappings, it follows that the program length of such a function
must be at least n2 log n bits, on average, which is much larger than the hash table it
is intended to service.

On the other hand, results based on idealized randomness sometimes translate
into average case performance guarantees for real computation. For example, double
hashing uses the same insertion and retrieval strategies as uniform hashing, but defines
the jth probe for a key x to be (d(x) + (j − 1)f(x)) mod p, for prime p and random
functions d and f , with ranges [0, p − 1] and [1, p − 1]. This scheme requires about
2�log p� random bits per hash key, and we could take these bits to be any fixed
portions of the key itself, provided it is at least 2�log p� bits long. Then a performance
analysis for the truly random case can be viewed as an average case argument for this
deterministic formulation, where the averaging is over all possible sequences of data
keys. However, for uniform hashing—or indeed any hashing scheme where each probe
sequence is defined by more bits than are available in a hash key—even this weak
interpretation would seem to lack adequate justification.

Accordingly, it is to notions of computable randomness that we now turn our
attention.

1.1. Background and overview. Carter and Wegman introduced universal
classes of hash functions [5] to provide a theoretically sound and pragmatic frame-
work for programmable hash functions with limited degrees of freedom. Subsequent
developments in universal hashing (cf. [36, 18]) have used comparable formulations
which are all basically as follows.

Definition 1.1. A family of hash functions F with domain D and range R is
(κ, µ)-wise independent if it is finite and for all y1, y2, . . . , yκ ∈ R, for all distinct x1,
x2, . . . , xκ ∈ D,

|{f ∈ F : f(xi) = yi, i = 1, 2, . . . , κ}| ≤ µ |F ||R|κ .(1.1)

Consequently, if a function f ∈ F is chosen at random with all elements equally likely
to be selected, then f will map any fixed set of κ distinct points from D into Rκ

according to a probability distribution that is, in some sense, roughly uniform.
In these definitions, D and R are always finite. It is worth pointing out that

any function is a hash function, and from the perspective of universal hashing, any
function is a bad hash function. What matters are the statistical characteristics of
the family members as quantified in (1.1). (Of course, we are also concerned with the
program size and operation count associated with evaluating the functions in such
a family.) It is important to notice that (κ, µ)-wise independence implies (j, µ)-wise
independence for j < κ. Indeed, if we sum both sides of (1.1) over all yκ ∈ R, the
constraint on f(xκ) becomes the trivial f(xκ) ∈ R, and the bound reverts to the exact
requirement for (κ− 1, µ)-wise independence.

For expositional simplicity, we will, unless stated otherwise, set µ = 1 and simply
refer to (κ)-wise independence. Likewise, we will use limited independence to refer to
families where the independence parameter κ is much smaller than |D|, and take fully
independent to mean that κ = |D|.

Carter and Wegman exhibited the following families of (κ, µ)-wise independent
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hash functions where D = [0, p− 1], R = [0, n− 1], and p is prime:

F(κ) =

⎧⎨⎩f | f(x) =

⎛⎝κ−1∑
j=0

ajx
j mod p

⎞⎠ mod n, aj ∈ [0, p− 1]

⎫⎬⎭ .(1.2)

They showed (among other results) that these functions give a performance for hashing
with separate chaining that is effectively indistinguishable from that for fully random
functions. In this hashing scheme, the elements of a set ℵ ⊆ [0, p− 1] are mapped by
a randomly selected function f ∈ F(κ) (chosen independent of ℵ) into linked lists that
are accessed via an array B[0, n− 1]. When multiple items are mapped to a common
address location j, the items are chained together in a list with the head list item
stored in B[j]. The remaining list members are kept in auxiliary storage outside of
B. Carter and Wegman used the fact that the sum of the expected jth moments of
the list lengths, when fully random hash functions are used, is essentially the same as
that resulting from the use of random functions in F(κ), provided j ≤ κ. For hashing
with separate chaining, the expected average of the second moments of the list lengths
determines the expected retrieval time, whence pairwise independence guarantees an
expected performance that is equivalent to that resulting from fully independent hash
functions.

Subsequently, Mehlhorn and Vishkin presented an extensive collection of different
hash functions that meet the requirements of (κ, µ)-wise independence [18]. Yet de-
spite a surprising diversity of definitions and algebraic structures, every one of their
(κ)-wise independent functions—like all such families ever discovered—requires at
least κ arithmetic operations per evaluation. Under the circumstances, it is natural
to wonder if this is a coincidence. We ask:

Is there an inherent κ-time penalty for computing
(κ)-wise independent hash functions, or can we do better?

The answer will turn out to be that faster functions are indeed programmable. How-
ever, a complete solution is fairly technical and cannot be stated in terms of the
standard formulations for limited randomness. The definitions must be extended to
expose additional statistical characteristics that affect the computational resources in
cases where the independence exceeds the number of random seeds used to hash an
individual key.

Families of random hash functions are often defined as a three-tier mapping g◦f◦h,
where h : D → D1, f : D1 → D1, and g : D1 → R. The underlying domain D might
be huge, in which case a preliminary mapping h is used to map the hash keys into
a smaller domain that is better suited for efficient computation. Thus, D1 might be
a finite field with elements that can be represented by, say, a finite number of ma-
chine words, and the actual target range R might be a table index that is less well
suited for defining families of uniformly distributed hash functions. For example, the
Carter–Wegman class (1.2) actually defines a (κ, 1)-wise independent family f ∈ F
on the field of integers modp, and then uses g(x) ≡ x mod n to project the hashing
onto the intended range [0, n− 1]. Consequently, the resulting composition fails to
achieve (κ, 1)-wise independence because the first p mod n points in [0, n − 1] have
� pn� preimage points, whereas the remaining n− (p mod n) points have 
 pn� preimage
points. This mild nonuniformity in the postprocessing was the reason for introduc-
ing the parameter µ in the definition of (κ, µ)-wise independence. However, for the
problems we consider, the pathologies associated with g are insignificant, whereas the
irregularities associated with h turn out to have a greater effect on the underlying
computational resources.
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Formally, we analyze the computational costs for computing (κ)-wise independent
mappings from a domain D into a range R. The underlying parameters are 1) the
number σ of initializing random seeds, 2) the number of operations T < κ that must
be executed per evaluation of the hash function, 3) the size of the hashing program,
and 4) the size of a provably necessary auxiliary storage array M , which, it will turn
out, we can presume to hold pseudorandom numbers that have been precomputed
from σ initial seeds. Additional parameters are the domain and range sizes |D| and
|R|. This paper gives a lower bound to show that M must store at least |D|ε words
from R for suitable fixed ε < 1. We also show how to circumvent this lower bound. By
allowing an asymptotically negligible chance (which is yet another parameter) that
the hash function family will fail to achieve (κ)-wise independence for a given data
set, the lower bound will still apply, but for an effective domain size |D1|, which might
be far smaller than |D|.

The exact details include additional parameters, but they play a minor role in
the resource requirements. In all cases, the requisite number of random seeds remains
modest: σ = Θ(κ).1

We present two kinds of algorithmic formulations for such high performance hash
functions. In particular, nonconstructive existence arguments are used to show that
algorithms might, in principle, match the resource constraints predicted by the lower
bound. Our (nonconstructive) hash functions require a precomputation phase where
the σ random seeds are used to precompute |D|ε pseudorandom values that are stored
in an auxiliary array M . Then a suitable algorithm can compute highly random hash
values by using its hash key deterministically to select a small number T of elements
from M and by simply returning the sum of these elements mod |R|, or, say, their
bitwise exclusive-or. The computation can be formulated to use, say, just twice as
many elements from M as are proved necessary by our bound. Moreover, this number
T turns out to be constant: T = Θ(1). On the other hand, the question of which T
words should be selected from M lies at the heart of the nonconstructive existence
argument.

Although the question of how to select these T random words effectively is still
open, we show that hash functions with very high independence are indeed pro-
grammable, provided we accept the less satisfactory evaluation time of TΘ(T ), where
T is the O(1) operation count predicted by nonconstructive methods.

1.2. Related work. A preliminary version of this work appeared as an extended
abstract in [26]. The current presentation includes more efficient existential formu-
lations, better probabilistic constructions, a stronger and more general lower bound,
and an improvement in the applications. In the interim, several works have appeared
that use the properties of these high performance hash functions [9, 11, 16].

The theory of hashing has also progressed along several independent lines. In
particular, Dietzfelbinger et al. [7] pursued the perfect hashing methods begun by
Fredman, Komlós, and Szemerédi [8] to develop hash functions that can locate data
without collisions. The processing is fully dynamic, with an average insertion time of
O(1) steps per insertion, and a resulting 1 table probe per data request. While these
techniques have many useful properties, and might comprise the methods of choice for
many applications, they do not construct functions with the statistical randomness
that is the primary objective of this work. Further, the functions require auxiliary

1For very large domains, the prehashing in the appendix, which is based on [8, 17], uses an addi-
tional log log |D| bits, which are provably necessary (cf. [8, 17]). On the other hand, the convention
that words can be processed in unit time is suspect for domains where such a term would matter.
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storage of Ω(n) bits, which is in excess of the storage we will use.
Many works have used universal classes of hash functions to reduce the resource

conflicts that arise in distributed computation. For example, Karp, Luby, and auf der
Heide use the highly random constant-time hash functions described in the prelim-
inary version of this work to resolve various problems of contention at the memory
module level [11]. Their model is designed to avoid some of the idealized characteris-
tics of PRAMs, where contention occurs only at the level of memory cells. Other such
uses include developments by Goldberg, Matias, and Rao [9] and Matias and Schuster
[16]. On the other hand, some machine contention can be resolved with much simpler
hash functions. For example, Kruskal, Rudolph, and Snir use such an approach to
emulate an (n1+ε)-processor PRAM on an n-processor machine [13].

1.3. The organization. This paper is organized as follows. Section 1 con-
cludes with a brief description of the computational model and an introduction to
the calculus of limited independence. Section 2 analyzes three random function for-
mulations, which range from the nonconstructively defined but extremely efficient to
the programmable (with code). They all run in constant time and can be as much as
(|D|δ)-wise independent for different, suitably small constants δ > 0.

Section 3 presents lower bounds for the resource requirements of fast hash func-
tions. Section 4 discusses the intrinsic resource tradeoffs for the general hashing
formulations of section 2, their lower bounds, and their equivalence to a fundamental
problem in graph theory. Section 5 gives a few applications and section 6 presents
the conclusions.

1.4. Computational assumptions. The performance results are based on a
variety of assumptions that characteristically hold for most hashing problems, as well
as some decisions to use problem descriptors aimed at keeping the parameters at hand
as simple as possible. The first point of clarification is that the main problem size
parameter, in all hashing problems, will be n. For example, we will typically have θ(n)
hash keys that must be mapped into some range. Similarly, some applications feature
n processors that at a given time step each hash one memory address. With pipelining,
the n processors might each have as many as log n addresses to hash. We state this
explicit dependence on n because n will sometimes be only implicitly represented by,
say, a domain size parameter m, which might be set to n�, for suitable �. Second, we
assume that for some constant r ≥ 2, the family of hash functions we construct will
only need to be (κ, µ)-wise independent with a probability exceeding 1−n−r, so that
a negligible percentage of the hash functions might be seriously defective.

It is easy to adapt the results to larger data sets, but to avoid clutter we will
use these adaptations only when necessary. In addition, we will either suppose that
the domain size |D| is polynomial in n, or assume that there is “no computation
charge” for premapping elements from a very large space D into, say, [0, n� − 1] for
some constant � ≥ r + 2. It will suffice to use a pairwise independent hash function
(i.e., a randomly selected member of a universal class of pairwise independent hash
functions) for the premapping h : D → [0, n� − 1].

We will typically suppose that the range R is no larger than nγ for some constant
γ. Otherwise, the presumption that simple arithmetic operations take constant time
is again somewhat suspect. It is also the case that for much larger number ranges,
the size of the initializing random seeds will have to grow. Our constructions and
lower bounds can accommodate these changes, and the total operation count for the
hash functions will remain constant. We will sometimes assume that n ≤ |R|. This
assumption is harmless; if |R| is much less than n, it will suffice to use a range [0, R̂−1],
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where R̂ is a multiple of |R|, and postprocess the hash functions mod|R|.
The underlying computational model (once the domain is reduced in size) is the

standard Random Access Machine.
Last, we assume that there is a source of truly independent uniformly distributed

random seeds in any interval [0, ρ−1], and that modest quantities of them are available
for use. In particular, if a hash function is to be (κ)-wise independent, then Θ(κ)
random seeds can be supplied as initializing input to the hashing algorithm. Of
course, if strings of θ(κ) seeds have relative probabilities of occurrence that are not
equal but instead differ by as much as a factor of µ, then the resulting hash functions
will have statistics that exhibit the same multiplicative variability.

1.5. A primer on limited independence and the simplest derived in-
equalities. The probabilistic inequalities used in this paper all follow from a few
closely related formulations. Let X (∗) : (T, F ) → (1, 0) be the indicator function,
which maps Boolean expressions into 1 when they are true and 0 otherwise. Let g

be a nonnegative increasing function, and let X be a random variable. Then g(X)
g(a) is

at least 1 whenever X > a, and is nonnegative everywhere. Thus Prob{X > a} =

Prob{g(X) > g(a)} = E[X ( g(X)
g(a) > 1)] ≤ E[ g(X)

g(a) ] = E[g(X)]
g(a) . Several functions g are

commonly used for proving probabilistic inequalities of the form

Prob{X > a} ≤ E[g(x)]

g(a)
.(1.3)

When X is itself nonnegative, setting g(x) = x gives what is sometimes referred to as
Markov’s inequality.

This scheme also works if g is an increasing multinomial or multivariate function
that is never negative on its domain. Let, for example, the random variable Φ be the
sum of n Bernoulli trials: Φ = z1+z2+ · · ·+zn, where zk is 1 if, say, the hash function
f maps xk to memory module 1, and 0 otherwise. In this case, zk is itself the disjoint
sum of many atomic events: zk =

∨
j(f(xk) = j), where the j index ranges over all

addresses in module 1. If f is selected from a (κ, µ)-wise independent family, then,
as is straightforward to verify, the Bernoulli trials will be (κ, µ)-wise independent.
A suitable multinomial g would be g(z1, z2, . . . , zn) =

(
Φ
κ

)
, which has a very natural

interpretation. In this case,
(
Φ
κ

)
is the sum of all products of subsets of κ distinct z’s:(

Φ
κ

)
=
∑

1≤i1<i2<···<iκ≤n zi1zi2 · · · ziκ .
We recall that the expectation and multiplication commute for independent ran-

dom variables: E[Y X] = E[X]E[Y ] if X and Y are independent. In the case of (κ, µ)-
wise independence, Eκ[X1X2 · · ·Xκ] ≤ µ∏1≤j≤κ E∞[Xj ], for nonnegative (κ, µ)-wise
independent random variables X1, X2, . . . , Xκ, where Eκ denotes the expectation un-
der (κ, µ)-wise independence, and E∞ denotes the expectation under full randomness.
More generally, we note that if the Xi are (κ, µ)-independent, then so are {gi(Xi)}κj=1

for any set of functions gi. (These facts can be verified by formulating events as the
logical-or of κ-way atomic events that assign each Xi fixed values.) Under (κ, µ)-wise
independence, it follows that

Prob{Φ > a} ≤ Eκ[
(
Φ
κ

)
](

a
κ

) ≤ µ(
a
κ

) ∑
1≤i1<i2<···<iκ≤n

E∞[zi1 ]E∞[zi2 ] · · ·E∞[ziκ ].

The bound is useless if a < κ, since the denominator would be zero; in such a case,
we might replace κ with a smaller value.
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In many of our applications, E∞[zk] = p for some expression p that is independent

of k. In these cases, E∞[
(
Φ
κ

)
] =
(
n
κ

)
pκ, and hence Prob{Φ > a} ≤ µ (nκ)p

κ

(a
κ)

.

These formulations can also be used to bound tail expectations as well as proba-
bilities. For example, if X is integer valued and nonnegative, then

E[X · X (X ≥ a)] ≤ kE
[ (

X
k

)(
a−1
k−1

)]

for k ≤ a. Similarly,

E[X] ≤ a+ E[X · X (X ≥ a)]

for a ≥ 0, and likewise

E[X2] ≤ a2 + k(k − 1)E

[(
X+1
k

)(
a−1
k−2

) ] ,
provided that X is nonnegative and integer valued. If X1, X2, . . . , Xn are random
variables, then

E[max
i
Xi] ≤ a+

∑
i

E[Xi · X (Xi ≥ a)],

and if the Xi are identically distributed, then

E[max
i
Xi] ≤ a+ nE[X1 · X (X1 ≥ a)].

These formulations suggest that we will need some basic combinatorial inequali-
ties. Some use the notation nk ≡ n(n− 1) · · · (n− k+ 1). For example, when m > n,

then we can write n
κ

m
κ < ( n

m )κ, and m
κ

n
κ > (mn )κ without appealing to any estimate

for factorials.
A fairly elementary form of Stirling’s formula says that n! > nn+1/2e−n. Some-

times even more naive formulations such as n! > nne−n will suffice. For example, the
last inequality implies that nk > nke−k. (Indeed, to see that the former implies the
latter, observe that nκ > κκ

eκκ!n
κ = κκ

eκ · n
κ

κ
κ > (κe )κ · (nκ )κ = (ne )κ.) It now follows that

nke−k

k!
≤
(
n

k

)
≤ nk

k!
,

and we will bound many combinatorial expressions by replacing
(
n
k

)
by nk

k! , if the

expression appears in a numerator, and by nke−k

k! , if it is in a denominator. As an
immediate application, we have

µ

(
n
κ

)
pκ(

a
κ

) ≤ µ (np)κ

a
κ ≤ µ

(npe
a

)κ
,

which further simplifies the preceding estimates for Prob{Φ > a}, when Φ is the sum
of n (κ, µ)-wise independent Bernoulli trials with probability of success p. Although
much better estimates can be derived, they will not be needed.
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Many powerful inequalities come from setting g(X) = eλX , in (1.3), and then
solving for the value of λ > 0 that gives the best bound. If X is the sum of n mutually
independent identically distributed random variables zi, then E[eλX ] = E[eλz1 ]n, and
Prob{X > a} < e−λaE[eλz1 ]n. If X = z1 + z2 + · · · + zκ, where {zi}κi=1 are random
variables that enjoy (κ, µ)-wise independence, then Eκ[eλX ] ≤ µ

∏κ
i=1 E∞[eλzi ]. A

more complete set of these estimates for cases with limited independence can be
found in [24].

Sometimes an event E will have a corresponding predicate Pred(∗, ∗) and sets U
and W that satisfy the following: if E occurs, then there exist u ⊂ U and w ⊂W such
that Pred(u,w) is true. This implies that Prob{E} ≤ ∑u⊂U,w⊂W E[X (Pred(u,w))],
where X is the 0–1 indicator function. We will take care to ensure that these expec-
tations can be evaluated (or estimated) under the restrictions of (κ, µ)-wise indepen-
dence. For example, a predicate E might have a decomposition as a disjoint sum of
atomic κ-way events:

E =
∨

(y1,y2,...,yκ)∈Ω

⎛⎝ ∧
1≤i≤κ

f(xi) = yi

⎞⎠
for some set Ω of κ-tuples. Any such E has a probability that is, up to the factor
µ, bounded by the analogous probability that results from full independence and the
uniform distribution.

Armed with this set of counting arguments, we proceed to the problem of building
fast computable hash functions.

2. The hash functions. The first step is to formalize a somewhat stronger and
occasionally more applicable notion of restricted randomness.

Definition 2.1. A family of hash functions F with domain D and range R is
r-practical (κ, µ)-wise independent if for any subset D0 ⊂ D, with |D0| ≤

√|R|r/2,
there is a subset of functions F̂ ⊆ F where |F̂ | ≥ |F |(1−2

(|D0|
2 )

|R|r ) and for all y1, y2, . . . ,

yκ ∈ R, for all distinct x1, x2, . . . , xκ ∈ D0,

|F̂ |
µ|R|κ ≤ |{f ∈ F̂ : h(xi) = yi, i = 1, 2, . . . , κ}| ≤ µ|F̂ |

|R|κ .(2.1)

We define F to be uniformly r-practical (κ, µ)-wise independent if (2.1) holds for

some |F̂ | ≥ |F |(1− 1
|R|r ) with D0 = D.

This definition differs from those in the literature in two respects. First, the r-
practical part of the formulation has been introduced to formalize the notion that a
negligible fraction of the hash functions might be defective for the specific data that
is to be processed. The reason for weakening the definition is the following. For very
large domains, a prehashing function h should be used to map the data into a smaller
domain D1. But then a collection of n keys from D will, with a probability of (about)(
n
2

)
/|D1|, have a collision under the projection h. Consequently, under the best of

circumstances, the composition of h with a well-designed hash function onD1 will only
be able to achieve high degrees of independence with a probability of 1−(n2)/|D1|, since
once two keys are mapped to the same value, any subsequent processing will preserve
this equality. We will typically set |D1| ≈ n4. With this understanding, we can focus
on the design of hash functions defined on domains of reasonable size, and just revisit
the issue of highly disparate domain sizes when establishing the corresponding lower
bounds.
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In addition to accommodating small percentages of faulty hash functions, this def-
inition differs from the usual formulations by specifying two-sided constraints. This
formulation (which becomes an equality when µ = 1) is intended to support inclusion-
exclusion arguments based on (κ)-wise independent hash functions. (In [22], for ex-
ample, such a two-sided bound is essential.) As a practical matter, this additional
constraint is not particularly burdensome. While most constructions of (κ, µ)-wise
independent function classes have focused on one-sided constraints as typified by Def-
inition 1.1, actual constructions, such as the polynomials F(κ) of (1.2), usually satisfy
the more restrictive standard2 of Definition 2.1.

2.1. Existence arguments. We now examine the problem of constructing fam-
ilies of (κ)-wise independent hash functions that map a domain D = [0,m− 1] into a
range R = [0, ρ − 1]. The basic motivation for the approach comes from considering
the following question. Imagine, for the moment, that D = R, and is of prime size.
Then we can use κ random elements from D as coefficients in (1.2) to construct a
(κ)-wise independent hash function. Evidently, evaluation requires O(κ) time. If m
random elements are provided, then table lookup gives an O(1) time (m)-wise inde-
pendent hash function. What sort of random functions can be constructed from mε

random seeds?
For the purposes of this section, we will require that the underlying storage be

sufficient to hold the random function code, including its random seeds. Our model
of computation is the Random Access Machine, where both memory access and the
basic arithmetic and logic operations can be executed on words in unit time (cf. [1,
Chap. 1]). Each word will comprise �log2 ρ� or possibly �log2m� bits.

We temporarily suppress the issue of program size and prove the existence of
families of fast highly independent hash functions that map [0,m − 1] into [0, ρ − 1]
and use mε words of random input. We will also initially ignore all preprocessing and
postprocessing steps as well as any concern associated with huge domains to study
the problem of constructing fully (κ, 1)-wise independent hash functions that map
D = [0,m − 1] into a suitable R = [0, ρ − 1], given an auxiliary array of mε random
words from R, for some3 ε < 1. Evidently, any random hash function must have
a mechanism to associate each element in D with a few of these random words, as
otherwise no random computation can result. If the association is not adaptive,4 then
it can be represented by a bipartite graph G on the vertex sets D and Dε ≡ [0,mε−1].
Such a bipartite graph must associate at least l random numbers with each set of l
elements from D, for l ≤ κ, as otherwise there are not enough degrees of freedom to
achieve (κ)-wise independence. Suitable graphs are formalized as follows.

Definition 2.2. Let an (m, ε, d, κ) local concentrator be a bipartite graph on sets
of vertices I (inputs) and O (outputs), where |I| = m, |O| = mε, and the following
hold. Each input has outdegree d. Every set of j inputs, for j ≤ κ, has edges to some
set of j or more outputs.

Our next observation is that such graphs exist, even with very small outdegree d.
From this narrow perspective, the parameter r is extraneous in the following lemma

2For some applications, the yi of Definition 2.1 might be required to be distinct. Alternatively,
the functions of (1.2) might include the additional term xκ.

3We will avoid the clutter of floors and ceilings as long as possible, and assume that the exponent
ε has been chosen to make the resulting expression such as mε an integer.

4The lower bound will include adaptive probing, where the location of the next random key
to retrieve can depend on the value of other such data that has already been read. We discuss
nonadaptive approaches because they are more intuitive, and explain all of our constructions, which
turn out to be nonadaptive.
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because the existence result holds for r = 0. However, by increasing r from 0 some
positive quantity, a suitably structured random graph will be as described with a
probability exceeding 1−m−rd, which can be with overwhelming likelihood as opposed
to a probability exceeding zero. The same issue applies to the r in Lemma 2.9.

Lemma 2.3. Let d, κ, m, and mε be positive integers with ε < 1. Suppose that
r ≥ 0 and d ≥ 1+ε+r

ε− log κ
log m

. Let G = (V,E) be a random bipartite graph with input vertices

I, and output vertices O, where |I| = m and |O| = mε, and where each vertex in I has
edges to d distinct randomly selected neighbors in O. Then with probability exceeding
1−m−rd, G is an (m, ε, d, κ) local concentrator.

Proof. We use standard probabilistic arguments (cf. [29]) to estimate the proba-
bility that G fails to have j outputs for some set of j inputs for j ≤ κ. By construction,
failure cannot occur for j ≤ d. For larger aggregates of size at most κ, the probabil-
ity of a failure is bounded by the expected number of pairs (u ⊂ I, w ⊂ O), where
|u| = j, |w| = j−1, and all jd edges from u have destinations within w for d < j ≤ κ.
Evidently, the probability that the jd edges are so selected, for any fixed (u, w), is((

j−1
d

)(
mε

d

) )j

<

(
j − 1

mε

)jd

(where the inequality is strict because d > 1). The number of candidate (u,w) pairs
is just (

m

j

)(
mε

j − 1

)
.

Thus

Prob{failure} <
∑

d<j≤κ

(
m

j

)(
mε

j − 1

)(
j − 1

mε

)jd

<
∑

d<j≤κ

mjmjε−εjjd

j!(j − 1)!mεjd

< m−ε
∑

d<j≤κ

1

j!(j − 1)!

mj+jεκjd

mεjd
.

Now, the constraint for d can be written as mdε ≥ κdm1+ε+r, whence m−r ≥ κdm1+ε

mdε .
Substituting gives

Prob{failure} < m−ε
∑

d<j≤κ

m−rj

j!(j − 1)!

< m−rd.

Setting r = 0, we see that a randomly constructed graph fails to be an (m, ε, d, κ) local
concentrator with a probability that is less than 1. It follows that such a construction
will succeed with positive probability, and hence these graphs do indeed exist.

We have, as yet, no hash function, but each element, at least, is now associated
with a few random values. The obvious use for these values is as coefficients of a
hashing polynomial. By increasing the number of random values used in this calcu-
lation, we can turn a local concentrator into a calculation procedure for (κ, 1)-wise
independent hash functions.
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Let G be an (m, ε, d, κ) local concentrator. Let p be prime. For each input i in G,
let i’s d neighbors in G be stored in the set Adj(i). Let Mw be an mε×d array of words
in [0, p− 1], whose concatenated contents are the very long word w ∈ [0, p− 1]m

εd.
Define the random hash function

fGw (i) =

⎛⎝ ∑
0≤k<d

∑
j∈Adj(i)

ikMw(j, k)

⎞⎠ mod p.

Thus, computing fGw (i) requires d2−1 additions and d−1 multiplications plus a com-
parable number of modular divisions. The result turns out to be (κ)-wise independent
when the concatenated contents of the storage array Mw are equally likely to be any
value in [0, p− 1]dm

ε

.
Theorem 2.4. Let G be an (m, ε, d, κ) local concentrator. Then {fGw }w∈[0,p−1]dmε

is a (κ, 1)-wise independent family of hash functions mapping [0,m−1] into [0, p−1].
Proof. Let x1, x2, . . . , xκ be any κ distinct values in [0,m− 1], and y1, y2, . . . , yκ

be κ arbitrary values in [0, p − 1]. We must show that for all x and y assignments,
there are exactly the same number of functions fw that satisfy the system

fGw (xi) = yi mod p for i = 1, 2, . . . , κ.(2.2)

Now the unknowns, in this system, are the word assignments to the array Mw, and
the system is linear in these variables. The equations in (2.2) comprise κ constraints
in dmε unknowns. So if the system enjoys linear independence, then the set of κ
equations in (2.2) will have exactly pdm

ε−κ different w words that are solutions, which
ensures the precise uniformity required of (κ)-wise independence. It follows that we
need only establish the linear independence of all systems defined in (2.2).

We prove the linear independence by contradiction. In the context of Lemma 2.3,
[0,m− 1] plays the role of I, and [0,mε − 1] is O. The linear system fGw (xi) = yi for
i = 0, 1, 2, . . . ,m− 1 has the explicit formulation

d−1∑
k=0

(N )k ×A× (Mj,k)j∈O = (y0, y1, . . . , ym−1)
T mod p,(2.3)

where N k is the diagonal matrix with ik in location (i, i), for i = 0, 1, . . . ,m−1 (with
N 0 set to the identity matrix), and A = (ai,j)i∈I, j∈O is the adjacency matrix for G,
which has m rows, mε columns, and d 1’s in each row. The representation (Mj,k)j∈O

is intended to denote the kth of d column vectors, which each have |O| = mε rows.
Taken together, they comprise the entries in the auxiliary array M of random words.

The proof will exploit the structural characteristic of G to establish the linear
independence of any subsystem of |I0| ≤ κ equations for I0 ⊂ [0,m − 1]. Such
subsystems can be written as follows:∑

0≤k<d

∑
j∈Adj(i)

ikMw(j, k) = yi mod p for i ∈ I0.

Let I0 be a set of row indices in a subsystem of (2.3) that is linearly dependent and
has no proper subset of equations that is linearly dependent. Suppose |I0| ≤ k.

By definition, I0, in the local concentrator, has d|I0| edges, which reach at least |I0|
outputs. Let O0 comprise the vertices adjacent to I0 in G. Then the average number
of edges received from I0 by a vertex in O0 is d|I0|/|O0| which is at least 1 and at



516 ALAN SIEGEL

most d, since |I0| ≤ O0 ≤ d|I0|. By the pigeonhole principle, there must be an output
o ∈ O0 having exactly q edges that originate in I0 for some q, where 1 ≤ q ≤ d. Let I1
be this set of neighbors of o in I0: I1 = {i ∈ I0 : o ∈ Adj(i)}. Let I1 = {i1, i2, . . . , iq},
where 1 ≤ q ≤ d. Now consider the linear subsystem with rows indexed by I1 and
columns restricted to the variables M(o, k), where k = 0, 1, . . . , d − 1. This system
comprises the following submatrix of a Vandermonde matrix:⎛⎜⎜⎜⎜⎝

1 i1 i21 . . . id−1
1

1 i2 i22 . . . id−1
2

...
...

...
...

1 iq i2q . . . id−1
q

⎞⎟⎟⎟⎟⎠ .
As is well known, such a subsystem cannot be linearly dependent since no two rows
are the same, and q ≤ d. Since none of the rows with indices in I0 − I1 has any of
the variables M(o, 0),M(o, 1), . . . ,M(o, d− 1) present (that is, they are present with
coefficients of zero), the only way a linear combination of the rows can add to the
zero vector is if each row in I1 has a coefficient of zero. Thus, the assumption that
the system is dependent and minimal is contradicted.

So far, we have a probabilistic fast hashing procedure that is (κ)-wise independent,
uses dmε random words of log p bits, and requires Θ(d2) operations. The construction
gives a generic transformation from a graph rich in matchings to a family of highly
random functions. We now give a more efficient construction that makes better use of
random graph properties. The graph will require an outdegree d that is slightly larger
than before, but only one random value will be stored in each output destination. The
construction uses a sparse bipartite graph where every set of κ rows of its adjacency
matrix is linearly independent, and this independence even extends to computations
over finite commutative groups such as the integers modρ for any integer ρ.

Definition 2.5. Let G be a bipartite graph on sets of vertices I (inputs) and O
(outputs), where |I| = m, |O| = mε. Let Adj(i), for i ∈ I, be the set of i’s neighbors
in O. We say that G is (m, ε, d, κ) locally peelable if each input node has an outdegree
of at most d and the following holds: for any set I0 of κ or fewer input vertices, some
node in I0 has a neighbor that is not a neighbor of any other node in I0. Formally,
for all I0 ⊂ I, where |I0| ≤ κ, there is an i0 ∈ I0 such that

Adj(i0)−
⋃

i∈I0−{i0}
Adj(i) �= ∅.

Lemma 2.6. Let D = [0,m−1], and R = [0, ρ−1]. Let
⊕

denote addition mod ρ
or any other commutative group operator that is closed over R. Let G be (m, ε, d, κ)
locally peelable, with ε < 1. For each input i in G, let i’s neighbors in G be stored
in the set Adj(i). Let Mw be an array of mε words from R, where the concatenated
content of Mw comprises the very long word w ∈ [0, ρ− 1]m

ε

.
Define the hash function

fGw (i) =
⊕

j∈Adj(i)

Mw(j) for i ∈ D.

Then {fGw }w∈[0,ρ−1]mε is a (κ, 1)-wise independent family of hash functions mapping
D into R.

Proof. Consider the subsystem (in unknowns w) fGw (xi) = yi, for i = 1, 2, . . . , κ,
which assigns κ values in R to κ distinct input vertices in D. Since the system is
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locally peelable, it can be permuted into a system where the first κ columns comprise
an upper triangular matrix with 1’s along its diagonal. The first row corresponds to an
input xi0 reaching an output o0 that is not a neighbor of any node in {xi}κi=1−{xi0}.
The columns are permuted so that the first column corresponds to o0. Then the
same reordering is recursively applied to the remaining κ− 1 equations in unknowns
O − {o0}. Given such an upper triangular permutation of the system, there are
mε−κ column variables that are not among the columns that contain the κ diagonal
entries, and we are free to assign arbitrary values from R to these variables. Then
the remaining κ variables will have a unique solution that can be found by back-
solving via the

⊕
operator. Thus, the number of solutions to any κ such equations

in the mε unknowns is exactly ρm
ε−κ, which ensures that the fGw are (κ, 1)-wise

independent.
We now show that some random graphs are locally peelable.
Definition 2.7. Let an (m, ε, d, κ) local expander be a bipartite graph on sets of

vertices I (inputs) and O (outputs), where |I| = m and |O| = mε, and the following
hold. Each input has a positive outdegree bounded by d. Any set of j inputs, for
1 < j ≤ κ, has edges to at least 
jd/2�+ 1 different outputs.

Lemma 2.8. An (m, ε, d, κ) local expander is (m, ε, d, κ) locally peelable.
Proof. The proof is by contradiction. Suppose that I0 is a smallest set of input

variables that is not locally peelable. Obviously |I0| > 1. Suppose |I0| ≤ κ. By
definition, the input variables of I0 have at least 
jd/2�+1 different output variables,
which have, on average, at most jd/(
jd/2�+ 1) < 2 different input neighbors in I0.
By the pigeonhole principle, some output vertex o0 must therefore have just one input
neighbor i0 in I0. We peel off this input, and observe that the subgraph with |I0| − 1
input variables is locally peelable, whence the supposition that |Io| ≤ κ must be
false.

As with Lemma 2.3, the following existence argument includes the parameter r
to increase the likelihood of success from something positive to a probability over-
whelmingly close to 1.

Lemma 2.9. Let d, κ, m, and mε be positive integers with ε < 1. Suppose that

r ≥ 0 and ε > 2+r
d +

1+ln d
2 +lnκ

lnm . Let G = (V,E) be a random bipartite graph with
input vertices I and output vertices O, where |I| = m and |O| = mε, and where
each vertex in I has edges to d distinct randomly selected neighbors in O. Then with
probability exceeding 1−m−r, G is an (m, ε, d, κ) local expander.

Proof. Rewriting the bound for ε gives mεd/2 > m(κde/2)d/2mr/2, so that

m(jde/2)d/2

mεd/2
< m−r/2 for j ≤ κ.(2.4)

Proceeding as in Lemma 2.3 gives the following estimates for the probability that G
is not a local expander:

Prob{failure} <
∑

1<j≤κ

(
m

j

)(
mε


jd/2�
)(
jd/2�

mε

)jd

<
∑

1<j≤κ

mjmεjd/2(
jd/2�)jd
j!(
jd/2�)!mεjd

,

whence approximating (
jd/2�)! via our two Stirling estimates (depending on the
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parity of jd) and simplifying give

Prob{failure} <
∑

2≤j≤κ

(
m(jde/2)d/2

mεd/2

)j
1

j!
.

Applying (2.4) gives

Prob{failure} <
∑

2≤j≤κ

m−rj/2/j! < m−r
∑
2≤j

1

j!
< m−r.

Setting r = 0 shows that such a graph exists. Of course, actual use of this lemma will
require that ε be less than 1, which requires that d ≥ 3.

Combining Lemmas 2.6, 2.8, and 2.9 gives the following.
Theorem 2.10. Let d, κ, m, and mε be positive integers with ε < 1. Suppose

that 1 > ε ≥ 2
d + 1+ln d+lnκ

lnm . Let G be an (m, ε, d, κ) local expander. Let
⊕

define a
commutative group over [0, ρ− 1]. Let

fGw (i) =
⊕

j∈Adj(i)

Mw(j).

Then {fGw }w∈[0,ρ−1]mε is a (κ, 1)-wise independent family of hash functions mapping
[0,m− 1] into [0, ρ− 1].

Proof. Lemma 2.9 ensures that G exists, when ε ≥ 2
d + 1+ln d+lnκ

lnm . Lemma 2.8
ensures that G is (m, ε, d, κ) locally peelable. Lemma 2.6 shows that {fGw }w∈[0,ρ−1]mε

is (κ, 1)-wise independent.
In particular,

⊕
can be addition modρ, or

⊕
can be the bitwise exclusive-or

operator, where ρ is power of 2 and the integers in [0, ρ − 1] are regarded as binary
strings of length log ρ.

It is worth observing that the mε-word seeds w as used in Theorem 2.10 can be
produced by random members of a universal class H of (dκ, µ)-wise independent hash
functions.

Corollary 2.11. Let H be a universal class of (dκ, µ)-wise independent hash
functions that map [0,mε − 1] into [0, ρ− 1]. For h ∈ H, let wh be the concatenation
of h(0), h(1), . . . , h(mε − 1). Then the family {fGwh

}h∈H is (κ, µ)-wise independent.
Proof. Observe that each set of range assignments to a κ-tuple of elements in D

induces a (locally peelable) linear system of κ equations in at most dκ index locations
(i.e., variables) of the auxiliary array M . We can extend the set to include exactly
dκ such variables. Then the solution set can be represented by ρdκ−κ different dκ-
tuple assignments for this collection. So if each assignment occurs with probability
ρ−dκ, then the resulting functions will be (κ, 1)-wise independent by Theorem 2.10.
If each tuple of dκ assignments has a probability of occurrence that is reweighted by
a factor of µ ∈ [µ1, µ2], then the resulting aggregate probability that F computes the
prespecified κ-tuple of range assignments is likewise reweighted by a factor that is
within this interval.

Consequently, the space-time tradeoff, for families of fast highly independent hash
functions, is not a function of the number of random seeds that must be specified
(which is just Θ(κ)) but is really a matter of intrinsic storage requirements for the
auxiliary storage array M .

Although the second construction gives a more efficient family of hash functions
and also provides a generic procedure that turns a good graph into a family of hash
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functions, it does not quite supersede the first construction because there are no known
explicit graphs of either type. Should a short (deterministic or effective probabilistic)
algorithm be found to define local concentrators where an input’s adjacency list can
be generated from a small number of instructions, then fast, highly independent hash
functions will follow. Similarly, effective procedures for constructing local expanders
will yield even better hash functions.

2.2. Asymptotically compact constructions and their randomization.
From a positive perspective, we have proven that one good graph is all we need: the
contents of the auxiliary random seed array M defines the different members in the
associated family of hash functions. Furthermore, we have shown that good graphs
not only exist, but can even be formulated so that randomized constructions can build
them with very high likelihood.

Unfortunately, no deterministically defined graph has been proven, as yet, to
satisfy either expander-like formulation. We now show that from a theoretical per-
spective where impractical constants might be tolerated, there are asymptotically
spatially compact programmable formulations of constant-time (nε)-wise independent
hash functions. In particular, we will show that Cartesian products can be used to
obtain compact representations of (wildly) less efficient hash functions, where we forgo
some randomness and increase the O(1) operation count by an exponentially larger
constant, but reduce the overall storage requirements to O(nε) for suitable ε < 1.
These variations can be applied to either of our nonconstructive formulations, but we
will focus on those built from locally peelable graphs, since they appear to be more
efficient.

The first step is to show that such compact representations exist. The second
is to observe that simple changes in the random constructions yield locally peelable
graphs with a high probability, so that the graph itself can be part of the random
seed specification. The result will be a uniform r-practical family where a good graph
need not be found. Instead, the initializing random seeds will include values to define
G. As a consequence, an asymptotically negligible fraction of these implicitly defined
graphs will fail to have the necessary expander-like properties.

Definition 2.12. Let the Cartesian product G
⊗
H of two bipartite graphs

G = (I,O;E) and H = (J,Q;F ) be the graph G = (I,O; E), with input vertex set
I = I × J , output set O = O × Q, and edge set E, which contains the edge from
(i, j) ∈ I to (o, q) ∈ O if and only if edge(i, o) ∈ E and edge(j, q) ∈ F .

Lemma 2.13. Let G = (I,O;E) be (m, ε, d, κ) locally peelable, and H = (J,Q;F )
be (n, ε, c, κ) locally peelable. Then the Cartesian product G

⊗
H is (mn, ε, cd, κ)

locally peelable.
Proof. We need only verify the local peelability property for G

⊗
H. The proof

is by contradiction. Let X be a smallest set of input variables for G
⊗
H that is not

locally peelable. Obviously |X| > 1. Suppose |X| ≤ κ. Let IG = {i | ∃j : (i, j) ∈ X}.
Now |IG| ≤ κ, and hence there is an ı̂ ∈ IG with a neighbor o1 that is not a neighbor
of any node in IG − {ı̂}. Now let JG = {j | ∃j : (̂ı, j) ∈ X}, and let � = |JG|. By
definition, JG is locally peelable in H. So let q1, q2, . . . , q� be a sequence of outputs
peeled one-by-one in order from JG. It is easy to see that (o1, q1), (o1, q2), . . . , (o1, q�)
now gives a comparable peeling for {o1 × JG} in X. But then the remaining |X| − �
variables (if any) are by assumption locally peelable, whence the supposition that
there is a subgraph with at most κ input vertices that is not locally peelable must be
false.

Consequently, if G is an (mε, ε1, d, κ) local expander, then applying Lemma 2.13 a
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total of c = � 1
ε1
�−1 times shows that the Cartesian product

⊗�1/ε�G
j=1 is (mcε, ε1, d

c, κ)
locally peelable.

Lemma 2.13 plus the constructions of Theorem 2.10 establishes the following.
Theorem 2.14. Let the positive integers m, mε, κ, d, and ρ be specified with

m > ρ, and suppose that 1
2 ≥ ε

2 ≥ 2
d + 1+ln d+lnκ

ε lnm , and mε2/2 > 1
ε . Let c = � 1ε � and

set ε1 = log�mε/c�
ε logm . Let G be the set of all graphs G = (V,E) that are bipartite with

mε input vertices and mε1ε output vertices, and where each input vertex has edges to
d distinct neighbors among the outputs. Then the following holds.

There is a G ∈ G that is (mcε, ε1, d
c, κ) locally peelable.

Let Ĝ =
⊗c

i=1G. The set {f Ĝw }w∈[0,ρ−1]m
ε1ε is a universal class of (κ, 1)-wise

independent hash functions that map [0,m− 1] into [0, ρ− 1].

The program for f Ĝw comprises O(ε2d)mε logm bits and computes a hash value
by retrieving no more than d1+1/ε words from an auxiliary storage array of O(mε)
random words in [0, ρ− 1].

Proof. Lemma 2.9 establishes the existence of a suitable G. Programmatically, G
will be stored and used as part of the hash function. A value i ∈ [0,m− 1] is hashed

by computing the adjacency list for i in the implicitly defined Ĝ ≡ ⊗c
j=1G. Given

the local peelability of G, Lemma 2.13 shows that Ĝ is (mcε, ε1, d
c, κ) locally peelable,

which is adequate for use in Theorem 2.10, since cε > 1.
It is not difficult to verify that all parameter sizes are as stated. In particular,

there are three issues: the local peelability of G, the size of the auxiliary array, and
the outdegree of each vertex in Ĝ.

Parameter ε1 satisfies 1
c ≤ ε1. By construction, c < 1

ε + 1, whence 1
c >

ε
1+ε >

ε
2 .

Hence ε
2 <

ε
1+ε < ε1, so ε1 satisfies the local peelability inequality of Lemma 2.9 since

ε
2 does.

By definition,

ε1 =
ln�mε/c�
ε lnm

<
ln(mε/c + 1)

ε lnm
=

1

c
+

ln(1 +m−ε/c)

ε lnm
<

1

c
+
m−ε/c

ε lnm
≤ 1

c
+
m−ε2/2

ε lnm
.

Now, mε2/2 ≥ 1
ε , so ε1 − 1

c <
1

lnm . Consequently, the word count for the auxiliary
array is

mεε1c = mε(ε1−1/c+1/c)c ≤ mεm
εc

ln m = mε(m
1

ln m )cε = mεeεc < mεe2.

The outdegree is dc < d
1
ε +1.

Thus, the hash function has three parts. One part comprises the array M of
mcεε1 = O(mε) random words from [0, p−1], which requires O(mε log p) bits. Another

stores the graph G, which requires mε strings of d words that are each O(log(mε2))
bits long. The requisite storage for G (i.e., part 2) is, therefore, O(ε2dmε logm) bits.
The third part of the function is the finite program that uses G and M to evaluate
the hash function for an element in [0,m− 1].

Remarks. Theorem 2.14 can be used with m replaced by nk, ε replaced by ε/k, κ
replaced by nδ, and d unchanged. The inequality for ε then becomes

ε

2k
≥ 2

d
+

1 + ln d+ δ lnn

ε lnn
,(2.5)

which we can write as ε ≥ 4k
d + 2k 1+ln d+δ lnn

ε lnn . Upon applying the simplification

ε > a+
√
b implies ε ≥ a + b/ε, we can conclude that the requirement for ε is met if
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ε ≥ 4k
d +
√

2k(δ + 1+ln d
lnn ). The corresponding hash functions can be evaluated with

O(dk/ε) operations, and have a program size of O(nε) words. It is worth pointing
out that (2.5) can permit ε to be any sufficiently small positive constant provided,

say, d > 12k/ε, δ < ε/6, n > d6/ε, and nkε2/2 > 1
ε . The resulting functions are

(nε/6, 1)-wise independent.
For completeness, we state without proof the analogous compaction/expansion

formulation for local concentrators.
Lemma 2.15. Let G be an (mε, ε, d, κ) local concentrator. Then the Cartesian

product
⊗1/ε

j=1G is an (m, ε, d1/ε, κ) local concentrator.
So far, families of hash functions mapping D into R have been “demonstrated”

only in a probabilistic sense; no explicit constructions have been given. However,
by increasing, slightly, the degrees of freedom in our probabilistic constructions, the
same counting arguments ensure that with probability 1− 1

|R|r , a randomly selected

graph is a local concentrator or expander. Consequently, we can include, in the
initial seeding, enough random data to build a local expander as well as the array
of random words it will be used to access. The graph will not be prohibitively large
if it defines a compact version as formulated in Theorem 2.14 and adapted in (2.5).
The only necessary accommodation is to keep the probability of failure appropriately
tiny in the rescaled parameters, which can be done by increasing r by a factor of 1

ε .

The resulting randomized construction F
G(m,ε,d)
M is an explicit family of O(1) time

hash functions that is uniformly r-practical (κ)-wise independent as characterized by
Definition 2.1. Last, it is worth pointing out that the graph structure suggests that the
number of initializing random seeds need not change by more than a constant factor;
it is sufficient to build G from pseudorandom numbers generated from a traditional
(κdk/ε)-wise independent hash function. To see that this is so, it suffices to observe
that the proof of Lemma 2.9 was based on expectations of disjunctions of atomic
events comprising the conjunction of dκ random edge assignments.

These observations are formalized in the following theorem, where the bipar-
tite graph G is just a collection of (κdk/ε)-wise independent pseudorandom numbers.
A simple algorithm to process this graph and compute the actual hash function it
encodes is presented after Theorem 2.16. The construction is randomized and asymp-
totically compact.

Theorem 2.16. Let the positive integers n, k, nε, κ, d, ρ, and r be specified,

and suppose that ε
k+1 ≥ 2

d + r
dε + 1+ln d+lnκ

ε lnn . Let c = �kε � and set ε1 = log�nε/c�
ε log n .

Suppose that ε < k
k+1 and nε

2/(k+1) > 1
ε . Let G(d, κdkc) be a set of pseudorandomly

generated bipartite graphs with nε input vertices and nεε1 output vertices and where
each vertex has edges to d distinct randomly selected neighbors, and let these d-tuple
assignments of neighbors be (κdkc−1)-wise independent. Let M be a collection of long
words that are the concatenation of (κdkc)-wise independent sequences of nεε1c words

that individually belong to [0, ρ− 1]. For any G ∈ G(d, κdkc), let Ĝ =
⊗ck

i=1G. Given

w ∈ M and G ∈ G, let fGw be the hash function defined by f Ĝw as in Lemma 2.6. Let
FG
M = {fGw }w∈M,G∈G.

Then FG
M is an explicit family of uniformly r-practical (κ, 1)-wise independent

hash functions that map [0, nk−1] into [0, ρ−1]. Furthermore, each w ∈M comprises
|w| = nεε1c ≤ ek+1nε words from [0, ρ−1]. The long words in M can be generated from
κdkc random seeds that belong to [0, ρ − 1]. Each G ∈ G can be stored as a sequence

of nε words of O( ε
2

k log n) bits, and can be generated from (κdkc) random seeds that
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are evenly distributed among the ranges [0, nεε1 − 1], [0, nεε1 − 2], . . . , [0, nεε1 − d]. The

probability that a specific F Ĝ
∗ fails to be (κ, 1)-wise independent is bounded by n−r.

Proof. The arguments are just a combination of the reasoning given in Lemma 2.9,
the rescaling listed in (2.5), and, mutatis mutandis, the calculations given in the proof
of Theorem 2.14.

However, a few comments should be made about how to generate the two tables
of pseudorandom data. One potential difficulty is that we need, at initialization
time, a small (traditional) hash function to expand some count σ of truly random
seeds into a much larger collection of nδ pseudorandom seeds belonging to [0, ρ− 1],
even when [0, ρ− 1] cannot define a finite field. Perhaps the mathematically cleanest
solution is to factor ρ into its product of powers of distinct primes, and use a (κdck)-
wise independent hash function over each of these fields. Then the Chinese remainder
theorem can be used to reconstruct the comparably random (κdkc, 1)-wise independent
pseudorandom seeds as needed.

Last, we note that straightforward encoding suffices to transform tuples of random
values into distinct random values.

The first requirement for ε is satisfied if ε ≥ 2(k+1)
d +

√
(k + 1)( rd + 1+ln d+lnκ

lnn ).

For applications of Theorem 2.16, a new hash function family (which might have

to be found in case F Ĝ
∗ fails to be (κ, 1)-wise independent) would include new seeds

to select a new pseudorandom graph G ∈ G as well as new pseudorandom seeds to
select a new w ∈M .

For completeness, this subsection closes with a rather crudely transparent iterative
version of the hashing algorithm. The treatment of 1

ε and related algebraic expressions
as if they were integers is for conceptual transparency and lack of clutter.

function Hash(i: in [0, nk − 1]): in [0, nk − 1];
Global M : array of nε words in [0, ρ− 1];

Global G: nε × d array of words in [0, nε
2/k − 1];

Local l1, l2, . . . , lk/ε: in [0, d− 1];
Local i1, i2, . . . , ik/ε: in [0, nε − 1];
Local j: in [0, nε − 1];
Local val: in [0, nk − 1];
val← 0;
(i1, i2, . . . , ik/ε)← i; {Distribute i as k

ε different packets of ε log n bits.}
for l1 ← 0 to d− 1 do

for l2 ← 0 to d− 1 do
...

for lk/ε ← 0 to d− 1 do
j ← (G[i1, l1], G[i2, l2], . . . , G[ik/ε, lk/ε]);
val← (M [j]

⊕
val)

endallfors; {Altogether, dk/ε
⊕

’s take place.}
return(val).

3. Lower bounds. We now show that the size of our random word array cannot
be materially reduced without affecting the running time of the hash function. A
family of (κ, µ)-wise independent hash functions FM = {fm(x)}m∈M , where fm :
D → R, will be modeled as follows. Each fm is defined by the same algorithm,
which inputs x and then reads d locations in an array A[1..z] that contains z values
belonging to R. The index m is a very long word comprising the concatenated data
contained in A. We can suppose that each computation of f examines exactly d
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entries in A. The randomness in the system comes from the choice of input seed
strings m ∈ M⊆Rz. The set M need not contain all possible sequences of z words
from R and can be a multiset, which means that some strings could have several
copies present in M . More generally, each m ∈ M could be assigned a positive real
weight, and an element in M could be selected with a probability equal to its fraction
of the total weight in M . Although our proof extends directly to cover this case,
we will simply assume that all strings are equally likely to be selected. This avoids
unnecessary clutter by keeping the lower bound restricted to a more manageable six
parameters.

The algorithm can even be viewed as adaptive since we allow a key x to be hashed
by a scheme that, for j = 0, 1, . . . , d − 1, uses x and the first j values found in A to
determine which A location to read for the (j + 1)st value. In any case, x and the
retrieved array values are then used deterministically to compute the random function
value in R.

The forthcoming lower bound argument will exploit the following independence
constraint. LetX = {x1, x2, . . . , xκ} be a set of κ keys inD, and let, for j = 1, 2, . . . , κ,
the sequence of seed values read to compute fM (xj) be sj,1, sj,2, . . . , sj,d. Then the
hashing of X, over all possible seed strings in M , cannot cause the same fixed sequence
of κd seed values to be read with a probability that exceeds µ

|R|κ , since X would

otherwise be mapped into the same κ-tuple with a probability that is too high. Since
the determination of the sequence of seed locations can be adaptive, we are obliged to
formulate the proof with respect to the triples (ζ,Mζ

i , D(ζ, i)), where ζ is a subset of
κ−1 locations in the seed array A, i is a string that can result from concatenating the
seed values in ζ, M ζ

i is the subset of seed data sets m ∈M for which the concatenation
of the seed values on ζ is i, and D(ζ, i) is the subset of keys in D that are hashed by

seeds read solely from ζ, when the seed data is restricted to M ζ
i . Given these triples,

the proof proceeds by summing their respective weights and bounding the respective
sums. Bounds are attained by selecting the “good” triples, where |Mζ

i | is large enough
to ensure that |D(ζ, i)| < κ. The lower bound quantifies the intuition that if most
|D(ζ, i)| are small, then A must be big.

Theorem 3.1. Let FM = {fm}m∈M denote a family of (κ, µ)-wise independent
hash functions mapping D into R, where M ⊆ Rz. Then the number of probes T that
must be used to evaluate f ∈ FM satisfies either T ≥ κ or

z
T

> (κ− 2)
T−1 |D|

(
1− µ

|R|
)
.

Proof. Let every evaluation of f examine exactly d entries in the array A. We
show that d satisfies the constraint for T . We can also suppose that µ < |R| as
otherwise there is nothing to prove.

For each set ζ of κ − 1 locations in the z-element array A, let the locations in ζ
be sorted by the value of their indices in A, so that each ζ has a fixed sequencing
for the values stored in its locations. Then any string m ∈ M will have, on its
restriction to ζ, κ − 1 values in a fixed order. We can view the concatenation of
this subsequence as a number in [0, |R|κ−1− 1], so that any such ζ defines an implicit
projection of any m ∈M into [0, |R|κ−1−1]. Given ζ, let M be partitioned into M ζ =

〈Mζ
1 ,M

ζ
2 , . . . ,M

ζ
|R|κ−1〉, where Mζ

i is the set of strings in M that have projections

equal, on ζ, to the value i ∈ [0, |R|κ−1− 1]. Let D(ζ, i) be the set of domain elements

x ∈ D that, when computing fm(x) for m ∈ M ζ
i , have their d A-locations read from
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within ζ. Let

D0(ζ, i) =

{
D(ζ, i), provided |Mζ

i | > µ|M |/|R|κ,
∅ if |Mζ

i | ≤ µ|M |/|R|κ.
(3.1)

Given an x ∈ D(ζ, i), fm(x) will be computed by probing the same d-tuple of locations

within ζ for all m ∈ Mζ
i . It follows that |D0(ζ, i)| < κ since otherwise there are κ

elements in D that hash to some κ-tuple of values in R with a probability that exceeds
µ/|R|κ.

There are
(

z
κ−1

)
subsets ζ, and each subset induces a partition of M indexed

by the m-values restricted to ζ. Let Σ =
∑

ζ

∑
i |Mζ

i ||D(ζ, i)|, and likewise define

the slightly more restricted form Σ0 =
∑

ζ

∑
i |Mζ

i ||D0(ζ, i)|. Since |D0(ζ, i)| < κ,

Σ0 ≤
∑

ζ

∑
i(κ− 1)|Mζ

i | =
∑

ζ(κ− 1)|M |, whence

Σ0 ≤ (κ− 1)

(
z

κ− 1

)
|M |.(3.2)

On the other hand, Σ has an alternative description, which gives a precise combi-
natorial formulation. Let D+(ζ, i) be the set of pairs (m,x), with x ∈ D and m ∈M ,

such that, when computing fm(x) for m ∈M ζ
i , all d probes to A-locations lie within

ζ. By definition, |D+(ζ, i)| = |Mζ
i ||D(ζ, i)|. Furthermore, since the probing for x uses

exactly d locations, each pair (m,x) is counted in exactly
(

z−d
κ−1−d

)
different D+(ζ, i).

Hence

Σ =

(
z − d

κ− 1− d
)
|D||M |.(3.3)

Finally, the hashing of an x ∈ D uses d probes that retrieve d specific values in a
fixed order from d locations in A. There are at most |R|d different sequences that can
be retrieved, and each sequence corresponds to d distinct locations (since the program
need not reread a location when hashing an individual key). Consequently, for a given
key x, each possible probe data tuple in Rd could correspond to a specific sequence of
d probe locations in A, which can belong to at most

(
z−d

κ−1−d

)
different ζ sets, which

would have κ − 1 − d unprobed locations that could have up to |R|κ−1−d different
assignments. Thus, any x ∈ D belongs to at most |R|d( z−d

κ−1−d

)|R|κ−1−d different
D(ζ, i). Hence

ΣζΣi|D(ζ, i)| ≤ |D|
(

z − d
κ− 1− d

)
|R|κ−1.(3.4)

From (3.1) and the definitions for Σ and Σ0, we can count that

Σ− Σ0 ≤ ΣζΣi
µ|M |
|R|κ |D(ζ, i)| = µ|M |

|R|κ ΣζΣi|D(ζ, i)|.(3.5)

Applying (3.4) to (3.5) shows that Σ− Σ0 ≤ µ|M |
|R|κ |D|

(
z−d

κ−1−d

)|R|κ−1, whence

Σ− Σ0 ≤
(

z − d
κ− 1− d

)
µ|M | |D||R| .(3.6)
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Combining (3.3) and inequality (3.6) gives

Σ0 ≥
(

z − d
κ− 1− d

)
|M ||D|

(
1− µ

|R|
)
.(3.7)

We remark that (3.7) cannot hold as an equality. Indeed, suppose that it did. Then
(3.6) and the first inequality in (3.5) would hold as equalities. But if (3.5) were an
equality, then D0(ζ, i) would have to be the empty set for all i and ζ, since the defi-

nitions of D(ζ, i) and D0(ζ, i) ensure that |M ζ
i |(|D(ζ, i)| − |D0(ζ, i)|) ≤ µ|M |

|R|k |D(ζ, i)|,
and equality can occur only if |D0(ζ, i)| = 0. So if (3.5) is an equality, then Σ0 must
be zero, which contradicts (3.7), since µ < |R|, d < κ, and z ≥ κ. Hence

Σ0 >

(
z − d

κ− 1− d
)
|M ||D|

(
1− µ

|R|
)
.(3.8)

Combining inequalities (3.2) and (3.8) gives

(κ− 1)

(
z

κ− 1

)
|M | >

(
z − d

κ− 1− d
)
|M ||D|

(
1− µ

|R|
)
.

Eliminating common factors establishes that

z
d

(κ− 2)
d−1 > |D|

(
1− µ

|R|
)
.(3.9)

The derivation of (3.9) is valid only if d < κ, but it is nevertheless reassuring to observe

that if we (unjustifiably) set d to κ in the inequality z
d

> (κ − 2)
d−1 |D|(1 − µ

|R| ),
then the resulting expression collapses to the requirement z

κ

> 0, which is to say
that z ≥ κ. Of course κ random numbers are necessary and sufficient, in this trivial
case.

There are more significant conclusions to be drawn from Theorem 3.1 and its re-
lationship to Theorem 2.10. These observations are deferred to section 4. Meanwhile,
we close this section with two immediate corollaries.

The counting argument for Theorem 3.1 also gives an average case time bound.
Corollary 3.2. Let z, D, and R be fixed. Let FM = {fm}m∈M denote a family

of (κ, µ)-wise independent hash functions mapping D into R, where M ⊆ Rz is the
collection of z-word auxiliary array data used to evaluate functions in FM . Suppose
that µ ≤ |R|/2. Let T be a lower bound for the worst-case count of the number of
probes to the array data that must be used to evaluate some function in any such FM .
Let T be the average probe count for any such family, which is averaged over all of D
and all of FM .

Then T ≥ T − 2
|D| (

z
T−1

(κ−2)
T−2 + z

T−2

(κ−2)
T−3 + · · · + z), which can be expressed as

T ≥ T − o(1) when z > cκ for fixed c > 1.
Proof. The proof is generic. Let ∆h be the size of the largest domain that can

be serviced by a (κ, µ)-wise independent hash function that maps ∆h into R and
uses h probes or less. Let T be a lower bound for the number of probes that are
necessary, in the worst case, for a (κ, µ)-wise independent function that services D.
Then a lower bound for the total number of probes necessary to service all of D is
|D|T −|∆T−1|−|∆T−2|−· · ·−|∆1|, since the negative terms comprise overcorrections
for the numbers of probes that are miscounted by the principal term |D|T . The
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result now follows from Theorem 3.1—which says that 1
2∆d < z

d

(κ−2)
d−1 , provided

µ ≤ |R|/2—and from division by |D|.
Of course Theorem 3.1 also gives an admissible estimate to use for T .

Theorem 3.1 suggests that T has a very mild dependence on the parameter µ,
and our constructions have typically allowed µ to remain at 1. On the other hand,
it is worth noticing that the lower bound exhibits a far greater dependence on |D|,
which could be dramatically larger than |R|. In such cases, we can use a simple,
randomly chosen linear congruence (cf. F k

0 in the appendix) to premap |D| into, say,
R4, whence the resource requirements dictated by Theorem 3.1 would depend on |R|4
rather than |D|. Thus there is a significant benefit, in some cases, in allowing an
asymptotically negligible fraction of hash functions to be defective, due to distinct
data values colliding at the premapping stage. Corollary 3.2 proves that unless this
possibility of failure is permitted, the storage requirement for the family will be of
size |D|δ for some suitable δ < 1, instead of |R|δ.

Finally, it is worth observing that Theorem 3.1 can be used quite simply to give a
moderately satisfactory lower bound for the running time of r-practical hash functions,
where this prehashing step is used to reduce the effective size of the domain.

Corollary 3.3. Suppose |D| � |R|r/2, and let F be a family of hash functions
F with domain D and range R that is r-practical (κ, µ)-wise independent. Then

z
T

> (κ− 2)
T−1 |R|r/2

2

(
1− µ

|R|
)
.

Proof. The inequality follows as a straightforward application of Theorem
3.1.

Although the exponent r/2 in this bound is surely too small by a factor of 2,
its influence on the probe count T is still fairly acceptable. Notice that if the data
can be examined during the function selection stage, then the prehashing step can
be made one to one, and Theorem 3.1 will be applicable with D replaced by the
reduced domain. The resulting function family, in this case, can then be (κ, 1)-wise
independent without appealing to r-practicality.

4. A space-time tradeoff and problem equivalence. We have already ob-
served the dramatic change in the requirements for z when d, the number of random
seeds read per hash function evaluation, drops from κ to κ − 1. However, the lower
bound in Theorem 3.1 requires some effort to decode. Suppose that µ < |R|/2 and
κ > 3. We can weaken (3.9) to the statement zd > |D|. Let |D| = nk and z = nε. It
follows that d > k

ε is a necessary condition for d.
Theorem 2.10 gives a matching sufficiency result. With the same domain and

array size parameters as above, the formulation reads

ε ≥ 2k

d
+

1 + ln d+ lnκ

lnn
.

We can require that lnn� lnκ and view the last term as insignificant. In this case,
the number of probes to the auxiliary array of z random words that is necessary per
evaluation of a (κ)-wise independent hash function that maps [0, nk−1] into [0, n�−1]
satisfies

d = Θ(k/ε) for d < κ.

Restated, we have a time-log(space) tradeoff: d×log(CacheSize)≥ log(DomainSize),
where CacheSize is the dimension z of the random word array A, which contains
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words from R, and DomainSize = |D|. This lower bound and tradeoff apply to any
algorithm including those with random precomputation (that is oblivious to the data)
as long as any internal storage and precomputed values are counted as part of the
array as measured by z. Furthermore, the program need not be uniform, and the
storage and time used by a deterministic precomputation that precedes the reading
of the random seeds need not be charged in this space-time tradeoff. (The point of
these remarks is that the tradeoff need not include the generation of G, which could
be probabilistic or based on exhaustive search, which would entail an extravagant use
of time and space, but result in an optimally structured graph.)

From a more abstract perspective, we have exposed a very close equivalence be-
tween the operation count Tf for evaluating (κ)-wise independent hash functions that
map, say, [0, n − 1] into [0, n − 1], and the operation count TG needed to compute
the neighbors of an input vertex of bipartite graphs on [0, n − 1] × [0, nε − 1] that
have low outdegree d and good expansion properties for small vertex sets. A spatially
compact graph representation that can be used to compute the adjacency list of an
input vertex in time TG = cd gives a time Tf ≈ cTG hash function with a high degree
of independence, when augmented with an array of nε random numbers. Similarly, a
set of εd functions that are independent and are selected from a (κ)-wise independent
family can be used to construct such an adjacency list in time TG ≈ εdTf , albeit
with an additive spatial cost of εdnε for the random number arrays: The equivalence
holds in this direction because our probability estimates in section 2 were calculated
from κ-way expectations, and never used full independence. The resource blowup is
the modest factor εd because a random function value in [0, n − 1] gives 1

ε points in
[0, nε − 1] (where all expressions, for expositional simplicity, are assumed to be inte-
gers). A crude application of our lower bound imposes the requirement that d > 1/ε,
while our existential Theorem 2.10 establishes sufficiency for d = 2/ε + 1, provided
log κ� log n.

Taken together, these upper and lower bounds show that up to a fairly fine granu-
larity of instruction counting, the computational complexities of these two algorithms
problems are within a factor of 2 of each other.

5. Formal applications. Because of the graphs needed to construct explicit
O(log n)-wise independent constant-time hash functions, all applications must be
presently viewed as theoretical. Nevertheless, the constructions in section 2 show
that (κ)-wise independent hash functions, for nonconstant κ < nδ and sufficiently
small constant δ > 0, can, in principle, be programmed as constant-time subroutines.
Thus, we have established the formal feasibility of any probabilistic algorithm that is
based on these functions.

The most fundamental application for hash functions is, of course, to compute
randomized mappings of data. Specific applications where constant-time computa-
tions and high independence are needed can be found in [9, 11, 16]. Additional uses
can be found at http://citeseer.nj.nec.com/context/122560/0. In the next three sub-
sections, we give additional examples.

The hashing applications of section 5.1 are immediate, although the referenced
papers are necessary to see that the hash functions are adequate for the strong bounds
we report.

Section 5.2 establishes a variety of results about distributed hashing with uni-
versal classes that exhibit O(log n)-wise independence. Section 5.3 presents one of
the main consequences for parallel processing, which is that constant-time O(log n)-
wise independent hash functions enable Ranade’s PRAM emulation scheme to be run
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on an n × log n butterfly network with just one column of processors and memory
modules. Each processor has log n pipelined processes, and the machine comprising
n processors, n memory modules, and n log n switches can emulate a T -time, n log n
processor common PRAM algorithm with an expected running time of O(T log n).
Thus, the processor efficiency is optimal, up to constant factors, although (T log2 n)
switching operations are required. No other results are known for emulating the com-
mon PRAM with an optimal speedup (in processor cycles) and a comparable degree
of parallel processing.

However, for brevity, we omit any discussion about how to restructure Ranade’s
algorithm to work in this new setting; the specifics are straightforward, and can be de-
duced from the original algorithm [20]. Instead, we focus on the generic randomization
arguments for the performance analysis. In some cases, similar results have appeared
elsewhere (cf. [35]), although the method of proof has sometimes precluded the use of
our hash functions.5 For purposes of achieving full generality, all of the proofs in this
section will be based solely on the independence characteristics of universal classes of
hash functions.

5.1. Hashing. Our first application concerns double hashing, uniform hashing,
and linear probing. The performances of these hashing schemes with O(log n)-wise
independent functions are analyzed in an elaborate proof that begins in [22] and is
completed in [23, 25]. In view of these results, the following is immediate.

Corollary 5.1. For any fixed load factor α < 1, O(log n)-wise independent
hash functions can be used for double hashing with constant time per probe and an
expected cost of 1

1−α +O( 1
n ) probes for unsuccessful search.

The results extend directly to uniform hashing, and the optimality of such func-
tions for linear probing is likewise direct, given the developments in [25]. All previous
analyses required the data to be random, or used idealized, fully random hash func-
tions, which cannot be effectively programmed.

5.2. The statistics of distributed hashing. The bulk of this section concerns
the statistical analysis of distributed hashing with separate chaining in a model of
limited independence.

Definition 5.2. Let the model M denote the following scenario. The hash
function f is randomly selected from a family of (κ, 1)-wise independent hash functions
with domain and range D = [0, nm − 1]. The data set S comprises all mn elements
in D, and is hashed by f . The range [0,mn − 1] is distributed across n modules,
each with an address space of size m. Keys that hash to the same location are linked
together via separate chaining within the module.

There are no limitations on the size of m, although we implicitly presume that the
hashing and comparison of address locations require a constant number of operations.

The point of hashing all of D is to establish conservative performance bounds
based on collision chains that have sustained full growth. The underlying random-
ization assumes that the hash function is chosen prior to the program execution and,
barring failure, is used throughout the computation. A failure occurs if f maps too
many domain elements to a given memory module. Such events require a new hash
function to be chosen and the parallel program to be run afresh.

5In particular, some proofs exploit the fact that a degree k hashing polynomial has at most k
roots in a finite field. The requisite randomness can require that k = Θ(logn). For our hashing
formulations, the number of keys hashing to a single value can be much larger, and can even be the
entire data set.



UNIVERSAL HASH 529

All data references are presumed to be independent of the hash function.
For specificity, let module j store the keys hashing into [jm, (j + 1)m − 1]. In

separate chaining, a key x that is the first to hash to a location f(x) is stored there.
Subsequent keys hashing to f(x) are called colliders, and are inserted into the chain
headed by x. The standard algorithm stores all colliders in memory that is external
to the hash-based address space. There are many variants; it is also possible to store
colliders in vacant locations within the table, which, absent relocation procedures, will
accelerate the chain growth (in what is known as coalesced hashing). Alternatively, it
is possible to relocate colliders when new items are hashed to their current locations.
Typically, the initialization overhead is ignored, since it is possible to initialize a
hash table in constant time via software techniques (cf. [1, Prob. 2.12, p. 71]) or in
hardware. We will follow the usual conventions of ignoring initialization overhead and
storing colliders outside of the hash space.

The total storage requirement for a module, therefore, is the number of keys that
hash into its address space plus the number of vacant locations that remain in the
address space once all of [0,mn − 1] is hashed. The statistics for these two random
variables are established in Lemmas 5.3 and 5.4. The first result is standard and
is included for completeness. The second seems to have received less attention for
models of universal hashing.

The performance statistics for data access will be based on processing n log n
memory references with modules servicing their hash-based requests in parallel inde-
pendently of the other modules. The reason we analyze n log n requests is that cn log n
data accesses, for c > 1, will turn out to have a performance that can be modeled as c
sets of n log n requests. For significantly smaller collections, the variance in behavior
for each module will degrade the overall performance. Restated, the size s = n log n
is, up to constant factors, the smallest value that will have an expected parallel service
time of Θ( s

n ), which is optimal.
An analysis of storage requirements begins with the observation that a fully ran-

dom hashing of mn elements will distribute, on average, m elements to each mod-
ule. Typically, m � n, but the uniformity requirements will just need m to be at
least g log n for some large constant g. The result will be that with high probability,
Θ(log n)-wise independence is adequate to distribute the mn keys fairly evenly among
all n modules.

Lemma 5.3. In model M , let di be the size of the preimage of [im, (i+ 1)m− 1],
so that di = |{x : f(x) ∈ [im, (i + 1)m − 1]}|. Let κ = β log n, where β is a positive
constant, and suppose that m ≥ κ. Then for any fixed c > 0, there is a fixed d such
that Prob{di > dm} ≤ 1

nc . Furthermore, for any fixed d > 1 and fixed c, there is
a suitably large constant β such that for any m > κ

d−1 , Prob{di > dm} ≤ 1
nc in

model M .
Proof. Suppose d ≥ 1 + ε + κ

m . The (κ, 1)-wise independence facilitates the
straightforward calculation

Prob{di > dm} = Prob

{(
di
κ

)
>

(
dm

κ

)}
≤ E[

(
di

κ

)
](

(1+ε)m+κ
κ

)
≤
(
nm
κ

)
1
nκ(

(1+ε)m+κ
κ

) < (nm)κ 1
nκ

((1 + ε)m)κ
=

(
1

1 + ε

)κ

.
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Setting (1 + ε) = 2c/β establishes the first bound.
The second bound follows from setting ε = (d−1)− κ

m , observing that κ
m < (d−1)

by supposition, and choosing β so large that (1 + ε) = 2c/β .
The next task is to bound, with high probability, the number of keys that will be

hashed into the auxiliary storage of a given module. Since Lemma 5.3 ensures that
with high probability, no more than (1 + ε)m keys are distributed to each module,
the remaining task is to determine how many locations in a module are left vacant.
As before, our expectations are based on the easy analysis for models with full ran-
domness.

Suppose that n items are assigned integer values in the range [0, n− 1], with the
assignments uniformly distributed and equally likely. The probability that a fixed
integer is not assigned to any item is (1 − 1

n )n ≈ 1
e . It follows that the expected

number of vacant locations in a module ought to be about m
e , if all mn values are

hashed. The next lemma shows that with (κ log n)-wise independent hash functions,
this statistic is about right, and bounds the probability of large deviations.

Lemma 5.4. In model M , let α > 0 and ε > 0 be fixed constants, and suppose
that m > eα2 log2 n. Let V be the number of address locations in the hash space of
module 1 that remain vacant after all of [0,mn − 1] has been hashed. Suppose that
κ ≥ (1 + e1+1/e)α log n. Then

Prob{V } > (1 + ε)
m

e
< 4

(
1

1 + ε

)α log n

.

Proof. The proof has two steps. We show that (e1+1/eα log n)-wise independence
is adequate to ensure that any fixed set of α log n locations in the hash table will be
vacant with a probability below 2e−α logn. Given the aforementioned probability, we
bound Prob{V ≥ (1 + ε)me } by estimating the number of (α log n)-tuples of locations
in module 1 that are vacant. This latter bound is established as follows:

Prob

{(
V

α log n

)
≥
(

(1 + ε)me
α log n

)}
≤
(

m
α log n

)× 2e−α log n((1+ε)m
e

α log n

)
≤ mα log n2e−α log n

((1 + ε)m/e)α log n
α log n−1∏

j=0

(
1− je

(1+ε)m

)
≤ 1

1− eα2 log2 n
2m

(
e

1 + ε

)α log n

2e−α log n

≤ 4

(
1

1 + ε

)α log n

.

It is clear that this formulation requires α log n degrees of freedom in the form of
hashing independence.

As for the first calculation, let X be the event that a given set of α log n locations
are vacant. Let t = �e1+1/eα log n�.

From basic inclusion-exclusion (and limited independence) it follows that

Prob{X} =
∑

0≤j<t

(−1)j
(
mn

j

)(
α log n

nm

)j

+ δ(−1)t
(
mn

t

)(
α log n

nm

)t
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for some δ satisfying 0 < δ < 1. Consequently,∣∣∣∣Prob{X} −
(

1− α log n

mn

)mn∣∣∣∣ < (mnt
)(

α log n

nm

)t

<

(
eα log n

t

)t

< e−α log n

(and a stronger Stirling estimate for t! would show that the difference is actually less

than e−α log n√
t

). Applying the triangle inequality to the previous display gives

Prob{X} <
(

1− α log n

mn

)mn

+ e−α log n.

Since (1 − |a|
x )x is increasing in x, it follows that (1 − α log n

mn )mn < e−α log n, and
step 1 is now complete. Altogether, the calculations used t + α log n degrees of
freedom.

Lemmas 5.3 and 5.4 show that for suitable κ = O(log n), each module can have a
storage capacity of (1 + ε)(1 + 1/e)m records, and the probability of a hash-induced
overflow will be polynomially small, for large enough κ = O(log n). The hashing model
is just traditional separate chaining, and no auxiliary hash functions are needed. Of
course, the excess storage can be reduced to εm by other storage procedures.

The remaining issue is to bound the processing time for an arbitrary collection of
n log n data references. Lemma 5.5 begins this process by proving that an arbitrary
set of n log n references will be distributed among the n modules fairly evenly.

Lemma 5.5. In model M , let D̂ be a set of n log n address keys in D. Let d̂i, for
i = 0, 1, . . . , n− 1, be the number of keys in D̂ that are hashed into [im, (1 + i)m− 1],

so that d̂i = |{x ∈ D̂ : im ≤ f(x) < (i + 1)m}|. Suppose κ ≥ log n. Then for any
d > 3,

Prob{d̂i > d log n} ≤ 1

(d− 1)log n
.

Proof.

Prob{d̂i ≥ d log n} ≤
(
n logn
logn

) (
1
n

)logn(
d logn
logn

) ≤ (log n)log n

(d log n)log n
<

1

(d− 1)log n
.

By itself, Lemma 5.5 says little about the cost of memory accesses when separate
chaining is used to store the data. We need to bound the expected sum of the accessed
chain lists to determine the access time. The bound will be established in two steps.
Lemma 5.6 shows that the sum of log n chain lengths is, with high probability and on
average, just O(log n). The proof will not assume a priori limitations on the number of
items that might collide to a given location; the count could even be mn. Lemma 5.7
extends Lemma 5.6 to include the random number of chains that must be traversed in
each module. The chief issue is to establish this accommodation without materially
affecting the size requirements for κ.

Lemma 5.6. In model M , let κ be at least 2 log n. Let D̂j = {zi}log n
i=1 be a set

of log n memory references that hash to module j. Let ∆i comprise the elements of
D − zi that collide with zi under f : ∆i = {x ∈ D : f(x) = f(zi)

∧
x �= zi}. Let

d∗ =
∑

i≤logn(|∆i|). Let c be a fixed constant greater than 3. Then

E[d∗ · X (d∗ > c log n)] = O

(
log n

(c− 1)log n

)
.
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Proof. Counting the number of (logn)-tuples in ∪log n
i=1 ∆i shows that

E[d∗ · X (d∗ > c log n)] ≤ (log n)E

[ (
d∗

log n

)(
c log n

−1+log n

)]

≤
(log n)

(
mn
log n

) (
log n
mn

)log n

(
c log n

−1+log n

)
≤ (log n)log n

((c− 1) log n)−1+log n

≤ log n

(c− 1)−1+log n
.

The reason that κ is taken to be at least 2 log n is to ensure that the requirement that
D̂j hashes to one module does not impart any conditioning to the hashing statistics

for samples of log n keys in D − D̂j .
Markedly simple facts about random variables will suffice to extend the bound of

Lemma 5.6 to larger numbers of chain lengths. In particular, let X1, X2, . . . , X� be a
sequence of arbitrary (possibly dependent) random variables.

Recall that E[
∑

iXi] =
∑

i E[Xi].
Observe that for a ≥ 0, E[maxi(Xi · X (Xi ≥ a))] ≤

∑
i E[Xi · X (Xi ≥ a)].

Finally, let Y =
∑

1≤i≤�Xi, and suppose that the Xi are identically distributed.
Then for a ≥ 0, Y · X (Y ≥ �a) ≤ ∑i(Xi · X (Xi ≥ a) + a

∑
j 
=i X (Xj > a)) because

the right-hand side is an overestimate of what would result from rounding Xi up to
the value a in the event that Xi < a and Xj > a for some j �= i. Hence

E[Y · X (Y ≥ �a)] ≤ �E[X1 · X (X1 ≥ a)] + �(�− 1)aProb{X1 > a}
(5.1) ≤ �2E[X1 · X (X1 ≥ a)].
As unsatisfactory as these bounds may seem, they are tight in the worst case. (How-
ever, there are more appealing formulations when, for example, the expectations are
replaced by standard overestimates.)

These simple facts, plus Lemmas 5.5 and 5.6, are sufficient to bound the fraction
of time spent executing exceptionally slow parallel data accesses.

Lemma 5.7. In model M , let D̂ be a set of n log n address keys in D. Let ∆̂i be the
elements in D̂ that hash to memory module i : ∆̂i = {x ∈ D̂ : im ≤ f(x) < (i+1)m}.
Let d̂i = |∆̂i|. Let ∆i be the elements in D − D̂ that hash to locations in {f(∆̂i)},
and set δi = |∆i|. Let δ = maxi δi. Suppose that κ ≥ 2 log n.

Then for any integer c ≥ 2,

E[δ · X (δ ≥ (4c+ 1)(8c+ 1) log n)] = O

(
1

clog n

)
.

Proof. According to Lemma 5.5,

Prob{d̂i ≥ (8c+ 1) log n} < 1

n3clog n
for i = 1, 2, . . . , n.

If d̂i ≤ (8c + 1) logn, then δi is statistically dominated by Y1 + Y2 + · · · + Y�, where
� = 8c + 1, and each Yi has the same distribution as d∗ in Lemma 5.6. Because of
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limited independence, we cannot assume that the Yi are even pairwise independent.
However, it follows from inequality (5.1) and Lemma 5.6 that as long as d̂i is bounded
by � log n,

E[δi · X (δi > �(4c+ 1) logn)] ≤ 4c�2 log n

n2clog n
.

So if d̂i ≤ � log n for i = 0, . . . , n− 1, then

E[max
i

(δi · X (δi > �(4c+ 1) logn))] ≤ n4c�2 log n

n2clog n
≤ 4c�2

clog n
.

If some d̂i is too large, we bound the resulting time by
∑

i δi, which is as if all of

D̂ were hashed to just one module. This sum is statistically dominated by Y =
Y1 + Y2 + · · · + Yn. Since the probability that some d̂i is too large is bounded by
n 1

n3clog n , no estimate is needed for the event that some d̂i is too large and Y ≤ n2.
We need only observe that E[Y · X (Y > n2)] ≤ n2E[d∗ · X (d∗ > n)], and this latter
expectation is insignificant by Lemma 5.6.

Last, we note that these calculations impose no requirements on κ, apart from the
restrictions resulting from applications of Lemmas 5.5 and 5.6. In fact, the requisite
independence is just the maximum of the requirements for κ as used in these two
lemmas. To verify this requirement for κ, we need to bound E[maxi(δi · X (δi >
�(4c+1) logn))] by a sum of expectations that are each bounded by O( 1

clog n ), provided
κ ≥ 2 log n. We do so as follows:

max
i

(δi · X (δi > �(4c+ 1) log n))

≤ X (∀i : d̂i ≤ � log n) ·max
i

(δi · X (δi > �(4c+ 1) logn))

+X (∃i : d̂i > � log n) · n2 · X
⎛⎝∑

i≤n

δi ≤ n2

⎞⎠+

⎛⎝∑
i≤n

δi

⎞⎠ · X (∑
i

δi > n2

)
,

whence

E[max
i

(δi · X (δi > �(4c+ 1) log n))]

≤ n�2E[d∗ · X (d∗ ≥ (4c+ 1) log n)]

+n3 Prob{d̂1 > � log n}+ n2E[d∗ · X (d∗ > n)],

where unnecessary constraints have been dropped to reduce the independence require-
ments for the last three terms on the right.

Together, these lemmas show that in model M , O(log n)-wise independent hash
functions can be used to implement distributed hashing with separate chaining with
high efficiency.

Theorem 5.8. In model M , let κ = β log n for some constant β ≥ 2. Then
a universal class of (κ, 1)-wise independent hash functions can be used to implement
distributed hashing with separate chaining so that n log n data access requests will
have, on average and with overwhelming probability (i.e., probability 1 − 1/nc, for
any constant c), a parallel service time of Θ(logn), which is optimal for systems
with n independent memory modules. Furthermore, suppose that m � log2 n. Then
given ε > 0, there is a fixed β > 0 such that a family of (β log n, 1)-wise independent



534 ALAN SIEGEL

hash functions will, on average and with overwhelming probability, distribute the data
among the modules with a density that is, up to a factor of 1 + ε, no worse than the
expected distribution that results from fully random hashing.

Proof. The first statement follows from Lemmas 5.5 and 5.7. In particular, Lemma
5.5 shows that each module receives only Θ(log n) of the n log n hash keys on average,
and with overwhelming probability. Lemma 5.7 shows that the sum of the hash
chain lengths for Θ(logn) addresses is Θ(log n) on average and with overwhelming
probability. Lemma 5.7 also affirms that in the overwhelmingly improbable case
where some module receives more than Θ(log n) of the n log n hash keys, the sum of
the chain lengths will, on average and with overwhelming probability, be bounded by
O(n2), which is statistically insignificant since by Lemma 5.5, the probability that at
least (d + 1) logn of the n log n hash keys are mapped to one module, for d > 2, is
bounded by n

nlog d .
The second assertion summarizes Lemmas 5.3 and 5.4.
The inclusion-exclusion argument of Lemma 5.4 is sensitive to small statistical

errors, which requires that µ be set to 1. Since the hashing application uses the same
domain and range, no prehashing function (as described in section 2) is necessary,
and µ can be set to 1.

It is worth noting that the requirement that µ = 1 is unnecessary for the first
part of Theorem 5.8. Setting µ > 1 would cause the derived performance results to
degrade by just a factor of µ. However, the bounds for the memory requirements
would not hold for µ > 1, although they would only change by a small constant
factor. As presented, Lemma 5.7 requires an independence as high as κ = β log n
with β = 2. However, the decomposition method used to establish Lemma 5.7 can
be applied to give corresponding results for any constant β > 0, and the resulting
performance results would degrade by constant factors.

5.2.1. Hashing failures. For models of randomized computation, and for dis-
tributed randomized computation in particular, some of the complications associated
with hashing failures are worthy of analysis.

Our model of computation assumes that a hash-based program can be rerun
afresh if the hashing for some reason turns out to be unsuccessful. There are several
different policies that can be used to manage the consequences of hashing failures.
The random variables X and C will represent the execution time of a randomized
program. In particular, X will be the running time of a probabilistic program that
completes its execution successfully with a hash function that is randomly selected
from a family of κ-wise independent functions. C can model the additional execution
time that is used when the program completes successfully but has some kind of non-
fatal irregularity in the construction of hash function family. Alternatively, C can
represent the additional time used in an unsuccessful execution of the program when
there is no preemptive termination of the processing.

The following random variables extend these formulations to running times for
different processing policies, including some where programs are terminated prema-
turely. Such programs are then run afresh with new random seeds. Technically, the
following would be defined in terms of random stopping times. However, program
formulations give equivalent definitions with more transparent semantics.

Define R(X;C) via the following program.
Let Xi and Ci be independent identically distributed copies of X and C.
sum← 0;
i← 0;
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Repeat
i← i+ 1;
sum← sum+Xi + Ci;

Until Ci = 0;
R(X;C)← sum.

Define F (X;C; ρ) via the following program.
Let Xi and Ci be independent identically distributed copies of X and C.
sum← 0;
i← 0;
Repeat
i← i+ 1;
sum← sum+ min(Xi + Ci, ρ);

Until Xi + Ci ≤ ρ;
F (X;C; ρ)← sum.

Define G(X;C; ρ) via the following program.
Let Xi and Ci be independent identically distributed copies of X and C.
i← 1;
sum← 0;
Repeat
i =← i+ 1;
sum← sum+ min(ρi, Xi + Ci);

Until Xi + Ci ≤ ρi;
G(X;C)← sum.

The program execution policies corresponding to these random variables are as
follows. R models running a probabilistic program to termination repeatedly until the
execution is successful. F models running the program repeatedly for ρ time steps
and then starting afresh until an execution is successful. G corresponds to running
the ith trial of a program for ρi time steps and repeating the effort afresh with trial
i+ 1 until a trial executes successfully.

Section 2 presented several types of hash functions that exhibit different types of
performance degradation depending on what goes wrong. If a prehashing function h
is used to reduce the effective size of the domain D, then a (mild) failure would occur
if two keys in the data have the same image under h. Of course prehashing failures
could be much worse.

If the hash function uses a probabilistically constructed expander-like graph, then
a failure can occur if the graph does not achieve the required characteristics. As
mentioned in section 5.2, a failure can also occur in a distributed model of computation
if, for any reason, the hashing does not distribute the data evenly enough to satisfy
the physical storage limitations for each module. This event is a fatal distributional
failure. Another type of distributional irregularity would occur if the chain lengths
(that result from hashing with separate chaining) have a distribution that deviates
significantly from the predictions of Lemma 5.7. Similarly, a distributional irregularity
can occur in a distributed model of computation if the module access patterns (as
characterized by Lemma 5.5) are highly deviant.

These sources of performance inefficiency can be modeled as follows.
Let d be a positive constant. For k = 1, 2, . . . , T , let Pk be a random variable

satisfying E[Pk] = τ and E[max(0, Pk − dτ)] < τ
nr . Each Pj will represent the pro-

cessing time for a single block of n log n data access requests in model M in the case
that the underlying family of hash functions satisfies the requirements of the model.
These random variables can be dependent.

To model failures that erode parallel processing, let A be a random variable
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satisfying Prob{A = 0} = 1 − 1
nr+1 and Prob{A = nTτ} = 1

nr+1 . In the rare event
that A �= 0, A will turn out to be n times slower than the expected time for a T -step
parallel program, and will correspond to the case where each instruction is executed
sequentially with no concurrent processing.

To model more catastrophic failures, let B(ε) for 0 < ε < 1 be a random vari-
able satisfying Prob{B = 0} = ε and Prob{B = ∞} = 1 − ε. B(1 − 1

nr ) gives a
very conservative overestimate of performance losses due to severe deficiencies in the
construction of the hash function.

Given these definitions, the performance consequences of hashing irregularities
are now readily quantified.

Lemma 5.9. Let (y)+ = max(y, 0). Let the execution styles R, F , and G be as
defined above. Let A, B, P1, P2, . . . , PT be random variables satisfying the following:

Prob{A = 0} = 1− 1
nr+1 , Prob{A = nTτ} = 1

nr+1 ;
Prob{B = 0} = ε, Prob{B =∞} = 1− ε;
E[Pk] = τ and E[max(0, Pk − dτ)] < τ

nr .

Let X =
∑T

k=1 Pk.
Then
(i) E[R(X;A)] = Θ(Tτ).

E[(R(X;A)− dTτ)+] = O(Tτ
nr ).

E[F (X;B(1− 1
nr ); (d+ 1)Tτ)] = Θ(Tτ).

For any constant s ≥ 1,
E[(F (X;B(1− 1

nr ); (d+ 1)Tτ)− s(d+ 1)Tτ)+] = O( Tτ
nrs ).

E[G(X;B(1− 1
nr ); 2)] = O(Tτ).

E[(G(X;B(1− 1
nr ); 2)− 4dTτ)+] = O(Tτ

nr ).
(ii) For any constant ε, where 0 < ε < 1,

E[F (X;B(ε); (d+ 1)Tτ)] = Θ(Tτ).
For any constant ρ, there is a constant σ such that

E[(F (X;B(ε); (d+ 1)Tτ)− σTτ log n)+] = O(Tτ
nρ ).

For any constant ρ, where 1 < ρ < 1
1−ε , E[G(X;B(ε); ρ)] = Θ(Tτ).

Proof. (i) By definition of X,

E[X] =

T∑
k=1

E[Pk] = Tτ.

The first assertion in (i) is now immediate since

E[R(X,A)] = Tτ + (Tτ + nTτ)

∞∑
i=1

(
1

nr+1

)i

,

where Tτ corresponds to the expected time for the successful execution, and Tτ+nTτ
bounds the expected time used in each unsuccessful execution.

Since max(0, x) is convex,

E[max(0, X − dTτ)] ≤
T∑

i=1

E[max(0, Pk − dτ)]

by Jensen’s inequality. So

E[max(0, X − dTτ)] ≤
T∑

i=1

τ

nr
=
Tτ

nr
.
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By definition, R(X,A) corresponds to i consecutive samples of X and A with A �= 0 in
each sample, followed by a sample where A = 0, for a probabilistically determined i.
So

E[max(0, R(X;A)− dTτ)] ≤ E[max(0, X − dTτ)] +

∞∑
i=1

(E[X] + nTτ)

(
1

nr+1

)i

= O

(
Tτ

nr

)
.

The extension of these results to F (X;B(1− 1
nr ); (d+1)Tτ) is fairly straightforward.

Note that Prob{X+B > (d+1)Tτ} ≤ Prob{B �= 0}+Prob{X > (d+1)Tτ}, and that

Prob{X > (d+ 1)Tτ} ≤ E[max(0,X−dTτ)]
Tτ ≤ 1

nr . So Prob{X + B > (d+ 1)Tτ} ≤ 2
nr .

Consequently,

E

[
max

(
0, F

(
X;B

(
1− 1

nr

)
; (d+ 1)Tτ

)
− s(d+ 1)Tτ

)]
≤

∞∑
i=s

((d+ 1)Tτ)

(
2

nr

)i

=O

(
Tτ

nrs

)
.

As for policy G, the sum of the geometric progression is comparable to its largest
term, and once the time trials are as large as (d+1)Tτ , the probability of a successful
completion is 1−O( 1

nr ) per iteration.
(ii) The proofs are straightforward and are omitted.
Policy G was designed to facilitate computations where the expected execution

time of a program is unknown. The error B was defined to accommodate the pos-
sibility that a hash function might be highly defective but still partition the keys so
evenly that the storage limitation for each module is not exceeded. The application of
Lemma 5.9 to hashing is straightforward, and is included in the performance analysis
of section 5.3.

5.3. A pipelined version of Ranade’s PRAM algorithm. The results of
section 5.2 help establish that constant-time hash functions can be used in a pipelined
version of Ranade’s PRAM emulation architecture.

Another stepping-stone in proving optimal speedup concerns the fast sorting of
random numbers and is independent of the underlying hashing, apart from the fact
that κ-wise independence results in κ distinct elements being assigned statistically
random values.

The need for linear-time sorting is due to the step in Ranade’s algorithm where
each row in the network uses its log n processors for an O(log n)-time systolic bub-
blesort of the row’s logn locally generated hash values. If each row is to have one
processor available for sorting the same data, an optimal scheme will (on average)
have just Θ(logn) time available for the slowest row to complete this sorting step.

As stated below, Lemma 5.11 (with log n substituted for n) will ensure that
for any α > 0, there is a d such that each of the n pipelined processors can (after
straightforward preprocessing has combined identical hash values) sort its logn local
hash packets in d log n steps with a probability that exceeds 1− 1

nα .
Let S be a set of n integers in the range [0,m− 1]. For s ∈ S, let stop = 
n s

m� be
the log2 n most significant bits of s. Suppose that stop can be computed in constant
time and that any two elements s, t ∈ S can be compared in constant time. We make
no other assumptions about the relationship between m and n.
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Definition 5.10. Let the following sorting procedure be Algorithm S.
For each s ∈ S, insert s into Bin[stop].
For j ← 0 to n− 1, Mergesort the contents of Bin[j].
Concatenate the contents of the sorted Bins.

The mean performance of Algorithm S is, as the next lemma states, within a constant
factor of optimal.

Lemma 5.11. Let S be a random sequence of n integers selected uniformly from
[0,m− 1]. Then for any fixed c > 0, there is a fixed d such that Algorithm S sorts a
fraction exceeding 1−e−cn of all S ∈ [0,m−1]n in dn steps, where c = d−2−ln(d−1).

Proof. See [27, Theorem 4.1, p. 208].
All of the data processing characteristics are now established. We now define a

kind of best-case performance characteristic for networks and then combine all of the
results in the optimal performance formulation of Corollary 5.13.

Definition 5.12. Let N be a network. We say that a no-load memory reference
takes time t on N if, in the worst case, a single memory access (with all other process
requests suspended) can be executed on N in a worst-case time of t.

Corollary 5.13. Let Ω be a pipelined n-processor analogue of Ranade’s ar-
chitecture that includes an n × log n butterfly switching network. Let each processor
execute a log n-deep pipeline that corresponds to a row of processors in Ranade’s or-
ganization, and manage a memory module of O(m) words. Suppose that a no-load
memory reference can be processed on Ω in O(log n) time.

Then a T -time n log n-processor common PRAM algorithm for mn words of shared
memory can be emulated on Ω in an expected time of O(T log n). Furthermore, for any
fixed r, there is a fixed d such that the algorithm runs on Ω in a time that is bounded
by dT log n with probability exceeding 1− 1

nr . The hash function can be selected from
a family of uniformly r-practical (β log n, 1)-wise independent hash functions for fixed
β ≥ 8, and separate chaining can be used to resolve collisions as in model M . In
addition, if m� log2 n, and, for fixed ε > 0, β is set to a sufficiently large constant,
then the requisite auxiliary storage will, with overwhelming probability, be within a
factor of 1 + ε of the expected storage used by fully random hash functions.

Proof. The performance of the algorithm is a consequence of its probability of
failure and the running time of each step of the algorithm in the event that no failure
occurs.

We first consider the performance when the hash function meets the requirements
of model M.

The PRAM program is executed in blocks of n log n instructions and has execution
times for each of the T instruction blocks. Let Rj be the round-trip network routing
time for the jth block of instructions as defined (and analyzed) in Ranade’s emulation
algorithm [20]. The analysis requires that β be at least 8. Let Sj , for the jth block of
instructions, be the time used for the concurrent local sortings of the n sets of log n
hash-based packet addresses as required in Ranade’s routing algorithm, implemented
by Algorithm S and analyzed in Lemma 5.11. Let Mj be the time expended executing
the concurrent memory references for the n modules as required by the jth block of
instructions. We take the fixed overhead associated with each (n log n)-instruction
block to require O(log n) time and presume that it is absorbed by the other random
variables.

Let

X =

T∑
j=1

(Rj + Sj +Mj),
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so that X accounts for the running time of the pipelined PRAM emulation, provided
the hashing meets the requirements of Ranade’s theorem and model M . Ranade’s
analysis, Lemma 5.11, and Theorem 5.8 ensure that E[X] = Θ(T log n). Similarly,
these analyses show that for any r there is a d such that for all j, E[Sj · X (Sj >
d log n)] < 1

nr , and likewise for all Rj and Mj .
Even if the hashing uses (κ, 1)-wise independent hash functions, failure can occur

if too many keys hash to some module. In this case, the algorithm must be started
afresh with a new hash function. We might anticipate that if an emulation attempt
does not run to completion, then it ought to have statistics that are dominated by
those of X. However, it is possible that a failed computation could comprise the
execution of almost all T blocks of instructions, and that each round might be some-
what slower than that for a successful execution because some module is almost out
of memory. Thus, a failure can skew the running time to be worse than average. We
need only argue that the expected performance, given that such a failure occurs, does
not degrade by more than a factor of n, which corresponds to the worst-case event
where all data hashes to just one module and the amount of data (up to the last
instruction block) just fills up all of the available storage. We can assume that the
expected length (and sum of n log n lengths) of the collision chains is still governed
by the randomness of the hash functions, since these values are not changed by more
than a small constant factor when the amount of data in a module is at its maximum.
The probability that such a hashing scheme fails to distribute the data adequately
well among the modules is, by Lemma 5.3, polynomially small. Thus, the emulation
scheme in this case (of ∞-practical hashing) has a performance that is modeled by
R(X,A) in Lemma 5.9 of section 5.2.

If the underlying hash function depends on a randomized graph construction of
section 2, then the graph could be defective with a probability of 1

(mn)r . Formally,

this form of hashing failure lies within the model of uniformly r-practical (κ, 1)-wise
independent hash functions as quantified by Definition 2.1.

In the worst case, the physical storage restrictions for each module would be
satisfied, but the collision chains would be unacceptably long. In such a circumstance,
we must presume that Θ(m) keys hash to a single location in each module. Even these
delays cause an expected performance degradation that is nominal. Alternatively, the
delays can be viewed as infinite, modeled by the error random variable B(1− 1

nr ) and
accommodated by emulation policies F or G. Lemma 5.9 shows that in all cases, the
resulting performance has the statistical characteristics asserted in this corollary.

Last, the claims about the storage requirements are just a restatement of facts
established in section 5.2.

As in Theorem 5.8, none of these performance characteristics, apart from the
tight bounds on the requisite storage for each module, require µ to be 1. For larger
values of µ all of the other bounds would again degrade by just a factor of µ, and the
requisite auxiliary storage would increase by a small constant factor.

Of course, any reasonable strategy can be used to resolve the case of module
overflow since its probability of occurrence is statistically insignificant. Similarly, the
data in each memory module can be stored via any reasonable secondary hashing
scheme.

Remarks. Although the main result of this paper suggests that there is little
additional cost in creating constant-time hash functions that are far more random than
O(log n)-wise independent, our analyses of distributed hashing and PRAM emulation
have followed a more parsimonious path by restricting the randomness allocated to
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these functions to be β log n for a fixed value of β. The reasons for this restriction
are twofold. First, the sufficiency of O(log n)-wise independence gives hope that even
less randomness might suffice for real implementations. Second, the realization of
fast random functions really awaits the discovery of suitable graphs; it is conceivable
(and indeed likely) that good graphs might first be found for more moderate degrees
of randomness, such as those which give O(log n)-wise independence. Of course,
the results of this section are just feasibility proofs, and not a blueprint for future
architectures even if ideal graphs are found.

For completeness, we note that Kruskal, Rudolph, and Snir use pipelines of depth
nε to get a parallel emulation time that is optimal up to a factor of 1

ε [13]. Versions
of some of the basic counting estimates can also be found elsewhere [13, 18, 20, 35].
For example, formulations comparable to Lemmas 5.5 and 5.6 can be found in [20].
Ranade uses the fact that polynomials of degree logn have at most log n roots to
bound the preimage size to O(log n)2 for the fetches that must be executed by a
single row of logn processors. Valiant uses the root bound, parallel sorting, and
secondary hashing (with separate chaining) to control the fetch time for a variety of
architectures [35].

It should also be noted that the fast Fourier transform can be used to compute
k evaluations of a degree k polynomial in O(k log2 k) steps (cf. [1, Cor. 2, p. 224]).
Thus, it is possible to use the above pipeline strategy on n processors with log n
degree hash functions to attain a performance cost of O(log log n)2 operations per
memory reference rather than a naive logn. We have shown that this multiplicative
performance penalty can, in theory, be reduced to an asymptotic O(1).

6. Conclusions. The high independence exhibited by our hash functions en-
riches the class of probabilistic algorithms that can be shown to achieve their expected
performance in formal models of real computation. Proofs need not be restricted to
(κ)-wise independence for constant κ, and probability estimates can use the probabilis-
tic method to calculate the expected number of κ-tuples satisfying various behavior
criteria for these larger values of κ.

On the other hand, it is worth noting that the fast hash functions described in this
paper are not really necessary for pure routing problems. After all, if an adequately
random assignment of intermediate destinations provides, with very high probability,
nearly optimal performance in a Valiant–Brebner style of routing [33], then the same
destinations could be used for many consecutive routings.

What these fast hash functions really provide are nearly uniform random map-
pings of data and a convenient way to assert that with high probability, various
maldistributions are very unlikely to occur. In addition, hash functions computed
from destination addresses provide a way for common memory references to be fully
combined en route in Ranade’s elegant queue management scheme, and this might be
important if combining is required to avoid hot spot contention.

But while the asymptotic characteristics of fast hash functions are now well under-
stood, the feasibility question remains wide open. Without doubt, the most significant
open problem is to find good local expander-like graphs that are defined by short ef-
ficient programs. The discovery of such structures might have a very beneficial effect
on the practicality of these classes of functions. Interestingly, recent progress suggests
that this prospect might be within reach [4, 14, 21].

Appendix. For completeness, we state the two combinatorial lemmas that are
needed to analyze the basic prehashing functions of section 1.1.
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Fact 1 (cf. [17, 8]). Let Pk = {p | p is prime and p ∈ (nk lnm, (2 + β)nk lnm)}
for some small suitably fixed β > 0. Then

∀x �= y ∈ [0,m− 1] : Probp∈Pk
{x = y mod p} < n−k.

Proof [17, 8]. The prime number theorem says that |Pk| = (1+β)nk lnm
k lnn+ln lnm (1− o(1)),

whence fewer than 1/nk of the elements of Pk can divide |x − y|, since
∏

p∈Pk
p >

(nk lnm)|Pk| > (m)n
k

.
Fact 2 (cf. [5]). Let F0(p) = {h | h(x) = (ax + b mod p) mod nk, a �= 0, b ∈

[0, p− 1]}, where p > nk is prime. Then

∀x �= y ∈ [0, p− 1] : Probf∈F0(p){f(x) = f(y)} ≤ n−k.

Proof [5]. Given x and y, x, y ∈ [0, p−1], x �= y, the number of different f ∈ F0(p),
where f(x) = f(y), is precisely the number of 2× 2 linear systems in a and b:{

ax+ b = c+ dnk mod p

ay + b = c+ enk mod p
c, d, e ≥ 0; c+ dnk < p; c < nk; e �= d; c+ enk < p.

This system is designed so that c + dnk can have p different values: c ranges from
0 to nk − 1, and dnk gives increments of nk. The same is true of c + enk, since it
has the same format. Both expressions equal c when taken modnk, and all possible
values are captured by this representation. The parameters e and d cannot be equal
because the solution to the system would then give a = 0. Furthermore, a cannot be
zero if e �= d, which is required for x and y to be distinct. Straightforward counting
shows that there are at most �p/nk − 1� different values available for e. Since there
are p(p−1) different functions in F0, and f(x) = f(y) for at most p�p/nk−1� ≤ pp−1

nk

of them, the result follows.
Combining Facts 1 and 2 shows that a hash function selected at random from

F k
0 = ∪p∈Pk

F0(p) will, with probability exceeding 1 − 2
(
n
2

)
n−k, map n items from

[0,m− 1] into [0, nk − 1] with no collisions at all among its
(
n
2

)
pairs. We could take

k = 4, so that the probability of a collision is below 1/n2, and assume the functions
F0(p) are defined as in Fact 2 for p ≈ n4 lnm.
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Abstract. We analyze local search heuristics for the metric k-median and facility location
problems. We define the locality gap of a local search procedure for a minimization problem as
the maximum ratio of a locally optimum solution (obtained using this procedure) to the global
optimum. For k-median, we show that local search with swaps has a locality gap of 5. Furthermore,
if we permit up to p facilities to be swapped simultaneously, then the locality gap is 3 + 2/p. This
is the first analysis of a local search for k-median that provides a bounded performance guarantee
with only k medians. This also improves the previous known 4 approximation for this problem.
For uncapacitated facility location, we show that local search, which permits adding, dropping, and
swapping a facility, has a locality gap of 3. This improves the bound of 5 given by M. Korupolu,
C. Plaxton, and R. Rajaraman [Analysis of a Local Search Heuristic for Facility Location Problems,
Technical Report 98-30, DIMACS, 1998]. We also consider a capacitated facility location problem
where each facility has a capacity and we are allowed to open multiple copies of a facility. For this
problem we introduce a new local search operation which opens one or more copies of a facility and
drops zero or more facilities. We prove that this local search has a locality gap between 3 and 4.

Key words. local search, approximation algorithm, facility location
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1. Introduction. The problem of locating facilities in a manner so that they
can effectively serve a set of clients has been the subject of much research. While one
could consider fairly general measures of effectiveness of a set of locations in serving
the clients, one measure that is typically used is the distance between the client and
the facility that is serving it. Since by opening a lot of facilities, we can be near
every client, it also makes sense to take into account the number of facilities opened
in judging the quality of a solution. These two measures, typically referred to as the
service cost and the facility cost, can be combined in many ways to obtain interesting
variants to the general facility location problem. For instance, in k-median we require
that at most k facilities be opened and the total service cost, measured as the sum of
the distance of each client to the nearest open facility, be minimum. Instead of setting
a limit on the total number of facilities that could be opened, we sometimes associate
with every facility a cost of opening that facility. The facility cost of a solution is
then the sum of the costs of the facilities that are opened, and the quality of the
solution is measured by the sum of the facility and service costs. This, in fact, is the
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classical facility location problem. Note that in this setting the facility costs need not
be the same and would, in general, depend on the location at which the facility is
being opened. A generalization of the classical facility location problem arises when
we associate a capacity with each facility, which measures the maximum number of
clients that the facility can serve. Further variants of this capacitated facility location
(CFL) problem arise when we bound the number of facilities that can be opened at a
certain location. Thus in k-CFL, we can open at most k facilities at any location.

Local search techniques have been very popular as heuristics for hard combina-
torial optimization problems. The 1-exchange heuristic by Lin and Kernighan [15]
for the metric-TSP remains the method of choice for practitioners. However, most
of these heuristics have poor worst-case guarantees, and very few approximation al-
gorithms that rely on local search are known. Könemann and Ravi [13] used local
search algorithms for degree-bounded minimum spanning trees. Chandra, Karloff,
and Tovey [3] show an approximation factor of 4

√
n for the 2-exchange local search

heuristic for the Euclidean traveling salesman problem. Khuller, Bhatia, and Pless
[12] give a local search approximation algorithm for finding a feedback edge-set inci-
dent upon the minimum number of vertices. Local search has also been used for set
packing problems by Arkin and Hassin [2]. Here, we provide worst-case analysis of
local search algorithms for facility location problems.

For an instance I of a minimization problem, let global(I) denote the cost of the
global optimum and local(I) be the cost of a locally optimum solution provided by a
certain local search heuristic. We call the supremum of the ratio local(I)/global(I)
the locality gap of this local search procedure. For 1-CFL with uniform capacities,
Korupolu, Plaxton, and Rajaraman [14] argued that any procedure that permits
adding, dropping, or swapping a facility has a locality gap of at most 8. Their analysis
was subsequently refined and tightened by Chudak and Williamson [8] to yield a
locality gap of at most 6. Pál, Tardos, and Wexler [19] present a local search algorithm
for 1-CFL with nonuniform capacities which has a locality gap of 9. Mahdian and
Pál [16] considered the universal facility location problem where the cost of opening a
facility is any arbitrary but monotone function of the demand that the facility serves;
note that this problem generalizes k-CFL. Mahdian and Pál extended the algorithm
of [19] to obtain a local search algorithm with a locality gap of 8. For uncapacitated
facility location (UFL), Korupolu, Plaxton, and Rajaraman [14] provided a bound of 5
on the locality gap when the only operations permitted are those of adding, dropping,
or swapping a facility. Charikar and Guha [4] introduced an operation which permits
adding a facility and dropping many and showed that this local search procedure has a
locality gap of exactly 3. For k-median, Korupolu, Plaxton, and Rajaraman [14] gave
a local search procedure which permitted adding, deleting, and swapping facilities
and gave a solution with k(1 + ε) facilities having a service cost at most 3 + 5/ε times
the optimum k-median solution.

A different approach to facility location was employed by Shmoys, Tardos, and
Aardal [20] and Charikar et al. [5]. They formulated the problems as linear programs
and rounded the optimum fractional solution to obtain a 3 approximation for the
UFL problem and a 62

3 approximation for k-median. Jain and Vazirani [11] gave an
alternate 3 approximation algorithm for UFL using the primal-dual schema. They
also observed that UFL can be viewed as a Lagrange-relaxation of k-median and
utilized this to give a 6 approximation algorithm for k-median. Later, Charikar and
Guha [4] improved this to a 4 approximation. Recently, Archer, Rajagopalan, and
Shmoys [1] showed that the algorithm due to Jain and Vazirani can be made to satisfy
the “continuity” property and established an integrality gap of at most 3 for the most
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natural LP relaxation for the k-median problem. However, their proof gives only an
exponential time algorithm. Guha and Khuller [9] employed randomization to improve
the approximation guarantee of UFL to 2.408. This was further improved to (1+2/e)
by Chudak [6] and finally to 1.728 by Charikar and Guha [4]. Similar ideas were used
by Chudak and Shmoys [7] to obtain a 3 approximation algorithm for ∞-CFL when
the capacities are uniform. Jain et al. [10] used the method of dual fitting and factor
revealing LP to design two greedy algorithms for the UFL problem with approximation
guarantees of 1.861, 1.61 and running times of O(m logm), O(n3), respectively, where
n is the number of vertices and m is the number of edges in the underlying graph.
Mahdian, Ye, and Zhang [17] combined the ideas in [10] with the idea of cost scaling
to obtain an approximation factor of 1.52 for UFL, which is also the best known.
Jain and Vazirani [11] obtained a 4 approximation algorithm for ∞-CFL when the
capacities were nonuniform by solving a related UFL problem using their primal-dual
algorithm. Recently, Mahdian, Ye, and Zhang [18] gave a 2 approximation for the
∞-CFL with nonuniform capacities by reducing it to a linear-cost facility location
problem.

Our results. In this paper, we analyze local search heuristics for three problems.
1. For metric k-median, we show that the local search with single swaps has a

locality gap of 5. This is the first analysis of a local search for k-median that
provides a bounded performance guarantee with only k medians. We also
show that doing multiple swaps, that is, dropping at most p facilities and
opening the same number of new facilities, yields a locality gap of 3 + 2/p.
This improves on the 4 approximation algorithm for k-median by Charikar
and Guha [4]. Our analysis of the locality gap is tight; that is, for an infinite
family of instances there is a locally optimum solution whose service cost is
nearly (3 + 2/p) times that of the global optimum.

2. For metric UFL, we show that local search, which permits adding, dropping,
and swapping a facility, has a locality gap of 3. This improves the bound of 5
given by Korupolu, Plaxton, and Rajaraman [14]. Again, our analysis of the
algorithm is tight. We show how our algorithm can be improved to achieve a
1 +
√

2 + ε ≈ 2.414 + ε approximation using ideas from [4].
3. For metric ∞-CFL, we consider the setting when the capacities may be

nonuniform and argue that local search, where the only operation permit-
ted is to add multiple copies of a facility and drop zero or more facilities, has
a locality gap of at most 4. We give a polynomial time algorithm that uses
Knapsack as a subroutine to search for a lower cost solution in the neigh-
borhood. We also show that there is a locally optimum solution with cost 3
times the optimum. We show how our algorithm can be improved to achieve
a 1 +

√
3 + ε ≈ 3.732 + ε approximation using ideas from [4].

The paper is organized as follows. Section 2 introduces some notation and defines
the problems addressed in this paper formally. In section 3, we first prove a locality
gap of 5 for the k-median problem when only single swaps are permitted and then
extend the analysis to argue a locality gap of 3 + 2/p when up to p facilities can
be swapped simultaneously. Sections 4 and 5 discuss the algorithms for UFL and
∞-CFL, respectively. Section 6 concludes with some open problems.

2. Notation and preliminaries. In the k-median and facility location prob-
lems, we are given two sets: F , the set of facilities, and C, the set of clients. Let
cij ≥ 0 denote the cost of serving client i ∈ C by a facility j ∈ F ; we will think of
this as the distance between client i and facility j. The goal in these problems is to
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identify a subset of facilities S ⊆ F and to serve all clients by facilities in S such that
some objective function is minimized. The facilities in S are said to be open. The
metric versions of these problems assume that distances cij are symmetric and satisfy
the triangle inequality. The problems considered in this paper are defined as follows.

1. The metric k-median problem. Given integer k, identify a set S ⊆ F of at
most k facilities to open such that the total cost of serving all clients by open
facilities is minimized.

2. The metric UFL problem. For each facility i ∈ F , we are given a cost fi ≥ 0
of opening the facility i. The goal is to identify a set of facilities S ⊆ F such
that the total cost of opening the facilities in S and serving all the clients by
open facilities is minimized.

3. The metric ∞-CFL problem. For each facility i ∈ F , we are given a cost
fi ≥ 0 of opening a copy of facility i and an integer capacity ui > 0, which is
the maximum number of clients that a single copy of the facility i can serve.
The output is a set of facilities S ⊆ F and the number of copies of each
facility in S to be opened. The goal is to serve each client by a copy of a
facility in S such that the number of clients served by a copy of a facility is
at most its capacity. The objective is to minimize the total facility cost and
the cost of serving all the clients.

Thus for all the problems we consider, a solution can be specified by giving the
set of open facilities together with their multiplicities. In the rest of this paper we
will think of a solution as a multiset of facilities.

Algorithm Local Search.

1. S ← an arbitrary feasible solution in S.
2. While ∃S′ ∈ B(S) such that cost(S′) < cost(S),

do S ← S′.
3. return S.

Fig. 1. A generic local search algorithm.

A generic local search algorithm (Figure 1) can be described by a set S of all
feasible solutions, a cost function cost : S → R, a neighborhood structure B : S → 2S ,
and an oracle that, given any solution S, finds (if possible) a solution S′ ∈ B(S) such
that cost(S′) < cost(S). A solution S ∈ S is called locally optimum if cost(S) ≤
cost(S′) for all S′ ∈ B(S); the algorithm in Figure 1 always returns one such solution.
The cost function and the neighborhood structure B will be different for different
problems and algorithms.

If S is a locally optimum solution, then for all S′ ∈ B(S),

cost(S′)− cost(S) ≥ 0.

Our proof of the locality gap proceeds by considering a suitable, polynomially large
(in the input size) subset Q ⊆ B(S) of neighboring solutions and arguing that∑

S′∈Q
(cost(S′)− cost(S)) ≤ α · cost(O)− cost(S),

where O is an optimum solution and α > 1 a suitable constant. This implies that
cost(S) ≤ α · cost(O), which gives a bound of α on the locality gap.
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To translate the proof of the locality gap into an approximation algorithm with
polynomial running time, we modify step 2 of the algorithm as follows.

2. While ∃S′ ∈ B(S) such that cost(S′) ≤ (1− ε/Q) cost(S),
do S ← S′.

Here ε > 0 is a constant and Q = |Q|. Thus, in each local step, the cost of the current
solution decreases by a factor of at least ε/Q. If O denotes an optimum solution
and S0 denotes the initial solution, then the number of steps in the algorithm is
at most log(cost(S0)/cost(O))/ log 1

1−ε/Q . As Q, log(cost(S0)), and log(cost(O)) are

polynomial in the input size, the algorithm terminates after polynomially many local
search steps.

To analyze the quality of this locally optimum solution S, we note that for all
S′ ∈ Q, cost(S′) > (1− ε/Q)cost(S). Hence

α · cost(O)− cost(S) ≥
∑
S′∈Q

(cost(S′)− cost(S)) > −ε · cost(S),

which implies that cost(S) ≤ α
(1−ε)cost(O). Thus our proof that a certain local search

procedure has a locality gap of at most α translates into an α/(1− ε) approximation
algorithm with a running time that is polynomial in the input size and 1/ε.

We use the following notation. Given a solution A, let Aj denote the service cost
of client j, which is the distance between j and the facility in A which serves it. For
every facility a ∈ A, we use NA(a) to denote the set of clients that a serves (Figure 2).
For a subset of facilities, T ⊆ A, let NA(T ) =

⋃
a∈T NA(a).

a1

Aj

ak
F : set of facilities

C : set of clients
j

NA(a1) NA(ak)

: open facilities

Fig. 2. Illustration of neighborhood and service costs.

3. The k-median problem. The k-median problem is to open a subset S ⊆ F
of at most k facilities so that the total service cost is minimized. Thus, if a client j is
served by a facility σ(j) ∈ S, then we wish to minimize cost(S) =

∑
j∈C cjσ(j). For a

fixed S, serving each client by the nearest facility in S minimizes this cost.

3.1. Local search with single swaps. In this section, we consider a local
search using single swaps. A swap is effected by closing a facility s ∈ S and opening
a facility s′ �∈ S and is denoted by 〈s, s′〉; hence B(S) = {S − {s} + {s′} | s ∈ S}.
We start with an arbitrary set of k facilities and keep improving our solution with
such swaps until we reach a locally optimum solution. The algorithm is described in
Figure 1. We use S − s+ s′ to denote S − {s}+ {s′}.

3.2. The analysis. We now show that this local search procedure has a locality
gap of 5. Let S be the solution returned by the local search procedure and let O be
an optimum solution. From the local optimality of S, we know that

cost(S − s+ o) ≥ cost(S) for all s ∈ S, o ∈ O.(1)
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No
s1

= NS(s1) ∩NO(o) No
s2

= NS(s2) ∩NO(o)

No
s3

= NS(s3) ∩NO(o)

No
s4

= NS(s4) ∩NO(o)

Fig. 3. Partitioning NO(o).

Note that even if S∩O �= ∅, the above inequalities hold. We combine these inequalities
to show that cost(S) ≤ 5 · cost(O).

Consider a facility o ∈ O. We partition NO(o) into subsets No
s = NO(o) ∩ NS(s)

as shown in Figure 3.
Definition 3.1. We say that a facility s ∈ S captures a facility o ∈ O if s serves

more than half the clients served by o, that is, |No
s | > 1

2 |NO(o)|.
It is easy to see that a facility o ∈ O is captured by at most one facility in S. We

call a facility s ∈ S bad, if it captures some facility o ∈ O, and good otherwise. Fix a
facility o ∈ O and consider a 1-1 and onto function π : NO(o)→ NO(o) satisfying the
following property (Figure 4).

Property 3.1. If s does not capture o, that is, |No
s | ≤ 1

2 |NO(o)|, then π(No
s ) ∩

No
s = ∅.

NO(o)

j π(j)

s does not capture o

π

π is a 1-1 and onto mapping

No
s′

No
s

s′ �= s

Fig. 4. The mapping π on NO(o).

We outline how to obtain one such mapping π. Let D = |NO(o)|. Order the
clients in NO(o) as c0, . . . , cD−1 such that for every s ∈ S with a nonempty No

s , the
clients in No

s are consecutive; that is, there exists p, q, 0 ≤ p ≤ q ≤ D − 1, such that
No

s = {cp, . . . , cq}. Now, define π(ci) = cj , where j = (i + �D/2�) modulo D. For
contradiction assume that both ci, π(ci) = cj ∈ No

s for some s, where |No
s | ≤ D/2. If

j = i+ �D/2�, then |No
s | ≥ j − i+ 1 = �D/2�+ 1 > D/2. If j = i+ �D/2� −D, then

|No
s | ≥ i− j + 1 = D−�D/2�+ 1 > D/2. In both cases we have a contradiction, and

hence function π satisfies property 3.1.
The notion of capture can be used to construct a bipartite graph H = (S,O,E)

(Figure 5). For each facility in S we have a vertex on the S-side, and for each facility
in O we have a vertex on the O-side. We add an edge between s ∈ S and o ∈ O if s
captures o. It is easy to see that each vertex on the O-side has degree at most one,
while vertices on the S-side can have degree up to k. We call H the capture graph.

We now consider k swaps, one for each facility in O. If some bad facility s ∈ S
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≥ l/2

o1 o2

s1 s2

l

S

O

Fig. 5. Capture graph H = (S,O,E).

O

S

l

≥ l/2 good facilities

Fig. 6. k swaps considered in the analysis.

captures exactly one facility o ∈ O, then we consider the swap 〈s, o〉. Suppose l
facilities in S (and hence l facilities in O) are not considered in such swaps. Each
facility out of these l facilities in S is either good or captures at least two facilities in
O. Hence there are at least l/2 good facilities in S. Now, consider l swaps in which
the remaining l facilities in O get swapped with the good facilities in S such that
each good facility is considered in at most two swaps (Figure 6). The bad facilities
which capture at least two facilities in O are not considered in any swaps. The swaps
considered above satisfy the following properties.

1. Each o ∈ O is considered in exactly one swap.
2. A facility s ∈ S which captures more than one facility in O is not considered

in any swap.
3. Each good facility s ∈ S is considered in at most two swaps.
4. If swap 〈s, o〉 is considered, then facility s does not capture any facility o′ �= o.

We now analyze these swaps one by one. Consider a swap 〈s, o〉. We place an
upper bound on the increase in the cost due to this swap by reassigning the clients in
NS(s)∪NO(o) to the facilities in S−s+o as follows (Figure 7). The clients j ∈ NO(o)
are now assigned to o. Consider a client j′ ∈ No′

s for o′ �= o. As s does not capture
o′, by Property 3.1 of π we have that π(j′) �∈ NS(s). Let π(j′) ∈ NS(s′). Note that
the distance that the client j′ travels to the nearest facility in S − s + o is at most
cj′s′ . From triangle inequality, cj′s′ ≤ cj′o′ + cπ(j′)o′ + cπ(j′)s′ = Oj′ +Oπ(j′) + Sπ(j′).
The clients which do not belong to NS(s)∪NO(o) continue to be served by the same
facility. From inequality (1) we have

cost(S − s+ o)− cost(S) ≥ 0.
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Sπ(j′)

Oπ(j′)Oj′Oj

o o′

s s′

j j′ π(j′)

Sj Sj′
NO(o′)NO(o)

Fig. 7. Reassigning the clients in NS(s) ∪NO(o).

Therefore, ∑
j∈NO(o)

(Oj − Sj) +
∑

j∈NS(s),

j �∈NO(o)

(Oj +Oπ(j) + Sπ(j) − Sj) ≥ 0.(2)

As each facility o ∈ O is considered in exactly one swap, the first term of inequal-
ity (2) added over all k swaps gives exactly cost(O)− cost(S). For the second term,
we will use the fact that each s ∈ S is considered in at most two swaps. Since Sj

is the shortest distance from client j to a facility in S, using triangle inequality we
get Oj +Oπ(j) + Sπ(j) ≥ Sj . Thus the second term of inequality (2) added over all k
swaps is no greater than 2

∑
j∈C(Oj + Oπ(j) + Sπ(j) − Sj). But since π is a 1-1 and

onto mapping,
∑

j∈C Oj =
∑

j∈C Oπ(j) = cost(O) and
∑

j∈C(Sπ(j) − Sj) = 0. Thus,
2
∑

j∈C(Oj + Oπ(j) + Sπ(j) − Sj) = 4 · cost(O). Combining the two terms, we get
cost(O)− cost(S) + 4 · cost(O) ≥ 0. Thus we have the following theorem.

Theorem 3.2. A local search procedure for the metric k-median problem with
the local neighborhood structure defined by B(S) = {S − {s} + {s′} | s ∈ S} has a
locality gap of at most 5.

The above algorithm and analysis extend very simply to the case when the clients
j ∈ C have arbitrary demands dj ≥ 0 to be served.

3.3. Local search with multiswaps. In this section, we generalize the algo-
rithm in section 3 to consider multiswaps in which up to p > 1 facilities could be
swapped simultaneously. The neighborhood structure is now defined by

B(S) = {(S \A) ∪B | A ⊆ S, B ⊆ F, and |A| = |B| ≤ p}.(3)

The neighborhood captures the set of solutions obtainable by deleting a set of at most
p facilities A and adding a set of facilities B where |B| = |A|; this swap will be denoted
by 〈A,B〉. We prove that the locality gap of the k-median problem with respect to
this operation is exactly (3 + 2/p).

3.4. Analysis. We extend the notion of capture as follows. For a subset A ⊆ S,
we define

capture(A) = {o ∈ O | |NS(A) ∩NO(o)| > |NO(o)|/2}.
It is easy to observe that if X,Y ⊆ S are disjoint, then capture(X) and capture(Y )
are disjoint and if X ⊂ Y , then capture(X) ⊆ capture(Y ). We now partition S into
sets A1, . . . , Ar and O into sets B1, . . . , Br such that
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procedure Partition;
i = 0
while ∃ a bad facility in S do

1. i = i+ 1 {iteration i}
2. Ai ← {b} where b ∈ S is any bad facility
3. Bi ← capture(Ai)
4. while |Ai| �= |Bi| do

4.1. Ai ← Ai ∪ {g} where g ∈ S \Ai is any good facility
4.2. Bi ← capture(Ai)

5. S ← S \Ai

O ← O \Bi

Ar ← S
Br ← O

end.

Fig. 8. A procedure to define the partitions.

1. for 1 ≤ i ≤ r − 1, we have |Ai| = |Bi| and Bi = capture(Ai); since |S| = |O|,
it follows that |Ar| = |Br|;

2. for 1 ≤ i ≤ r − 1, the set Ai has exactly one bad facility;
3. the set Ar contains only good facilities.

A procedure to obtain such a partition is given in Figure 8.
Claim 3.1. The procedure defined in Figure 8 terminates with partitions of S

and O, satisfying the properties listed above.
Proof. The condition in the while loop in step 4 and the assignment in step 5 of

the procedure maintain the invariant that |S| = |O|. Steps 3 and 4.2 of the procedure
ensure that for 1 ≤ i ≤ r − 1, we have Bi = capture(Ai), and steps 2 and 4.1 ensure
that each for 1 ≤ i ≤ r − 1, the set Ai has exactly one bad facility. Now before
each execution of step 4.1, we have |Ai| < |Bi|. This together with the invariant
that |S| = |O| implies that in step 4.1, we can always find a good facility in S \ Ai.
Since with each execution of the while loop in step 4 the size of Ai increases, the loop
terminates. The condition in step 4 then ensures that for 1 ≤ i ≤ r − 1, we have
|Ai| = |Bi|. Since there are no bad facilities left when the procedure comes out of the
outer while loop, we have that the set Ar contains only good facilities.

We now use this partition of S and O to define the swaps we would consider for
our analysis. We also associate a positive real weight with each such swap.

1. If |Ai| = |Bi| ≤ p for some 1 ≤ i ≤ r, then we consider the swap 〈Ai, Bi〉 with
weight 1. From the local optimality of S we have

cost((S \Ai) ∪Bi)− cost(S) ≥ 0.

Note that even if Ai ∩ Bi �= ∅ or S ∩ Bi �= ∅, the above inequality continues
to hold.

2. If |Ai| = |Bi| = q > p, we consider all possible swaps 〈s, o〉 where s ∈ Ai is
a good facility and o ∈ Bi. Note that if i �= r, there are exactly q − 1 good
facilities in Ai, and for i = r we select any q − 1 out of the q good facilities
in Ar. We associate a weight of 1/(q − 1) with each of these q(q − 1) swaps.
For each such swap 〈s, o〉, we have

cost(S − s+ o)− cost(S) ≥ 0.
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Note that any good facility in Ai is considered in swaps of total weight at most
q/(q − 1) ≤ (p+ 1)/p. The swaps we have considered and the weights we assigned to
them satisfy the following properties:

1. For every facility o ∈ O, the sum of weights of the swaps 〈A,B〉 with o ∈ B
is exactly one.

2. For every facility s ∈ S, the sum of weights of the swaps 〈A,B〉 with s ∈ A
is at most (p+ 1)/p.

3. If a swap 〈A,B〉 is considered, then capture(A) ⊆ B.
For each facility o ∈ O, we partition NO(o) as follows:
1. For |Ai| ≤ p, 1 ≤ i ≤ r, let No

Ai
= NS(Ai) ∩NO(o) be a set in the partition.

2. For |Ai| > p, 1 ≤ i ≤ r, and all s ∈ Ai, let No
s = NS(s) ∩ NO(o) be a set in

the partition.
As before, for each facility o ∈ O, we consider a 1-1 and onto mapping π : NO(o)→
NO(o) with the following property.

Property 3.2. For all sets P , in the partition of NO(o) for which |P | ≤
1
2 |NO(o)|, we have π(P ) ∩ P = ∅. Such a mapping π can be defined in a man-
ner identical to the one described in section 3.2. The analysis is similar to the one
presented for the single-swap heuristic. For each of the swaps defined above, we
upper-bound the increase in the cost by reassigning the clients. Property 3.2 en-
sures that the function π can be used to do the reassignment as described in sec-
tion 3.2. We take a weighted sum of the inequalities corresponding to each of the
swaps considered above. Recall that in the single-swap analysis, we used the fact
that each facility in S was considered in at most two swaps and upper-bounded
the second term of (2) by 2

∑
j∈C(Oj + Oπ(j) + Sπ(j) − Sj) = 4 · cost(O). Simi-

larly, we can now make use of the fact that each facility in S is considered in swaps
with total weight at most (p+ 1)/p and upper-bound the second term by (p+ 1)/p ·∑

j∈C(Oj +Oπ(j) + Sπ(j) − Sj) = 2(p+ 1)/p · cost(O). This gives us a locality gap of
1 + 2(p+ 1)/p = 3 + 2/p.

3.5. Tight example. In Figure 9, we show an instance of the k-median problem
in which a solution that is locally optimum for the 2-swap heuristic (p = 2) has cost
at least 4 − o(1) times the cost of the global optimum. Since 3 + 2/p = 3 + 2/2 = 4
is also the locality gap proved, it shows that the analysis of the 2-swap heuristic is
tight. This tight example can be generalized for p-swaps for any p ≥ 1. In Figure 9,
the black squares are the facilities {o1, o2, . . . , ok} opened by a solution O, the gray
squares are the facilities {s1, s2, . . . , sk} opened by a locally optimum solution S, and
the circles are the clients. In the graph in Figure 9 each edge has a label which is
its length. The cost of serving a client j by a facility i is length of the shortest path
between client j and facility i in the graph; the cost is infinite if there is no path.

Note that cost(S) = 8k−10
3 , cost(O) = 2k+2

3 , and hence the ratio cost(S)/cost(O)
approaches 4 as k approaches ∞. We now show that S is a locally optimum solution;
that is, if we swap {ol, om} for {si, sj}, then the cost does not decrease. To show this
we consider various cases:

1. i, j ≤ r. Then ol, om will have to lie in the connected components containing
si, sj . But in this case the cost would increase by 4.

2. i ≤ r < j. At least one of ol, om would have to lie in the connected component
containing si; let this be ol. If om also lies in this component, then the cost
remains unchanged. If om is in a different component and m ≤ k − 2, then
the cost increases by 2. If m > k − 2, then the cost of the solution increases
by 3.
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Fig. 9. Tight example for 2-swap. The same example can be generalized to p-swap.

3. i, j > r. If both l,m are at most k − 2, then the cost of the solution remains
unchanged. The cost remains unchanged even if l ≤ k − 2 < m. If both
l,m are larger than k − 2, then, once again, the cost of the solution remains
unchanged.

4. Uncapacitated facility location. In facility location problems, we can open
any number of facilities, but each facility i ∈ F has a cost fi ≥ 0 of opening it. The
UFL problem is to identify a subset S ⊆ F and to serve the clients in C by the
facilities in S such that the sum of facility costs and service costs is minimized. That
is, if a client j ∈ C is assigned to a facility σ(j) ∈ S, then we want to minimize
cost(S) =

∑
i∈S fi +

∑
j∈C cσ(j)j . Note that for a fixed S, serving each client by the

nearest facility in S minimizes the service cost.

4.1. A local search procedure. We present a local search procedure for the
metric UFL problem with a locality gap of 3. The operations allowed in a local
search step are adding a facility, deleting a facility, and swapping facilities. Hence the
neighborhood B is defined by

B(S) = {S + {s′}} ∪ {S − {s} | s ∈ S} ∪ {S − {s}+ {s′} | s ∈ S}.(4)

As the number of neighbors to be checked at each local search step is polynomial, the
algorithm can be run in polynomial time as described earlier.

Charikar and Guha [4] proved a locality gap of 3 for a local search procedure
where the operation was of adding a facility and dropping zero or more facilities.
Korupolu, Plaxton, and Rajaraman [14] considered the operations of adding, deleting,
and swapping a facility but could only prove a locality gap of at most 5.

4.2. The analysis. For any set of facilities S′ ⊆ F , let costf (S′) =
∑

i∈S′ fi
denote the facility cost of the solution S′. Also, let costs(S

′) be the total cost of
serving the clients in C by the nearest facilities in S′. The total cost of a solution S′

is denoted by cost(S′). We use S to denote a locally optimum solution. The following
bound on the service cost of S has earlier been proved by Korupolu, Plaxton, and
Rajaraman [14].

Lemma 4.1 (service cost).

costs(S) ≤ costf (O) + costs(O).

Proof. Consider an operation in which a facility o ∈ O is added. Assign all the
clients NO(o) to o. From the local optimality of S we get fo+

∑
j∈NO(o)(Oj−Sj) ≥ 0.

Note that even if o ∈ S, this inequality continues to hold. If we add such inequalities
for every o ∈ O, we get the desired inequality.
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Fig. 10. Bounding the facility cost of a good facility s.

The following lemma gives a bound on the facility cost of S.
Lemma 4.2 (facility cost).

costf (S) ≤ costf (O) + 2 · costs(O).

Proof. As before, we assume that for a fixed o ∈ O, the mapping π : NO(o) →
NO(o) is 1-1 and onto and satisfies Property 3.1. In addition, we assume that if
|No

s | > 1
2 |NO(o)|, then for all j ∈ No

s for which π(j) ∈ No
s , we have that π(j) = j.

Here we give an outline of how to define such a function π. Let |No
s | > 1

2 |NO(o)|. We
pick any |No

s | − |NO(o) \No
s | clients j from No

s and set π(j) = j. On the remaining
clients in NO(o), the function π is defined in the same manner as in section 3.2.

Recall that a facility s ∈ S is good if it does not capture any o, that is, for all o ∈ O,
|No

s | ≤ 1
2 |NO(o)|. The facility cost of good facilities can be bounded easily as follows

(see Figure 10). Consider an operation in which a good facility s ∈ S is dropped. Let
j ∈ NS(s) and π(j) ∈ NS(s′). As s does not capture any facility o ∈ O, we have that
s′ �= s. If we assign j to s′, then we have −fs+

∑
j∈NS(s)(Oj +Oπ(j) +Sπ(j)−Sj) ≥ 0.

Since for all j ∈ NS(s), π(j) �= j, the term
∑

j∈NS(s)

π(j)=j

Oj is trivially zero and hence we
can rewrite the above inequality as

−fs +
∑

j∈NS(s)

π(j)�=j

(Oj +Oπ(j) + Sπ(j) − Sj) + 2
∑

j∈NS(s)

π(j)=j

Oj ≥ 0.(5)

For bounding the facility cost of a bad facility s ∈ S we proceed as follows. Fix a
bad facility s ∈ S. Suppose s captures the facilities P ⊆ O. Let o ∈ P be the facility
nearest to s. We consider the swap 〈s, o〉. The clients j ∈ NS(s) are now assigned to
the facilities in S − s+ o as follows:

1. Suppose π(j) ∈ NS(s′) for s′ �= s. Then j is assigned to s′. Let j ∈ NO(o′).
We have, cjs′ ≤ cjo′ + cπ(j)o′ + cπ(j)s′ = Oj +Oπ(j) + Sπ(j) (Figure 11).

2. Suppose π(j) = j ∈ NS(s) and j ∈ NO(o). Then j is assigned to o.
3. Suppose π(j) = j ∈ NS(s) and j ∈ NO(o′) for o′ �= o. By Property 3.1 of

the mapping π, facility s captures facility o′ and hence o′ ∈ P . The client j
is now assigned to facility o. From triangle inequality, cjo ≤ cjs + cso. Since
o ∈ P is the closest facility to s, we have cso ≤ cso′ ≤ cjs + cjo′ . Therefore,
cjo ≤ cjs + cjs + cjo′ = Sj + Sj +Oj (Figure 11).
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Fig. 11. Bounding the facility cost of a bad facility s. The figures on the left and in the middle
show reassignment when s is dropped, and the figure on the right shows reassignment when o′ is
added.

Thus for the swap 〈s, o〉 we get the following inequality:

fo − fs +
∑

j∈NS(s)

π(j)�=j

(Oj +Oπ(j) + Sπ(j) − Sj)

(6)
+

∑
j∈NO(o),

π(j)=j∈NS(s)

(Oj − Sj) +
∑

j �∈NO(o),

π(j)=j∈NS(s)

(Sj + Sj +Oj − Sj) ≥ 0.

Now consider an operation in which a facility o′ ∈ P − o is added (Figure 11). The
clients j ∈ NO(o′) for which π(j) = j ∈ NS(s) are now assigned to the facility o′, and
this yields the following inequality.

fo′ +
∑

j∈NO(o′)
π(j)=j∈NS(s)

(Oj − Sj) ≥ 0 for each o′ ∈ P − o.(7)

Adding inequality (6) to inequalities (7) we get, for a bad facility s ∈ S,∑
o′∈P

fo′ − fs +
∑

j∈NS(s),

π(j)�=j

(Oj +Oπ(j) + Sπ(j) − Sj) + 2
∑

j∈NS(s),

π(j)=j

Oj ≥ 0.(8)

The last term on the left is an upper bound on the sum of the last two terms on the
left of inequality (6) and the last term on the left of the inequality (7) added for all
o′ ∈ P − o.

Now we add inequalities (5) for all good facilities s ∈ S, inequalities (8) for all
bad facilities s ∈ S, and inequalities fo ≥ 0 for all o ∈ O, which are not captured by
any s ∈ S, to obtain∑

o∈O

fo −
∑
s∈S

fs +
∑

π(j) �=j

(Oj +Oπ(j) + Sπ(j) − Sj) + 2
∑

π(j)=j

Oj ≥ 0.

Note that
∑

j:π(j) �=j Oj =
∑

j:π(j) �=j Oπ(j) and
∑

j:π(j) �=j Sj =
∑

j:π(j) �=j Sπ(j).

Therefore we have
∑

j:π(j) �=j(Oj + Oπ(j) + Sπ(j) − Sj) = 2
∑

j:π(j) �=j Oj and hence

costf (O)− costf (S) + 2 · costs(O) ≥ 0. This proves the desired lemma.
Combining Lemmas 4.1 and 4.2, we get the following result.
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Theorem 4.3. The local search procedure for the metric UFL problem with the
neighborhood structure B given by B(S) = {S+ {s′}}∪{S−{s} | s ∈ S}∪{S−{s}+
{s′} | s ∈ S} has a locality gap of at most 3.

The algorithm described above extends very simply to the case when the clients
j ∈ C have arbitrary demands dj ≥ 0 to be served. We now show how to use a
technique from [4] to obtain 1 +

√
2 + ε ≈ 2.414 + ε approximation to the UFL. The

main idea is to exploit the asymmetry in the service and facility cost guarantees.
Note that Lemmas 4.1 and 4.2 hold for any solution O and not just the optimal

solution. We multiply the facility costs by a suitable factor α > 0 and solve the new
instance using local search.

Theorem 4.4. The metric UFL problem can be approximated to factor 1+
√

2+ε
using a local search procedure.

Proof. As before, we denote the facility cost and the service cost of an optimum
solution O by costf (O) and costs(O), respectively. Let cost′f (A) and cost′s(A) denote
the facility and service costs of a solution A in the scaled instance and let S be a
locally optimum solution. Then

costf (S) + costs(S) =
cost′f (S)

α
+ cost′s(S)

≤ cost′f (O) + 2cost′s(O)

α
+ cost′f (O) + cost′s(O)

= (1 + α)costf (O) +

(
1 +

2

α

)
costs(O).

The inequality follows from Lemmas 4.1 and 4.2. Now, by setting α =
√

2, we get
cost(S) ≤ (1 +

√
2)cost(O). Thus local search can be used to obtain a 1 +

√
2 + ε

approximation.

1 1 1 1
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Fig. 12. Tight example for the locality gap of UFL.

4.3. Tight example. In Figure 12, we show an instance where a local optimum
has cost at least 3− o(1) times the cost of the global optimum. The locally optimum
solution S consists of a single facility s while the optimum solution O consists of
facilities {o0, o1, . . . , ok}. All edges shown have unit lengths, and the cost of serving
client j by facility f is the length of the shortest path between client j and facility f in
the graph. The cost of opening facility s is 2k, while that of opening any other facility
is zero. To argue that the solution S is locally optimum, note that we cannot delete
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facility s. It is also easy to verify that we cannot decrease the cost of our solution by
either the addition of any facility from O or by any swap which involves bringing in a
facility from O and deleting s. Thus S is locally optimum and has cost 3k + 1, while
the cost of O is k + 1. Since the ratio cost(S)/cost(O) tends to 3 as k tends to ∞,
our analysis of the local search algorithm is tight.

5. The capacitated facility location problem. In the CFL problem, along
with the facility costs fi ≥ 0, we are given integer capacities ui > 0 for each i ∈ F .
We can open multiple copies of a facility i. Each copy incurs a cost fi and is capable
of serving at most ui clients. Note that the capacities ui may be different for different
facilities i. The problem is to identify a multiset S of facilities and to serve the clients
in C by the facilities in S such that the capacity constraints are satisfied and the
sum of the facility costs and the service costs is minimized. Since the clients have
unit demands and the facilities have integer capacities, every client will get assigned
to a single facility. If a client j ∈ C is assigned to a facility σ(j) ∈ S, then we want
to minimize cost(S) =

∑
i∈S fi +

∑
j∈C cjσ(j). Given an S, the service cost can be

minimized by solving a min-cost assignment problem.
In the remainder of this section we let S and O be the multisets of the facilities

opened in the locally optimum solution and an optimum solution, respectively.

5.1. A local search algorithm. In this section, we prove a locality gap of at
most 4 on a local search procedure for the CFL problem. The operations allowed at
each local search step are adding a single copy of a facility s′ ∈ F or adding l ≥ 1
copies of a facility s′ ∈ F and dropping a subset of the open facilities, T ⊆ S. For
the second operation l should be sufficiently large so that the clients j ∈ NS(T ) can
be served by these new copies of s′, that is, l · us′ ≥ |NS(T )|. So the neighborhood
structure B is defined by

B(S) = {S + s′ | s′ ∈ F} ∪ {S − T + l · {s′} | s′ ∈ F, T ⊆ S, l · us′ ≥ |NS(T )|},(9)

where l · {s′} represents l new copies of s′. If we service all clients in NS(T ) by the
new copies of facility s′, the cost of the new solution is at most

cost(S) + l · fs′ +
∑
s∈T

⎛⎝−fs +
∑

j∈NS(s)

(cjs′ − cjs)
⎞⎠ .

Given a facility s′ ∈ F , we use the procedure T-hunt described in Figure 13 to
find a subset, T ⊆ S, of facilities to close. Here m = |C| is an upper bound on the
number of new copies of s′ that we need to open. Closing a facility s ∈ S gives an
extra |NS(s)| clients to be served by the new facility s′. A client j ∈ NS(s) now
travels an extra distance of at most (cs′j−csj). Thus, closing facility s gives a savings
of fs −

∑
j∈NS(s)(cs′j − csj). Due to capacity constraints, a copy of s′ can serve at

most us′ clients. This motivates us to define the following Knapsack problem. For a
facility s ∈ S, define weight(s) = |NS(s)| and profit(s) = fs−

∑
j∈NS(s)(cs′j − csj).

The oracle Knapsack(W ) returns a multiset T ⊆ S such that
∑

s∈T weight(s) ≤ W
and profit(T ) =

∑
s∈T profit(s) is maximized.

It is interesting to note that since we permit any subset of facilities T from our
current solution S to be dropped, the number of operations is exponential in |S|.
However, by counting the change in cost due to each such operation in a specific way,
we are able to give a polynomial time procedure (the procedure T-hunt) to identify a
local operation which improves the cost. It might be the case that T-hunt is not able
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Procedure T-Hunt.

1. For l = 1 to m do,
2. T ← Knapsack(l · us′).
3. If cost(S) + l · fs′ − profit(T ) < cost(S),

then return T .
4. return “could not find a solution that reduces the cost.”

Fig. 13. A procedure to find a subset T ⊆ S of facilities.

to identify a local operation which improves the cost even though such operations
exist. However, our analysis will work only with the assumption that T-hunt could
not find a solution which improves the cost.

5.2. The analysis. As the output S is locally optimum with respect to addi-
tions, Lemma 4.1 continues to bound the service cost of S. We restate Lemma 4.1
here.

Lemma 5.1 (service cost).

costs(S) ≤ costf (O) + costs(O).

Lemma 5.2. For any U ⊆ S and any s′ ∈ F , we have

�|NS(U)|/us′� · fs′ +
∑
s∈U

|NS(s)| · css′ ≥
∑
s∈U

fs.

Proof. The algorithm terminated with the output S. Hence for the solution S and
for the facility s′, the procedure T-hunt must have returned “could not find a solution
that reduces the cost.” Consider the run of the for-loop for l = �|NS(U)|/us′�. Since∑

s∈U weight(s) = NS(U) ≤ l · us′ , the solution T returned by the knapsack oracle
has profit at least as large as profit(U). Hence,

0 ≤ l ·fs′−profit(T ) ≤ l ·fs′−profit(U) = l ·fs′−
∑
s∈U

⎛⎝fs − ∑
j∈NS(U)

(cjs′ − cjs)
⎞⎠ .

However, by triangle inequality we have cjs′ − cjs ≤ css′ . Therefore we have proved
the lemma.

We are now ready to bound the facility cost of S.
Lemma 5.3 (facility cost).

costf (S) ≤ 3 · costf (O) + 2 · costs(O).

To prove the above lemma, we consider a directed graph G = (V,E) with lengths
on edges, where

V = {vs | s ∈ S} ∪ {wo | o ∈ O} ∪ {sink},

E = {(vs, wo) | s ∈ S, o ∈ O} ∪ {(wo, sink) | o ∈ O}.
The lengths of (vs, wo) and (wo, sink) are cso and fo/uo, respectively (see Figure 14).
The cost of routing unit flow along any edge is equal to the length of that edge. We
want to simultaneously route |NS(s)| units of flow from each vs to the sink.
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fo/uo

W = {wo : o ∈ O}

vs wo

sink

V = {vs : s ∈ S}

cso

Fig. 14. The flow graph.

Lemma 5.4. We can simultaneously route |NS(s)| units of flow from each vs to
the sink such that the total routing cost is at most costs(S) + costs(O) + costf (O).

Proof. Consider a client j ∈ C. If j ∈ No
s , then route one unit of flow along the

path vs → wo → sink. Triangle inequality implies cso ≤ Sj +Oj . If for each client we
route a unit flow in this manner, then the edge (wo, sink) carries NO(o) units of flow
at cost |NO(o)| · fo/uo ≤ �|NO(o)|/uo� · fo, which is the contribution of o to costf (O).
Thus, the routing cost of this flow is at most costs(S) + costs(O) + costf (O).

Since there are no capacities on the edges of graph G, any minimum cost flow
must route all NS(s) units of flow from vs to the sink along the shortest path. This
would be a path (vs, wo, sink), where o is such that cso + fo/uo is minimized with ties
broken arbitrarily. For each o ∈ O, let To ⊆ S denote the set of facilities s that route
their flow via wo in this minimum cost flow. From Lemma 5.4, we have

costs(S) + costs(O) + costf (O) ≥
∑
o∈O

∑
s∈To

|NS(s)|(cso + fo/uo).(10)

Now, applying Lemma 5.2 to To and o, we get

�|NS(To)|/uo� · fo +
∑
s∈To

|NS(s)| · cso ≥
∑
s∈To

fs.

Hence,

fo + |NS(To)|/uo · fo +
∑
s∈To

|NS(s)| · cso ≥
∑
s∈To

fs.

Adding these inequalities for all o ∈ O, we get∑
o∈O

fo +
∑
o∈O

∑
s∈To

|NS(s)|(cso + fo/uo) ≥
∑
o∈O

∑
s∈To

fs = costf (S).(11)

The inequalities (10) and (11) together imply

costf (S) ≤ 2 · costf (O) + costs(O) + costs(S).

This inequality, together with Lemma 5.1, gives Lemma 5.3. Combining Lemmas 5.1
and 5.3, we obtain the following result.

Theorem 5.5. A local search procedure for the metric CFL problem where in
each step we can either add a facility or delete a subset of facilities and add multiple
copies of a facility has a locality gap of at most 4.
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Using an argument similar to the one in Theorem 4.4 with α =
√

3− 1 we obtain
a 2 +

√
3 + ε ≈ 3.732 + ε approximation. The tight example given in section 4.3 for

the UFL problem shows that a locally optimum solution for this problem can have
cost three times the cost of the global optimum.

6. Conclusions and open problems. In this paper, we provided tighter anal-
ysis of local search procedures for the k-median and UFL problems. Our sharper
analysis leads to a 3 + 2/p + ε approximation algorithm for the k-median in which
there are polynomially many local search steps, each of which can be performed in
time nO(p). For CFL, when multiple copies of a facility can be opened, we introduce
a new operation and show how a weaker version of this operation can be performed
in polynomial time. This leads to a local search procedure with a locality gap of at
most 4. We leave open the problem of obtaining tight bounds on the locality gap of
this procedure. It would be interesting to identify such operations for other variants
of facility location problems.
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Abstract. We consider two types of buffering policies that are used in network switches sup-
porting Quality of Service (QoS). In the FIFO type, packets must be transmitted in the order in
which they arrive; the constraint in this case is the limited buffer space. In the bounded-delay type,
each packet has a maximum delay time by which it must be transmitted, or otherwise it is lost. We
study the case of overloads resulting in packet loss. In our model, each packet has an intrinsic value,
and the goal is to maximize the total value of transmitted packets.

Our main contribution is a thorough investigation of some natural greedy algorithms in various
models. For the FIFO model we prove tight bounds on the competitive ratio of the greedy algorithm
that discards packets with the lowest value when an overflow occurs. We also prove that the greedy
algorithm that drops the earliest packets among all low-value packets is the best greedy algorithm.
This algorithm can be as much as 1.5 times better than the tail-drop greedy policy, which drops the
latest lowest-value packets.

In the bounded-delay model we show that the competitive ratio of any on-line algorithm for a
uniform bounded-delay buffer is bounded away from 1, independent of the delay size. We analyze
the greedy algorithm in the general case and in three special cases: delay bound 2, link bandwidth 1,
and only two possible packet values.

Finally, we consider the off-line scenario. We give efficient optimal algorithms and study the
relation between the bounded-delay and FIFO models in this case.

Key words. buffer overflows, competitive analysis, Quality of Service, FIFO scheduling, dead-
line scheduling
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1. Introduction. Unlike the “best effort” service provided by the Internet to-
day, next-generation networks will support guaranteed Quality of Service (QoS) fea-
tures. In order for the network to support QoS each network switch must be able
to guarantee a certain level of QoS in some predetermined parameters of interest,
including packet loss probability, queuing delay, jitter, and others.

In this work, we consider models based on the IP environment. Implementing
QoS in an IP environment is receiving growing attention, since it is widely recognized
that future networks would most likely be IP based. There have been a few proposals
that address the integration of QoS in the IP framework, and our models are based
on some of these proposals, specifically in the general area of providing differentiated
network services in an IP environment. For example, different customers may get
different levels of service, which might depend on the price they pay for the service.
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Fig. 1.1. Schematic representation of the model. Left: general switch structure. Right: output
port structure. Packets are placed in the buffer, and the buffer management algorithm controls which
packet will be discarded and which will be transmitted.

One way of guaranteeing QoS is by committing resources to each admitted con-
nection, so that each connection has its dedicated resource set that will guarantee
its required level of service regardless of all other connections. This conservative pol-
icy (implemented in the specification of CBR traffic in asynchronous transfer mode
(ATM) networks [23]) might be extremely wasteful since network traffic tends to be
bursty. Specifically, this policy does not take into consideration the fact that usually,
the worst-case resource requirements of different connections do not occur simultane-
ously. Recognizing this phenomenon, most modern QoS networks allow some “over-
booking,” employing the policy popularly known as statistical multiplexing. While
statistical multiplexing tends to be very cost-effective, it requires satisfactory solu-
tions to the unavoidable events of overload. In this paper we consider such scenarios
in the context of buffering. The basic situation we consider is an output port of a
network switch with the following activities (see Figure 1.1). At each time step, an
arbitrary set of packets arrives, but only a fixed number of packets can be transmitted.
The buffer management algorithm controls which packets are admitted to the buffer,
which are discarded, and which are transmitted at each step.

We consider two types of buffer models. In the FIFO model, packets can never be
sent out of order: formally, for any two packets p, p′ sent at times t, t′, respectively, we
have that if t′ > t, then packet p did not arrive after packet p′. The main constraint
in this classical model is that the buffer size is fixed, so when too many packets arrive,
buffer overflow occurs and some packets must be discarded. In most implementations
the discard policy is the natural tail-drop policy, in which the latest packets are
discarded.

The second model we consider is the bounded delay model. This model is relatively
new, and is warranted by networks that guarantee the QoS parameter of end-to-end
delay. Specifically, in the bounded-delay model each packet arrives with a prescribed
allowed delay time. A packet must be transmitted within its allowed delay time or
else it is lost. In this model, the buffer management policy can reorder packets. We
consider two variants of the model. In the uniform bounded delay model, the switch
has a single fixed bound on the delay of all packets, and in the variable bounded delay
model, the switch may have a different delay bound for each packet.

The focus of our paper is the following simple refinement of the models described
above. Each packet arrives with its intrinsic value, and the goal of the buffer man-
agement algorithm is to discard packets so as to maximize the total value of packets
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transmitted. All we assume about the value of the packets is that it is additive; that
is, the value of a set of packets is the sum of the values of packets in the set.

In this paper we present a thorough investigation of the natural greedy algorithms
in the various models. In the FIFO model, the greedy algorithm discards the lowest-
value packets whenever an overflow occurs, with ties broken arbitrarily. We prove a
tight bound of 2− W

B+W on the competitive factor of this algorithm, where B is the
buffer size and W is the link bandwidth. For the case where the ratio of the maximum
to minimum value is bounded by some α ≥ 1, we prove a tight bound of 2 − 2

α+1
on the competitive factor. The proof of the upper bound is quite involved. We then
consider different variants of the greedy algorithms, since the greedy policy does not
specify which packet to drop in case there is more than one packet with the lowest
value. Specifically, we consider the head-drop greedy policy, which drops the earliest
lowest-value packets. We show that for any input sequence the head-drop greedy
policy achieves equal or better value than any other greedy policy. This is somewhat
surprising, since most implementations use the tail-drop policy. Furthermore, we show
that the ratio of the value served by the head-drop greedy policy to the value served
by the tail-drop policy can be as high as 3/2 in some cases. We also prove a lower
bound on the competitive ratio of any on-line algorithm in the FIFO model.

For the bounded delay model we have the following results. First, we show that
the competitive ratio of any on-line algorithm for a uniform bounded delay buffer is
bounded away from 1, independent of the delay size. This holds even if all packets
have an arbitrarily long allowed delay. Next, we consider the simple greedy algorithm,
which in this model always sends the packet with the highest value. We prove that
the competitive ratio of this algorithm is exactly 2. In the common case when there
are only two possible values of packets (i.e., “cheap” and “expensive” packets) the
competitive factor of the greedy algorithm is exactly 1+1/α, where α ≥ 1 is the ratio
of the expensive value to the cheap value. We then consider the special case where
the delay is less than 2, namely, a packet, if not dropped, is sent when it arrives or in
the next time step. We show that in this case, the bound of 2 can be improved: we
give algorithms that achieve a competitive ratio of 1.618 for the variable delay model.
We also prove lower bounds of 1.11 on the competitive ratio for the uniform delay
model and 1.17 for the bounded delay model. Better bounds are presented for the
case where the bandwidth link is 1. We show that in this variant slight modifications
of the greedy algorithm guarantee better performance.

Lastly, we consider the off-line case. We prove that the overflow management
problem has matroid structure in both buffer models, and hence admits efficient op-
timal off-line algorithms.

Related work. There is a myriad of research papers about packet drop policies in
communication networks; see, for example, the survey of [16] and references therein.
Some of the drop mechanisms, such as random early detection (RED) [11], are de-
signed to signal congestion to the sending end. The approach abstracted in our model,
where each packet has an intrinsic value and the goal is to maximize the total through-
put value, is implicit in the recent DiffServ model [8, 9] and ATM [23]. The bounded
delay model is an abstraction of the model described in [13].

There has been work on analyzing various aspects of the model using classical
queuing theory and assuming Poisson arrivals [21]. The Poisson arrival model has
been seriously undermined by the discovery of the heavy tail nature of traffic [18]
and the chaotic nature of TCP [24]. In this work we use competitive analysis, which
makes no probabilistic assumptions.
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The work of [2] concentrated on the case where one cannot discard a packet
already in the buffer. The authors give tight bounds on the competitive factor of
various algorithms for the special case where there are only two different weights.
In [20], the question of video smoothing is studied. One of the results in that paper,
which we improve here, is an upper bound of 4 on the competitive ratio of the greedy
algorithm for the FIFO model. The work of [14] deals with the loss-competitive
analysis rather than the throughput-competitive analysis. The authors show how to
translate the loss guarantee to the throughput guarantee and obtain an almost tight
upper bound for the case of two packet values. A similar result is presented in this
paper for the bounded delay model. The work of [3] studies bandwidth allocation
from the competitive analysis viewpoint, disregarding buffer overflows.

The bounded delay model can be viewed as a scheduling problem. In this problem
we are given parallel machines (whose number is the link bandwidth) and jobs with
release time and deadline that correspond to the packets arriving to the pool. The
goal is to maximize the throughput, defined as the sum of the weights of the jobs that
terminate by their deadline. In our case we also have the additional constraint that
all jobs have the same processing time. The off-line variant of this scheduling problem
denoted by P | ri; pi = p | ∑wi(1 − Ui) in the standard scheduling notation can be
solved in polynomial time using maximum matching. To the best of our knowledge
the on-line variant of this problem has not been considered elsewhere. The more
general off-line problem, where the processing time is not fixed, is NP-hard. Recently,
approximation algorithms for this problem were considered in [5, 4, 22]. The more
general on-line problem, where the processing time is not fixed, was considered in [19],
where the authors prove competitive ratios that are substantially larger than those
in our case. Slightly better ratios can be achieved for the case where processing time
is not fixed if preemption is allowed. This case was considered in [6, 7, 15]. For the
unweighted version of this problem, i.e., when the goal is to maximize the number of
jobs completed by their deadline (which is trivial if all processing times are the same),
[6] showed a tight competitive factor of 4. For the weighted version the tight bound
is
√

1 + k2, where k is the ratio of the maximum value density to the minimum value
density of a job [15].

Paper organization. The remainder of this paper is organized as follows. In
section 2 we define the models and some notation. In section 3 we consider the FIFO
model and in section 4 we consider the bounded delay models. Finally in section 5
we discuss off-line algorithms.

2. Model and notation. In this section we formalize the model and the nota-
tion we use. We consider two main models: the FIFO model and the bounded-delay
switch model. First, we list the assumptions and define quantities that are common
to both models.

We assume that time is discrete. Fix an algorithm A. At each time step t, there
is a set of packets QA(t) stored at the buffer (initially empty). Each packet p has a
positive real value denoted by v(p). At time t, a set of packets A(t) arrives. A set
of packets from QA(t) ∪ A(t), denoted by SA(t), is transmitted. We denote by SA =
∪t SA(t) the set of packets transmitted by the algorithm A and by Sval

A = {p : p ∈ SA,
v(p) = val} the set of packets of value val sent by A. Note that we consider the
so-called cut-through model in which a packet may arrive and be transmitted at the
same step. A subset of QA(t) ∪ A(t) \ SA(t), denoted by DA(t), is dropped. The set
of packets in the buffer at time t + 1 is QA(t + 1) = QA(t) ∪ A(t) \ (DA(t) ∪ SA(t)).
We omit subscripts when no confusion arises.
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The input is the packet arrival function A(·) and the packet value function v(·).
Packets may have other attributes as well, depending on the specific model. The
buffer management algorithm has to decide at each step which of the packets to drop
and which to transmit, satisfying some constraints specified below. For a given input,
the value served by the algorithm is the sum of the values of all packets transmitted
by the algorithm. For a set P of packets define v(A) to be the total value of the
packets in the set. In this notation the value served by algorithm A is

∑
t v(SA(t)).

The sequence of packets transmitted by the algorithm must obey certain restric-
tions.

Output link bandwidth. We assume that there is an integer number W called the
link bandwidth such that the algorithm cannot transmit more than W packets in a
single time unit; i.e., |S(t)| ≤ W for all t. For simplicity, we usually assume that
W = 1 unless stated otherwise.

FIFO buffers. In the FIFO model there are two additional constraints. First, the
sequence of transmitted packets has to be a subsequence of the arriving packets. That
is, if a packet p is transmitted after packet p′, then p could not have arrived before p′.
Second, the number of packets in the buffer is bounded by the buffer size parameter,
denoted by B. Formally, the constraint is that for all times t, |Q(t)| ≤ B. (Note that
our model allows for a larger number of packets in the transient period of each step,
starting with packets’ arrival and ending with packets’ drop and transmission.)

Bounded-delay buffers. In this model we assume that packets have another at-
tribute: for each packet p there is the slack time of p, denoted by sl(p). The require-
ment is that a packet p ∈ A(t) must be either transmitted or dropped before time
t+ sl(p) (i.e., in one of the steps t, t+ 1, . . . , t+ sl(p)− 1). The time t+ sl(p) is also
called the deadline of p, denoted by dl(p). We emphasize that in this model there is
no explicit bound on the size of the buffer, and that packets may be reordered.

Uniform and variable bounded-delay buffers. One case of special interest within
the bounded-delay buffers model is when the slack of all packets is equal to some known
parameter δ. We call this model δ-uniform bounded-delay buffers. If all packet slacks
are only bounded by some number δ, we say that the buffer is δ-variable bounded-delay.

On-line and off-line algorithms. We call an algorithm on-line if for all time steps t,
it has to decide which packets to transmit and which to drop at time t without any
knowledge of the packets arriving at steps t′ > t. If future packet arrival is known,
the algorithm is called off-line. We denote the optimal policy by OPT and the set
of packets sent by the optimal policy by SO. The competitive ratio (or competitive
factor) of an algorithm A is an upper bound, over all input sequences P , on the ratio
of the maximal value that can be transmitted by OPT to the value that is transmitted

by A, that is, maxP (v(OPT)
v(A) ). Note that since we deal with a maximization problem

this ratio will always be at least 1. In what follows, we denote by SO and SG the sets
of packets transmitted by OPT and by the on-line algorithm considered, respectively,
if it is not explicitly stated otherwise.

3. The FIFO model. In this section we consider the FIFO model. Recall that
in this model a buffer of size B is used to store the incoming packets. Packets have to
be transmitted in the order in which they arrive. Each packet has a value associated
with it and the goal is to maximize the value of the transmitted packets.

First, we prove a lower bound on the competitive ratio of any on-line algorithm
in the FIFO model. This proof improves the 1.25 bound proved in [20].

Theorem 3.1. The competitive ratio of any deterministic on-line algorithm in
the FIFO model is at least 1.281.
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Proof. Assume that the link rate is 1 packet per time unit. Fix an on-line
algorithm A, and let CA denote its competitive ratio. We consider two scenarios. In
both scenarios, B packets of value 1 arrive at time t = 0. In each of the next time
steps a single packet of value α > 1 arrives. This continues until we reach time B or
until A sends an α value packet (which means that A has dropped all the remaining
packets of value 1 from the buffer). Let t be that time.

In the first scenario, the input stream ends at time t. The benefit of A is 1 ·t+α ·t,
while the off-line benefit is 1 ·B + α · t.

In the second scenario, at time t+1 a burst of B packets, each of value α, arrive.
The off-line benefit in this case is α(B + t), while the benefit of A is 1 · t+ α ·B.

Thus, the competitive ratio of A is

CA ≥ max

(
B + αt

t+ αt
,
α(B + t)

t+ αB

)
.(3.1)

In our model, the adversary first chooses α so as to maximize CA, then the algorithm
chooses t (possibly depending on α) so as to minimize CA, and then the competi-
tive ratio is computed from (3.1). We work backwards, assuming first that α is a
parameter. It is easy to see that (3.1) is minimized when

B + αt

t+ αt
=
α(B + t)

t+ αB
.(3.2)

Solving (3.2) for t, we get that its only nonnegative root is

t0(B,α) = B

√
(α− 1)2 + 4α3 − α+ 1

2α2
.

Define t′0(α) = t0(B,α)/B. With this notation, it follows from (3.1) that the compet-
itive ratio of A satisfies

CA ≥ 1 + αt′0(α)

t′0(α) + αt′0(α)
.(3.3)

Using numerical methods, we find that the right-hand side of (3.3), viewed as a
function of α, is maximized when α ≈ 4.01545. Substituting in (3.1), we obtain that
the competitive ratio of A cannot be better than 1.28197.

3.1. Tight analysis of the greedy algorithm. We consider the greedy algo-
rithm for output link bandwidth W , for any integer W > 0. In this algorithm no pack-
ets are dropped in time step t in which |Q(t)|+|A(t)| ≤ B+W . If |Q(t)∪A(t)| = k > 0,
then the earliest min(W,k) packets are transmitted and the rest are stored in the
buffer. If |Q(t)| + |A(t)| = k > B + W , the k − B − W packets with the lowest
value are dropped, ties broken arbitrarily. Among the remaining B +W packets, the
W earliest packets are transmitted and the rest are stored in the buffer.

For the sake of simplicity, we assume that B is a multiple of W .1 Let BW = B/W
denote the number of time steps that is needed to transmit the whole buffer. We first
show that the competitive ratio of the greedy algorithm is no worse than 2. Later,
we improve this bound and show that the improved bounds are tight.

1If W does not divide B, one can think of “fractions” of time steps in which sets of less than
W packets are transmitted. This makes the analysis somewhat cumbersome, but the results of this
section carry over to the general case as well.
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Theorem 3.2. The competitive ratio of the greedy algorithm is at most 2 for any
output link bandwidth W .

Proof. Consider a sequence of packets. We need to show that v(OPT ) ≤
2v(Greedy). Let DO

G(t) = SO ∩DG(t) denote the set of packets that were dropped by
the greedy algorithm at time t but were transmitted by the optimal algorithm. Let
DO

G be the union of all these sets. We show a mapping from the packets in DO
G to

packets in SG with the following properties: (i) a packet from DO
G is mapped to a

packet in SG with at least the same value, (ii) at most one packet from DO
G is mapped

to any packet in SG ∩ SO, and (iii) at most two packets from DO
G are mapped to any

packet in SG \ SO. Clearly, the existence of the mapping implies the theorem.
We construct the mapping iteratively. At each iteration we consider a packet

from DO
G and map it to a packet in SG. The packets in DO

G are considered in the
order of their drop time. Suppose that the current packet to be mapped is p ∈ DO

G(t).
This means that all the packets in DO

G(s), for s < t, and maybe some of the packets
in DO

G(t) have been mapped already. Given the partially defined mapping, define a
set of “available” packets in SG as follows. A packet in q ∈ SG ∩ SO is available if so
far no packet is mapped to q. A packet in q ∈ SG \ SO is available if so far at most
one packet is mapped to q. The packet p is mapped to the earliest available packet
that was transmitted by the greedy algorithm at or after time t.

Clearly, the mapping defined above satisfies the second and third properties. It
remains to be shown is that it satisfies the first property as well. Consider the mapping
process step by step, where in each step a single packet is mapped. We prove that
the first property holds by induction on the steps of the mapping process. For the
basis of the induction note that if p ∈ DO

G(t) is the first packet to be dropped, then it
is mapped to the packet transmitted by the greedy algorithm at time t. Clearly, the
value of this packet is at least v(p).

s(t)
Time

s(t)+Bt

Time

Schedule of the Greedy Algorithm

r(t)

Mapping of DROP sets

S(r(t)) S(s(t))S(t)

DROP(r(t)) DROP(t) DROP(s(t))

Q(t)

Fig. 3.1. An example of the mapping from DO
G to SG.

Suppose that the first property holds for all packets mapped before p ∈ DO
G(t).

We show that it also holds for p. Let s(t) be the earliest time at or after t such that
the buffer maintained by the greedy algorithm at time s(t) is full and all the packets
in the buffer at time s(t) are transmitted by the greedy algorithm (see Figure 3.1).
Observe that since the buffer is full at time t, s(t) is well defined.

Claim 1. The value of each of the packets transmitted by Greedy at times
t, . . . , s(t) +BW is at least v(p).

Proof. Consider the greedy algorithm in the time interval t, . . . , s(t) +BW . Con-
struct a sequence of time steps inductively as follows:
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• t0 = t.
• For ti < s(t), define ti+1 to be the first step after ti in which a packet that

was in the buffer at time ti is dropped.

Let tk be the last time step in this sequence. Note that tk = s(ti) for all 0 ≤ i ≤ k
by definition. We prove the claim by induction on k. For the case k = 0 we have
that s(t) = t, and since all packets in the buffer at time s(t) are transmitted in steps
s(t), . . . , s(t) +BW , and all these packets have value at least v(p) by the greedy rule,
we are done. For the induction step, assume that the claim holds for k and consider
k + 1. Let q be a packet that was in the buffer at time t0 and dropped at time t1.
By the FIFO ordering, all packets transmitted in steps t0, . . . , t1 were in the buffer at
time t0. By the greedy rule we have that (i) all packets transmitted at times t0, . . . , t1
have value at least v(p), and (ii) v(q) ≥ v(p). The claim follows by combining fact (i)
with the induction hypothesis applied to q and time t1.

To prove that the first property holds for p, we show that it is mapped to one of
the packets transmitted at times t, . . . , s(t) + BW . For this we need to show that at
least one of the packets transmitted at times t, . . . , s(t)+BW remains available at the
time p is mapped. The “number of availabilities” at the time packet p is mapped is
defined as the maximum number of packets that can still be mapped to the packets
transmitted at times t, . . . , s(t) + BW . Specifically, every available packet (at the
time p is mapped) among the packets transmitted at times t, . . . , s(t) + BW that is
also in SO contributes 1 to the number of availabilities. Every available packet (at
the time p is mapped) among the packets transmitted at times t, . . . , s(t) +BW that
is not in SO contributes 2 to the number of availabilities if it is not mapped and
contributes 1 if one packet has been mapped to it already.

Claim 2. The number of availabilities before any of the packets dropped at time t

is mapped is at least
∑s(t)

i=t |DO
G(i)|.

Proof. Let r(t) be the latest time before or at t such that no packets dropped by
the greedy algorithm at time r(t)− 1 or earlier are mapped to packets transmitted at
time r(t) or later. If no such r(t) exists, then define r(t) = 0 (the first step).

Intuitively, we start by showing that each interval r(t), . . . , s(t) + BW is inde-
pendent of the other intervals. Specifically, we claim that the number of avail-
abilities before any of the packets dropped at time r(t) and later is mapped is at

least
∑s(t)

i=r(t) |DO
G(i)|. To see that, let C(t) denote the set of packets available to

the greedy algorithm at times r(t), . . . , s(t) that were transmitted by the optimal
algorithm. In other words, C(t) is the subset of packets transmitted by the opti-
mal algorithm that were considered (stored at the beginning of the interval or ar-
rived during the interval) by the greedy algorithm at times r(t), . . . , s(t). Note that
|C(t)| ≤W · (s(t)− r(t) + 2BW + 1), because packets in C(t) cannot be transmitted
by the optimal algorithm in time steps other than r(t)−BW , . . . , s(t) +BW .

Next, let x(t) be the number of packets of C(t) that are transmitted by the
greedy algorithm at times r(t), . . . , s(t) +BW . Observe that no packet from SO that
arrives at times s(t), . . . , s(t) + BW is transmitted by the greedy algorithm at times
s(t), . . . , s(t)+BW . This is because by definition, all packets stored by Greedy at time
s(t) are transmitted, a process that lasts BW time units. It follows that exactly x(t)
packets from C(t) are transmitted by the greedy algorithm at times r(t), . . . , s(t)+BW .
This implies that the number of availabilities before any of the packets dropped at
time r(t) and later is mapped is at least 2W · (s(t) + BW − r(t) + 1) − x(t). This is
true since by definition of r(t), none of the packets that are dropped before time r(t)
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is mapped to packets transmitted at times r(t), . . . , s(t) +BW . It follows that

s(t)∑
i=r(t)

|DO
G(i)| ≤W (s(t)− r(t) + 2BW + 1)− x(t)

≤ 2W (s(t) +BW − r(t) + 1)− x(t).(3.4)

We can now prove the claim. Since by (3.4) the maximum number of packets
that can be mapped to the packets transmitted at times r(t), . . . , s(t) + BW is at

least
∑s(t)

i=r(t) |DO
G(i)|, we have, by the definition of r(t), that the maximum number

of packets that can be mapped to the packets transmitted at times r(t), . . . , t − 1

is strictly less than
∑t−1

i=r(t) |DO
G(i)|. We conclude that the number of availabilities

before the packets dropped at t are mapped is at least
∑s(t)

i=t |DO
G(i)|.

The theorem follows directly from Claims 1 and 2.
We now refine the analysis above to get tighter bounds. Let α be the ratio of

the largest value of a packet to the smallest value of a packet (clearly we can assume
without loss of generality that all packets have positive values).

Theorem 3.3. The competitive ratio of the greedy algorithm is at most 2(1− 1
α+1 )

for any output link bandwidth W , where α
def
=

maxp{vp}
minp{vp} .

Proof. Given the mapping defined above, partition SG into three subsets as
follows.

• G1 is the set of packets in SG that are not in SO and that are not the image
of (i.e., not mapped to by) any packet in DO

G .
• G2 is the set of packets in SG that are unavailable after the mapping is done,

namely, all packets in SG ∩ SO that are the image of one packet in DO
G , and

all packets in SG \ SO that are the image of two packets in DO
G .

• G3 = SG \ (G1 ∪G2), that is, the packets in SG ∩ SO that are not the image
of any packet in DO

G , and the packets in SG \ SO that are the image of one
packet in DO

G .
We associate two packets from SO with each packet in q ∈ G2 as follows. If

q ∈ G2 ∩ SO, then the two packets are q itself and the packet mapped to q. If
q ∈ G2 \ SO, then the two packets are the two packets mapped to q. Similarly, we
associate a packet from SO with each packet in q ∈ G3 as follows. If q ∈ G3 ∩ SO,
then this packet is q. If q ∈ G3 \ SO, then this packet is the packet mapped to q.
Note that this way we associate every packet in SO with some packet in SG. Note
that v(q) is always at least the value of each of its associated packets, and the fact
that no packet is associated with more than two packets implies the bound on the
competitive ratio. We are able to improve the bound of 2 on this ratio using the fact
that no packet is associated with packets in G1.

Note that |SG| ≥ |SO|. It follows that |G1| ≥ |G2|, and thus we can match any
packet q ∈ G2 with a mate p ∈ G1. We move a 1

α+1 “fraction” of the value of the
packets associated with q and associate it with p. Note that after the move the total
value associated with q is no more than 2(1− 1

α+1 )v(q). Since v(q) ≤ αv(p), the total
value associated with p is no more than

2
1

α+ 1
v(q) ≤ 2

α

α+ 1
v(p) = 2

(
1− 1

α+ 1

)
v(p).

Theorem 3.4. The competitive ratio of the greedy algorithm is at most 2− W
B+W

for any output link bandwidth W .
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Proof. Modify the mapping defined in the proof of Theorem 3.2 as follows. For
each time t such that DO

G(t) �= ∅, decrease by W the number of availabilities con-
tributed by the packets transmitted by the greedy algorithm at time t. Specifically, if
p ∈ SO, then no packet is mapped to p and if p /∈ SO, at most one packet is mapped
to p.

We need to show that Claim 2 still holds. For this, it suffices to show that the
number of availabilities before any of the packets dropped at time r(t) and later

is mapped is at least
∑s(t)

i=r(t) |DO
G(i)|. Notice that the number of availabilities is

decreased by at most W (s(t) − r(t) + 1). Claim 2 follows for the modified mapping
since

s(t)∑
i=r(t)

|DO
G(i)| ≤W (s(t)− r(t) + 2BW + 1)− x(t)

≤ 2W (s(t) +BW − r(t) + 1)− x(t)−W (s(t)− r(t) + 1).

Notice that the value of the packet transmitted at time t is at least the minimal
value of the packets in DO

G(t). We “shift” a W/(|DO
G(t)|+W ) fraction of the value of

each of the packets in DO
G(t) from the packet to which it has been mapped originally

and associate it to one of the packets transmitted by the greedy algorithm at time t.
Since |DO

G(t)| ≤ B and |SG(t)| = W , we get that each packet transmitted by the
greedy algorithm is associated with at most 1 + B

B+W = 2− W
B+W packets of at most

the same value from SO.
Finally, we observe that the last two bounds are tight. Consider the following

scenario. At the first time step, B +W packets of value 1 arrive; W are transmitted
and the rest are kept in the buffer. Then, at each time t ∈ {1, . . . , BW }, W packets
of value α ≥ 1 arrive and are kept in the buffer. At time BW + 1 the buffer contains
B packets of value α; at this time another B + W packets of value α arrive. The
greedy algorithm transmits only B+W of these packets, while the optimal algorithm
transmits 2B + W of value α and only W of value 1. We get that the competitive
ratio for this scenario is

(2B +W )α+W

(B +W )(α+ 1)
= 2− α(W + 1) + 2B

(B +W )(α+ 1)
.

Letting α go to infinity we get the ratio 2− W
B+W , and letting B go to infinity we get

the ratio 2− 2
α+1 .

3.2. The best greedy algorithm. The greedy algorithm is underspecified:
when there are several packets with the same low value, it is not specified which
of them is discarded by the greedy algorithm. It is easy to see that for any link
bandwidth, the number of packets transmitted is the same for all variants of the
greedy algorithm. However, is there a difference between the variants of the greedy
algorithm in terms of weighted throughput? In this section we show that, perhaps
surprisingly, it is always better to discard the earliest packets, i.e., the packets which
spent the most time in the buffer. We call this policy head-drop, as the algorithm
prefers to drop packets from the head of the buffer. Head-drop is in contrast to the
common practice of tail-drop, where the newest packets are discarded. We show that
there exist scenarios in which tail-drop results in significantly more losses than head-
drop. We remark that the head-drop policy [17] enjoys additional advantages in the
TCP/IP environment, namely, it helps the congestion avoidance mechanism.
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The following theorem proves that the head-drop greedy algorithm is, in a certain
sense, the best greedy algorithm.

Theorem 3.5. Let G be any greedy algorithm, and let GH be the greedy head-drop
algorithm. For any input sequence, the total value transmitted by GH is at least the
total value transmitted by G.

Proof. Fix an input sequence. First, observe that the number of packets in the
buffer of G and the number in the buffer of GH at time t are equal for all times t.
(This follows from an easy induction on time, which shows that for any given arrival
sequence and link bandwidth, the size of the queue in each step is the same for all
algorithms that drop packets only when an overflow occurs.) To prove the theorem,
we define, for each time step t, a 1-1 mapping from QGH (t) to QG(t) such that each
packet p ∈ QGH (t) is mapped to a packet q ∈ QG(t) with at least the same value; i.e.,
v(p) ≤ v(q).

We claim that the existence of these mappings implies the theorem as follows. For
a packet p ∈ Q(t) define the rank of p to be its rank in the sequence of packets in Q(t)
ordered in ascending values. The existence of the mappings implies that for each time
step t, the value of the packet ranked i in QGH (t) is at most the value of the packet
ranked i in QG(t). Since |DGH (t)| = |DG(t)|, and since in any greedy algorithm D(t)
consists of the lowest ranked packets in Q(t), it follows that v(DGH (t)) ≤ v(DG(t)).

The value served by an algorithm is
∑

t v(S(t)); hence we get∑
t

v(SGH (t)) =
∑
t

v(A(t))−
∑
t

v(DGH (t))

≥
∑
t

v(A(t))−
∑
t

v(DG(t))

=
∑
t

v(SG(t)).

All that remains is to prove the existence of the mappings. Fix a time step t and
consider QG(t) and QGH (t). To construct the mapping, we use the natural concept
of “height” of a packet in a buffer: For an algorithm A and a packet p ∈ QA(t),
the height of p, denoted by hA(p, t), is 1 plus the number of packets that have to be
either transmitted or dropped before p can be transmitted. In other words, hA(p, t)
is the rank of p in the sequence of packets in QA(t) ordered by arrival time. We also
say that a packet p ∈ QA(t) is said to be below (or above) a packet p′ ∈ QA(t) if
hA(p, t) < hA(p′, t) (or, respectively, hA(p, t) > hA(p′, t)).

We now define the mapping fromQGH (t) toQG(t). Each packet inQGH (t)∩QG(t)
is mapped to itself. To complete the mapping, consider the packets in QGH (t)\QG(t)
in ascending order of height. Map each such packet p to the packet with the lowest
height in QG(t) \QGH (t) that has not been mapped yet. It is not difficult to see that
this mapping is indeed 1-1. We need to show that each packet in QGH (t) \ QG(t) is
mapped to a packet in QG(t) \QGH (t) of at least the same value. For this we prove
the following two lemmas.

Lemma 3.6. Let p ∈ QGH (t) \QG(t) for some time t. Then v(p) ≤ v(q), for all
q ∈ QG(t) satisfying hG(q, t) ≤ hGH (p, t).

Proof. Let t0 be the time in which G dropped p (and hence p /∈ QG(t0 + 1)).
We prove the lemma by induction on t − t0. For the base case t = t0 + 1, we have
by the greedy rule that v(p) ≤ v(p′) for any p′ ∈ QG(t). For the inductive step, let
t > t0+1. First, note that p arrived before step t−1, since otherwise it must have been
dropped at step t − 1, contradicting the assumption that t > t0 + 1. It follows that
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p’
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p

p’

QGH (t’)
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Fig. 3.2. Scenario considered in the proof of Lemma 3.7. p /∈ QG(t), q′ /∈ QGH (t), and
q /∈ DG(t− 1).

hGH (p, t−1) is well defined. Consider a packet p′ ∈ QG(t) with hG(p′, t) ≤ hGH (p, t).
If hG(p′, t− 1) is defined and hG(p′, t− 1) ≤ hGH (p, t− 1), we are done by induction.
If p′ ∈ A(t− 1) or if hG(p′, t− 1) > hGH (p, t− 1), then it must be the case that some
packet p′′ ∈ QG(t − 1) with hG(p′′, t − 1) ≤ hGH (p, t − 1) is dropped by G at time
t− 1. By the greedy rule v(p′) ≥ v(p′′). Since by induction v(p′′) ≥ v(p), we are done
in this case too.

Lemma 3.7. Let t be any time step. If p ∈ QGH (t) ∩ QG(t), then hGH (p, t) ≤
hG(p, t).

Proof. Suppose that the lemma does not hold. Let t be the first time it is violated,
and let p be the packet with the minimal height such that hG(p, t) < hGH (p, t). Let
p′ be the packet immediately below p in QGH (t) (see Figure 3.2). Note that p′ is well
defined, since by assumption hGH (p, t) > hG(p, t) ≥ 1. Also note that p′ /∈ QG(t).
This is because otherwise we would also have hG(p′, t) < hGH (p′, t), contradicting
the height minimality of p. Due to the minimality of t, hG(p, t− 1) ≥ hGH (p, t− 1).
(Note that we cannot have the situation of p ∈ A(t − 1) and hG(p, t) < hGH (p, t).)
Thus, we must have that DG(t− 1) contains at least one packet below p. Denote this
packet by q. We claim that v(q) ≥ v(p′). If q = p′, the claim is trivial. Otherwise, we
have that p′ /∈ QG(t− 1) and hGH (p′, t− 1) ≥ hG(q, t− 1), and hence, by Lemma 3.6,
v(p′) ≤ v(q). Since QG(t) has more packets above p than QGH (t) has, there must
be a packet q′ above p in QG(t) that is not in QGH (t). Since q′ /∈ DG(t − 1) and
q ∈ DG(t − 1), it must be that v(q′) ≥ v(q) ≥ v(p′). However, the packet q′ is
not in QGH (t). Hence, it has been dropped by GH at some t′ < t. This yields
a contradiction to the head-drop rule, since v(p′) ≤ v(q′), both p′ and q′ are in
QGH (t′), and hGH (q′, t′) > hGH (p′, t′).

We can now complete the proof of the theorem by proving the existence of the
mapping. Suppose that p ∈ QGH (t) \ QG(t) is mapped to q ∈ QG(t) \ QGH (t). We
now show that hGH (p, t) ≥ hG(q, t). By Lemma 3.6 this implies that v(p) ≤ v(q).
Recall that the mapping of the packets in QGH (t)\QG(t) is done in ascending order of
heights and that any such packet is mapped to the packet with the minimal height in
QG(t) \QGH (t) that has not been mapped so far. To obtain a contradiction, suppose
that p is the packet with the minimal height in QGH (t) \ QG(t) that is mapped to
q ∈ QG(t) \ QGH (t), and hGH (p, t) < hG(q, t). Consider the packet p′ ∈ QG(t)
such that hG(p′, t) = hGH (p, t). It must be that p′ ∈ QG(t) ∩ QGH (t). We must
also have that the number of packets below p in QGH (t) \ QG(t) is the same as the
number of packets below p′ in QG(t) \ QGH (t). Thus, the set of packets below p in
QGH (t) ∩ QG(t) is the same as the set of packets below p′ in QG(t) ∩ QGH (t). It
follows that hG(p′, t) < hGH (p′, t), in contradiction to Lemma 3.7. This completes
the proof of Theorem 3.5.

The following theorem proves that GH can do much better than the greedy tail-
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drop algorithm. Let GT denote the greedy tail-drop algorithm.

Theorem 3.8. There exist input sequences for which the value transmitted by GH
is arbitrarily close to 3/2 times the value transmitted by GT.

Proof. We describe sequences for the case W = 1, using parameters α and B. At
time 0, B/2 + 2 packets of value 1 arrive. At time 1, B/2 packets of value α 
 1
arrive. Thus, at time 2, the head half of the buffer is filled with cheap packets, and the
tail half of the buffer is filled with expensive packets. At time 2, B/2+1 more 1-value
packets arrive (resulting in overflow); finally, at time 2+B/2, B+1 packets of value α
arrive, resulting in an additional overflow. Let us now consider the performance of
GT and GH . GT drops at time 2 the last B/2 cheap packets and transmits a cheap
packet in steps 2, 3, . . . , 1 +B/2. At time 2 +B/2, GT drops B/2 expensive packets,
and the total value eventually transmitted is α(B+1)+1(B2 +1). On the other hand,
GH drops at time 2 the first B/2 cheap packets and then drops at time 2 +B/2 the
other B/2 cheap packets, for a total transmitted value of α( 3B

2 + 1) + 1. The result
follows for large B and α values.

4. Bounded delay buffers. In this section we consider the case of bounded
delay buffers. General bounded delay buffers are studied in section 4.1. We prove
a lower bound on the competitiveness of any on-line algorithm. The lower bound
holds even in the uniform-delay model, independent of the allowed delay. We then
show that for the general model, the greedy algorithm is exactly 2-competitive (the
bound is refined in case there are exactly two packet values). Finally, in section 4.2
we provide a detailed analysis of the special case where the delay bound is 2.

4.1. General bounded delay buffers. In this section we consider the general
case, where the slack times and values of the packets are arbitrary. We first present
a lower bound on the competitiveness of all on-line algorithms and then we turn to
analyze the simple greedy algorithm. We show that the greedy algorithm is exactly
2-competitive for the general delay-bounded case.

We begin with a negative result motivated by the following (false) intuition. It
may seem reasonable to hope that as the delay bound grows, the competitive factor
of on-line algorithms might tend to 1, since infinite delay bound seems like the off-line
case. This is not true, as proved in the following theorem. The proof is similar in
spirit to the proof in the FIFO case (Theorem 3.1).

Theorem 4.1. Let α be the ratio of the largest to the smallest packet value.
Then for any delay bound δ, the competitive ratio of any on-line algorithm is at least
1+ α−1

α(α+1) , even for uniform-delay buffers. Furthermore, if there are two packet values

whose ratio is 1 +
√

2, then the competitive ratio of any on-line algorithm is at least
1 + 1

(1+
√

2)2
≈ 1.17 for any value of δ.

Proof. Let A be any on-line algorithm, and let CA be its competitive ratio. To
bound CA, consider the following scenario. All packets have the same slack value δ.
At time t = 0 the buffer is empty and δ packets of value 1 arrive. During each of the
following δ − 1 steps (t = 1, . . . , δ − 1), a single packet of value α > 1 arrives. Let
x be the number of value 1 packets transmitted by A by time δ. We consider two
possible continuations of the scenario. In the first case, no more packets arrive, and
in the second case, δ packets of value α arrive at time δ. In the former case, the value
served by A is at most x + δα, while the optimal value is δ + δα. In the latter case,
the value served by A is x+α(2δ− x), while the optimal value is 2δα. It follows that
the competitive ratio of A is at least
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CA ≥ max

(
δ(1 + α)

x+ δα
,

2δα

x+ α(2δ − x)
)
.

Consider the two possible ratios. To get the lower bound our goal is to fix α so that
the maximum of the two ratios for any value of x is minimized. This is because the
on-line algorithm fixes x given the value of α. For any value of α, it is not difficult to
see that the best value of x that can be chosen by A is the one where the two ratios
are equal. Solving for x as a function of α, we get that the maximum of the ratios is
minimized when

x(α) =
2δα

α2 + 2α− 1
,

in which case the competitive ratio of the algorithm is

CA ≥ 1 +
α− 1

α(α+ 1)
.

This proves the first part of the theorem. To prove the second part of the theorem,
we find the worst case α by elementary calculus. It turns out that the competitive
ratio is maximized (for x(α), i.e., when the algorithm makes the optimal choice) when
α = 1 +

√
2. In this case we get that CA ≥ 1 + 1

(1+
√

2)2
, as desired.

Next, consider the greedy algorithm for the general case where the allowed delays
may be different and the link bandwidth is W . The greedy algorithm is extremely
simple: at each time step t, transmit the W packets with the highest value whose
deadlines have not expired yet. Ties are broken arbitrarily. Note that effectively, the
greedy algorithm views each value as a priority class, in the sense that high-priority
packets are always transmitted before low-priority ones. For this simplistic strategy,
the following relatively strong property was already known [1, 12, 4] in slightly different
models.

Theorem 4.2. The greedy algorithm is exactly 2-competitive in the bounded-delay
buffer model, for any output link bandwidth.

The lower bound for the greedy algorithm holds even if all jobs have the same
weight. We note that for the unslotted model (where a packet may arrive during
the transmission of another, and preemption is disallowed), [12] proves a lower bound
of 2 on the competitive ratio of any deterministic algorithm, and 4/3 for the expected
competitive ratio of any randomized algorithms.

In some practical cases, the values assigned to packets are not very refined. In
the extreme case, there may be just “cheap” and “expensive” packets, for example, in
ATM’s Cell Loss Priority bit [23]. We can formalize this model by assigning only two
possible values to packets: 1 for “cheap” and α > 1 for “expensive.” In the following
theorem we prove that in this case, the bound guaranteed by Theorem 4.2 can be
sharpened to 1 + 1/α. Notice that the competitive ratio approaches 1 when α tends
to infinity.

Theorem 4.3. The greedy algorithm is at most 1 + 1/α-competitive in the
bounded-delay buffer model with two packet values of 1 and α > 1, for any output link
bandwidth.

Proof. Fix the input sequence, and let W be the output link bandwidth. Consider
any optimal algorithm for the sequence. Clearly, v(Sα

O) ≤ v(Sα
G). In addition, the

greedy algorithm schedules all packets from S1
O, except the packets that were lost

due to the decision of the greedy algorithm to transmit high-value packets with later
deadlines. Since each high-value packet may cause loss of at most one low-value
packet, we obtain that v(S1

O)− v(S1
G) ≤ v(Sα

G)/α. The theorem follows.
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4.2. The case of δ = 2. Improving on the greedy algorithm in the bounded-
delay model turns out to be a challenging task. In this subsection we present a
candidate algorithm. However, we are able to analyze its behavior only for the special
case of δ = 2, i.e., under the assumption that each packet must be sent either when it
arrives or in the following time step. We also present improved lower bounds for this
case.

Before we start, let us recall the following well-known fact. A schedule for a set
of packets is called earliest deadline first schedule (or EDF for short) if the order in
which packets are sent is the order of their deadlines.

Lemma 4.4. A set of packets with given arrival times and deadlines can be
scheduled with link bandwidth W if and only if it can be scheduled by an EDF schedule.

In addition, packets with the same deadline in a feasible schedule can be further
ordered according to their values.

Lemma 4.5. A feasible EDF schedule may be transformed into another feasible
EDF schedule in which packets with the same deadline are sent in order of nonin-
creasing value.

Thus, without loss of generality, we may assume that the optimal algorithm sched-
ules packets in order of nondecreasing deadlines, and packets with the same deadline
in order of nonincreasing value. Ties are broken by the arrival order; i.e., packets
arriving first are scheduled first.

We use the following algorithms, stated for general delay bound δ and link band-
width W . The local-EDF algorithm is presented in Figure 4.1. We show in section 5
how the computation of the optimal schedule can be done efficiently. The β-EDF
algorithm is defined by a parameter 0 ≤ β ≤ 1 and appears in Figure 4.2.

Note that 1-EDF is the greedy algorithm, which sends the W packets with the
highest value, and that 0-EDF is the local-EDF algorithm.

Theorem 4.6. The 1/φ-EDF algorithm is at most φ-competitive in the 2-variable
bounded-delay buffer model, for any output link bandwidth W .

Proof. Fix an arrival sequence. We compare the schedule generated by φ-EDF
with a specific optimal schedule OPT. Specifically, by Lemmas 4.4 and 4.5, we may
assume that OPT is EDF, and that if two packets with the same deadline and different
values are sent at different times, then the more valuable packet is sent before the less
valuable one. We now prove a series of simple properties that follow directly from the
definition of the algorithms.

Lemma 4.7. If p is transmitted before p′ by β-EDF, then p is not transmitted
after p′ by OPT.

Proof. Suppose, for contradiction, that there exist packets p, p′ such that p ∈
SG(t) ∩ SO(t + 1) and p′ ∈ SO(t) ∩ SG(t + 1). Clearly both p and p′ have deadline
t+1. The lemma follows from the fact that both β-EDF and OPT send packets with
the same deadline in order of nonincreasing value.

Lemma 4.8. If p ∈ SG(t) performed a push-out at time t, then v(q′) ≤ v(p)/φ
for all packets q′ pushed out at time t.

Proof. It follows from the fact that at Step 3 of the β-EDF, we consider packets
pushing out and packets to be pushed out in order of nonincreasing and nondecreasing
value, respectively.

Lemma 4.9. Suppose that p, p′ ∈ SG(t) are packets with deadline t+ 1 such that
p performed push-out at time t and p′ did not perform a push-out at time t. Then
v(p) ≤ v(p′).
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At each time step t do the following:

1. Compute the optimal schedule Ŝ for all packets not yet sent or expired (i.e.,
implicitly assuming no new packet will arrive).

2. Send the W packets which are sent at time t in Ŝ (we may assume, without loss
of generality, that Ŝ is EDF).

Fig. 4.1. The local-EDF algorithm.

At each time step t do the following:

1. Compute the optimal EDF schedule Ŝ for all packets not yet sent or expired.
Let S be the set of all packets scheduled in Ŝ, and let S′ and S′′ be the sets of
packets scheduled in Ŝ to be sent at times t and t+ 1, respectively.

2. Let p ∈ S′ be the packet of minimal value in S′, and let q ∈ S′′ be the packet of
maximal value in S′′.

3. If v(p) < β · v(q), then

(a) Push-out step: Let S′ ← S′∪{q}\{p}, and S′′ ← S′′\{q}. The packet q
is said to have pushed out packet p.

(b) Go to Step 2.

4. Otherwise (i.e., v(p) ≥ β · v(q)), terminate the algorithm and transmit S′.

Fig. 4.2. The β-EDF algorithm.

Proof. By definition, β-EDF sends packets with the same deadline in nondecreas-
ing value order.

Lemma 4.10. Consider the sets S′ constructed at Step 1 at time t by the β-EDF
algorithm. If some packet p ∈ SO(t) with deadline t is not included in SG, then
(S′ ∩A(t)) ⊂ SO(t).

Proof. Let p′ ∈ S′ ∩A(t). Notice that |S′| = W and v(p′) > v(p) because p /∈ SG.
We argue that p′ ∈ SO(t). First, note that p′ ∈ SO, since otherwise OPT could
have been improved by swapping p and p′. Hence p ∈ SO(t) ∪ SO(t + 1). To see
that p′ ∈ SO(t), suppose for contradiction that p′ ∈ SO(t + 1). Note that since p
is not included in SG, we must have that either S′ contains no packet with deadline
t + 1, or |S| = 2W . In the former case, we get a contradiction to our assumption
that p′ ∈ S′ because the deadline of p′ is t + 1. In the latter case, we get that since
p′ ∈ S′∩SO(t+1) and |S| = 2W , there exists a packet p′′ ∈ A(t)∩S with deadline t+1
such that p′′ /∈ SO. Moreover, v(p′′) > v(p) by construction of the β-EDF schedule.
In this case, OPT can be improved by replacing p with p′′. The lemma follows.

For the remainder of the proof, we define a mapping m : SO → SG iteratively as
follows.

1. If p ∈ SO(t) ∩ (SG(t− 1) ∪ SG(t)) for some time step t, then m(p) = p.
2. For each time step t, map any unmapped packet p ∈ SO(t) to p′ ∈ SG(t) such

that either
(a) p′ is unmapped, or
(b) p′ ∈ SO(t+ 1) and |m−1(p′)| = 1.

To prove the theorem, it suffices to show that (i) all packets in SO are mapped, and
that (ii) v(m−1(p)) ≤ φ · v(p) for all p ∈ SG.

Lemma 4.11. If at Step 2 a packet p ∈ SO(t) has to be mapped, then there always
exists a packet p′ ∈ SG eligible for either Step 2(a) or Step 2(b).
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Proof. Consider an unmapped packet p ∈ SO(t) that is processed in the course of
Step 2. Since p has not been mapped at Step 1, either p ∈ SG(t+ 1) or p ∈ SO \ SG.
Thus, since p is available to φ-EDF at time t and it is not transmitted at that time,
we have that |SG(t)| = W . The lemma follows by construction of the mapping.

Lemma 4.12. If a packet p ∈ SO(t) is mapped to a packet p′, then v(p) ≤ v(p′)/φ.
Proof. Suppose first that p is mapped to a packet p′ during Step 2(a). Then since

p is available to φ-EDF at time t and it is not transmitted, the value of any packet
that is scheduled at that time is at least v(p) · φ. So for the remainder of the proof,
assume that p is mapped to p′ during Step 2(b). In this case, since p has not been
mapped at Step 1, either p ∈ SG(t+1) or p ∈ SO \SG. By Lemma 4.7, p /∈ SG(t+1).
Also, p cannot have deadline t + 1, since otherwise, v(p) > v(p′) and φ-EDF would
have replaced p′ by p. Hence p ∈ (SO \ SG), and the deadline of p is t. It follows
that it must be the case that either (1) p is pushed out at Step 3(a) of β-EDF, or
(2) p /∈ S, where S is the set computed at Step 1 of β-EDF. Let us analyze these
cases.

(1) If p′ performed a push-out, then we are done by Lemma 4.8. Otherwise, let q
be the packet that pushed out p. According to Lemma 4.9 we have that v(q) ≤ v(p′),
and consequently, v(p) ≤ v(p′)/φ.

(2) If p /∈ S, then by Lemma 4.10 we have that p′ /∈ S′ ∩ A(t) because p′ /∈
SO(t) ∩ A(t) (recall that p′ ∈ SO(t + 1)). Thus, if p′ ∈ SG(t), then it should have
pushed out some packet q such that v(q) ≤ v(p)/φ. By construction of the optimal
φ-EDF schedule we have that v(q) ≥ v(p). Hence, v(p) ≤ v(p′)/φ.

Lemmas 4.11 and 4.12 conclude the proof of Theorem 4.6.

Uniform delay buffers. We remark that for uniform-delay buffers with δ = 2,
better upper bounds can be obtained. For example, Corollary 5.5 (in conjunction
with Theorem 3.4) says that a competitive ratio of 1.5 is achieved by the FIFO-
greedy algorithm in this model. Moreover, careful case analysis shows that the β-EDF

algorithm achieves a ratio of about 1.43 when β = 3+
√

13
2 ≈ 3.3. We omit the details.

We now prove lower bounds for the case δ = 2. First, we consider the case of
arbitrary bandwidth.

Theorem 4.13. The competitive ratio of any on-line algorithm for a W -bandwidth
2-uniform bounded-delay model is at least 10/9. Moreover, the competitive ratio of any
on-line algorithm for a W -bandwidth 2-variable bounded-delay model is at least 1.17.

Proof. We first show the bound for the uniform model. Fix an on-line algorithm A
and consider the following scenarios. Initially, the buffer is empty and 2W packets
of value 1 arrive. At the next step W packets of value α arrive. Suppose that A
drops a fraction x ≤ 1 of the 1-value packets. We consider two possible scenarios. In
the first no more packets arrive. Then the competitive ratio is bounded from below
by α+2

α+2−x since there exists a feasible schedule of the whole sequence. In the second
scenario 2W packets of value α arrive at the following time step. In this case the
competitive ratio of A is bounded from below by 3α+1

(2+x)α+2−x . Similar to the proof of

Theorem 4.1, the “best” value of x is the one that equates the two ratios. In this case

we get x = (α+2)(α−1)
α2+4α−1 . Substituting and maximizing for α we get α = 3 and x = 1/2

to yield the ratio 10/9.

We now establish the bound for the variable model. Fix an on-line algorithm A
and consider the following scenarios. Initially, the buffer is empty and W packets
of value 1 and delay 1 arrive. At the same step, W packets of value α and delay 2
arrive. Suppose that A drops a fraction x ≤ 1 of the 1-value packets. We consider
two possible scenarios. In the first no more packets arrive. Then the competitive
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ratio is bounded from below by α+1
α+1−x since there exists a feasible schedule of the

whole sequence. In the second scenario, W packets of value α and delay 1 arrive at
the next time step. In this case the competitive ratio of A is bounded from below by

2α
(1+x)α+1−x . These are the same ratios considered in the proof of Theorem 4.1, and

hence we get the same bound of 1 + 1
(1+

√
2)2
≈ 1.17.

Slightly better results can be proved for bandwidth 1.
Theorem 4.14. The competitive ratio of any deterministic on-line algorithm for

a 2-uniform and a 2-variable bounded-delay model with bandwidth 1 is at least 1.25
and

√
2, respectively.

Proof. Consider the uniform model first. Fix an on-line algorithm A and consider
the following scenario. At time 0, the buffer is empty and two packets of value 1 arrive,
and at time 1, a packet of value α > 1 arrives. There are two possible continuations.
In one, no more packets arrive, and in the other, at time 2 two additional packets of
value α arrive. Now, if A drops one of the low-value packets, then its competitive
ratio is at least α+2

α+1 since there exists a feasible schedule of all three packets of the
first continuation. Otherwise, at least one packet of value α is lost by A in the
second continuation, and hence the competitive ratio of A is at least 3α+1

2α+2 . Setting
α+2
α+1 = 3α+1

2α+2 , we get that for α = 3, the competitive ratio of A is at least 1.25.
The bad example for the variable delay model is even simpler. Let A be an on-line

algorithm, and consider the following scenario. At time 0, the buffer is empty and a
packet having value 1 and delay 1 arrives together with a packet of value α > 1 and
delay of 2. The two possible continuations are (i) no more arrivals and (ii) at time 1
an additional packet of value α with delay 1 (i.e., zero slack time) arrives. If A drops
the low-value packet, then its competitive ratio for continuation (i) is α+1

α since there
exists a feasible schedule of both packets. If the low-value packet is scheduled, then for
continuation (ii), A loses at least one high-value packet, showing that its competitive
ratio is at least 2α

α+1 . Solving α+1
α = 2α

α+1 , we get that for α = 1+
√

2, the competitive

ratio of A is at least
√

2.

5. The off-line case. In this section we show that the FIFO model has matroid
structure in the off-line setting. As a result, optimal off-line solutions can be found
in polynomial time. We also study the connection between the FIFO model and the
bounded-delay model.

We first consider the FIFO model. Fix the input sequence for the remainder of
this section. We also assume, without loss of generality, that all packets admitted to
the buffer are later sent: since we are dealing with the off-line case, a packet that will
be dropped can simply be rejected when it arrives.

Let C be the class of all work-conserving schedules, defined as follows. A sched-
ule A is said to be work conserving, denoted by A ∈ C, if

|SA(t)| = min(W, |QA(t) ∪A(t) \DA(t)|) for all time steps t,

where W is the link bandwidth. In words, a schedule is work-conserving if a packet
may be delayed only when the full bandwidth is used by other packets. Note that
work-conserving algorithms may still reject packets arbitrarily.

Theorem 5.1. For a FIFO schedule A, let SA be the set of all packets served

by A. Then IFIFO
def
= {SA : A ∈ C} is a matroid.

Proof. There are three properties to verify. The first two are trivial: ∅ ∈ I, and for
SA ⊂ SB with SB ∈ I, we clearly have that SA ∈ I by dropping the packets in B\A. It
remains to verify the following property: If |SA| > |SB |, then there exists p ∈ SA \SB
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such that SB ∪ {p} ∈ I. This can be seen as follows. Let t0 be the first time in which
|SA(t0)| > |SB(t0)|: t0 exists by the assumption that |SA| > |SB |. Let t1 ≤ t0 be the
last step before t0 where |DA(t1)| < |DB(t1)|: t1 exists by the assumption that B is
work conserving. Then there exists a packet p ∈ DB(t1) \DA(t1). Moreover, since by
our choice, for any t ∈ [t1, t0] we have that |SB(t)| ≥ |SA(t) and |DB(t)| ≤ |DA(t)|,
and since A is work conserving by assumption, we also have that |QB(t)| < |QA(t)|
for all t ∈ [t1, t0]. Hence the packet p can be added to SB while keeping the schedule
feasible.

A similar result for the bounded delay case is well known [10, Theorem 17.12].
We state it here for completeness.

Theorem 5.2. For a bounded delay schedule A, let SA be the set of all packets

served by A. Then IBD
def
= {SA : A ∈ C} is a matroid.

We remark that for the FIFO model (and hence for the uniform bounded-delay
model as well; see Theorem 5.4 below), an optimal solution can be found in O(n logB)
time, and in O(n2) time for the variable bounded delay model, where n is the number
of packets in the input sequence and B is the buffer size.

Corollary 5.3. An optimal schedule for the FIFO and bounded delay models
can be found in polynomial time.

The following theorem shows a transformation from the FIFO model to the uni-
form bounded-delay model.

Theorem 5.4. For any input sequence, the optimal value served by a FIFO
schedule with buffer size B is equal to the optimal value served by a uniform bounded-
delay schedule with δ = B + 1.

Proof. Let OPTF be the optimal value served by a FIFO schedule with buffer
size B, and let OPTD be the optimal value served by a uniform bounded-delay sched-
ule with δ = B+1. First, note that any work-conserving schedule in the FIFO model
is also a schedule in the bounded delay model, since no packet in the FIFO model is
served more than B time units after its arrival, and hence OPTF ≤ OPTD. For the
other direction, consider any schedule in the uniform bounded-delay model. Since in
this model, a set of packets can be served if and only if the EDF schedule of this set
is feasible, we may assume without loss of generality that the schedule is EDF. Also
note that the number of packets in the bounded delay buffer is never more than the
maximal delay bound (recall that only packets that are eventually transmitted enter
the buffer). The result now follows from the fact that an EDF schedule in the uniform
bounded delay model is exactly the FIFO order, and hence OPTD ≤ OPTF .

A nice feature of the FIFO to bounded-delay transformation in the proof of Theo-
rem 5.4 is that it does not require off-line information. We therefore have the following
corollary.

Corollary 5.5. Let CF (B) be the best competitive factor of on-line FIFO al-
gorithms with buffer size B, and let CD(δ) be the best competitive factor of on-line
uniform bounded-delay algorithms with maximal delay δ. Then CD(B+1) ≤ CF (B).

We remark that the converse cannot be proved by our transformation, since it
requires knowledge of the future.

6. Conclusion. In this work we studied competitive overflow management. We
sharpened the results of [20] for the FIFO model, and initiated a study in the bounded-
delay model. In particular, we have proved the following facts:

• The greedy algorithm is 2-competitive for FIFO buffers.
• Among all the greedy algorithms, head-drop is the best.
• No on-line algorithm can be optimal for the bounded-delay case.
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• The greedy algorithm is (1+ 1
α )-competitive in the bounded delay model when

the set of possible values is 1 and α > 1.

Many important questions remain open:

• In the FIFO model, can one substantially improve on the 2-competitiveness
of the greedy algorithm in the general case? The best known result [14]
is for the case of two packet values 1 and α > 4, with competitive ratio

of
√
α+1√
α

. Combining this with our results for the greedy algorithm, one can

get a competitive ratio better than 2 for this case only. There is no real
improvement for the general case of packet values.
• In the bounded delay model, we know very little in the general case. Even

for the uniform bounded delay case, we know how to improve the greedy
algorithm only for the special case of δ = 2.
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Abstract. The multipeg Towers of Hanoi problem consists of k pegs mounted on a board
together with n disks of different sizes. Initially these disks are placed on one peg in the order of
their size, with the largest at the bottom. The rules of the problem allow disks to be moved one
at a time from one peg to another as long as a disk is never placed on top of a smaller disk. The
goal of the problem is to transfer all the disks to another peg with the minimum number of moves,
denoted by H(n, k). An easy recursive argument shows that H(n, 3) = 2n−1. However, the problem
of computing the exact value of H(n, k) for k ≥ 4 has been open since 1939, and in particular, the
special case of H(n, 4) has been open since 1907.

In 1941, Frame and Stewart each gave an algorithm to solve the Towers of Hanoi problem based
on an unproved assumption. The Frame–Stewart number, denoted by FS(n, k), is the number of
moves needed to solve the Towers of Hanoi problem using the “presumed optimal” Frame–Stewart
algorithm. Since then, proving the Frame–Stewart conjecture FS(n, k) = H(n, k) has become a
notorious open problem.

In this paper, we prove that FS(n, k) and H(n, k) both have the same order of magnitude of

2(1±o(1))(n(k−2)!)1/(k−2)
. This provides the strongest evidence so far to support the Frame–Stewart

conjecture.

Key words. Towers of Hanoi problem, Frame–Stewart conjecture, optimal algorithm, Frame–
Stewart algorithm
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1. Introduction. The Towers of Hanoi problem, introduced by Édouard Lucas
in 1883, consists of three pegs and a set of n disks of different diameters that can be
stacked on the pegs. The towers are formed initially by stacking the disks onto one
peg in the order of their size, with the largest at the bottom. The rules of the problem
allow disks to be moved one at a time from one peg to another as long as a disk is
never placed on the top of a smaller disk. The goal of the problem is to transfer all the
disks to another peg with the minimum number of moves. An easy argument using
a recursive relation shows that 2n − 1 moves are necessary and sufficient to carry out
this task.

The Towers of Hanoi problem was extended to four pegs by Dudeney [2] in 1907
and to any arbitrary k ≥ 3 pegs by Stewart [7] in 1939. In 1941, Frame [3] and
Stewart [8] independently proposed an algorithm to the Towers of Hanoi problem
with k ≥ 4 pegs:

1. Recursively transport a stack of n − i smallest disks from the first peg to a
temporary peg, using all k pegs;

2. Transport the remaining stack of i largest disks from the first peg to the final
peg, using k − 1 pegs and ignoring the peg occupied by the smaller disks;
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3. Recursively transport the smallest n− i disks from the temporary peg to the
final peg, using all k pegs.

(Indeed, Frame’s algorithm is slightly different from the above proposed by Stewart.
But both algorithms are essentially equivalent [4].) The Frame–Stewart number,
denoted by FS(n, k), is the minimum number of moves needed to solve the Towers
of Hanoi problem using the above Frame–Stewart algorithm. Thus FS(n, k) has the
following recursive formula:

FS(n, k) =

{
2n − 1 if k = 3,
min1≤i<n{2FS(n− i, k) + FS(i, k − 1)} if k ≥ 4.

The Frame–Stewart number FS(n, k) is called the “presumed optimal” solution since
no justification has ever been made that an optimal algorithm must be of this form.
Let H(n, k) be the minimum number of moves needed to solve the Towers of Hanoi
problem. The Frame–Stewart conjecture FS(n, k) = H(n, k) is still open now. (As
pointed out by Klavžar, Milutinović, and Petr [4], the claimed proof of the conjecture
by Majumdar [6] is indeed incorrect.) Donald Knuth commented on the conjecture,
saying “I doubt if anyone will ever resolve the conjecture; it is truly difficult” (see [5]).

In the attempt to prove the Frame–Stewart conjecture, Bode and Hinz [1] verified
the conjecture for four pegs with up to 17 disks. Recently, Szegedy [9] proved that

FS(n, k) ≥ 2(1±o(1))ckn
1/(k−2)

,

where ck = 1
2

(
12

k(k−1)

)1/(k−2)

.

For convenience, let log x denote the logarithmic function with base 2. In this
paper, we prove that for n ≥ 1 and k ≥ 3,

logFS(n, k) = logH(n, k) + Θ(k + log n) = (n(k − 2)!)
1/(k−2)

+ Θ(k + log n).

In other words, for each fixed k ≥ 3 and for n� k,

FS(n, k) = 2(1±o(1))(n(k−2)!)1/(k−2)

= H(n, k).

This provides the strongest evidence so far to support the Frame–Stewart conjecture.

2. Lower bound on the optimal number of moves. In this section, we
derive a lower bound on the optimal number H(n, k) of moves for the Towers of Hanoi
problem. We adopt the remarkable strategy introduced by Szegedy [9] who considered
the following generalized problem: What is the minimum number of moves to move
each disk at least once among all possible initial setups of disks? The advantage of
this strategy is that one can use induction in the proofs.

An arrangement of k pegs and n disks is called a configuration if it obeys the
“smaller disk on the top of larger disk” rule. For a configuration C, let g(C) be the
minimum number of moves required to have every disk moved at least once, where all
moves are taken according to the rules of the Towers of Hanoi. Szegedy [9] defined

g(n, k) = min
C

g(C),

where C runs through all possible configurations of n disks and k pegs. The function
g(n, k) is well defined since g(C) is finite for some configuration C [9, Remark 1].
By the definition of g(n, k), we have H(n, k) ≥ g(n, k), and thus a lower bound on
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H(n, k) can be derived from Theorem 2. We begin with a study of the monotone
properties of the function g(n, k).

Lemma 1. Suppose n ≥ 1 and k ≥ 3. Then the function g(n, k) is decreasing
with respect to the variable k.

Theorem 1. Suppose n ≥ 2 and k ≥ 4. Then there exists some m with 1 ≤ m ≤
n− 1 such that

g(n, k) ≥
{

2 max{g(n−m, k), g(m, k − 1)} if g(n−m, k) = g(m, k − 1),
2 max{g(n−m, k), g(m, k − 1)} − 1 if g(n−m, k) �= g(m, k − 1).

Proof. Let C be an extremal configuration of n disks and k pegs with g(C) =
g(n, k). Let S =

(
s1, s2, . . . , sg(C)

)
be a sequence of g(C) moves that move every disk

of C at least once, where all moves are taken according to the rules of the Towers of
Hanoi. Let S = S1 ∪ S2 with |S1| = �g(C)/2� and |S2| = �g(C)/2	; that is, S1 and
S2 are the first half and the second half of the sequence of moves of S, respectively.
For i = 1, 2, let

Di = {j : disk j is moved at least once by Si}.

Then |D1 ∪D2| = n.
Claim. D1 −D2 �= ∅ and D2 −D1 �= ∅.
Proof of the claim. Let s1(C) be the configuration obtained by applying the first

move s1 of S to C. Suppose the move s1 moves disk i. We observe that disk i cannot
be moved more than once by S; otherwise, each disk in the configuration s1(C) can
be moved at least once by the following g(C)− 1 (= g(n, k)− 1) moves s2, . . . , sg(C),
contradicting the definition of g(n, k). Since disk i is moved only by s1 ∈ S1, we have
i ∈ D1 − D2 �= ∅. Similarly, the disk moved by the last move sg(C) of S cannot be
moved more than once by S either. Thus D2 −D1 �= ∅.

Let D1 −D2 = {r1, . . . , rl} and D2 −D1 = {t1, . . . , tm}, where 1 ≤ l,m ≤ n− 1.
We may label the disks in such a way that disk i has larger size than disk j if and
only if i > j. Let r1 be the smallest number in (D1 − D2) ∪ (D2 − D1). Since
|D1| = |D1∪D2|−|D2−D1| = n−m, by the definition of D1, we know that S1 moves
n − m different pegs. Suppose the moves of S1 take place in t pegs, where t ≤ k.
Then, by Lemma 1,

|S1| ≥ g(n−m, k).(1)

Since r1 ∈ D1 − D2, disk r1 is not moved by S2. Since r1 < ti for all 1 ≤ i ≤ m,
all disks ti (1 ≤ i ≤ m) have larger sizes than disk r1, which is idle during the whole
movement of S2. By the “smaller disk on the top of larger disk” rule, the peg occupied
by disk r1 is completely useless when each disk ti (1 ≤ i ≤ m) is moved by S2. Thus
the m disks t1, . . . , tm are moved by S2 using at most k−1 pegs. (S2 might also move
disks other than disks t1, . . . , tm. But those moves and disks can be ignored since
they do not affect the moves involving disks t1, . . . , tm. So one can focus on only the
subsequence of S2 that moves disks t1, . . . , tm.) By Lemma 1,

|S2| ≥ g(m, k − 1).(2)

Note that g(n, k) ≥ 2 max{|S1|, |S2|}−1. If g(n−m, k) �= g(m, k−1), then Theorem 1
follows from (1) and (2). If g(n − m, k) = g(m, k − 1), then g(n, k) ≥ 2|S1| ≥
2g(n−m, k) = 2 max{g(n−m, k), g(m, k − 1)}.
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Lemma 2. Suppose n ≥ 1 and k ≥ 3. Then the function g(n, k) is strictly
increasing with respect to the variable n.

Proof. Let C be an extremal configuration of n disks and k pegs with g(C) =
g(n, k). Let S =

(
s1, s2, . . . , sg(C)

)
be a sequence of g(C) moves that move every disk

of C at least once, where all moves are taken according to the rules of the Towers
of Hanoi. Let s1(C) be the configuration obtained by applying the first move s1 of
S to C. Suppose the move s1 moves disk i. In the proof of Theorem 1, it is shown
that disk i cannot be moved more than once by S. Then every disk except disk i
in the configuration of s1(C) is moved at least once by S − {s1}, which consists of
a sequence of g(n, k) − 1 moves. Let C ′ be the configuration obtained by removing
the disk i from the configuration s1(C). Then C ′ has n − 1 disks and k pegs, and
g(n− 1, k) ≤ g(C ′) = g(C)− 1 = g(n, k)− 1.

Corollary 1. Suppose n ≥ 2 and k ≥ 4. Then for every m with 1 ≤ m ≤ n−1,

g(n, k) ≥ 2 min{g(n−m, k), g(m, k − 1)}.
Proof. By Lemma 2, g(n − m, k) is a strictly decreasing function of m, and

g(m, k − 1) is a strictly increasing function of m. Corollary 1 obviously follows from
Theorem 1.

As usual, the function
(
x
t

)
can be extended to real x for each integer t as follows:(

x

t

)
=

⎧⎨⎩
0 if t < 0,
1 if t = 0,
x(x− 1) · · · (x− t+ 1)/t! if t > 0.

In particular,
(
0
0

)
= 1 by the above definition. The identity

(
x
t

)
=
(
x−1
t

)
+
(
x−1
t−1

)
will

be used repeatedly in the proofs.
Theorem 2. Suppose k ≥ 3. Then for every integer s ≥ 2,

g

((
s

k − 2

)
+

(
s+ k − 7

k − 5

)
, k

)
≥ 2s−2.

Proof. We use double-induction on k and s. First, we use induction on k. If
k = 3, by [9, Remark 2],

g

((
s

k − 2

)
+

(
s+ k − 7

k − 5

)
, k

)
= g(s, 3) ≥ 2s−2 + 1

for all s ≥ 2. Now suppose k ≥ 4 and suppose the theorem is true for k − 1; that is,
for every integer s ≥ 2,

g

((
s

k − 3

)
+

(
s+ k − 8

k − 6

)
, k − 1

)
≥ 2s−2.

Equivalently, by using s− 1 to replace s in the above, we have

g

((
s− 1

k − 3

)
+

(
s+ k − 9

k − 6

)
, k − 1

)
≥ 2s−3(3)

for all s ≥ 3.
Second, we use induction on s. If s = 2, then

(
s

k−2

)
+
(
s+k−7
k−5

)
=
(

2
k−2

)
+
(
k−5
k−5

)
= 1

since k ≥ 4. Thus

g

((
s

k − 2

)
+

(
s+ k − 7

k − 5

)
, k

)
= g(1, k) = 1 = 2s−2;
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that is, Theorem 2 is true for s = 2 and k ≥ 4. Now suppose s ≥ 3 and suppose the
theorem is true for s− 1; that is, for every integer k ≥ 4,

g

((
s− 1

k − 2

)
+

(
s+ k − 8

k − 5

)
, k

)
≥ 2s−3.(4)

Let n =
(

s
k−2

)
+
(
s+k−7
k−5

)
and m =

(
s−1
k−3

)
+
(
s+k−8
k−6

)
. Then by Corollary 1 together

with (3) and (4),

g(n, k) ≥ 2 min{g(n−m, k), g(m, k − 1)}
= 2 min

{
g
((

s−1
k−2

)
+
(
s+k−8
k−5

)
, k
)
, g
((

s−1
k−3

)
+
(
s+k−8
k−6

)
, k − 1

)}
≥ 2 min

{
g
((

s−1
k−2

)
+
(
s+k−8
k−5

)
, k
)
, g
((

s−1
k−3

)
+
(
s+k−9
k−6

)
, k − 1

)}
≥ 2s−2;

that is, Theorem 2 is true for s and k. The proof is complete by the principle of
double-induction.

3. Proof of main result. By the definition of g(n, k) and H(n, k), we have
g(n, k) ≤ H(n, k) ≤ FS(n, k). Thus, in order to obtain the order of magnitude of
H(n, k), one needs to have a lower bound on g(n, k) and an upper bound on FS(n, k)
with the same order of magnitude.

Lemma 3. Suppose n ≥ 1 and k ≥ 3. Then

logFS(n, k) < (n(k − 2)!)
1/(k−2)

+ log n.

Proof. For any fixed k and n, there is a unique s such that
(
k+s−3
k−2

)
< n ≤ (k+s−2

k−2

)
.

The exact expression on FS(n, k) in the first line below can be found in many papers
(for example, [3]).

FS(n, k) = 2s
(
n− (k+s−3

k−2

))
+

s−1∑
t=0

2t
(
k+t−3
k−3

)
≤ 2s

(
n− (k+s−3

k−2

))
+
(
k+s−4
k−3

) s−1∑
t=0

2t

< 2s
(
n− (k+s−3

k−2

))
+
(
k+s−4
k−3

)
2s

= 2s
(
n− (k+s−3

k−2

)
+
(
k+s−4
k−3

))
= 2s

(
n− (k+s−4

k−2

))
< n2s.

Thus logFS(n, k) ≤ s+ log n. To estimate s, we have n >
(
k+s−3
k−2

)
> sk−2/(k − 2)!,

which implies s < (n(k − 2)!)
1/(k−2)

.
Lemma 4. Suppose n ≥ 1 and k ≥ 3. Then

log g(n, k) > (n(k − 2)!)
1/(k−2) − k + 1.

Proof. Lemma 4 holds for n = 1 since

log g(1, k) = log 1 = 0 > ((k − 2)!)
1/(k−2) − k + 1.
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If k = 3, by [9, Remark 2], we have g(n, 3) ≥ 2n−2 + 1 for all n ≥ 2. Thus

log g(n, 3) > n− 2 = (n(k − 2)!)
1/(k−2) − k + 1.

Now suppose n ≥ 2 and k ≥ 4. Then there is a unique s such that
(

s
k−2

)
+
(
s+k−7
k−5

)
<

n ≤ (s+1
k−2

)
+
(
s+k−6
k−5

)
. Also it is easy to verify that s ≥ 2. To estimate s, we have

n ≤ (s+1
k−2

)
+
(
s+k−6
k−5

) ≤ { (
s+1
k−2

)
if k = 4,(

s+k−4
k−2

)
+
(
s+k−4
k−3

)
if k ≥ 5

=
(
s+k−3
k−2

)
< (s+ k − 3)k−2/(k − 2)!,

from which s > (n(k − 2)!)
1/(k−2) − k + 3. By Lemma 2 and Theorem 2,

log g(n, k) > log g

((
s

k − 2

)
+

(
s+ k − 7

k − 5

)
, k

)
≥ s−2 > (n(k − 2)!)

1/(k−2)−k+1.

Finally, we have the main theorem (Theorem 3) showing that FS(n, k) and

H(n, k) both have the order of magnitude of 2(1±o(1))(n(k−2)!)1/(k−2)

.
Theorem 3. Suppose n ≥ 1 and k ≥ 3. Then

logFS(n, k) = logH(n, k) + Θ(k + log n) = (n(k − 2)!)
1/(k−2)

+ Θ(k + log n).

In other words, for each fixed k and for n� k,

FS(n, k) = 2(1±o(1))(n(k−2)!)1/(k−2)

= H(n, k).

Proof. By the definition of g(n, k) and H(n, k), we have g(n, k) ≤ H(n, k) ≤
FS(n, k). By Lemmas 3 and 4,

(n(k − 2)!)
1/(k−2) − k + 1 < logH(n, k) ≤ logFS(n, k) < (n(k − 2)!)

1/(k−2)
+ log n,

from which Theorem 3 follows.
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Abstract. Perfect phylogeny is one of the fundamental models for studying evolution. We
investigate the following variant of the model: The input is a species-characters matrix. The char-
acters are binary and directed; i.e., a species can only gain characters. The difference from standard
perfect phylogeny is that for some species the states of some characters are unknown. The question
is whether one can complete the missing states in a way that admits a perfect phylogeny. The prob-
lem arises in classical phylogenetic studies, when some states are missing or undetermined. Quite
recently, studies that infer phylogenies using inserted repeat elements in DNA gave rise to the same
problem. Extant solutions for it take time O(n2m) for n species and m characters. We provide
a graph theoretic formulation of the problem as a graph sandwich problem, and give near-optimal
Õ(nm)-time algorithms for the problem. We also study the problem of finding a single, general solu-
tion tree, from which any other solution can be obtained by node splitting. We provide an algorithm
to construct such a tree, or determine that none exists.
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1. Introduction. When studying evolution, the divergence patterns leading
from a single ancestor species to its contemporary descendants are usually modeled by
a tree structure, called phylogenetic tree, or phylogeny. Extant species correspond to
the tree leaves, while their common progenitor corresponds to the root. Internal nodes
correspond to hypothetical ancestral species, which putatively split up and evolved
into distinct species. Tree branches model changes through time of the hypothetical
ancestor species. The common case is that one has information regarding the leaves,
from which the phylogenetic tree is to be inferred. This task, called phylogenetic re-
construction (cf. [8]), was one of the first algorithmic challenges posed by biology, and
the computational community has been dealing with problems of this flavor for over
three decades (see, e.g., [13]).

The character-based approach to tree reconstruction describes extant species by
their attributes or characters. Each character takes on one of several possible states.
The input is represented by a matrix A, where aij is the state of character j in
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species i, and the ith row is the character vector of species i. The output sought is
a hypothesis regarding evolution, i.e., a phylogenetic tree along with the suggested
character vectors of the internal nodes. This output must satisfy properties specified
by the problem variant.

One important class of phylogenetic reconstruction problems concerns finding a
perfect phylogeny. The property required from such a phylogeny is that for each
possible character state, the set of all nodes that have that state induces a connected
subtree. The general perfect phylogeny problem is NP-hard [5, 21]. When considering
the number of possible states per character as a parameter, the problem is fixed
parameter tractable [2, 16]. For binary characters, having only two possible states,
perfect phylogeny is linear-time solvable [12].

When no perfect phylogeny is possible, one option is to seek a largest subset of
characters which admits a perfect phylogeny. Characters in such a subset are said to
be compatible. Compatibility problems have been studied extensively (see, e.g., [18]).

Another common optimization approach to phylogenetic reconstruction is the
parsimony criterion. It calls for a solution with the fewest state changes altogether,
counting a change whenever the state of a character changes between a species and
its ancestor species. This problem is known to be NP-hard [9]. A variant introduced
by Camin and Sokal [6] assumes that characters are binary and directed, namely, only
0 → 1 changes may occur on any path from the root to a leaf. Denoting by 1 and 0
the presence and absence, respectively, of the character, this means that characters
can only be gained throughout evolution. Another related binary variant is Dollo
parsimony [7, 20], which assumes that a 0→ 1 change may happen only once; i.e., a
character can be gained once, but it can be lost several times. Both of these variants
are polynomially solvable (cf. [8]).

In this paper, we discuss a variant of binary perfect phylogeny which combines
assumptions of both Camin–Sokal parsimony and Dollo parsimony. The setup is
as follows: The characters are binary, directed, and can be gained only once. As
in perfect phylogeny, the input is a matrix of character vectors, with the difference
that some character states are missing. The question is whether one can complete
the missing states in a way admitting a perfect phylogeny. We call this problem
Incomplete Directed Perfect phylogeny (IDP).

The problem of handling incomplete phylogenetic data arises whenever some of
the data are missing. It is also encountered in the context of morphological characters,
where for some species it may be impossible to reliably assign a state to a character.
The problem of determining whether a set of incomplete undirected characters is
compatible was shown to be NP-complete, even in the case of binary characters [21].
Indeed, the popular PAUP software package [22] provides an exponential solution to
the problem by exhaustively searching the space of missing states.

Quite recently, a novel kind of genomic data has given rise to the same problem:
Nikaido, Rooney, and Okado [19] use inserted repetitive genomic elements, particularly
Short Interspersed Nuclear Elements (SINEs), as a source of evolutionary information.
SINEs are short DNA sequences that were copied and randomly reinserted into various
genomic loci during evolution. The distinct insertion loci are identifiable by the
flanking sequences on both sides of the insertion site (see Figure 1). These insertions
are assumed to be unique events in evolution, because the odds of having separate
insertion events at the very same locus are negligible. Furthermore, a SINE insertion
is assumed to be irreversible; i.e., once a SINE sequence has been inserted somewhere
along the genome, it is practically impossible for the exact, complete SINE to leave
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Genome 1

Genome 2

Genome 3

SINE

Legend:

Locus C

Locus B

Locus A

Fig. 1. SINEs (black boxes) repeat in different loci (different shades of grey) across distinct
genomes. A SINE insertion transformed Genome 1 into Genome 2. A deletion of a locus trans-
formed Genome 2 into Genome 3. Given Genomes 1 and 3, we can identify that the SINE on locus C
is not present in Genome 1, by its flanking sequence. However, locus B is missing in Genome 3.

that specific locus. However, the inserted segment along with its flanking sequences
may be lost when a large genomic region, which includes them, is deleted. In that
case we do not know whether a SINE insertion had occurred in the missing site prior
to its deletion. One can model such data by assigning to each locus a character, whose
state is “1” if the SINE occurred in that locus, “0” if the locus is present but does
not contain the SINE, and “?” if the locus is missing. The resulting reconstruction
problem is precisely IDP.

The IDP problem becomes polynomial when the characters are directed: Benham
et al. [4] studied the compatibility problem on generalized characters. Their work im-
plies an O(n2m)-time algorithm for IDP, where n and m denote the number of species
and characters, respectively. Another problem related to IDP is the consensus tree
problem [3, 14]. This problem calls for constructing a consensus tree from binary sub-
trees, and is solvable in polynomial time. One can reduce IDP to the latter problem,
but the reduction itself takes Ω(n2m) time.

Our approach to the IDP problem is graph theoretic. We first provide several
graph and matrix characterizations for solvable instances of binary directed perfect
phylogeny. We then reformulate IDP as a graph sandwich problem: The input data
is recast as two nested graphs, and solving IDP is shown to be equivalent to finding
a graph of a particular type “sandwiched” between them. This formulation allows us
to devise efficient algorithms for IDP.

We provide two algorithms for IDP, which we call Algorithms A and B. Algo-
rithm A has two possible implementations: deterministic and randomized. Its de-
terministic complexity is O(nm + k log2(n + m)), for an instance with k 1-entries
in the species-characters matrix. The randomized version of Algorithm A takes
O(nm+ k log(l2/k) + l(log l)3 log log l) expected time, where l = n+m. Algorithm B
is deterministic and takes O(l2 log l) time. For both algorithms, the improved com-
plexity is obtained by using dynamic data structures for maintaining the connected
components of a graph [23, 14, 15]. Since an Ω(nm) lower bound was shown by Gus-
field for directed binary perfect phylogeny [12], our algorithms have near-optimal time
complexity.

We also study the issue of multiple solutions for IDP. Often there is more than one
phylogeny that is consistent with the data. When the input matrix is complete and
has a solution, there is always a tree T ∗ that is general; i.e., it is a solution, and every
other tree consistent with the data can be obtained from T ∗ by node splitting. In other
words, T ∗ describes all the definite information in the data, and ambiguities (nodes
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with three or more children) can be resolved by additional information. This is not
always the case if the data matrix is incomplete: There may or may not be a general
solution tree. In that case, using a particular solution and additional information, one
can conclude that the data is inconsistent, even though the additional information may
be consistent with another solution. It is thus desirable to know if a general solution
exists and to generate such a solution if the answer is positive.

We provide answers to both questions. We prove that Algorithm A provides the
general solution of a problem instance, if such exists. We also give an algorithm
which determines if the solution T produced by Algorithm A is indeed general. The
complexity of the latter algorithm is O(nm + kd), where d denotes the maximum
out-degree of T .

The paper is organized as follows. In section 2 we provide some preliminaries, and
formalize the IDP problem. In section 3 we characterize binary matrices admitting a
directed perfect phylogeny, and provide the graph sandwich formulation for IDP. In
section 4 we present algorithms for IDP. Finally in section 5 we analyze the generality
of the solution produced by Algorithm A.

2. Preliminaries. We first specify some terminology and notation. We reserve
the terms nodes and branches for trees, and use the terms vertices and edges for other
graphs. Matrices are denoted by an upper-case letter, while their elements are denoted
by the corresponding lower-case letter.

Let G = (V,E) be a graph. We denote its set of vertices also by V (G), and its
set of edges also by E(G). Let ∅ �= V ′ ⊆ V be a subset of the vertices. The subgraph
induced by V ′ is the graph (V ′, E ∩ (V ′ × V ′)). We say that V ′ is connected in G, if
V ′ is contained in some connected component of G. The length of a path in G is the
number of edges along it.

Let T be a rooted tree with leaf set S, where branches are directed from the root
towards the leaves. The out-degree of a node x in T is its number of children, and is
denoted by d(x). For a node x in T we denote the leaf set of the subtree rooted at
x by L(x). L(x) is called a clade of T . For consistency, we consider ∅ to be a clade
of T as well, and call it the empty clade. S, ∅, and all singletons are called trivial
clades. We denote by triv(S) the collection of all trivial clades. Two sets are said to
be compatible if they are either disjoint, or one of them contains the other.

Observation 1 (cf. [18]). A collection S of subsets of a set S is the set of clades
of some tree over S if and only if S contains triv(S) and its subsets are pairwise
compatible.

A tree T is uniquely characterized by its set of clades. The transformation between
a branch-node representation of a tree and a list of its clades is straightforward. Thus,
we hereafter identify a tree with the set of its clades, and use the notation S ∈ T to
indicate that S is a clade of T . If Ŝ is a subset of the leaves of T , then the subtree of
T induced on Ŝ is the collection {Ŝ ∩ S′ : S′ ∈ T } (which defines a tree).

Throughout the paper we denote by S = {s1, . . . , sn} the set of all species and
by C = {c1, . . . , cm} the set of all (binary) characters. For a graph K, we define
C(K) ≡ C ∩ V (K) and S(K) ≡ S ∩ V (K). Let Bn×m be a binary matrix whose rows
correspond to species, each row being the character vector of its corresponding species.
That is, bij = 1 if and only if the species si has the character cj . A phylogenetic tree
for B is a rooted tree T with n leaves corresponding to the n species of S, such that
each character is associated with a clade S′ of T , and the following properties are
satisfied:

(1) If cj is associated with S′, then si ∈ S′ if and only if bij = 1.
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Fig. 2. Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic tree
that explains A via B. Each character is written to the right of its origin node.

Characters
1 0 0
1 1 0

Species ? 1 1
0 ? 1

Fig. 3. An incomplete matrix which has no phylogenetic tree although every pair of its columns
has one.

(2) Every nontrivial clade of T is associated with at least one character.

For a character c, the node x of T whose clade L(x) is associated with c is called the
origin of c with respect to T . Characters associated with ∅ have no origin.

A {0, 1, ?} matrix is called incomplete. For convenience, we consider binary ma-
trices as incomplete. Let An×m be a {0, 1, ?} matrix in which aij = 1 if si has cj ,
aij = 0 if si lacks cj , and aij =? if it is not known whether si has cj . For a character
cj and a state x ∈ {0, 1, ?}, the x-set of cj in A is the set of species {si ∈ S : aij = x}.
cj is called a null character if its 1-set is empty. For subsets Ŝ ⊆ S and Ĉ ⊆ C, define

A|Ŝ,Ĉ to be the submatrix of A induced on Ŝ ∪ Ĉ.

A binary matrix B is called a completion of A if aij ∈ {bij , ?} for all i, j. Thus, a
completion replaces all the ?’s in A by zeroes and ones. If B has a phylogenetic tree
T , we say that T is a phylogenetic tree for A as well. We also say that T explains A
via B, and that A is explainable. An example of these definitions is given in Figure 2.

The following lemma, closely related to Observation 1, has been proved indepen-
dently by several authors.

Lemma 2 (cf. [18]). A binary matrix B has a phylogenetic tree if and only if the
1-sets of every two characters are compatible.

An analogous lemma holds for undirected characters (cf. [12]). In contrast, for
incomplete matrices, even if every pair of columns has a phylogenetic tree, the full
matrix might not have one. An example of such a matrix was provided in [8] for
incomplete undirected characters. We provide a simpler example for incomplete di-
rected characters in Figure 3. Indeed, if we consider columns 1 and 2 in the example,
then the missing entry on column 1 should be completed to 1 and the one on column
2 should be completed to 0. However, in such a completion the characters on columns
2 and 3 are not compatible.
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Fig. 4. The Σ subgraph.

We are now ready to state the IDP problem as follows:
Incomplete Directed Perfect Phylogeny (IDP):
Instance: An incomplete matrix A.
Goal: Find a phylogenetic tree for A, or determine that no such tree exists.
In section 3 we characterize complete binary matrices that admit a perfect phy-

logeny. In section 4 we present our algorithmic approaches for IDP.

3. Characterizations of explainable binary matrices.

3.1. Forbidden subgraph characterization. Let B be a species-characters
binary matrix of order n ×m. Construct the bipartite graph G(B) = (S,C,E) with
E = {(si, cj) : bij = 1}. A Σ subgraph is an induced subgraph of G(B) that includes
three vertices from S, two vertices from C, and exactly four edges, forming a path of
length 4 in G(B) (see Figure 4). A bipartite graph with no induced Σ subgraph is
called Σ-free.

The following theorem restates Lemma 2 in terms of graph theory.
Theorem 3. B has a phylogenetic tree if and only if G(B) is Σ-free.
Corollary 4. Let Ŝ ⊆ S and Ĉ ⊆ C be subsets of the species and characters,

respectively. If A is explainable, then so is A|Ŝ,Ĉ .

Observation 5. Let A be a matrix explained by a tree T and Let Ŝ = L(x) be
a clade in T , where x is a node of T . Then the submatrix A|Ŝ,C is explained by the
subtree of T rooted at x.

For a subset S′ ⊆ S of species, we say that a character c is S′-universal in B, if
its 1-set (in B) contains S′.

Proposition 6. If G(B) is connected and Σ-free, then there exists a character
which is S-universal in B.

Proof. Suppose to the contrary that B has no S-universal character. Consider the
collection of all 1-sets of characters in B. Let c be a character whose 1-set is maximal
with respect to inclusion in this collection. Let s′′ be a species which lacks c. Since
G(B) is connected, there exists a path from s′′ to c in G(B). Consider a shortest such
path P . Since G(B) is bipartite, the length of P is odd. However, P cannot be of
length 1, by the choice of s′′. Furthermore, if P is of length greater than 3, then its
first five vertices induce a Σ subgraph, a contradiction. Thus P = (s′′, c′, s′, c) must
be of length 3. By maximality of the 1-set of c, it is not contained in the 1-set of c′.
Hence, there exists a species s which has the character c but lacks c′. Together with s,
the vertices of P induce a Σ subgraph, as depicted in Figure 4, a contradiction.

Let Ψ be a graph property. In the Ψ sandwich problem one is given a vertex set
V and a partition of V × V into three disjoint subsets: E0—forbidden edges, E1—
mandatory edges, and E?—optional edges. The objective is to find a supergraph of
(V,E1) which satisfies Ψ and contains no forbidden edges. Hence, the required graph
(V, F ) must be “sandwiched” between (V,E1) and (V,E1∪E?). The reader is referred
to articles [10, 11] for a discussion of various sandwich problems.
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For the property “containing no induced Σ subgraph” (a property of bipartite
graphs) the sandwich problem is defined as follows:

Σ-free Sandwich:
Instance: A vertex set V = S ∪ C with S ∩ C = ∅, and a partition E0 ∪ E? ∪ E1

of S × C.
Goal: Find a set of edges F such that F ⊇ E1, F ∩E0 = ∅, and the graph (V, F )

is Σ-free, or determine that no such set exists.
Theorem 3 motivates looking at the IDP problem with input A as an instance

((S,C), EA
0 , E

A
? , E

A
1 ) of the Σ-free sandwich problem. Here, EA

x = {(si, cj) : aij = x}
for x = 0, ?, 1. In what follows, we omit the superscript A when it is clear from the
context.

Proposition 7. The Σ-free sandwich problem is equivalent to IDP.
Note that there is an obvious 1-1 correspondence between completions of A and

possible solutions of the corresponding sandwich instance ((S,C), E0, E?, E1). Hence,
in what follows we refer to matrices and their corresponding sandwich instances in-
terchangeably.

3.2. Forbidden submatrix characterizations. A binary matrix B is called
good if it can be decomposed as follows:

(1) Its left k1 ≥ 0 columns are all ones.
(2) There exist good matrices B1, . . . ,Bl, such that the rest (0 or more) of the

columns of B form the block-structure illustrated in Figure 5.
A matrix A is canonical if A = [B, C], where B is a zero submatrix and C is good.

We say that a matrix B avoids a matrix X , if no submatrix of B is identical to X .
Theorem 8. Let B be a binary matrix. The following are equivalent:

1. B has a phylogenetic tree.
2. G(B) is Σ-free.
3. Every matrix obtained by permuting the rows and columns of B avoids the

following matrix:

Z =

⎡⎣ 1 1
1 0
0 1

⎤⎦ .
4. There exists an ordering of the rows and columns of B which yields a canon-

ical matrix.
5. There exists an ordering of the rows and columns of B so that the resulting

matrix avoids the following matrices:

X1 =

[
0 1
1 0

]
, X2 =

[
0 1
1 1

]
, X3 =

[
1 1
0 1

]
, X4 =

⎡⎣ 1
0
1

⎤⎦ .
The reader is referred to article [17] for other problems of permuting matrices to

avoid forbidden submatrices.
Proof.
1⇔2 Theorem 3.
2⇔3 Trivial.
1⇒4 Suppose T is a tree that explains B. Assign to each node of T an index which

equals its position in a preorder visit of T . Sort the characters according
to the indices of their origin nodes, letting null characters come first. Sort
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B31

Fig. 5. Construction of a good matrix. Each Bi is a good matrix. A canonical matrix is formed
from it by appending columns of zeroes on the left.

the species according to the indices of their corresponding leaves in T . The
result is a canonical matrix.

4⇒5 It is easy to verify that canonical matrices avoid X1, . . . ,X4.
5⇒3 Suppose to the contrary that B has an ordering of its rows and columns, so

that rows i1, i2, i3 and columns j1, j2 of the resulting matrix form the subma-
trix Z. Consider the permutations θrow, θcol of the rows and columns of B,
respectively, which yield a matrix avoiding X1, . . . ,X4. In this ordering, row
θrow(i1) necessarily lies between rows θrow(i2) and θrow(i3) or, else, the sub-
matrix X4 occurs. Suppose that θrow(i2) < θrow(i3) and θcol(j1) < θcol(j2);
then X3 occurs, a contradiction. The remaining cases are similar.

Note that a matrix which avoids X4 has the consecutive ones property in columns.
Gusfield [12, Theorem 3] has proven that a matrix which has an undirected perfect
phylogeny can be reordered so as to satisfy this property. In fact, for explainable bi-
nary matrices, the reordering used by Gusfield’s proof essentially generates a canonical
matrix. Note also that Σ-free graphs are bipartite convex as they avoid X1, X2, and
X3 (see, e.g., [1]).

4. Algorithms for solving IDP. We now return to the problem of complet-
ing an incomplete binary matrix. Let A be the input matrix, and define G(A) =
(S,C,EA

1 ). For a nonempty subset S′ ⊆ S, we say that a character is S′-semiuniversal
in A if its 0-set does not intersect S′. The following lemmas motivate a divide and
conquer approach to IDP, which is the basis of our algorithms for solving it.

Lemma 9. Let A be an incomplete matrix with a Σ-free completion B. Let c be
S-semiuniversal in A. Let B′ be the matrix obtained from B by setting all entries in
the column of c to 1. Then B′ is also a Σ-free completion of A.

Proof. Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in
G(B′). Since G(B) is Σ-free, if follows that at least one of the Σ edges was added to
B′. But then one of c1 and c2 is c, a contradiction.

Lemma 10. Let A be an incomplete matrix with a Σ-free completion B. Let
(K1, . . . ,Kr) be a partition of S ∪ C such that each Ki is a union of one or more
connected components of G(A). Let B′ be the matrix obtained from B by setting all
entries between vertices of Ki and Kj to 0, for all i �= j. Then B′ is also a Σ-free
completion of A.

Proof. Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in
G(B′). Then one of the nonedges (s1, c2) or (c1, s3) contains one vertex from Ki and
the other from Kj , for i �= j. It follows that there is a path in G(B′) between a vertex
of Ki and a vertex of Kj , a contradiction.
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Alg A(A = ((S,C), E0, E?, E1)):
1. If |S| > 1 then do:

(a) Remove all S-semiuniversal characters and all null characters from
G(A).

(b) If the resulting graph G′ is connected, then output False and halt.
(c) Otherwise, let K1, . . . ,Kr be the connected components of G′, and

let A1, . . . ,Ar be the corresponding submatrices of A.
(d) For i = 1, . . . , r do: Alg A(Ai).

2. Output S.

Fig. 6. Algorithm A for solving IDP.

We now describe two efficient Õ(nm)-time algorithms for solving IDP.

4.1. Algorithm A. Algorithm A is described in Figure 6. The algorithm out-
puts the set of nonempty clades of a tree explaining A, or outputs False if no such
tree exists. The algorithm is recursive and is initially called with Alg A(A).

Theorem 11. Algorithm A correctly solves IDP.

Proof. Suppose that the algorithm outputs False. Then there exists a recursive
call Alg A(A′) in which the graph G′ = (S′, C ′, E′), obtained in Step 1b (see Figure
6), was found to be connected. Suppose to the contrary that A has a phylogenetic
tree. Then by Corollary 4, there exists some edge set F ∗, which solves A′. The graph
G∗ = (S′, C ′, F ∗) is connected and by Theorem 3, it is also Σ-free. Therefore, by
Proposition 6 there exists an S′-universal character in G∗. That character must be
S′-semiuniversal in A′. By Algorithm A this vertex should have been removed at
Step 1a, a contradiction.

To prove the other direction, we will show that if the algorithm outputs a collec-
tion T ′ = {S1, . . . , Sl} of sets, then T = T ′ ∪ {∅} is a tree which explains A. We first
prove that the collection T of sets is pairwise compatible, implying by Observation 1
that T is a tree. Associate with each Si the recursive call Alg A(Ai) at which it was
output. Observe that each such call makes recursive calls associated with disjoint
subsets of Si. By induction, it follows that Si ⊆ Sj if and only if the recursive call
associated with Si is nested within the one associated with Sj . Otherwise, Si∩Sj = ∅.
Hence, S1, . . . , Sl are pairwise compatible and, thus, T is a tree.

It remains to show that T is a phylogenetic tree for A. Associate each null
character with the empty clade. Each other character ĉ is removed at Step 1a only
once in the course of the algorithm, during some recursive call Alg A(Â). Associate ĉ
with the clade Ŝ which was output at that recursive call. Observe that each nontrivial
clade Ŝ ∈ T is associated with at least one character. Finally, define a binary matrix
Bn×m with bsc = 1 if and only if s belongs to the clade Sc associated with c. Since
asc �= 1 for all s �∈ Sc and asc �= 0 for all s ∈ Sc, B is a completion of A. The claim
follows.

Let h ≤ min{m,n} be the height of the reconstructed tree. Each recursive call
increases the height of the output tree by at most one. The work at each level of the
tree requires (1) Finding semiuniversal vertices and (2) finding connected components
in disjoint graphs whose total number of edges is at most mn. Hence, the total work
is O(mn) per level, and a naive implementation requires O(hmn) time. We give a
faster implementation below.
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Theorem 12. Algorithm A has a deterministic implementation which takes
O(nm+|E1| log2(n+m)) time, and a randomized implementation which takes O(nm+
|E1| log(l2/|E1|) + l(log l)3 log log l) expected time, where l = n+m.

Proof. For the complexity proof we give an alternative, nonrecursive implemen-
tation of Algorithm A, shown in Figure 7. This iterative version mimics the recursive
one, but traverses the tree of recursive calls in a breadth first manner, rather than
a depth first manner. Consequently, the implementation deals with a single graph,
rather than a different graph per each recursive call. The reduction in complexity is
primarily due to the use of an efficient dynamic data structure for graph connectiv-
ity. The data structure maintains the connected components of the graph while edge
deletions occur.

We now analyze the running time of this implementation. Step 1 takes O(nm)
time. Each iteration of the “while” loop (Step 2) splits the (potential) clades added
in the previous one. Thus, Algorithm A performs one iteration of this type per each
level of the tree returned, and at most h iterations.

Step 2b requires explicitly computing the connected components of G. Both
data structures that we use for storing the connected components of G (see below)
maintain a spanning tree for each connected component of G, and allow computing
the connected components in O(n+m) time per iteration, or O(h(m+ n)) = O(nm)
time in total.

The loop of Step 2c is performed at most min{2n− 1,m} times altogether, as in
each (successful) iteration at least one character is removed from G (Step 2cvii), and
at least one clade is added to T . Thus, Step 2ci takes O(min{n,m}) time altogether,
and Step 2cii takes O(nm) time in total. Step 2ciii takes O(nm) time in total, as
it considers each species-character pair only once throughout the execution of the
algorithm.

In order to analyze the complexity of Step 2civ, observe that the following invari-
ants hold in this step for each character c ∈ C(Ki):

• d?
c = |{(s, c) ∈ E?|s ∈ S(Ki)}|, as guaranteed by Step 2ciii.

• d1
c = |{(s, c) ∈ E1|s ∈ S(Ki)}| = |{(s, c) ∈ E1|s ∈ S}|, as initialized in

Step 1b, since species are never removed, and each species adjacent to c must
be in its connected component until c is removed.

Given d1
c , d

?
c and |S(Ki)|, one can check in O(1) time whether c is S(Ki)-semiuniversal,

and thus Step 2civ takes O(|C(Ki)|) time, or O(hm) time in total.
Since each set added to T in Step 2cvi corresponds to at least one character, and

each character is associated with exactly one such set, updating T requires O(nm)
time in total. This also implies an O(nm) bound on the size of the output produced
in Step 3.

It remains to discuss the cost of the dynamic data structure, which is charged for
Step 2cvii. Using the dynamic algorithm of [15], the connected components of G can
be maintained during |E1| edge deletions at a total cost of O(|E1| log2(n+m)) time
spent in Step 2cvii. Alternatively, using the Las Vegas type randomized algorithm
of [23] for decremental dynamic connectivity, the edge deletions can be supported in
O(|E1| log(l2/|E1|) + l(log l)3 log log l) expected time. The complexity follows.

4.2. Algorithm B. We now describe another deterministic algorithm for IDP,
which is faster than Algorithm A whenever |E1| = ω((n + m)2/ log(n + m)). Algo-
rithm B uses the dynamic-connectivity data structure of [14], which supports deletion
of batches of edges from a graph, while detecting after each batch one of the new
connected components in the resulting graph (if new components were formed).
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Alg A fast(A = ((S,C), E0, E?, E1)):
1. Initialize:

(a) Set t← 0, K0 ← {S ∪ C}, G← G(A), T ← triv(S).
(b) For each character c, and i ∈ {1, ?} do:

Set dic ← |{s ∈ S|(s, c) ∈ Ei}|.
(c) Remove all S-semiuniversal and all null characters from G.
(d) Initialize a data structure for maintaining the connected components

of G.
2. While E(G) �= ∅ do:

(a) Increment t.
(b) Explicitly compute the set Kt of connected components K1, . . . ,Kr

of G.
(c) For each connected component Ki ∈ Kt such that |E(Ki)| ≥ 1 do:

i. Pick any character c′ ∈ C(Ki).
ii. Compute S′ = S(K ′) \ S(Ki), where K ′ is the component in
Kt−1 which contains c′.

iii. For each species-character pair (s, c) ∈ S′ × C(Ki) do:
If (s, c) ∈ E? then decrement d?

c.
iv. Compute the set U of all characters in Ki which are S(Ki)-

semiuniversal in A.
v. If U = ∅, then output False and halt.
vi. Set T ← T ∪ {S(Ki)}.
vii. Remove U from G and update the data structure of connected

components accordingly.
3. Output T .

Fig. 7. An iterative presentation of Algorithm A.

Algorithm B is described in Figure 8. For an instance A it outputs the nonempty
clades of a tree explaining A (except possibly the root clade, if it has no matching
character), or False if no such tree exists. It is initially called with Alg B(A).

Theorem 13. Algorithm B correctly solves IDP in O((n + m)2 log(n + m))
deterministic time.

Proof. Correctness. We prove correctness by induction on the problem size. If
G′ is connected (at Step 2c), then by Proposition 6 A has no phylogenetic tree, and
indeed the algorithm outputs False. Otherwise, let A1 and A2 be the subinstances
induced on K and K ′ = V (G′) \ K, respectively, as detected in Step 2b. If A has
a phylogenetic tree, then by Corollary 4 so do A1 and A2. On the other hand, let
T1, T2 be phylogenetic trees for A1,A2, respectively. Note that by definition, T2 must
contain the trivial clade S(K ′), which is not necessarily a clade in a phylogenetic tree
for A (if K ′ has no semiuniversal character). To remedy that, define T ′

2 = T2 if the
algorithm outputs S(K ′), and T ′

2 = T2 \ {S(K ′)} otherwise. Then T1 ∪ T ′
2 ∪ {S} is a

phylogenetic tree for A.

Complexity. The data structure of [14] dynamically maintains a graphH = (V,E)
through batches of edge deletions, with each batch followed by a query for a newly
created connected component in the resulting graph. If we denote by b0 the number of
batches which do not result in a new component, then as shown in [14], the total cost
of answering the queries and performing the batch deletions, if eventually all edges
are deleted, is O(|V |2 log |V |+ b0 min{|V |2, |E| log |V |}).
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Alg B(A = ((S,C), E0, E?, E1)):
1. If |S| = 1 or G(A) has an S-semiuniversal vertex, then output S.
2. If |S| > 1, then do:

(a) Remove all S-semiuniversal characters and all null characters from
G(A).

(b) If the resulting graph G′ contains a new connected component K,
then do:

i. Let A1,A2 be the submatrices of A induced on V (K) and V (G′)\
V (K), respectively.

ii. For i = 1, 2 do: Alg B(Ai).
(c) Else output False and halt.

Fig. 8. Algorithm B for solving IDP.

Characters
1 ? 0 0
1 1 ? ?

Species ? 1 1 ?
? ? 1 1
? 0 ? 1

Characters
1 0 0 0
1 1 1 1

Species 1 1 1 1
1 1 1 1
1 0 1 1

A B

Fig. 9. A counterexample to the greedy approach. A: The input matrix. B: A solution.

We use this data structure to maintain G(A) during all the recursive calls. As
b0 = 1 (since in case no new component is formed the algorithm outputs False and
halts) and |V | = n+m, the total cost is O((m+n)2 log(n+m)) time. This expression
dominates the complexity, as finding the semiuniversal vertices at each recursive call
costs in total only O(nm) time (see proof of Theorem 12).

We remark that an Ω(nm)-time lower bound for (undirected) binary perfect phy-
logeny was proved by Gusfield [12]. A closer look at Gusfield’s proof reveals that it
applies, as is, also to the directed case. As IDP generalizes directed binary perfect
phylogeny, any algorithm for this problem would require Ω(nm) time.

4.3. Greedy approach fails. We end the section by showing that a simple
greedy approach to IDP fails. Let A be an incomplete matrix. We say that asc =? is
forced if there exists an assignment x ∈ {0, 1} such that completing asc to x results in
an induced Σ in the graph (S,C,EA′

1 ∪ EA′
? ) corresponding to the completed matrix

A′. A is called forced if it has some forced ?-entry.
A naive greedy algorithm for IDP is as follows: At each step complete one ?-

entry in the matrix. If there are no forced entries, choose any ?-entry and complete
it arbitrarily. Otherwise, try to complete a forced entry. If such completion is not
possible (an induced Σ is formed), report False.

Figure 9(A) shows an explainable instance with no forced entries. Setting the
bottom-left ?-entry to 0 results in an instance which cannot be explained. A solution
matrix is shown in Figure 9(B).

5. Determining the generality of the solution. A “yes” instance of IDP
may have several distinct phylogenetic trees as solutions. These trees may be related
in the following way: We say that a tree T generalizes a tree T ′, and write T ⊆ T ′,
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c1

c2

c1

c2

s2

s3

s1

s4

s5

T T1 T2

s1 s2 s3 s4 s5s1 s2 s3 s4 s5

c2c1c1 c2

SpeciesCharacters
s1

s2

s3 s2 s3

c2

s1 s2 s3s1 s2 s3 s1

c1

c1 c2

c1

c2

Fig. 10. Top left: An IDP instance which has a general solution. Dashed lines denote E?-edges,
while solid lines denote E1-edges. Top-right: T , T1, and T2 are the possible solutions. T generalizes
T1 and T2 (which are obtained by splitting the root node of T ), and is the general solution. Bottom
left: An IDP instance which has no general solution. Bottom middle and bottom right: Two possible
solutions. The only tree which generalizes both solutions is the tree composed of the trivial clades
only, which is not a solution.

if every clade of T is a clade of T ′; i.e., the evolutionary scenario expressed by T ′

includes all the details of the scenario expressed by T , and possibly more. Therefore,
T ′ represents a more specific scenario, and T represents a more general one. We say
that a tree T is the general solution of an instance A, if T explains A and generalizes
every other tree which explains A. Figure 10 demonstrates the definitions and also
gives an example of an instance that has no general solution.

We give in this section a characterization of IDP instances that admit a general
solution. We prove that whenever a general solution exists, Algorithm A finds it.
We also provide an algorithm to determine whether the solution tree T returned
by Algorithm A is general. The complexity of the latter algorithm is shown to be
O(mn+ |E1|d), where d is the maximum out-degree in T .

This notation is used in what follows. Let A be an incomplete matrix and let
Ŝ ⊆ S. We denote by WA(Ŝ) the set of Ŝ-semiuniversal characters in A. Note that
if A is binary, then WA(Ŝ) is its set of Ŝ-universal characters. We now define the

operator ˜ on incomplete matrices: We denote by Ã the submatrix A|S,C\WA(S) of

A. In particular, G(Ã) is the graph produced from G(A) by removing its set of S-
semiuniversal characters. A species set ∅ �= S′ ⊆ S is said to be connected in a graph
G, if S′ is contained in some connected component of G.

Lemma 14. Let T be the general solution for an instance A of IDP. Let S′ = L(x)
be a clade of T , corresponding to some node x. Let T ′ be the subtree of T rooted at
x, and let A′ be the instance induced on S′ ∪ C. Then T ′ is the general solution for
A′.

Proof. By Observation 5, T ′ explains A′. Suppose that T ′′ also explains A′ and
T ′ �⊆ T ′′. Then T̂ = (T \ T ′) ∪ T ′′ explains A, and T �⊆ T̂ , a contradiction.

A nonempty clade of a tree is called maximal if the only clade that properly
contains it is S.

Lemma 15. Let T be a phylogenetic tree for a binary matrix B. A nonempty clade
S′ of T is maximal if and only if S′ is the species set of some connected component
of G(B̃).

Proof. Suppose that S′ is a maximal clade of T . We first claim that S′ is contained
in some connected component K of G(B̃). If |S′| = 1 this trivially holds. If |S′| > 1,
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let c be a character associated with S′. c is adjacent to all vertices in S′ and to no
other vertex. Hence, c is not S-universal, implying that all the edges {(c, s) : s ∈ S′}
are present in G(B̃). This proves the claim. It remains to show that S(K) = S′.
Suppose S(K) ⊃ S′. In particular, |S(K)| > 1. By Proposition 6, there exists a

character c′ in G(B̃) whose 1-set is S(K). Hence, S(K) must be a clade of T which
is associated with c′, contradicting the maximality of S′.

To prove the converse, let S′ be the species set of some connected component K of
G(B̃). We first claim that S′ is a clade. If |S′| = 1, S′ is a trivial clade. Otherwise, by

Proposition 6 there exists an S′-universal character c′ in G(B̃). Since K is a connected
component, c′ has no neighbors in S \S′. Hence, S′ must be a clade in T . Suppose to
the contrary that S′ is not maximal; then it is properly contained in a maximal clade
S′′, which by the previous direction is the species set of K, a contradiction.

Theorem 16. Algorithm A produces the general solution for every IDP instance
that has one.

Proof. Let A be an instance of IDP for which there exists a general solution
T ∗. Let Talg be the solution tree produced by Algorithm A. By definition T ∗ ⊆ Talg.
Suppose to the contrary that T ∗ �= Talg. Let S′ be the largest clade reported by
Algorithm A, which is not a clade of T ∗ (S′ must be nontrivial), and let S′′ be the
smallest clade in Talg which properly contains S′. Let A′ be the instance induced on
S′′ ∪C. By Observation 5, A′ is explained by the corresponding subtrees T ′

alg of Talg
and T ′∗ of T ∗. By Lemma 14, T ′∗ is the general solution of A′. Due to the recursive
nature of Algorithm A, it produces T ′

alg when invoked with input A′. Thus, without
loss of generality, one can assume that S′′ = S and S′ is a maximal clade of Talg.

Suppose that T ∗ explains A via a completion B∗, and let G∗ = G(B∗). Since
S′ is a maximal clade, it is reported during a second level call of Alg A(·) (the call
at the first level reports the trivial clade S). Hence, it must be the species set of

some connected component K in G(Ã). Since every S-universal character in G∗ is

S-semiuniversal in A, S′ is contained in some connected component K∗ of G(B̃∗).
Denote S∗ ≡ S(K∗). By Lemma 15, S∗ is a maximal clade of T ∗. Since S′ �∈ T ∗,
we have S′ �= S∗, and therefore, S∗ ⊃ S′. But T ∗ ⊆ Talg, implying that S∗ is also a
nontrivial clade of Talg, in contradiction to the maximality of S′.

We now characterize IDP instances for which a general solution exists. Let A be
a “yes” instance of IDP. Consider a recursive call Alg A(A′) nested within Alg A(A),

whereA′ = A|C′,S′ . LetK1, . . . ,Kr be the connected components ofG(Ã′), computed
in Step 1c. Observe that S(K1), . . . , S(Kr) are clades to be reported by recursive calls
launched during Alg A(A′). A set U of characters is said to be (Ki,Kj)-critical if char-
acters in U are both S(Ki)-semiuniversal and S(Kj)-semiuniversal in A′, and remov-

ing U from G(Ã′) disconnects S(Ki). Note that by definition of U , U ⊆WA′(S(Ki)),
and a′sc =? for all c ∈ U, s ∈ S(Kj). A clade S(Ki) is called optional (with respect
to A′) if r ≥ 3 and there exists a (Ki,Kj)-critical set for some index j �= i. If S(Ki)
is not optional we say it is mandatory. In the example of Figure 10 (bottom), let
K1 = {s1, s2, c1}, K2 = {s3}, and K3 = {s4, s5, c2}. The set U = {c1} is (K1,K2)-
critical, so S(K1) = {s1, s2} is optional. In contrast, in Figure 10 (top) no clade is
optional.

Theorem 17. The tree produced by Algorithm A is the general solution if and
only if all its clades are mandatory.

Proof. ⇒ Suppose that Talg is the general solution of an instance A. Suppose to
the contrary that it contains an optional clade. Without loss of generality, assume it
is maximal; i.e., during the recursive call Alg A(A), G′ = G(Ã) has r ≥ 3 connected
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components, K1, . . . ,Kr, and there exists a (Ki,Kj)-critical set U (for some 1 ≤ i �=
j ≤ r). Let Ai,Aj and Aij be the subinstances induced on Ki,Kj and Ki ∪ Kj ,
respectively. Consider the tree T ′ which is produced by a small modification to the
execution of Alg A(A): Instead of recursively invoking Alg A(Ai) and Alg A(Aj),
call Alg A(Aij). Then T ′ is a phylogenetic tree which explains A and includes the

clade S(Ki ∪ Kj). Since removing U from G(Ã) disconnects S(Ki), |S(Ki)| ≥ 2 so
S(Ki) is nontrivial. Moreover, S(Ki) is not a clade of T ′ for the same reason. Hence,
T ′ does not contain all clades of Talg, in contradiction to the generality of Talg.
⇐ Suppose that Talg is not the general solution of an instance A; i.e., there exists

a solution T ∗ of A such that Talg �⊆ T ∗. We shall prove the existence of an optional
clade in Talg. (The reader is referred to the example in Figure 13 for notation and
intuition. The example follows the steps of the proof, leading to the identification
of an optional clade.) Let B∗ be a completion of A which is explained by T ∗, and
denote G∗ = G(B∗). Let S′ ∈ Talg \ T ∗ be the largest clade reported by Algorithm A
which is not a clade of T ∗. Without loss of generality (as argued in the proof of
Theorem 16), S′ is a maximal clade of Talg, and we let S′ = S(K1), where K1, . . . ,Kr

are the connected components of G(Ã).

Observe that a binary matrix has at most one phylogenetic tree. Thus, an ap-
plication of Algorithm A to B∗ necessarily outputs T ∗. Consider such an applica-
tion, and let {S∗

i }ti=1 be the nested set of reported clades in T ∗ which contain S′:
S = S∗

1 ⊃ · · · ⊃ S∗
t ⊃ S′ (see Figure 11). For each i = 1, . . . , t, let B∗i be the in-

stance invoked in the recursive call which reports S∗
i , and let H∗

i be the graph G(B̃∗i ),
computed in Step 1a of that recursive call. Let C∗

i be the set of characters in H∗
i .

Equivalently, C∗
i is the set of characters in B∗i whose 1-set is nonempty and is prop-

erly contained in S∗
i . Furthermore, define Hi to be the subgraph of G(A) induced

on S∗
i ∪ C∗

i . Observe that H∗
i is the subgraph of G∗ induced on the same vertex set.

Since G∗ is a supergraph of G(A), each H∗
i is a supergraph of Hi.

Claim 18. S′ is disconnected in H∗
t , and therefore also in Ht.

Proof. Suppose to the contrary that S′ is contained in some connected component
K∗ of H∗

t . K∗ is thus computed during the tth recursive call (with argument B∗t ), and
S(K∗) is reported as a clade in T ∗ by a nested recursive call. Therefore, S∗

t ⊃ S(K∗) ⊃
S′, where the first proper containment follows from the fact that H∗

t is disconnected,
and the second from the assumption that S′ is not a clade of T ∗. Hence, we arrive at
a contradiction to the minimality of S∗

t .

We now return to the proof of Theorem 17. Recall that S′ is connected in H1 =
G(Ã). Thus, the previous claim implies that t > 1. Let Kp be a connected component

ofG(Ã) such that S(Kp) ⊆ S\S∗
2 (see Figure 11). Let l be the minimal index such that

there exists some connected component Ki of G(Ã) for which S(Ki) is disconnected
in Hl. l is properly defined as S(K1) = S′ is disconnected in Ht. l > 1, since

otherwise some Ki is disconnected in H1 and, therefore, also in its subgraph G(Ã),
in contradiction to the definition of K1, . . . ,Kr.

By minimality of l, S∗
l ⊇ S(Ki). Also, S∗

l ⊇ S∗
t ⊃ S′ = S(K1), so S∗

l �= S(Ki).

We now claim that there exists some connected component Kj of G(Ã), j �= i, such
that S(Kj) ⊆ S∗

l . Indeed, if i �= 1, then j = 1. If i = 1, then l = t (by an argument
similar to that in the proof of Claim 18), and since S∗

l \ S′ is nonempty, it intersects
S(Kj) for some j �= i. By minimality of l, S(Kj) is properly contained in S∗

l \ S′.
Define U ≡ WG∗(S∗

l ). We now prove that U is a (Ki,Kj)-critical set. By defini-
tion all characters in U are S∗

l -universal in G∗, and are thus both Ki-semiuniversal
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S∗l
S(Kp)S ′ S∗t

S∗2 S = S∗1

Fig. 11. The clades S = S∗
1 ⊃ S∗

2 ⊃ · · · ⊃ S∗
t ⊃ S′.

S(Kp)S(Ki) S(Kj)
S∗l

S

U

Fig. 12. S(Ki), S(Kj), and S(Kp). Note that removing U disconnects S(Ki).

and Kj-semiuniversal in A. S(Ki) is disconnected in Hl = G(A|C∗
l
,S∗

l
). Since Ki is a

connected component of G(Ã), S(Ki) is disconnected in G(A|C∗
l
,S), implying that U

is a (Ki,Kj)-critical set. Also, Ki,Kj , and Kp are distinct, implying that r ≥ 3 (see
Figure 12). In conclusion, U demonstrates that S(Ki) is optional.

The characterization of Theorem 17 leads to an efficient algorithm for determining
whether a solution Talg produced by Algorithm A is general.

Theorem 19. There is an O(nm+ |E1|d)-time algorithm to determine if a given
solution Talg is general, where d is the maximum out-degree in Talg.

Proof. The algorithm simply traverses Talg bottom-up, searching for optional
clades. For each internal node x visited, whose children are y1, . . . , yd(x), the algorithm
checks whether any of the clades L(y1), . . . , L(yd(x)) is optional. If an optional clade
is found the algorithm outputs False. Correctness follows from Theorem 17.

We show how to efficiently check whether a clade L(yi) is optional. If d(x) = 2,
or yi is a leaf, then certainly L(yi) is mandatory. Otherwise, let Ui be the set of
characters whose origin (in Talg) is yi. Let U i

j denote the set of characters in Ui which

are L(yj)-semiuniversal, for j �= i. The computation of U i
j for all i and j takes O(nm)

time in total, since for each character c and species s we check at most once whether
(s, c) ∈ EA

? , for an input instance A.
It remains to show how to efficiently check whether for some j, U i

j disconnects
L(yi) in the appropriate subgraph encountered during the execution of Algorithm A.
To this end, we define an auxiliary bipartite graph Hi whose set of vertices is Wi∪Ui,
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S ′
s4 s5 s6 s7 s8s1 s2 s3
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T ∗

Fig. 13. An example demonstrating the proof of the “if” part of Theorem 17, using the notation
in the proof. Left: A graphical representation of an input instance A. Dashed lines denote E?-edges,
while solid lines denote E1-edges. Top right: The tree Talg produced by Algorithm A. Bottom middle:
A tree T ∗ corresponding to a completion B∗ that uses all the edges in E?. Bottom right: The graphs
H2 (solid edges) and H∗

2 (solid and dashed edges). Talg �⊆ T ∗, and S′ = {s5, s6}. There are t = 3
clades of T ∗ which contain S′: S∗

1 = {s1, . . . , s8}, S∗
2 = {s3, . . . , s8}, and S∗

3 = {s5, s6, s7}. The
component Kp = {c1, s1, s2} has its species in S \ S∗

2 . Since WA(S) = WB∗ (S) = ∅, H1 = G(A).
Since WB∗ (S∗

2 ) = {c4}, the species set of the connected component Ki = {s7, s8, c4} is disconnected
in H2, implying that l = 2. For a choice of Kj = {s3, s4, c2}, the set U = {c4} is (Ki,Kj)-critical,
demonstrating that S′ is optional.

where Wi = {w1, . . . , wd(yi)} is the set of children of yi in Talg. We include the edge
(wr, cp) in Hi, for wr ∈ Wi, cp ∈ Ui, if (cp, s) ∈ EA

1 for some species s ∈ L(wr). We
construct for each j �= i a subgraph Hi

j of Hi induced on Wi ∪ (Ui \U i
j). All we need

to report is whether Hi
j is connected.

For each i we construct Hi by considering all EA
1 edges connecting characters in

Ui to species in L(yi). This takes O(|EA
1 |) time in total. There are d(yi) subgraphs

Hi
j for every yi. Hence, computing Hi

j for all j and determining whether each Hi
j

is connected take O
(|E(Hi)|d(yi)

)
time. Since

∑
i |E(Hi)| ≤ |EA

1 |, the total time
complexity is O(mn+

∑
i |E(Hi)|d(yi)) = O(mn+ |EA

1 | ·maxv∈Talg
d(v)).
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Abstract. An (α, β)-spanner of a graph G is a subgraph H such that distH(u,w) ≤ α ·
disttG(u,w) + β for every pair of vertices u,w, where distG′ (u,w) denotes the distance between two
vertices u and v in G′. It is known that every graph G has a polynomially constructible (2κ− 1, 0)-
spanner (also known as multiplicative (2κ − 1)-spanner) of size O(n1+1/κ) for every integer κ ≥ 1,
and a polynomially constructible (1, 2)-spanner (also known as additive 2-spanner) of size Õ(n3/2).
This paper explores hybrid spanner constructions (involving both multiplicative and additive factors)
for general graphs and shows that the multiplicative factor can be made arbitrarily close to 1 while
keeping the spanner size arbitrarily close to O(n), at the cost of allowing the additive term to be
a sufficiently large constant. More formally, we show that for any constant ε, λ > 0 there exists
a constant β = β(ε, λ) such that for every n-vertex graph G there is an efficiently constructible
(1 + ε, β)-spanner of size O(n1+λ).

Key words. spanners, graph algorithms, graph partitions
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1. Introduction.

1.1. Motivation and previous results. Spanners for general graphs were in-
troduced in [15] as a tool for constructing synchronizers, and were later studied in
various contexts. Generally speaking, spanners appear to be the underlying graph
structure in a number of constructions in distributed systems and communication
networks (cf. [13]). Spanners have turned out to be relevant also in other contexts.
For instance, in the area of robotics and computational geometry, spanners have been
considered in the Euclidean setting, assuming that the vertices of the graph are points
in space, and the edges are line segments connecting pairs of points (cf. [5, 6, 1] and
the references therein).

Intuitively, spanners can be thought of as a generalization of the concept of a span-
ning tree, allowing the spanning subgraph to have cycles, but aiming towards main-
taining the locality properties of the network. These locality properties revolve around
the notion of stretch, namely, the (worst) multiplicative factor by which distances
increase in the network as a result of using the spanner edges alone and ignoring non-
spanner edges. Formally, given an unweighted graph G = (V,E), we say that the sub-
graphH = (V,E′) (where E′ ⊆ E) is an α-spanner of G if distH(u,w) ≤ α·distG(u,w)
for every u,w ∈ V , where distG′(u, v) denotes the distance between two vertices u
and v in G′, namely, the minimum length of a path in G′ connecting them.

There exists a well-understood tradeoff between the size of a spanner (namely, the
number of edges it uses) and its stretch [14, 1, 4]. Generally speaking, for an integer
parameter κ, a stretch of O(κ) can be guaranteed by a spanner using O(n1+1/κ) edges.
The best known bound for the stretch is 2κ − 1 [1]. This bound is very close to the
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best possible in view of the lower bounds shown in [14, 1, 4], by which for every
odd κ ≥ 3 there exist (infinitely many) n-vertex graphs G = (V,E) for which every
(κ − 2)-spanner requires Ω(n1+4/3κ) edges. In fact, for 3-, 5-, and 9-spanners, even
better lower bounds are known [16].

However, it is not clear a priori that the stretch must be expressed as a multi-
plicative factor. An alternative notion of additive graph spanners was introduced in
[11, 12]. A subgraph H is an additive β-spanner of G if distH(u,w) ≤ distG(u,w)+β
for every u,w ∈ V . While the results of [11, 12] concerned only special graph classes,
like pyramids, hypercubes and multidimensional grids of degree bounded by 4, a result
demonstrating the potential usefulness of this notion for general graphs was presented
in [7], where it was shown that for every graph G there exists an additive 2-spanner
with Õ(n3/2) edges. Again, this is the best possible up to polylogarithmic factors
given the aforementioned lower bounds. Unfortunately, this result has so far resisted
attempts of extending it to values of κ greater than 2.

In this paper, we study the somewhat more general and unifying concept of
(α, β)-spanners, also introduced in [11]. A subgraph H is an (α, β)-spanner of G
if distH(u,w) ≤ α · distG(u,w) + β for every u,w ∈ V . Cast in this terminology, the
above mentioned results imply that O(n1+1/κ) edges suffice to construct a (2κ−1, 0)-
spanner, for any integer κ ≥ 1, and that Õ(n3/2) edges suffice to construct a (1, 2)-
spanner.

However, intuitively it seems that a tighter bound on the behavior of spanners
may be obtained. In particular, it seems plausible that the multiplicative factor of
2κ−1 is not entirely unavoidable, as it might stem in part due to a “hidden” additive
term affecting mainly the stretching behavior of the spanner with respect to nearby
vertex pairs.

The current paper not only confirms this intuition, but also shows that the mul-
tiplicative stretch can be made arbitrarily close to 1 by allowing the additive term to
be a sufficiently large constant.

1.2. Our results. Our main construction establishes the existence and efficient
constructibility of (1 + ε, β)-spanners of size O(βn1+1/κ) for every n-vertex graph G,
where β = β(κ, ε) is constant whenever κ and ε are. We stress that in our con-
struction, both the stretch and the size of the spanner can be made arbitrarily small
simultaneously, where the tradeoff is between their values on the one hand and the
value of the additive term on the other.

Note that the existence of spanners with properties as described above implies
that for any constant ε, λ > 0 and graph G, there exists a spanning subgraph H with
O(n1+λ) edges which behaves like a (1 + ε)-spanner for “sufficiently distant” pairs
of vertices. More formally, for any constant ε, λ > 0 there exists a constant β(ε, λ)
such that for any n-vertex graph G = (V,E) there exists an efficiently constructible
spanning subgraph H with O(n1+λ) edges such that distH(u,w) ≤ (1 + ε)distG(u,w)
for every pair of vertices u,w ∈ V such that distG(u,w) ≥ β(ε, λ).

We remark that this result is optimal in the sense that the statement becomes false
if either ε or λ is set to zero. Specifically, taking ε = 0 yields a false statement since
for any 0 < λ < 1 there exists an infinite graph family H(λ) such that every n-vertex
graph G ∈ H(λ) has Ω(n1+λ) edges and for any subgraph H of G there exists a pair of
nodes u,w in the graph such that dG(u,w) = Ω(n1/2−λ/2) and dH(u,w) > dG(u,w).
Analogously, setting λ to zero falsifies the statement because for any 0 < ε < 1 and
β(ε) ≥ 1 there exists an infinite graph family Ĥ(ε, β) such that any n-vertex graph
G ∈ Ĥ(ε, β) has n1+Ω(1/β(ε)) edges (i.e., significantly more than O(n) = O(n1+λ))
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and for any subgraph H of G there exists a pair of nodes u,w in the graph such that
dG(u,w) ≥ β(ε) and dH(u,w) ≥ 2β(ε) [3].

Furthermore, our construction enables us to obtain a multiplicative stretch that is

even smaller than 1+ε for constant ε > 0, i.e., 1+1/polylogn or even 1+2− log n/log(b) n

(where log(b) denotes the b-iterated log function), while still keeping the size of the
spanner equal to O(n1+λ) for arbitrarily small λ > 0, at the cost of increasing the

additive term to polylogn or exp(O(log n/ log(b) n)), respectively.

A straightforward implementation of our construction requires O(|E| · n) time,
but we show that our construction can be implemented even faster, and establish a
tradeoff between the time complexity of the construction algorithm and the additive
term. Specifically, we show that a (1 + ε, β′)-spanner of size O(β′n1+1/κ) can be
constructed in Õ(n2+µ) time for any n-vertex graph G, where the additive term
β′ = β′(κ, ε, µ) is constant whenever κ, ε, and µ are.

The additive terms involved in our constructions are roughly β(κ, ε)=κlog log κ−logε

and β′(κ, ε, µ) = max{β(κ, ε), κ− log µ}. Although optimizing these additive terms is
not in the focus of the current paper, we remark that β and β′ are always

O((log n)log
(3) n), because κ = O(log n). Indeed, for κ = Ω(log n) the size of the

spanner becomes almost linear (i.e., O(n · (log n)log
(3) n)).

Finally, analysis of our construction for specific small values of κ enables us to
derive some secondary results. First, a construction of an additive 2-spanner of size
O(n3/2) can be derived. This is tight up to a constant factor due to lower bound
of [16], and improves upon the construction of [7] by a logarithmic factor. However,
the running time of our construction is O(n5/2) instead of Õ(n2) of the construction
of [7]. Additionally, a construction of a (1 + ε, 4)-spanner of size O(ε−1n4/3) can
be derived. This improves the previously known construction of a multiplicative 5-
spanner of size O(n4/3). The details of the analysis of our algorithm for small values
of κ were presented in the preliminary versions of this paper [9, 10] and are omitted
here.

Since the appearance of a preliminary version of this paper [10], a more time-
efficient construction of (1 + ε, β)-spanners for general graphs was devised in [8].
Specifically, it is shown therein that (1 + ε, β′′)-spanners of size O(β′′n1+1/κ) can be
constructed in O(|E|nµ) time, where the additive term β′′ = β′′(κ, ε, µ) is constant
whenever κ, ε, and µ are. The improved running time of the construction of [8] makes
it possible to use (1+ ε, β)-spanners as a building block of the most efficient currently
known algorithm for computing almost shortest paths with constant almost additive
error from s, 1� s� n, sources. However, the additive term β′′ in the construction
of [8] is asymptotically greater than the additive term β′ in the present construction.

2. The construction algorithm. In this section we present the polynomial
time algorithm that for any constant 0 < ε < 1 and constant integer κ ≥ 2, and
for any n-vertex graph G, constructs a (1 + ε, β)-spanner with O(βn1+1/κ) edges,
where β = β(ε, κ) is a constant (independent of n and of any other parameter of the
graph).

We start with some necessary definitions. We refer to the vertex and edge sets
of a subgraph G′ by V (G′) and E(G′), respectively. For any subgraph G′ = (V ′, E′)
and any integer � ≥ 0 and vertex v ∈ V ′, we denote the �-neighborhood of v in G′ by
ΓG′
� (v) = {u | distG′(v, u) ≤ �}. For any subset of vertices U ⊆ V ′, denote the set of

neighbors of U in G′ by ΓG′
(U) = {z | ∃u ∈ U such that (u, z) ∈ E′}. We also denote

Γ�(v) = ΓG
� (v) and Γ(U) = ΓG(U).
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Input: Graph G = (V,E).
Output: Spanned partition G, subgraph H.

1. U ← V ; G ← ∅; S ′ ← ∅; E(H)← ∅;
2. While U 	= ∅ do:

(a) Pick an arbitrary vertex v ∈ U ;
(b) S ← {v};
(c) While |S ∪ Γ(S) ∩ U | ≥ n1/κ|S| do:

• S ← S ∪ Γ(S) ∩ U ; /* the cluster
(d) Ŝ ← S ∪ Γ(S) ∩ U ; /* the shell
(e) Form a BFS spanning tree T for (v, S);
(f) S ′ ← S ′ ∪ {(v, Ŝ)}; G ← G ∪ {(v, S, T )}; U ← U \ S;

3. For every (v, Ŝ) ∈ S ′ do:
(a) Create a BFS spanning tree T ′ rooted at v for Ŝ (namely, a tree

spanning Ŝ and yielding shortest paths to v in the induced subgraph
G(Ŝ));

(b) E(H)← E(H) ∪ E(T ′);
4. Return(G, H);

Fig. 1. Procedure Down Part.

For a subset of vertices W ⊆ V , let G(W ) denote the subgraph of G induced by
W . With a slight abuse of notation, for a subset E′ ⊆ E of edges, let G(E′) denote
the graph (V (E′), E′), where V (E′) = {v ∈ V | ∃e ∈ E′s.t. v ∈ e}. A subset of
vertices C ⊆ V is called a cluster if its induced subgraph G(C) is connected. A triple
(v, S, T ) is called a spanned cluster if v ∈ S, and T is a connected spanning tree of
S. (Note that S itself is not necessarily connected, and the tree T may span also
some vertices that do not belong to S.) The radius of a spanned cluster (v, S, T )
is rad(v, S, T ) = max{distG(T )(v, u) | u ∈ S}, and the diameter is diam(v, S, T ) =
max{distG(T )(u,w) | u,w ∈ S}. Since in a spanned cluster (v, S, T ), the tree T is
necessarily connected, the radius and the diameter of a spanned cluster are always
finite. The spanned clusters (vi, Si, Ti) and (vj , Sj , Tj) are disjoint if Si∩Sj = ∅. A set
of disjoint spanned clusters {(vi, Si, Ti)} is called a spanned partition. For any pair of
vertex sets U1, U2 ⊆ V denote distG(U1, U2) = min{distG(u1, u2) | u1 ∈ U1, u2 ∈ U2}.
For a spanned partition U , a cluster S, and an integer �, denote

ΓU
� (S) = {(vi, Si, Ti) ∈ U | distG(Si, S) ≤ �} .

2.1. The initial partitioning procedure. Our algorithm starts by invoking
Procedure Down Part, described in Figure 1. This procedure is a variant of the pro-
cedures for constructing partitions due to [14, 7]. The procedure creates a spanned
partition G, which we also call the ground partition, since the algorithm uses it as
a basis for constructing other partitions. (This partition satisfies that

⋃
i Si = V ;

the partitions constructed later on may be partial, i.e., they will not necessarily have
this property.) For each cluster that the procedure creates, it also builds a “shell”
consisting of the cluster and one external layer, in a way similar to the partitioning
algorithm of [2]. The procedure also creates a subgraph H, which is a subset, and in
some sense a core, of the spanner created by the algorithm. This subgraph H consists
of the union of the breadth first search (BFS) trees of all the shells created by the pro-
cedure. (Given a cluster S centered at a vertex v in the graph G, a BFS tree for (v, S)
is a tree spanning S which yields shortest paths to v in the induced subgraph G(S).)
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Let us next establish some basic properties concerning the output of Procedure
Down Part. Given a spanned partition S = {(vj , Sj , Tj)}, denote by Ai(S) the
subset of spanned clusters of S with radius i,

Ai(S) = {(v, S, T ) ∈ S | rad(v, S, T ) = i}.
For any spanned partition S denote the minimum cluster size by Š(S) = minS∈S |S|.

Lemma 2.1. Let G be the ground partition returned by Procedure Down Part.
Then Š(Aj(G)) ≥ nj/κ for any integer 0 ≤ j ≤ κ− 1.

Proof. Consider a spanned cluster (v, S, T ) ∈ Aj(G). By definition of Aj(G),
rad(v, S, T ) = j. Each cluster constructed by Procedure Down Part starts with
radius zero, and each iteration of the internal while loop (step 2(c)) of the procedure
increases the radius of the cluster by at most 1. Hence the cluster (v, S, T ) was
involved in the loop for at least j iterations. In each iteration its size grew by a factor
of at least n1/κ. The lemma follows.

Next, we argue that the subgraph H returned by Procedure Down Part is
sparse.

Lemma 2.2. |E(H)| = O(n1+1/κ).
Proof. For every cluster S ∈ S, the shell consists of Ŝ = S ∪Γ(S)∩U at the time

of insertion, so by the condition of step 2(c) for selecting the cluster, |Ŝ| < n1/κ · |S|.
Hence the number of edges inserted into H in step 3 of Procedure Down Part is
bounded by ∑

S∈S
|S|n1/κ = n1/κ

∑
S∈S
|S| = O(n1+1/κ),

since the clusters S are disjoint.
An additional important property of the ground partition G and the subgraph

H returned by the invocation Down Part(G) is that for any pair of neighboring
clusters of G and for any edge e between these clusters, there is an edge between
these clusters in H that is incident to one of the endpoints of e. More specifically, we
introduce the following key definition.

Definition 2.3. A spanned partition S of a graph G = (V,E) is said to be
adjacency-preserving with respect to a subgraph H such that E(H) ⊆ E if it satisfies
the following two properties.
(P1) For any spanned cluster (v, S, T ) ∈ S, there exists a BFS spanning tree T ′ for

(v, S) such that E(T ′) ⊆ E(H).
(P2) For any pair of neighboring clusters (v1, S1, T1), (v2, S2, T2) ∈ S (i.e., such that

distG(S1, S2) = 1) and for any edge e = (u1, u2) ∈ E such that u1 ∈ S1 and
u2 ∈ S2, there exists either a node u′2 ∈ S2 such that (u1, u

′
2) ∈ E(H) or a

node u′1 ∈ S1 such that (u′1, u2) ∈ E(H). In the former (resp., latter) case,
the edge e is said to be spanned through the cluster S2 (resp., S1).

Note that in the definition above, if the edge (u1, u2) is spanned through the
cluster Si, for i ∈ {1, 2}, then distH(u1, u2) ≤ diam(Si) + 1.

Lemma 2.4. Let (G, H) be the pair returned by Procedure Down Part(G). Then
the spanned partition G is adjacency-preserving with respect to H.

Proof. To prove that the pair (G, H) satisfies property (P1) of Definition 2.3, con-
sider some spanned cluster (v, S, T ). Note that at step 3(a) of Procedure Down Part,
the BFS spanning tree T ′ of its shell Ŝ rooted at v was inserted into the subgraph
H. Note that such a tree is, in particular, a BFS spanning tree for S rooted at v
(although not necessarily the same as T ), completing the proof of property (P1).
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To prove that (G, H) satisfies property (P2) as well, consider some pair of neigh-
boring spanned clusters (v1, S1, T1) and (v2, S2, T2), and some edge e = (u1, u2) be-
tween them, such that u1 ∈ S1 and u2 ∈ S2. Assume, without loss of generality, that
the cluster S1 was created before the cluster S2. Consider the iteration of the main
loop of Procedure Down Part on which S1 was created. Denote by U ′ the set U at
the beginning of this iteration. Note that at this stage all the nodes of S1 and S2 were
still uncovered, i.e., S1, S2 ⊆ U ′, and thus in particular u1, u2 ∈ U ′. It follows that e
is in G′ = G(U ′), the subgraph of G induced by U ′, and hence u2 ∈ ΓG′

(S1) ⊆ Ŝ1.

Denote the radius of S1 by ρ = rad(v1, S1, T1). By step 2(c) of Procedure
Down Part, ΓG′

ρ (v1) = S1 and ΓG′
ρ+1(v1) = Ŝ1. Recalling that u2 ∈ Ŝ1 \ S1, we

conclude that distG′(v1, u2) = ρ+ 1.

The spanning tree T ′ constructed for Ŝ1 at step 3(a) of Procedure Down Part

spans Ŝ1, and thus u2 ∈ V (T ′). Since T ′ is a BFS spanning tree with respect to
v1 in the induced subgraph G′(Ŝ1), and since distG′(v1, u2) = ρ + 1, it follows that
the parent z1 of u2 in T ′ satisfies distG′(v1, z1) = ρ, and thus z1 ∈ ΓG′

ρ (v1) = S1, as
required.

2.2. The superclustering procedure. We next proceed to describing the su-
perclustering procedure SC. The procedure receives a spanned partition C, identifies
its “dense” sets of clusters, and merges them into superclusters. By a dense set of
clusters we mean a set containing “fairly many” clusters, which are “close enough”
to each other. These qualitative notions are quantified by two additional parameters.
The size parameter σ of Procedure SC specifies the minimum number of clusters
close to a given cluster S that justifies creating a supercluster around S that will
contain them, whereas the distance parameter δ specifies when two clusters are con-
sidered to be close. Procedure SC returns a spanned partition C′ which contains the
superclusters created and a subgraph H that will later be added into the spanner.
When Procedure SC finishes creating superclusters, it remains with a collection R of
original clusters of the input partition that were left untouched. Procedure SC then
finds shortest paths between close pairs in the collection R and inserts these paths as
well into the output subgraph H. The size parameter σ controls also the number of
pairs of close R clusters and therefore the size of the subgraph H. The procedure is
described in Figure 2.

Note that in step 2(b)ii, while augmenting the set of edges T ′ associated with
a supercluster S′ by adding the edges of the shortest path Pi, we do not insert the
vertices of this path into the vertex set S′ associated with this supercluster. The reason
is that these vertices are clustered in other clusters of the ground partition and they
may be superclustered separately. In other words, the same vertex may participate
in the shortest path connecting two clusters of one supercluster, and at the same
time be clustered in another supercluster. Hence T ′ is not necessarily contained in
E(G(S′)).

Intuitively, the following lemma states that Procedure SC does not destroy the
adjacency-preservation property.

Lemma 2.5. Let the triple (C′, H ′,R) be the output of the invocation SC(G, C, σ,
δ) for a graph G = (V,E), its spanned partition C and some arbitrary σ and δ.
Suppose that the spanned partition C is adjacency-preserving with respect to some
subgraph H of G such that E(H) ⊆ E. Then the output spanned partitions C′ and R
are adjacency-preserving with respect to H ∪H ′.

Proof. Note first that the adjacency-preservation property is monotone in both
parameters (i.e., if a spanned partition S̃ is adjacency-preserving with respect to
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Input: Graph G = (V,E), spanned partition C = {(vi, Si, Ti)} of G, integers σ,
δ ≥ 1.
Output: Spanned partition C′ = {(v′i, S′

i, T
′
i )} of G, subgraph H ′, collection R of

unmerged clusters.
1. E(H ′)← ∅; U ← C; C′ ← ∅;
2. while there exists a spanned cluster (v, S, T ) ∈ U such that |ΓU

δ (S)∩U| ≥
σ do:
(a) S′ ← ⋃

(vi,Si,Ti)∈ΓU
δ

(S) Si;

(b) i T ′ ← T ;
ii For every Si such that (vi, Si, Ti) ∈ ΓU (S) do:

A. Compute the shortest path Pi in G between the clusters S
and Si;

B. E(T ′)← E(T ′) ∪ E(Pi) ∪ E(Ti);
(c) C′ ← C′ ∪ {(v, S′, T ′)};
(d) U ← U \ ΓU

δ (S);
(e) E(H ′)← E(H ′) ∪ E(T ′);

3. R ← U ; /* Remaining (unmerged) clusters */
4. For every pair of spanned clusters (vi, Si, Ti), (vj , Sj , Tj) ∈ R such that

distG(Si, Sj) ≤ δ do:
(a) Compute the shortest path Pij between Si and Sj in G;
(b) E(H ′)← E(H ′) ∪ E(Pij);

5. Return(C′, H ′,R);

Fig. 2. Procedure SC.

some subgraph H̃, then this spanned partition is adjacency-preserving with respect
to any subgraph H̄ such that E(H̃) ⊆ E(H̄) ⊆ E). Also, if C̄ ⊆ C̃, and C̃ is
adjacency-preserving with respect to some subgraph H̃, then the spanned partition C̄
is adjacency-preserving with respect to H̃ as well.

Now the statement of the lemma regarding the spanned partition R follows
from the observation that R ⊆ C, and from the assumption of the lemma that C
is adjacency-preserving with respect to H.

It remains to establish the lemma for C′. Observe that the pair (C′, H ∪ H ′)
satisfies property (P1) of Definition 2.3, by the same assumption of the lemma, and
by step 2(e) of Procedure SC. To prove that the pair (C′, H ∪H ′) satisfies property
(P2) as well, consider a pair of neighboring superclusters (v1, S1, T1), (v2, S2, T2) ∈ C′,
and an edge (u1, u2) ∈ E between them such that u1 ∈ S1 and u2 ∈ S2. By step 2(a)
of Procedure SC, S1, S2 ⊆

⋃
S̃i∈C S̃i. Hence there exist clusters S̃i, S̃j ∈ C such that

(a) S̃i ⊆ S1, (b) S̃j ⊆ S2, (c) u1 ∈ S̃i, and (d) u2 ∈ S̃j . Since C is adjacency-preserving

with respect to H, it follows from (c) and (d) that there exists either a node uj ∈ S̃j

such that the edge (u1, uj) is in E(H), or a node ui ∈ S̃i such that the edge (ui, u2)
is in E(H). In either case, we are done by (a) and (b).

2.3. The main algorithm. We proceed with the description of our main al-
gorithm, named Algorithm Sp Cons. Our construction uses parameters κ, J , and
Υ, to be fixed explicitly later on. The following analysis is valid for any nonnega-
tive integers κ, J , and Υ that satisfy 1 ≤ J ≤ �log κ and Υ = Ω((κ/2J−3)J). Set
tj = (κ − 2j−1) / (2j−1κ) and δj = δj(Υ, J) = Υj/J for every 1 ≤ j ≤ J . Also for

every 1 ≤ j ≤ J − 1 set σj = ntJ−j−tJ−j+1 = n2j−J

. Denote τj = [κtJ+1−j , κtJ−j) for
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Input: Graph G = (V,E), integers κ, J,Υ > 1.
Output: Subgraph H

1. (G, H)← Down Part(G);
2. C′ ← ∅;
3. For j = 1 to J − 1 do:

(a) C ← C′ ∪⋃i∈τj
Ai(G);

(b) (C′, H ′,R)← SC(G, C, σj , 2δj(Υ, J));
(c) E(H)← E(H) ∪ E(H ′);

4. R ← C′ ∪⋃i∈τJ
Ai(G);

5. For every pair of spanned clusters (vi, Si, Ti), (vj , Sj , Tj) ∈ R such that
distG(Si, Sj) ≤ 2δJ(Υ, J) do:
(a) Calculate the shortest path Pij between Si and Sj ;
(b) E(H)← E(H) ∪ E(Pij).

6. Return H as the resulting spanner.

Fig. 3. Algorithm Sp Cons.

1 ≤ j ≤ J − 1 and τJ = [κt1, κ). Observe that for j ≤ J ≤ �log κ, tj is nonnegative.
The parameters Υ and J will be chosen in a such a way that Υ1/J will be a rather
large constant, so the parameters δj for 1 ≤ j ≤ J are just the consecutive powers
of this constant. These powers will serve as distance thresholds, and will grow as the
algorithm proceeds.

As already mentioned, the algorithm starts by forming the ground partition G.
The ground partition contains a subset Z =

⋃
i<tJκ

Ai(G) of singleton clusters, that
is, clusters that contain single vertex, and therefore have radius 0 (these properties
of the clusters of the set Z will be ensured by the appropriate choice of the pa-
rameters J and κ). After forming the ground partition G, the algorithm invokes
iteratively Procedure SC. On each iteration the procedure forms a new spanned
partition with fewer clusters (each of which is larger), and also takes care of clus-
ters that were not merged into superclusters, by interconnecting pairs of nearby
clusters by paths which are added to the subgraph H. More specifically, the in-
put spanned partition C of Procedure SC on iteration j, j = 1, 2, . . . , J − 1, is the
union of the output spanned partition C′ of the previous (j−1)st iteration (for j = 0,
C′ = ∅), and of the appropriate subset Qj =

⋃
i∈τj
Ai(G). The radii and the sizes

of the clusters of Qj grow with j. Algorithm Sp Cons repeats these iterations until
we are left with a sufficiently small number of large clusters. The pairs of nearby
clusters among these large clusters in the final spanned partition are again inter-
connected by shortest paths. These shortest paths are inserted into the subgraph
H. At the end of this process, H contains the spanning trees of the shells of all
the clusters and superclusters created through the process, and also all the shortest
paths between clusters and superclusters that were created throughout the execution.
Note that the notion of a “nearby” pair of clusters changes from one iteration of
the algorithm to another. Specifically, on iteration j, pairs of clusters at distance
δj(Υ, κ) are considered close. This change corresponds to the increase of clusters
radii.

A formal description of the algorithm is given in Figure 3. Figure 4 provides a
schematic illustration.

Remark. The spanned partition R returned by Procedure SC is not used by the
main algorithm; it is output by the procedure for the convenience of the analysis only.
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2)

S’ S’

S S

P
1 2

3 4

1)

Fig. 4. 1) The ground partition G is obtained by applying Procedure Down Part to the graph
G. 2) The two superclusters S′

1 and S′
2 were formed by an application of Procedure SC. The two

clusters S3 and S4 were not merged into a supercluster. Thus, the shortest path P between them
was inserted into the subgraph H.

3. Analysis. To begin with, it is not hard to see that Algorithm Sp Cons runs
in polynomial time. Indeed, each invocation of Procedure SC requires essentially at
most n BFS explorations of the graph, and the same is true regarding Procedure
Down Part. The precise analysis of its running time is deferred to section 4.

We proceed with an analysis of the properties of the algorithm.

3.1. Bounding the cluster diameters. We first bound the diameters of the
clusters and superclusters that are created in different iterations of Algorithm
Sp Cons. For a spanned partition C denote D̂(C) = max(v,S,T )∈C{diam(v, S, T )}
(for an empty spanned partition C = ∅, let D̂(C) = 0). Since the graph G remains
the same in all the invocations of Procedure SC, we henceforth omit it from its list
of parameters.

Lemma 3.1. Let C′ be spanned partition output by the invocation SC(C, σ, δ) of
Procedure SC. Then D̂(C′) ≤ 3D̂(C) + 2δ.

Proof. Consider some supercluster (v′, S′, T ′) ∈ C′. It was created at step 2(b)ii of
Procedure SC. Therefore, it has the form of a star, with a cluster (v′ = v0, S0, T0) ∈ C
in the middle, connected to some b ≥ σ clusters (v1, S1, T1), . . . , (vb, Sb, Tb) ∈ C by
shortest paths P1, . . . , Pb of length at most δ. Consider a pair of vertices zi ∈ Si,
zj ∈ Sj such that 1 ≤ i < j ≤ b. Let ui ∈ Si and wi ∈ S0 be the endpoints
of the path Pi, and let uj ∈ Sj and wj ∈ S0 be the endpoints of the path Pj .
Then

distG(T ′)(zi, zj) ≤ distG(T ′)(zi, ui) + distG(T ′)(ui, wi) + distG(T ′)(wi, wj)

+ distG(T ′)(wj , uj) + distG(T ′)(uj , zj) .

As by step 2(b)iiB of Procedure SC, E(T0), E(Ti), E(Tj) ⊆ E(T ′), and zi, ui ∈ V (Ti),
wi, wj ∈ V (T0) and uj , zj ∈ V (Tj), it follows that

distG(T ′)(zi, ui) ≤ distG(Ti)(zi, ui) ≤ diam(vi, Si, Ti) ,

distG(T ′)(wi, wj) ≤ distG(T0)(wi, wj) ≤ diam(v0, S0, T0) ,

distG(T ′)(uj , zj) ≤ distG(Tj)(uj , zj) ≤ diam(vj , Sj , Tj) .

Note that diam(vi, Si, Ti), diam(v0, S0, T0), diam(vj , Sj , Tj) ≤ D̂(C). Also, (by step
2(b)iiB of Procedure SC), E(Pi), E(Pj) ⊆ E(T ′), and ui, wi ∈ V (Pi), uj , wj ∈ V (Pj),
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implying that

distG(T ′)(ui, wi) ≤ distG(Pi)(ui, wi) ≤ δ ,
distG(T ′)(uj , wj) ≤ distG(Pj)(uj , wj) ≤ δ .

To conclude

distG(T ′)(zi, zj) ≤ diam(vi, Si, Ti) + δ + diam(v0, S0, T0) + δ + diam(vj , Sj , Tj)

≤ 3D̂(C) + 2δ.

It is easy to see that this bound applies to the distance between any pair of vertices
zi, zj in S′.

For any 1 ≤ j ≤ J − 1, let Cj be the input partition of the jth invocation of
Procedure SC and let (C′j , Hj ,Rj) be the output returned by this invocation. The
collection of clusters RJ is defined to be the set R created in step 4 of Algorithm
Sp Cons. We refer to clusters of Rj as the jth level clusters of the resulting partition.
Note that these clusters are never merged again in subsequent iterations.

By steps 1 and 3 of Procedure SC, and since after step 1 of Procedure SC no
cluster is inserted into the collection of uncovered spanners U , we have that for every
1 ≤ j ≤ J − 1,

Rj ⊆ Cj .(1)

Also, for every 1 ≤ j ≤ J − 1, since on the jth iteration of Algorithm Sp Cons,
Procedure SC is invoked with distance parameter δj , by Lemma 3.1

D̂(C′j) ≤ 3D̂(Cj) + 2δj .(2)

Lemma 3.2. For every integer 0 ≤ j ≤ J − 2,

Rj+1 ⊆ Cj+1 = C′j ∪
⋃

i∈τj+1

Ai(G).

Also, RJ ⊆ C′J−1 ∪
⋃

i∈τJ
Ai(G).

Proof. The first statement of the lemma follows by step 3(a) of Algorithm
Sp Cons and using (1). The second statement follows from the definition of RJ

and step 4 of Algorithm Sp Cons.
Lemma 3.3. For every integer 1 ≤ j ≤ J − 1,

(a) D̂(C′j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
,

(b) D̂(Cj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
.

Proof. By induction on j. For the induction base for j = 1, note that the first
invocation of Procedure SC is with C =

⋃
i∈τ1
Ai(G). By definition of Ai(G) we have

D̂(C) < D̂(AtJ−1κ(G)) ≤ 2tJ−1κ, establishing claim (b). Claim (a) now follows by
inequality (2).
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For the induction step, assume the claims for j between 1 and J − 2 and consider
j + 1. The parameter δ in the invocation of Procedure SC that formed the clusters
of C′j+1 was equal to δj+1 = Υ(j+1)/J . By the induction hypothesis

D̂(C′j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
.(3)

By step 3(a) of Algorithm Sp Cons, Cj+1 = C′j ∪
⋃

i∈τj+1
Ai(G). Hence

D̂(Cj+1) ≤ max

⎧⎨⎩D̂(C′j), D̂
⎛⎝ ⋃

i∈τj+1

Ai(G)
⎞⎠⎫⎬⎭ .(4)

By definition of Ai(G) and tj

D̂(
⋃

i∈τj+1

Ai(G)) ≤ 2κtJ−(j+1) ≤ κ

2J−j−3
.

Recall that Υ1/J = Ω(κ/2J−3). Also, if Υ is set in such a way that Υ1/J is a
sufficiently large constant (e.g., Υ1/J ≥ 4), then 2j ≤ Υ(j−1)/J , and thus

D̂

⎛⎝ ⋃
i∈τj+1

Ai(G)
⎞⎠ ≤ κ

2J−j−3
≤ Υj/J ≤

j∑
l=1

3j−lΥl/J .(5)

Now using inequalities (3), (4), and (5), we get

D̂(Cj+1) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
,

yielding claim (b). Also by inequality (2),

D̂(C′j+1) ≤ 3 · 2
(

3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ 2Υ(j+1)/J

= 2

(
3j+1κtJ−1 +

j+1∑
l=1

3j+1−lΥl/J

)
,

yielding claim (a).
Corollary 3.4. For every integer 1 ≤ j ≤ J ,

D̂(Rj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
.

Proof. For 1 ≤ j ≤ J − 1 the claim follows from Lemma 3.3 by (1). For j = J ,
we get by step 4 of Algorithm Sp Cons that

D̂(RJ) ≤ max{κ, D̂(C′J−1)} ≤ 2

(
3J−1κtJ−1 +

J−1∑
l=1

3J−lΥl/J

)
.(6)
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3.2. Bounding the construction size. In this section we bound the size of
the subgraph returned by Algorithm Sp Cons. First, by Lemma 2.2, the number
of edges inserted into the subgraph H by Procedure Down Part (i.e., by step 1 of
Algorithm Sp Cons) is O(n1+1/κ). Next, we analyze the number of edges inserted
into the subgraph H at step 3 of Algorithm Sp Cons.

As each of the superclusters created by Procedure SC contains at least σ (disjoint)
clusters of the input partition C, we have the following.

Lemma 3.5. Let C′ denote the spanned partition output by an invocation SC(C, σ,
δ) of Procedure SC. Then Š(C′) ≥ σ · Š(C).

Lemma 3.6. Let H denote the subgraph output by an invocation of Procedure
SC(C, σ, δ). Then |E(H)| = O(nσδ/Š(C)).

Proof. Note that by definition of spanned partition, C is a collection of disjoint
clusters. Hence |C| ≤ n/Š(C).

Consider the supergraph G′ in which every vertex represents a cluster of C and
there is an edge between two vertices if and only if the corresponding two clusters
are at distance of at most δ in G. Step 2 of Procedure SC creates a forest F of
disjoint star-like trees covering a subset of vertices of G′. It then inserts into H the
spanning trees of all the clusters of C corresponding to the vertices of G′ covered by
F (summing up to O(n) edges) and the paths in G corresponding to the edges of F .
As F is a forest,

|E(F)| ≤ |V (F)| ≤ |C| ≤ n/Š(C) .

Also each path represented by an edge of F has length of at most δ. Hence step 2 of
Procedure SC inserts at most nδ/Š(C) edges into H.

Note that after removing from G′ the vertices covered by F , the removed super-
graph has maximal degree of at most σ. Hence the number of remaining edges is at
most |C|σ ≤ nσ/Š(C). Step 4 inserts into H all the paths corresponding to the edges
left in G′. Hence it inserts at most nσδ/Š(C) edges.

It follows that overall, the number of edges inserted by Procedure SC is at most

nσδ/Š(C) + nδ/Š(C) + n = O(nσδ/Š(C)).

Lemma 3.7. For any 1 ≤ j ≤ J − 1, Š(Cj) ≥ ntJ−j+1 .
Proof. The proof is by induction on j. The induction base is j = 1. Recall that

G is the ground partition returned by Procedure Down Part. In iteration 1,

Š(C1) = Š

(⋃
i∈τ1

Ai(G)
)

= Š(AtJκ(G)) ≥ ntJ

by Lemma 2.1.
For the induction step, let 1 < j < J−1, and assume (by the inductive hypothesis)

that Š(Cj) ≥ ntJ−j+1 . Since σj = ntJ−j−tJ+1−j , Lemma 3.5 implies that

Š(C′j) ≥ Š(C) · σj ≥ ntJ+1−j · ntJ−j−tJ+1−j = ntJ−j .

Also Cj+1 = Cj ∪
⋃

i∈τj+1
Ai(G). Hence Š(Cj+1) ≥ min{Š(C′j), Š(

⋃
i∈τj+1

Ai(G))}.
Since by Lemma 2.1, Š(

⋃
i∈τj+1

Ai(G)) ≥ ntJ−j , the lemma follows.

Lemma 3.8. At the end of step 3 of Algorithm Sp Cons, |E(H)| = O(Υn1+1/κ).
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Proof. By Lemma 3.7, |Cj | ≤ n/Š(Cj) ≤ n1−tJ−j+1 . Hence by Lemma 3.6, in
the jth iteration, Procedure SC inserts into the output subgraph Hj no more than
δjn

1−tJ−j+1σj edges. Hence

|E(Hj)| ≤ n1−tJ−j+1ntJ−j−tJ−j+1δj = n1+tJ−j−2tJ−j+1δj .(7)

Observe that the exponent is

1 + tJ−j − 2tJ−j+1 = 1 +
κ− (2J−j−1 − 1)

2J−j−1κ
− 2 · κ− (2J−j − 1)

2J−jκ
=

κ+ 1

κ
.

Thus |E(Hj)| = O(n1+1/κΥj/J). Hence the size of the subgraph H generated at the
end of step 3 of Algorithm Sp Cons can be bounded by

|E(H)| ≤
J∑

j=1

|E(Hj)| = O(n1+1/κ)

J∑
j=1

(Υ1/J)j = O(Υn1+1/κ) .

Lemma 3.9. Step 5 of Algorithm Sp Cons inserts at most O(Υn2/κ) additional
edges to the subgraph H.

Proof. By Lemma 3.2,

RJ ⊆ C′J−1 ∪
⋃
i∈τJ

Ai(G) ,

and thus

Š(RJ) ≥ min

{
Š(C′J−1), Š

(⋃
i∈τJ

Ai(G)
)}

= min

{
Š(C′J−1), min

i≥κt1
Š(Ai(G))

}
.

By Lemma 3.5, Š(C′J−1) ≥ nt2nt1−t2 = nt1 . By Lemma 2.1, mini≥κt1{Š(Ai(G))} ≥
nt1 . Hence Š(RJ) ≥ nt1 . Thus the number of pairs of such clusters is no greater than
n2−2t1 = n2/κ. Since the path inserted into the output subgraph between each pair is
of length at most 2 ·Υ, the total number of edges inserted is at most O(Υn2/κ).

Combining Lemmas 3.8 and 3.9, we have the following.
Corollary 3.10. The size of the subgraph output by Algorithm Sp Cons is

O(Υn1+1/κ).

3.3. Stretch analysis. In this section we bound the stretch of the spanner H
output by Algorithm Sp Cons. This is done by considering a pair of nodes u,w ∈ V ,
and one of the shortest paths P between u and w in G. This path is partitioned to
segments of length no longer than ΥJ . It is convenient to visualize this path as going
from left to right, from u to w (see Figure 5).

Consider some segment P ′ and let u′ (resp., w′) be its left (resp., right) endpoint.
For a set X of clusters, a node u (resp., a path P ) is said to be X-clustered if u ∈ C
(resp., V (P ) ⊆ C) for some cluster C of X. Let uJ (resp., wJ) be the leftmost
(resp., rightmost) RJ -clustered node of P ′, and let CuJ

and CwJ
be the clusters

such that uJ ∈ CuJ
and wJ ∈ CwJ

. Since distG(CuJ
, CwJ

) ≤ distG(uJ , wJ) ≤ Υ,
there is a path of length distG(CuJ

, CwJ
) between some nodes u′′ ∈ CuJ

and w′′ ∈
CwJ

in the spanner H. It follows that there is a path of length no longer than
distG(uJ , wJ) + diam(CuJ

) + diam(CwJ
) between uJ and wJ in H.

Next, we consider the subpaths from u to uJ , and from wJ from w for every
segment of P , and observe that these subpaths are (Z ∪ ⋃J−1

i=1 Ri)-clustered. We
partition these subpaths into subsegments of length Υ(J−1)/J , on each subsegment
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Fig. 5. The path Pu,w and the clusters along it.

find the leftmost and the rightmost RJ−1-clustered nodes and use the “short” paths
between their clusters in the spanner. This argument is repeated recursively J times,
until we are left with Z-clustered subpaths, whose stretch can be easily bounded.

We next present a rigorous argument formalizing the above intuitive description.
First, the following lemma can be proved using Lemmas 2.4 and 2.5 by a straightfor-
ward induction on the number of iterations of the algorithm.

Lemma 3.11. All the spanned partitions created throughout Algorithm Sp Cons

are adjacency-preserving with respect to the resulting subgraph H returned by the al-
gorithm.

Next, we establish the following property of adjacency-preserving partitions that
will be later used in the stretch analysis.

Lemma 3.12. Let u,w ∈ V be a pair of nodes in the graph G = (V,E), and let
Pu,w = (u = u0, u1, . . . , ux = w) ⊆ E be one of the shortest paths between them. Let
H be a subgraph of G with E(H) ⊆ E, and let S be an adjacency-preserving spanned
partition with respect to H, such that V (Pu,w) ⊆ ⋃(v,S,T )∈S S. For i = 0, 1, . . . , x,

let (vi, Si, Ti) ∈ S be spanned clusters such that ui ∈ Si. (This is well-defined, since
V (Pu,w) ⊆ ⋃(v,S,T )∈S S, and the clusters of S are disjoint, by definition of spanned

partition.) Finally, let u′0 ∈ S0, u
′
x ∈ Sx be some nodes. Then

distH(u′0, u
′
x) ≤

x∑
i=0

(diam(vi, Si, Ti) + 1)− 1 .

Proof. The proof is by induction on x. The induction base is x = 0. Then
{S0, . . . , Sx} = {S0}, and u = w ∈ S0. Let u′0, u

′
x ∈ S0 be some arbitrary nodes in

this cluster. Since T0 ⊆ H, distH(u′0, u
′
x) ≤ diam(v0, S0, T0), as required.

For the induction step, assume that the statement of the lemma is true for some
x ≥ 0. Consider the pair of neighboring clusters Sx, Sx+1. The edge (ux, ux+1)
between them is spanned either through Sx or through Sx+1. In the former case,
there exists a node u′x ∈ Sx such that the edge (u′x, ux+1) is in H. In the latter case,
there exists a node u′x+1 such that the edge (ux, u

′
x+1) is in H.

Consider some pair of nodes u′′0 ∈ S0, u
′′
x+1 ∈ Sx+1. In the case when the edge

(ux, ux+1) is spanned through Sx, using the induction hypothesis for the pair of nodes
u′′0 ∈ S0 and u′x ∈ Sx, it follows that

distH(u′′0 , u
′′
x+1) ≤ distH(u′′0 , u

′
x) + distH(u′x, ux+1) + distH(ux+1, u

′′
x+1)

≤
(

x∑
i=0

(diam(vi, Si, Ti) + 1)− 1

)
+ 1 + diam(vx+1, Sx+1, Tx+1)

=

x+1∑
i=0

(diam(vi, Si, Ti) + 1)− 1 .
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The case when the edge (ux, ux+1) is spanned through Sx+1 follows symmetri-
cally.

We use the following notions. For 0 ≤ j ≤ J , a path P in G is called a class-j
path if it contains only (Z ∪⋃j

i=1Ri)-clustered vertices (in particular, P is a class-0
path if all its vertices are Z-clustered). A pair of vertices u,w is j-reachable if there
is a shortest path between them that is a class-j path.

For every 1 ≤ j ≤ J denote

γj =

j∑
i=1

2i · D̂(Rj−i+1).

For a real r, let down(r) = �r − 1.
Lemma 3.13. For every integer 1 ≤ j ≤ J , and for every j-reachable pair of

vertices u′j , u
′′
j ,

distH(u′j , u
′′
j ) ≤ distG(u′j , u

′′
j )

(
2 · down(tJκ) + 1 +

j∑
i=1

γi
Υi/J

)
+ γj .

Proof. Let P be a class-j path in G between u′j and u′′j . It is convenient to
visualize the path P as going from left to right, with the vertex u′j at the leftmost
end and the vertex u′′j the rightmost end. We prove by induction on j a claim that
is slightly stronger than the statement of the lemma. Specifically, let S′

j , S
′′
j be the

clusters such that u′j ∈ S′
j , u

′′
j ∈ S′′

j . Let v′j ∈ S′
j , v

′′
j ∈ S′′

j be arbitrary nodes. Then

distH(v′j , v
′′
j ) ≤ distG(u′j , u

′′
j )

(
2 · down(tJκ) + 1 +

j∑
i=1

γi
Υi/J

)
+ γj .

Induction base (j = 1): We claim that

distH(v′1, v
′′
1 ) ≤ distG(u′1, u

′′
1)
(
2 · down(tJκ) + 1 +

γ1

Υ1/J

)
+ γ1(8)

for a pair of 1-reachable vertices u′1 ∈ S′
1, u

′′
1 ∈ S′′

1 and any pair of nodes v′1 ∈ S′
1,

v′′1 ∈ S′′
1 .

We separate the discussion to two cases.
Case 1. distG(u′1, u

′′
1) ≤ 2Υ1/J .

Case 1.1. If the path P is a class-0 path, then it contains only Z-clustered

vertices. Note that Z =
⋃

i<tJκ
Ai(G) =

⋃down(tJκ)
i=0 Ai(G). Denote

z = down(tJκ). By Lemmas 3.11 and 3.12,

distH(v′1, v
′′
1 ) ≤ (distG(u′1, u

′′
1) + 1)

(
D̂(Z) + 1

)
− 1

≤ distG(u′1, u
′′
1)(2z + 1) + 2z .

Case 1.2. If the path P contains only one R1-clustered vertex, then by
Lemmas 3.11 and 3.12,

distH(v′1, v
′′
1 ) ≤ distG(u′1, u

′′
1)(2z + 1) + D̂(R1) ,

and, again, we are done.
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Case 1.3. It therefore remains to consider only the case where at least
two vertices in the path P are R1-clustered. Let l2 be the distance
between the leftmost R1-clustered vertex, w′

1 ∈ S′
1, and the rightmost

R1-clustered vertex, w′′
1 ∈ S′′

1 , of P . Hence the two subpaths, from v′1
to w′

1 and from w′′
1 to v′′1 , are spanned with multiplicative stretch of at

most (D̂(Z) + 1). The distance between S′
1 and S′′

1 in G is at most
2Υ1/J = 2δ1(Υ, J). Since at iteration 1 of Algorithm Sp Cons, at step
4 of Procedure SC the shortest paths between all the pairs of clusters
from R1 that are at distance at most 2δ1(Υ, J) one from another were
inserted into the subgraph H, it follows that there exist nodes z′1 ∈ S′

1,
z′′1 ∈ S′′

1 such that distH(z′1, z
′′
1 ) = distG(w′

1, w
′′
1 ) = l2. By Lemmas 3.11

and 3.12,

distH(v′1, z
′
1) ≤ distG(u′1, w

′
1)(2z + 1) + D̂(R1) ,

distH(z′′1 , v
′′
1 ) ≤ distG(w′′

1 , u
′′
1)(2z + 1) + D̂(R1) .

Hence

distH(v′1, v
′′
1 ) ≤ (distG(u′1, u

′′
1)− l2)(2z + 1) + 2D̂(R1) + l2

≤ distG(u′1, u
′′
1)(2z + 1) + 2D̂(R1) .(9)

Case 2. distG(u′1, u
′′
1) > 2Υ1/J . By partitioning the path P into segments of length

Υ1/J , we get distG(u′1, u
′′
1) = (a−1)Υ1/J +Υ′, where Υ1/J < Υ′ < 2Υ1/J and

a = �distG(u′1, u
′′
1)/Υ1/J�. Applying the previous argument to each segment

separately, it follows that

distH(v′1, v
′′
1 ) ≤ (a− 1)

(
Υ1/J(2z + 1) + 2D̂(R1)

)
+ Υ′(2z + 1) + 2D̂(R1)

= distG(u′1, u
′′
1)(2z + 1) + 2a · D̂(R1)

≤ distG(u′1, u
′′
1)(2z + 1) +

distG(u′1, u
′′
1) · 2D̂(R1)

Υ1/J

= distG(u′1, u
′′
1)
(
2z + 1 +

γ1

Υ1/J

)
.(10)

As γ1 = 2D̂(R1), the expression (8) dominates both (9) and (10), completing
the proof of the induction base.

Induction step: Assume the induction hypothesis for some integer 1 < j ≤ J − 1.
Consider a class-(j + 1) path P connecting u′ and u′′ in G. Let v′ (resp., v′′) be an
arbitrary node in the same cluster as u′ (resp., u′′).
Case 1. P is of length no greater than Υ(j+1)/J .

We break the discussion into three subcases.
Case 1.1. If no Rj+1-clustered vertex appears in the path P , we apply the

induction hypothesis and we are done.
Case 1.2. Exactly one Rj+1-clustered vertex w appears on P . Let w′ be

the left-hand neighbor of w and let w′′ be the right-hand neighbor of
w. Denote by S (resp., S′; S′′) the cluster that contains w (resp., w′;
w′′). Let P ′ (resp., P ′′) be the path between u′ and w′ (resp., w′′ and
u′′). Note that both subpaths P ′ and P ′′ are class-j paths (see Figure
6). Hence, the induction hypothesis is applicable to these subpaths.
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v’ u’ w’ w w’’ u’’ v’’P’’P’

S’
S

S’’

Fig. 6. The solid lines represent class-j paths P ′ and P ′′. The cluster S is in Rj+1.

Therefore,

distH(v′, v′′) ≤ distH(v′, w′) + distH(w′, w′′) + distH(w′′, v′′)

≤ (distG(u′, u′′)− 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+2γj + distH(w′, w′′) .

The analysis decomposes again to three subsubcases.
Case 1.2.1. The first is that both edges (w′, w) and (w,w′′) are spanned

through the cluster S, i.e., there exist nodes z, y ∈ S such that the
edges (w′, z) and (y, w′′) are in H. Then

distH(w′, w′′) ≤ distH(w′, z) + distH(z, y) + distH(y, w′′)
≤ 2 + D̂(Rj+1) .

Case 1.2.2. The edge (w′, w) is spanned through the cluster S′, and
the edge (w,w′′) is spanned through the cluster S′′. In this sit-
uation there exist nodes z′ ∈ S′, z′′ ∈ S′′ such that the edges
(z′, w) and (w, z′′) are in H. Thus distH(w′, w′′) ≤ distH(w′, z′) +
distH(z′, z′′) + distH(z′′, w′′). However, we observe that the induc-
tion hypothesis is applicable to the pairs of nodes v′, z′ and z′′, v′′

as well. Note also that distH(z′, z′′) = 2. Hence

distH(v′, v′′) ≤ distH(v′, z′) + distH(z′, z′′) + distH(z′′, v′′)

≤ (distG(u′, u′′)− 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ 2γj + 2 .

Case 1.2.3. The edge (w′, w) is spanned through the cluster S′, and
the edge (w,w′′) is spanned through the cluster S (the situation
when the edge (w′, w) is spanned through the cluster S, and the
edge (w,w′′) is spanned through the cluster S′′ is symmetrical to
this one). In this subcase there exist nodes z′ ∈ S′, z ∈ S such that
the edges (z′, w) and (z, w′′) are in H. Hence we may apply the
induction hypothesis to the pairs v′, z′ and w′′, v′′, and get

distH(v′, v′′) ≤ (distG(u′, u′′)− 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+2γj + 2 + D̂(Rj+1) .
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In all these three subsubcases,

distH(v′, v′′) ≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ 2γj + D̂(Rj+1) .

This expression is smaller than the bound in Lemma 3.13 with j + 1
substituted for j, and so we are done in Case 1.2 too.

Case 1.3. There are at least two Rj+1-clustered vertices in P . Let w (resp.,
z) be the leftmost (resp., rightmost) such vertex. Again, let w′ (resp., z′′)
denote the left-hand (resp., right-hand) neighbor of w (resp., z). Denote
by Sw, Sz, S

′, and S′′ the clusters such that w ∈ Sw, z ∈ Sz, w
′ ∈ S′,

and z′′ ∈ S′′. Observe that H contains a path of length distG(Sw, Sz) ≤
distG(w, z) between Sw and Sz. Similarly to the analysis of Case 1.2,
where there was only one Rj-clustered node in P , we decompose the
analysis to subcases depending on whether the edge (w′, w) is spanned
through Sw or S′, and on whether the edge (z, z′′) is spanned through Sz

or S′′. Like in that situation, we apply the induction hypothesis on the
subpaths between v′ and w′ (or some other appropriate node in S′) and
between z′′ (or some other appropriate node in S′′) and v′′. Recall that
distG(Sw, Sz) ≤ 2Υ(j+1)/J = 2δj+1(Υ, J). Also, at (j + 1)st iteration of
Algorithm Sp Cons, at step 4 of Procedure SC (if j < J−1; if j = J−1
then at step 4 of Algorithm Sp Cons) one of the shortest paths between
Sw and Sz in G was inserted into H. Thus

distH(v′, v′′) ≤ (distG(u′, u′′)− distG(w, z))

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ 2γj + 2D̂(Rj+1) + distG(w, z)

≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ γj+1 .(11)

Case 2. distG(u′, u′′) > 2Υ(j+1)/J . In this situation, we partition the path into
segments of length Υ(j+1)/J each, except the last segment which may be of
length between Υ(j+1)/J and 2Υ(j+1)/J . We next show that in this situation
γj+1 divided by Υ(j+1)/J is introduced into the multiplicative term. Formally,
distG(u′, u′′) = (a − 1)Υ(j+1)/J + Υ′, where Υ(j+1)/J < Υ′ < 2Υ(j+1)/J and
a = �distG(u′1, u

′′
1)/Υ1/J�. Then

distH(v′, v′′) ≤ (a− 1)

((
2z + 1 +

j∑
i=1

γi
Υi/J

)
Υ(j+1)/J + γj+1

)

+

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
Υ′ + γj+1

=

(
2z + 1 +

j∑
i=1

γi
Υi/J

)(
(a− 1)Υ(j+1)/J + Υ′

)
+ γj+1a

≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ γj+1

distG(u′, u′′)
Υ(j+1)/J

= distG(u′, u′′)

(
2z + 1 +

j+1∑
i=1

γi
Υi/J

)
.(12)
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In summary, for any (j + 1)-reachable pair of vertices u′ ∈ S′, u′′ ∈ S′′,
and for any pair of nodes v′ ∈ S′, v′′ ∈ S′′ the bound distH(v′, v′′) ≤
distG(u′, u′′)(2z+1+

∑j+1
i=1

γi

Υi/J )+ γj+1 dominates both former bounds (11)
and (12) on distH(v′, v′′).

Observe that any path in G is a class-J path. Hence by Lemma 3.13 we have the
following corollary.

Corollary 3.14. For any pair of vertices u′, u′′, distH(u′, u′′) ≤ α·distG(u′, u′′)
+ β for α = 2 · down(tJκ) + 1 +

∑J
i=1

γi

Υi/J and β = γJ .

Lemma 3.15. For Υ and J such that Υ1/J ≥ 6 and for any 1 ≤ j ≤ J , γj =
O(tJ−1κ · 3j + Υ(j−1)/J).

Proof. By the definition of γj , γj =
∑j−1

i=0 2j−iD̂(Ri+1) for any 1 ≤ j ≤ J . Next

substitute the explicit formula for D̂(Rj) given in Corollary 3.4 and get (dividing the
expression by 4 for convenience)

γj
4
≤ 2j−1tJ−1κ+ 2j−2

(
3tJ−1κ+ Υ1/J

)
+ · · ·+ 20

(
3j−1κtJ−1 +

j−1∑
i=1

3j−1−iΥi/J

)

= tJ−1κ

j−1∑
i=0

3i2j−1−i +

j−1∑
l=1

(
Υl/J

j−l−1∑
i=0

3i2j−l−1−i

)
.(13)

Note that for any integer p ≥ 1,
∑p

i=0 3i2p−i < 3p 1
1−2/3 = 3p+1. Since Υ1/J ≥ 6,

γj/4 ≤ tJ−1κ3
j +

j−1∑
i=1

Υi/J3j−i ≤ tJ−1κ3
j + Υ(j−1)/J3

j−2∑
i=0

(
3

Υ1/J

)i

< tJ−1κ3
j + 6Υ(j−1)/J .

Lemma 3.16. For Υ and J such that Υ1/J ≥ 6,
1. the additive term is β = O(tJ−1κ · 3J + Υ(J−1)/J),

2. the multiplicative factor is bounded by α = 1 + 2 · down(tJκ) +O(J+tJ−1κ

Υ1/J ).
Proof. By Corollary 3.14 and substituting j = J in Lemma 3.15, we get

α ≤ 1 + 2 · down(tJκ) +

J∑
j=1

γj
Υj/J

≤ 1 + 2 · down(tJκ) +O

(
J

Υ1/J

)
+O

⎛⎝tJ−1κ

J∑
j=1

3j

Υj/J

⎞⎠
≤ 1 + 2 · down(tJκ) +O

(
J

Υ1/J

)
+O

(
tJ−1κ · 1

Υ1/J
· 1

1− 3/Υ1/J

)
= 1 + 2 · down(tJκ) +O

(
J + tJ−1κ

Υ1/J

)
and β = O(tJ−1κ3

J + Υ(J−1)/J). This completes the proof of Lemma 3.16.
Theorem 3.17. For any fixed 0 < ε < 1 and fixed integer 2 ≤ κ = O(log n) there

exists a fixed β = β(κ, ε) = κmax{log log κ−log ε,3} such that for any graph G, running
Algorithm Sp Cons on G, κ, J = log κ and β yields a (1 + ε, β)-spanner of G with
O(βn1+1/κ) edges.
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Proof. Since ti = (κ−2i−1) / (2i−1κ), it is sufficient to set J = �log κ in order to
ensure tJκ ≤ 1, i.e., down(tJκ) = 0. Therefore, substituting J = �log κ into Lemma

3.16 implies that the multiplicative factor of the stretch is α = 1 + O( log κ
Υ1/ log κ ) and

the additive term is β = O(Υ(log κ−1)/ log κ + κlog 3). To get a multiplicative stretch
of 1 + ε for any fixed 0 < ε < 1 and to ensure that Υ1/J ≥ κ/2J−3 = 8, we set
Υ1/ log κ = max{ε−1 log κ, 8}, or Υ = κmax{log log κ−log ε,3}. The theorem now follows
by Corollary 3.10.

Note that for κ = Θ(logn) the size of the spanner becomes O(β(κ, ε)n) = o(n1+ν)
for any ν > 0, and so there is no reason to consider values of κ greater than
O(log n).

Corollary 3.18. For any constant ε > 0, λ > 0 there exists a constant β′(ε, λ)
such that for any n-vertex graph G = (V,E) there exists a polynomial time con-
structible subgraph H, E(H) ⊆ E, with O(n1+λ) edges, such that for every pair of
vertices u,w ∈ V with distG(u,w) ≥ β′(ε, λ), distH(u,w) ≤ (1 + ε)distG(u,w).

Proof. By Theorem 3.17 there exists a constant β(ε/2, �1/λ) such that there
exists a polynomial time constructible (1+ ε/2, β(ε/2, �1/λ))-spanner H, E(H) ⊆ E,
with O(n1+λ) edges. Set β′(ε, λ) = 2β(ε/2, �1/λ) / ε and observe that for any pair
of vertices u,w ∈ V with distG(u,w) ≥ β′(ε, λ),

distH(u,w) ≤ (1 + ε/2)distG(u,w) + β(ε/2, �1/λ) ≤ (1 + ε)distG(u,w) .

In order to get a multiplicative stretch factor asymptotically close to 1 we just
substitute ε = 1/ logb n for any constant b in Theorem 3.17.

Corollary 3.19. For any fixed integer 2 ≤ κ = O(log n) and constant b > 0 and
for any graph G, running Algorithm Sp Cons with G, κ, β(κ, n) = κlog log κ logb log κ n
and J = log κ yields a (1 + 1/ logb n, β(κ, n))-spanner of G with O(β(κ, n) · n1+1/κ)
edges.

Again, for any constant κ ≥ 2 this yields a (1 + 1/polylogn,polylogn)-spanner
with Õ(n1+1/κ) edges.

In order to get an almost linear number of edges (or formally, o(n1+ν) for any

ν > 0) we substitute ε = (logn)log
(3) n and κ = log n in Theorem 3.17, and get the

following.

Corollary 3.20. For any graph G, running Algorithm Sp Cons with G, κ =

log n, β(n) = (logn)O(log(2) n log(3) n) and J = log κ yields a (1+1/(log n)log
(3) n, β(n))-

spanner of G with O(β(n)n) edges.

Theorem 3.17 also enables us to decrease the multiplicative stretch to 1 +

2− logn/ log(b) n while not significantly increasing the other parameters. Specifically,
we obtain the following.

Corollary 3.21. For any fixed 2 ≤ κ = O(log n), constant b ≥ 2 and graph
G, running Algorithm Sp Cons with G, κ, J = log κ and β(κ, n) = κlog log κ ·
2log κ logn/log(b) n yields a (1 + 2− logn/ log(b) n, β(κ, n))-spanner of G with O(β(κ,

n)n1+ 1
κ ) edges.

In particular, for κ = log n this yields a (1 + 2− log n/ log(b) n, 2O(log n/ log(b) n))-

spanner with 2O(log n/log(b) n)n edges.

Finally, we remark that for some specific small values of κ, tighter bounds on
ε and β parameters of the spanner that is constructed by Algorithm Sp Cons, can
be obtained (see the preliminary versions of this paper [9, 10] for the details). In
particular, the following statements hold.
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Theorem 3.22.

1. Algorithm Sp Cons, when run with parameter κ = 2, yields a construction
of an additive 2-spanner with O(n3/2) edges.

2. Algorithm Sp Cons, when run with parameter κ = 3, yields a construction
of a (1 + ε, 4)-spanner with O(ε−1n4/3) edges for any ε > 0.

The first result improves by a logarithmic factor the result of [7] and it is tight
up to constant factors due to an Ω(n3/2) lower bound of [16]. However, the running
time of Algorithm Sp Cons with parameter κ = 2 is O(n5/2), which is significantly
larger than the running time of the algorithm of [7], which is Õ(n2). The second result
significantly improves the previously known construction of 5-spanner with O(n4/3)
edges, due to [1].

4. Running time. In this section we analyze the running time of Algorithm
Sp Cons. We then show that it can be modified to run in time Õ(n2+µ), for arbitrarily
small µ > 0, while maintaining α, β and the size of the generated spanner as before.

4.1. Time complexity of Algorithm SP CONS. We start by analyzing the
running time of Algorithm Sp Cons as described above, without modifications.

Lemma 4.1. The running time of Procedure Down Part is O(|E|+n1+1/κ log n).

Proof. Procedure Down Part starts by picking a vertex and running a depth-
limited version of the unweighted BFS algorithm from this vertex. The BFS algorithm
continues adding new layers until the next iteration increases the size of the cluster by
a factor smaller than n1/κ. Let S be some cluster of the spanned partition G built by
the procedure. By using appropriate data structures, the operation of counting the
number of vertices at the next layer that joins the cluster takes O(|S|n1/κ log(|S|n1/κ))
time, since the total number of vertices involved in this process is O(|S|n1/κ). Hence
summing over all the cluster constructions, the running time invested in deciding
whether to terminate the construction of the current cluster and to start the con-
struction of the next cluster is

∑
S∈G

O(|S|n1/κ log(|S|n1/κ)) = O

(
n1/κ log n

∑
S∈G
|S|
)

= O(log n · n1+1/κ) .

Note that when constructing a new cluster, Procedure Down Part might touch
the vertices of the shell of an already built cluster S, but it will never explore again the
edges that have at least one endpoint in S. Note also that the edges connecting two
vertices of the shell of S were not explored during the construction of the cluster S.
Thus Procedure Down Part never re-explores edges that were previously explored.

For a cluster Si ∈ G, let E′(Si) be the set of edges explored during the construction
of the cluster Si. By the above considerations, E′(Si)∩E′(Sj) = ∅ for any two clusters
Si, Sj ∈ G. Also ∪S∈GE′(S) ⊆ E. The depth-limited unweighted BFS algorithm that
explores m′ edges and n′ vertices requires O(m′ + n′ log n′) time. Hence the total
running time of all invocations of the depth-limited unweighted BFS algorithm by
Procedure Down Part is

∑
S∈G |E′(S)| + O(n1+1/κ log n) = O(|E| + n1+1/κ log n).

Hence the overall running time of the procedure is O(|E|+ n1+1/κ log n).

Note that the problem is interesting mainly when |E| is greater than O(n1+1/κ),
since otherwise the graph itself may serve as its own sparse 1-spanner, with O(n1+1/κ)
edges.

Lemma 4.2. Procedure SC can be executed on an input spanned partition C in
O(|E|n/Š(C)) time.
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Proof. It is easy to see that the most expensive parts of Procedure SC are
steps 2(b)iiA and 4, which are concerned with computing the shortest paths between
clusters. This task can be performed by running BFS algorithm separately from every
cluster. Note that BFS algorithm enables computing all the distances from a single
source, where this source need not be a single vertex but may be a subset of vertices
as well. Recall that for a subset of vertices U and a vertex v, the distance between
U and v is min{distG(u, v) | u ∈ U}. Each invocation of BFS algorithm requires
O(|E| + n · log n) = O(|E|) time. The number of clusters is O(n/Š(C)). Hence the
running time of the procedure is O(|E|n/Š(C)).

Lemma 4.3. The running time of Algorithm Sp Cons is O(|E|n(κ−1)/κ).
Proof. The dominant term in the time complexity of the algorithm is the running

time of the very first invocation of Procedure SC. In this invocation, Š(G) ≥ n1/κ,
and so by Lemma 4.2 it requires O(|E|n(κ−1)/κ) time. The running time of all later
invocations of SC is significantly smaller, as those are applied to spanned partitions
C with Š(C) ≥ n2/κ. The complexity of step 5 can be analyzed along the same lines
as in the proof of Lemma 4.2 and shown to be at most O(|E|n1/κ). The running
time of Procedure Down Part is at most O(|E| + n1+1/κ log n). Thus, the overall
complexity of Algorithm Sp Cons is O(|E|n(κ−1)/κ).

4.2. Speeding up algorithm SP CONS. In this section we present a modifi-
cation of Algorithm Sp Cons that has smaller time complexity, but α, β and size
parameters similar to those of section 3.3.

The main idea is to save time by finding almost shortest paths instead of shortest
ones. Specifically, the modified algorithm receives an additional parameter t ≥ 1.
It starts with invoking an all pairs almost shortest path algorithm APASPt due to
[7]. This algorithm runs for Õ(n2+1/t) time and for every pair of vertices u,w ∈ V
computes a path of length dist ′(u,w) ≤ distG(u,w) + t. Next, the algorithm sorts
the obtained n2 distances in O(n2 log n) time and for each pair maintains the index
in the sorted array (i.e., a pair of closer vertices will have a smaller index). Next, it
runs Algorithm Sp Cons as is, except that whenever it needs to compute a shortest
path between two clusters it uses the precomputed array. Specifically, for two clusters
Si and Sj it takes |Si| · |Sj | time to find the pair of vertices ui ∈ Si, uj ∈ Sj such
that dist ′(ui, uj) = min{dist ′(u,w) | u ∈ Si, w ∈ Sj}. Hence, overall, the approximate
computation of all the distances between clusters of some partition C and all the paths
between close cluster pairs (i.e., at distance bounded by Υi/J for some 1 ≤ i ≤ J)
takes time bounded by

O

⎛⎝ ∑
Si,Sj∈C

Υ|Si| · |Sj |
⎞⎠ ≤ O

⎛⎝Υ

(∑
Si∈C
|Si|
)2
⎞⎠ = O(Υn2) .

Since there are O(J) iterations, the distances and paths for different partitions are
computed O(J) times, i.e., the total running time of computing the distances and
paths is O(JΥn2). Hence, the overall running time of the modified algorithm is
Õ(n2+1/t + JΥn2), and setting J = log κ = O(log log n) and Υ = O(κlog κ) =
O((log n)log log n), the resulting time bound is Õ(n2+1/t).

It remains to analyze the α, β and size parameters of the spanner obtained by
the above modification of Algorithm Sp Cons. First, instead of Lemma 3.1 we now
get

D̂(C′) ≤ 3D̂(C) + 2δ + 2t.(14)

Next, Lemma 3.3 is replaced by the following.
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Lemma 4.4. For every integer 1 ≤ j ≤ J − 1,

(a) D̂(C′j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) ,

(b) D̂(Rj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
+ t(3j−1 − 1) .

Proof. The induction base holds since D̂(R1) ≤ D̂(C1) ≤ 2tJ−1κ + t(30 − 1) =
2tJ−1κ and D̂(C1) ≤ 2(31tJ−1κ+Υ1/J)+t(31−1), by Lemma 3.3 and inequality (14).

The induction hypothesis changes to

D̂(C′j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) .

The inequalities (4) and (5) are unchanged, and hence

D̂(Rj+1) ≤ D̂(Cj+1) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) .

So by inequality (14), it follows that

D̂(Cj+1) ≤ 3 · 2
(

3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ 3t(3j − 1) + 2Υ(j+1)/J + 2t

= 2

(
3j+1κtJ−1 +

j+1∑
l=1

3j+1−lΥl/J

)
+ t(3j+1 − 1) .

Analogously to inequality (6), it follows that

D̂(RJ) ≤ 2

(
3J−1κtJ−1 +

J−1∑
l=1

3J−l−1Υl/J

)
+ t(3J−1 − 1) .

Next, it is easy to see that inequality (7) becomes

|E(Hj)| = O(n1+tJ−j−2tJ−j+1(δJ+1−j + t)) .

Hence

|E(H)| =

J−1∑
j=1

|E(Hj)| = O(n1+1/κ(Υ + tJ)) .

Lemmas 3.13 and 3.14 are unchanged. However, since the expression for D̂(Rj) is
modified, inequality (13) becomes

γj/4 ≤ 2j−1tJ−1κ+ 2j−2
(
3tJ−1κ+ Υ1/J + 2t

)
+ · · ·

+ 20

(
3j−1tJ−1κ+

j−1∑
i=1

3j−1−iΥi/J + t(3j−1 − 1)

)

= tJ−1κ

j−1∑
i=0

3i2j−1−i +

j−1∑
l=1

(
Υl/J

j−l−1∑
i=0

3i2j−l−i−1

)
+ t

j−1∑
i=1

2j−1−i(3i − 1)

≤ tJ−1κ3
j + 6Υ(j−1)/J + t3j = 3j(tJ−1κ+ t) + 6Υ(j−1)/J .

Hence the multiplicative factor is at most 1+2tJκ+O(J+tJ−1κ+t

Υ1/J ), the additive term is
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O((tJ−1κ+ t)3J +Υ(J−1)/J) and the size of the constructed spanner is O(n1+1/κ(Υ+
tJ)), and we have the following.

Theorem 4.5. For any fixed 0 < ε < 1 and fixed integers t ≥ 1 and κ ≥ 2
there exist fixed β̄ = β̄(κ, ε, t) = κmax{log log κ−log ε,3} + t log κ and β̃ = β̃(κ, ε, t) =
κmax{log log κ−log ε,log t,3} such that every n-vertex graph has a (1+ ε, β̃)-spanner of size
bounded by O(n1+1/κβ̄) that can be built in time Õ(n2+1/t).

In particular, setting t = O(log κ) we obtain results analogous to Theorem 3.17
and Corollaries 3.18–3.20 by an algorithm of time complexity Õ(n2+1/ log κ). Getting
a running time of Õ(n2+1/κ) requires raising the additive term to O(κmax{log κ,− log ε}),
which is, nonetheless, still constant for constant κ and ε. This enables us to generalize
Corollary 3.18 and get the following.

Corollary 4.6. For any constant ε > 0, λ > 0, µ > 0 there exists a constant
β′′(ε, λ, µ) such that for any n-vertex graph G = (V,E) there exists a subgraph H,
E(H) ⊆ E, that satisfies the following properties

1. For every pair of vertices u,w ∈ V with distG(u,w) ≥ β′′(ε, λ, µ),
distH(u,w) ≤ (1 + ε)distG(u,w).

2. |E(H)| = O(n1+λ).
3. H can be constructed in Õ(n2+µ) time.

Acknowledgments. We thank Uri Zwick for his helpful comments, corrections
and suggestions of improvements, and an anonymous referee for helpful remarks.
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Abstract. Dynamic storage allocation is the problem of packing given axis-aligned rectangles
into a horizontal strip of minimum height by sliding the rectangles vertically but not horizontally.
Where L = LOAD is the maximum sum of heights of rectangles that intersect any vertical line and
OPT is the minimum height of the enclosing strip, it is obvious that OPT ≥ LOAD; previous work
showed that OPT ≤ 3 ·LOAD. We continue the study of the relationship between OPT and LOAD,
proving that OPT = L + O((hmax/L)1/7)L, where hmax is the maximum job height. Conversely,
we prove that for any ε > 0, there exists a c > 0 such that for all sufficiently large integers hmax,
there is a dynamic storage allocation instance with maximum job height hmax, maximum load at
most L, and OPT ≥ L + c(hmax/L)1/2+εL, for infinitely many integers L. En route, we construct
several new polynomial-time approximation algorithms for dynamic storage allocation, including a
(2 + ε)-approximation algorithm for the general case and polynomial-time approximation schemes
for several natural special cases.

Key words. approximation algorithms, dynamic storage allocation, polynomial-time approxi-
mation schemes

AMS subject classifications. 68Q17, 68Q25, 68W25, 68W40
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1. Introduction. We study a simple rectangle-packing problem: Given a set
of n isothetic (i.e., axis-parallel) open rectangles in the x-y plane, the ith extending
from x-coordinate xi to x-coordinate yi on the real line and having height hi, slide
each rectangle up or down but not sideways so that (1) each rectangle is a subset of
the positive quadrant, (2) the regions of the plane they occupy are pairwise disjoint,
and (3) the supremum of the y-coordinates used is minimized. Resembling off-line
Tetris in which the rectangles slide vertically but not horizontally, this problem is
formally known as dynamic storage allocation for the following reason. View a rect-
angle starting at x-coordinate xi, ending at x-coordinate yi, and of height hi as a
request for hi contiguous bytes of storage starting at time xi and ending at time yi.
Then the problem of finding a rectangle placement that minimizes the supremum of
the y-coordinates used is exactly that of minimizing the number of contiguous bytes
needed to satisfy all memory requests.

Formally, an instance of dynamic storage allocation is a set of some number n of
jobs, each job i being an open interval Ii = (xi, yi) (for rationals xi < yi), which we
assume without loss of generality is a subset of (0, 1), and a positive rational height
hi. We say job i is live at x-coordinate t (or simply live at t) if t ∈ Ii. A feasible
solution is an assignment of a nonnegative real s(i) to each job i such that if we define
S(i) to be the open real interval (s(i), s(i) + hi) (the region of memory assigned to
job i during time period (xi, yi)), then for all t ∈ (0, 1), the jobs i that are live at t
have pairwise disjoint S(i)’s. The goal is to minimize the makespan: maxi{s(i)+hi}.

∗Received by the editors March 11, 2003; accepted for publication (in revised form) September
10, 2003; published electronically March 30, 2004. An extended abstract appears in Proceedings of
the 35th ACM Symposium on Theory of Computing, 2003.

http://www.siam.org/journals/sicomp/33-3/42394.html
†AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park, NJ 07932 (alb@research.att.

com, howard@research.att.com, reingold@research.att.com, mthorup@research.att.com).
‡Laboratoire d’Informatique, Ecole Polytechnique, 91128 Palaiseau Cedex, France (kenyon@lix.

polytechnique.fr).

632



OPT VERSUS LOAD IN DYNAMIC STORAGE ALLOCATION 633

0

1

2

3

4

5

0 1 2 3 4 5

G

A
C

B

D

F

E

H

Fig. 1.1. An optimal packing for the jobs (in the form (xi, yi, hi)) A = (0, 1, 3), B = (0, 3, 1),
C = (1, 2, 2), D = (1, 4, 1), E = (2, 3, 1), F = (2, 5, 1), G = (3, 4, 2), and H = (4, 5, 3). The shaded
region is a gap. In this example, LOAD = 4, but OPT = 5.

By scaling, we will assume that each hi is integral, in which case it is easy to see that
without loss of generality s(i) is integral too.

Dynamic storage allocation was proven NP-complete in 1976 by Stockmeyer.
(See problem SR2 in Garey and Johnson [3].) The first polynomial-time, constant-
factor approximation algorithm was given by Kierstead in 1988 [6], using a reduction
from dynamic storage allocation to on-line coloring of interval graphs discovered by
Woodall in 1973 [8] and independently by Chrobak and Slusarek in 1988 [1]. Kier-
stead’s algorithm is an 80-approximation algorithm. Kierstead [7] later exhibited a
6-approximation algorithm for dynamic storage allocation. The next improvements
were 5- and 3-approximation algorithms by Gergov [4, 5]. Neither of Gergov’s two
algorithms uses the Woodall–Chrobak–Slusarek reduction.

Define OPT to be the optimal makespan for a given instance. The load L(t) at
(x-coordinate) t is the sum of hi over all jobs i that are live at t. The maximum load
LOAD (also L) is the maximum over all t of the load at t. LOAD is a trivial lower
bound on OPT. When all heights are equal, OPT = LOAD, and an optimal solution
can be found via interval graph coloring. In general, however, OPT need not equal
LOAD, as exemplified by Figure 1.1.

All four of the algorithms mentioned above actually find packings of makespan at
most c times LOAD, not just c times OPT, for the respective c (80, 6, 5, or 3). We
further study the relationship between OPT and LOAD in dynamic storage allocation,
providing new upper and lower bounds on the gap between them; all of our upper
bounds are expressed algorithmically. Recall L = LOAD; denote the maximum job
height by hmax and the minimum job height by hmin. Our main results are as follows.

1. We devise an algorithm that yields makespan (1 + O((hmax/L)1/7))L. This
bound is L + o(L) when hmax = o(L). When hmax is bounded by a constant, we
improve the makespan bound to (1+O(((lg2 L)/L)1/4))L. Note that the case hmax =
o(L) does not subsume that of hmax’s being a constant, because, e.g., L might itself
be bounded by a constant. No result of the form OPT ≤ L+ o(L) is possible in the
general case, since one can “scale up” the heights in the example of Figure 1.1 to get
L = 4k and OPT = 5k for any positive integer k.

2. For any ε > 0, there exists a c > 0 such that for all sufficiently large constants
hmax, there is a dynamic storage allocation instance with maximum job height hmax,
maximum load at most L, and OPT ≥ (1 + c(hmax/L)1/2+ε)L, for infinitely many
integers L. This is the first nontrivial lower bound to include the case when hmax is
bounded by a constant. This lower bound shows that our upper bounds in (1) are
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optimal up to the exact powers of hmax/L. In particular, the “1/7” in the general
upper bound (and the “1/4” in the bounded-hmax upper bound) cannot be replaced
by any real greater than 1/2.

We also contribute the following corollaries to our main results.
1. For all ε > 0, we give polynomial-time, (2 + ε)-approximation algorithms.
2. We give polynomial-time approximation schemes (PTASs) for the following

cases:
(a) hmax = o(L);
(b) hmax is bounded by a constant.

Finally, using straightforward dynamic programming, we give a PTAS when hmin =
Ω(L lg lg n/ lg n) and a polynomial-time, exact solution when L = O(lg n/ lg lg n).

We begin in section 2 by introducing our main tool: boxing jobs into larger
rectangles so that the total wasted space in the rectangles remains small. Along with
some results for simple cases (small load and large jobs) described in section 3, we
use boxing to devise our algorithms for bounded-height jobs (section 4) and finally
for the remaining cases (section 5). We present the lower bound in section 6.

2. Boxing jobs. Let Y be any set of jobs and t be any x-coordinate. LY (t)
denotes the load of the jobs in Y that are live at t.

To box a set Y of jobs means to place the jobs into a box b of minimum x-
coordinate xb = min{xj : j ∈ Y }, maximum x-coordinate yb = max{yj : j ∈ Y }, and
height hb ≥

∑
j∈Y hj . A boxing of a set Y into a set B of boxes is a partition of Y into

at most |B| subsets, each of which is then boxed into a distinct box b ∈ B. The boxes
can be viewed as jobs in a modified instance. Then LB (resp., LB(t)) is well defined
to mean the load of the boxes (resp., at t). In particular, any unused space in a box
still counts toward the load contributed by that box. All of the boxing procedures
that follow run in polynomial time.

2.1. Boxing for a fixed time.
Lemma 2.1. Given a set Y of unit-height jobs, all live at some fixed x-coordinate

t, an integer box-height parameter H, and a sufficiently small positive ε, there exist
a subset Y ′ of Y , |Y − Y ′| ≤ 2H�1/ε2�, a set B of boxes, each of height H, and a
boxing of Y ′ into B such that at any x-coordinate u,

LB(u) ≤ LY ′(u) + 4εLY (u).

Proof. It is convenient to view a job starting at x and ending at y as a point
(x, y) in the plane, as depicted in Figure 2.1(a)–(b). Now partition the jobs of Y into
strips, as exemplified by Figure 2.1(c). The first two strips are defined as follows.

1. Create a vertical strip consisting of theH�1/ε2� jobs with the earliest starting
x-coordinates (or fewer if there are not enough jobs).

2. If any jobs remain, create a horizontal strip consisting of the H�1/ε2� jobs
that remain with the latest ending x-coordinates (or fewer if not enough jobs remain).

Define Y ′ to be the set of all jobs in neither the first vertical nor the first horizontal
strip. Obviously |Y − Y ′| ≤ 2H�1/ε2�. Now partition the jobs of Y ′ into strips by
repeating the following as long as jobs remain.

1. Create a vertical strip consisting of the H�1/ε� jobs that remain with the
earliest starting x-coordinates (or fewer if not enough jobs remain).

2. If any jobs remain, create a horizontal strip consisting of theH�1/ε� jobs that
remain with the latest ending x-coordinates (or fewer if not enough jobs remain).

Now for every vertical strip of Y ′, take the jobs in order of decreasing ending
x-coordinate in groups of size H (the last group of the last strip possibly smaller),
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Fig. 2.1. (a) Four jobs. (b) The jobs of (a) viewed as (x, y) points. Note that all jobs are
above the x = y diagonal. (c) Stripping a set of jobs with H = 2 and ε = .5. The rectangle Rt

defines the set Y of jobs. The first (leftmost) vertical and (topmost) horizontal strips each contains
H�1/ε2� = 8 jobs. The remaining jobs, which comprise Y ′, are shown in the bold subrectangle. Y ′
is partitioned into strips containing H�1/ε� = 4 jobs each. Within each strip of 4 jobs in Y ′, the
jobs are grouped (dotted lines) into groups of height H = 2. The groups that intersect the line x = u
are shaded.

and box them. Similarly, for every horizontal strip of Y ′, take the jobs in order of
increasing starting x-coordinate in groups of size H (the last group of the last strip
possibly smaller), and box them.

We analyze the construction using Figure 2.1(c). For all reals u, the jobs live at
u correspond to the rectangle Ru = {(x, y) : x < u < y}. The fact that the jobs in Y
are all live at t means that all the corresponding vertices are inside the rectangle Rt.

A box (other than a last box) corresponds to a group of exactly H jobs. If all are
live at u, then these jobs contribute exactly H to LY ′(u), because each job has unit
height, and the box contributes exactly H to LB(u). If none of them is live at u, then
they contribute 0 to LY ′(u), and the box contributes 0 to LB(u). The troublesome
case is the one in which some but not all of the jobs are live at u, since the jobs may
contribute as little as 1 to LY ′(u), while the box still contributes H to LB(u).

Assume without loss of generality that u < t. Then the troublesome case cor-
responds to groups of jobs whose vertices are on both sides of the line x = u. By
construction, this can happen to at most one group in each horizontal strip of Y ′. (Re-
call that points in a horizontal strip are grouped in order of increasing x-coordinates.)
Moreover, this can happen to groups inside at most one vertical strip of Y ′.

Notice that if the line x = u intersects, say, k horizontal strips of Y ′, then the
rectangle Ru entirely contains at least k − 1 vertical strips of Y ′. (In fact, in the
current case, Ru entirely contains at least k vertical strips of Y ′. In the symmetric
case, when t < u, the number is k − 1. We argue without loss of generality.)

If the rectangle Ru does not contain any job of Y ′, then the lemma trivially holds.
Otherwise, Ru must contain all the jobs in the (only) vertical strip of Y − Y ′, which
number H�1/ε2�.

Observe that

LB(u)− LY ′(u) ≤ kH +H�1/ε�+H,(2.1)

where the first term accounts for the groups in the k horizontal strips that are inter-
sected by x = u, the second term accounts for the groups in the single vertical strip
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that is intersected by x = u, and the third term accounts for (possibly) the last group
of the last strip.

But

LY (u) ≥ H�1/ε2�+ max{k − 1, 0} ·H�1/ε�,(2.2)

where the first term accounts for the vertical strip of Y −Y ′, and the second accounts
for the max{k − 1, 0} vertical strips of Y ′ that are contained in the rectangle Ru.

Now observe that

kH +H�1/ε�+H ≤ (k − 1)H +H/ε+ 3H;(2.3)

H/ε+ 3H ≤ Hε(3/ε+ 1/ε2) ≤ Hε(4/ε2) ≤ (4ε)[H�1/ε2�];(2.4)

(k − 1)H ≤ εmax{k − 1, 0} ·H�1/ε� ≤ (4ε)[max{k − 1, 0} ·H�1/ε�].(2.5)

Combining equations (2.1)–(2.5) yields

LB(u)− LY ′(u) ≤ 4εLY (u).

We call the jobs in Y − Y ′ unresolved jobs.

2.2. Boxing over all times. We bootstrap Lemma 2.1 so that we can box all
the jobs (i.e., not just jobs live at a particular, fixed x-coordinate) with just a small
amount of wasted space. Our main technical result is particularly interesting when
L � (H lgH) lg(1/ε)/ε2. We use this theorem in the following sections to devise
approximation schemes for dynamic storage allocation.

Theorem 2.2. Given a set Z of jobs, each of height 1, an integer box-height
parameter H, and a sufficiently small positive ε, there exist a set B of boxes, each of
height H, and a boxing of Z into B such that for all x-coordinates t,

LB(t) ≤ (1 + 4ε)LZ(t) +O

(
H lgH

ε2
lg

1

ε

)
.

To prove Theorem 2.2, we are going to apply Lemma 2.1 many times, boxing the
unresolved jobs into additional boxes as we go along. Our general goal is to keep the
wasted load (free space) in those additional boxes small at any x-coordinate. We use
the following recursive method. Given are

1. a set X of jobs and an open bounding interval I, such that ∀j ∈ X, Ij ⊆ I;
2. a nonempty finite set of critical x-coordinates T = {inf I = t0 < t1 < · · · <

tq < tq+1 = sup I} ⊆ I ∪ {inf I, sup I};
3. a set F of free spaces. Each free space is an open subinterval of I of height

1 having endpoints in T . Any free space f ∈ F is called spanning if f = I and
nonspanning otherwise.

Initially, X = Z, I = (0, 1), T = {0, t, 1} for some arbitrary x-coordinate t at
which some job from Z is live, and F = ∅. Recall that Ij = (xj , yj) denotes the
interval of job j. With the help of T , define partition

X = (R1 ∪R2 ∪ · · · ∪Rq) ∪ (X0 ∪X1 ∪ · · · ∪Xq)

as follows. (See Figure 2.2.) First, define Xi = {j ∈ X : Ij ⊆ (ti, ti+1)} for 0 ≤ i ≤ q.
The Xi’s contain precisely the jobs that are not live at any critical time.

Then define the Ri’s recursively as in an interval tree [2]. Define X ′ = X \ (X0 ∪
X1 ∪ · · · ∪Xq), the set of jobs that are live at some (not necessarily unique) critical
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R3

t1 t2 t3 t4

X1 X3
X0

X2

R2

R1

t0

Fig. 2.2. A set of jobs (solid rectangles) partitioned into subsets (dashed rectangles) Xi and
Rj using critical x-coordinates t0, . . . , t4.

time. Note that q ≥ 1. Define R�q/2� = {j ∈ X ′ : t�q/2� ∈ Ij}. Define P to be the set
of remaining jobs j of X ′ with yj < t�q/2�, and define Q to be the set of remaining
jobs j of X ′ with t�q/2� < xj . That is, R�q/2� is the set of jobs that are live at t�q/2�;
P is the set of jobs that are live at some critical time but end before t�q/2�; and Q
is the set of jobs that are live at some critical time but start after t�q/2�. If P �= ∅,
recursively partition P using {t1, t2, . . . , t�q/2�−1}. Afterward, if Q �= ∅, recursively
partition Q using {t�q/2�+1, t�q/2�+2, . . . , tq}.

We will box the jobs in the Ri’s, in the process establishing parallel, recursive
instances of the decomposition to handle the Xi’s. First, to each Xi associate a set
Fi of intervals (free spaces), initially empty. As sections of free spaces in F are used
to box jobs in the Ri’s, the unused fragments will be deposited into the appropriate
Fi’s for use deeper in the recursion, to box jobs in the Xi’s.

To box the jobs in the Ri’s, first apply Lemma 2.1 to each Ri, 1 ≤ i ≤ q, in any
order; note that all jobs in Ri are live at ti. For each i, this boxes all the jobs of
Ri except for at most 2H�1/ε2� unresolved jobs. Now consider the set U of all the
unresolved jobs from all the Ri’s. Derive an optimal packing of U using interval graph
coloring. (Recall that all jobs are of height one.) This packing has makespan LU .

Let s(F ) denote the subset of spanning free spaces of F . If |s(F )| < LU , create
�(LU − |s(F )|)/H� boxes of height H and horizontal extent I. This yields H�(LU −
|s(F )|)/H� new spanning free spaces; add them to F . Now there are at least as many
spanning free spaces in F as rows of the packing of U .

For each 1 ≤ j ≤ LU , remove one spanning free space from F , and use it to place
all the jobs in row j of the packing. This creates gaps, or unused portions, in the
original free space, each of the form [α, β], where for some i, j: ti ≤ α < ti+1 and
tj ≤ β < tj+1; recall that t0 = inf I and tq+1 = sup I. For each such [α, β], if i �= j,
then split [α, β] into (α, ti+1), (ti+1, ti+2), . . . , (tj−1, tj), (tj , β); and add (α, ti+1) to
Fi, (ti+1, ti+2) to Fi+1, . . . , (tj−1, tj) to Fj−1, and (tj , β) to Fj . Otherwise (i = j),
simply deposit (α, β) into Fi. This fragments the gaps.

Now all the jobs in all the Ri’s are boxed. Consider the unused free spaces in
F , if any. Each is of the form (ti, tj) for some i �= j. Split each such (ti, tj) into
(ti, ti+1), (ti+1, ti+2), . . . , (tj−1, tj). Add (ti, ti+1) to Fi, (ti+1, ti+2) to Fi+1, . . . , and
(tj−1, tj) to Fj−1. This passes down the unused free spaces to the subproblems.

In parallel for each � = 0, 1, 2, . . . , q, if X� �= ∅, recursively apply the construction
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with new X ← X�, new free space set F ← F�, new bounding interval I ← (t�, t�+1),
and new critical x-coordinate set T ← {endpoints of elements of F�}∪{t�, t�+1}. Note
that this preserves the invariant that the endpoints of intervals in F are in T for each
recursive subproblem. Also note that the unused free spaces passed down span their
entire respective boundary intervals, whereas the gaps that were fragmented need not
do so. This completes the construction.

2.3. Analysis. Fix a real u. (Recall that to prove Theorem 2.2 we want to bound
the load of the boxes at any x-coordinate u in terms of the load of the original jobs at
u.) For any m, define Im(u) to be the bounding interval of the depth-m recursive call
whose bounding interval contains x-coordinate u. Similarly, define Tm(u) to be the
set of critical x-coordinates, pm(u) = |Tm(u)|, and Um(u) to be the set of unresolved
jobs from all the Ri’s in that same depth-m recursive call. Define Fm(u) to be the set
of free spaces during the same depth-m recursive call, and note that this set changes
during that procedure. Figure 2.2, for example, depicts for some m a piece of the
depth-m stage of the recursion; i.e., Im(u) = (t0, t4) for u ∈ (t0, t4). The jobs in each
Xi will form the set of jobs for each subproblem at depth m+1; i.e., Im+1(u) = (t0, t1)
for u ∈ (t0, t1), Im+1(u) = (t1, t2) for u ∈ (t1, t2), etc.

Lemma 2.3. For all m, pm+1(u) ≤ 2H�1/ε2��lg(pm(u) + 1)�+ 2.
Proof. Note that p0(u) = 3. In the depth-m recursive call, the definition of the

Ri’s implies that the number of Ri’s containing jobs with endpoints in Im+1(u) is
at most �lg(pm(u) + 1)�. (The process of repeatedly looking at the middle index
resembles binary search, and the worst-case running time of binary search on a list of
length p is �lg(p+1)�.) For each such Ri, Lemma 2.1 is applied, and each application
yields at most 2H�1/ε2� unresolved jobs. Each unresolved job contributes at most
one new endpoint and hence at most one critical x-coordinate to each of two different
intervals Im+1(·). The total number of critical x-coordinates contributed to Im+1(u)
is thus at most 2H�1/ε2��lg(pm(u)+1)�+2, where the “+2” comes from the endpoints
inf Im+1(u) and sup Im+1(u).

Corollary 2.4. For all m, pm(u) = O(H lgH
ε2 lg 1

ε ).
Proof sketch. If am+1 ≤ k lg am for all m, and a0 ≤ 3k lg k, then am ≤ 3k lg k for

all m, a fact that is easily proven by induction on m.
Let P denote the upper bound of the corollary. For all m, the number of critical

x-coordinates in the subproblem defined by bounding interval Im(u) is at most P . Let
fm(u) denote the number of free spaces in Fm(u) at the beginning of that recursive call,
and let f ′m(u) denote the number of free spaces in Fm(u) at the end of that recursive
call. Abusing notation, let Lm(u) denote the load of Um(u), the set of unresolved jobs
from all the Ri’s in the depth-m recursive call over bounding interval Im(u).

Lemma 2.5. For all m, Lm(u) ≤ 2H�1/ε2��lg(P + 1)�.
Proof. As above, at most �lg(P + 1)� Ri’s include jobs that contain u′ for any

u′ ∈ Im(u). By Lemma 2.1 each such Ri contributes at most 2H�1/ε2� unresolved
jobs to Um(u).

Corollary 2.6. For all m, f ′m(u) ≤ fm(u) + 2H�1/ε2��lg(P + 1)�.
Proof. Boxing the unresolved jobs in the depth-m recursive call requires creating

at most �Lm(u)/H� new boxes of height H, which adds at most H�Lm(u)/H� new
(spanning) free spaces to Fm(u), after which free spaces are only removed from Fm(u).
Lemma 2.5 completes the proof.

Lemma 2.7. For all m,
1. fm+1(u) ≤ fm(u) + 2H�1/ε2��lg(P + 1)�;
2. if fm(u) ≥ 4H�1/ε2��lg(P + 1)�, then fm+1(u) ≤ fm(u).
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Proof. 1. This follows from Corollary 2.6 and the fact that the fragmented gaps
from any used spanning free space of Fm(u) are distributed to distinct subproblems.

2. The free spaces of Fm(u) at the beginning of the depth-m recursive call come
from two sources.

(i) Unused free spaces of Fm−1(u) that were passed down; as noted above, they
yield spanning free spaces of Fm(u), i.e., free spaces that span the entire interval
Im(u).

(ii) Fragmented free spaces obtained during the depth-(m− 1) recursive call by
placing an unresolved job in a free space of Fm−1(u). Lemma 2.5 implies that there
are at most 2H�1/ε2��lg(P + 1)� such spaces.

Assume fm(u) ≥ 4H�1/ε2��lg(P +1)�. The number of spanning free spaces is the
total number of free spaces minus the number of nonspanning free spaces. Because
there are at most 2H�1/ε2��lg(P + 1)� nonspanning free spaces, Fm(u) starts with at
least

4H�1/ε2��lg(P + 1)� − 2H�1/ε2��lg(P + 1)� = 2H�1/ε2��lg(P + 1)�
spanning free spaces. When the unresolved jobs are boxed during the depth-m recur-
sive call, there are enough spanning free spaces to fit all the unresolved jobs (again
by Lemma 2.5), so no new free spaces are created. Thus, fm+1(u) ≤ fm(u).

Corollary 2.8. For all m, fm(u) = O
(
H lgH

ε2 lg 1
ε

)
.

Proof. The proof follows from Corollary 2.4 and Lemma 2.7.
Corollary 2.9. For all m, f ′m(u) = O

(
H lgH

ε2 lg 1
ε

)
.

Proof. The proof follows from Corollaries 2.4, 2.6, and 2.8.
We can now finish the proof of Theorem 2.2. Consider any x-coordinate u, and let

m′ denote the greatest depth of the recursion for which there existed an Im′(u). Of the
jobs in Z that are live at u, let ZR denote those that are resolved during applications
of Lemma 2.1, and let ZU denote the rest. The load at u of the boxes used to resolve
jobs in ZR is at most LZR

(u) + 4εLZ(u), by Lemma 2.1. The load at u of the boxes
used to place jobs in ZU is LZU

(u) + f ′m′(u), because jobs in ZU are only placed into
free spaces in the various Fm(u)’s, and unused free spaces containing u in Fm(u) for
any 0 ≤ m < m′ are inherited by Fm+1(u). Therefore, using Corollary 2.9 and the
fact that LZ(u) = LZR

(u) + LZU
(u), the total storage allocated at x-coordinate u

does not exceed[
LZR

(u) + 4εLZ(u)
]
+
[
LZU

(u) + f ′m′(u)
]

= (1 + 4ε)LZ(u) +O

(
H lgH

ε2
lg

1

ε

)
.

3. Dynamic programming solutions. In addition to boxing, our later results
use the following results based on dynamic programming to solve simple cases.

Theorem 3.1. The optimal makespan can be determined in O(poly(n)(3L)2L+1)
time.

Proof. First, using the fact that OPT ≤ 3L [5], guess the optimal makespan M∗.
Build an array T with, for each x, an entry for each feasible placement Cx of jobs
that cross the vertical line at x. Now define T [Cx] to be 0–1, with T [Cx] = 1 if and
only if the set of jobs that intersect [0, x) can be placed using height at most M∗ with
a placement that respects Cx. We have T [Cx] = 1 if and only if there is a Cx−1 = 1
such that Cx−1 is compatible with Cx and T [Cx−1] = 1.

There are 3L possibilities for M∗. There are 2n possibilities for x. For each x,
there are (M∗)L ≤ (3L)L configurations Cx. Computing T [Cx] takes time at most
(3L)L. The overall time bound is thus

O((3L)(3L)L(3L)Lpoly(n)),
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which is O(poly(n)(3L)2L+1).
Corollary 3.2. Dynamic storage allocation can be solved optimally in polyno-

mial time when L = O(lg n/ lg lg n).
Proof. The proof follows immediately from Theorem 3.1.
Theorem 3.3. Let C be a positive real and let α = α(n) be a positive function of

n such that for all sufficiently large n, α(n) ≥ lg lg n/(C lg n). There is a PTAS for
the special case of dynamic storage allocation in which hmin/L ≥ α(n).

Proof. Given C, α, and ε > 0, apply the dynamic program in the proof of Theorem
3.1 to the same jobs, except with height h replaced by �h/(εα(n)L)�. Let L′ be the
load in the new problem. If there were no ceiling in the definition of the new heights,
the load in the new problem would be L/(εα(n)L) = 1/(εα(n)). Since each original
height h satisfies h/(εα(n)L) ≥ 1/ε, the ceiling introduces an additional factor of at
most 1 + ε. It follows that L′ ≤ (1 + ε)/(εα(n)) ≤ (2C/ε) lg n/ lg lg n if n is large
enough and ε ≤ 1. The new problem can be solved exactly in polynomial time by
Corollary 3.2.

4. Algorithm for bounded-height jobs. Let X be the set of all jobs and ε be
a sufficiently small positive real. Recall that L is a trivial lower bound to OPT. If all
the jobs have the same height, then the problem reduces to interval graph coloring and
can be solved optimally in a greedy fashion; furthermore, OPT = L. Our algorithm
will be a reduction to this simple case. Let H = hmax�1/ε�, and assume that the
maximum height of a job, hmax, is a constant.

Algorithm.
1. If L ≤ C 1

ε4 lg2 1
ε , for some C to be determined later, apply Corollary 3.2 and

halt.
2. For each h = 1, 2, 3, . . . , hmax:
(i) Let Xh denote the set of jobs of height h. Let Hh = H/h�h.
(ii) Scale each job in Xh down by a factor of h, apply Theorem 2.2 with box-

height parameter H/h� and the given ε to this new set of jobs, and then scale the
jobs back up by the same factor h.

3. Enlarge the boxes so that they all have height exactly H. Call the new set
of boxes B′.

4. Apply the greedy algorithm for interval graph coloring to B′.
Theorem 4.1. The makespan of the packing produced by the algorithm is at most

(1 + 15ε)OPT. (Recall that hmax is a constant and ε is sufficiently small.)
Proof. Assume for now that the algorithm does not stop in step 1. We argue for

all t. By Theorem 2.2, step 2 produces a boxing Bh of the jobs of Xh into boxes of
height Hh such that

LBh
(t) ≤ (1 + 4ε)LXh

(t) +O

(
1

ε2
· H
h

(
lg
H

h

)
lg

1

ε

)
h.(4.1)

(The final h comes from the scaling back up at the end of step (2); we have applied the
theorem to jobs of height 1 with box-height parameter there equal to H/h� = Hh/h.)
Let B = B1 ∪B2 ∪ · · · ∪Bhmax

. Adding (4.1) yields

LB(t) ≤ (1 + 4ε)LX(t) +O

(
hmax

H lgH

ε2
lg

1

ε

)
.
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Enlarging the boxes increases them by at most a factor of 1/(1− ε). All together,

makespan = max
t
LB′(t)

≤ max
t

[
1

1− ε
(

(1 + 4ε)LX(t) +O

(
hmax

H lgH

ε2
lg

1

ε

))]
≤ 1 + 4ε

1− ε max
t
LX(t) +

1

1− εO
(
hmax

H lgH

ε2
lg

1

ε

)
.

Thus, makespan ≤ 1 + 4ε

1− ε L+O

(
hmax

H lgH

ε2
lg

1

ε

)
(4.2)

≤ 1 + 4ε

1− ε OPT +O

(
hmax

H lgH

ε2
lg

1

ε

)
.

Choose C so that the error term O
(
hmax

H lgH
ε2 lg 1

ε

) ≤ εL, which is possible

under the assumptions that L > C 1
ε4 lg2 1

ε , hmax is a constant, and H = hmax�1/ε�.
If L ≤ C 1

ε4 lg2 1
ε , then the algorithm stops in step (1), and Theorem 3.1 applies.

Otherwise, it follows that makespan ≤ (1 + 15ε)OPT, because L ≤ OPT.
Theorem 4.2. The makespan produced by the packing is (1+O(((lg2 L)/L)1/4))L.

(Recall that hmax is a constant.)
Proof. Set ε =

√
lgL/L1/4, and run the algorithm starting in step (2). The claim

follows from inequality (4.2).

5. Algorithms for larger jobs. From Theorem 2.2, we can prove the following
corollary.

Corollary 5.1. Let H be a positive integer box-height parameter, hmin be a
positive real, and ε > 0 be a sufficiently small error parameter. Given a set Z of jobs,
each of height between hmin and εH, there exist a set B of boxes, each of height H,
and a boxing of Z into B such that for all x-coordinates t,

LB(t) ≤ (1 + 9ε)LZ(t) +O

(
H lg2(H/hmin)

ε4

)
.

Proof. We construct an appropriate boxing. First, round the job heights: each
height h is rounded up to (1 + ε)i�, where i is defined by (1 + ε)i−1 < h ≤ (1 + ε)i.
Let Y denote the resulting set of rounded jobs.

Now partition the jobs according to their heights. For each rounded height h, let
Yh denote the set of jobs of height h. Divide the heights of all jobs in Yh by h; apply
Theorem 2.2 with box-height parameter H/h�; and then multiply all box heights by
h to get a set Bh of boxes of height at most H. The output is a set B =

⋃
hBh of

boxes, which we can assume are all of height H.
Let us analyze this construction. There are approximately log(1+ε)(εH/hmin) =

O(lg(H/hmin)/ε) parts in the partition. Applying Theorem 2.2 to Yh yields

∀t, LBh
(t) ≤ (1 + 4ε)LYh

(t) +O

(
h
H/h� lgH/h�

ε2
lg

1

ε

)
≤ (1 + 4ε)LYh

(t) +O

(
H lg(H/hmin)

ε3

)
,

because hmin ≤ h and lg(1/ε) ≤ 1/ε. Summing over h, we get

∀t, LB(t) ≤ (1 + 4ε)LY (t) +O

(
H lg2(H/hmin)

ε4

)
.
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Since rounding increased heights by a factor of 1 + ε at most, we have LY (t) ≤
(1 + ε)LZ(t). Since (1 + ε)(1 + 4ε) ≤ 1 + 9ε for ε ≤ 1, the corollary follows.

We are now ready to prove our main theorem.
Theorem 5.2. For any fixed ε ∈ (0, 1] there exists a polynomial-time algorithm,

which depends on ε, that takes an arbitrary set X of jobs as input and produces a
feasible solution to dynamic storage allocation on X with makespan at most (1 +
cε)L+O(hmax/ε

6), where c is a universal constant.
Proof. It suffices to prove the theorem for ε ≤ ε0 for some small, positive ε0,

for the following reason. Suppose for all ε ≤ ε0 we get a makespan bound of (1 +
c0ε)L+ c1(hmax/ε

6) for some constants c0 and c1. Then for ε ∈ (ε0, 1] we simply use
(1 + c0ε0)L+ c1hmax/ε

6
0 ≤ (1 + c0ε)L+ (c1/ε

6
0)hmax/ε

6. Similarly, by reducing ε by a
factor of at most two, we may assume that 1/ε ∈ Z.

We are going to apply Corollary 5.1 repeatedly, boxing the smallest jobs so as to
increase the minimum job height hmin until it gets close enough to the maximum job
height hmax that we can finish with a last application of Corollary 5.1.

We argue for all t. Let r denote the ratio hmax/hmin, and recall that L = LX .
Assume first that lg2 r ≥ 1/ε, and set µ = ε/ lg2 r and H = �µ5hmax/ lg2 r�. Consider
the partition X = Xs ∪ X�, where Xs denotes the jobs of height at most µH and
X� = X \Xs. Now apply Corollary 5.1 to Xs with box-height parameter H and error
parameter µ. This yields a set Bs of boxes of height H into which the jobs of Xs fit
such that for some constants c2 and c3,

LBs
(t) ≤ (1 + 9µ)LXs

(t) +O

(
H lg2(H/hmin)

µ4

)
≤ (1 + 9µ)LXs

(t) + c2µhmax

≤ LXs(t) + c3µL(t)

= LXs
(t) + (c3ε/ lg2 r)L(t).

Now consider Bs as a set of jobs and the revised problem on X ′ = Bs ∪X�. For
this new problem, the load L′(t) is at most (1 + c3ε/ lg2 r)L(t). Moreover, the new
minimum height h′min is at least µH, and the maximum height remains at most hmax,
so we get the new ratio

r′ ≤ hmax

h′min

≤ hmax

µ�µ5hmax/ lg2 r� ≤
hmax

µ6hmax/ lg2 r
=

lg2 r

µ6
=

lg14 r

ε6
≤ lg26 r.

Recall that the above construction was conditioned on lg2 r ≥ 1/ε. For ε suf-
ficiently small, this implies lg26 r ≤ √r and hence that r′ ≤ √r and also lg2 r′ ≤
lg2√r ≤ (1/4) lg2 r.

Iterate the above boxing of small jobs, each time using new error parameter
µ′ = ε/ lg2 r′, until it yields a problem X∗ with minimum job height h∗min for which
the ratio r∗ = hmax/h

∗
min is such that lg2 r∗ < 1/ε. Since the ratio decreases by at

least a square root each time, this process terminates in polynomial time.
Let (r0, . . . , rp = r∗) be the sequence of ratios, and let (L0(t), . . . , Lp(t) = L∗(t))

be the sequence of loads. For 0 ≤ i < p we know that

Li+1(t) ≤ (1 + c3ε/ lg2 ri)Li(t);(5.1)

lg2 ri+1 ≤ (1/4) lg2 ri.(5.2)
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For some constant c4, we therefore get

L∗(t) ≤ L0(t)

p−1∏
i=0

(1 + c3ε/ lg2 ri) by (5.1)

≤ L0(t) exp

(
p−1∑
i=0

(c3ε/ lg2 ri)

)
≤ L0(t) exp(c4ε/ lg2 rp−1) by (5.2)

≤ L0(t) exp(c4ε
2) because lg2 rp−1 ≥ 1/ε

≤ (1 + 2c4ε
2)L0(t) for ε sufficiently small.

Now apply Corollary 5.1 to all of X∗ with box-height parameter H = hmax/ε (recall
that 1/ε ∈ Z) and error parameter ε; this is the “last application” of Corollary 5.1 to
which we alluded earlier. For some constant c, this yields a final set Xf of jobs of
identical height H and with load

Lf (t) = (1 + 9ε)L∗(t) +O

(
H lg2(H/h∗min)

ε4

)
≤ (1 + 9ε)(1 + 2c4ε

2)L0(t) +O

(
H lg2(H/h∗min)

ε4

)
≤ (1 + cε)L0(t) +O

(
hmax lg2(r∗/ε)

ε5

)
.

Noting that lg2 r∗ < 1/ε and lg2(1/ε) < 1/ε for ε sufficiently small, we derive
lg2(r∗/ε) ≤ 4/ε. Therefore

Lf (t) ≤ (1 + cε)L0(t) +O(hmax/ε
6).

Corollary 5.3. There exists a polynomial-time algorithm that takes an arbitrary
set X of jobs as input and produces a feasible solution to dynamic storage allocation
on X with makespan at most (1 +O((hmax/L)1/7))L.

Proof. Apply Theorem 5.2 to X with ε = (hmax/L)1/7.
Corollary 5.4. Fix some function f(m) = o(m). Then there is a PTAS for

dynamic storage allocation when hmax ≤ f(L).
Proof. Given ε > 0, there is an L0 such that f(L) ≤ ε7L for all L ≥ L0. If L < L0,

use the dynamic program of Theorem 3.1. If L ≥ L0, then

hmax ≤ f(L) ≤ ε7L.
Apply the algorithm of Theorem 5.2. The error term of Theorem 5.2 is O(hmax/ε

6) ≤
c′εL for some constant c′. Hence the makespan of the schedule is at most (1 + (c +
c′)ε)L.

Theorem 5.5. For all ε > 0, there exists a polynomial-time (2+ε)-approximation
algorithm for dynamic storage allocation.

Proof. Consider some small positive δ to be determined later. Let X = Xs ∪X�,
where Xs is the set of jobs of height less than δ7L and X� = X \Xs. Use Theorem
5.2 with error parameter δ to pack the jobs in Xs, yielding a (1 + c′δ)-approximation
for some constant c′. Apply the (1+ δ)-approximation algorithm implied by Theorem
3.3 with the same δ to pack the jobs in X�, which is possible because the load divided
by the minimum height is at most 1/δ7, which is certainly at most C lg n/ lg lg n for
C = 1/δ7; this yields a (1 + δ)-approximation. Choose δ so that δ(c′ + 1) = ε.
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6. Lower bounds for OPT − LOAD. Fix a positive integer d. Given a
bipartite multigraph G = (X,Y,E), X = Y = {1, 2, . . . , n}, build an instance of
dynamic storage allocation as follows. Start with n rectangles of height d, with xi = 0,
yi = i for i = 1, 2, . . . , n, and then add n more rectangles of height d, with xi = 3n−i,
yi = 3n for i = 1, 2, . . . , n. Call these 2n items d-items. For each e = (j, k) ∈ E (with
multiplicity, as E is a multiset), 1 ≤ j, k ≤ n, add one item of height 1 having xi = j,
yi = 3n− k. Call these jobs 1-items. These are all the jobs. Call the instance I.

Lemma 6.1. If G is d-regular, then LI(t) ≤ dn for all t ∈ (0, 3n).
Proof. For any noninteger t ∈ [n, 2n], the statement of the lemma is obvious,

since the set of jobs that intersect (n, 2n) is the set of all 1-items, that set has size
dn, and each such job has height 1.

For any noninteger t ∈ [0, n], let j = t�. Crossing t are n− j d-items (these jobs
have xi = 0) and dj 1-items (these have xi ∈ {1, 2, . . . , j}), because G is d-regular,
and no others. Hence the load at t is (n− j) · d+ (dj) · 1 = dn.

For a noninteger t ∈ [2n, 3n], the argument is symmetric to the case of t ∈ [0, n].
For any integer t ∈ (0, 3n), LI(·) achieves a local minimum at t.

Lemma 6.2. For any positive integers n, d, f , and s < n1/2−1/f√
d

, there exists a

d-regular bipartite multigraph (X,Y,E) with X = Y = {1, . . . , n} such that for any
subsets X ′ of s consecutive vertices from X and Y ′ of s consecutive vertices from Y ,
the number of edges induced by X ′ ∪ Y ′ is smaller than f .

Proof. Consider the following probability space of n-vertex-by-n-vertex d-regular
bipartite multigraphs. Choose d independent permutations π of {1, . . . , n}; for each,
add edges between i ∈ X and π(i) ∈ Y for 1 ≤ i ≤ n. We will show that the
probability that a graph not of the claimed structure exists is less than 1; the claim
then follows. Consider such a graph G = (X,Y,E). There are some j and k such that
X ′ = {j, . . . , j+ s− 1} ⊆ X, Y ′ = {k, . . . , k+ s− 1} ⊆ Y , and the subgraph induced
by X ′ ∪ Y ′ has at least f edges. Consider any f such edges and fix an arbitrary
order of them; this forms a sequence of edges F = ((u1, v1), . . . , (uf , vf )), where each
ui ∈ X ′ and each vi ∈ Y ′. There are no more than n2 choices for the pair (j, k) and no
more than s2f possible sequences F . The probability that any particular edge exists
is at most d/n. By the union bound, the probability that G exists is therefore no

more than P = n2s2f (d/n)f . Simple algebra yields P < 1 when s < n1/2−1/f√
d

.

Theorem 6.3. For all positive integers n and d, there is an instance of dynamic
storage allocation with maximum job height d, L(t) ≤ dn for all t, and OPT−LOAD ≥
n1/2−1/�d/2�

12
√
d

.

Proof. Let G = (X,Y,E) be a d-regular bipartite multigraph such that |X| =
|Y | = n. Build the instance I associated with G, as above, with 2n d-items and dn
1-items. Lemma 6.1 shows that the load is at most dn everywhere.

Assume an optimal solution, and denote by Z the region defined by the isothetic
bounding box of the d-items. Z is the rectangle [0, 3n]× [min,max], where min is the
minimum y-coordinate of the bottoms of the 2n d-items and max is the maximum
y-coordinate of the tops of the 2n d-items. Define Z ′ to be the set of 1-items placed
outside Z. Because max−min ≥ dn and the load is at most dn everywhere, it follows
that the load of Z ′ lower bounds OPT − LOAD and that the area of the jobs in Z ′

lower bounds the empty space inside Z.
Now, for any positive real s < n, assume that fewer than s/12 1-items are

placed outside Z and also that max−min < dn + s/12. The area of Z is thus
(max−min)(3n) < (dn+s/12)(3n). The total area of all the jobs is (dn)(3n). There-
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fore, if all the jobs were placed in Z, the empty space in Z would be at most (s/12)(3n).
For each job placed outside Z, the empty space inside Z grows by at most 3n. The
total empty space inside Z is thus less than 2(s/12)(3n) = sn/2.

Consider a d-item to be comprised of d unit-height rows, which are placed con-
tiguously in the plane. Define the left (resp., right) d-items to be those whose left
(resp., right) endpoints are 0 (resp., 3n). Call region (3n− 1, 3n)× (k, k + 1) for any
integer k ∈ [min,max−1] a right gap if it is unoccupied by every right d-item. Clearly
OPT− LOAD is at least the number of right gaps, so we may assume this number is
less than n/2. It follows that at least n/2 left d-items are adjacent to no right gaps;
i.e., for each such left d-item x, there is a row of some right d-item to the right of
each one of x’s d rows. Call these the good left d-items.

For any left d-item J , define its neighbor right d-items to be the (at most two)
right d-items whose y-coordinates overlap with J , and call the actual rows of those
neighbors that occupy the same y-coordinates as J its neighbor right rows. Because
there are at least n/2 good left d-items and the total empty space inside Z is less
than sn/2, there must be at least one good left d-item J with less than s empty space
between it and its neighbor right rows. Because s < n, there is some 1-item x placed
between each row of J and the corresponding neighbor right row; furthermore, the
left endpoint of x is within s−1 of the right endpoint of J , and the right endpoint of x
is within s−1 of the left endpoint of the corresponding neighbor right row. For one of
the at most two neighbor right d-items K of J , there are at least �d/2� neighbor right
rows of J belonging to K. In G, therefore, there are subsets of s� consecutive vertices
of X (starting at vertex j ∈ X, where j is the right endpoint of J) and s� consecutive
vertices of Y (starting at vertex k − s� + 1 ∈ Y , where k is the left endpoint of K)
with at least �d/2� edges between them, corresponding to these 1-items.

If s < n1/2−1/�d/2�√
d

, Lemma 6.2 (with f = �d/2�) shows that there is some G′

without such a window of edges. By contradiction, therefore, for any such G′ there
must be at least s/12 1-items placed outside Z, or else max−min ≥ s/12; in either

case, OPT − LOAD ≥ s/12. The theorem follows by choosing s = n1/2−1/�d/2�√
d

and

noting that in fact OPT− LOAD ≥ �s/12�.
Corollary 6.4. For any ε > 0, there exist c, d > 0 such that for all sufficiently

large integers L, there is an instance of dynamic storage allocation with maximum
job height d, L(t) ≤ L for all t, and OPT− LOAD ≥ cL1/2−ε.

Proof. Fix d = �2/ε�, and choose a large L ∈ Z. Define n, r ∈ Z such that n > 0,
0 ≤ r < d, and L = nd + r. Define L′ = nd. By Theorem 6.3, there is a dynamic
storage allocation instance I with maximum job height d, LI(t) ≤ L′ = dn for all

t, and ∆ = OPT − LOAD ≥ n1/2−1/�d/2�

12
√
d

. Because n = L−r
d ≤ L

d , it follows that

LI(t) ≤ L for all t; and because n ≥ L
2d , it follows that

∆ ≥ n1/2−1/�d/2�

12
√
d

≥
(

L
2d

)1/2−1/�d/2�

12
√
d

=
1

12
√
d

(
1

2d

)1/2−1/�d/2�
L1/2−1/�d/2�.

The claim follows by setting

c =
1

12
√
d

(
1

2d

)1/2−1/�d/2�

and noting that 1/�d/2� ≤ ε.
Corollary 6.5. For any ε > 0, there exists a c′ > 0 such that for all sufficiently

large integers hmax, there is a dynamic storage allocation instance with maximum job
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height hmax, maximum load at most L, and OPT − LOAD ≥ c′(hmax/L)1/2+εL, for
infinitely many integers L.

Proof. Given ε > 0, define h = h(ε) and c > 0 so that for all sufficiently large L0,
Corollary 6.4 yields a dynamic storage allocation instance with maximum job height

h, maximum load at most L0, and optimum makespan OPT0 ≥ L0 + cL
1/2−ε
0 . Set

c′ = c/h1/2+ε. For all integers L and hmax such that L and L/hmax are sufficiently
large and hmax/h and L/(hmax/h) are integral, set L0 = L/(hmax/h). Now scale up
the instance by hmax/h. The new optimum makespan is OPT = (hmax/h)OPT0. The
new load is at most L0hmax/h = L, and

OPT = (hmax/h)OPT0

≥ (hmax/h)(L0 + cL
1/2−ε
0 )

= L+ (hmax/h)cL
1/2−ε
0

= L(1 + (hmax/(hL))cL
1/2−ε
0 )

= L(1 + (hmax/(hL))c(hL/hmax)
1/2−ε)

= L(1 + (c/h1/2+ε)(hmax/L)1/2+ε)

= L(1 + c′(hmax/L)1/2+ε).
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Abstract. For the random binary search tree with n nodes inserted the number of ancestors
of the elements with ranks k and �, 1 ≤ k < � ≤ n, as well as the path distance between these
elements in the tree are considered. For both quantities, central limit theorems for appropriately
rescaled versions are derived. For the path distance, the condition �− k →∞ as n→∞ is required.
We obtain tail bounds and the order of higher moments for the path distance. The path distance
measures the complexity of finger search in the tree.
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1. Introduction and results. In this paper we analyze the asymptotic behavior
of the path distance between nodes in random binary search trees. The path distance
between two nodes is the number of nodes on the shortest path connecting them in
the tree. This quantity is motivated by the cost of a finger search in the tree. The
finger search operation in a search tree takes as input a pointer to a node u, the
current node, and either the key value of another node v or an incremental rank value
∆. The objective is to find v quickly. In the latter case, the rank of v differs from
the rank of u by ∆. Finger search trees are search trees in which the finger operation
takes time O(1 + ln ∆). Various strategies are known for this. For example, Brown
and Tarjan [2] recommend (2, 4) or red-black trees with level linking. Huddleston
and Mehlhorn [6] show how to update these trees efficiently in an amortized sense.
On pointer-based machines, Brodal [1] shows how to implement insertion in constant
worst-case time in an adaptation of these trees.

In a random binary search tree or a treap, suitably augmented but without level
linking, we note that both kinds of finger search operations take time proportional to
the path distance between the nodes. The augmentation consists of maintaining with
each node either the minimum and maximum keys in the subtree, or the size of the
subtree. These parameters are easy to update. Furthermore, when searching for v,
starting from u, one first proceeds by following parent pointers towards the root until
the least common ancestor of u and v is found. At that point, one can find v by the
standard search operation.

If the nodes are level-linked, then it is also possible to identify an ancestor of
v that is either the least common ancestor of u and v, or a descendant of that least
common ancestor, simply by checking the key values of the appropriate level neighbors
of the ancestors of u when traveling towards the root. In this implementation, the
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complexity of the finger search operation is the path distance between u and v or less.
Other possible augmentations for treaps are presented by Seidel and Aragon [14].

We give an approach of the distributional analysis of the path distance between
nodes in a random binary search tree whose keys have ranks that differ by ∆. The
connection used between records and random permutations for the study of random
binary search trees was developed in Devroye [4] and, when it applies, leads to short
and intuitive proofs. While the expectation of the path distance of two nodes that hold
keys with ranks differing by ∆ is always O(ln ∆) as ∆→∞, for a refined distributional
analysis the location of the ranks matters, since in particular the leading constant in
the expansion of the expectation of the path distance depends upon the location of
the ranks. This affects the proper scaling of the quantities to obtain distributional
convergence; see Theorem 1.3 below.

For simplicity we assume that the random binary search tree is built up from the
keys 1, . . . , n identifying the key of rank j with the key j. See, e.g., Mahmoud [8] for
the definition of random binary search trees. For 1 ≤ k ≤ � ≤ n we denote by Ak�

the number of ancestors of the nodes holding the keys k and � in the tree when n
numbers are inserted. Note that Akk is the depth of the node with rank k in the tree,
1 ≤ k ≤ n. By Pk� the path distance between the keys k and � is denoted, that is,
the number of nodes on the path (strictly) between k and �, 1 ≤ k < � ≤ n.

We denote by N (0, 1) the standard normal distribution and by
L−→ convergence in

distribution. For sequences (an), (bn) asymptotical equivalence, an/bn → 1 as n→∞,
is denoted by an ∼ bn. We have the following asymptotic behavior.

Theorem 1.1. For all 1 ≤ k < � ≤ n, where k, � may depend on n, we have, as
n→∞,

EAk� = ln(k(�− k)2(n− �+ 1)) +O(1),

Ak� − ln(k(�− k)2(n− �+ 1))√
ln(k(�− k)2(n− �+ 1))

L−→ N (0, 1).

Theorem 1.2. For all 1 ≤ k ≤ n, where k may depend on n, we have, as n→∞,

Akk − ln(k(n− k + 1))√
ln(k(n− k + 1))

L−→ N (0, 1).

Theorem 1.3. For all 1 ≤ k < � ≤ n with k, � depending on n such that
∆ := � − k + 1 → ∞ as n → ∞ and an := (k ∧∆)∆2((n − � + 1) ∧∆) we have, as
n→∞,

Pk� − ln an√
ln an

L−→ N (0, 1).

Theorem 1.4. Let Pn denote the path distance between a pair of nodes chosen
uniformly at random from all possible pairs of different nodes in the tree. Then we
have, as n→∞,

Pn − 4 lnn√
4 lnn

L−→ N (0, 1).

Theorem 1.5. There exists a constant C > 0 such that for all ε > 0 and all
1 ≤ k < � ≤ n with ∆ := �−k+1 ≥ ∆0 we have with an := (k∧∆)∆2((n−�+1)∧∆):

P(Pk� > (1 + ε) ln an) ≤ C∆−ε2/(2+3ε).

Here, for all δ > 0, we can choose ∆0 ≥ 1 uniformly for all ε ∈ [δ,∞).
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Moreover, if ∆→∞ as n→∞, we have, for all p ≥ 1,

EP p
k� ∼ lnp an.

Note that exact expressions for EAkk and EPk� in terms of harmonic numbers
are given in Seidel and Aragon [14] and, for EAk�, in Prodinger [13]. The limit law
in Theorem 1.4, together with additional results for the model of uniformly chosen
pairs of nodes, has been derived in Mahmoud and Neininger [9] and Panholzer and
Prodinger [12], and an exact expression for EPn has first been given in Flajolet,
Ottmann, and Wood [5]. Finally, we note that the limit law for the depth of a
typical node inserted in a random binary search tree was obtained by Mahmoud and
Pittel [10], Louchard [7], and Devroye [4]. It can be obtained from Theorem 1.2 by
replacing k with a uniform{1, . . . , n} random variable.

2. Representation via records. In a permutation (x1, . . . , xn) of distinct
numbers we define the local ranks R1, . . . , Rn, where Rj denotes the rank of xj in
{x1, . . . , xj}. If Rj = j or Rj = 1, we say that xj is an up-record or down-record
in x1, . . . , xn, respectively. It is well known that if the permutation is a random per-
mutation, i.e., all n! permutations are equally likely, Rj is uniformly distributed on
{1, . . . , j} for all j = 1, . . . , n and that R1, . . . , Rn are independent.

We give a representation of the number Ak� of ancestors of keys k and � in terms
of local ranks and records, so that based on the independence properties we can apply
the classical central limit theorem in the version of Lindeberg–Feller.

Let us build up the random binary search tree from the numbers 1, . . . , n as
follows: We draw independent unif[0, 1] random variables T1, . . . , Tn, where unif[0, 1]
denotes the uniform distribution on the interval [0, 1]. These we use as time stamps
as Tj is associated with j and denotes the time at which number j is inserted into
the tree. Inserting now the numbers in order according to their time stamps, starting
with the earliest, yields a random binary search tree for the keys 1, . . . , n.

A basic property of the binary search tree is that j is an ancestor of k in the tree
if and only if it is inserted before k and also before all numbers s between j and k.
Now we fix 1 ≤ k < � ≤ n and count the ancestors Ak� of the elements k and � in the
tree. If, for i < k, element i is ancestor of �, then it is ancestor of k as well and hence
it contributes to Ak� if and only if

Ti = min{Ti, Ti+1, . . . , Tk}, i < k.

Analogously, for i > �, we get a contribution of number i to Ak� if and only if
Ti = min{T�, T�+1, . . . , Ti}, and in the case k < i < � if Ti = min{Tk, Tk+1, . . . , Ti} or
Ti = min{Ti, Ti+1, . . . , T�}. Passing to indicator functions we rewrite these events as

1{Ti=min{Ti,Ti+1,...,Tk}} = 1{Ti=min{Ti,...,Tk−1}} − 1{Tk<Ti, Ti=min{Ti,...,Tk−1}}
=: 1Bi

− 1Ci
, i < k,

1{Ti=min{T�,...,Ti}} = 1{Ti=min{T�+1,...,Ti}} − 1{T�<Ti, Ti=min{T�+1,...,Ti}}
=: 1Bi − 1Ci , i > �,

and

1Bi
:= 1{Ti=min{Tk,Tk+1,...,Ti}}∪{Ti=min{Ti,Ti+1,...,T�}}, k ≤ i ≤ �.

Note that above 1Bi
,1Ci

are differently defined for the three ranges of the index i.
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All together we obtain the representation

Ak� =

n∑
i=1

1Bi −
k−1∑
i=1

1Ci −
n∑

i=�+1

1Ci − 2,(2.1)

where we subtract 2 referring to the convention that k and � are not counted as
ancestors of themselves. The main contribution comes from the sum over the 1Bi

, as
the sums over the 1Ci will be asymptotically negligible.

To get the connection with records we introduce three auxiliary random binary
search trees as follows. The binary search tree T< is built up from the elements
1, . . . , k − 1, inserted according to their time stamps T1, . . . , Tk−1. Analogously T>
is built up from the elements � + 1, . . . , n, inserted according to their time stamps
T�, . . . , Tn and T is built up from the elements k, . . . , �, inserted according to their
time stamps Tk, . . . , T�. Now, for i < k, the event Bi is equivalent for i to be an
ancestor of k − 1 in T<. Since k − 1 is the largest element in T<, this implies that i
is an up-record at the time of insertion into T<. Analogously, for i > �, the event Bi

is equivalent for i to constitute a down-record at time of its insertion into T>. For
k ≤ i ≤ �, event Bi is equivalent to i being up- or down-record at its time of insertion
into T .

We denote by Rj the local rank of the (in time) jth element inserted into T< at the
time of its insertion, 1 ≤ j < k, and by R′

j , R
′′
j analogously the local ranks of the jth

elements inserted into T , T> for 1 ≤ j ≤ �−k+1 and 1 ≤ j ≤ n−�, respectively. Note
that R1, . . . , Rk−1, R

′
1, . . . , R

′
�−k+1, R

′′
1 , . . . , R

′′
n−� are independent and Rj , R

′
j , R

′′
j are

uniform{1, . . . , j} distributed for j = 1, . . . , k − 1 and j = 1, . . . , � − k + 1 and j =
1, . . . , n− �, respectively. We have

n∑
i=1

1Bi
=

k−1∑
j=1

1{Rj=j} +

�−k+1∑
j=1

1{R′
j
∈{1,j}} +

n−�∑
j=1

1{R′′
j
=1}.(2.2)

For the representation of Pk� we denote

TA := min{Tk, . . . , T�}.

For 1 ≤ i ≤ n, element i belongs to the path between k and � if and only if it is
ancestor of k or � and Ti ≥ TA. Hence with Di := {Ti ≥ TA} we have

Pk� =

n∑
i=1

1Bi∩Di −
k−1∑
i=1

1Ci∩Di −
n∑

i=�+1

1Ci∩Di − 2.(2.3)

The main contribution will come from the sum over the 1Bi∩Di . For the corresponding
representation with records we introduce

N1 := |{1 ≤ j < k : Tj < TA}|, N2 := |{� < j ≤ n : Tj < TA}|

and obtain

n∑
i=1

1Bi∩Di =

k−1∑
j=N1+1

1{Rj=j} +

�−k+1∑
j=1

1{R′
j
∈{1,j}} +

n−�∑
j=N2+1

1{R′′
j
=1}

=: PI + PII + PIII .(2.4)
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3. Proofs. Throughout this section we denote by Hn :=
∑n

i=1 1/i = lnn+O(1)
the nth harmonic number for n ≥ 1 and H0 := 0.

Proof of Theorem 1.1. We derive EAk� using the representations (2.1) and (2.2).
From the distribution of the local ranks Rj , R

′
j , and R′′

j we obtain

E

n∑
i=1

1Bi
= Hk−1 + 2H�−k+1 − 1 +Hn−� = ln(k(�− k)2(n− �+ 1)) +O(1).

The remaining summands in (2.1) we denote by Υ :=
∑k−1

i=1 1Ci
+
∑n

i=�+1 1Ci
+ 2.

For 1 ≤ i < k we have

E1Ci
= P

(
Tk < Ti, Ti = min{Ti, . . . , Tk−1}

)
≤ P

(
Tk, Ti are the smallest elements among Ti, . . . , Tk

)
=

(
k − i+ 1

2

)−1

≤ 2

(k − i)2 .

This implies E
∑k−1

i=1 1Ci = O(1). Analogously we conclude to find E Υ = O(1),
hence we obtain EAk� = ln(k(�− k)2(n− �+ 1)) +O(1).

For the central limit law we write

Ak� − ln(k(�− k)2(n− �+ 1))√
ln(k(�− k)2(n− �+ 1))

=

∑n
i=1 1Bi − ln(k(�− k)2(n− �+ 1))√

ln(k(�− k)2(n− �+ 1))

− Υ√
ln(k(�− k)2(n− �+ 1))

.

For all choices of 1 ≤ k < � ≤ n we have ln(k(�− k)2(n− �+1))→∞ as n→∞, and
from (2.2) it follows that the Lindeberg–Feller condition (see Chow and Teicher [3,
p. 291]) is satisfied for

∑n
i=1 1Bi

; thus the first fraction on the right-hand side of the
latter display tends in distribution to the standard normal distribution. Again since
ln(k(�−k)2(n−�+1))→∞ and E |Υ| = O(1) we obtain from Markov’s inequality that
Υ/ ln(k(�− k)2(n− �+ 1))→ 0 in probability as n→∞. The assertion follows.

Proof of Theorem 1.2. Note that for Akk we have the same representation as for
Ak� given, for the case k < �, in (2.1), where we have to replace the −2 there by −1
due to the fact that we now have 1Bk

= 1. Hence the same arguments as in the proof
of Theorem 1.1 apply.

Proof of Theorem 1.3. We have Pk� = PI + PII + PIII − Υ′, with Υ′ :=∑k−1
i=1 1Ci∩Di

+
∑n

i=�+1 1Ci∩Di
+ 2 and an := (k ∧ ∆)∆2((n − � + 1) ∧ ∆) → ∞

as n → ∞. From E |Υ′| = O(1) we obtain from Markov’s inequality Υ′/
√

ln an → 0
in probability. Thus it is sufficient to show

PI + PII + PIII − ln an√
ln an

L−→ N (0, 1).(3.1)

Since we want to apply the central limit theorem to the sum of indicators in (2.4) we
will condition on the random indices N1 and N2. Note that we may assume k → ∞
and n − � + 1 → ∞ as n → ∞ since otherwise PI and PIII remain bounded and do
not contribute respectively.

First we consider the case k/∆ > ln k and (n − � + 1)/∆ > ln(n − � + 1) for all
sufficiently large n. We define, for ε > 0,

Bε := {N1 ∈ [α1, β1]} ∩ {N2 ∈ [α2, β2]},
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with

α1 =
ε

2

k

∆
, β1 =

2

ε

k

∆
, α2 =

ε

2

n− �+ 1

∆
, β2 =

2

ε

n− �+ 1

∆
.

Note that the values of N1 and N2 depend on Tk, . . . , T�. However, conditioned on N1

and N2 the permutations induced by T1, . . . , Tk−1, by Tk, . . . , T�, and by T�+1, . . . , Tn
are independent and uniformly distributed. In particular, conditioning on N1, N2

preserves the independence and the distributions of R1, . . . , Rk−1, R
′
1, . . . , R

′
∆, R

′′
1 , . . . ,

Rn−�.
On Bε we have the bounds P−

k� ≤ Pk� ≤ P+
k� with

P−
k� =

k−1∑
j=�β1�+1

1{Rj=j} +

∆∑
j=1

1{R′
j
∈{1,j}} +

n−�∑
j=�β2�+1

1{R′′
j
=1},

P+
k� =

k−1∑
j=	α1


1{Rj=j} +

∆∑
j=1

1{R′
j
∈{1,j}} +

n−�∑
j=	α2


1{R′′
j
=1}.

Now, we have

EP−
k� = ln k − ln
β1�+ 2 ln ∆

+ ln(n− �+ 1)− ln
β2�+O(1)

= ln an +O
(
1 + ln

1

ε

)
,(3.2)

where, for the last equality, we distinguish the cases k/∆ ≤ 2/ε, k/∆ > 2/ε as
well as (n − � + 1)/∆ ≤ 2/ε and (n − � + 1)/∆ > 2/ε. Analogously we obtain
Var(P−

k�) = EP−
k� + O(1 + ln(1/ε)). Since ε > 0 is fixed and an → ∞ as n → ∞ we

obtain from the central limit theorem in the version of Lindeberg–Feller that

P−
k� − ln an√

ln an

L−→ N (0, 1), n→∞.(3.3)

Similarly, we obtain (P+
k� − ln an)/

√
ln an → N (0, 1) in distribution as n → ∞. We

have, for x ∈ R,

P

(Pk� − ln an√
ln an

≤ x
)
≤ P(Bc

ε) + P

(Pk� − ln an√
ln an

≤ x
∣∣∣Bε

)
≤ P(Bc

ε) + P

(P−
k� − ln an√

ln an
≤ x

)
.

Hence denoting by Φ the distribution function of the standard normal distribution
and ψ(ε) := lim supn→∞ P(Bc

ε) we obtain

lim sup
n→∞

P

(Pk� − ln an√
ln an

≤ x
)
≤ Φ(x) + ψ(ε),

and analogously

lim inf
n→∞ P

(Pk� − ln an√
ln an

≤ x
)
≥ lim inf

n→∞ P(Bε)P
(P+

k� − ln an√
ln an

≤ x
)

= (1− ψ(ε))Φ(x).
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Hence the central limit law is established once we have shown that ψ(ε)→ 0 as ε ↓ 0.
For this it is sufficient to show that [lim supn→∞ P(Ni /∈ [αi, βi])] → 0 as ε ↓ 0 for
i = 1, 2. By symmetry we only need to show the case i = 1.

We denote by Bn,u a binomial B(n, u) distributed random variable, n ≥ 0, u ∈
[0, 1]. Since N1 has the mixed B(k − 1, TA) distribution with TA = min{Tk, . . . , T�}
we obtain with Chebyshev’s inequality, for k ≥ 4 and ∆ sufficiently large such that
ε/∆ ≤ 1,

P

(
N1 <

εk

2∆

)
≤ P

(
TA <

ε

∆

)
+ P

(
Bk−1,ε/∆ ≤ εk

2∆

)
≤ 2ε+ P

(∣∣∣Bk−1,ε/∆ − ε(k − 1)

∆

∣∣∣ ≥ εk

4∆

)
≤ 2ε+

16

ε(k/∆)

≤ 2ε+
16

ε ln k
→ 2ε

as n→∞. Similarly we obtain for sufficiently large ∆,

P

(
N1 >

2k

ε∆

)
≤ P

(
TA >

1

ε∆

)
+ P

(
Bk−1,1/(ε∆) ≥ 2k

ε∆

)
≤ 2e−1/ε +

ε

ln k

→ 2e−1/ε

as n → ∞. Hence we obtain [lim supn→∞ P(N1 /∈ [α1, β1])] ≤ 2(ε + e−1/ε) → 0 as
ε ↓ 0.

In the second case we assume that k/∆ ≤ ln k and (n− �+ 1)/∆ > ln(n− �+ 1)
for all n sufficiently large. Now we replace αi, βi with

α′
1 = 0, β′

1 = ln2 k, α′
2 = α2, β′

2 = β2

and define Bε, P
−
k�, P

+
k� as in the first case but with the αi, βi replaced by α′

i, β
′
i,

i = 1, 2. The argument is now applied as in the first case. The only difference to be
shown is that we have lim supn→∞ P(N1 /∈ [α′

1, β
′
1]) = 0: We have

P(N1 /∈ [α′
1, β

′
1]) = P(N1 > ln2 k) ≤ EN1

ln2 k
=

(k − 1)/∆

ln2 k
≤ 1

ln k
→ 0

as n→∞.
The case k/∆ > ln k and (n− �+ 1)/∆ ≤ ln(n− �+ 1) is covered by the previous

case by symmetry. In the remaining case k/∆ ≤ ln k and (n−�+1)/∆ ≤ ln(n−�+1)
we replace αi, βi with

α′′
1 = α′

1, β′′
1 = β′

1, α′′
2 = 0, β′′

2 = ln(n− �+ 1)2,

and define Bε, P
−
k�, P

+
k� as in the first case but with the αi, βi replaced by α′′

i , β
′′
i ,

i = 1, 2. The argument is again applied as in the first case and lim supn→∞ P(Ni /∈
[α′′

i , β
′′
i ]) = 0 follows for i = 1, 2 as in the second case.
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This finishes the proof of the limit law since for a given sequence (k, �)=(k(n), �(n))
with �(n) − k(n) → ∞ we decompose into four subsequences according to whether
k/∆ ≤ ln k or k/∆ > ln k and (n−�+1)/∆ ≤ ln(n−�+1) or (n−�+1)/∆ > ln(n−�+1).
Each of the subsequences satisfies, by the previous arguments, the limit law (3.1),
hence the whole sequence satisfies the limit law.

Proof of Theorem 1.4. We denote by (K,L) the ranks of the pair of nodes chosen
uniformly at random from all possible pairs of distinct nodes in the tree, where we
may assume that K < L. We define the set

B :=
{
K <

n

lnn

}
∪
{
n− L < n

lnn

}
∪
{
L−K <

n

lnn

}
and note that P(B)→ 0 as n→∞. On Bc we will condition on (K,L) = (k, �). For
these (k, �) we have ln(k(�−k+1)2(n−�+1)) = 4 lnn+O(ln lnn). Hence application
of Theorem 1.3 yields (Pk� − 4 lnn)/

√
4 lnn → N (0, 1) in distribution. Denoting by

Φ the distribution function of N (0, 1) and by σ the distribution of (K,L) we obtain,
for all x ∈ R, ∣∣∣∣P(Pn − 4 lnn√

4 lnn
≤ x

)
− Φ(x)

∣∣∣∣
≤ P(B) +

∫ ∣∣∣∣P(Pk� − 4 lnn√
4 lnn

≤ x
)
− Φ(x)

∣∣∣∣ dσ(k, �)

→ 0

by dominated convergence. The assertion follows.
To prepare for the proof of Theorem 1.5 we provide the following tail estimate:
Lemma 3.1. Let Yj, 1 ≤ j ≤ n be independent and Yj be Bernoulli B(pj)

distributed for 0 ≤ pj ≤ 1, and µ =
∑n

j=1 pj. Then we have, for all ε > 0,

P

(
n∑

j=1

Yj ≥ µ+ ε

)
≤ exp

(
− ε2

2µ+ ε

)
.

Proof. The proof relies on Chernoff’s bounding technique. The details follow the
proof of Theorem L1 in Devroye [4].

Corollary 3.2. Let Xj , X
′
j be Bernoulli B(1/j) distributed, j ≥ 1, Z1 = 1 and

Zj be B(2/j) distributed, j ≥ 2, such that all random variables are independent. Then
for all 1 ≤ q ≤ s, ∆ ≥ 1, 1 ≤ r ≤ t we have with α := s∆2t/(qr),

P

(
s∑

j=q

Xj +

∆∑
j=1

Zj +

t∑
j=r

X ′
j − lnα ≥ ε

)
≤ exp

(
− (ε− 7)2

ε+ 6 + 2 lnα

)
.

Proof. We apply Lemma 3.1 and note that from ln(n + 1) ≤ Hn ≤ 1 + lnn for
n ≥ 1, we obtain

ln(α)− 7 ≤ Hs −Hq−1 + 2H∆ − 1 +Ht −Hr−1 ≤ ln(α) + 3.

The assertion follows.
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Proof of Theorem 1.5. First we prove the tail bound, where we distinguish several
cases for the ranges of k and n − � + 1. We abbreviate an as in Theorem 1.5. Let ε
be arbitrarily given.

For k ≥ ∆1+ε, n− �+ 1 ≥ ∆1+ε we have with the representations (2.3) and (2.4)
and Xj , X

′
j , and Zj as in Corollary 3.2

P(Pk� > (1 + ε) ln an)

≤ P(PI + PII + PIII > (1 + ε) ln an)

≤ P

({
N1 <

k − 1

∆1+ε

}
∪
{
N2 <

n− �
∆1+ε

})
(3.4)

+ P

(
k−1∑

j=	(k−1)/∆1+ε
+1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε
+1

X ′
j > (1 + ε) ln an

)
.

Using that N1 is B(k − 1, TA) distributed and TA = min{Tk, . . . , T�}, we obtain

P

(
N1 <

k − 1

∆1+ε

)
≤ P

(
TA < ∆−(1+ε/2)

)
+ P

(
Bk−1,1/∆1+ε/2 <

k − 1

∆1+ε

)
.(3.5)

The first summand in (3.5) is bounded by

P

(
TA < ∆−(1+ε/2)

)
= 1− (1−∆−(1+ε/2))∆ ≤ ∆−ε/2.

For the second summand in (3.5) we use Okamoto’s inequality [11], which states that
P(Bn,u ≤ ny) ≤ exp(−n(u − y)2/(2u(1 − u))) for all y ≤ u ≤ 1/2. For y := ∆−(1+ε)

and u := ∆−(1+ε/2) we obtain, for ∆ sufficiently large,

P

(
Bk−1,1/∆1+ε/2 <

k − 1

∆1+ε

)
≤ exp

(
−(k − 1)

(
∆−(1+ε/2) −∆−(1+ε)

)2
2∆−(1+ε/2)

)

≤ exp

(
− k − 1

8∆1+ε/2

)

≤ exp

(
−k + 1

∆1+ε

∆ε/2

24

)

≤ exp

(
−∆ε/2

24

)
≤ 24∆−ε/2,

where we used that (k + 1)/∆1+ε ≥ 1. Note that for this estimate ∆ can be chosen
uniformly large for all ε ∈ [δ,∞), δ > 0. By symmetry we obtain the same bound for
P(N2 < (n− �)/∆1+ε). The second summand in (3.4) we estimate with Corollary 3.2
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for ∆ sufficiently large:

P

(
k−1∑

j=	(k−1)/∆1+ε
+1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε	+1

X ′
j >(1 + ε) ln an

)

≤ P

(
k−1∑

j=	(k−1)/∆1+ε
+1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε
+1

X ′
j − ln ∆4+2ε> 2ε ln ∆

)

≤ exp

(
− (2ε ln ∆− 7)2

2 ln ∆4+2ε + 6 + 2ε ln ∆

)

≤ exp

(
28ε

8 + 6ε
− 4ε2

9 + 6ε
ln ∆

)
≤ e5∆−ε2/(3+2ε).(3.6)

Collecting the estimates, we obtain P(Pk� ≥ (1 + ε) ln an) ≤ 200∆−ε2/(3+2ε).
For the case ∆ ≤ k ≤ ∆1+ε and n− �+ 1 ≥ ∆1+ε we estimate

P(Pk� > (1 + ε) ln an)

≤ P

(
N2 <

n− �
∆1+ε

)

+ P

(	∆1+ε
∑
j=1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε
+1

X ′
j > (1 + ε) ln an

)
,

and both summands can be estimated as in the previous case.
The same estimates apply to the cases k ≥ ∆1+ε and ∆ ≤ n − � + 1 ≤ ∆1+ε as

well as ∆ ≤ k ≤ ∆1+ε and ∆ ≤ n − � + 1 ≤ ∆1+ε. The remaining cases are where
either k < ∆ or n− �+ 1 < ∆. If k < ∆ and n− �+ 1 ≥ ∆1+ε, then

P(Pk� > (1 + ε) ln an)

≤ P

(
N2 <

n− �
∆1+ε

)

+ P

(
k−1∑
j=1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε
+1

X ′
j > (1 + ε) ln an

)
,

where the first summand is bounded as before and the second one has the upper
bound

P

(
k−1∑
j=1

Xj +

∆∑
j=1

Zj +

n−�∑
j=	(n−�)/∆1+ε
+1

X ′
j − ln(k∆3+ε) > 2ε ln ∆

)

≤ exp

(
− (2ε ln ∆− 7)2

2 ln(k∆3+ε) + 6 + 2ε ln ∆

)
,

which leads to the bound given in (3.6) since k∆3+ε ≤ ∆4+2ε. For the case k ≤ ∆
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and ∆ ≤ n− �+ 1 ≤ ∆1+ε we estimate

P(Pk� > (1 + ε) ln an) ≤ P

(
k−1∑
j=1

Xj +

∆∑
j=1

Zj +

	∆1+ε
∑
j=1

X ′
j > (1 + ε) ln an

)
,

and, for the case k ≤ ∆ and n− �+ 1 ≤ ∆,

P(Pk� > (1 + ε) ln an) ≤ P

(
k−1∑
j=1

Xj +

∆∑
j=1

Zj +

n−�∑
j=1

X ′
j > (1 + ε) ln an

)
,

and estimate as before. The remaining cases with n − � + 1 ≤ ∆ are covered by
symmetry.

To show the second claim of the theorem, EP p
k� ∼ lnp an, we fix p ≥ 1 and

δ ∈ (0, 1). Then, by the first part, there is a C > 0 with P(Pk� ≥ (1 + ε) ln an) ≤
C∆−ε2/(3+2ε) for all ∆ sufficiently large and all ε ≥ δ. We obtain

EP p
k� = E

[
P p
k�

(
1{Pk�≤(1+δ) ln an} + 1{Pk�>(1+δ) ln an}

)]
≤ (1 + δ)p lnp an +

∫ ∞

(1+δ)p lnp an

P(P p
k� ≥ t) dt

≤ (1 + δ)p lnp an + C

∫ ∞

(1+δ)p lnp an

exp

(
− ε2

3 + 2ε
ln ∆

)
dt,

with ε = ε(t) = (t1/p/ ln an)− 1.
Note that for any convex function f : [t0,∞) → R, t0 ∈ R, differentiable in t0

with f ′(t0) > 0, we have ∫ ∞

t0

exp(−f(t)) dt ≤ exp(−f(t0))

f ′(t0)
.

This follows estimating f(t) ≥ f(t0) + f ′(t0)(t− t0) for all t ≥ t0 and evaluating the
resulting integral.

Now, the function f(t) = (ε2/(3 + 2ε)) ln ∆ with ε = ε(t) given above and t0 =
(1 + δ)p lnp an has the latter form. Hence an explicit calculation yields∫ ∞

(1+δ)p lnp an

exp

(
− ε2

3 + 2ε
ln ∆

)
dt ≤ exp(−f(t0))

f ′(t0)

=
p(1 + δ)p−1 lnp an
(6δ + 2δ2) ln ∆

∆−δ2/(3+2δ)

= O

(
lnp−1 ∆

∆δ2/(3+2δ)

)
,

which gives a vanishing contribution as ∆→∞.
Hence we obtain

lim sup
n→∞

EP p
k�

lnp an
≤ (1 + δ)p

for all δ > 0; hence lim supn→∞ EP p
k�/ lnp an ≤ 1.
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For the lower bound we choose c ∈ R. Then for all n sufficiently large such that
an > exp(c2) we have

EP p
k�

lnp an
≥ 1

lnp an
E
[
1{(Pk�−ln an)/

√
ln an≥c}P

p
k�

]
≥
(

1 +
c√

ln an

)p

P

(
Pk� − ln an√

ln an
≥ c
)

→ 1− Φ(c)

as n→∞, by Theorem 1.3, where Φ denotes the distribution function of the standard
normal distribution. With c→ −∞ we obtain lim infn→∞ EP p

k�/ lnp an ≥ 1.
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THE EFFECTS OF TEMPORARY SESSIONS
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Abstract. We consider a packet network, in which packets are injected in sessions along
fixed paths. Packet movement is restricted by link bandwidth. In case of contention, a contention
resolution protocol determines which packets proceed. In the permanent session model, a fixed set
of connections is present in the network at all times. In the temporary session model, connections
come and go over time. In this paper we compare network performance in these two models in terms
of stability and end-to-end delay.

We provide the first separation of the two models in terms of stability. In particular, we show
that generalized processor sharing (GPS) can be unstable with temporary sessions, whereas GPS is
known to be stable and have polynomial delay bounds with permanent sessions.

We also observe that the relative performance of protocols can differ in the two models. For
example, in the temporary session model the protocol farthest-to-go (FTG) is known to be stable
and therefore outperforms GPS. However, in the permanent session model we show that FTG can
suffer exponential delays and is therefore outperformed by GPS.

Although polynomial delay bounds are easy to obtain for permanent sessions, this is not the case
when sessions can be temporary. We show that a common framework for bounding delays can only
lead to superpolynomial bounds in the temporary session model. We also construct superpolynomial
lower bounds on delay for a large class of deterministic, distributed protocols that includes the
longest-in-system protocol.

Key words. packet networks, scheduling, stability, delay bounds, permanent sessions, tempo-
rary sessions

AMS subject classifications. 68M20, 68M10, 68W40

DOI. 10.1137/S0097539702417225

1. Introduction. Packet switching is a common feature of modern communica-
tion networks. In this environment, flows of small packets carry information from one
location to another. The movement of packets within the network can be restricted
due to limited link bandwidth. If too many packets are contending for the same link,
a contention resolution protocol is used to determine which packets can proceed and
which packets must wait.

Recently, there has been a great deal of work on the analysis of networks that
are subject to worst-case traffic patterns. This work can broadly be divided into two
groups. In the session-oriented model [2, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20],
a fixed set of sessions (i.e., connections) is present in the network. Each session claims
bandwidth along a fixed session path at all times. This model is appropriate for the
study of networks where connections persist for long periods. In this paper we refer
to it as the permanent session model.

Alternatively, in the temporary session model sessions come and go over time. A
temporary session claims its bandwidth only during its active period. The unused link
bandwidth during its inactive period can be claimed by other sessions. This model is
identical to the adversarial queueing model of [1, 4] in terms of the permitted injection
patterns. However, these two papers have no notion of session rate. We choose to
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perform our analysis in terms of temporary sessions, thereby allowing us to study
popular protocols that are rate-based.

Our aim is to discover how the performance of networks with temporary sessions
differs from the performance of networks with permanent sessions. To the best of our
knowledge, this topic has not been previously studied.

Performance measures. One of the most important measures in network perfor-
mance is stability. A network is stable if the total number of packets in the network
is bounded by a quantity independent of time. A closely related measure is end-to-
end delay, i.e., the time taken for a packet to traverse its path. Many interactive
applications rely on low delay to function properly.

A necessary condition for stability is that the total bandwidth claimed by all
sessions on any link is no more than the link bandwidth. Under this condition, there
is more freedom for packet injections in the temporary session model than in the
permanent session model. Hence, it is more difficult to achieve stability and small
delays when temporary sessions are present.

Protocols. In this paper we focus on simple, deterministic, distributed protocols,
such as shortest-in-system (SIS), longest-in-system (LIS), farthest-to-go (FTG), and
generalized processor sharing (GPS). SIS (resp., LIS) gives priority to the packet that
has been in the system the shortest (resp., longest) amount of time, and FTG gives
priority to the packet that has the most number of links still to traverse. SIS, LIS,
and FTG were all shown to be stable for temporary sessions in [1]. GPS divides the
link bandwidth among sessions in proportion to their session rates. (Note that GPS
is not well-defined without session rates.) Parekh and Gallager [14, 15] showed that
GPS achieves low end-to-end delay in the permanent session model. This work has
created a lot of interest in GPS and has often been studied in connection with the
provision of quality-of-service in the Internet [17]. We also consider a large class of
deterministic, distributed protocols that we call vulnerable protocols.

Our results. Network performance can indeed differ depending on whether or not
temporary sessions are present. We show in this paper that achieving stability and
low delay is strictly more difficult in the temporary session model.

• In section 3, we show that GPS can be unstable in the temporary session
model. Although GPS achieves low delays for permanent sessions, our result
indicates that its performance can be extremely poor if there are temporary
sessions. This is the first result to show that a natural protocol can have
different stability properties in the two models;1 i.e., we have a separation in
terms of stability.
We also present extra conditions under which GPS is in fact stable for tem-
porary sessions. However, this stability comes at the expense of a lower link
utilization.
• In section 4 we observe that the relative performance of protocols can depend

on whether or not temporary sessions are present. In the temporary session
model, our previous result indicates that FTG outperforms GPS since FTG
is known to be stable. In contrast, in the permanent session model we show
that the delays produced by FTG can be eΩ(d), whereas GPS is known to
have polynomial delays. Hence, GPS outperforms FTG.
• In section 5 we give limits on the delay bounds that can be derived in the

1One could artificially create a protocol that behaves like the unstable protocol first-in-first-out
(FIFO) in the temporary session model and behaves like the stable protocol LIS in the permanent
session model. However, such unnatural protocols are not the subject of interest here.
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temporary session model. In particular, we examine an open question posed
in [1]. Is there a deterministic, distributed protocol that achieves polynomial
delays?
We first show that one common technique for bounding delay can only lead

to superpolynomial bounds of the form eΩ(
√
d), where d is the maximum path

length of a session. We then construct a lower bound of eΩ(d) on the actual
delays produced by LIS. (Whether or not LIS guarantees polynomial delays
was previously unknown.) Finally, we extend the analysis to give a lower

bound of eΩ(
√
d) for a large class of deterministic, distributed protocols that

we call vulnerable protocols.
However, for permanent sessions simple, deterministic, distributed protocols
such as GPS do have polynomial delays.

2. The models. We consider a packet-switched network. Packets are injected
into the network over time and are routed along predetermined paths of maximum
length d. Packet movement is constrained by link bandwidth. In this paper we assume
unit packet sizes and unit link bandwidth; i.e., at each time step one packet is allowed
to traverse each link.

The injection of each session i is characterized by its injection rate ρi and burst
size σi. In addition each session i is associated with a set of active periods, [a0

i , b
0
i ],

[a1
i , b

1
i ], . . . , which are time intervals during which session i is allowed to inject packets.

We say that a session is active during its active periods and inactive at all other
times. In the permanent sessions model, every session has active period [0,∞). In
the temporary sessions model some sessions can be inactive at times.

The injections into session i are (σi, ρi)-regulated [6, 7]. That is, the total size of
packets injected into session i in any active interval of length t is at most σi + ρit.
We must ensure that no link is overloaded, otherwise it is impossible to provide any
meaningful performance guarantees. In the permanent sessions model we require that∑

i∈Se

ρi ≤ 1 for all links e,(1)

where Se is the set of sessions passing through e. We refer to (1) as the admissibility
condition for permanent sessions. In the temporary sessions model, we could have
an analogous condition to (1) on the ρi, namely,

∑
i∈Se(t)

ρi ≤ 1, where Se(t) is the
set of active sessions passing through e. However, this is not sufficient since session i
could become active for a very short instant but still inject packets of size σi. Instead
we require that, during any time interval of length t, the total number of packets that
are allowed to be injected into the network to pass through any link e be at most

W + (1− ε)t(2)

for some W and ε ≥ 0. We refer to the above as the admissibility condition for
temporary sessions.

Note that during its active period a session i may inject packets at a rate lower
than ρi, or even inject no packets at all. A permanent session is active at all times no
matter how few packets it injects, and it can be viewed as reserving the bandwidth
of ρi along the links of its path at all times. On the contrary, when a temporary
session is inactive, its bandwidth can be claimed by other sessions. This difference
allows more freedom in admissible packet injections in the temporary session model
than in the permanent session model.
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We now illustrate a set of injections that are admissible in the temporary session
model but not in the permanent sessions model. Consider a network of three links
e1, e2, and e3. For even i, during time interval [2i, 2i+1) session 0 injects packets at
rate 2/3 along paths e1 and e2; for odd i, during time interval [2i, 2i+1) session 1
injects packets at rate 2/3 along paths e1 and e3. Note that these time intervals are
disjoint and increase in length. Therefore these sessions are not (σ, ρ)-regulated for
any fixed σ if ρ < 2/3. Since both sessions pass through link e1 the injections do
not satisfy the admissibility condition (1) for permanent sessions. However, in the
temporary session model we define [2i, 2i+1), where i is even to be the active periods
for session 0 and [2i, 2i+1), where i is odd to be the active periods for session 1. Then
at any given time instant the total injection rate from the active sessions on server e1
is equal to 2/3 and so the injections are admissible in the temporary sessions model.

3. Instability of GPS with temporary sessions. GPS is a protocol designed
for the fluid model, in which link bandwidth can be instantaneously shared among
backlogged sessions. (A session is backlogged at a link if it has packets queueing at
the link.) In particular, each session i has a specified weight Φi. If Be(t) represents
the set of backlogged sessions at link e at time t, then e services session i ∈ Be(t) at
rate

φi =
Φi∑

j∈Be(t)
Φj

;

i.e., e gives session i a fraction φi of its bandwidth.
In this paper, we adopt the most common method of choosing the weights by set-

ting Φi to ρi. (This is also known as rate proportional processor sharing, or RPPS.)
In practice, weighted fair queueing (WFQ), a packet-by-packet protocol, is often im-
plemented to emulate the fluid behavior of GPS. In particular, WFQ gives priority
to the packet that would finish traversing the link first under GPS. A more detailed
description of these protocols can be found in [8, 14, 15].

In [14, 15], Parekh and Gallager derived polynomial delay bounds for GPS and
WFQ in the permanent session model. In contrast, we show in the following that
GPS and WFQ can be unstable when temporary sessions are present. This implies
unbounded delays.

3.1. Instability with temporary sessions. We now show that GPS can be
unstable in the temporary session model. We use the “double-ring” network from [1]
on which the FIFO, last-in-first-out (LIFO), and nearest-to-go protocols were shown
to be unstable. However, the injections into the network are somewhat different.
There are six links in the network in total. Four of the links, e0, f0, e1, and f1, form
a ring. The other two links, f ′0 and f ′1, are parallel to f0 and f1, respectively. (See
Figure 1.)

Theorem 1. The double-ring network is unstable under GPS in the temporary
session model.

Proof. We analyze the packet movement in phases. We inductively assume that
at the beginning of the current phase, s packets from some session A are waiting to
traverse links e0 and f0. At the end of the phase there will be strictly more than
s packets waiting to traverse links e1 and f1. By symmetry, we can repeat the process
indefinitely to build up an unbounded number of packets in the network.

The injection pattern during the current phase is as follows. Let the beginning
of the phase be time 0. For each session, we specify its active time period during
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f1

e1

f ′
0

e0

f ′
1f0

Fig. 1. The double-ring network.

which the session injects packets. All sessions have a common injection rate ρ. Our
construction creates instability for ρ ≥ 0.973. Note that the injection pattern satisfies
the admissibility condition for temporary sessions (2). Note also that in the permanent
session model, the injection is not admissible since, for example, sessions B and D
share links e1 and f1 and have a total rate higher than 1.

1. During [0, 2s), session B is active on path e0f
′
0e1f1 and session C is active on

path f0.
2a. During [2s, 4ρs), session D is active on path f0e1f1.
2b. During [2s, 2ρs+ s), session E is active on path f ′0.
2c. During [2ρs+ s, 4ρs), session F is active on path f ′0.
3. During [4ρs, 4ρs+T ), session G is active on path e1f1. We define the param-

eter T in (3).

At a qualitative level, the above injection pattern creates the following effect.
During step 1, session A contends with sessions B and C and slows down their service.
As a result, at time 2s, session B has a backlog at link e0 and session C has a backlog
at link f0. During step 2a, the backlog of session C slows down the service of sessionD.
During step 2b, session E slows down the service of session B. During step 2c sessions
E and F both slow down the service of B. At time 4ρs, sessions B and D have a total
backlog of more than s packets that still have to traverse e1f1.

The purpose of the injections in step 3 is to create one single session G with more
than s packets waiting to traverse e1f1. The state of the network at time 4ρs+ T is
the same as the state at time 0 except that we now have more packets waiting and
they have been shifted from the head of the path e0f0 to the head of the path e1f1.
Hence we can repeat the process indefinitely to create instability.

To obtain a better understanding of the numbers, suppose that ρ is 1. Session G
will then have 7s/6 packets waiting to traverse e1f1 at time 4ρs+T . For ρ < 1, fewer
than 7s/6 packets from session G will be waiting to traverse e1f1. However, if we
choose ρ sufficiently close to 1, then the number of packets waiting can still be strictly
more than s.

Note that it is crucial that E and F are two different sessions during step 2c.
This creates three sessions B, E, and F that are all competing for link f ′0. Session B
is therefore serviced at rate 1/3. If E and F were the same session, then B would be
serviced at rate 1/2 at f ′0 and at most s packets would be waiting to traverse e1f1.
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This is not sufficient to create instability.
We now give a more detailed description of the phase. Since all sessions have the

same injection rate, under GPS each link services all backlogged sessions at the same
rate.

1. During [0, 2s), link e0 services both sessions A and B at rate 1/2; link f0
services sessions A and C at rate 1/2.
At time 2s, there are no session-A packets left in the network; session B has
2s(ρ − 1/2) packets queueing at link e0; session C has 2s(ρ − 1/2) packets
queueing at link f0.

2a. During [2s, 4ρs), link f0 services sessions C and D at rate 1/2.
At time 4ρs, session C has no packets left in the network; session D has
(4ρs− 2s)(ρ− 1/2) packets queueing at link f0.

2b. During [2s, 2ρs + s), link f ′0 services sessions B and E at rate 1/2; links e1
and f1 service sessions B and D at rate 1/2.
At time 2ρs+ s, session B has 2s(ρ− 1/2)− (2ρs− s)/2 = s(ρ− 1/2) packets
queueing at link f ′0; session E has (2ρs− s)(ρ− 1/2) packets queueing at f ′0.

2c. During [2ρs + s, 4ρs), three sessions B, E, and F are backlogged at link f ′0.
Link f ′0 services all these sessions at rate 1/3. Links e1 and f1 service sessionD
at rate 1/2 and they service session B at rate 1/3. Note that sessions B and D
have no backlogs at e1 and f1, and hence they are served at the rate at which
they arrive.
At time 4ρs, session B has s(ρ − 1/2) − (2ρs − s)/3 = s(ρ − 1/2)/3 packets
queueing at link f ′0; sessions E and F both have packets queueing at f ′0.

3. During [4ρs, 4ρs+ T ), link e1 first services sessions B, D, and G at rate 1/3
for the first ρs− s/2 steps until session B has no packets left in the network.
Link e1 then services D and G at rate 1/2 until time 4ρs+T , which we define
to be the time at which session D has no packets left. The value of T is
therefore

T = 3 · (s(ρ− 1/2)/3) + 2 · ((4ρs− 2s)(ρ− 1/2)− s(ρ− 1/2)/3)(3)

= (8ρs− 11s/3)(ρ− 1/2).

At time 4ρs+T , the number of session G packets that are waiting to traverse
e1 and f1 is

Tρ− s(ρ− 1/2)/3− (T − s(ρ− 1/2))/2

= T (ρ− 1/2) + s(ρ− 1/2)/6.

For ρ ≥ 0.973, the above quantity is strictly greater than s.
So far we have considered the GPS protocol that applies to the fluid model in

which service can be allocated fractionally among different sessions. The key feature
of our instability analysis is that we bound the amount of service that GPS gives to
each session over long time scales. If we move from the fluid model of GPS to the
packetized model of WFQ, we note that the amount of service given to each session
by GPS or by WFQ is indistinguishable over large time scales. Therefore we have the
following.

Corollary 2. The double-ring network is unstable under WFQ in the temporary
session model.

3.2. Stability at reduced link utilization. By imposing extra conditions, it
is possible to ensure network stability under GPS and WFQ when temporary sessions
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are present. The instability in the previous section comes from the fact that a new
active session can start to inject packets before the packets from an inactive session
reach their destination. For example, sessions E and F start to inject packets before
some session-B packets are at their destination. Let a session be live if it has packets
that are not yet at their destination. We can choose to not free up the bandwidth
used by a live session (even if the session is inactive). In other words, one can enforce
the following condition in addition to condition (2).∑

i∈Le(t)

ρi ≤ 1− ε for all links e and time t,(4)

where Le(t) represents the set of sessions that pass through link e and that are live at
time t. With this enforcement we can show that GPS and WFQ are stable. However,
the total injection rate on some link can be arbitrarily small. The link utilization
therefore suffers.

Theorem 3. GPS and WFQ are stable in the temporary session model if condi-
tion (4) holds. However, the total injection rate on some link can be arbitrarily close
to 0.

Proof. If condition (4) holds, then the total injection rate over all live sessions at
any link is at most 1 − ε at all time. This allows us to adapt the analysis of Parekh
and Gallager [15] to obtain the same polynomial delay bound for GPS and WFQ as
in the permanent session model.

Suppose sessions A and B share link e. Both sessions have injection rate 1 − ε
and K links on their paths. Suppose A and B alternate between being active and
inactive, and the length of their active period is α. The injection rate on link e over
time is at most

α(1− ε)
α+K

,

since it takes at least K time steps for the packets to reach their destinations. When
K/α is large, the above quantity can be arbitrarily close to 0.

4. Exponential delay of FTG with permanent sessions. In the temporary
session model, our result in section 3 indicates that GPS is outperformed by the
FTG protocol since FTG is stable [1]. In this section we show that the relative
performance of the two protocols is reversed when all sessions are permanent. Parekh
and Gallager [15] derived a polynomial delay bound for GPS. We show in the following
that the delays under FTG can be of the form eΩ(d), where d is the maximum path
length.

Theorem 4. Under FTG, the delays can be eΩ(d) even if all sessions are perma-
nent.

Proof. We construct a network in which there exists a session A that experiences
exponential delay under FTG. Suppose that session A has burst size σ ≥ 1, injection
rate ρ = 0.45, and path e0, e1, . . . , ed−1. At link e0, A contends with session Z. The
path of Z consists of e0 and then d additional links. Suppose that session Z also has
burst size σ.

At time t0, a burst of σ session-A packets and σ session-Z packets arrives at
link e0. Under FTG, session Z has priority over A on link e0. Hence, during the
time interval [t0, t0 + σ), the only packets that traverse link e0 are the σ session-Z
packets. During this interval [t0, t0 +σ), session A injects additional packets at rate ρ.
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Session Z injects no packets. Let t1 = t0 + σ. The total number of session-A packets
queued at link e0 at time t1 is σ(1 + ρ).

At time ti+1 = ti + σ(1 + ρ)i, we inductively assume that a total of σ(1 + ρ)i+1

session-A packets are queueing at links e0, e1, . . . , ei, among which at least σ(1 + ρ)i

are queueing at ei. In addition we assume no packets from other sessions are queueing
at e0, . . . , ei at time ti+1. (As we can see from the previous paragraph, the basis of
induction holds for i = 0.) Let Πi be the injection process that created this state and
let Ni be the network on which the injections of Πi are made.

We now create a network N ′
i that is identical to Ni except that the end of each

session path in N ′
i is extended by one extra link. Let session A′ in N ′

i correspond to
session A in Ni, and let e′0, . . . , e

′
i, ei+1 be the first i+ 2 links of session A′. Networks

N ′
i and Ni share no common links other than ei+1. (See Figure 2.) The injection

process Π′
i in N ′

i is identical to Πi up to time ti+1. After ti+1, session A′ injects no
packets and session A continues to inject at rate ρ.

A′

A

ei+1

ei

e′i

Fig. 2. Sessions A and A′ in the inductive assumption at time ti+1. Other sessions are omitted
in this drawing.

With the above construction, the same inductive assumption holds for network N ′
i

at time ti+1. Under FTG, session A′ has priority over A on link ei+1. During time
interval [ti+1, ti+2), where ti+2 = ti+1 + σ(1 + ρ)i+1, σ(1 + ρ)i+1 session-A′ packets
traverse links e′i and ei+1 one after another. Note that some session-A′ packets may
not be at e′i at time ti+1. However, since other sessions have no packets queueing at
links e′0, . . . , e

′
i, these session-A′ packets can reach e′i by time ti+1 + σ(1 + ρ)i since

σ(1 + ρ)i > i for all i when ρ = 0.45. By a similar argument, during time interval
[ti+1, ti+2), σ(1 + ρ)i+1 session-A packets traverse links e′i one after another and then
queue up at ei+1. Meanwhile, σ(1 + ρ)i+1ρ session-A packets are injected. Thus, a
total of σ(1 + ρ)i+2 packets are queueing up at links e0, . . . , ei+1, among which at
least σ(1 + ρ)i+1 are at ei+1. In addition, during [ti+1, ti+2) no packets other than
those from session A are injected along e0, . . . , ei. Since by induction no packets from
other sessions are queueing at these links at time ti+1, no packets from other sessions
can be queueing at links e0, . . . , ei at ti+2. The inductive step is complete.

We note that ρ is set at 0.45 for two reasons. First, link ei+1 is the only link
where 2 sessions merge in the inductive step. For ρ = 0.45 the admissibility condition
of (2) holds for a fixed burst. Second, in the inductive step we need σ(1 + ρ)i > i for
all i and ρ = 0.45 suffices.
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5. Superpolynomial lower bounds on delay for temporary sessions. In
this section we derive lower bounds on delay in the temporary session model. In
section 5.1 we show that a common framework for deriving delay bounds in this
model cannot give bounds that are polynomial in d, the maximum session length. We
refer to this framework as the no-early-arrival framework. In section 5.2 we extend
the result to show that a large class of deterministic, distributed protocols, including
LIS, cannot give polynomial delay bounds. On the other hand protocols such as GPS
can guarantee polynomial delays in the permanent session model.

Throughout this section, we focus on the injection of individual packets and do
not explicitly define sessions. However, we can regard a single packet injection as a
session with a burst size of 1, an arbitrarily small injection rate, and an active period
of 1 time step.

5.1. Lower bound for the no-early-arrival framework. We describe the
no-early-arrival framework that has been used to derive delay bounds for a number of
protocols, e.g., LIS, SIS, and FTG, in [1]. In this framework, for a given protocol P
we create a sequence T1, T2, . . . for which every packet traverses its ith link within
Ti steps of its injection. Each Ti is calculated by assuming that each packet traverses
its (i − 1)st link exactly at time Ti−1. We bound the additional amount of time, Si,
that a packet takes to traverse its ith link. We then set Ti = Ti−1 + Si. Each Si

is bounded by some inequality expressed in terms of the T ’s, where this inequality
explores the properties of P. If these inequalities have a positive solution, then the
delay bounds are obtained.

For example, consider the SIS protocol. Suppose a packet p is injected at time T0

and arrives at its ith link at time T0 + Ti−1. During the time period [T0 + Ti,
T0 +Ti−1 +Si), at most σ+(1− ε)(Ti−1 +Si) packets can have priority over packet p
at link e. If

Si ≥ σ + (1− ε)Ti−1

ε
⇒ Si ≥ σ + (1− ε)(Ti−1 + Si),

then packet p traverses its ith link e by time T0 + Ti−1 + Si. Thus, we can set
Ti = Ti−1 + Si. By induction we obtain a bound on Td. (A variant of this proof was
used to show stability of SIS in [1].)

The above approach does not take advantage of the fact that some packets may
traverse their ith link earlier than Ti. We refer to this approach as the no-early-
arrival framework. In [1], the delay bounds for the three stable protocols LIS, SIS,
and FTG were all derived within the no-early-arrival framework. We now show that
within this framework we cannot prove polynomial delay bounds for any protocol.
More precisely, we have the following.

Theorem 5. If the no-early-arrival framework is used to bound the delay in the

temporary session model, then for any protocol Td = eΩ(
√
d).

Proof. Suppose that T1, T2, . . . , Td is a sequence of delay bounds that has been
derived for a protocol P using the no-early-arrival framework. We use the following
injections to obtain a lower bound for Td. All of the packets are to traverse some
common link e. The packets are divided into d− 1 groups. Let τ ≥ Td−1 and T0 = 0.
For 1 ≤ i ≤ d − 1, group i consists of (1 − ε)(Ti − Ti−1) packets that are injected
during time interval [τ − Ti, τ − Ti−1). These packets in group i have link e as the
(i+ 1)st link on their paths. (See Figure 3.) Since the different groups inject packets
at disjoint time intervals, condition (2) is satisfied. In the no-early-arrival framework,
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τ − T1

Time

τ − Ti−1

group i:

inj. on e at rate 1− ε
i links away from e

τ

τ − Ti

τ − Td−1

τ − Td−1−1

Fig. 3. Packets arrive at e no earlier than τ in the no-early-arrival framework.

we assume that all packets from these d − 1 groups arrive at link e no earlier than
time τ .

We order the groups by the time at which all the packets from the group have
traversed link e under protocol P. Let π1, π2, . . . , πd−1 be this ordering; i.e., if i < j,
all the packets from πi traverse link e before the last packet of πj . Let p be the last
packet from group πi to traverse link e. Since p is in group πi, it is injected by time
τ − Tπi−1 and therefore traverses link e by time τ + Tπi+1 − Tπi−1. By the definition
of the ordering, all packets from groups π1, . . . , πi traverse link e before p. Since all
these packets arrive at link e no earlier than τ and (1 − ε)(Tπj

− Tπj−1) packets are
in group πj , we have the following recurrence:

Tπi+1 − Tπi−1 ≥ (1− ε)[(Tπi − Tπi−1) + (Tπi−1 − Tπi−1−1) + · · ·+ (Tπ1 − Tπ1−1)].
(5)

We proceed to show that Td = eΩ(
√
d) regardless of the ordering, π. By letting

Si = Ti − Ti−1, the recurrence (5) is equivalent to the following:

Sπi+1 + Sπi ≥ (1− ε)(Sπi + Sπi−1 + · · ·+ Sπ1).(6)

For simplicity, we refer to each recurrence (6) by its subscript πi. We say that a
recurrence πi is right-big if Sπi+1

≤ Sπi
; a recurrence is left-big otherwise. Note that

if recurrence πi is right-big, then Sπi
≥ 1−ε

2 (Sπi
+ Sπi−1

+ · · ·+ Sπ1
). If πi is left-big,

then Sπi+1 ≥ 1−ε
2 (Sπi + Sπi−1 + · · ·+ Sπ1). We also say that recurrences πj for j > i

are above recurrence πi and that recurrences πj for j < i are below recurrence πi.

It suffices to show that Si = eΩ(
√
d) for some i, since Td =

∑
1≤i≤d Si. We observe

that Sπi appears on the right-hand side (RHS) of the recurrence πi. Also, every term
on the RHS of πi appears on the RHS of all the recurrences above πi. These two simple
observations allow us to prove lower bounds on any subset of right-big recurrences.

Lemma 6. If ϕ1, . . . , ϕk are right-big recurrences such that ϕi appears above

ϕi−1 for all 1 < i ≤ k, then
∑

1≤i≤k Sϕi is at least
(
1 + 1−ε

2

)k−1
Sϕ1 . As a result,

Sϕk
= eΩ(k).
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Proof. The lemma holds trivially for k = 1. Inductively, we have

Sϕk
≥ 1− ε

2
(Sϕk

+ Sϕk−1
+ · · ·+ Sϕ1

)

≥ 1− ε
2

(
1 +

1− ε
2

)k−2

Sϕ1 .

The first inequality holds since recurrence ϕk is right-big and Sϕk
, . . . , Sϕ1 all appear

on the RHS of recurrence ϕk by our earlier observations. The second inequality follows
from the inductive hypothesis.

If we have more than
√
d right-big recurrences, then by Lemma 6 we are done.

However, this is not always true. Our general strategy is to prove a lower bound expo-
nential in k, where k is the length of the longest monotone subsequence of π1, . . . , πd−1.
It is well known that k ≥ √d− 1. Let ϕ1, . . . , ϕk be a longest monotone subsequence.

We define a sequence of delay lower bounds, Bi, such that the RHS of recurrence ϕi

is at least (1 − ε)Bi. For the base case, let B1 = Sϕ1
. The RHS of recurrence ϕ1

is at least (1 − ε)B1. For recurrence ϕi where i ≥ 2, we either show that its RHS
is at least (1 − ε) (1 + 1−ε

2

)
Bi−1 or else we find a new right-big recurrence. In the

former case, we set Bi = (1 + 1−ε
2 )Bi−1. In the latter case we set Bi = Bi−1. Hence,

either at least (k − 1)/2 recurrences are right-big or else Bk ≥
(
1 + 1−ε

2

)(k−1)/2
Sϕ1

.

In the former case we have Sϕk
= eΩ(k) by Lemma 6. In the latter case we have

Sϕk+1 + Sϕk
≥ (1− ε)Bk = eΩ(k). In both cases we have

Td =
∑

1≤i≤d

Si ≥ Sϕk+1 + Sϕk
= eΩ(

√
d).

The details of the analysis depend on whether or not the monotone subsequence is
increasing or decreasing.

Case 1: Increasing subsequence, ϕ1 < · · · < ϕk. For each recurrence ϕi where
2 ≤ i ≤ k we define a helper as follows. If recurrence ϕi−1 + 1 is below or the
same as ϕi, then recurrence ϕi−1 is the helper. Otherwise, there exists some j where
ϕi−1 < j < ϕi such that recurrence j is above ϕi and recurrence j + 1 is below or
the same as ϕi. We define recurrence j to be the helper. Suppose recurrence j is the
helper of ϕi. We observe the following.

Proposition 7. The term Sj+1 is on the RHS of ϕi and all the recurrences
above ϕi.

Proposition 8. Recurrence j is no lower than recurrence ϕi−1.
If j is left-big, we can lower bound Sj+1 using the RHS of ϕi−1 and then lower

bound the RHS of ϕi using Sj+1. More precisely, let us defineWϕi
= Wϕi−1

+Sj+1 and
Wϕ1 = Sϕ1 . Since the RHS of recurrence ϕi is at least (1−ε)Wϕi due to Proposition 7,
it suffices to lower bound Wϕi . Assume inductively that Wϕi−1 ≥ Bi−1. We now
consider recurrence ϕi and let j be its helper. If j is left-big, we have

Sj+1 ≥ 1

2
· RHS of recurrence ϕi−1 ≥ 1− ε

2
Wϕi−1

.

The first inequality holds because j is left-big. The second inequality follows from
Proposition 8. As a result,

Wϕi
= Sj+1 +Wϕi−1

≥
(

1 +
1− ε

2

)
Wϕi−1 ≥

(
1 +

1− ε
2

)
Bi−1.
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Hence, we set Bi =
(
1 + 1−ε

2

)
Bi−1. If recurrence j is right-big, then we have found a

new right-big recurrence. Note that j is distinct from any right-big recurrence found
earlier since our construction ensures that all helpers are distinct. Since ϕi is above
ϕi−1 the RHS of ϕi is at least as big as the RHS of ϕi−1. Hence, we set Bi = Bi−1.

At the conclusion of this process, either Bk ≥
(
1 + 1−ε

2

)(k−1)/2
Sϕ1 or we have at

least (k − 1)/2 distinct right-big recurrences. As described earlier, in both cases we

have Td = eΩ(
√
d).

Case 2: Decreasing subsequence, ϕ1 > · · · > ϕk. The analysis for a decreasing
subsequence is similar. We highlight the differences here. For each recurrence ϕi

where 2 ≤ i ≤ k we define its helper as follows. If ϕi + 1 is below recurrence ϕi, then
ϕi is its own helper. Otherwise, there exists some j where ϕi < j < ϕi−1 such that
recurrence j is above ϕi and recurrence j + 1 is below ϕi. We define recurrence j
to be the helper. As before, if j is the helper of ϕi, then it satisfies Propositions 7
and 8. If j is left-big, we lower bound Sj+1 and this in turn lower bounds the RHS
of ϕi. Otherwise, j is right-big. We handle the set of right-big recurrences using
Lemma 6.

The analysis of Theorem 5 shows that the exponent in the lower bound is deter-
mined by the length of the longest monotone sequence. The sequence π1, . . . , πd−1

is increasing for protocol SIS and is decreasing for protocol LIS. Hence, we have the
following.

Corollary 9. If the no-early-arrival framework is used to bound the delay in
the temporary session model, then Td = eΩ(d) for SIS and LIS.

5.2. Lower bounds for a class of deterministic, distributed protocols.
In the previous section we concentrated on a particular technique for deriving delay
bounds. In this section we show that the above arguments can be used to lower bound
the actual delay produced by many protocols. It was proven in [1] that the delays
due to SIS and FTG can be eΩ(d). However, the question of whether or not LIS has
polynomial delays was previously unresolved. More generally, [1] poses the question
of whether or not any deterministic, distributed protocol can guarantee polynomial
delays. In the following, we construct an exponential bound eΩ(d) for the actual
delays produced by LIS. We then extend the argument to show a superpolynomial
lower bound for a large class of deterministic, distributed protocols.

Theorem 10. Under LIS, there exists some network for which some packet takes
eΩ(d) steps to traverse a path of d links in the temporary session model.

Proof. We construct the network in stages. At stage j we inductively obtain a set

of networks N
(j)
1 , . . . , N

(j)
d−1 and a set of delay bounds T

(j)
1 < T

(j)
2 < · · · < T

(j)
d−1 such

that under some injection process Π
(j)
i some packet pi takes exactly T

(j)
i time steps

to traverse an i-link path Pi in network N
(j)
i . At stage 1 we have T

(1)
i = i and the

network N
(1)
i is a linear array of i links. The injection process Π

(1)
i injects one packet

that must traverse all i links of N
(1)
i .

Given the set of networks at stage j, we now show how to construct the networks
at stage j + 1. The idea of our analysis is similar to that in Theorem 5. We create

one big network N which consists of one new link e and (1− ε)(T (j)
i −T (j)

i−1) copies of

network N
(j)
i for 1 ≤ i ≤ d− 1. The link e is appended to the tail of the path Pi for

every copy of N
(j)
i . (See Figure 4.) We modify the injection process Π

(j)
i so that pi

is to traverse link e after traversing path Pi. It is important to observe the following.

Proposition 11. Under LIS, the packet movement within N
(j)
i due to the
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Pi

e

copies of N
(j)
i

(1− ε)(T
(j)
i − T

(j)
i−1)

Fig. 4. The construction of network N from N
(j)
1 , . . . , N

(j)
d .

injection process Π
(j)
i is unchanged by these modifications.

The injection process Π on N is as follows. Let τ ≥ T
(j)
d−1. We space out the

starting time of the injection process Π
(j)
i on each copy of N

(j)
i . In particular, the 	th

copy, where 0 ≤ 	 < (1 − ε)(T (j)
i − T (j)

i−1), starts at time τ − T (j)
i + 	/(1 − ε). This

ensures that the pi’s are injected at the new link e at a rate 1 − ε. (These packets

injected by the processes Π
(j)
i are equivalent to the packets in group i in Theorem 5.

See Figure 3.) We note that the injection process Π on N is admissible by (2) since

the injection process Π
(j)
i is admissible on each copy of N

(j)
i and the new link e is not

overloaded due to the spacing of the starting times of Π
(j)
i . There are two cases to

consider.
Case 1. Under LIS, every packet pi for 1 ≤ i ≤ d− 2 traverses link e within T

(j)
i+1

steps of its injection. By induction, packet pi arrives at the head of link e exactly

T
(j)
i steps after its injection. Hence recurrences (5) hold for a decreasing sequence
π1, . . . , πd−1. In particular,

T
(j)
i − T (j)

i−2 ≥ (1− ε)(T (j)
d−1 − T (j)

i−2) for 2 ≤ i ≤ d− 1.

This inequality is equivalent to (5). By an argument similar to the proof of Theorem 5,

we have T
(j)
d−1 = eΩ(d).

Case 2. Under LIS, some packet pi traverses link e at a time T ′ steps after its

injection where T ′ > T
(j)
i+1. Therefore, we can set N

(j+1)
i+1 = N , T

(j+1)
i+1 = T ′, and

Π
(j+1)
i+1 = Π. The new path Pi+1 is the old path Pi concatenated with link e. For

i′ �= i+ 1, it is trivial to construct networks and injection processes for which we can

set the T
(j+1)
i′ so that T

(j+1)
i′ ≥ T (j)

i′ and T
(j+1)
i′ > T

(j+1)
i′−1 .

Note that for Case 2, one of the Ti values strictly increases. Hence after j = deΩ(d)

stages we must have T
(j)
i = eΩ(d) for some i.

For any protocol, if Proposition 11 holds, then we can construct a network in
stages as shown in Theorem 10. More precisely, we say that protocol P is vulnerable
if

1. protocol P is deterministic;
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2. protocol P is independent of the remainder of the path that each packet still
has to traverse;

3. given isomorphic networks A and B with identical injection processes, the
behavior of protocol P is identical in A and B.

Note that for an arbitrary vulnerable protocol we can have an arbitrary ordering of
the recurrences (5). Hence, the analysis gives a lower bound that is exponential in

√
d.

Corollary 12. For a vulnerable protocol P , there exists some network for which

some packet takes eΩ(
√
d) steps to traverse a path of d links in the temporary session

model.

We remark that SIS, LIS, and GPS are all vulnerable protocols. In addition, by
adapting the construction of the networks N we can obtain a lower bound of eΩ(d) for
FTG even though it is not strictly vulnerable. (FTG is dependent on the remainder of
a packet’s path.) We also remark that our lower bound does not apply to randomized
protocols or centralized protocols.

6. Conclusion. In this paper we have shown that the presence of temporary
sessions can cause significant deterioration in network performance. There are a
number of open problems. Note that for the lower bounds in sections 4 and 5.2
the network sizes are exponential in d. Although we believe that d is the correct
parameter to consider when deriving delay bounds, it would be interesting to know
if our arguments can be adapted to give lower bounds that are superpolynomial in
network size.

For permanent sessions, protocols with near-optimal delay performance were de-
scribed in [2, 13, 16]. It would be interesting to know if these ideas can be applied
to temporary sessions. In particular, it is not clear how to adapt these protocols so
that they are stable for the network in section 3. We note that if the link utilization
is sufficiently small, the protocols of [3] provide low delay bounds in the temporary
session model.
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1. Introduction. It has recently been argued that knowledge is a useful tool
for analyzing the behavior and interaction of agents in a distributed system (see [1]
and the references therein). When analyzing a system in terms of knowledge, not
only is the current state of knowledge of the agents in the system relevant, but it is
also relevant how that state of knowledge changes over time. A formal propositional
logic of knowledge and time was first proposed by Sato [17]; many others have since
been proposed [2, 12, 11, 15, 18]. Unfortunately, while these logics often use similar
or identical notation, they differ in a number of significant respects.

In [8], logics for knowledge and time were categorized along two major dimen-
sions: the language used and the assumptions made on the underlying distributed
system. The properties of knowledge in a system turn out to depend in subtle ways
on these assumptions. The assumptions considered in [8] concern whether agents
have unique initial states, operate synchronously or asynchronously, have perfect re-
call, and whether they satisfy a condition called no learning. There are 16 possible
combinations of these assumptions on the underlying system. Together with 6 choices
of language, this gives us 96 logics in all. All the logics considered in the papers
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mentioned above fit into the framework. In [6, 7, 8], the computational complexity
of these logics is completely characterized; the results of these papers show how the
subtle interplay of the parameters can have a tremendous impact on complexity. The
complexity results show that some of these logics cannot be given a recursive axiom-
atization, since the set of valid formulas for these logics is not recursively enumerable
(r.e.). Of these 96 logics, 48 involve linear time and 48 involve branching time. (The
distinction between linear and branching time essentially amounts to whether or not
we can quantify over the possible executions of a program [16].) To keep this paper
to manageable length, we focus here on the linear time logics, and provide axiomatic
characterizations of all the linear time logics for which an axiomatization is possible
at all (i.e., for those logics for which the set of valid formulas is r.e.).

The rest of this paper is organized as follows. In the next section, we provide
formal definitions for the logics we consider. In section 2, we review the syntax and
semantics of all the logics of knowledge and time that we consider here. In particular,
we review the four assumptions on the underlying system that we axiomatize in this
paper. In section 3, we state the axioms for all the systems. In section 4, we introduce
the notion of enriched systems, which form the basis for all our completeness proofs.
In section 5, we prove soundness and completeness for the axiom systems described in
section 3. The definition of no learning that we use here is slightly different from that
used in [1, 5], although they agree in many cases of interest. We discuss the motivation
for our change in section 6. We conclude with some further discussion in section 7.

2. The formal model: Language and systems. The material in this section
is largely taken from [8] and is repeated here to make this paper self-contained. The
reader is encouraged to consult [8] for further details and motivation.

The logics we are considering are all propositional. Thus, we start out with
primitive propositions p, q, . . . and we close the logics under negation and conjunction,
so that if ϕ and ψ are formulas, so are ¬ϕ and ϕ ∧ ψ. In addition, we close off under
modalities for knowledge and time, as discussed below. As usual, we view true as an
abbreviation for ¬(p ∧ ¬p), ϕ ∨ ψ as an abbreviation for ¬(¬ϕ ∧ ¬ψ), and ϕ⇒ ψ as
an abbreviation for ¬ϕ ∨ ψ.

If we havem agents (in distributed systems applications, this would mean a system
with m processors), we add the modalities K1, . . . ,Km. Thus, if ϕ is a formula, so
is Kiϕ (read “agent i knows ϕ”). We take Liϕ to be an abbreviation for ¬Ki¬ϕ. In
some cases we also want to talk about common knowledge, so we add the modalities E
and C into the language; Eϕ says that everyone knows ϕ, while Cϕ says ϕ is common
knowledge.

There are two basic linear temporal modalities (sometimes called operators or
connectives): a unary operator © and a binary operator U . Thus, if ϕ and ψ are
formulas, then so are ©ϕ (read “next time ϕ”) and ϕ U ψ (read “ϕ until ψ”). �ϕ is
an abbreviation for true U ϕ, while �ϕ is an abbreviation for ¬�¬ϕ. Intuitively, ©ϕ
says that ϕ is true at the next point (one time unit later), ϕUψ says that ϕ holds until
ψ does, �ϕ says that ϕ is eventually true (either in the present or at some point in
the future), and �ϕ says that ϕ is always true (in the present and at all points in the
future). In [8], branching time operators are also considered, which have quantifiers
over runs. For example, ∀© is a branching time operator such that ∀©ϕ is true when
©ϕ is true for all possible futures. Since we do not consider branching time operators
in this paper, we omit the formal definition here. We take CKLm to be the language
for m agents with all the modal operators for knowledge and linear time discussed
above; KLm is the restricted version without the E and C operators.
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A system for m agents consists of a set R of runs, where each run r ∈ R is
a function from N to Lm+1, where L is some set of local states. There is a local
state for each agent, together with a local state for the environment ; intuitively, the
environment keeps track of all the relevant features of the system not described by
the agents’ local states, such as messages in transit but not yet delivered. Thus, r(n)
has the form 〈le, l1, . . . , lm〉, where le is the state of the environment, and li is the
local state of agent i for i = 1, . . . ,m; such a tuple is called a global state. (Formally,
we could view a system as a tuple (R,L,m), making the L and m explicit. We have
chosen not to do so in order to simplify notation. The L and m should always be
clear from context.) An interpreted system I for m agents is a tuple (R, π), where
R is a system for m agents, and π maps every point (r, n) ∈ R × N to a truth
assignment π(r, n) to the primitive propositions (so that π(r, n)(p) ∈ {true, false}
for each primitive proposition p).1

We now give semantics to CKLm and KLm. Given an interpreted system I =
(R, π), we write (I, r, n) � ϕ if the formula ϕ is true at (or satisfied by) the point (r, n)
of interpreted system I. We define � inductively for formulas of CKLm (for KLm we
just omit the clauses involving C and E). In order to give the semantics for formulas of
the form Kiϕ, we need to introduce one new notion. If r(n) = 〈le, l1, . . . , lm〉, r′(n′) =
〈l′e, l′1, . . . , l′m〉, and li = l′i, then we say that r(n) and r′(n′) are indistinguishable to
agent i and write (r, n) ∼i (r′, n′). Of course, ∼i is an equivalence relation on global
states (inducing an equivalence relations on points). Kiϕ is defined to be true at (r, n)
exactly if ϕ is true at all the points whose associated global state is indistinguishable
to i from that of (r, n). We proceed as follows:

• (I, r, n) � p for a primitive proposition p iff π(r, n)(p) = true.
• (I, r, n) � ϕ ∧ ψ iff (I, r, n) � ϕ and (I, r, n) � ψ.
• (I, r, n) � ¬ϕ iff (I, r, n) � ϕ.
• (I, r, n) � Kiϕ iff (I, r′, n′) � ϕ for all (r′, n′) such that (r, n) ∼i (r′, n′).
• (I, r, n) � Eϕ iff (I, r′, n′) � Kiϕ for i = 1, . . . ,m.
• (I, r, n) � Cϕ iff (I, r′, n′) � Ekϕ, for k = 1, 2, . . . (where E1ϕ = Eϕ and
Ek+1ϕ = EEkϕ).

• (I, r, n) � ©ϕ iff (I, r, n+ 1) � ϕ.
• (I, r, n) � ϕU ψ iff there is some n′ ≥ n such that (I, r, n′) � ψ, and for all n′′

with n ≤ n′′ < n′, we have (I, r, n′′) � ϕ.

There is a graphical interpretation of the semantics of C which we shall find useful
in what follows. Fix an interpreted system I. A point (r′, n′) in I is reachable from
a point (r, n) if there exist points (r0, n0), . . . , (rk, nk) such that (r, n) = (r0, n0),
(r′, n′) = (rk, nk), and for all j = 0, . . . , k − 1 there exists i such that (rj , nj) ∼i

(rj+1, nj+1). The following result is well known (and easy to check).

Lemma 2.1 (see [4]). (I, r, n) � Cϕ iff (I, r′, n′) � ϕ for all points (r′, n′)
reachable from (r, n).

As usual, we define a formula ϕ to be valid with respect to a class C of interpreted
systems iff (I, r, n) � ϕ for all interpreted systems I ∈ C and points (r, n) in I. A

1Note that while we are being consistent with [8] here, in [1], π is taken to be a function from
global states (not points) to truth values. Essentially, this means that in [1] a more restricted class of
structures is considered, where π is forced to be the same at any two points associated with the same
global state. Clearly our soundness results hold in the more restricted class of structures. It is also
easy to see that our completeness results hold in the more restricted class too. All our completeness
proofs have (or can be easily modified to have) the property that a structure is constructed where
each point is associated with a different global state, and thus is an instance of the more restrictive
structures used in [1].
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formula ϕ is satisfiable with respect to C iff for some I ∈ C and some point (r, n) in I,
we have (I, r, n) � ϕ.

We now turn our attention to formally defining the classes of interpreted systems
of interest. For some of these definitions, it will be useful to give a number of equivalent
presentations.

Perfect recall means, intuitively, that an agent’s local state encodes everything
that has happened (from that agent’s point of view) thus far in the run. To make
this precise, we need to define “what has happened so far from the agent’s point of
view.” Let agent i’s local-state sequence at the point (r, n) be the sequence l0, . . . , lk
of states that agent i takes on in run r up to and including time n, with consecutive
repetitions omitted. For example, if from times 0 through 4 in run r agent i goes
through the sequence l, l, l′, l, l of states, its history at (r, 4) is just l, l′, l. Agent i’s
local-state sequence at a point (r,m) essentially describes what has happened in the
run up to time m, from i’s point of view. Omitting consecutive repetitions from the
local-state is intended to model asynchrony; “stuttering” is ignored.

Roughly speaking, agent i has perfect recall if i’s current state encodes its history,
i.e., i’s whole local-state sequence. More formally, we say that agent i has perfect recall
(alternatively, agent i does not forget) in system R if at all points (r, n) and (r′, n′)
in R, if (r, n) ∼i (r′, n′), then r has the same local-state sequence at both (r, n) and
(r′, n′).

There are a number of equivalent characterizations of perfect recall. One charac-
terization that will prove particularly useful in the comparison with the concept of no
learning, which we are about to define, is the following. Let S = (s0, s1, s2, . . .) and
T = (t0, t1, t2, . . .) be two (finite or infinite) sequences and let ∼ be a relation on the
elements of S and T . Then we say that S and T are ∼-concordant if there is some k
(k may be∞) and nonempty consecutive intervals S1, . . . , Sk of S and T1, . . . , Tk of T
such that for all s ∈ Sj and t ∈ Tj , we have s ∼ t for j = 1, . . . , k.

Lemma 2.2 (see [5, 14]). The following are equivalent.
(a) Agent i has perfect recall in system R.
(b) For all points (r, n) ∼i (r′, n′) in R, ((r, 0), . . . , (r, n)) is ∼i-concordant with

((r′, 0), . . . , (r′, n′)).
(c) For all points (r, n) ∼i (r′, n′) in R, if n > 0, then either (r, n−1) ∼i (r′, n′)

or there exists a number l < n′ such that (r, n − 1) ∼i (r′, l) and for all k
with l < k ≤ n′ we have (r, n) ∼i (r′, k).

(d) For all points (r, n) ∼i (r′, n′) in R, if k ≤ n, then there exists k′ ≤ n′ such
that (r, k) ∼i (r′, k′).

Proof. The implications from (a) to (b), from (b) to (c), and from (c) to (d) are
straightforward. The implication from (d) to (a) can be proved by a straightforward
induction on n+ n′.

Lemma 2.2 shows that perfect recall requires an unbounded number of local states
in general, since agent i may have an infinite number of distinct histories in a given
system. A system where agent i has perfect recall is shown in Figure 2.1, where
the vertical lines denote runs (with time 0 at the top) and all points that i cannot
distinguish are enclosed in the same region.

We remark that the official definition of perfect recall given here is taken from [1].
In [5], part (d) of Lemma 2.2 was taken as the definition of perfect recall (which was
called “no forgetting” in that paper).

Roughly speaking, no learning is the dual notion to perfect recall. Perfect recall
says that if the agent considers run r′ possible at the point (r, n), in that there is a
point (r′, n′) that the agent cannot distinguish from (r, n), then the agent must have
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Fig. 2.1. A system where agent i has perfect recall.

considered r′ possible at all times in the past (i.e., at all points (r, k) with k ≤ n);
it is not possible that the agent once considered r′ impossible and then forgot this
fact. No learning says that if the agent considers r′ possible at (r, n), then the agent
will consider r′ possible at all times in the future; the agent will not learn anything
that will allow him to distinguish r from r′. More formally, we define an agent’s
future local-state sequence at (r, n) to be the sequence of local states l0, l1, . . . that
the agent takes on in run r, starting at (r, n), with consecutive repetitions omitted.
We say agent i does not learn in system R if at all points (r, n) and (r′, n′) in R, if
(r, n) ∼i (r′, n′), then r has the same future local-state sequence at both (r, n) and
(r′, n′).

Just as with perfect recall, there are a number of equivalent formulations of no
learning.

Lemma 2.3. The following are equivalent.
(a) Agent i does not learn in system R.
(b) For all points (r, n) ∼i (r′, n′) in R, ((r, n), (r, n + 1), . . .) is ∼i-concordant

with ((r′, n′), (r′, n′ + 1), . . .).
(c) For all points (r, n) ∼i (r′, n′) in R, either (r, n+1) ∼i (r′, n′) or there exists

a number l > n′ such that (r, n + 1) ∼i (r′, l) and for all k with l > k ≥ n′

we have (r, n) ∼i (r′, k).
Notice that we have no analogue to part (d) of Lemma 2.2 in Lemma 2.3 (where

≤ is replaced by ≥). The analogue of (d) is strictly weaker than (a), (b), and (c),
although they are equivalent in synchronous systems (which we are about to define
formally). It was just this analogue of (d) that was used to define no learning in
[5, 8]. We examine the differences between the notions carefully in section 6, where
we provide more motivation for the definition chosen here.

In a synchronous system, we assume that every agent has access to a global clock
that ticks at every instant of time, and the clock reading is part of its state. Thus,
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in a synchronous system, each agent always “knows” the time. More formally, we say
that a system R is synchronous if for all agents i and all points (r, n) and (r′, n′),
if (r, n) ∼i (r′, n′), then n = n′.2 Observe that in a synchronous system where
(r, n) ∼i (r′, n), an easy induction on n shows that if i has perfect recall and n > 0,
then (r, n− 1) ∼i (r′, n− 1), while if i does not learn, then (r, n+ 1) ∼i (r′, n+ 1).

Finally, we say that a system R has a unique initial state if for all runs r, r′ ∈ R,
we have r(0) = r′(0). Thus, if R is a system with a unique initial state, then we have
(r, 0) ∼i (r′, 0) for all runs r, r′ in R and all agents i.

We say that I = (R, π) is an interpreted system where agents have perfect re-
call (resp., agents do not learn, time is synchronous, there is a unique initial state)
exactly if R is a system with that property. We use Cm to denote the class of all
interpreted systems for m agents, and add the superscripts nl, pr, sync, and uis to
denote particular subclasses of Cm. Thus, for example, we use Cnl,pr

m to denote the
set of all interpreted systems with m agents that have perfect recall and do not learn.
We omit the subscript m when it is clear from context.

The results of [6, 7, 8] (some of which are based on earlier results of Ladner
and Reif [11]) are summarized in Table 2.1. Each entry states a complexity class for
which the corresponding problem is complete. For ϕ ∈ KLm, we define ad(ϕ) to be
the greatest number of alternations of distinct Ki’s along any branch in ϕ’s parse
tree. For example, ad(K1¬K2K1p) = 3; temporal operators are not considered, so
that ad(K1�K1p) = 1. (In Table 2.1, we do not consider the language CKL1. This
is because if m = 1, then Cϕ is equivalent to K1ϕ. Thus, CKL1 is equivalent to
KL1.) We omit the definitions of complexity classes such as Π1

1 and nonelementary
time ex (ad(ϕ) + 1, c|ϕ|) here; see [9] for details. (Note that c is a constant in the
latter expression.) All that matters for our purposes is that for the cases where the
complexity is Π1

1 or co-r.e., there can be no recursive axiomatization; the validity
problem is too hard. We provide complete axiomatizations here for the remaining
cases.

Table 2.1

The complexity of the validity problem for logics of knowledge and time.

CKLm, m ≥ 2 KLm, m ≥ 2 KL1

Cprm , Cpr,sync
m , Cpr,uism , Π1

1 nonelementary time double-exponential

Cpr,sync,uis
m ex(ad(ϕ) + 1, c|ϕ|) time

Cnl
m, Cnl,pr

m , Cnl,pr,sync
m , Π1

1 nonelementary space EXPSPACE

Cnl,sync
m ex(ad(ϕ), c|ϕ|)
Cnl,pr,uis
m Π1

1 Π1
1 EXPSPACE

Cnl,uis
m co-r.e. co-r.e. EXPSPACE

Cnl,sync,uis
m , Cnl,pr,sync,uis

m EXPSPACE EXPSPACE EXPSPACE

Cm, Csync
m , Csync,uis

m , Cuism EXPTIME PSPACE PSPACE

3. Axiom systems. In this section, we describe the axioms and inference rules
that we need for reasoning about knowledge and time for various classes of systems,

2We remark that in [5], a slightly weaker definition is given: There, a system is said to be
synchronous if for all runs r, if (r, n) ∼i (r, n′), then n = n′. It is easy to show (by induction
on n) that the two definitions are equivalent for systems where agents have perfect recall. In general,
however, they are different. The definition given here is the one used in [1, 8].
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and we state the completeness results. The proofs of these results are deferred to
section 5.

For reasoning about knowledge alone, the following system, with axioms K1–K5
and rules of inference R1–R2, is well known to be sound and complete [1, 9]:

K1. All tautologies of propositional logic
K2. Kiϕ ∧Ki(ϕ⇒ ψ)⇒ Kiψ, i = 1, . . . ,m
K3. Kiϕ⇒ ϕ, i = 1, . . . , n
K4. Kiϕ⇒ KiKiϕ, i = 1, . . . ,m
K5. ¬Kiϕ⇒ Ki¬Kiϕ, i = 1, . . . ,m
R1. From ϕ and ϕ⇒ ψ infer ψ
R2. From ϕ infer Kiϕ, i = 1, . . . ,m

This axiom system is known as S5m.

For reasoning about the temporal operators individually, the following system
(together with K1 and R1), is well known to be sound and complete [3]:

T1. ©ϕ ∧©(ϕ⇒ ψ)⇒ ©ψ
T2. ©(¬ϕ)⇔ ¬©ϕ
T3. ϕ U ψ ⇔ ψ ∨ (ϕ ∧©(ϕ U ψ))
RT1. From ϕ infer ©ϕ
RT2. From ϕ′ ⇒ ¬ψ ∧©ϕ′ infer ϕ′ ⇒ ¬(ϕ U ψ)

The system containing the above axioms and inference rules for both knowledge
and time is called S5Um. S5Um is easily seen to be sound for Cm, the class of all systems
for m agents. Given that there is no necessary connection between knowledge and
time in Cm, it is perhaps not surprising that S5Um should be complete with respect
to Cm as well. Interestingly, even if we impose the requirements of synchrony or uis,
S5Um remains complete; our language is not rich enough to capture these conditions.

Theorem 3.1. S5Um is a sound and complete axiomatization for the language
KLm with respect to Cm, Csync

m , Cuism , and Csync,uis
m .

We get the same lack of interaction between knowledge in the classes Cm, Csync
m ,

Cuism , and Csync,uis
m even when we add common knowledge. It is well known that the

following two axioms and inference rule characterize common knowledge [1, 4]:

C1. Eϕ⇔ ∧m
i=1Kiϕ

C2. Cϕ⇒ E(ϕ ∧ Cϕ)
RC1. From ϕ⇒ E(ψ ∧ ϕ) infer ϕ⇒ Cψ

Let S5CU
m be the result of adding C1, C2, and RC1 to S5Um. We then have the following

extension of Theorem 3.1.

Theorem 3.2. S5CU
m is a sound and complete axiomatization for the language

CKLm with respect to Cm, Csync
m , Cuism , and Csync,uis

m .

If we restrict our attention to systems with perfect recall or no learning, then
knowledge and time do interact. We start by stating five axioms of interest and then
discuss them.

KT1. Ki�ϕ⇒ �Kiϕ, i = 1, . . . ,m
KT2. Ki©ϕ⇒ ©Kiϕ, i = 1, . . . ,m
KT3. Kiϕ1∧©(Kiϕ2∧¬Kiϕ3)⇒ Li((Kiϕ1)U [(Kiϕ2)U ¬ϕ3]), i = 1, . . . ,m
KT4. Kiϕ1 U Kiϕ2 ⇒ Ki(Kiϕ1 U Kiϕ2), i = 1, . . . ,m
KT5. ©Kiϕ⇒ Ki©ϕ, i = 1, . . . ,m

Axiom KT1 was first discussed by Ladner and Reif [11]. Informally, this axiom
states that if a proposition is known to be always true, then it is always known to be
true. It is not hard to show, using Lemma 2.2, that axiom KT1 holds with perfect
recall, that is, KT1 is valid in Cprm . It was conjectured in an early draft of [1] that the
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system S5Um + KT1 would be complete for Cprm . However, it was shown in [14] that
this conjecture was false. To get completeness we need a stronger axiom: KT3.

It is not hard to see that KT3 is valid in systems with perfect recall. A formal
proof is provided in section 5, but we can give some intuition here. Suppose that
(I, r, n) � Kiϕ1 ∧©(Kiϕ2 ∧¬Kiϕ3). That means that (I, r, n+1) � ¬Kiϕ3, so there
must be some point (r′, n′) ∼i (r, n + 1) such that (I, r′, n′) � ¬ϕ3. Because agent i
has perfect recall, there must exist some k′ ≤ n′ such that (r′, k′) ∼i (r, n). It is not
hard to show, using Lemma 2.2(c), that (I, r′, k′) � Kiϕ1 U (Kiϕ2 U ¬ϕ3). It follows
that (I, r, n) � Li(Kiϕ1 U (Kiϕ2 U ¬ϕ3)).

In the presence of the other axioms, KT3 implies KT1. The following general
lemma, which applies to all the proof systems we consider, is useful for the proof.

Lemma 3.3. Suppose that  ϕ1 ⇔ ϕ2 and let ψ′ be the result of replacing some
of the occurrences of ϕ1 in ψ by ϕ2. Then  ψ ⇔ ψ′.

Proof. By induction, it suffices to assume that ψ′ is the result of replacing one
occurrence of ϕ1 in ψ by ϕ2. The proof proceeds by a straightforward induction on
the structure of ψ.

Lemma 3.4. KT1 is provable in S5Um + KT3.
Proof. Note that by purely temporal reasoning, we can show  �ϕ ⇔ ��ϕ.

Using R2 and K2, this implies that  Ki�ϕ ⇔ Ki��ϕ. Now if ϕ1 = ϕ2 = true,
then (using 3.3) KT3 simplifies to ©¬Kiϕ3 ⇒ ¬Ki�ϕ3. In particular, taking the
contrapositive, substituting ϕ3 = �ϕ, and using T2, we obtain  Ki��ϕ⇒ ©Ki�ϕ,
which yields  Ki�ϕ ⇒ ©Ki�ϕ by the equivalence noted above. It is also straight-
forward to show that  �ϕ ⇒ ϕ, from which it follows, using K2 and R2, that
 Ki�ϕ⇒ Kiϕ. The axiom KT1 now follows using the rule RT2 (using the fact that
�ϕ is an abbreviation for ¬(true U ¬ϕ)).

KT3 turns out to be strong enough to give us completeness, with or without the
condition uis.

Theorem 3.5. S5Um + KT3 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cprm and Cpr,uism .

Theorem 3.1 shows that requiring synchrony or uis does not have an impact when
we consider the class of all systems—Cm, Csync

m , Cuism , and Csync,uis
m are all axiomatized

by S5Um—and Theorem 3.5 shows that adding uis does not have an impact in the
presence of perfect recall. However, requiring synchrony does have an impact in the
presence of perfect recall. It is easy to see that KT2 is valid in Cpr,sync

m , and it clearly
is not valid in Cprm . Moreover, KT2 suffices for completeness in Cpr,sync

m ; we do not
need the complications of KT3.

Theorem 3.6. S5Um + KT2 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cpr,sync

m and Cpr,sync,uis
m .

KT4 is the axiom that characterizes no learning. More precisely, we have the
following.

Theorem 3.7. S5Um + KT4 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cnl

m.
Unlike previous cases, the uis assumption is not innocuous in the presence of nl.

For one thing, it is not hard to check that assuming uis leads to extra properties.
Indeed, as Table 2.1 shows, if m ≥ 2, then assuming a unique initial state along
with no learning results in a class of systems that do not have a recursive axiomatic
characterization, since the validity problem is co-r.e.-complete. On the other hand, if
there is only one agent in the picture, things simplify. No learning together with uis
implies perfect recall. Thus, we get the following.
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Theorem 3.8. S5Um + KT3 + KT4 is a sound and complete axiomatization for
the language KLm with respect to Cnl,pr

m . Moreover, it is a sound and complete axiom-

atization for the language KL1 with respect to Cnl,pr,uis
1 .

In synchronous systems with no learning, things again become simpler. KT5, the
converse of KT2, suffices to characterize such systems.

Theorem 3.9. S5Um + KT5 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cnl,sync

m .
Of course, it follows from Theorem 3.9 that KT4 can be derived in the system

S5Um + KT5 (although this result takes some work to prove directly).
Not surprisingly, if we combine perfect recall, no learning, and synchrony, then

KT2 and KT5 give us a complete axiomatization.
Theorem 3.10. S5Um + KT2 + KT5 is a sound and complete axiomatization for

the language KLm with respect to Cnl,pr,sync
m .

Finally, it can be shown that when we combine no learning, synchrony, and uis,
then not only do all agents consider the same worlds possible initially, but they con-
sider the same worlds possible at all times. As a result, the axiom Kiϕ ⇔ Kjϕ is
valid in this case. This allows us to reduce to the single-agent case. Moreover, as
we observed above, in the single-agent case, no learning and uis imply perfect recall.
Thus, we get the following result.

Theorem 3.11. S5Um + KT2 + KT5 + {Kiϕ ⇔ K1ϕ} is a sound and complete
axiomatization for the language KLm with respect to Cnl,sync,uis

m and Cnl,pr,sync,uis
m .

A glance at Table 2.1 shows that we have now provided axiomatizations for all
the cases where complete axiomatizations exist. (Notice that for the language CKLm,
if m = 1, then common knowledge reduces to knowledge, while if m > 1, then
complete axiomatizations can exist only for Cm, Csync

m , Cuism , Csync,uis
m , Cnl,sync,uis

m , and
Cnl,pr,sync,uis
m . The first four cases were dealt with in Theorem 3.2, while in the last

two, as we have observed, common knowledge reduces to the knowledge of agent 1.)

4. A framework for completeness proofs. In this section we develop a gen-
eral framework for completeness proofs that reduces the work required in each of the
different completeness results to a single lemma. With respect to the temporal dimen-
sion, our constructions resemble those previously used for completeness of dynamic
logic [10] and temporal logics, in that we construct a model for a consistent formula ψ
out of consistent subsets of a finite set of formulas, called the closure of ψ. However,
in order to deal with the knowledge modalities, we need a number of distinct levels of
closure, having a tree-like structure. At the leaves of this tree-like structure, the clo-
sure is like the usual closure for temporal logic. As we move towards the root, we add
formulas to the closure that increase the level of nesting of the knowledge modalities.

A formula ψ is said to be consistent in a logic L if it is not the case that L ¬ψ.
For each of the pairs (L, C) of logic L and class C of systems we consider, the proof
that L is complete with respect to C proceeds by constructing, for every formula ψ
consistent with respect to L, a system in C containing a point at which ψ is true. All
the results in this section hold for every logic containing S5Um, except for Lemma 4.8,
which mentions common knowledge. This lemma holds for every logic containing
S5CU

m. Rather than mentioning the logic L explicitly in each case, we just write 
rather than L; the intended logic(s) will be clear from context. We also fix the
formula ψ, which is assumed to be consistent with respect to L.

A finite sequence σ = i1i2 . . . ik of agents, possibly equal to the null sequence ε,
is called an index if il �= il+1 for all l < k. We write |σ| for the length k of such a
sequence; the null sequence has length equal to 0.
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If S is a set, and S∗ is the set of all finite sequences over S, we define the absorptive
concatenation function # from S∗×S to S∗ as follows. Given a sequence σ in S∗ and
an element x of S, we take σ#x = σ if the final element of σ is x. If the final element
of σ is not equal to x, then we take σ#x to be σx, i.e., the result of concatenating
x to σ. We write simply x1#x2#x3# . . .#xn for (. . . ((x1#x2)#x3) . . .)#xn. We
shall have two distinct uses for this function, applying it primarily to sequences of
agents, and sometimes to sequences of “instantaneous states” of agents in the context
of asynchronous systems.

If ψ ∈ CKLm, for each k ≥ 0, we define the k-closure clk(ψ), and for each agent i,
we define the k, i-closure clk,i(ψ). The definition of these sets proceeds by mutual
recursion: First, we let the basic closure cl0(ψ) be the smallest set containing ψ that
is closed under subformulas, contains ¬ϕ if it contains ϕ and ϕ is not of the form ¬ϕ′,
contains ECϕ if it contains Cϕ, and contains K1ϕ, . . . ,Kmϕ if it contains Eϕ. (Of
course, the last two clauses do not apply if ψ is in KLm, and thus does not mention
common knowledge.) If i is an agent, we take clk,i(ψ) to be the union of clk(ψ) with
the set of formulas of the form Ki(ϕ1 ∨ · · · ∨ϕn) or ¬Ki(ϕ1 ∨ · · · ∨ϕn), where the ϕl

are distinct formulas in clk(ψ). (It is not necessary to close under subformulas here,
since the disjunctions in these formulas are already “decided” in the sense defined
below.) Finally, clk+1(ψ) is defined to be

⋃m
i=1 clk,i(ψ).

If X is a finite set of formulas, we write ϕX for the conjunction of the formulas
in X. A finite set X of formulas is said to be consistent if ϕX is consistent. If X is a
finite set of formulas and ϕ is a formula, we write X � ϕ when  ϕX ⇒ ϕ.3 A finite
set Cl of formulas is said to be negation closed if, for all ϕ ∈ Cl , either ¬ϕ ∈ Cl or
ϕ is of the form ¬ϕ′ and ϕ′ ∈ Cl . (Note that the sets clk(ψ) and clk,i(ψ) are negation
closed.) We define an atom of Cl to be a maximal consistent subset of Cl.

The following lemma collects a number of obvious facts that we typically use
without comment.

Lemma 4.1. Suppose that X is a finite set of formulas and Cl is a negation-closed
set of formulas.

(a) If X � ϕ1 and  ϕ1 ⇒ ϕ2, then X � ϕ2.
(b) If X is an atom of Cl and ϕ ∈ Cl, then either X � ϕ or X � ¬ϕ.
(c) If  denotes provability in a proof system containing K1 and R1, then
 ∨X an atom of Cl ϕX .

Proof. All parts of the lemma are quite easy. We remark that (c) follows from the
observation that

∨
X an atom of Cl ϕX is equivalent to true, which can be easily proved

using only propositional reasoning (K1 and R1).
We begin the construction of the model of ψ by first constructing a premodel,

which is a structure 〈S,→,≈1, . . . ,≈n〉 consisting of a set S of states, a binary re-
lation → on S, and for each agent i an equivalence relation ≈i on S. Recall from
section 2 that for a formula ϕ ∈ KLm, the alternation depth ad(ϕ) is the number of
alternations of distinct operators Ki in ϕ. Let d = ad(ψ) if ψ ∈ KLm; otherwise (that
is, if ψ mentions the modal operator C), let d = 0.

The set S consists of all the pairs (σ,X) such that σ is an index, |σ| ≤ d, and
1. if σ = ε, then X is an atom of cld(ψ); and
2. if σ = τi, then X is an atom of clk,i(ψ), where k = d− |σ|.

We can partition the set S of states into sets Sσ according to the first component;

3Note that X � ϕ is not equivalent to X � ϕ (under perhaps the most natural definition of �
with sets of formulas on the left-hand side) because of generalization rules like R2 and RT1. For
example, although ϕ � Kiϕ, it is not the case that � ϕ⇒ Kiϕ.
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that is, Sσ = {(σ,X) | (σ,X) ∈ S}. The indices σ put a tree-like structure on this
collection. Note that as |σ| decreases, the size of the closure from which the atoms X
are drawn increases.

The relation → is defined so that (σ,X) → (τ, Y ) iff τ = σ and the formula
ϕX ∧©ϕY is consistent. If X is an atom, we write X/Ki for the set of formulas ϕ
such that Kiϕ ∈ X. We say that states (σ,X) and (τ, Y ) are i-adjacent if σ#i = τ#i.
The relation ≈i is defined so that (σ,X) ≈i (τ, Y ) iff σ and τ are i-adjacent and
X/Ki = Y/Ki. Clearly, i-adjacency is an equivalence relation, as is the relation ≈i.

A σ-state (for ψ) is a pair (σ,X) as above. A state (for ψ) is a σ-state for some
index σ with |σ| ≤ d. Thus (σ,X) is the unique σ-state with atom X. If s = (σ,X)
is a state, we define ϕs to be the formula ϕX , and write s � ϕ for  ϕs ⇒ ϕ. We
say that the state s directly decides a formula ϕ if either (a) ϕ ∈ X, (b) ¬ϕ ∈ X, or
(c) ϕ = ¬ϕ′ and ϕ′ ∈ X. We say that s decides ϕ if either s � ϕ or s � ¬ϕ. Clearly,
if s directly decides ϕ, then s decides ϕ. Note that if σ = τi, then, by Lemma 4.1(b),
each σ-state directly decides every formula in cld−|σ|,i(ψ). Also, every ε-state directly
decides every formula in cld(σ).

Lemma 4.2. If s and t are i-adjacent states, then the same formulas of the form
Kiϕ are directly decided by s and t.

Proof. Suppose that s and t are i-adjacent, s = (σ,X) and t = (τ, Y ). By
definition, we have that either (i) σ = τ , (ii) σ = τi, or (iii) σi = τ . Clearly if σ = τ ,
then s and t directly decide the same formulas (and, a fortiori, the same formulas
of the form Kiϕ) since they are both maximal consistent subsets of the same set of
formulas. If σ �= τ , then either σ = τi or τ = σi. By symmetry, it suffices to deal with
the case σ = τi. By definition, s directly decides the Ki-formulas in cld−|σ|,i(ψ), while
t directly decides the Ki-formulas in cld−|τ |,j(ψ) if τ = τ ′j or cld(ψ) if τ = ε. Thus,
it suffices to show that, for all formulas ϕ and agents j, we have that Kiϕ ∈ clk,i(ψ)
iff Kiϕ ∈ clk+1,j if k < d − 1 and that Kiϕ ∈ cld−1,i(ψ) iff Kiϕ ∈ cld(ψ). This is
immediate from the definitions.

If s is a σ-state, we take Φs,i to be the disjunction of the formulas ϕt, where t
ranges over the σ-states satisfying s ≈i t, and we take Φ+

s,i to be the disjunction of

the formulas ϕt, where t ranges over the (σ#i)-states satisfying s ≈i t.
4 Observe that

because ≈i is an equivalence relation we have that if s ≈i t, then Φs,i = Φt,i and
Φ+

s,i = Φ+
t,i. The following result lists a number of knowledge formulas decided by

states.
Lemma 4.3.

(a) If s is a σ-state and t is a σ-state or (σ#i)-state such that s �≈i t, then
s � Ki¬ϕt.

(b) For all σ-states s, we have s � KiΦs,i; in addition, if |σ#i| ≤ d, then
s � KiΦ

+
s,i.

(c) For all σ-states s and (σ#i)-states t with s ≈i t, we have s � Liϕt.
(d) If s is a σ-state and t is a (σ#i)-state such that s �≈i t, then t � ¬KiΦ

+
s,i.

Proof. For (a), suppose that s �≈i t, where s = (σ,X) and t = (τ, Y ), where τ is
either σ or σ#i. Then X/Ki �= Y/Ki so either there exists a formula Kiϕ ∈ X such
that Kiϕ /∈ Y or there exists a formula Kiϕ ∈ Y such that Kiϕ /∈ X. As the states s
and t are i-adjacent, by Lemma 4.2, in either case the formula Kiϕ is directly decided
by both the states s and t. In the first case, since Kiϕ /∈ Y and Kiϕ is directly
decided by t, it follows that ¬Kiϕ ∈ Y , and hence that  ϕt ⇒ ¬Kiϕ. Using R2, it

4It can be shown that if |σ#i| ≤ d, then Φs,i is logically equivalent to Φ+
s,i, but we do not need

this fact here.
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follows that  Ki(Kiϕ ⇒ ¬ϕt). By K4 we obtain from the fact that Kiϕ ∈ X that
s � KiKiϕ. It now follows using K2 that s � Ki¬ϕt. In the second case, we have that
 ϕt ⇒ Kiϕ, and hence, using R2, that  Ki(¬Kiϕ ⇒ ¬ϕt). By K4 we obtain from
the fact that ¬Kiϕ ∈ X that s � Ki¬Kiϕ. It now follows using K2 that s � Ki¬ϕt.

For (b), by Lemma 4.1(c), we have that  ∨X an atom of clk,i(ψ) ϕX . Hence, by R2

we obtain that  Ki

∨
σ-states t ϕt. It follows from this using (a) and K2 that s �

KiΦs,i. If |σ#i| ≤ d, then a similar argument shows that s � KiΦ
+
s,i.

For (c), suppose that s = (σ,X) ≈i (σ#i, Y ) = t and k = d − |σ#i|. We claim
first that if W = Y ∩ clk(ψ), then s � Ki¬ϕt ⇔ Ki¬ϕW . This is because the fact
that Y is a subset of clk,i(ψ) implies that all formulas ϕ in Y \W are of the form
Kiϕ

′ or ¬Kiϕ
′, and hence ϕ ∈ X iff ϕ ∈ Y . Also, by K4 and K5 we have that

s � KiKiϕ
′ when Kiϕ

′ ∈ X and s � Ki¬Kiϕ
′ when Kiϕ

′ /∈ X. It follows using K2
that s � KiϕY \W . Since ϕt is equivalent to ϕW ∧ ϕY \W , we obtain using K2 that
s � Ki¬ϕt ⇔ Ki¬ϕW .

Now by K3 we have  ϕt ⇒ Liϕt. Further, the argument of the previous para-
graph also shows t � Ki¬ϕt ⇔ Ki¬ϕW , so we obtain that t � LiϕW . But ¬ϕW is
equivalent to the disjunction of a subset {ϕ1, . . . , ϕn} of clk(ψ). Let α be the formula
Ki(ϕ1 ∨ · · · ∨ ϕn), which is equivalent to Ki¬ϕW . It follows from the definition of
clk,i(ψ) that α is in clk,i(ψ), and hence directly decided by both t and s. Conse-
quently, α is not in Y , since t � ¬α. Because X/Ki = Y/Ki, the formula α is not
in X either, so s � ¬α. Applying the fact that α is equivalent to Ki¬ϕW , we see that
s � LiϕW . The equivalence of the previous paragraph now yields that s � Liϕt.

For (d), note that if t and v are distinct (σ#i)-states, then t � ¬ϕv. Thus,
if s is a σ-state such that s �≈i t, then t � ¬Φ+

s,i, which implies, using K3, that

t � ¬KiΦ
+
s,i.

If T is a set of states, then we write ϕT for the disjunction of the formulas ϕt

for t in T . Using RT1, T1, and T2, the following result is immediate from the fact
that s � t implies  ϕs ⇒ ¬©ϕt, together with the fact that  ∨s a σ-state ϕs, which
follows from Lemma 4.1(c).

Lemma 4.4. Let s be a state and let T be the set of states t such that s → t.
Then s � ©ϕT .

The next result provides a useful way to derive formulas containing the “until”
operator.

Lemma 4.5. For all formulas α, β, and γ, if  α ⇒ (¬γ ∧©(α ∨ (¬β ∧ ¬γ))),
then  α⇒ ¬(β U γ).

Proof. Suppose that  α ⇒ ¬γ ∧ ©(α ∨ (¬β ∧ ¬γ)). By T3, we obtain that
 α ∧ (β U γ)⇒ ¬γ ∧©(β U γ) ∧©(α ∨ (¬β ∧ ¬γ)). Since, by T3 again,  β U γ ⇒
¬(¬β∧¬γ), it follows using T1 and RT1 that  α∧(βU γ)⇒ ¬γ∧©(α∧(βU γ)). Now
using RT2 we obtain  α∧(βUγ)⇒ ¬(βUγ), which implies that  α⇒ ¬(βUγ).

The following shows that the premodel has properties resembling those for the
truth definitions for formulas in the basic closure. Note that every state directly
decides all formulas in the basic closure. Define a →-sequence of states to be a (finite
or infinite) sequence s1, s2, . . . such that s1 → s2 → · · · .

Lemma 4.6. For all σ-states s, we have the following:

(a) If ©ϕ ∈ cl0(ψ), then for all states t such that s → t, we have s � ©ϕ iff
t � ϕ.

(b) If Kiϕ ∈ cl0(ψ), then s � ¬Kiϕ iff there is some σ-state t such that s ≈i t
and t � ¬ϕ. Moreover, if |σ#i| ≤ d, then s � ¬Kiϕ iff there is some
(σ#i)-state t such that s ≈i t and t � ¬ϕ.
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(c) If ϕ1 U ϕ2 ∈ cl0(ψ), then s � ϕ1 U ϕ2 iff there exists a →-sequence s = s0 →
s1 → · · · → sn, where n ≥ 0, such that sn � ϕ2, and sk � ϕ1 for all k < n.

Proof. For part (a), suppose first that s � ©ϕ and s → t. Since ϕ ∈ cl0(ψ), it
follows that t � ϕ or t � ¬ϕ. However, by T1 and T2, the latter would contradict the
assumption that ϕs ∧©ϕt is consistent. Hence we have t � ϕ. Conversely, suppose
that s→ t and t � ϕ. Using T1, we have  ©ϕt ⇒ ©ϕ. Since ©ϕ ∈ cl0(ψ) we have
either s � ©ϕ or s � ¬©ϕ. But the latter would contradict s → t, so we obtain
s � ©ϕ.

For the “if” direction of part (b), note that the fact that Kiϕ is in cl0(ψ) implies
that if s ≈i t and s � Kiϕ, then t � Kiϕ, and hence t � ϕ by K3. For the converse,
suppose that t � ϕ for all σ-states t with s ≈i t. Then  Φs,i ⇒ ϕ, and hence
 KiΦs,i ⇒ Kiϕ, using K2 and R2. By Lemma 4.3(b), we have s � KiΦs,i. It follows
immediately that s � Kiϕ. If |σ#i| ≤ d, a similar argument shows that if t � ϕ for
all (σ#i)-states t such that s ≈i t, then s � Kiϕ.

For part (c), note that if ϕ1 U ϕ2 is in cl0(ψ), then every state directly decides
each of the formulas ϕ1, ϕ2, and ϕ1U ϕ2. We first show that if there exists a sequence
of states s = s0 → s1 → · · · → sn such that sn � ϕ2 and sk � ϕ1 for all k < n,
then s � ϕ1 U ϕ2. We proceed by induction on n. The case n = 0 is immediate
from T3. For the general case, notice that it follows from the induction hypothesis
that s1 � (ϕ1 U ϕ2). Since s0 → s1, it follows that ϕs0 ∧©(ϕ1 U ϕ2) is consistent.
By assumption, we also have s0 � ϕ1. Using T3, we see that s0 � ¬(ϕ1 U ϕ2) would
be a contradiction. Hence s0 � ϕ1 U ϕ2.

The converse follows immediately from Lemma 4.7 below.

Lemma 4.7. If ϕs ∧ (ϕ1 U ϕ2) is consistent, then there exists a →-sequence
s = s0 → s1 → · · · → sn, such that ϕsn ∧ ϕ2 is consistent, and ϕsk ∧ ϕ1 is consistent
for all k < n.

Proof. Suppose by way of contradiction that ϕs ∧ (ϕ1 U ϕ2) is consistent and
no appropriate →-sequence exists. Let T be the smallest set S of states such that
(i) s ∈ S, and (ii) if t ∈ S, t → u, and su ∧ ϕ1 is consistent, then u ∈ S. Then
we have that t � ¬ϕ2 for all t ∈ T , so  ϕT ⇒ ¬ϕ2. In addition, for each t ∈ T
and state u such that t → u, we have either u ∈ T or u � ¬ϕ1 ∧ ¬ϕ2. Thus, using
Lemma 4.4, we obtain  ϕT ⇒ ©(ϕT ∨ (¬ϕ1∧¬ϕ2)). It now follows using Lemma 4.5
that  ϕT ⇒ ¬(ϕ1 U ϕ2). In particular, since s ∈ T , we have s � ¬(ϕ1 U ϕ2), which
contradicts the assumption that ϕs ∧ (ϕ1 U ϕ2) is consistent.

For the next result, recall that when the formula ψ contains the common knowl-
edge operator we take d = 0, so that all states are ε-states.

Lemma 4.8. If Cϕ ∈ cl0(ψ), then s � ¬Cϕ iff there is a state t reachable from s
through the relations ≈i such that t � ¬ϕ.

Proof. The implication from right to left is a straightforward consequence of the
fact that if t � ¬ϕ, then t � ¬Cϕ, by C1, C2, and K3, together with the fact that if
t ≈i t

′, then t � Cϕ iff t′ � Cϕ. (Proof of the latter fact: If t � Cϕ, then t � KiCϕ
by C1 and C2. Hence, since t ≈i t

′ and KiCϕ ∈ cl0(ψ), we must have t′ � Cϕ. The
opposite direction follows symmetrically.) This leaves only the implication from left
to right, for which we prove the contrapositive. Suppose that no state containing ¬ϕ
is reachable from s by means of a sequence of steps through the relations ≈i. Let T
be the set of states reachable from s. By Lemma 4.3(a), if t and t′ are states with
t �≈i t

′, then t � Ki¬ϕt′ . It follows from this that t � KiϕT for every state t ∈ T and
agent i. Thus, because  ϕT ⇒ ϕ we have  ϕT ⇒ E(ϕT ∧ ϕ). By RC1 it follows
that  ϕT ⇒ Cϕ. Since s ∈ T , it is immediate that s � Cϕ.
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We say that an infinite →-sequence of states (s0, s1, . . .), where sn = (σ,Xn) for
all n, is acceptable if for all n ≥ 0, if ϕ1 U ϕ2 ∈ Xn, then there exists an m ≥ n such
that sm � ϕ2 and sk � ϕ1 for all k with n ≤ k < m.

Definition 4.9. An enriched system for ψ is a pair (R,Σ), where R is a set of
runs and Σ is a partial function mapping points in R× N to states for ψ such that
the following hold for all runs r ∈ R:

1. If Σ(r, n) is defined, then Σ(r, n′) is defined for all n′ > n, and Σ(r, n),
Σ(r, n+ 1), . . . is an acceptable →-sequence.

2. For all points (r, n) ∼i (r′, n′), if Σ(r, n) is defined, then Σ(r′, n′) is defined
and Σ(r, n) ≈i Σ(r′, n′).

3. If Σ(r, n) and s are σ-states such that Σ(r, n) ≈i s, then there exists a point
(r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = s.

4. If Cϕ ∈ cl0(ψ) and Σ(r, n) � ¬Cϕ, then there exists a point (r′, n′) reachable
from (r, n) such that Σ(r′, n′) � ¬ϕ.

An enriched+ system for ψ is a pair (R,Σ) satisfying conditions 1, 2, and the
following modification of 3:

3′. If Σ(r, n) is a σ-state and s is a (σ#i)-state such that Σ(r, n) ≈i s, then
there exists a point (r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = s.

Intuitively, in an enriched (resp., enriched+) system, the points where Σ is defined
are the points that are “relevant” to the truth of certain formulas at certain points.

Given an enriched (resp., enriched+) system (R,Σ), we obtain an interpreted
system I = (R, π) by defining the valuation π on basic propositions p by π(r, n)(p) =
true just when Σ(r, n) is defined and Σ(r, n) � p.5 The following theorem gives a
sufficient condition for a formula in the basic closure to hold at a point in this standard
system. If σ is the index i1 . . . ik, let Kσϕ be an abbreviation for Ki1 . . .Kikϕ. (If
σ = ε, then we take Kσϕ to be ϕ.)

Theorem 4.10.

(a) If (R,Σ) is an enriched system for ψ, I is the associated interpreted system,
ϕ is in the basic closure cl0(ψ), and Σ(r, n) is defined, then (I, r, n) � ϕ iff
Σ(r, n) � ϕ.

(b) If (R,Σ) is an enriched+ system for ψ ∈ KLm, I is the associated standard
system, ϕ is in the basic closure cl0(ψ), Σ(r, n) is a σ-state, and ad(Kσϕ) ≤ d,
then (I, r, n) � ϕ iff Σ(r, n) � ϕ.

Proof. We first prove part (a). We proceed by induction on the complexity of ϕ.
If ϕ is a propositional constant, then the result is immediate from the definition of I.
The cases where ϕ is of the form ¬ϕ1 or ϕ1 ∧ϕ2 are similarly trivial. This leaves five
cases.

Case 1. Suppose that ϕ is of the form©ϕ1. Then (I, r, n) � ϕ iff (I, r, n+1) � ϕ1.
Note that Σ(r, n + 1) must be defined by condition 1 of Definition 4.9. Since ϕ1

is a subformula of ϕ it is in cl0(ψ), so it follows by the induction hypothesis that
(I, r, n + 1) � ϕ1 holds precisely when Σ(r, n + 1) � ϕ1. By condition 1, Σ(r, n) →
Σ(r, n+ 1), so we obtain from Lemma 4.6(a) that Σ(r, n+ 1) � ϕ1 iff Σ(r, n) � ©ϕ1.
Putting the pieces together, we get (I, r, n) � ϕ iff Σ(r, n) � ϕ.

Case 2. Suppose that ϕ is of the form ϕ1 U ϕ2. Then the subformulas ϕ1 and ϕ2

are also in cl0(ψ). Note also that by condition 1 of Definition 4.9, Σ(r, n′) is defined
for all n′ ≥ n, and Σ(r, n),Σ(r, n + 1), . . . is an acceptable →-sequence. Thus, if
Σ(r, n) � ϕ1Uϕ2, then, by the definition of acceptability, there exists some n′ ≥ n such

5This definition makes p false at points where Σ is undefined. We could just as well have made
p true at such points, without changing our results.
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that Σ(r, n′) � ϕ2 and Σ(r, k) � ϕ1 for n ≤ k < n′. By the induction hypothesis, this
implies that (I, r, n′) � ϕ2 and (I, r, k) � ϕ1 for n ≤ k < n′. In other words, we have
(I, r, n) � ϕ1U ϕ2. Conversely, if (I, r, n) � ϕ1U ϕ2, then by the induction hypothesis
and the semantics of U we have that there exists some n′ ≥ n such that Σ(r, n′) � ϕ2

and Σ(r, k) � ϕ1 for n ≤ k < n′. Since Σ(r, n) → Σ(r, n + 1) → · · · → Σ(r, n′), it
follows using Lemma 4.6(c) that Σ(r, n) � ϕ1 U ϕ2.

Case 3. Suppose that ϕ is of the form Kiϕ1. We first show that Σ(r, n) � Kiϕ1

implies (I, r, n) � Kiϕ1. Assume Σ(r, n) � Kiϕ1 and suppose that (r, n) ∼i (r′, n′).
Then by condition 2 of Definition 4.9, we have that Σ(r′, n′) is defined and Σ(r, n) ≈i

Σ(r′, n′). Since Kiϕ ∈ cl0(ψ) we obtain Σ(r, n′) � Kiϕ1. By K3 this implies
Σ(r, n′) � ϕ1. Since ϕ ∈ cl0(ψ), by the induction hypothesis, we obtain that
(I, r′, n′) � ϕ1. This shows that (I, r′, n′) � ϕ1 for all points (r′, n′) ∼i (r, n). That
is, we have (I, r, n) � Kiϕ1.

For the converse, suppose that Σ(r, n) � ¬Kiϕ1 and that Σ(r, n) is a σ-state.
By Lemma 4.6(b), there exists a σ-state t such that Σ(r, n) ≈i t and t � ¬ϕ1. By
condition 3 of Definition 4.9, there exists a point (r′, n′) such that (r, n) ∼i (r′, n′)
and Σ(r′, n′) = t. Using the induction hypothesis we obtain that (I, r′, n′) � ¬ϕ1. It
follows that (I, r, n) � ¬Kiϕ1.

Case 4. If ϕ is of the form Eϕ1, the result follows easily from the induction
hypothesis, using axiom C1.

Case 5. Suppose that ϕ is of the form Cϕ1. By condition 2 of Definition 4.9 we
have that Σ(r′, n′) is defined for all (r′, n′) reachable from (r, n). An easy induction
on the length of the path from (r, n) to (r′, n′), using the fact that KiCϕ1 is in the
basic closure and axioms C1, C2, and K3, can be used to show that Σ(r′, n′) � Cϕ1

for each point (r′, n′) reachable from (r′, n). Using C1, C2, and K3, it is easy to see
that Σ(r′, n′) � ϕ1. By the induction hypothesis, this implies that (I, r′, n′) � ϕ1.
Thus, (I, r, n) � Cϕ1.

For the converse, suppose that Σ(r, n) � ¬Cϕ1. Then by condition 4 of Defini-
tion 4.9, we have Σ(r′, n′) � ¬ϕ1 for some point (r′, n′) reachable from (r, n). By the
induction hypothesis, we have that (I, r′, n′) � ¬ϕ1, and hence (I, r, n) � ¬Cϕ1.

For part (b), since ψ ∈ KLm, we only need to check the analogues of Cases 1,
2, and 3 above. The proofs in Cases 1 and 2 are identical to those above. The
proof of Case 3 is also quite similar, but we must be a little careful in applying the
inductive hypothesis. So suppose that ϕ is of the form Kiϕ1, Σ(r, n) is a σ-state,
and ad(Kσϕ) ≤ d. The implication from left to right, showing that if Σ(r, n) � Kiϕ,
then (I, r, n) � Kiϕ, is identical to that above. We just need the observation that
if (r, n) ∼i (r′, n′), then Σ(r′, n′) is a τ -state, where τ#i = σ#i. It follows that
ad(Kτϕ) ≤ ad(Kσ#iϕ) ≤ ad(KσKiϕ) ≤ d, so we can apply the inductive hypothesis
to conclude that (I, r′, n′) � ϕ1. For the converse, the proof is again similar. Note
that if ad(KσKiϕ) ≤ d, then |σ#i| ≤ d, so by Lemma 4.6(b), there exists a (σ#i)-
state t such that Σ(r, n) ≈i t and t � ¬ϕ1. By condition 3′ of Definition 4.9, there
exists a point (r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = t. Since ad(Kσ#iϕ) =
ad(KσKiϕ) ≤ d, using the induction hypothesis we obtain that (I, r′, n′) � ¬ϕ1. It
follows that (I, r, n) � ¬Kiϕ1.

Corollary 4.11. If (R,Σ) is an enriched (resp., enriched+) system for ψ, I is
the associated interpreted system, and (r, n) is a point of I such that Σ(r, n) is an
ε-state and Σ(r, n) � ψ, then (I, r, n) � ψ.

We apply this corollary in all our completeness proofs, constructing an appropriate
enriched or enriched+ system in all cases.
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5. Proofs of soundness and completeness. We are now in a position to prove
the completeness results claimed in section 3. Sections 5.1–5.3 will deal with the cases
involving only perfect recall, synchrony, and unique initial states. The cases involving
no learning are a little more complex and are dealt with in sections 5.4–5.7.

5.1. Dealing with Cm, Csync
m , Cuis

m , and Csync,uis
m (Theorems 3.1 and 3.2).

The fact that S5CU
m is sound for Cm, the class of all systems, is straightforward and

left to the reader (see also [1]). To prove completeness of S5Um for the language KLm

and of S5CU
m for the language CKLm with respect to Cm, Csync

m , Cuism , and Csync,uis
m , we

construct an enriched system and use Corollary 4.11. The proof proceeds in the same
way whether or not common knowledge is in the language. We assume here that the
language includes common knowledge and that we are dealing with the axiom system
S5CU

m when constructing the states in the enriched structure. Recall that in this case
we work with ε-states only.

The following result suffices for the generation of the acceptable sequences re-
quired for the construction of an enriched system in the cases not involving no learn-
ing; a more complex construction will be required in the presence of no learning.

Lemma 5.1. Every finite →-sequence of states can be extended to an infinite
acceptable sequence.

Proof. First note that for every σ-state s there exists a state t with s → t,
for otherwise, s � ¬©ϕt for all σ-states t, which contradicts  ©∨t a σ-state ϕt.
(Note that  ©∨t a σ-state ϕt follows from Lemma 4.1(c) and RT1.) Thus every finite
sequence of states can be extended to an infinite sequence, and it remains to show
that the obligations arising from the until formulas can be satisfied.

Suppose that the finite →-sequence is s0 → · · · → sn, where sk = (σ,Xk) for
k = 1, . . . , n. Now, for any formula ϕ1 U ϕ2 ∈ X0, it follows using T3 and the fact
that the si directly decide each of the formulas ϕ1, ϕ2, and ϕ1 U ϕ2 that either the
obligation imposed by ϕ1 U ϕ2 at s0 is already satisfied in the sequence (s0, . . . , sn),
or else sn � ϕ1 U ϕ2 and sk � ϕ1 for 0 ≤ k ≤ n. In the latter case, by Lemma 4.6(c),
there exists a sequence sn → sn+1 → · · · → sn′ such that sn′ � ϕ2 and sk � ϕ1

for n ≤ k < n′. This gives a finite extension of the original sequence that satisfies
the obligation imposed by ϕ1 U ϕ2 at s0. Applying this argument to the remaining
obligations at s0, we eventually obtain a finite sequence that satisfies all the obligations
at s0. We may then move on to s1 and apply the same procedure. It is clear that in
the limit we obtain an acceptable sequence extending the original sequence.

For each agent i, let Oi be the function that maps the state (σ, U) to the pair
(σ#i, U/Ki). Oi is also used later in our other constructions. Given a state s, we
call Oi(s) agent i’s current information at s. Let x be a new object not equal to
any state. We say that a sequence S = (x, x, . . . , x, sN , sN+1, . . .) is an acceptable
sequence from N if it starts with N copies of x and the suffix (sN , sN+1, . . .) is an
acceptable →-sequence of states for ψ. Given a sequence S acceptable from N , we
define a run r as follows. For each agent i, take ri(n) = (n, S) when n < N , and take
ri(n) = (n,Oi(sn)) otherwise. For the environment component e, take re(n) = Sn (so
that re(n) = x if n < N and re(n) = sn for n ≥ N).

Let Rsync be the set of all runs so obtained, and define the partial function Σ
on points in Rsync × N so that Σ(r, n) = sn when r is derived from a sequence
(x, x, . . . , x, sN , sN+1, . . .) acceptable from N and n ≥ N , and Σ(r, n) is undefined
otherwise.

Lemma 5.2. The pair (Rsync,Σ) is an enriched system.
Proof. It is immediate from the construction that (Rsync,Σ) satisfies conditions
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1 and 2 of Definition 4.9. To see that it satisfies condition 3, suppose that (r, n) is
a point such that Σ(r, n) is defined and Σ(r, n) ≈i s. By Lemma 5.1 there exists
an acceptable sequence (sn, sn+1, . . .) with s = sn. Let r′ be the run obtained from
the sequence (x, . . . , x, sn, sn+1, . . .). Then it is immediate that (r, n) ∼i (r′, n′) and
Σ(r′, n′) = s. Finally, to see that it satisfies condition 4, suppose that Cϕ ∈ cl0(ψ)
and Σ(r, n) � ¬Cϕ. By Lemma 4.8, there is a state t reachable from Σ(r, n) through
the relations ≈i such that t � ¬ϕ. An easy inductive argument on the length of the
path from Σ(r, n) to t, using condition 3, shows that there is a point (r′, n′) reachable
from (r, n) through the relations ∼i such that Σ(r′, n′) = t. Thus, the enriched system
satisfies condition 4.

Clearly the system Rsync is synchronous, so the interpreted system I derived
from (Rsync,Σ) is also synchronous. Let s be an ε-state such that s � ψ. Such a
state must exist because ψ was assumed consistent. By Lemma 5.1 there exists an
acceptable sequence (s0, s1, . . .) with s = s0. Let r be the corresponding run in Rsync.
Corollary 4.11 implies that (I, r, 0) � ψ. This establishes the completeness of the
axiomatization S5CU

m for the language CKLm (resp., of S5Um for the language KLm)
with respect to the classes of systems Cm and Csync

m . To establish completeness of
these axiomatizations for the corresponding languages with respect to the classes of
systems Cuism and Csync,uis

m , we make use of the following result, which shows that sound
and complete axiomatizations for the class of systems satisfying some subset of the
properties of perfect recall and synchrony are also sound and complete axiomatizations
for the class of systems with the same subset of these properties, but with unique initial
states in addition. This completes the proofs of Theorems 3.1 and 3.2.

Lemma 5.3. Suppose x is a subset of {pr, sync}. If ϕ ∈ CKLm is satisfiable with
respect to Cxm, then it is also satisfiable with respect to Cx,uism .

Proof. Suppose I = (R, π) ∈ Cxm. We define a system I ′ by adding a new initial
state to each run in R. Formally, we define the system I ′ = (R′, π′) as follows.
Let l be some local state that does not occur in I and let se be any state of the
environment. For each run r ∈ R, let r+ be the run such that r+(0) = (se, l, . . . , l)
and r+(n + 1) = r(n). Let R′ = {r+ : r ∈ R}. The valuation π′ is given by
π′(r, 0)(p) = false and π′(r, n + 1)(p) = π(r, n)(p) for n ≥ 0 and propositions p. It
is clear that I ′ is a system with unique initial states. Moreover, if I is synchronous,
then so is I ′, and if I is a system with perfect recall, then so is I ′. A straightforward
induction on the construction of the formula ϕ ∈ CKLm now shows that, for all points
(r, n) in I, we have (I, r, n) � ϕ iff (I ′, r+, n+ 1) � ϕ.

5.2. Dealing with Cpr
m and Cpr,uis

m (Theorem 3.5). We want to show that

S5Um + KT3 is sound and complete with respect to Cprm . We first consider soundness.
As we observed above, all axioms and rules of inference other than KT3 are known
to be sound in all systems, so their soundness in systems Cprm is immediate. The next
result establishes soundness of KT3.

Lemma 5.4. All instances of KT3 are valid in Cprm .
Proof. To show that KT3 is sound, we assume that (I, r, n) � Kiϕ1 ∧©(Kiϕ2 ∧

¬Kiϕ3). We show that (I, r, n) � Li((Kiϕ1) U [(Kiϕ2) U ¬ϕ3]). Now it follows from
the assumption that (I, r, n + 1) � ¬Kiϕ3, so there exists a point (r′, n′) such that
(r, n + 1) ∼i (r′, n′) and (I, r′, n′) � ¬ϕ3. Since I ∈ Cprm , by Lemma 2.2(d), either
(i) (r, n) ∼i (r′, n′) or (ii) there exists a number l < n′ such that (r, n) ∼i (r′, l)
and (r, n + 1) ∼i (r′, k) for all k with l < k ≤ n′. We claim that in either case
(I, r, n) � Li((Kiϕ1) U [(Kiϕ2) U ¬ϕ3]). In case (i), since (I, r′, n′) � ¬ϕ3, we have
(I, r′, n′) � (Kiϕ1)U [(Kiϕ2)U ¬ϕ3]. The desired conclusion is then immediate from
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the fact that (r, n) ∼i (r′, n′). In case (ii), since (I, r, n) � Kiϕ1, and (r, n) ∼i (r′, l),
we have that (I, r′, l) � Kiϕ1. Similarly, because (I, r, n+ 1) � Kiϕ2, we obtain that
(I, r′, k) � Kiϕ2 for all k with l < k ≤ n′. Together with (I, r′, n′) � ¬ϕ3, this implies
that (I, r′, l) � (Kiϕ1)U [(Kiϕ2)U ¬ϕ3]. Again, since (r, n) ∼i (r′, l), we obtain that
(I, r, n) � Li((Kiϕ1) U [(Kiϕ2) U ¬ϕ3]).

We now establish a lemma characterizing the interaction of knowledge and time
in the premodel. This result will enable us to satisfy the perfect-recall requirement in
using the premodel to construct an interpreted system. It is convenient to introduce
the notation [s]i, where s is a state, for the set of (σ#i)-states t such that s ≈i t. The
reader is encouraged to compare the following result with Lemma 2.2(c).

Lemma 5.5. Suppose that the axiomatization includes KT3. Then for all σ-states
s, t and for all (σ#i)-states t′, if s→ t and t ≈i t

′, then either (a) s ≈i t
′ or (b) there

exists a (σ#i)-state s′ such that s ≈i s
′ and there exists a sequence of (σ#i)-states

u0 → u1 → · · · → un = t′, where n ≥ 0, such that s′ → u0 and ul ≈i ul+1 for all
l = 0, . . . , n− 1.

Proof. We derive a contradiction from the assumption that s→ t and t ≈i t
′, but

s �≈i t
′ and for all (σ#i)-states s′ such that s ≈i s

′ and all sequences of (σ#i)-states
u0 → u1 → · · · → un such that s′ → u0 and ui ≈i ui+1 for i = 0, . . . , n− 1, we have
un �= t′. Let T be the smallest set of (σ#i)-states such that

1. if v ∈ [s]i, v → v′, and v′ ∈ [t]i, then v′ ∈ T ; and
2. if v ∈ T , v → v′, and v′ ∈ [t]i, then v′ ∈ T .

Because s �≈i t
′, it follows from the fact that ≈i is an equivalence relation that the

intersection [s]i ∩ [t]i is empty. Additionally, t′ is not in T , for otherwise we could
find a sequence of the sort presumed not to exist. Thus, for all v ∈ T , we have
 ϕv ⇒ ¬ϕt′ . This implies that  ϕT ⇒ ¬ϕt′ . Let T ′ be the set of (σ#i)-states v′

such that v → v′ for some v ∈ T . We want to show that

v′ � ϕT ∨ (¬KiΦ
+
t,i ∧ ¬ϕt′)(5.1)

for all v′ ∈ T ′. If v′ ∈ T , then clearly we have v′ � ϕT , so (5.1) holds. If v′ /∈ T ,
then the second condition in the definition of T implies that v′ is not in [t]i. It follows
using Lemma 4.3(d) that v′ � ¬KiΦ

+
t,i. Further, t �≈i v

′ implies that v′ �= t′, so
v′ � ¬ϕt′ . Thus, again we have (5.1). Since (5.1) holds for all v′ ∈ T , it follows that
 ϕT ′ ⇒ (ϕT ∨ (¬KiΦ

+
t,i ∧ ¬ϕt′)). Now by Lemma 4.4, we have  ϕT ⇒ ©ϕT ′ , so

using T1 and RT1 we obtain that  ϕT ⇒ ©(ϕT ∨ (¬KiΦ
+
t,i ∧¬ϕt′)). Combining this

with  ϕT ⇒ ¬ϕt′ and using Lemma 4.5, we get that  ϕT ⇒ ¬(KiΦ
+
t,i U ϕt′). In

particular, we obtain v � ¬(KiΦ
+
t,i U ϕt′) for all states v in T .

We now repeat this argument to obtain a similar conclusion for the elements
of [s]i. Since t′ is not in [s]i we have that v ∈ [s]i implies v � ¬ϕt′ . Further, since
[s]i ∩ [t]i is empty we also have by Lemma 4.3(d) that v ∈ [s]i implies v � ¬KiΦ

+
t,i.

Using T3 this yields that  Φ+
s,i ⇒ ¬(KiΦ

+
t,i U ϕt′).

Let P be the set of (σ#i)-states v′ such that v → v′ for some v ∈ [s]i. Let v′ ∈ P .
We want to show that

v′ � Φ+
s,i ∨ (¬KiΦ

+
s,i ∧ ¬(KiΦ

+
t,i U ϕt′)).(5.2)

If v′ ∈ [s]i, then clearly v′ � Φ+
s,i, so (5.2) holds. If v′ /∈ [s]i, then, by Lemma 4.3(d), we

have that v′ � ¬KiΦ
+
s,i. We now consider two subcases: (a) v′ ∈ T and (b) v′ /∈ T . If

v′ ∈ T , then, as we showed earlier, we have v′ � ¬(KiΦ
+
t,iUϕt′). If v′ /∈ T , then by the

definition of T it follows that t �≈i v
′. By Lemma 4.3(d), this implies that v′ � ¬KiΦ

+
t,i.
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Further, since t ≈i t
′, we also obtain that v′ �= t′, so v′ � ¬ϕt′ . Using T3, this yields

v′ � ¬(KiΦ
+
t,i U ϕt′), and again we have (5.2). Using Lemma 4.4, we obtain that

 Φ+
s,i ⇒ ©[Φ+

s,i ∨ (¬KiΦ
+
s,i ∧¬(KiΦ

+
t,i U ϕt′))]. Applying Lemma 4.5 to this and the

result of the preceding paragraph establishes that  Φ+
s,i ⇒ ¬(KiΦ

+
s,iU (KiΦ

+
t,iUϕt′)).

It follows using Lemma 4.3(b), R2, and K2 that s � Ki¬(KiΦ
+
s,iU (KiΦ

+
t,iU ϕt′)).

By KT3, we obtain s � ¬(KiΦ
+
s,i ∧ ©(KiΦ

+
t,i ∧ Liϕt′)). Since, by Lemma 4.3(b),

s � KiΦ
+
s,i, we obtain using T2 that s � ©¬(KiΦ

+
t,i ∧Liϕt′). Because s→ t, we have

that ϕs ∧©ϕt is consistent, so it follows that ϕt ∧ ¬(KiΦ
+
t,i ∧ Liϕt′) is consistent.

However, by Lemma 4.3, t � KiΦ
+
t,i ∧ Liϕt′ , so this is a contradiction.

We are now ready to define, for each consistent ψ, an enriched+ system for ψ
that establishes completeness of S5Um + KT3 with respect to Cprm . The runs of this
system are those derived from the acceptable sequences (s0, s1, . . .) (of states for ψ)
by putting re(n) = sn and ri(n) = Oi(s0)# · · ·#Oi(sn), for each agent i and n ≥ 0.
Thus, ri(n) is the sequence of current information that agent i has had up to time n.
Let Rpr be the set of runs defined in this way. The function Σ is given by Σ(r, n) = sn
for each n ≥ 0.

Lemma 5.6. Suppose that the axiomatization includes KT3. Then (Rpr,Σ) is
an enriched+ system.

Proof. It is clear that (Rpr,Σ) satisfies conditions 1 and 2 of Definition 4.9.
It remains to show that condition 3′ holds. So suppose that Σ(r, n) is a σ-state
and Σ(r, n) ≈i s for some (σ#i)-state s. We must find a point (r′, n′) such that
Σ(r′, n′) = s.

The proof proceeds by induction on n. The result for n = 0 is immediate, since
we can take r′ to be an acceptable sequence starting from s (such a sequence exists
by Lemma 5.1), so Σ(r′, 0) = s and clearly (r, 0) ∼i (r′, 0).

Now suppose that n > 0 and the result holds for n − 1. Because Σ(r, n − 1) →
Σ(r, n) and Σ(r, n) ≈i s, it follows by Lemma 5.5 that either (a) Σ(r, n − 1) ≈i s
or (b) there exists a (σ#i)-state s′ such that Σ(r, n − 1) ≈i s

′ and there exists a
sequence of (σ#i)-states u0 → u1 → · · · → uk such that s′ → u0, ul ≈i ul+1 for
l = 0, . . . , k − 1, and uk = s. By the induction hypothesis, there exists for every
(σ#i)-state t with Σ(r, n− 1) ≈i t a point (r′, n′) such that (r, n− 1) ∼i (r′, n′) and
Σ(r′, n′) = t. In case (a), we take t = s, and we then have that Σ(r, n− 1) ≈i Σ(r, n)
and Σ(r′, n′) = s. It follows that (r, n) ∼i (r′, n−1), and by the transitivity of ∼i, we
also have (r, n) ∼i (r′, n′). Hence we are done. In case (b), we take t = s′. Suppose
that r′ is derived from the sequence (v0, v1, . . .). Let r′′ be any run derived from
an acceptable sequence with initial segment (v0, . . . , vn′ , u0, . . . , uk). Again, such a
run exists by Lemma 5.1. By construction, Σ(r′′, n′ + k + 1) = uk = s. Moreover,
since r′′i (n′) = r′i(n

′) = ri(n − 1) and Oi(ul) = Oi(s) for all l = 0, . . . , k, we have
r′′i (n′ + k + 1) = r′′i (n′)#Oi(u0)# · · ·#Oi(uk) = ri(n− 1)#Oi(s) = ri(n), and hence
(r, n) ∼i (r′′, n′ + k + 1).

Now take any ε-state s such that s � ψ, and let r be a run derived from an
acceptable sequence starting with s. By construction, the system I obtained from
the enriched+ system is in Cprm , and by Corollary 4.11, we have (I, r, 0) � ψ. Thus, ψ
is satisfiable in Cprm . By Lemma 5.3, ψ is also satisfiable in systems in Cpr,uism . Since
this argument applies to an arbitrary formula ψ consistent with respect to S5Um+KT3,
this completes the proof of Theorem 3.5.

5.3. Dealing with Cpr,sync
m and Cpr,sync,uis

m (Theorem 3.6). We now show

that S5Um+KT2 is sound and complete with respect to KLm for the classes of systems
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Cpr,sync
m and Cpr,sync,uis

m . For soundness, the following result suffices.
Lemma 5.7. All instances of KT2 are valid in Cpr,sync

m .
Proof. Let I be a system in Cpr,sync

m and let r be a run of I. Suppose that
(I, r, n) � Ki©ϕ. If (r, n+1) ∼i (r′, n′), then by synchrony we must have n′ = n+1.
Thus, by perfect recall and synchrony, we have (r, n) ∼i (r′, n′ − 1). It follows that
(I, r′, n′ − 1) � ©ϕ, which implies that (I, r′, n′) � ϕ. This shows that (I, r′, n′) � ϕ
for all (r′, n′) ∼i (r, n + 1). Thus, we have (I, r, n + 1) � Kiϕ, and hence (I, r, n) �
©Kiϕ.

Before constructing an enriched+ system for the completeness proof, we first note
a property of the premodel, analogous to that given in Lemma 5.5.

Lemma 5.8. Suppose that the axiomatization includes KT2. Then for all σ-
states s, t with s → t, we have that for all (σ#i)-states t′ with t ≈i t

′ there exists a
(σ#i)-state s′ such that s ≈i s

′ and s′ → t′.
Proof. By way of contradiction, suppose that s, t are σ-states with s→ t, that t′

is a (σ#i)-state such that t ≈i t
′, but that for all (σ#i)-states s′ such that s ≈i s

′, we
have that s′ � ¬©ϕt′ . By T2, we have that s′ � ©¬ϕt′ for all (σ#i)-states s′ such
that s ≈i s

′. By Lemma 4.3(b), it follows that s � Ki©¬ϕt′ . By KT2, we have that
s � ©Ki¬ϕt′ . Since s → t, it follows that ϕt ∧Ki¬ϕt′ is consistent. However, since
t ≈i t

′, by Lemma 4.3(c), we have t � Liϕt′ . This is a contradiction.
To construct the enriched+ system, we now take Rpr,sync to be the set of runs r

derived from acceptable sequences (s0, s1, . . .) of states for the formula ψ by putting
re(n) = sn and ri(n) = Oi(s0) . . . Oi(sn), for each agent i and n ≥ 0. The no-
tation Oi(s0) . . . Oi(sn) is meant to denote the sequence formed by concatenating
Oi(s0), Oi(s1), . . . , Oi(sn). Thus, the length of the sequence is n + 1, which enforces
synchrony. Again, the function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.9. Suppose that the axiomatization includes KT2. Then (Rpr,sync,Σ)
is an enriched+ system.

Proof. Conditions 1 and 2 of the definition of an enriched+ system are immediate.
To show that condition 3′ holds, suppose that Σ(r, n) is a σ-state and that t is a (σ#i)-
state such that Σ(r, n) ≈i t. Suppose that r is derived from the acceptable sequence
(s0, s1, . . .), so Σ(r, n) = sn. It follows from Lemma 5.8 that there exists a→-sequence
t0 → · · · → tn such that tn = t and sj ≈i tj for j = 1, . . . , n. By Lemma 5.1, this
sequence may be extended to an infinite acceptable sequence. Taking r′ to be the run
derived from this sequence, we see that (r, n) ∼i (r′, n) and Σ(r′, n) = t.

Take Ipr,sync to be the system obtained from (Rpr,sync,Σ). By construction, this
system is in Cpr,sync. Now take any ε-state s such that s � ψ, and let r be a run
derived from an acceptable sequence starting with s. By construction, the system I
obtained from the enriched+ system is in Cpr,sync

m , and by Corollary 4.11, we have
(I, r, 0) � ψ. Thus, ψ is satisfiable in Cpr,sync

m . By Lemma 5.3, ψ is also satisfiable in
systems in Cpr,sync,uis

m . Since this argument applies to any formula ψ consistent with

respect to S5Um + KT2, this completes the proof of Theorem 3.6.

5.4. Dealing with Cnl
m (Theorem 3.7). We want to show that S5Um + KT4 is

sound and complete for KLm with respect to Cnl
m. For soundness, it suffices to show

that KT4 is valid in Cnl
m. This is straightforward.

Lemma 5.10. All instances of KT4 are valid in Cnl
m.

Proof. Suppose that I ∈ Cnl
m and (I, r, n) � Kiϕ U Kiψ. We want to show that

(I, r, n) � Ki(Kiϕ U Kiψ). Thus, if (r′, n′) ∼i (r, n), we must show that (I, r′, n′) �
Kiϕ U Kiψ. Since (I, r, n) � Kiϕ U Kiψ, there exists l ≥ n such that (I, r, l) � Kiψ
and (I, r, k) � Kiϕ ∧ ¬Kiψ for all k with n ≤ k < l. Note that this means that if
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n ≤ k < l, then ri(k) �= ri(l). Since I ∈ Cnl
m and (r, n) ∼i (r′, n′), there must be some

l′ ≥ n′ such that ((r, n), . . . , (r, l)) is ∼i-concordant with ((r, n′), . . . , (r, l′)). Thus,
there exists some h, a partition S1, . . . , Sh of the sequence ((r, n), . . . , (r, l)), and a
partition T1, . . . , Th of the sequence ((r′, n′), . . . , (r, l′)) such that for all j = 1, . . . , h,
we have (r, k) ∼i (r′, k′) for all points (r, k) ∈ Sj and (r′, k′) ∈ Tj . It easily follows
that (I, r′, n′) � Kiϕ U Kiψ, as desired.

For completeness, we define an appropriate enriched+ system. As we shall see,
the demands of no learning make this a little more subtle than in the case of no
forgetting.

For the remainder of this section, consistency and provability are with respect to
a logic that includes S5Um + KT4. Fix a consistent formula ψ such that ad(ψ) = d.

Our first step is to prove an analogue of Lemma 5.5.

Lemma 5.11. Suppose that the axiomatization includes KT4. If s is a σ-state,
t is a (σ#i)-state, s ≈i t, and s→ s′, then there exists a sequence t0, . . . , tk such that
(a) t = t0, (b) tj ≈i s for j < k, (c) tj → tj+1 for j < k, and (d) s′ ≈i tk.

Proof. If s′ ≈i t, then we can take the sequence to consist only of t, and we
are done. Otherwise, since ϕs ∧ ©ϕs′ is consistent, it follows from Lemma 4.3(b)
that ϕs ∧KiΦ

+
s,i U KiΦ

+
s′,i is consistent. Moreover, by Lemma 4.3(c), we have that

ϕs � Liϕt. Thus, ϕs ∧ Liϕt ∧KiΦ
+
s,i U KiΦ

+
s′,i is consistent. Using KT4, it follows

that ϕt∧KiΦ
+
s,iUKiΦ

+
s′,i is consistent. The result now follows from Lemma 4.7.

Unfortunately, Lemma 5.11 does not suffice to construct an enriched+ system.
Roughly speaking, the problem is the following. In the case of perfect recall, we used
Lemma 5.5 to show that, given a→-sequence S = (s0, . . . , sn) of σ-states and a (σ#i)-
state t such that sn ≈i t, we can construct a →-sequence T of (σ#i)-states ending
with t such that S is ≈i-concordant with T . There is no problem then extending T to
an acceptable sequence. Moreover, we can extend S and T independently to accept-
able sequences; all that matters is that the finite prefixes of these sequences—namely,
S and T—are ≈i-concordant. With no learning, on the other hand, it is the infinite
suffixes that must be ≈i-concordant. Given a →-sequence S = (s0, . . .) of σ-states
and a (σ#i)-state t such that s0 ≈i t, using Lemma 5.11, we can find a→-sequence T
starting with t that is ≈i-concordant with S. This suggests that it is possible to
find the appropriate sequences for the construction of runs satisfying the no learning
condition. Unfortunately, it does not follow from the acceptability of S that T is also
acceptable. This makes it necessary to work with a smaller set of sequences than the
set of all acceptable sequences, and to build up the sequences S and T simultaneously.
To ensure that the appropriate obligations are satisfied at all points in the set of runs
constructed, we need to work not just with single states, but with trees of states.

A k-tree for ψ (with k ≤ d) is a set S of states with index σ such that |σ| ≤ k,
containing a unique ε state such that if s ∈ S is a σ-state, then

• if t is a (σ#i)-state such that s ≈i t and |σ#i| ≤ k, then t ∈ S;
• if σ = τ#i, then there is a τ -state t in S such that s ≈i t.

We extend the → relation to k-trees as follows. If S1 and S2 are k-trees for ψ, then
S1 →f S2 if f is a function associating with each σ-state s ∈ S1 a finite sequence of
σ-states in S1 ∪ S2 such that

• if f(s) = (s0, . . . , sk), then
– s = s0,
– s0 → · · · → sk,
– s0, . . . , sk−1 ∈ S1 and sk ∈ S2;

• if s ≈i s
′, then f(s) and f(s′) are ≈i-concordant;
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• for at least one s ∈ S1, the sequence f(s) has length at least 2.
Given two sequences of σ-states α = (s0, . . . , sk) and β = (t0, . . .), where α is

finite, the fusion of α and β, denoted α·β, is defined only if sk = t0; in this case, it is the
sequence (s0, sk−1, t0, . . .). Given an infinite sequence S = S0 →f0 S1 →f1 S2 →f2 · · ·
of k-trees, we say a sequence α of σ-states is compatible with S if there exists some h,
and σ-states sh, sh+1, . . . with sj ∈ Sj for j ≥ h, such that α = fh(sh)·fh+1(sh+1)·. . . .
(Implicit in this notation is the assumption that this fusion product is defined, so that
the last state in fj(sj) is the same as the first state in fj+1(sj+1) for j ≥ h.) S is
acceptable if every →-sequence compatible with S is infinite and acceptable. Our
goal is to construct an acceptable sequence of d-trees; we then use this to define the
enriched+ system.

Note that by Lemma 4.3, the formula ϕs essentially describes the subtree below s
of any k-tree containing s. Given a k-tree S and a σ-state s in S, we inductively
define a formula treeS,s that describes all of S from the point of view of s. If s is an
ε-state, then treeS,s = ϕs. Otherwise, if s is a (τ#i)-state, where τ �= τ#i, then

treeS,s = ϕs ∧
∧

{τ-states t: s≈it}
LitreeS,t.

If S and T are k-trees, s ∈ S, and t ∈ T , then we write (S, s) →+ (T, t) if there
exists a sequence of k-trees S0, . . . , Sl and functions f0, . . . , fl−1 such that S0 →f0

· · · →fl−1
Sl, S0 = S, Sl = T , fj(s) = (s) for j ≤ l − 2, and fl−1(s) = (s, t).

Lemma 5.12. Suppose that the axiomatization includes KT4, S is a k-tree, and
s is a σ-state in S, where |σ| = k.

(a) If t is a σ-state and treeS,s ∧ ©(ϕt ∧ ξ) is consistent, then there exists a
k-tree T such that t ∈ T , (S, s)→+ (T, t), and treeT,t ∧ ξ is consistent.

(b) treeS,s ⇒ ©
∨

{(T,t): (S,s)→+(T,t)} treeT,t is provable.

(c) If treeS,s ∧ ϕ U ϕ′ is consistent, then for some l ≥ 0 there is a sequence
S0, . . . , Sl of k-trees and states s0, . . . , sl such that (i) sj ∈ Sj, (ii) (S, s) =
(S0, s0), (iii) (Sj , sj) →+ (Sj+1, sj+1) for j = 0, . . . , l − 1, (iv) treeSj ,sj ∧ ϕ
is consistent for j = 0, . . . , l − 1, and (v) treeSl,sl ∧ ϕ′ is consistent.

Proof. We proceed by induction on k. The case that k = 0 is immediate using
standard arguments, since then treeS,s is just ϕs.

So suppose k > 0 and σ = τ#i, with σ �= τ . We first prove part (a) in the case
that ξ is of the form Kiξ

′, then part (b), the general case of part (a), and part (c).
First consider (a) in the case that ξ is of the formKiξ

′. Note that treeS,s∧©(ϕt∧Kiξ
′)

implies treeS,s ∧KiΦs,i U Ki(ξ
′ ∧ Φt,i). From the definition of k-tree, it follows that

there is a τ -state s′ in S such that s ≈i s
′. Let S′ be the (k− 1)-tree consisting of all

σ′-states in S with |σ′| ≤ k − 1. From KT4, it follows that

treeS′,s′ ∧KiΦs,i U Ki(ξ
′ ∧ Φt,i)

is consistent. Applying part (c) of the inductive hypothesis, we get a sequence
S0, . . . , Sl of (k − 1)-trees and states s0, . . . , sl such that (i) sj ∈ Sj , (ii) (S′, s′) =
(S0, s0), (iii) (Sj , sj) →+ (Sj+1, sj+1) for j = 0, . . . , l − 1, (iv) treeSj ,sj ∧ KiΦs,i is
consistent for j = 0, . . . , l − 1, and (v) treeSl,sl ∧ Ki(ξ

′ ∧ Φt,i) is consistent. It fol-
lows by definition that there is a sequence T0, . . . , Tm of (k − 1)-trees and functions
f0, . . . , fm−1 such that T0 →f0→ · · · →fm−1 Tm, T0 = S0, and Tm = Sl. Moreover,
there are elements t0, . . . , tm such that t0 = s′, tm = sl, if j < m, then tj = sj′ for some
j′ ≤ j, and if tj = tj+1, then fj(tj) = (tj), while if tj �= tj+1, then fj(tj) = (tj , tj+1)
for j = 0, . . . ,m− 1.
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Let T ′
j be the unique k-tree extending Tj for j = 0, . . . ,m. Since ϕtj ∧ KiΦs,i

is consistent for j < m, we have that tj ≈i s, and so s ∈ T ′
j for j < m. Similarly,

we have that t ∈ T ′
m. We now show how to construct f ′j for j < m. For each state

u′ ∈ T ′
j − Tj , there must exist a state u ∈ Tj and an agent j′ such that u ≈j′ u

′.
(There may be more than one such state u, of course. In this case, in the construction
below, we can pick u arbitrarily.) It easily follows from Lemma 5.11 that there exists
a sequence αu′ starting with u′ that is ≈j′ -concordant with fj(u). Moreover, we can
take αtj = (s) for j < m− 1, and take αtm−1

= (s, t). We define f ′j so that it agrees
with fj on Tj , and for each u′ ∈ T ′

j − Tj , we have f ′j(u
′) = αu′ .

Notice that T ′
0 = S. If m > 0, it follows immediately from the definition that

(S, s)→+ (Tm, t) and that treeTm,t ∧Kiξ
′ is consistent. If m = 0, it is easy to check

that we must have t ∈ S, for we have s′ ≈i t. Since we also have s′ ≈i s, it follows that
s ≈i t. Define f so that f(u) = (u) for u �= s and f(s) = (s, t). Then (S, s)→f (S, t).
Since s→ t, we have (S, s)→+ (S, t). This completes the proof of part (a).

To prove part (b), suppose not. Then treeS,s ∧ ©
∧

{(T,t): (S,s)→+(T,t)} ¬treeT,t

is consistent. Straightforward temporal reasoning shows that there must be some u
such that

treeS,s ∧©
(
ϕu ∧

∧
{(T,t): (S,s)→+(T,t)}

¬treeT,t

)
(5.3)

is consistent. Now ¬treeT,t is equivalent to ¬ϕt∨
∨

{τ-states t′: t′≈it}Ki¬treeT,t′ . Thus,

it follows that the consistency of (5.3) implies that for each tree T such that (S, s)→+

(T, u), there is a τ -state tT ≈i u such that

treeS,s ∧©
(
ϕu ∧Ki

( ∧
{T : (S,s)→+(T,u)}

¬treeT,tT

))
(5.4)

is consistent. By part (a), there exists a k-tree T ′ and t′ ∈ T ′ such that (S, s) →+

(T ′, t′) and treeT ′,t′ ∧ ϕu ∧ Ki(
∧

{T : (S,s)→+(T,u)} ¬treeT,tT ) is consistent. But this

means that t′ = u. Thus, we have a contradiction, since treeT ′,u ∧ Ki¬treeT ′,tT ′ is
inconsistent.

The general case of part (a) follows easily from part (b). Part (c) also follows from
part (b), using arguments much like those of Lemma 4.7; we omit details here.

Lemma 5.13. Suppose that the axiomatization includes KT4 and ψ is consistent.
Then there is an acceptable sequence of d-trees such that ψ is true at the root of the
first tree.

Proof. The key part of the proof is to show that given a finite sequence S0 →f0

· · · →fl−1
Sl of d-trees and a σ-state s in Sl such that s � ©ϕ (resp., s � ϕ1 U ϕ2),

we can extend the sequence of trees in such a way as to satisfy this obligation. This
follows easily from Lemmas 5.11 and 5.12. In more detail, suppose s � ϕ1Uϕ2. Let S′

consist of all τ -states in Sl, with |τ | ≤ k = |σ|. By Lemma 5.12, we can find a sequence
of k-trees starting with S′ that satisfies this obligation. Using Lemma 5.11, we can
extend this to a sequence of d-trees starting with Sl that satisfies the obligation. The
argument in the case that sk � ©ϕ is similar. We can then take care of the obligations
one by one, and construct an acceptable sequence, in the obvious way.

Since ψ is consistent, there must be some tree S with root s0 such that s0 � ψ.
We just extend S as above to complete the proof.

Once we have an acceptable sequence S of d-trees as in Lemma 5.13, we can
easily construct the enriched+ system much as we did in the case of perfect recall.
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Given a →-sequence s0 → s1 → · · · the nl-run r derived from it is defined so that
re(n) = sn and ri(n) = Oi(sn)#Oi(sn+1)# · · · for each agent i and n ≥ 0. Thus,
while for perfect recall we take ri(n) to consist of the agent’s current information up
to time n, for no learning we take ri(n) to consist of the current information from time
n on. The construction stresses the duality between perfect recall and no learning. Let
Rnl consist of all the nl -runs derived from →-sequences that are compatible with S.
Again, the function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.14. Suppose that the axiomatization includes KT4. Then (Rnl,Σ) is
an enriched+ system.

Proof. Again, conditions 1 and 2 in the definition of enriched+ system follow
immediately from the construction. For condition 3′, suppose that (r, n) is a point
in the system, Σ(r, n) is a σ-state, and s is a (σ#i)-state with s ≈i Σ(r, n). Suppose
that S = S0 →f0 S1 →f1 S2 →f2

· · · . By definition, the nl -run r is derived from
some sequence (s0, s1, s2, . . .) of σ-states compatible with S. Suppose that Σ(r, n) is
in the interval of this sequence from Sk. Then s must also be in Sk. Let (t0, t1, . . .)
be the (unique) sequence compatible with S that starts at s in Sk. Let r′ be the run
derived from this sequence. Then, by definition, we have Σ(r′, 0) = s and (r, n) ∼i

(r′, 0).
Take Inl to be the system obtained from (Rnl,Σ). By construction, this system

is in Cnl. Now take any ε-state s such that s � ψ, and let r be a run derived from a
sequence compatible with S starting with s. It follows that (I, r, 0) � ψ. Thus, ψ is
satisfiable in Cnl

m. This completes the proof of Theorem 3.7.

5.5. Dealing with Cnl,pr
m and Cnl,pr,uis

1 (Theorem 3.8). We now want to

show that S5Um + KT3 + KT4 is sound and complete for KLm with respect to Cnl,pr
m .

Soundness is immediate from Lemmas 5.4 and 5.10.
For completeness, we construct an enriched+ system much as in the proof of

Theorem 3.7, using k-trees. By Lemma 5.13, there is an acceptable sequence S
of d-trees such that ψ is true at the root of the first tree. Given a →-sequence
(s0, s1, . . .), the nl–pr-run r derived from it is defined so that re(n) = sn and ri(n) =
(Oi(s0)#Oi(s1)# · · ·#Oi(sn), Oi(sn)#Oi(sn+1)# · · ·) for each agent i and n ≥ 0.
Thus, the agents’ local states enforce both perfect recall (by keeping track of all the
information up to time n) and no learning (by keeping track of the current infor-
mation from time n on). Let Rnl,pr consist of all nl–pr -runs that are derived from
→-sequences that have a suffix that is compatible with S. Note that now we consider
→-sequences whose suffixes are compatible with S. The reason we have allowed the
greater generality of suffixes will become clear shortly. Since S is acceptable, it is
easy to see that every such →-sequence must be infinite and acceptable. Again, the
function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.15. Suppose that the axiomatization includes KT3 and KT4. Then
(Rnl,pr,Σ) is an enriched+ system.

Proof. As usual, conditions 1 and 2 in the definition of enriched+ system follow
immediately from the construction. For condition 3′, suppose that (r, n) is a point in
the system, Σ(r, n) is a σ-state, and s is a (σ#i)-state. Suppose that S = S0 →f0

S1 →f1
S2 →f2

· · · . By definition, the nl–pr -run r is derived from a →-sequence
(s0, s1, . . .) that has a suffix (sN , sN+1, . . .) that is compatible with S, and Σ(r, n) =
sn. There are now two cases to consider. If n ≥ N , then there exists some k such
that sn is in Sk. Then s must also be in Sk. Let (u0, u1, . . .) be the unique sequence
compatible with S that starts with s in Sk. By Lemma 5.5, there exist a sequence
v0 → · · · → vh of σ#i-states such that vh = s and (v0, . . . , vh) is ≈i-compatible
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with (s0, . . . , sn). Consider the →-sequence formed from the fusion of (v0, . . . , vh)
and (u0, u1, . . .). By construction, the nl–pr -run r′ derived from this →-sequence is
in Rnl,pr, Σ(r′, h) = s, and (r, n) ∼i (r′, h).

Now suppose n < N . By Lemma 5.5, there exist (σ#i)-states v0 → · · · → vh
such that vh = s and (v0, . . . , vh) is ≈i-concordant with (s0, . . . , sn). Moreover, by
Lemma 5.11, this sequence can be extended to a sequence (v0, . . . , vk) that is ≈i-
concordant with (s0, . . . , sN ). Since sN ∈ SM for some M , we must have vk ∈ SM .
Let (u0, u1, . . .) be the unique sequence compatible with S that starts at vk in SM .
Consider the →-sequence formed from the fusion of (v0, . . . , vk) and (u0, u1, . . .). By
construction, the nl–pr -run r′ derived from this→-sequence is in Rnl,pr, Σ(r′, h) = s,
and (r, n) ∼i (r′, h).

Again, we complete the proof by taking Inl,pr to be the system obtained from
(Rnl,pr,Σ). By construction, this system is in Cnl,pr and satisfies ψ. This shows that
S5Um + KT3 + KT4 is a sound and complete axiomatization for the language KLm

with respect to Cnl,pr
m .

The fact that it is also a sound and complete axiomatization for the language
KL1 with respect to Cnl,pr,uis

1 follows immediately from the following lemma.

Lemma 5.16. The formula ψ ∈ KL1 is satisfiable with respect to Cnl,pr
1 (resp.,

Cnl,pr,sync
1 ) iff it is satisfiable with respect to Cnl,pr,uis

1 (resp., Cnl,pr,sync,uis
1 ).

Proof. Clearly if ψ is satisfiable with respect to Cnl,pr,uis
1 (resp., Cnl,pr,sync,uis

1 )

it is satisfiable with respect to Cnl,pr
1 (resp., Cnl,pr,sync

1 ). For the converse, suppose

that (I, r∗, n∗) � ψ, where I = (R, π) ∈ Cnl,pr
1 . For each run r ∈ R, define the

run r+ just as in Lemma 5.3, to be the result of adding a new initial state to r.
Let R′ = {r+ : (r, 0) ∼1 (r∗, 0)}. Define π′ as on R′ as in Lemma 5.3, so that
π′(r+, 0)(p) = false for all primitive propositions p, and π′(r+, n+ 1) = π(r, n). Let

I ′ = (R′, π′). Clearly I ′ ∈ Cnl,pr,uis
1 , and if I is synchronous, then so is I ′. We claim

that (I ′, r+, n + 1) � ϕ iff (I, r, n) � ϕ for all formulas ϕ ∈ KL1 and all r+ ∈ R′.
We prove this by induction on the structure of ϕ. The only nontrivial case is if ϕ is
of the form K1ϕ

′. But this case is immediate from the observation that if r+ ∈ R′,
r′ ∈ R, and (r, n) ∼1 (r′, n′), then since I is a system of perfect recall, we must have
(r, 0) ∼1 (r′, 0), and hence (r′)+ ∈ R′. We leave details of the proof of the claim to

the reader. From the claim, it follows that ψ is satisfiable in Cnl,pr,uis
1 , and that if ψ

is satisfiable in Cnl,pr,sync
1 , then it is also satisfiable in Cnl,pr,sync,uis

1 .

5.6. Dealing with Cnl,sync
m (Theorem 3.9). We now want to show that S5Um +

KT5 is sound and complete for KLm with respect to Cnl,sync
m . Soundness follows from

the following lemma.
Lemma 5.17. All instances of KT5 are valid in Cnl,sync

m .
Proof. Suppose that I ∈ Cnl,sync

m and (I, r, n) � ©Kiϕ. We want to show that
(I, r, n) � Ki©ϕ. Thus, suppose that (r′, n′) ∼i (r, n). We must show that (I, r′, n′) �
©ϕ. By synchrony, we must have n′ = n. Moreover, by no learning and synchrony,
we have that (r, n + 1) ∼i (r′, n + 1). Since (I, r, n + 1) � Kiϕ, it follows that
(I, r′, n+ 1) � ϕ, and hence that (I, r′, n) � ©ϕ, as desired.

For completeness, we construct an enriched+ system much as in the proof of
Theorem 3.7, using k-trees, with an appropriate strengthening of the → relation.

We start by proving the following analogue of Lemma 5.11.
Lemma 5.18. Suppose that the axiomatization includes KT5. If s is a σ-state,

t is a (σ#i)-state, s ≈i t, and s → s′, then there exists a (σ#i)-state t′ such that
t→ t′ and s′ ≈i t

′.
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Proof. Since ϕs ∧©ϕs′ is consistent, it follows from Lemma 4.3(b) that ϕs0 ∧
©KiΦ

+
s′,i is consistent. Moreover, by Lemma 4.3(c), we have that ϕs � Liϕt. Thus,

ϕs ∧ Liϕt ∧©KiΦ
+
s′,i is consistent. Using KT5, it follows that ϕs ∧ Liϕt ∧Ki©Φ+

s′,i

is consistent. It follows that ϕt ∧©Φ+
s′,i is consistent. Hence, there is some (σ#i)-

state t′ such that s′ ≈i t
′ and ϕt ∧©ϕt′ is consistent. Thus, we have s′ ≈i t

′ and
t→ t′.

If S and T are k-trees, s ∈ S, and t ∈ T , we define (S, s)→sync,+ (T, t) if S →f T
for some f such that f(s) = (s, t) and f(s′) has length 2 for all s′ ∈ S. We now get
the following simplification of Lemma 5.12.

Lemma 5.19. Suppose that the axiomatization includes KT5, S is a k-tree, and
s is a σ-state in S, where |σ| = k.

(a) If treeS,s∧©(ϕt∧ξ) is consistent, then there exists a k-tree T and t ∈ T such
that (S, s)→sync,+ (T, t) and treeT,t ∧ ξ is consistent.

(b) treeS,s ⇒ ©
∨

{(T,t): (S,s)→sync,+(T,t)} treeT,t is provable.

(c) If treeS,s ∧ ϕ U ϕ′ is consistent, then there is a sequence S0, . . . , Sl of k-
trees and states s0, . . . , sl such that (i) sj ∈ Sj, (ii) (S, s) = (S0, s0), (iii)
(Sj , sj)→sync,+ (Sj+1, sj+1) for j = 0, . . . , l−1, (iv) treeSj ,sj∧ϕ is consistent
for j = 0, . . . , l − 1, and (v) treeSl,sl ∧ ϕ′ is consistent.

Proof. The proof is like that of Lemma 5.12, using Lemma 5.18 instead of
Lemma 5.11. We leave details to the reader.

We can then define a sync-acceptable sequence of trees by replacing →+ by
→sync,+ in the definition of acceptable sequence of trees. Using Lemma 5.19, we
can show that if the axiom system contains KT5, then we can construct an infinite
sync-acceptable sequence S = S0 →sync,+ S1 →sync,+ S2 →sync,+ · · · of d-trees.
As in section 5.1, we use an object x not equal to any state. Given a →-sequence
sN → sN+1 → · · · starting at sN ∈ SN the nl–sync-run r derived from it is defined so
that re(n) = sn for n ≥ N , else re(n) = x, and for each agent i, if n ≥ N , then ri(n) =
(n,Oi(sn)Oi(sn+1) . . .), else ri(n) = (n, xN−nOi(sn)Oi(sn+1) . . .). Thus, the local
state of the agent enforces synchrony (by encoding the time) and enforces no learning.
Let Rnl,sync consist of all nl–sync-runs derived from→-sequences compatible with S,
and define Σ by taking Σ(r, n) = sn for n ≥ N and Σ(r, n) undefined for n < N .

Lemma 5.20. Suppose that the axiomatization includes KT5. Then (Rnl,sync,Σ)
is an enriched+ system.

Proof. The proof is essentially the same as that of Lemma 5.14. We leave details
to the reader.

We complete the proof of Theorem 3.9 just as we did all the previous proofs.

5.7. Dealing with Cnl,pr,sync
m (Theorem 3.10). We now want to show that

S5Um+KT2+KT5 is sound and complete for KLm with respect to Cnl,pr,sync
m . Soundness

follows from Lemmas 5.7 and 5.17.

For completeness, we construct an enriched+ system by combining the ideas of
the proofs of Theorems 3.8 and 3.9. Using Lemma 5.19, we can show that if the axiom
system contains KT5, then we can construct an infinite sync-acceptable sequence S
of d-trees. Given a →-sequence s0 → s1 → · · · , the nl–pr–sync-run r derived from
it is defined so that re(n) = sn and ri(n) = (Oi(s1) . . . Oi(sn), Oi(sn)Oi(sn+1) . . .).
Thus, the local state of the agent enforces both perfect recall and no learning. It also
enforces synchrony, since the agent can determine n from the length of the first of the
two sequences in its local state. Let Rnl,pr,sync consist of all nl–pr–sync-runs derived
from →-sequences with suffixes that are compatible with S; again, we define Σ by
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taking Σ(r, n) = sn.

Using ideas similar to those in earlier proofs, we can now prove the following
result.

Lemma 5.21. Suppose that the axiomatization includes KT2 and KT5. Then
(Rnl,pr,sync,Σ) is an enriched+ system.

We complete the proof of Theorem 3.10 just as we did the earlier proofs.

5.8. Dealing with Cnl,sync,uis
m and Cnl,pr,sync,uis

m (Theorem 3.11). Finally, we

want to show that S5Um + KT2 + KT5 + {Kiϕ ⇔ K1ϕ} is sound and complete for
KLm with respect to Cnl,sync,uis

m and Cnl,pr,sync,uis
m . Soundness follows easily using the

following result, which is Proposition 3.9 in [8] (restated using our notation).

Proposition 5.22.

(a) Cnl,sync,uis
m = Cnl,pr,sync,uis

m .
(b) Any formula ϕ in KLm is equivalent in Cnl,sync,uis

m to the formula ϕ′ that
results by replacing all occurrences of Ki, i ≥ 2, by K1.

It follows from part (a) of Proposition 5.22 that the same axioms characterize
Cnl,sync,uis
m and Cnl,pr,sync,uis

m . Now using Lemmas 5.7 and 5.17, the soundness of
KT2 and KT5 follows. The soundness of Kiϕ ≡ K1ϕ follows from part (b).

For completeness, using the axiom Kiϕ ≡ K1ϕ, it suffices to show the com-
pleteness of S5U1 + KT2 + KT5 with respect to Cnl,pr,sync,uis

1 . By Theorem 3.10, this

axiomatization is complete with respect to Cnl,pr,sync
1 . The result now follows using

Lemma 5.16.

6. Remarks on no learning. We noted in section 2 that the definition of no
learning adopted in this paper differs from that used in [5, 8]. We now comment on
the reason for this change and the relationship between these alternative definitions
of no learning.

First, recall from part (d) of Lemma 2.2 that agent i has perfect recall in system
R iff

(∗) for all points (r, n) ∼i (r′, n′) in R, if k ≤ n, then there exists k′ ≤ n′ such
that (r, k) ∼i (r′, k′).

Intuitively, no learning is the dual of perfect recall, so it seems reasonable to define
no learning by replacing references to the past in a definition of perfect recall by
references to the future. This was done in [5, 8], where the definition given for no
learning was the following future time variant of condition (∗), which we call no
learning′, to distinguish it from our current definition: Agent i does not learn′ in
system R iff

(∗∗) for all points (r, n) ∼i (r′, n′) in R, if k ≥ n, then there exists k′ ≥ n′ such
that (r, k) ∼i (r′, k′).

The following lemma states a number of relations holding between condition (∗∗) and
the other properties we have considered in this paper.

Lemma 6.1.

(a) If agent i does not learn in system R, then agent i does not learn ′ in system R.
(b) If system R is synchronous or if agent i has perfect recall in R, then agent i

does not learn in R iff agent i does not learn ′ in R.

Proof. We first prove part (a). Suppose that agent i does not learn in R. Assume
that (r, n) ∼i (r′, n′) and let k ≥ n. Since i does not learn, the future local state
sequences at (r, n) and (r′, n′) are equal. It follows that there exists k′ ≥ n′ such that
(r, k) ∼i (r′, k′). Thus, agent i does not learn′.



AXIOMATIZATIONS FOR KNOWLEDGE AND TIME 701

For part (b), it follows from part (a) that it suffices to show the implication from
no learning′ to no learning. We consider the cases of synchrony and perfect recall
independently. In each case, we show that if (r, n) ∼i (r′, n′), then there exists k ≥ n′
such that the sequences ((r, n), (r, n+ 1)) and ((r′, n′), . . . , (r′, k)) are ∼i-concordant.
It then follows by Lemma 2.3 that agent i does not learn.

Assume first that R is a synchronous system and that (r, n) ∼i (r′, n′). By
synchrony, we must have n = n′. By no learning′, there exists k ≥ n such that
(r, n + 1) ∼i (r′, k). By synchrony, k must equal n + 1. It is immediate that
((r, n), (r, n+ 1)) and ((r′, n′), (r′, n′ + 1)) are ∼i-concordant.

Next, assume that agent i has perfect recall in R and that (r, n) ∼i (r′, n′). By
no learning′, there exists k ≥ n′ such that (r, n + 1) ∼i (r′, k). By perfect recall,
agent i’s local state sequences (r, n+1) and (r′, k) are identical, as are the local state
sequences at (r, n) and (r′, n′). It follows that the sequences ((r, n), (r, n + 1)) and
((r′, n′), . . . , (r′, k)) are ∼i-concordant.

Thus, in the context of either synchrony or perfect recall, no learning and no
learning′ are equivalent. However, in systems without synchrony or perfect recall, no
learning′ is strictly weaker than no learning, as the following example shows. Consider
the system R = {r1, r2} for a single agent, where the runs are defined by

r1(n) =

⎧⎨⎩
(se, a) if n = 0,
(se, b) if n > 0 is odd,
(se, c) if n > 0 is even,

where se is some state of the environment, and a, b, c are local states of agent 1, and
similarly

r2(n) =

⎧⎨⎩
(se, a) if n = 0,
(se, c) if n > 0 is odd,
(se, b) if n > 0 is even.

This system clearly satisfies uis and condition (∗∗), so we have no learning′ (for both
agents). However, agent 1’s future local-state sequences from the points (r1, 0) ∼1

(r2, 0) are not ∼1-concordant, so we do not have no learning. Thus, no learning and
no learning′ are distinct in general.

This raises the question of which variant to take as the definition of no learning
for the cases Cnl and Cuis,nl. The origin of this notion in the literature lies in Ladner
and Reif’s paper [11], where it is motivated as arising in the context of blindfold
games. Their logic LLP assumes perfect recall, so is not decisive on the distinction.
However, it seems that the behavior in the above example is somewhat unnatural
for this application, and the definition we have adopted in this paper better fits the
intuition of a player in a blindfold game following a fixed linear strategy, but with
some uncertainty about timing. It is such examples that in fact led us to use the
current definition of no learning.

It is worth noting that the example above also shows that the axiom KT4 is not
sound with respect to the class of systems satisfying (∗∗). Define the interpretation π
of the propositions p and q on runs r ∈ R by π(r, n)(p) = true iff r1(n) = a and
π(r, n)(q) = true iff r1(n) = b. Let I = (R, π). It is then readily seen that (I, r1, 0) �
K1pU K1q but not (I, r1, 0) � K1(K1pU K1q). Hence KT4 fails in this system. (This
example is a future time version of an example used in [14] to show that the axiom KT1
is incomplete for systems with perfect recall.) We have not investigated the issue of
axiomatization using no learning′ rather than no learning in the two cases where there
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is a difference—Cnl
m and Cnl,uis

1 . We conjecture that, while there will be a relatively
clean complete axiomatization in these cases, it will not be as elegant as the one
proposed here. That is, the axiom that captures no learning will be somewhat more
complicated than KT4. This conjecture is in line with our feeling that no learning is
the “right” definition, not no learning′.

We remark that the complexity results of [5, 8, 7] are proved in the context of no
learning′, but it is relatively straightforward to show that the same results hold if we
use the definition of no learning instead.

7. Discussion. While we have looked in this paper at the effect on axiomatiza-
tion of some combinations of classes of systems and language (48 in all!), there are cer-
tainly other cases of interest. One issue we have already mentioned is that of branching
time versus linear time. Basing the temporal fragment of the language on branching
time yields another 48 logics, whose complexity is studied in [5]. We would conjec-
ture that the obvious translations of the axioms we have presented here deal with
branching time, with similar proofs of completeness, but this remains to be verified.

It is worth remarking that our results are very sensitive to the language studied.
As we have seen, the language considered in this paper is too coarse to reflect some
properties of systems. In the absence of the other properties, synchrony and unique
initial states do not require additional axioms. This may no longer be true for richer
languages. For example, if we allow past-time operators [13], we need not only the
additional axioms capturing the properties of these, but also new axioms describing
the interaction of knowledge and time. Suppose that we add an operator � such that
(I, r, n) � �ϕ if n ≥ 1 and (I, r, n−1) � ϕ. Notice that ¬�true expresses the property
“the time is 0” and �¬�true expresses the property “the time is 1.” Similarly, we can
inductively define formulas that express the property “the time is m” for each m ≥ 0.
If time = m is an abbreviation for this formula, then time = m ⇒ Ki(time = m) is
valid in Csync for each time m.

On the other hand, by adding past-time operators we can simplify the axiom for
perfect recall. Introducing the operator S for “since,” we may show that the formula

(Kiϕ)S(Kiψ)⇒ Ki((Kiϕ)S(Kiψ))

is valid in Cpr. This axiom very neatly expresses the meaning of perfect recall, and a
comparison with KT4 shows clearly the sense in which perfect recall is a dual of no
learning. Techniques similar to those developed in this paper may be used to prove
that this axiom, together with the usual axioms for past time [13] and for knowledge,
yields a complete axiomatization for Cpr.

Besides changes to the language, there are also additional properties of systems
worth considering. One case of interest is the class of asynchronous message passing
systems of [1]. That extra axioms are required in such systems is known (see [1,
Exercise 8.8]), but the question of complete axiomatization is still open.
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Abstract. In the survivable network design problem (SNDP), the goal is to find a minimum-cost
spanning subgraph satisfying certain connectivity requirements. We study the vertex-connectivity
variant of SNDP in which the input specifies, for each pair of vertices, a required number of vertex-
disjoint paths connecting them.

We give the first strong lower bound on the approximability of SNDP, showing that the problem

admits no efficient 2log1−ε n ratio approximation for any fixed ε>0, unless NP ⊆ DTIME(npolylog(n)).
We show hardness of approximation results for some important special cases of SNDP, and we exhibit
the first lower bound on the approximability of the related classical NP-hard problem of augmenting
the connectivity of a graph using edges from a given set.

Key words. approximation algorithms, hardness of approximation, vertex connectivity, surviv-
able network design, connectivity augmentation

AMS subject classifications. 68W25, 05C85, 05C40

DOI. 10.1137/S0097539702416736

1. Introduction. A basic problem in network design is to find, in an input
graph G = (V,E) with nonnegative edge costs, a spanning subgraph of minimum cost
that satisfies certain connectivity requirements; see, for example, the surveys [15, 24].
A fundamental problem in this area is the vertex-connectivity variant of the surviv-
able network design problem (SNDP). Here, the input also specifies a connectivity
requirement ku,v for every pair of vertices {u, v}, and the goal is to find a minimum-
cost spanning subgraph with the property that, between every pair of vertices {u, v},
there are at least ku,v vertex-disjoint paths.

Many network design problems (including SNDP) are NP-hard, and a significant
amount of research is concerned with approximation algorithms for these problems,
i.e., polynomial-time algorithms that find a solution whose value is guaranteed to be
within some factor (called the approximation ratio) of the optimum. A notable success
is the 2-approximation of Jain [20] for the edge-connectivity version of SNDP, in which
the paths are required only to be edge-disjoint. (See also [21, 14] for an extension to
a more general version of SNDP.) However, for the vertex-connectivity variant of
SNDP, no algorithm that achieves a sublinear (in |V |) approximation ratio has been
found, despite a considerable amount of study.

This disparity between the known approximations for different variants of SNDP

might suggest a lack in our understanding of vertex-connectivity network design or,
perhaps, that vertex-connectivity problems are inherently more difficult to approxi-
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mate. Resolving this question (see, e.g., [34, section 30.2]) is one of the important
open problems in the field of approximation algorithms. We provide an answer by
showing that there is a striking difference between the approximability of the edge-
and vertex-connectivity variants of SNDP. Specifically, we show that it is hard to
approximate the vertex-connectivity variant of SNDP within a factor of 2log1−ε |V | for
any fixed ε > 0.

In general, we address the hardness of approximation of vertex-connectivity prob-
lems by presenting relatively simple variants of SNDP that are nevertheless hard to
approximate. Therefore, unless stated otherwise, connectivity means vertex-connectiv-
ity, disjoint paths means vertex-disjoint paths, and all graphs are assumed to be
undirected. (For a more in-depth account of approximation algorithms for edge-
connectivity problems, see [15, 24].)

Two special cases of SNDP for which we show hardness of approximation are the
subset connectivity problem and the outconnectivity to a subset problem (OSP). In
the first problem, the input contains a subset S of the vertices and a number k, and
the goal is to find a minimum-cost subgraph that contains at least k vertex-disjoint
paths between every pair of vertices in S. This is SNDP with ku,v = k for all u, v ∈ S
and ku,v = 0 otherwise. In the second problem, the input contains a special vertex
r (called the root), a subset S of the vertices, and a number k, and the goal is to
find a minimum-cost subgraph that contains at least k vertex-disjoint paths between
r and any vertex in S. In other words, this is SNDP with kr,v = k for all v ∈ S and
ku,v = 0 otherwise.

A related problem is the vertex-connectivity augmentation problem (VCAP�,k),
where the goal is to find a minimum-cost set of edges that augments an �-connected
graph into a k-connected graph. We exhibit the first hardness of approximation results
for this problem.

1.1. Previous work. Throughout, let n = |V | denote the number of vertices in
the input graph G.

A classical and well-studied special case of SNDP is the problem of finding a
minimum-cost k-vertex connected spanning subgraph, i.e., the special case where
ku,v = k for all vertex pairs {u, v}. This is called the k-vertex connected spanning
subgraph problem (k-VCSS). k-VCSS is NP-hard even for k = 2 and uniform costs
(i.e., when all edges have the same cost), as this problem already generalizes the
Hamiltonian cycle problem (note that a 2-connected subgraph of G has n edges if and
only if it is a Hamiltonian cycle). By a similar argument, the outconnectivity to a
subset problem is also NP-hard, even for k = 2 and S = V \ {r} [3]. It immediately
follows that SNDP (which is a more general problem) is also NP-hard. VCAP0,2 is
NP-hard by a similar argument [11], and VCAP1,2 is proved to be NP-hard in [17].

Most previous work on approximating vertex-connectivity problems concentrated
on upper bounds, i.e., on designing approximation algorithms. An approximation
ratio of 2k for k-VCSS was obtained in [3] by a straightforward application of [16],
and the approximation ratio was later improved to k in [28]. Recently, Cheriyan,
Vempala, and Vetta [5] devised improved approximation algorithms for the problem.
For the case where k ≤ √n/6, they achieve approximation ratio 6H(k) = O(log k),
where H(k) is the kth harmonic number. For the case where k ≤ (1 − ε)n, they
achieve approximation ratio

√
n/ε, which was very recently improved to O( 1

ε log2 k)
by Kortsarz and Nutov [29]. (An approximation ratio of O(log k) claimed in [31] was
found to be erroneous; see [32].)

Better approximation ratios are known for several special cases of k-VCSS. For
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k ≤ 7 an approximation ratio of �(k+1)/2� is known (see [25] for k = 2, [2] for k = 2, 3,
[9] for k = 4, 5, and [28] for k = 6, 7). For metric costs (i.e., when the costs satisfy

the triangle inequality) an approximation ratio 2 + (k−1)
n is given in [28] (building

on a ratio 2 + 2(k−1)
n previously shown in [25]). For uniform costs, an approximation

ratio of 1 + 1/k is obtained in [4]. For k-VCSS in a complete Euclidean graph in
R

O(1), a polynomial time approximation scheme (i.e., factor 1 + ε for any fixed ε > 0)
is devised in [7]. For 2-VCSS in dense graphs and graphs with maximum degree 3,
improved approximations are given in [6].

The connectivity augmentation problem also has attracted a lot of attention. A
2-approximation for VCAP1,2 is shown in [17, 26]. In the case where every pair
of vertices in the graph forms an augmenting edge of unit cost, VCAPk,k+1 is not
known to be in P nor to be NP-hard. For the latter problem, a k − 2 additive
approximation is presented in [22], and optimal algorithms for small values of k are
shown in [11, 35, 19, 18].

The special case of OSP with S = V \{r} (called the k-outconnectivity problem),
can be approximated within ratio 2; see, for example, [25]. Approximation algorithms
for related problems are given in [3].

In contrast, there are few lower bounds for approximating vertex-connectivity
problems. It is shown in [7] that 2-VCSS is APX-hard (i.e., there exists some fixed
ε > 0 such that approximation within ratio 1+ ε is NP-hard) even for bounded-degree
graphs with uniform costs and for complete Euclidean graphs in R

log n. In [6], APX-
hardness is shown for instances of 2-VCSS on dense graphs and graphs of degree at
most 3. No stronger lower bound is known for the more general SNDP.

1.2. Our results. We show hardness of approximation for several of these vertex-
connectivity network design problems. In section 2, we show that SNDP cannot be ap-
proximated within a ratio of 2log1−ε n for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).
This hardness of approximation result also extends to the subset k-connectivity prob-
lem which is a special case of SNDP. The lower bound holds for k = nρ, where 0 <
ρ < 1 is any fixed constant. It follows that when k/n is bounded away from 1, SNDP

is provably harder to approximate than k-VCSS, unless NP ⊆ DTIME(npolylog(n)).
In section 3, we show that the OSP cannot be approximated within a ratio of

( 1
2 − ε) lnn for any fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)). This hardness

contrasts with other simple cases of SNDP. First, OSP with a general subset S
is much harder to approximate than the special case S = V \ {r} (which can be
approximated within ratio 2). Second, this special case of SNDP is already much
harder to approximate than the edge-connectivity variant of (general) SNDP (which
can be approximated within ratio 2). Both claims assume, of course, that NP �⊆
DTIME(nO(log log n)).

In section 4, we exhibit APX-hardness for VCAP1,2, even in the case where every
pair of vertices in the graph forms an augmenting edge of cost 1 or 2. From this, it
follows that VCAPk,k+1 with uniform costs is APX-hard for every k ≥ 2. For fixed
k, this hardness result matches, up to constant factors, the approximation algorithms
mentioned in section 1.1.

Remark. SNDP with integer costs bounded by a polynomial in n can be reduced
to SNDP with uniform costs. Indeed, one can replace every edge of cost c > 0 with
a path consisting of c unit-cost edges, letting the new vertices have no connectivity
requirement; i.e., ku,v = 0 if {u, v} contains a new vertex. Edges of cost 0 can
be handled by changing their cost to, say, 1/n3, and then the reduction above is
applicable (with a suitable scaling). It is straightforward that the argument above
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regarding SNDP also holds for OSP and for the subset k-connectivity problem; thus
our hardness of approximation results for these three problems hold even in the case
of uniform costs.

1.3. Preliminaries. For an arbitrary graph G, let V (G) denote the vertex set
of G and let E(G) denote the edge set of G. For a nonnegative cost function c on
the edges of G and a subgraph G′ = (V ′, E′) of G we use the notation cost(G′) =
cost(E′) =

∑
e∈E′ c(e). We denote the set of neighbors of a vertex v in W ⊂ V

(namely, the vertices w ∈W such that (v, w) ∈ E) by N(v,W,G). When W = V (G)
we omit W and write N(v,G), and when G is clear from the context, we use simply
N(v).

A set W of k vertices in a graph G = (V,E) is called a k–vertex-cut (or just a
vertex-cut) if the subgraph of G induced on V \W is not connected. A vertex w ∈ V is
called a cut-vertex if W = {w} is a vertex-cut. A graph is k–vertex-connected if there
are k vertex-disjoint paths between every pair of vertices. We will use the following
classical result.

Theorem 1.1 (Menger’s theorem; see, e.g., [8]).
(a) A graph G contains at least k vertex-disjoint paths between two nonadjacent

vertices u, v if and only if every vertex-cut that separates u from v must be of
size at least k.

(b) A graph G is k–vertex-connected if and only if it has no (k − 1)–vertex-cut.

2. Survivable network design and subset connectivity. In this section,
we exhibit a hardness result for approximating the subset connectivity problem, and
thus also for SNDP, within a ratio of 2log1−ε n for any fixed ε > 0. The lower bound
is proved by a reduction from a graph-theoretic problem called MinRep, which is
defined in [27]. This problem is closely related to the LabelCovermax problem of [1]
and to the parallel repetition theorem of [33]. We first describe the MinRep problem
and the hardness results known for it in section 2.1. We then give a reduction from
MinRep to SNDP in section 2.2. Finally, we adapt this reduction to the subset
connectivity problem in section 2.3.

2.1. The MinRep problem. Arora and Lund [1] introduced a problem called
LabelCovermax as a graph-theoretic description of one-round two-prover proof sys-
tems for which the parallel repetition theorem of Raz [33] applies. The MinRep

problem described below is closely related to LabelCovermax and was defined in
[27] for the same purpose.

The input to the MinRep problem consists of a bipartite graph G(A,B,E),
with an explicit partitioning of each of A and B into equal-sized subsets, namely,
A =

⋃qA
i=1Ai and B =

⋃qB
j=1Bj , where all the sets Ai have the same size mA = |A|/qA

and all the sets Bj have the same size mB = |B|/qB . The bipartite graph G induces
a super-graph H as follows. The super-vertices (i.e., the vertices of H) are the qA +qB
sets Ai and Bj . A super-edge (an edge in H) connects two super-vertices Ai and Bj

if there exist some a ∈ Ai and b ∈ Bj which are adjacent in G.
A pair (a, b) covers a super-edge (Ai, Bj) if a ∈ Ai and b ∈ Bj are adjacent in G.

Let S ⊆ Ai ∪Bj . (The vertices of S can be thought of as representatives from Ai and
from Bj .) We say that S covers the super-edge (Ai, Bj) if there exist two vertices
a, b ∈ S such that the pair (a, b) covers the super-edge (Ai, Bj).

The goal in the MinRep problem is to select representatives from each set Ai

and each set Bj such that all the super-edges are covered and the total number of
representatives selected is minimal. That is, we wish to find subsets A′ ⊆ A and
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B′ ⊆ B with minimal total size |A′| + |B′|, such that for every super-edge (Ai, Bj)
there exist representatives a ∈ A′ ∩Ai and b ∈ B′ ∩Bj that are adjacent in G.

For our purposes, it is convenient (and possible) to restrict the MinRep problem
so that for every super-edge (Ai, Bj), each vertex in Bj is adjacent to at most one
vertex in Ai. We call this additional property of G the star property because it is
equivalent to saying that for every super-edge (Ai, Bj) the subgraph of G induced on
Ai ∪Bj is a collection of vertex-disjoint stars whose centers are in Ai.

1 See Figure 1
for an illustration.

B1

. . .

Bj

. . .

BqB

AqA

. . .

Ai

. . .

A1

Fig. 1. An instance of MinRep with the star property.

The next theorem follows by a straightforward application of the parallel repeti-
tion theorem of Raz [33], since the MinRep problem is a graph-theoretic description
of two-prover one-round proof systems. The additional star property is achieved by
using a specific proof system. A description can be found in [12, section 2.2].

Theorem 2.1. Let L ∈ NP and fix ε > 0. Then there exists an algorithm
(a reduction), whose running time is quasi-polynomial, namely, npolylog(n), and that
given an instance x of L, produces an instance G(A,B,E) of the MinRep problem
with the star property, such that the following holds.

• If x ∈ L, then the MinRep instance G has a solution of value qA + qB
(namely, with one representative from each Ai and one from each Bj).
• If x �∈ L, then the value of any solution of the MinRep instance G is at least

(qA + qB) · 2log1−ε |V (G)|.
Hence, MinRep cannot be approximated within ratio 2log1−ε n, for any fixed ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

2.2. Hardness of survivable network design.
Theorem 2.2. SNDP cannot be approximated within ratio 2log1−ε n, for any

fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).
The reduction. The proof of Theorem 2.2 is by a reduction whose starting point

is Theorem 2.1. Specifically, given the instance G(A,B,E) of the MinRep problem
as described in section 2.1, create an instance Ḡ(V̄ , Ē) of SNDP as follows. (See
Figure 2 for an illustration.)

1. Take G and let all its edges have cost 0.
2. For each i = 1, . . . , qA create a new vertex ui that is connected to every

vertex in Ai by an edge of cost 1. Similarly, for each j = 1, . . . , qB create a

1A star is a graph all of whose vertices have degree 1, except for one vertex that may have degree
larger than 1. This vertex is called the center of the star, and the other vertices are called leaves of
the star.
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new vertex wj that is connected to every vertex in Bj by an edge of cost 1.
(Informally, these edges correspond to choosing representatives from Ai and
Bj .) Let U = {u1, . . . , uqA} and W = {w1, . . . , wqB}.

3. For every super-edge (Ai, Bj) create two new vertices xji and yij . For ev-

ery i, let Xi = {xji : (Ai, Bj) is a super-edge} and connect every vertex
of Xi to ui by edges of cost 0. Similarly, for every j, let Yj = {y i

j :
(Ai, Bj) is a super-edge} and connect every vertex in Yj to wj by an edge

of cost 0. (Informally, the connectivity requirement between xji and yij “guar-
antees” that the super-edge (Ai, Bj) is covered.)

4. For every super-edge (Ai, Bj) connect every vertex in {xji , yij} to every vertex
in (A \Ai) ∪ (B \Bj) by an edge of cost 0.

5. Let X = ∪qAi=1Xi and Y = ∪qBj=1Yj . Connect every two vertices in X ∪ Y by
an edge of cost 0.

6. Finally, require k = |X| + |Y | + (qA − 1)mA + (qB − 1)mB vertex-disjoint
paths from xji to yij for every super-edge (Ai, Bj).

W . . .
wj

. . .

1 yij0

0 BqB

AqA0

. . .

0

. . .

Bj0B1

. . .

. . .

0
A1

U . . .
ui

. . .

0
xj
i

1

Ai

Fig. 2. The vertices xj
i , y

i
j in the SNDP instance Ḡ.

The analysis. Suppose x ∈ L and then by Theorem 2.1 there exists a choice
of qA + qB representatives (one representative from each Ai and one from each Bj)
that cover all the super-edges. Let G′ be the subgraph of Ḡ that contains an edge
between each ui and the representative chosen in Ai, an edge between each wj and
the representative chosen in Bj , and all the edges of cost 0 in Ḡ. Clearly, cost(G′) =
qA + qB . Let us now show that G′ is a solution to the instance Ḡ of the SNDP.
Consider a pair of vertices xji , y

i
j such that (Ai, Bj) is a super-edge in G. Each vertex

in Fi,j = (X \ {xji}) ∪ (Y \ {yij}) ∪ (A \ Ai) ∪ (B \ Bj) defines a path of length 2

in G′ between xji and yij , and the edge (xji , y
i
j) defines a path of length 1, so we

get a total of |X| − 1 + |Y | − 1 + (qA − 1)mA + (qB − 1)mB + 1 = k − 1 vertex-
disjoint paths between xji and yij . There is an additional path that goes through

V \ Fi,j = U ∪W ∪ Ai ∪ Bj ∪ {xji , yij}, namely, xji − ui − ai − bj − wj − yij , where
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ai and bj are the representatives chosen from Ai and Bj , respectively. This path is
clearly vertex-disjoint from the other k− 1 paths, yielding a total of k vertex-disjoint
paths between xji and yij .

The next lemma will be used to complete the proof of Theorem 2.2. Let G′ be a
feasible solution to the instance Ḡ of SNDP, i.e., a subgraph of Ḡ in which for every
super-edge (Ai, Bj) there are k vertex-disjoint paths between xji and yij .

Lemma 2.3. For every super-edge (Ai, Bj), the subgraph G′ contains an edge
connecting ui to some ai ∈ Ai, and an edge connecting wj to some bj ∈ Bj, such that
(ai, bj) ∈ E (i.e., the pair (ai, bj) covers the super-edge).

Proof. Since G′ is a feasible solution, it contains k vertex-disjoint paths between
xji and yij . Let Fi,j = (X \ {xji}) ∪ (Y \ {yij}) ∪ (A \Ai) ∪ (B \Bj). At most |Fi,j | =
|X|−1+ |Y |−1+(qA−1)mA +(qB−1)mB = k−2 of these k paths can visit vertices
of Fi,j , and at most one of these paths can use the edge (xji , y

i
j). Hence, G′ contains a

path between xji and yij that visits only vertices of V̄ \Fi,j = U∪W ∪Ai∪Bj∪{xji , yij}
and whose length is at least 2.

Observe that in the subgraph of G′ induced on V̄ \ Fi,j the following holds.
(Assume without loss of generality that G′ contains all the edges of cost 0 in Ḡ.) The
only neighbor of xji is ui, so the vertices at distance 2 from xji (i.e., the neighbors of

ui except for xji ) form a subset A′
i of Ai. Thus, the vertices at distance 3 from xji (i.e.,

all the neighbors of A′
i except for ui) are all from Bj . Similarly, the only neighbor of

yij is wj , so vertices at distance 2 from yij form a subset B′
j of Bj , and all vertices at

distance 3 from yij are from Ai. Note that the subgraph of Ḡ induced on Ai ∪ Bj is
a collection of vertex-disjoint stars, whose centers are in Ai and whose leaves are in
Bj . The aforementioned path in G′ between xji and yij (that visits only vertices of

V̄ \Fi,j) must then be of the form xji −ui−ai− bj−wj−yij with ai ∈ A′
i and bj ∈ B′

j

(note that the other vertices of U ∪W are unreachable from xji and yij), and Lemma
2.3 follows.

We now complete the proof of Theorem 2.2. Suppose that x /∈ L and let G′ be
a feasible solution to the instance Ḡ of the SNDP. Let A′

i be the set of neighbors of
ui among Ai (in G′), and let B′

j be the set of neighbors of wj among Bj (in G′). By
Lemma 2.3 the representatives A′ = ∪iA′

i and B′ = ∪jB′
j cover all the super-edges

(Ai, Bj), thus forming a feasible solution to the MinRep instance G. By Theorem 2.1

the value of this MinRep solution, which is |A′|+ |B′|, is at least (qA + qB) · 2log1−ε n,
where n denotes the number of vertices in G. Observe that cost(G′) = |A′| + |B′|.
Since |V (Ḡ)| = |V (G)|O(1), we get that cost(G′) ≥ (qA + qB) · 2log1−ε |V (Ḡ)|, proving
Theorem 2.2.

2.3. Hardness of subset k-connectivity. We can adapt the reduction of The-
orem 2.2 to the subset k-connectivity problem as follows. We require that the subset
S = X ∪ Y is k–vertex-connected. For this S to be k–vertex-connected in the case
x ∈ L, we add, for every z, z′ ∈ S that are not a pair xji , y

i
j , a set Qz,z′ of k new

vertices that are all connected to z and to z′ by edges of cost 0. It can be seen that
the analysis of the case x /∈ L (including the proof of Lemma 2.3) remains valid, and
the number of vertices in the graph is still |V (G)|O(1). We thus obtain the following
hardness of approximation result for the subset k-connectivity problem.

Theorem 2.4. The subset k-connectivity problem cannot be approximated within
ratio 2log1−ε n, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Note that in the reduction in Theorem 2.2 |X| = |Y | is the number of super-edges
in G, and thus k = Θ(|A∪B|+ |X|) while the number of vertices is Θ(|A∪B|+k|X|2).
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Therefore, our hardness result for the subset k-connectivity applies for k ≥ Ω(n1/3),
where n denotes the number of vertices in the input graph. In this problem, it is
straightforward to achieve k = nα for any fixed 0 < α < 1 by adding sufficiently
many vertices that are either isolated or connected to all other vertices by edges of
cost 0. It follows that the min-cost subset k-connectivity problem is provably harder
to approximate than the min-cost k-connectivity problem (for values of k as above).
Indeed, it is shown in [5] that the latter problem can be approximated within ratio
O(log k) for k ≤√n/6.

3. Outconnectivity to a subset. In this section we show a lower bound of
Ω(log n) for approximating the outconnectivity from a root to a subset problem
(OSP).

Theorem 3.1. The OSP cannot be approximated within a ratio of ( 1
2 − ε) lnn

for any fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)).
For ease of exposition, we present the reduction to the OSP in stages by going

through an intermediate problem which is easier to deal with. The 3-OSP is defined
as OSP with the additional restriction that the k vertex-disjoint paths between r and
each s ∈ S are required to have length at most 3. Note that 3-OSP is not a special
case of the SNDP. We give a hardness of approximation result for the 3-OSP in
section 3.2 and for the OSP in section 3.3. The starting point for these reductions is
a gap shown in [13] for the problem of packing set-covers, as described in section 3.1.

3.1. The set-cover packing problem. Let G(V1, V2, E) be a bipartite graph.
We say that a vertex v1 ∈ V1 covers a vertex v2 ∈ V2 if the two vertices are adjacent,
i.e., (v1, v2) ∈ E. A set-cover (of V2) in G(V1, V2, E) is a subset S ⊆ V1 such that
every vertex of V2 is covered by some vertex from S. Throughout, we assume that the
intended bipartition (V1, V2) is given explicitly as part of the input, and that every
vertex in V2 can be covered (i.e., has at least one neighbor in V1).

A set-cover packing in the bipartite graph G is a collection of pairwise-disjoint
set-covers of V2. The set-cover packing problem is to find in an input bipartite graph
G (as above), a maximum number of pairwise-disjoint set-covers of V2. We denote by
sc∗(G) the minimum size of a set-cover of V2 in G, and by scp∗(G) the maximum size
of a set-cover packing of G. Note that scp∗(G) ≤ |V1|/sc∗(G). Feige, Halldórsson,
Kortsarz, and Srinivasan [13] give a hardness of approximation result for the set-cover
packing problem by proving the following theorem.

Theorem 3.2 (see [13]). Let L ∈ NP and fix ε > 0. Then there exists an
algorithm (a reduction), whose running time is nearly polynomial, namely nO(log log n),
and that given an instance x (for L), produces an instance G(V1, V2, E) of the set-
cover packing problem (and a number d ≤ |V1|) such that |V1| ≤ |V2|ε and the following
holds.

• If x ∈ L, then V1 can be partitioned into d equal-sized set-covers of V2. (There-
fore, scp∗(G) ≥ d.)
• If x �∈ L, then the size of any set-cover of V2 is at least (|V1|/d) ·(1−ε) ln |V1∪
V2|. (Therefore, scp∗(G) ≤ d/[(1− ε) ln |V1 ∪ V2|].)

It is straightforward from this reduction that for any fixed ε > 0, the set-cover
packing problem cannot be approximated within ratio (1 − ε) lnn (where n is the
number of vertices in the graph), unless NP ⊆ DTIME(nO(log log n)).

3.2. Hardness of outconnectivity to a subset with path length 3. We
prove the following theorem as an intermediate step towards proving hardness of
approximation for the OSP.
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Theorem 3.3. 3-OSP cannot be approximated within ratio (1− ε) lnn, for any
fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)).

The reduction. The proof of Theorem 3.3 is by a reduction whose starting point
is Theorem 3.2. Specifically, given the set-cover packing instance G(V1, V2, E) we
construct from G a new graph Ḡ as follows. (See Figure 3 for illustration.) Add to
G a set A of d new vertices (where d is the number from the reduction), and form a
complete bipartite graph between A and V1. Let all the edges of G have cost 0, and
all the edges between A and V1 have cost 1. Now add a new vertex r that will be the
root, and connect it to each vertex of A by an edge of cost 0. Finally, set S = V2

and k = d. That is, a feasible solution is a subgraph of Ḡ that contains at least d
vertex-disjoint paths of length at most 3 between r and each s ∈ S.

cost = 0

A complete

cost = 1

V1

E

cost = 0

V2

graph
bipartite

r

Fig. 3. The graph Ḡ of the reduction from set-cover packing to 3-OSP.

The analysis. Suppose x ∈ L and then by Theorem 3.2 the set-cover packing
graph G(V1, V2, E) has a set-cover packing of size d. Let G′ be a subgraph of Ḡ that
contains all the edges of cost 0, and that connects each a ∈ A to (all the vertices of)
a set-cover Na of V2, such that the set-covers {Na}a∈A are pairwise-disjoint. Such
a subgraph G′ exists since |A| = d ≤ scp∗(G). Since the edges of cost 1 in G′ are
incident at distinct vertices of V1, we get that cost(G′) ≤ |V1|.

To prove that G′ is a feasible solution to 3-OSP we show d vertex-disjoint paths
between r and any v2 ∈ V2. For every a ∈ A we have that Na = N(a, V1, G

′) is a
set-cover of V2 and thus contains a neighbor of v2. Therefore, a defines a path of
length 3 in G′ between r and v2. The |A| = d paths that we obtain are vertex-disjoint
because each vertex a ∈ A is contained in exactly one of these paths, and because
each vertex of V1 belongs to at most one set-cover Na.

The next lemma will be used to complete the proof of Theorem 3.3. Let G′ be a
feasible solution to the above described instance Ḡ of the 3-OSP problem.

Lemma 3.4. For every a ∈ A, the set Na = N(a, V1, G
′) is a set-cover (in G) of

V2 (i.e., every a ∈ A is at distance 2 in G′ from every v2 ∈ V2).
Proof. Let a ∈ A and v2 ∈ V2; we will show that Na covers v2. Since N(r, Ḡ) = A

and the distance in Ḡ between r and v2 is 3, any path of length at most 3 between
r and v2 in G′ must contain at least one vertex of A. Since G′ is a feasible solution,
it contains d = |A| vertex-disjoint paths; these paths are vertex-disjoint and hence
exactly one of these d paths must contain the vertex a ∈ A. In this path a is at
distance 2 from v2, implying that Na covers v2.

We now complete the proof of Theorem 3.3. Suppose x /∈ L. Let G′ be a feasible
solution to Ḡ and let Na = N(a, V1, G

′), as in the above analysis of Theorem 3.3.
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Clearly, cost(G′) =
∑

a∈A |Na|. By Lemma 3.4, each set Na forms a set-cover (in G)
of V2. By Theorem 3.2 (and since |A| = d) we get that cost(G′) ≥ |A| · sc∗(G) ≥
(1 − ε)|V1| · ln |V1 ∪ V2|. Note that |V (Ḡ)| = |V1 ∪ V2| + d + 1 ≤ 2|V1 ∪ V2| and thus
the gap between the case x ∈ L and the case x /∈ L is at least (1 − ε) ln |V1 ∪ V2| ≥
(1− 2ε) ln |V (Ḡ)|, proving Theorem 3.3.

3.3. Hardness of outconnectivity to a subset. We now prove Theorem 3.1,
i.e., that OSP cannot be approximated within ratio (1

2 − ε) lnn, for any fixed ε > 0,

unless NP ⊆ DTIME(nO(log log n)). Observe that the reduction to 3-OSP (in sec-
tion 3.2) might not work for OSP because in the case x /∈ L, a feasible solution G′

might connect r and v2 ∈ V2 by d long paths (namely, of length more than 3), where
each path contains one (distinct) vertex of A. However, each of these paths must
contain at least one vertex of V2 \ {v2}, so at most |V2| such paths are vertex-disjoint.
Here we use the special properties of the set-cover packing problem; by duplicating
V1 sufficiently many times, we increase scp∗(G) and, accordingly, the connectivity
requirement k, so that they are both much larger than |V2|, ensuring that paths of
length more than 3 have only a negligible effect in any feasible solution.

The reduction. Define a copy of a vertex v in a graph as a new vertex v′ that is
connected by edges to the same vertices as v, and with the same edge costs. In the
reduction below, we replace certain vertices by many copies of them. Let us denote
by ṽ the set of all copies of v. Note that no two vertices in ṽ are connected by an
edge. For a set of vertices W = {w1, w2, . . .}, let W̃ =

⋃
i w̃i be the set of all copies

of all vertices in W .
The proof of Theorem 3.3 is by a reduction whose starting point is Theorem 3.2.

Specifically, given the set-cover packing instance G(V1, V2, E) construct a new graph
G̃ as follows. First, add to G a set A = {a1, . . . , ad} of d new vertices that are
connected by a complete bipartite graph to V1, letting all the edges of G have cost 0
and all the edges between A and V1 have cost 1. Next, add a new vertex r that will
be the root, and connect it to each vertex of A by an edge of cost 0. (So far, this
graph is Ḡ from section 3.2.) Now, replace each vertex of A∪ V1 by |V2|2 copies of it.

Thus, Ã =
⋃d

i=1 ãi, where ãi is the set of |V2|2 copies of ai, and Ṽ1 =
⋃

v∈V1
ṽ, where

ṽ is the set of |V2|2 copies of v. Finally, set S = V2, k = |V2|2d. That is, a feasible
solution is a subgraph of G̃ that contains at least k vertex-disjoint paths between r
and each s ∈ S.

The analysis. Throughout the proof, let set-cover in G̃ refer to a set-cover of V2

by vertices of Ṽ1 in the bipartite graph that G̃ induces on Ṽ1 ∪ V2. Observe that the
minimum size of a set-cover of V2 in G̃ is the same as in G; i.e., sc∗(G̃) = sc∗(G).
Also, scp∗(G̃) ≥ |V2|2·scp∗(G) since a set-cover packing ofG has |V2|2 pairwise-disjoint
copies in G̃.

Suppose x ∈ L and then by Theorem 3.2 the set-cover packing graph G(V1, V2, E)
has a set-cover packing of size d. It follows that scp∗(G̃) ≥ |V2|2d. Now an argument
identical to the one in section 3.2 shows a subgraph G′ that is a feasible solution to
OSP and with cost(G′) ≤ |Ṽ1| = |V2|2|V1|.

Lemmas 3.5 and 3.6 will be used to complete the proof of Theorem 3.1. They are
essentially analogous to Lemma 3.4. Let G′ be a feasible solution to the instance G̃
of the OSP.

Lemma 3.5. For every v2 ∈ V2, less than |V2| vertices of Ã are not at distance 2
in G′ from v2.

Proof. Since G′ is a feasible solution to the OSP instance G̃, it must contain at
least k vertex-disjoint paths between v2 and r. The k = |Ã| paths are disjoint but
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they all have to go through Ã, and thus each vertex of Ã must belong to exactly one
of these paths. Now, if a vertex of Ã is not at distance 2 from v2, then the path
containing it must visit at least one additional vertex of V2. But since the paths are
disjoint, this event happens less than |V2| times.

Lemma 3.6. There exists a feasible solution G′
+ with cost(G′

+) ≤ cost(G′)+|V2|2,
such that for every a ∈ Ã the set N(a, Ṽ1, G

′
+) is a set-cover (in G̃) of V2.

Proof. Augment the feasible solution G′ to a graph G′
+ as follows. For every

v2 ∈ V2 and every a ∈ Ã, if a is not at distance 2 in G′ from v2, then add to G′ an
edge between a and an arbitrary vertex in N(v2, G̃). By Lemma 3.5, every v2 ∈ V2

causes the addition of at most |V2| edges. Since each added edge has cost 1, the
resulting G′

+ is a feasible solution with cost(G′
+) ≤ cost(G′) + |V2|2. Furthermore,

every a ∈ Ã is at distance 2 in G′
+ from every vertex v2 ∈ V2; i.e., the set N(a, Ṽ1, G

′
+)

is a set-cover (in G) of V2.
We now complete the proof of Theorem 3.1. Suppose x /∈ L and let G′ be a

feasible solution to G̃, as above. By Theorem 3.2 we have sc∗(G̃) = sc∗(G) ≥ (|V1|/d) ·
(1− ε) ln |V1 ∪ V2|. Let G′

+ be the augmented solution that follows from Lemma 3.6.

Then for every a ∈ Ã, the set N(a, Ṽ1, G
′
+) is a set-cover (in G̃) of V2. Therefore,

cost(G′
+) =

∑
a∈Ã |N(a, Ṽ1, G

′
+)| ≥ |Ã| · sc∗(G̃) ≥ |V2|2|V1| · (1 − ε) ln |V1 ∪ V2|. It

follows that cost(G′) ≥ cost(G′
+)− |V2|2 ≥ |V2|2|V1| · (1− 2ε) ln |V1 ∪ V2|.

Since d ≤ |V1| ≤ |V2|ε, we have that |V (G̃)| = |V2|+(|V1|+d)·|V2|2 ≤ 3|V1|·|V2|2 ≤
|V2|2+2ε. Thus, the gap between the case x ∈ L and the case x /∈ L is at least
(1− 2ε) ln |V1 ∪ V2| ≥ 1−2ε

2+2ε ln |V (G̃)| ≥ ( 1
2 − 2ε) ln |V (G̃)|, proving Theorem 3.1.

4. Vertex-connectivity augmentation. In this section we show APX-hardness
for the following vertex-connectivity augmentation problem (VCAP�,k): Given a k-
connected graphG0 = (V,E0) and a cost function c : V ×V → N, find a set E1 ⊆ V ×V
of minimum cost so that G1 = (V,E0 ∪ E1) is �-connected. Since all graphs con-
sidered here are simple, we will not allow G1 to contain self-loops. VCAPk,�(a, b)
will represent a version of the problem where edges have only cost a or b (so that
c : V × V → {a, b}). The main result of this section is that for some fixed ε > 0 and
for every k ≥ 1, it is NP-hard to approximate VCAPk,k+1(1, 2) within a factor of
1 + ε; this holds even in the case of uniform costs, i.e., VCAPk,k+1(1,∞).

It is possible to convert any instance of VCAPk0,k0+α to an “equivalent” instance
of VCAPk0+1,k0+1+α by adding to G0 a new vertex that is connected to every old
vertex. In addition, it will be immediate that our proof extends to edge costs from
the set {1,∞}. It thus suffices to prove the following.

Theorem 4.1. For any k ≥ 1 and some fixed ε > 0 (independent of k), it is
NP-hard to approximate VCAP1,2(1, 2) within a factor of 1 + ε.

The proof of Theorem 4.1 employs a reduction from 3-dimensional matching
(3DM) that was used in [17] to prove that solving VCAP1,2(1, 2) (optimally) is NP-
hard. We obtain a stronger result (hardness of approximation) by a more involved
analysis of the reduction and by relying on the hardness of approximating a bounded
version of the 3DM problem shown in [30].

3-dimensional matching (3DM) is the following problem. Given three (disjoint)
sets W,X, Y , with |W | = |Y | = |Z|, and a set of hyperedges M ⊆W ×Y ×Z, find the
largest subset M ′ ⊆ M which is a matching; i.e., if (w, x, y), (w′, x′, y′) ∈ M ′, then
w �= w′, x �= x′, and y �= y′. For any z ∈ W ∪ X ∪ Y , let deg(z) be the number of
hyperedges in M that contain z. We define the maximum degree of an instance to be
∆ = maxz∈W∪X∪Y deg(z). For an instance I of 3DM, let 3DM(I) be the size of an
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optimal matching. For an instance J of VCAP1,2(1, 2), let VCAP(J ) be the cost of
an optimal augmentation.

The reduction. Let I = (M,W,X, Y ) be an instance of 3DM with |M | = p and
|W | = |X| = |Y | = q. We create an instance J of VCAP1,2 as follows. (See Figure 4
for illustration.) Let G0 = (V,E0) with

V = {r, r̄} ∪ {wi, w̄i, xi, yi : i = 1, 2, . . . , q} ∪ {aijk, āijk : (wi, xj , yk) ∈M},

E0 = {(r, r̄)} ∪ {(wi, w̄i), (wi, r), (xi, r̄), (yi, r) : i = 1 . . . , q}
∪ {(aijk, wi), (w̄i, āijk) : (wi, xj , yk) ∈M}.

We will define cost(āijk, aijk) = cost(xj , āijk) = cost(yk, aijk) = 1 if (wi, xj , yk) ∈ M
and cost(u, v) = 2 for all other (u, v) ∈ V × V .

r̄ r

wiw̄i

aijkāijk

yk

...
...

. . .
w1

y1

yq

x1

xj

xq

...
...

· · ·· · ·
āij′k′ aij′k′

Fig. 4. An instance of VCAP produced by the reduction. The solid lines represent edges of G0.
Some cost 1 edges are represented by dashed lines.

Lemma 4.2. If 3DM(I) = q, then VCAP(J ) = p+ q.
Proof. Letting M ′ ⊆M be a matching of size q, we will construct an augmenting

set E1 consisting of p+ q edges of cost 1. These edges will be (xj , āijk) and (yk, aijk)
for every (wi, xj , yk) ∈ M ′ and (aijk, āijk) for (wi, xj , yk) ∈ M −M ′. We must show
that G1 = (V,E0 ∪ E1) is 2-connected. By Menger’s theorem (see section 1.3) it
suffices to show that G1 contains no cut-vertex.

Notice that G0 is a tree with the 2(p+ q) leaves X ∪Y ∪{aijk, āijk : (wi, xj , yk) ∈
M}. Neither of these leaves is a cut-vertex in G0, and hence the same is true in G1.
So it remains to verify that each of r, r̄, wi, and w̄i also is not a cut-vertex in G1. It is
easy to see that this indeed holds; for instance, if we remove some w̄i from the graph,
we may risk cutting off the vertices {āijk}, but there is always some edge, either to
aijk or to xj (depending on whether (wi, xj , yk) ∈ M ′ or not), which leads back to
the rest of the graph. Similar arguments hold for r, r̄, and wi. It follows that G1 is
2-connected.

Hence E1 is an augmenting set of cost p+ q. To see that this is the cheapest such
set, notice that for G1 to be 2-connected, each leaf of G0 must be incident to at least
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one edge from E1. Since there are 2(p + q) leaves and a single edge is incident to at
most two of them, it follows that at least p+ q edges are necessary.

Lemma 4.3. If VCAP(J ) ≤ (p+q)(1+ε), then 3DM(I) ≥ q−(2+10∆)(p+q)ε.
Proof. Let E1 ⊆ E be a set of augmenting edges of cost at most (p + q)(1 + ε)

such that G1 = (V,E0 ∪ E1) is 2-connected. As in Lemma 4.2, G0 is a tree with the
2(p+q) leaves X∪Y ∪{aijk, āijk : (wi, xj , yk) ∈M}. Each leaf of G0 must be adjacent
to at least one edge of E1 for G1 to be 2-connected. Call a leaf permissible if it is
adjacent to exactly one edge of E1 and that edge has cost 1. Call a leaf impermissible
otherwise (i.e., it is incident upon at least one edge of E1 of cost 2 or upon more than
one edge of E1).

We first claim that at most 2(p+ q)ε leaves are impermissible. Indeed, for every
impermissible leaf, the total cost of edges of E1 that are incident at this leaf is at least
2. Similarly, for every permissible leaf this cost is exactly 1. The sum of these costs
over all leaves is at most 2 · cost(E1), since the cost of every edge of E1 is counted at
most twice (once from every end). Thus,

#{permissible leaves}+ 2 ·#{impermissible leaves} ≤ 2 · cost(E1) ≤ 2(p+ q)(1 + ε).

Observing that the left-hand side is just 2(p+q)+#{impermissible leaves}, the claim
follows immediately.

We now construct a set M ′ which is almost a matching. Initially, let M ′ = ∅.
Then iteratively for j = 1, 2, . . . , q we try to find a hyperedge (in M) that contains xj
and add it to M ′, as follows. If xj is permissible, then it is adjacent to a cost 1 edge of
E1; hence it is adjacent to some leaf āijk. If both āijk and aijk are permissible, then
the latter is adjacent (via a cost 1 edge) to some leaf yk. If this leaf yk is permissible,
then add the hyperedge (wi, xj , yk) to M ′. Notice that M ′ ⊆ M since the above
process relies on cost 1 edges.

We next claim that |M ′| ≥ q − 2∆(p + q)ε. Indeed, an impermissible xj , aijk,
or āijk can cause only one iteration (namely, the one with the corresponding value
of j) to fail. An impermissible yk can cause at most ∆ iterations to fail, since it can
be connected by edges of cost 1 to at most ∆ leaves aijk. Denoting the number of
impermissible yk by ny, we have that the number of iterations that fail is at most
2(p + q)ε − ny + ny∆. Since our claim shows that ny ≤ 2(p + q)ε, this is at most
2∆(p+ q)ε.

By our construction, M ′ is almost a matching; its hyperedges have distinct el-
ements from X and from Y , but its elements from W might be repeated, i.e., not
distinct. For every element wi that belongs to more than one hyperedge in M ′, let
us remove from M ′ all but one of the hyperedges that contain wi. The resulting set
of hyperedges, denoted M ′′, is thus a matching. Let µ = q − |M ′′| be the number
of vertices wi that do not appear in any hyperedge of M ′ (or equivalently, of M ′′).
Notice that |M ′|−|M ′′| ≤ q−|M ′′| = µ, so an upper bound on µ yields a lower bound
on the size of the matching M ′′.

We now show that µ ≤ (2 + 8∆)(p + q)ε. Let E′
1 be the edges of E1 that

correspond to hyperedges in M ′, namely, those edges {(xj , āijk) and (yk, aijk)} for
(wi, xj , yk) ∈M ′. We have that cost(E′

1) ≥ 2|M ′| ≥ 2q − 4∆(p+ q)ε; hence

cost(E1 \ E′
1) ≤ (p+ q)(1 + ε)− 2q + 4∆(p+ q)ε = p− q + (1 + 4∆)(p+ q)ε.(4.1)

Recall that each leaf (of G0) aijk or āijk must be incident to an edge of E1. The edges
of E′

1 are incident, by their definition, to at most 2|M ′| ≤ 2q distinct such leaves;
thus, the edges of E1 \E′

1 must be incident to the (at least) 2p− 2q remaining leaves
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aijk and āijk. If we split the cost of every edge in E1 \ E′
1 (evenly) between its two

endpoints, then we get that at least 2p− 2q leaves are each charged a cost of at least
1/2. It follows that

cost(E1 \ E′
1) ≥ (2p− 2q) · (1/2).(4.2)

We shall now improve over the lower bound (4.2) by considering the µ vertices wi

which do not make an appearance in M ′. Each such wi is a cut-vertex of (V,E0 ∪
E′

1) (by definition of E′
1), since its removal disconnects Wi = {w̄i} ∪ {aijk, āijk :

(wi, xj , yk) ∈ M} from the rest of the graph. But wi cannot be a cut-vertex of G1,
and thus E1 \E′

1 must contain an edge that connects Wi to the rest of the graph. We
have three cases for this edge: (i) if it is incident (in Wi) to w̄i, then the edge’s cost
is at least 2 and w̄i is charged at least 1; (ii) if the edge is incident (in Wi) to some
aijk or āijk and (in the rest of the graph) to some ai′j′k′ or āi′j′k′ (with i �= i′), then
the edge’s cost is 2, and the endpoint in Wi is actually charged 1/2 more than in the
lower bound (4.2); or (iii) if this edge is incident (in Wi) to some aijk or āijk and (in
the rest of the graph) to a vertex that is not ai′j′k′ or āi′j′k′ , then the edge’s cost is
at least 1, so the endpoint not in Wi is charged at least 1/2. In all three cases, the
fact that wi is a cut-vertex in (V,E0 ∪E′

1) implies that the lower bound (4.2) can be
increased by 1/2. It is easy to see that the increases corresponding to different wi’s
are distinct, and thus,

cost(E1 \ E′
1) ≥ (2p− 2q) · (1/2) + µ · (1/2).(4.3)

Combining equations (4.1) and (4.3) we indeed get that µ ≤ (2 + 8∆)(p + q)ε. We
conclude that I contains a matching M ′′ of size

|M ′′| ≥ |M ′| − µ ≥ q − 2∆(p+ q)ε− (2 + 8∆)(p+ q)ε = q − (2 + 10∆)(p+ q)ε,

which completes the proof of Lemma 4.3.
3DM-5 is a bounded version of the 3DM problem in which every element of

W ∪ Y ∪ Z can appear at most five times in a triple of M , i.e., one in which ∆ = 5.
It is shown in [30] that this variant is Max SNP-hard. In particular, the following
theorem is proved.

Theorem 4.4 (Petrank [30]). For some fixed ε0 > 0, it is NP-hard to distinguish
whether an instance of 3DM-5 with |W | = |X| = |Y | = q has a perfect matching (of
size q) or every matching has size at most (1− ε0)q.

If |M | = p and |W | = |X| = |Y | = q, then in any instance of 3DM-5, we must
have p ≤ 5q. This observation, together with Lemmas 4.2 and 4.3 and Theorem 4.4,
yield a proof of Theorem 4.1.

Proof of Theorem 4.1. We will show that our reduction above (see Theorem 4.1)
is gap-preserving. Specifically, we will show that if I is an instance of 3DM-5 and J
is the corresponding instance of VCAP1,2(1, 2), then

3DM(I) = q =⇒ VCAP(J ) = p+ q,

3DM(I) < q(1− ε0) =⇒ VCAP(J ) > (p+ q) (1 + ε0/312) .

The first implication follows directly from Lemma 4.2. The second one is the contra-
positive of Lemma 4.3 with ε = ε0

312 , and then 3DM(I) ≥ q − (2 + 10∆)(5q + q)ε =
q(1− 312ε) = q(1− ε0).

Remark. A similar analysis can be applied to the NP-hardness reduction of [17]
for the edge-connectivity augmentation problem (ECAP). This would prove that for
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any k ≥ 1 and some fixed ε > 0 (independent of k), it is NP-hard to approximate
ECAPk,k+1(1, 2) within a factor of 1 + ε. The same holds for a model with uniform
edge costs.

5. Discussion. We have shown that, in terms of approximation, the vertex-
connectivity variant of SNDP differs significantly from the edge-connectivity variant,
and that this holds even in relatively simple special cases. But there are a few im-
portant special cases which remain open. Most notably, for k-VCSS there is still a
large gap between the known upper and lower bounds. It is particularly interesting
that no result is known to exclude a 2-approximation; such a result would separate
this problem from its edge-connectivity counterpart. The techniques that we relied
on in section 3 were successfully applied to various problems to achieve (roughly) log-
arithmic hardness of approximation. It was our hope that these powerful techniques
might also be applied to k-VCSS, but we were not able to do so.

An important observation to keep in mind is that the approximation ratios of
SNDP and of k-VCSS are nondecreasing with the maximum requirement kmax :=
max{ku,v : u, v ∈ V }. Indeed, given an instance graph with n vertices and maximum
requirement kmax, one can add a new vertex that is connected to all the existing
vertices with zero-cost edges and increase all the existing requirements by 1. It is
easy to see that any feasible solution to the original instance corresponds to a feasible
solution with the same cost in the new instance, while kmax is increased by 1. It follows
that any approximation ratio f(k) (that is independent of n) must be nondecreasing
with k. This argument also extends to the uniform cost case of SNDP by the remark
at the end of section 1.2.

This observation may underlie two perplexing aspects of k-VCSS: (i) The known
approximation ratio significantly degrades (approaches

√
n) as k gets closer to n, and

one may suspect that this is not a coincidence. (ii) An interesting open question is
whether the asymptotic approximation ratio of uniform cost k-VCSS is 1 + Θ(1/k).
Such an approximability threshold is known to exist for the Max k-Cut problem [23].
Nevertheless, general cost k-VCSS has completely different asymptotics; the result
of [7] in conjunction with the observation in the previous paragraph shows that there
is a fixed ε > 0, such that for all k ≥ 2, it is NP-hard to 1 + ε approximate k-VCSS

with edge costs 0 and 1.
Finally, we stress that our reduction in section 2.2 relies on what we call the

star property (in our graph-theoretic description) and which some literature refers
to as the projection test. The hardness result of [10] improves over Theorem 2.1
by achieving a slightly larger inapproximability factor and by assuming the weaker
complexity assumption P �= NP. However, it lacks the star property that we require,
and thus cannot be used to strengthen our result for SNDP.

Acknowledgments. We thank Joseph Cheriyan for raising the question of SNDP

with uniform costs, which led to the remark at the end of section 1.2. We are also
grateful to David Williamson and to the anonymous referees for comments that im-
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Abstract. We prove that the Glauber dynamics on the C-colorings of a graph G on n vertices
with girth g and maximum degree ∆ mixes rapidly if (i) C = q∆ and q > q∗, where q∗ = 1.4890 . . .
is the root of (1 − e−1/q)2 + qe−1/q = 1; and (ii) ∆ ≥ D logn and g ≥ D log ∆ for some constant
D = D(q). This improves the bound of roughly 1.763∆ obtained by Dyer and Frieze [Proceedings
of the 32nd Annual Symposium on Foundations of Computer Science, 2001] for the same class of
graphs. Our bound on this class of graphs is lower than the bound of 11∆/6 ≈ 1.833∆ obtained by
Vigoda [J. Math. Phys., 41 (2000), pp. 1555–1569] for general graphs.
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Introduction. For a given graph G and integer C which is at least the chromatic
number of G, we define the Glauber dynamics on the C-colorings of G to be the
Markov chain described as follows. We start with an arbitrary C-coloring, and at
each step we choose a uniformly random vertex v, and a uniformly random color c
from L(v), the list of colors which do not appear on any neighbors of v. Then we
change the color of v to c. (If L(v) is empty, then we do not choose a color; note that
L(v) is never empty if C > ∆.)

Unless specified otherwise, we consider all colorings to be proper, i.e., no two
adjacent vertices can have the same color. In section 3, it will be important to note
that we can apply this step even to a nonproper coloring of G. But note that if a
coloring is proper, then applying a step of the chain cannot produce an improper
coloring.

The main question in this area is: For what values of C does this Markov chain
mix in polytime? Usually this is studied in terms of ∆, the maximum degree of G. It
is well known that for some graphs, the chain does not mix for C ≤ ∆ + 1. (In fact,
there are some graphs and (∆ + 1)-colorings for which no color changes are possible,
and so the chain is not even ergodic.) Jerrum [7] showed that for all graphs, the
chain mixes in polytime for C ≥ 2∆ and in optimal time, i.e., O(n log n) time, for
C ≥ 2∆+1. Salas and Sokal [11] independently obtained the latter result. Vigoda [13]
showed that for all graphs, a different chain mixes in optimal time for C ≥ 11

6 ∆ and
this implies that for the same values of C, the Glauber dynamics mixes in polytime.
Dyer, Greenhill, and Molloy [5] showed that the Glauber dynamics mixes in optimal
time for C ≥ (2− ε)∆, where ε is a small positive constant (see also [9]). Some work
has been done on special classes of graphs. Dyer et al. [3] showed that the Glauber
dynamics mixes in optimal time on triangle-free graphs when C ≥ (2 − x)∆ for a
different small positive constant x. More recently, Dyer and Frieze [2] showed that if
the maximum degree, ∆, of G is at least D log n and the girth is at least D log ∆ for
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some sufficiently large constant D, then the chain mixes in optimal time for C ≥ q∆
for any constant q > β, where β = 1.763 . . . < 11/6 is the root of βe−1/β = 1.
Here we improve on this latter result. We define q∗ = 1.4890 . . . to be the root of
(1− e−1/q)2 + qe−1/q = 1.

Theorem 1. For any q > q∗ and integer ω, there exists D for which: Suppose G
has n vertices, maximum degree ∆ ≥ D log n, and no vertex lies in more than ω cycles
of length less than D log ∆. Then the Glauber dynamics mixes in time O(n log n) for
C = q∆.

Of course, this covers all graphs with girth at least D log ∆. It also covers natural
models of random graphs such as Gn,p=c/n for c ≈ D log n and random ∆-regular
graphs for ∆ = D log n. Dyer and Frieze [2] showed that their theorem also extends
to such graphs.

Throughout the paper, we assume that n is large enough for various asymptotic
bounds to hold. We can also assume that q is sufficiently close to q∗. We use N(v)
to denote the neighborhood of v, i.e., the set of vertices which are adjacent to v. We
define d(v) = |N(v)| to be the degree of v. A short cycle is a cycle of length less than
D log ∆.

1. Some intuition. The proofs of the results mentioned above, except for that
of Vigoda [13], all come from the following idea.1 Consider two colorings X,W
which differ only at one vertex v. We will carry out one step of the process on
each coloring, where we couple these two random steps maximally. Specifically, we
first choose a uniform vertex u for both colorings. If LX(u) and LW (u) are the
sets of allowable colors for u in X,W , respectively, then we take two mappings
fX : [0, 1]→ LX(u), fW : [0, 1]→ LW (u), such that

• for each c ∈ LX(u), |f−1
X (c)| = 1/|LX(u)| and similarly for W , and

• {x : fX(x) �= fW (x)} is as small as possible.
Then we take a uniform random real x ∈ [0, 1] and choose u, fX(x) for X and u, fW (x)
for W . Note that since LX(u), LW (u) differ in at most one color per list, we will have
|{x : fX(x) �= fW (x)}| ≤ min{|LX(u)|−1, |LW (u)|−1}. Note further that LX(u) =
LW (u) unless u is a neighbor of v.

Using the path-coupling technique of Bubley and Dyer [1], it suffices to show that
the probability of X,W converging after one step is greater than the probability of
their differing in a second vertex after one step (we elaborate on this in section 3).
They converge iff we choose u = v, which occurs with probability 1/n. They differ on
a second vertex iff we choose some u ∈ N(v) and we choose x ∈ {x : fX(x) �= fW (x)}.
Since no list can ever be smaller than C − ∆, this occurs with probability at most
∆
n × 1

C−∆ which is less than 1
n so long as C > 2∆.

The bound was improved slightly in [3] by showing that for triangle-free graphs,
after a relatively short period, most vertices will tend to have many repeated colors
in their neighborhoods. Thus, their lists of available colors will tend to be somewhat
greater than C−∆, and this leads to a gain in the above calculations. The same idea
played a key role in [5].

In [2], Dyer and Frieze showed that for graphs with large girth and maximum
degree, after O(n log n) steps, with high probability every vertex will have a list of
size at least roughly qe−1/q∆. If X,W are such that all vertices have lists of this size,
then this yields that the probability of X,W differing on a second color is at most
∆
n × 1

qe−1/q∆
. Since q is chosen so that qe−1/q > 1, this probability is less than 1

n .

1Jerrum’s original proof in [7] predated this idea, but the idea yields a simpler proof.
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The key new idea used in this paper is to show that, after O(n log n) steps, many
neighbors u of v will satisfy LX(u) = LW (u). If, for the sake of this intuitive intro-
duction, we make the simplifying assumption that the graph is ∆-regular, then with
high probability there will be roughly (1 − e−1/q)2∆ such neighbors. This improves

our bound on the probability of X,W differing on a second color to (1−(1−e−1/q)2)∆
n ×

1
qe−1/q∆

, which is less than 1
n for q > q∗.

1.1. Uniform-like color sets. Suppose that G is ∆-regular and that every
vertex in N(v) is assigned an independent uniform color from {1, . . . , C}. Then the
probability that some color c does not appear on any neighbor of v is (1− 1/C)∆ =
e−1/q+o(1). Thus we would expect that each list would have size roughly C×e−1/q =
qe−1/q∆. This explains, at least intuitively, the lower bound that Dyer and Frieze
obtain.

Now suppose that every vertex of distance 2 from v is also assigned an independent
uniform color from {1, . . . , C}. Suppose further that we change the color of v in our
coloring X to obtain another coloring W . For each u ∈ N(v), LX(u) = LW (u) iff the
colors X(v) and W (v) both appear on N(u)− v. The probability that this occurs is
(1− e−1/q)2 + o(1), and so this explains the result in this paper.

Of course, the colors appearing on the neighbors of v are far from independent.
But intuitively, since there are few short cycles near v, after O(n log n) steps the colors
on vertices close to v are “close enough” to being independent. Much of the work in
this paper can be viewed as proving this statement.

1.2. A recursive analysis. Our situation is somewhat more complicated than
that in [2]. To illustrate this, suppose that N(v) = w1, . . . , w∆ and consider any
assignment of colors to the vertices in N(w1), . . . , N(w∆). Now, assign to each
wi a uniform color from among those not appearing on N(wi), independently of
the choice for any other wj . It turns out, that for any assignment of colors to
N(w1), . . . , N(w∆), the expected number of colors not appearing on N(v) is at least
qe−1/q∆ − o(∆). Thus, Dyer and Frieze did not have to ensure that the random
colors appearing on N(w1), . . . , N(w∆) are close to uniform. Unfortunately, when
analyzing our other parameter, we do not have this advantage and we need to prove
rather tight results on the distributions of the colors appearing at distance 2 and 3
from v.

To do this, we require a complicated iterative analysis. We’ll introduce that
analysis now, in an oversimplified setting, before formalizing it in the next section.
First, it will be much simpler to assume that G is regular and so every vertex has
degree ∆. We will also pretend that the time steps are partitioned into a series of
epochs, Ψ0,Ψ1,Ψ2, . . . and that every vertex is recolored at least once during each
epoch.

We will be interested in two parameters. The first is the number of colors available
to each vertex. We will create a sequence L0 > L1 > L2 > · · · such that during epoch
Ψi, the set L(v) of colors available to vertex v satisfies

|L(v)| ≤ Li

for every v. Furthermore, the same analysis as in [2] will yield that for i ≥ 1, at any
time during epoch Ψi we have

|L(v)| ≥ (e−1/q − o(1))C = qe−1/q∆− o(∆).
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The second parameter has to do with the probability that a particular color c is
in Lv. For any color c and vertex v, we define

T (v, c) =
∑

w∈N(v),c∈L(w)

1

|L(w)| .

Thus, if we were to choose a random color for each neighbor of v in turn, then T (v, c)
would be the expected number of neighbors which are assigned c. Furthermore, if we
assume as in subsection 1.1 that these choices are independent, then the probability
that no neighbors are assigned c, i.e., that at the end of these choices we have c ∈ L(v),
is roughly e−T (v,c).

Of course, we need to be a bit careful here, because the sets L(w) vary with time
and we are actually interested in their values at different time steps. But we will
overlook such details now as we are just providing an intuitive overview.

We will introduce sequences A0 < A1 < A2 < · · · and B0 > B1 > B2 > · · · such
that during epoch Ψi, we have for every pair v, c

Ai ≤ T (v, c) ≤ Bi.

We start with our recursive equation for Ai. Suppose that we are in epoch Ψi+1 and
for each neighbor w of v, let’s pretend that the neighbors of w were most recently
colored during epoch Ψi. At that time we had T (w, c) ≤ Bi and so the probability
that c is now in L(w) is at least roughly e−Bi . We also have |L(w)| ≤ Li. This inspires
us to define

Ai+1 = ∆× e−Bi/Li.

Similarly, we obtain

Bi+1 = ∆× e−Ai/(e−1/qC).

Finally, we consider Li+1. Exp(|L(v)|) is roughly
∑C

c=1 e−T (v,c). Also, note that

C∑
c=1

T (v, c) =
∑

w∈N(v)

∑
c∈L(w)

1

|L(w)| = ∆.

Thus, our expression for Exp(|L(v)|) is minimized when each T (v, c) is equal to ∆/C,
which yields a nonrecursive lower bound of C×e−∆/C = C×e−1/q, as obtained in [2].
Furthermore, the expression is maximized when the values of T (v, c) are as disparate
as possible. Since each T (v, c) is between Ai and Bi, we get a recursive upper bound
by assuming that every T (v, c) is either Ai or Bi. Since they sum to ∆, we must have
(∆−CBi)/(Ai−Bi) of them equal to Ai and (∆−CAi)/(Bi−Ai) of them equal to
Bi. That gives an upper bound of

Li+1 =
∆− CBi

Ai −Bi
× e−Ai +

∆− CAi

Bi −Ai
× e−Bi .

After choosing appropriate initial values, it is straightforward to show that these
recursive equations have a limit of Ai = Bi = 1/q and Li = C × e−1/q. Therefore,
by running our Markov chain for enough epochs, we can guarantee that for every v, c
we have L(v) arbitrarily close to e−1/q and T (v, c) arbitrarily close to ∆/C. This
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goes a long way towards allowing us to show that the intuitive analysis outlined in
subsection 1.1 holds.

To transform this intuition into a proof, we need to be much more precise. For
one thing, we have to be careful about specifying the time steps at which we are
measuring L(v) in some of these quantities. We also can’t assume that every vertex
is selected exactly once per epoch; it turns out that at least once per epoch will do,
and we can achieve that by taking each epoch to be of length O(n log n). Also, these
recursive equations were obtained by (implicitly) assuming that in each epoch, every
quantity will be equal to its expected value. In order to allow for the possibility that
some quantities differ slightly from their expected values, we decrease each Ai and
increase each Bi, Li by a small amount; we also apply a concentration inequality to
show that they don’t differ more than slightly from their expected values. Finally,
we can’t assume that every vertex has degree exactly ∆, and so we have to allow our
bounds on |L(v)| to be functions of the degree of v.

All of the adjustments outlined in the preceding paragraph are straightforward,
but tedious if we assume, as in subsection 1.1, that the random colors assigned to the
neighbors of a vertex are independent. Of course, this assumption is not valid and so
we need to prove that they are, in some sense, close to being independent. We do this
by focusing on “long paths of disagreement,” which will be described further in later
sections.

2. The main lemmas. As described in the opening part of section 1, our goal
is essentially to show that after O(n log n) steps, many neighbors u of v will satisfy
LX(u) = LW (u). We must complicate this condition somewhat. First, for technical
reasons, we wish to make this hold independently of our choice of the colors v has
in X,W and so we make a statement that holds for every pair of colors c1, c2. Also,
we have to adjust our goal somewhat to deal with the case where v has neighbors of
degree less than ∆. In fact, neighbors of very small degree, less than ρ∆ for some
small positive constant ρ, are particularly problematic and so have to be dealt with
separately. Our main lemma is as follows.

Lemma 2. For every ε, ρ > 0, there exist constants D, τ such that with probability
at least 1 − O(n−6), for every vertex v, colors c1, c2, and time τn log n ≤ t ≤ n2,
we have the following: Define θ = θc1,c2(v) to be the set of neighbors w of v with
d(w) ≥ ρ∆ and with at least one of c1, c2 not appearing in N(w)− v, and define

Rc1,c2(v) =
∑
w∈θ

1

|L(w)| .

Then

Rc1,c2(v) ≤
1− (1− e−1/q)2

qe−1/q
× d(v)

∆
+ ε.

Note that, under the notation of section 1, if v has c1 in X and c2 in W , and
if d(w) > ρ∆ and LX(w) �= LW (w), then w ∈ θc1,c2(v). Thus if the graph is ∆-
regular, then this lemma implies what we said our goal was in the opening part of
section 1.

In section 3, we will strengthen this lemma and then show how it implies Theorem
1. For ease of presentation, we first prove Lemma 2 and then show how to adapt the
proof to yield the stronger lemma.

We begin with a recursive definition. This is along the same lines as that de-
scribed in subsection 1.2, but modified somewhat to facilitate a formal proof. For
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each 0 ≤ d ≤ ∆,

• α1 = 0, β1 = 1/(q − 1), λ
(d)
1 = q;

• αk+1 = e−βk/λ
(∆)
k ;

• βk+1 = e−αk/(qe−1/q);

• λ(d)
k+1 = qβk−1

βk−αk
e−αkd/∆ + 1−qαk

βk−αk
e−βkd/∆.

Lemma 3. limk→∞ αk = limk→∞ βk = 1/q, limk→∞ λ
(d)
k = qe−d/q∆.

We postpone the proof of Lemma 3 until later. But for now, we require the
following simple observation.

Lemma 4. For all k ≥ 1 and 0 ≤ d ≤ ∆,
(a) αk < 1/q < βk, and

(b) qe−βkd/∆ ≤ λ(d)
k+1 ≤ qe−αkd/∆.

Proof. (b) follows since λ
(d)
k+1 is a linear combination of qe−βkd/∆ and qe−αkd/∆.

(a) follows from a simple induction.
In subsection 1.2 we said that we have to adjust our sequences by a small amount,

in order to allow for the possibility that some terms differ slightly from their expected
values. We do so now.

Fix some small δ to be named later, and choose k∗ such that αk∗ > 1
q − δ/2,

βk∗ < 1
q + δ/2, and λk∗ < qe−1/q + δ/2 (such a k∗ exists by Lemma 3). Choose a

sufficiently small constant ζ and constants a1, . . . , ak∗ , b1, . . . , bk∗ , �
(0)
1 , . . . , �

(∆)
k∗ such

that
(i) a1 = α1, b1 = β1, �

(d)
1 = λ

(d)
1 ;

(ii) • ak+1 < e−bk/�
(∆)
k − ζ;

• bk+1 > e−ak/(qe−(1+ζ)/q) + ζ;

• �(d)k+1 = qbk−1
bk−ak

e−(1−ζ)akd/∆ + 1−qak

bk−ak
e−(1−ζ)bkd/∆

(iii) ak∗ > 1
q − δ, bk∗ < 1

q + δ.
The existence of such constants follows easily from the continuity of the relevant
functions over the region a �= b.

Note that we can assume that ρ is as small as we wish, as if Lemma 2 holds with
ρ = ρ1 then it clearly holds with ρ = ρ2 for any ρ2 > ρ1. In particular, we will assume
that

• 1/(q − ρ) < e(1+ζ−ak∗ )/q/q; and
• e−ρ/(q−1) > e1/q−bk∗ .

We define Lt(v) to be the set of colors available for v at time t; we sometimes
omit the subscript t when it is not necessary. For any vertex u and time t, we define
t(u, t) to be the last time before t that u is selected. To be precise, we define t(u, t)
to be zero in the event that u is not selected before time t. This notation allows us
to define a more careful refinement of the vague quantity T (v, c) from subsection 1.2:

Tt(v, c) =
∑

w∈N(v),c∈L
t(w,t)

(w)

1

|Lt(w,t)(w)| .

Note that

C∑
c=1

Tt(v, c) =
∑

w∈N(v)

∑
c∈L

t(w,t)
(w)

1

|Lt(w,t)(w)| = d(v).

We will prove the following lemma inductively.
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Lemma 5. For each 1 ≤ k ≤ k∗, with probability at least 1 − n−6, for every v
with d(v) > ρ∆, color c and 30kn log n ≤ t ≤ n2, we have

(a) qe−(1+ζ)d(v)/C∆ ≤ |Lt(v)| ≤ �(d(v))
k ∆;

(b) akd(v)/∆ ≤ Tt(v, c) ≤ bkd(v)/∆.

The lower bound in part (a) is essentially Lemma 4.1 and (7) of Dyer and Frieze
[2], and our proof is similar to theirs.

Proof. The proof is by induction on k. The base case k = 1 holds trivially. So
assume that it holds for some k and consider k + 1.

Let the neighbors of v be w1, . . . , wd(v) and for each i let ti = t(wi, t) be the last
time before t that wi is selected. For each i, let Nwi − v = {wi,1, . . . , wi,d(wi)−1}
and let ti,j = t(wi,j , ti) be the last time before ti that wi,j is selected. Similarly, for
each i, j let Nwi,j

− wi = {wi,j,1, . . . , wi,j,d(wi,j)−1} and let ti,j,r = t(wi,j,r, ti,j) be
the last time before ti,j that wi,j,r is selected. (If v lies in some cycles of length at
most 6, then some vertices will receive more than one label, but this does not create
a problem.)

The idea of focusing on the colors assigned at these times was used by Dyer and
Frieze [2].

With high probability, each ti ≥ t − 10n log n. Indeed, the probability that this
is not true is at most ∆(1 − 1

n )10n logn < n−9. The same calculations give the same
bound on the probability that some ti,j is less than t− 20n log n or that some ti,j,r is
less than t− 30n log n.

We start by proving part (a). Expose the values of t1, . . . , td(v), t1,1, . . . ,
td(v),d(wd(v))−1.

It would be nice if we could say that the colors assigned to w1, . . . , wd(v) were
independent, as that would greatly simplify our calculations. However, this is clearly
not the case, since the color assigned to wi has an effect on the next color assigned to
a neighbor of wi, and this effect can propagate along a path which eventually leads
to some wj . This can be a very short path if it goes through v; we will deal with such
paths later. Otherwise, unless wi is one of the at most O(1) vertices lying on a short
cycle through v, the path must have length at least D log ∆ − 2. Our first concern
will be such long paths.

Consider the following procedure, which we denote GLAUB(i). It follows the usual
Glauber dynamics, but after step ti all neighbors of wi ignore wi. More specifically,
for each u ∈ N(wi), L(u) is the set of colors which do not appear on N(u)− wi, and
whenever u is selected, u is assigned a uniformly random color from L(u). Thus, for
example, wi might have the same color as some of its neighbors.

We use GLAUB to denote the usual Glauber dynamics, and we consider the two
procedures to be coupled in that each has the same initial state and chooses the same
vertex at each step. The color choice at each step is coupled maximally.

A long path of disagreement from wi is a path P of length at least � = (D/3) log ∆
beginning at wi and not going through v, such that the color of each vertex in the path
differs between GLAUB and GLAUB(i). (Such paths were used in a slightly different
way by Dyer and Frieze [2] and earlier, in a different setting, by van den Berg and
Steif [12].) We say that wi is influential if there is a long path of disagreement from
wi or if by changing the color assigned to wi at time ti, and not changing any future
color/vertex choices in GLAUB(i), it is possible to create a long path of disagreement
from wi.

We define B to be the set of neighbors wi such that either wi lies in a cycle
through v of length less than D log ∆ or wi is influential.
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Lemma 6. With probability at least 1− n−10, |B| < ∆/ log ∆.
Proof. The set of neighbors which lie on a short cycle through v is at most 2ω.

Therefore, we only have to count the influential vertices which do not lie on any short
cycle through v. Consider such a vertex wi; we will bound the probability that it is
influential.

We will bound this probability by the probability that either wi is influential, or
ti < t− 20n log ∆. The probability of the latter is (1− 1/n)20n log ∆ < 1

2∆−11.
If wi is influential and ti ≥ t − 20n log ∆, then there is a path P : wj =

p0, p1, . . . , p�, a color c to assign to wi at time ti, and time steps t − 20n log ∆ <
s1 < · · · < s� ≤ t such that at step sr, pr is selected and assigned different colors in
the two procedures.

Suppose that P is the lexicographically first such path formed. Thus, at each
step sr, if the colors of some neighbor u of pr disagree in the two procedures, then
there is a path of disagreement from u to wj which does not go through pr. Since
that path has length less than �, then pr and u lie in a cycle of length less than
D log ∆. Since pr lies in at most ω such cycles, there can be at most 2ω such neigh-
bors. Thus, since |L(pr)| is always at least C − ∆ = (q − 1)∆, the probability that
pr chooses a different color for each procedure, under the maximal coupling, is less
than 2ω/((q − 1)∆). Therefore, the probability that such a path is formed is at
most

∆× (∆− 1)� ×
(

20n log ∆

�

)
×
(

2ω

(q − 1)∆

)�

< ∆×
(

100eω

D

)�

<
1

2
∆−11

for D sufficiently large and q near q∗. Thus, after adding the probability that
ti < t− 20n log ∆, the probability that wi is influential is at most ∆−11.

Now consider any collection wi1 , . . . , wim of m = ∆/ log ∆− 2ω neighbors which
don’t lie in short cycles through v. Using the fact that long paths of disagreement
from any two such neighbors must be disjoint, similar calculations yield that the
probability of all m neighbors being influential is at most (∆−11)m. Therefore, the
probability that at least m such neighbors of v are influential is at most(

∆

m

)
×∆−11m < ∆−10m < n−10

for D > 1.
Now, for each i, j, we expose the color assigned to ui,j at time ti,j . We also

expose the set B. We denote this set of information, along with the values of
t1, . . . td(v), t1,1, . . . td(v),d(wd(v))−1, by H. We say that H is good if every ti, ti,j ≥
t− 30n log n, if the sets of color assignments satisfy the conditions of Lemma 5 for k,
and if |B| ≤ ∆/ log ∆. We will show by induction that the probability of H not being
good is at most O(n−9).

Lemma 7. For any good H, the conditional probability that, at a particular time
t ≥ 30(k + 1)n log n during MOD-GLAUB, |L(v)| ≤ qe−(1+ζ/2)d(v)/C∆ or |L(v)| ≥
�
(d(v))
k+1 ∆− ζ/2 is at most n−9.

Proof. Rather than analyzing |L(v)| directly, we will focus on |L∗(v)|, the set of
colors which do not appear on any wi ∈ N(v) − B. Note that |L∗(v)| ≥ |L(v)| ≥
|L∗(v)| − |B| = |L∗(v)| − o(∆).

Rather than dealing with GLAUB directly, we consider the procedure MOD-
GLAUB, whereby after time t− 30n log n, neighbors of v ignore the color on v.
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The advantage of focusing on |L∗(v)| and MOD-GLAUB is that the color assign-
ments to the vertices in N(v) − B are independent. This is because no combination
of assignments to these vertices can produce a long path of disagreement from one
such vertex to another, and, since the vertices ignore the color on v and no two lie
on a short cycle through v, there are no short paths of disagreement between these
vertices.

Furthermore, exposing the fact that wi /∈ B only exposes that wi is not influential.
Since the definition of “influential” does not depend on the particular color assigned
to wi, this does not expose anything about that choice of color.

So each wi receives a uniformly random color from among those colors which H
dictates to not appear on N(wi) − v at time ti, and the choices for w1, . . . , w∆ are
independent. Thus, for any color c the conditional probability that c belongs to L∗(v)
at time t is ∏

w∈N(v)−B,c∈L(w)

1− 1

L(w)
= exp(−T (v, c)) + o(1),

since every L(w) has size at least C−∆ = (q−1)∆, and since |B| = o(∆). Therefore,
the expected size of L∗(v) at time t is equal to

∑
c exp(−T (v, c)) + o(∆).

Recall that
∑

c T (v, c) = d(v). Furthermore, since H is good, each T (v, c) lies
between akd(v)/∆ and bkd(v)/∆. Subject to these constraints,

∑
c exp(−T (v, c)) is

easily seen to be minimized when every T (v, c) = d(v)/C, and maximized when every
T (v, c) is either akd(v)/∆ or bkd(v)/∆. In the latter case, the fact that there are
C = q∆ different T (v, c) terms and they sum to d(v) implies that ∆(qbk−1)/(bk−ak)
of them are equal to akd(v)/∆ and the remaining ∆(1 − qak)/(bk − ak) of them are
equal to bkd(v)/∆. This yields

qe−d(v)/C∆ ≤ Exp(|L∗(v)|) ≤ ∆×
(
qbk − 1

bk − ak e−akd(v)/∆ +
1− qak
bk − ak e−bkd(v)/∆

)
.

Note that these calculations can be used to show that for all d, k,

�
(d)
k > qe−d/q.(1)

Since the color choice for wi can affect |L∗(v)| by at most 1, Azuma’s inequality
implies that |L∗(v)| is highly concentrated and, in particular, that the probability of
it differing from its expected value by Θ(∆) is e−Θ(∆). Since d(v) > ρ∆, this proves
our bound on |L∗(v)| in MOD-GLAUB.

Now we extend this bound to GLAUB. If the color of wi differs in the two proce-
dures, then at some step after t−30n log n, wi is assigned a color that appears on v and
on no other neighbor of wi. Since |L(wi)| is always greater than C−∆ = (q−1)∆, this
occurs with probability at most ((q−1)n∆)−1 at any one time step, so the probability
that it occurs at least once is at most 30n log n/((q − 1)n∆) < 100/D.

So the expected number of vertices in N(v) which are affected in this way is at
most 100∆/D = O(log n). A simple application of the Chernoff bounds shows that
this number is highly concentrated, and so the probability that it is higher than Θ(∆)
is at most e−Θ(∆) < n−10 for ∆ ≥ D log n, where D is sufficiently large in terms of ν.
This proves the lemma.

Adding the probability of n−10 +O(n−9) that H is not good and multiplying by
the n× n2 choices for v, t establish part (a) of Lemma 5.
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Part (b) follows in the same manner. We define B∗ in a similar way to B, with
the exception that a neighbor wi is in B∗ if (i) wi ∈ B, (ii) it is possible, by changing
the color assigned to a neighbor u of wi, to form a long path of disagreement from u
not passing through wi, or (iii) some neighbor u of wi lies in a short cycle through
wi. The same analysis shows that Pr(|B∗| > ∆/ log ∆) < n−11. (An extra factor of
∆ appears in the expected number calculation, and this is not enough to raise that
expected number significantly.) We then restrict our attention to

T ∗
t (v, c) =

∑
w∈N(v)−B∗,c∈L

t(w,t)
(w)

1

|Lt(w,t)(w)| .

H exposes B∗, all times ti, ti,j , ti,j,r, and the colors assigned to each ui,j,r at time
ti,j,r. Then we modify our procedure as follows: All vertices ignore the colors on
v, w1, . . . , w∆, and after time ti,j , the neighbors of wi,j ignore the color of wi,j . If
some wi,j is adjacent to wi′,j′ , then they ignore each other’s colors. We refer to this
modified procedure as MOD-GLAUB2.

Consider any wi /∈ B∗ and let I(wi, c) be the indicator variable that c ∈ L(wi)
at time ti. Suppose that d(wi) > ρ∆. As in the proof of part (a), Pr(I(wi, c) =
1) = exp(−Tti(wi, c)) + o(1). Therefore, using the bounds on Tti(wi, c) and the list
sizes from the fact that H is good, the expected value of I(wi, c)/|Lti(wi)| is at
most

(e−akd(wi)/∆ + o(1))× 1

qe−(1+ζ)d(wi)/C∆
≤ 1

∆
× e−ak/q/(qe−(1+ζ)/q) + o(1),

since the fact that ak < 1/q implies that the left-hand side is maximized at d(wi) =
∆.

We must take more care in proving our lower bound. We use L to denote |L(wi)|
at time ti, we let R be the event that L ≤ �

(d(v))
k+1 ∆, and we let IR be the indicator

variable for R. In part (a), we proved that Pr(IR = 0) = O(n−9). Therefore,

Exp

(
I(wi, c)

L

)
≥ Exp

(
I(wi, c)

L
× IR

)

≥ Pr(I(wi, c) = 1)−Pr(Ir = 0)

�
(d(v))
k+1 ∆

=
Pr(I(wi, c))

�
(d(v))
k+1 ∆

+ o(1/∆).

Furthermore, we have

�dk+1 =
1

bk − ak
(
(qbk − 1)e−(1−ζ)akd/∆ + (1− qak)e−(1−ζ)bkd/∆

)
<

1

bk − ak
(
(qbk − 1)e−(1−ζ)ak + (1− qak)e−(1−ζ)bk

)
× e(1−ζ)bk(1−d/D)

= �
(∆)
k+1 × e(1−ζ)bk(1−d/D).



THE GLAUBER DYNAMICS ON COLORINGS 731

Thus, the expected value of I(wi, c)/|L(wi)| at time t is at least

(e−bkd(wi)/∆ + o(1))× 1

�
(d(w))
k+1 ∆

≥ 1

∆
× e−bk

�
(∆)
k+1

× e(bk−(1−ζ)bk)(1−d(wi)/∆) + o(1)

≥ 1

∆
× e−bk

�
(∆)
k+1

+ o(1)

≥ 1

∆
× e−bk

�
(∆)
k

+ o(1).

If d(wi) ≤ ρ∆, then |L(wi)| is never less than C − ρ∆ = (q − ρ)∆. Therefore, by
our assumptions on how small ρ is, the expected value of I(wi, c)/|L(wi)| is at most

1

(q − ρ)∆ <
1

∆
× e−ak/q/(qe−(1+ζ)/q).

Furthermore, since no list is ever smaller than (q−1)∆, Pr(I(wi, c)) ≥ (1− 1
(q−1)∆ )ρ∆

which, by (1) and our assumptions on the size of ρ, is greater than C
∆ × e−bk/�

(∆)
k .

Therefore, the expected value of I(wi, c)/|L(wi)| is again at least 1
∆ × e−bk/�

(∆)
k .

This implies that the expected value of T ∗
t (v, c) is at most (ak+1 − ζ)d(v)/∆ and

at least (bk+1 − ζ)d(v)/∆. By viewing the color assignments to wi,1, . . . , wi,∆−1 as
one single random choice, we have ∆ choices, each of which can affect T ∗

t (v, c) by
at most 1/((q − 1)∆), since no L(u) can have size less than (q − 1)∆. Therefore by
Azuma’s inequality, the probability that, under the procedure MOD-GLAUB2, Tv,c
differs from its expected value by more than (ζ/2)d(v)/∆ is at most e−Θ(∆) < n−10

for D sufficiently large in terms of ζ. (Again, we use the fact that d(v) ≥ ρ∆.)
Virtually the same argument as that used for part (a) proves that with sufficiently

high probability, T ∗
t (v, c) in GLAUB is within (ζ/4)d(v)/C of its value in MOD-

GLAUB2. Furthermore, if H is good then |T ∗
t (v, c)− Tt(v, c)| < (∆/ log ∆)× (1/(q−

1)∆) = o(1). This proves part (b).
Finally, we need to note that, since with probability at least 1−n−9 we have each

ti, ti,j ≥ t− 30n log n ≥ 30kn log n, then we have by induction that the probability H
is not good is at most 2n−9.

We now show that Lemma 2 follows from Lemma 5 if we take δ sufficiently small
when specifying k∗ and thus obtain ak, bk, �

d
k∗ sufficiently close to 1/q, 1/q, qe−d/C .

Proof of Lemma 2. We prove Lemma 2 in the same way as the inductive step
for Lemma 5(b). We consider the procedure MOD-GLAUB2. We expose H and, by
taking τ ≥ 30k∗, we can assume it is (with probability at least 1−O(n−6)) such that
for each wi with d(wi) > ρ∆,(

1

q
− δ
)
d(wi)/∆ < T (wi, c1), T (wi, c2) <

(
1

q
+ δ

)
d(wi)/∆,

and

|L(wi)| ≥ qe−(1+ζ)d(v)/C∆

and that |B∗| < ∆/ log ∆. This last assumption, along with the fact that |L(u)| ≥
C − q for every vertex u, implies that

∑
wi∈B∗ |L(wi)|−1 = o(1). Thus we can restrict

our attention to N(v)−B∗.
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Now consider any wi ∈ N(v) − B∗ with d(wi) > ρ∆. Let E1 (resp., E2) be
the event that c1 (resp., c2) appears on N(wi) − v. Thus E1 ∩ E2 is the event that
wi /∈ θ. We will estimate Pr(E1 ∩E2) = 1−Pr(E1)−Pr(E2)+Pr(E1 ∩E2). By our
assumption on H, each Pr(Er) is at most

exp(−T (wi, cr)) ≤ exp

(
−
(

1

q
− δ
)
d(wi)/∆

)
.

Also, Pr(E1 ∩ E2) is at least∏
u∈N(wi);c1∈L(u);c2 /∈L(u)

(
1− 1

|L(u)|
)
×

∏
u∈N(wi);c2∈L(u);c2 /∈L(u)

(
1− 1

|L(u)|
)

×
∏

u∈N(wi);c1,c2∈L(u)

(
1− 2

|L(u)|
)

= exp(−T (wi, c1)− T (wi, c2)) + o(1)

≥ exp

(
−2

(
1

q
+ δ

)
d(wi)/∆

)
+ o(1).

For δ sufficiently small in terms of ε, this yields Pr(E1∩E2) > (1−e−d(wi)/q∆)2−ε/2.
Setting y = e−d(wi)/q∆, note that (1 − (1 − y)2)/(yq∆) = (2 − y)/(q∆) increases as
y decreases and so is maximized at d(wi) = ∆. Therefore, for ζ sufficiently small in
terms of ε, we have

Exp(Rc1,c2(v)) ≤ o(1) +
∑

w∈N(v)

(1− (1− e−d(wi)/q∆)2) + ε/2

qe−(1+ζ)d(wi)/C∆

≤ ε/2 +
∑

w∈N(v)

(1− (1− e−d(wi)/q∆)2)

qe−d(wi)/C∆

≤ ε/2 +
(1− (1− e−1/q)2)

qe−1/q
× d(v)

∆
.

It follows as in the proof of Lemma 5(b) that this sum is highly concentrated and so
the probability that it differs from its expected value by more than ε/4 is at most
n−10 for D sufficiently large.

It follows again as in the proof of Lemma 5(b) that the probability of it differing
by more than ε/4 from GLAUB to MOD-GLAUB is at most n−10 for D sufficiently
large. This proves Lemma 2.

We close this section with the proof of Lemma 3, thus completing the proof of
Lemma 2.

Proof of Lemma 3. Recall that we can assume that q > q∗ is sufficiently small,
and so we will take q < 1.49.

It is straightforward to show that αk is strictly increasing and βk is strictly de-

creasing, and so by Lemma 2, α = limk→∞ αk, β = limk→∞ βk, λ = limk→∞ λ
(∆)
k

exist. They must satisfy

α = e−β/λ,

β = e−α/(qe−1/q),

λ =
qβ − 1

β − α e−α +
1− qα
β − α e−b.
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We will prove that this system has no roots for 0 ≤ α < 1/q. This, along with Lemma
4, implies Lemma 3.

Rearranging the first equation of our system, we get f(α) = αλ − e−β = 0. We
will bound the derivative of f with respect to α. We start by bounding

g(α) = 1− βq + β − αβq.

Clearly g(α) → 0 as α → 1/q. Also, noting that the derivative of β with respect to
α is −β, we have g′(α) = qβ − β − qβ + qαβ = qαβ − β < 0 for α < 1/q. Therefore,
g(α) > 0 for α < 1/q.

Now, using the fact that by (1) qe−1/q ≤ λ ≤ qe−α, we have

f ′(α) = λ− βe−β +
α

β − α ((1− 2βq)e−α + (β − q − αβq)e−β + (β + 1)λ)

≥ λ− βe−β +
αe−β

β − α (1− 2βq + β − q − αβq + qβ + q)

+
e−α − e−β

β − α (α− 2αβq)

≥ λ− βe−β +
e−α − e−β

β − α (α− 2β)

≥ qe−1/q − βe−β − (e−α − e−β)− β e−α − e−β

β − α
≥ qe−β − βe−β − (e−α − e−β)− βe−β e−(α−β) − 1

β − α
≥ qe−β − βe−β − (e−α − e−β)− βe−β(1 +

1

2
(β − α))

= (q − 2β)e−β − (e−α − e−β)− (β − α)βe−β .

As α → 1/q, we get α → β and so the latter two terms tend to 0. So this allows
us to bound f ′(α) away from 0 when α is close to the discontinuity at α = 1/q. In
particular, for 1.489 < q < 1.49 we have f ′(α) > .01 when .64 ≤ a < 1/q and so f(α)
has no roots in that range. Having dealt with this discontinuity, it is straightforward
to check that for the same range of q, f(α) has no roots in 0 ≤ α ≤ .58, thus proving
the lemma.

3. Path coupling and the proof of Theorem 1. Here, we prove Theorem 1.
We consider a fixed small ε, ρ to be named later. We begin with a burn-in period of
τn log n steps, where τ > 30 is as in Lemma 2. All of our analysis will assume that
τn log n < t < n2. For now, we assume that for every vertex v and pair of colors c1, c2,
we have (i) |L(v)| ≥ Ce−d(v)/C − ε∆ and (ii) v has fewer than γd(v)− ε∆ neighbors w
with d(w) ≥ ρ∆ and c1, c2 /∈ L(w). Later we will account for the O(n−5) probability
that this is not the case.

We use the path coupling technique of Bubley and Dyer [1]. To do so, we couple
two chains X0, X1, . . . and W0,W1, . . . with arbitrary initial colorings X0,W0 and
show that, with high probability, they coincide within O(n log n) steps. To prove this
fact using path coupling, at any time t, we consider a “path” of possibly improper
colorings Xt = Z0, Z1, . . . , Zh = Wt. We define this path as follows. Consider an
arbitrary ordering of the vertices v1, . . . , vn. To form Z1 from Z0, we change the color
of the first vertex on which Xt and Wt differ from its color in Xt to its color in Wt.



734 MICHAEL MOLLOY

To form Z2 from Z1, we change the color of the second vertex on which Xt,Wt differ,
and so on. Thus, h is the Hamming distance between Xt,Wt, i.e., the number of
vertices on which they differ. (If Xt = Wt then h = 0 and Xt = Z0 = Wt.)

We couple the chains as follows: We carry out a step of Z0 = Xt, thus obtaining
Z

′
0 = Xt+1. Then we maximally couple a random choice for Z1 to the choice for Z0,

thus obtaining Z
′
1. (Recall that, even though Zr may not be a proper coloring, we

can apply a step of our process to it.) Repeatedly, we maximally couple Zi to Zi−1

obtaining Z
′
i , finally yielding Wt+1 = Z

′
h.

Recall that in our key Lemma 2, vertices of degree less than ρ∆ are not included
in the sum Rc1,c2(v). Because of this, we need to modify the notion of Hamming
distance as follows.

Suppose that we are given a particular ρ > 0. For any two (not necessarily
proper) colorings X,W , we define their weighted Hamming distance H

′
(X,W ) to

be the number of vertices v with d(v) > ρ∆ and X(v) �= W (v) plus 3ρ times the
number of vertices v with d(v) ≤ ρ∆ and X(v) �= W (v). Note that H

′
(Xt,Wt) =∑h−1

i=0 H
′
(Zi, Zi+1). Note further that H

′
(Xt+1,Wt+1) ≤

∑h−1
i=0 H

′
(Z

′
i , Z

′
i+1), since if

Xt+1(v) �= Wt+1(v) then Z
′
i(v) �= Z

′
i+1(v) for at least one i.

We will prove that, after an O(n log n) burn-in period, the expected value of the
change of the weighted Hamming distance between any pair Zr, Zr+1 is at most −ψ/n
for some constant ψ > 0. Thus, the expected value of the change of the weighted
Hamming distance between X,W is at most −h× ψ/n < −ψ/n.

To prove this, we need to know that, with high probability, the bound in Lemma
2 applies to each Zr. So for each 0 ≤ s ≤ n and step t, we define Ms

t to be the
(possibly improper) coloring in which vertices v1, . . . , vs have their color from Wt

and vs+1, . . . , vn have their colors from Xt. Note that at time t, each Zr is equal
to Ms

t for at least one value of s. At time t, for each vertex v and for each 0 ≤
s ≤ n, we define Ls(v) to be the set of colors which do not appear in Ms

t on the
neighborhood of v. LX(v) = L0(v) is the set of colors which do not appear in X
on N(v), and LW (v) = Ln(v) is the set of colors which do not appear in W on
N(v).

Lemma 8. For every ε, ρ > 0, there exist constants D, τ such that with probability
at least 1−n−5, for every vertex v, colors c1, c2, 0 ≤ s ≤ n and time τn log n ≤ t ≤ n2,
we have the following: Define θ = θsc1,c2(v) to be the set of neighbors w of v with
d(w) ≥ ρ∆ and with at least one of c1, c2 not appearing in Ms

t on N(w) − v, and
define

Rs
c1,c2(v) =

∑
w∈θ

1

|L(w)| .

Then

Rs
c1,c2(v) ≤

1− (1− e−1/q)2

qe−1/q
× d(v)

∆
+ ε.

To prove Lemma 8, we define

T s
t (v, c) =

∑
vj∈N(v);j≤s;c∈LW

t(vj,t)
(vj)

1

|LW
t(vj ,t)

(vj)| +
∑

vj∈N(v);j>s;c∈LX

t(vj,t)
(vj)

1

|LX
t(vj ,t)

(vj)| ,

and we modify Lemma 5 to the following.
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Lemma 9. For each 1 ≤ k ≤ k∗, with probability at least 1 − n−5, for every v
with d(v) > ρ∆, color c, 0 ≤ s ≤ n and 30kn log n ≤ t ≤ n2, we have at time t

(a) qe−(1+ζ)d(v)/C∆ ≤ |LX(v)|, |LW (v)| ≤ �(d(v))
k ∆;

(b) akd(v)/∆ ≤ T s
t (v, c) ≤ bkd(v)/∆.

The proof of part (a) is essentially the same as in Lemma 5. To prove part (b),
for each wi = vj , H exposes the colors that wi,1,1, . . . , wi,∆−1,∆−1 receive in the chain
W if j ≤ s, and exposes the colors they receive in X otherwise. The rest of the proof
is the same. The exponent of n in the probability bound changes from −6 to −5
because of the extra n choices for s.

Then we prove Lemma 8 from Lemma 9 by defining H in the same way.
For now we assume that for every vertex v, 0 ≤ s ≤ n and pair of colors c1, c2,

we have

Rs
c1,c2(v) ≤

1− (1− e−1/q)2

qe−1/q

d(v)

∆
+ ε.

Later we will account for the O(n−5) probability that this is not the case.
Now, consider any Zr and Zr+1. They differ on exactly one vertex, say v which

has color c1 in Zr and c2 in Zr+1. We apply one step of our process to Zr and to
Zr+1, coupled as described in the introduction.

Case 1. d(v) > ρ∆.
The weighted Hamming distance between Zr and Zr+1 decreases by 1 iff we select

v. This has probability 1/n of occurring. The weighted Hamming distance increases
iff we choose a neighbor u of v and assign it color c1 in Zr and/or assign it color c2
in Zr+1. If d(u) > ρ∆, then it increases by 1; otherwise it increases by 3ρ. Thus, to
increase by 1, we must choose a neighbor u ∈ θ and so the probability that it increases
by 1 is Rc1,c2(v)/n. The probability that it increases by 3ρ is at most d(v)/(n(C−∆)).
Therefore, the expected change in the Hamming distance is at most

1

n
×
(
−1 +

1− (1− e−1/q)2

qe−1/q − ε + ε+
3ρ

q − 1

)
,

which is negative if we choose ε and ρ to be sufficiently small in terms of q, since we
chose q such that (1− e−1/q)2 + qe−1/q > 1.

Case 2. d(v) ≤ ρ∆.
The weighted Hamming distance decreases by 3ρ with probability 1

n and it in-
creases with probability at most ρ∆/(n(C − ∆)). Since it never increases by more
than 1, the expected change in the Hamming distance is at most

1

n
×
(
−3ρ+

ρ

q − 1

)
,

which is negative for ε sufficiently small since q − 1 > 1/3 for q > q∗.
Thus, in either case, the expected change in the weighted Hamming distance is

less than −ψ/n for some ψ = ψ(q) > 0. This implies that with sufficiently high
probability, the weighted Hamming distance drops to 0 within O(n log n) steps.

Now we still have to account for the O(n−5) chance that for some v, t, s, c1, c2,
Rs

c1,c2(v) is too large. Let t∗ be the first time at which this occurs. Consider the

random variable H∗(t) defined as follows. Until time t∗, H∗(t) = H
′
(Xt,Wt). After

time t∗, if H∗(t− 1) > 0 then H∗(t) = H∗(t− 1)− 1 with probability 1
n and H∗(t) =

H∗(t−1)+1 with probability 1−ψ
n ; if H∗(t−1) = 0 then H∗(t) = 0. H∗(t) is a simple
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random walk with negative drift after time t = τn log n, and it is straightforward
to verify that with high probability, H∗(t) = 0 when t = O(n log n). Furthermore,
with probability 1 − O(n−4), H

′
(Xt,Wt) = H∗(t) for each 1 ≤ t ≤ n2. Therefore,

with high probability, H
′
(Xt,Wt) = 0 when t = O(n log n). This is enough to prove

Theorem 1. See, for example, [4] for the standard argument.

4. Some final comments. In this section, we note that this coupling argument
cannot be used for the case C = q∆ for any q < q∗. To see this, consider any
polynomial nx and any ∆-regular graph G with ∆ ≥ D log n and girth at least D log ∆
for some sufficiently large D in terms of x.

Note that Lemmas 2 through 9 hold for all q > 1.489 (and in fact, if needed,
we could show that they hold for even smaller q). The only place where we required
q > q∗ was in the proof of Theorem 1 in section 3. Furthermore, the upper bound
t ≤ n2 in their statements can be easily increased to nx. Therefore, if the Glauber
dynamics mixes rapidly, then a “typical” coloring will satisfy that for all v, c, |Lv| is
arbitrarily close to Ce−1/q and T (v, c) is arbitrarily close to 1/q. Thus, such a coloring
must exist; call it Ψ.

Suppose that we choose Ψ as our initial coloring. Then for the first nx steps,
with high probability, for all v, c, |Lv| is arbitrarily close to Ce−1/q and T (v, c) is
arbitrarily close to 1/q. This implies that with high probability, for any v, c1, c2, the
number of neighbors of v which have either c1 or c2 in their list is arbitrarily close to
(1− (1− e−1/q)2)∆. So if we couple the coloring arising at any time less than nx with
another coloring which differs in exactly one vertex, then since q < q∗, the expected
change in their Hamming distance will be positive.

Furthermore, since the graph has large girth, we cannot apply the technique from
[5] and [9], where by analyzing the expected total change over a few steps, we were
able to get some gain from edges in N(v).

So in an extended abstract of this paper [10], the author raised the following
question: Is there any q < q∗ and D > 0 such that the Glauber dynamics for q∆-
colorings mixes in polytime on graphs with girth at least D and maximum degree ∆
at least D log n?

He noted that a positive answer would require a substantial new idea. Very
recently, Hayes and Vigoda [6] provided such an answer, proving that any q > 1 will
do even when the girth is as small as 9. Their substantial new idea was to use a
“non-Markovian coupling.” We refer the reader to their paper for further description.

Acknowledgments. The author is grateful to Martin Dyer and Alan Frieze for
some helpful discussions, for providing him with an early copy of their paper [2], and
for pointing out an error in an early version. He is also grateful to two anonymous
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Abstract. We present the first explicit connection between quantum computation and lattice
problems. Namely, our main result is a solution to the unique shortest vector problem (SVP) under
the assumption that there exists an algorithm that solves the hidden subgroup problem on the
dihedral group by coset sampling. Additionally, we present an approach to solving the hidden sub-
group problem on the dihedral group by using an average case subset sum routine.
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1. Introduction. Quantum computation is a computation model based on quan-
tum physics. Assuming that the laws of nature as we know them are true, this might
allow us to build computers that are able to perform tasks that classical comput-
ers cannot perform in any reasonable time. One task which quantum algorithms are
known to perform much better than classical algorithms is that of factoring large inte-
gers. The importance of this problem stems from its ubiquitous use in cryptographic
applications. While there are no known polynomial time classical algorithms for this
problem, a groundbreaking result of Shor [25] showed a polynomial time quantum
algorithm for factoring integers. In the same paper, Shor showed an algorithm for
finding the discrete log. However, despite enormous effort, we have only a few other
problems for which quantum algorithms provide an exponential speedup (e.g., [12, 5]).
Other notable quantum algorithms such as Deutsch and Jozsa’s algorithm [6] and Si-
mon’s algorithm [26] operate in the black box model. Grover’s algorithm [11] provides
a square root speedup over classical algorithms.

The current search for new quantum algorithms concentrates on problems which
are not known to be NP -hard. These include the graph isomorphism problem and
lattice problems. In this paper we are interested in lattice problems or specifically, the
unique shortest vector problem (SVP). A lattice is a set of all integral linear combina-
tions of a set of n linearly independent vectors in R

n. This set of n vectors is known
as a basis of the lattice. In the SVP we are interested in finding the shortest nonzero
vector in a lattice. In the f(n)-unique-SVP we are given the additional promise that
the shortest vector is shorter by a factor of at least f(n) than all other nonparallel
vectors. This problem has also important applications in cryptography. Namely, Ajtai
and Dwork’s cryptosystem [2] and the recent cryptosystem by Regev [23] are based
on the hardness of this lattice problem.

A central problem in quantum computation is the hidden subgroup problem
(HSP). Here, we are given a black box that computes a function on elements of a
group G. The function is known to be constant and distinct on left cosets of a sub-
group H � G, and our goal is to find H. Interestingly, almost all known quantum
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algorithms which run superpolynomially faster than classical algorithms solve spe-
cial cases of the HSP on Abelian groups. Also, it is known that solving the HSP
on the symmetric group leads to a solution to graph isomorphism [15]. This moti-
vated research into possible extensions of the HSP to noncommutative groups (see,
e.g., [9, 13, 24, 8]). However, prior to this paper the HSP on groups other than the
symmetric group and Abelian groups had no known applications.

In this paper we will be interested in the HSP on the dihedral group. The dihedral
group of order 2N , denoted DN , is the group of symmetries of an N -sided regular
polygon. It is isomorphic to the abstract group generated by the element ρ of order
n and the element τ of order 2 subject to the relation ρτ = τρ−1. Although the
dihedral group has a much simpler structure than the symmetric group, no efficient
solution to the HSP on the dihedral group is known. Ettinger and Høyer [7] showed
that one can obtain sufficient statistical information about the hidden subgroup with
only a polynomial number of queries. However, there is no efficient algorithm that
solves the HSP using this information. Currently, the best known algorithm is due to

Kuperberg [18] and runs in subexponential time 2O(
√

logN).
The following is the main theorem of this paper. The dihedral coset problem is

described in the following paragraph.
Theorem 1.1. If there exists a solution to the dihedral coset problem with failure

parameter f, then there exists a quantum algorithm that solves the Θ(n
1
2+2f)-unique-

SVP.
The input to the dihedral coset problem (DCP) is a tensor product of a polynomial

number of registers. Each register is in the state

|0, x〉+ |1, (x+ d) mod N〉
for some arbitrary x ∈ {0, . . . , N − 1}, and d is the same for all registers. These can
also be thought of as cosets of the subgroup {(0, 0), (1, d)} in DN . Our goal is to find
the value d. In addition, we say that the DCP has a failure parameter f if each of
the registers with probability at most 1

(logN)f is in the state |b, x〉 for arbitrary b, x

instead of a coset state. We note that any algorithm that solves the dihedral HSP by
sampling cosets also solves the DCP for some failure parameter f. The reason is that
since the algorithm samples only a polynomial number of cosets, we can take f to be
large enough such that with high probability all the registers are coset states. This is
summarized in the following corollary.

Corollary 1.2. If there exists a solution to the dihedral HSP that samples
cosets (e.g., any solution using the “standard method”), then there exists a quantum
algorithm that solves poly(n)-unique-SVP.

The following is the second result of this paper. While still not an efficient solu-
tion, it shows a new way to approach the dihedral HSP. In the subset sum problem we
are given two integers t,N and a set of numbers. We are asked to find a subset of the
numbers that sums to t modulo N . A legal input is an input for which such a subset
exists (a formal definition appears in section 4) and we are interested in algorithms
that solve a nonnegligible fraction of the inputs.

Theorem 1.3. If there exists an algorithm S that solves 1
poly(logN) of the legal

subset sum inputs with parameter N , then there exists a solution to the DCP with
failure parameter f = 1.

As shown in [7], the dihedral HSP can be reduced to the case where the subgroup
is of the form {(0, 0), (1, d)}. Then, by sampling cosets, we obtain states of the form
|0, x〉+ |1, (x+ d) mod N〉 with no error. Hence, we have the following.
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Corollary 1.4. If there exists an algorithm S that solves 1
poly(logN) of the legal

subset sum inputs with parameter N , then there exists a solution to the dihedral HSP.

Finally, as a curiosity, let us comment that by combining the two previous theo-
rems one can obtain the following corollary.

Corollary 1.5. If there exists an algorithm that solves 1
poly(logN) of the legal

subset sum inputs with parameter N , then there exists a quantum algorithm for the
Θ(n2.5)-unique-SVP.

This result can be described as a worst-case to average-case quantum reduction.
Such reductions are already known in the classical case [1, 3, 4, 20, 23]. The exponent
2.5 in our reduction is better than the one in [1, 3, 4, 20]. However, the reduction
in [23], which appeared after the original publication of the current paper, further
improves the exponent to 1.5 and hence subsumes our reduction. In addition, unlike
the classical reductions, our subset sum problems have a density of one; i.e., the size
of the input set is very close to logN . Therefore, some cryptographic applications
such as the one by Impagliazzo and Naor [14] cannot be used.

Intuitive overview. Before proceeding to the main part of the paper, we de-
scribe our methods in a somewhat intuitive way. First, let us describe the methods
used in solving the unique-SVP. Recall that our solution is based on a solution to the
DCP. We begin by showing how such a solution can be used to solve a slightly differ-
ent problem, which we call the two-point problem. Instead of a superposition of two
numbers with a fixed difference, our input consists of registers in a superposition of
two n-dimensional vectors with a fixed difference. Then the idea is to create an input
to the two-point problem in the following way. Start by creating a superposition of
many lattice points and collapse the state to just two lattice points whose difference
is the shortest vector. Repeating this procedure creates an input to the two-point
problem, whose solution is the shortest vector.

Collapsing the state is performed by partitioning the space into cubes. Assume
the partition has the property that in each cube there are exactly two lattice points
whose difference is the shortest vector. Then we compute the cube in which each
point is located and measure the result. The state collapses to a superposition of just
the two points inside the cube we measured. The important thing is to make sure
that exactly two points are located in each cube. First, in order to make sure that the
cubes are not aligned with the lattice, we randomly translate them. The length of the
cubes is proportional to the length of the shortest vector. Although the exact length
of the shortest vector is unknown, we can try several estimates until we find the right
value. Since the lattice has a unique shortest vector, all other nonparallel vectors
are considerably longer and do not fit inside a cube. Therefore we know that the
difference between any two points inside the same cube is a multiple of the shortest
vector. Still, this is not good enough since instead of two points inside each box we
are likely to have more points aligned along the shortest vector. Hence, we space out
the lattice: instead of creating a superposition of all the lattice points we create a
superposition of a subset of the points. The set of points created by this technique
has the property that along the direction of the shortest vector there are pairs of
points whose difference is the shortest vector and the distance between two such pairs
is much larger than the shortest vector. As before, this can be done without knowing
the shortest vector by trying several possibilities.

The second part of the paper describes a solution to the DCP with failure param-
eter 1 which uses a solution to the average-case subset sum problem. Recall that we
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are given registers of the form

|0, x〉+ |1, (x+ d) mod N〉,
where x ∈ {0, . . . , N−1} is arbitrary, and we wish to find d ∈ {0, . . . , N−1}. Consider
one such register. We begin by applying the Fourier transform to the second part of
the register (the one holding x and x + d) and then measuring it. If a is the value
we measured, the state collapses to a combination of the basis states |0〉 and |1〉 such
that their phase difference is 2π ad

N . If we were lucky enough to measure a = 1, then

the phase difference is 2π d
N and by measuring this phase difference we can obtain

an estimation on d. This, however, happens with exponentially small probability.
Since the phase is modulo 2π, extracting the value d is much harder when a is larger.
Instead, we perform the same process on r registers and let a1, . . . , ar be the values
we measure. The resulting tensor state includes a combination of all 2r different 0, 1
sequences. The phase of each sequence can be described as follows. By ignoring a
fixed phase, we can assume that the phase of the sequence 00 . . . 0 is 0. Then the
phase of the sequence 100 . . . 0 is 2π a1d

N and, in general, the phase of the sequence

α1α2 . . . αr is 2π d
N multiplied by the sum of the values ai for which αi = 1. This

indicates that we should try to measure the phase difference of two sequences whose
sums differ by 1. However, although we can estimate the phase difference of one qubit,
estimating the phase difference of two arbitrary sequences is not possible.

We proceed by choosing r to be very close to logN . This creates a situation in
which for almost every t ∈ {0, . . . , N − 1} there is a subset whose sum modulo N is t
and, in addition, there are not too many subsets that sum to the same t modulo N .
Assume for simplicity that every t has exactly one subset that sums to t modulo N .
We calculate for each sequence the value � t2�, where t is its sum. After measuring the
result, say s, we know that the state is a superposition of two sequences: one that sums
to 2s and one that sums to 2s+ 1. Notice that since a1, . . . , ar are uniformly chosen
between {0, . . . , N−1} we can use them as an input to the subset sum algorithm. The
key observation here is that the subset sum algorithm provides the reverse mapping,
i.e., from a value t to a subset that sums to t. So, from s we can find the sequence
α1 that sums to 2s and the sequence α2 that sums to 2s + 1. Since we know that
the state is a superposition of |α1〉 and |α2〉 we can use a unitary transformation
that transforms |α1〉 to |0〉 and |α2〉 to |1〉. Now, since the two states differ in one
qubit, we can easily measure the phase difference and obtain an estimate on d. This
almost completes the description of the DCP algorithm. The estimate on d is only
polynomially accurate but in order to find d we need exponential accuracy. Hence, we
repeat the same process with pairs whose difference is higher. So, instead of choosing
pairs of difference 1 we choose pairs of difference 2 to get an estimate on 2d, then 4
to get an estimate on 4d and so on.1

Outline. The next section contains some notation that is used in this paper. The
two main sections of this paper are independent. In section 3 we prove Theorem 1.1,
and section 4 contains the proof of Theorem 1.3.

2. Preliminaries. We denote the imaginary unit by ı and use the notation
e(x) = e2πıx. Occasionally, we omit the normalization of quantum states. We use the

1This description is very similar to the method of exponentially accurate phase estimation used in
Kitaev’s algorithm [17]. Actually, our case is slightly more difficult because we cannot measure all the
multiples 2i. Nevertheless, we can measure enough multiples of the phase to guarantee exponential
accuracy.
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term n-ball to refer to the n-dimensional solid body and the term sphere to refer to its
surface. We denote the set {1, . . . , n} by [n]. All logarithms are of base 2. We use δij
to denote the Kronecker delta, i.e., 1 if i = j and 0 otherwise. A sequence ᾱ ∈ {0, 1}r
is identified with the set {i | αi = 1}. Several constants appear in our proofs. To make
it easier to follow, we denote constants with a subscript that is somewhat related to
their meaning. Specifically, in section 3, ccub is related to the cubes that partition
the space, cbal is related to the radius of the balls, and cunq appears in the guarantee
of the unique shortest vector. Also, in section 4 we use cr in the definition of the
parameter r, cs in our assumptions on the subset sum subroutine and cm when we
prove the existence of matchings.

The following is the formal definition of the DCP.
Definition 2.1. The input to the DCP with failure parameter f consists of

poly(logN) registers. Each register is with probability at least 1− 1
(logN)f in the state

1√
2
(|0, x〉+ |1, (x+ d) mod N〉)

on 1+ �logN� qubits, where x ∈ {0, . . . , N −1} is arbitrary and d is fixed. Otherwise,
with probability at most 1

(logN)f , its state is |b, x〉, where b ∈ {0, 1} and x ∈ {0, . . . , N−
1} are arbitrary. We call such a register a “bad” register. We say that an algorithm
solves the DCP if it outputs d with probability poly( 1

logN ) in time poly(logN).

3. A quantum algorithm for unique-SVP. In this section we prove Theo-
rem 1.1. We begin by showing a simple reduction from the two-point problem to the
DCP in section 3.1. We then prove a weaker version of Theorem 1.1 with Θ(n1+2f)

instead of Θ(n
1
2+2f) in section 3.2. We complete the proof of Theorem 1.1 in section

3.3. Throughout this section, we use a failure parameter f > 0 in order to make our
results more general. The reader might find it easier to take f = 1.

3.1. The two-point problem.
Definition 3.1. The input to the two-point problem with failure parameter f con-

sists of poly(n logM) registers. Each register is with probability at least 1− 1
(n log(2M))f

in the state

1√
2
(|0, ā〉+ |1, ā′〉)

on 1 + n�logM� qubits, where ā, ā′ ∈ {0, . . . ,M − 1}n are arbitrary such that ā′ − ā
is fixed. Otherwise, with probability at most 1

(n log(2M))f , its state is |b, ā〉, where b ∈
{0, 1} and ā ∈ {0, . . . ,M−1}n are arbitrary. We say that an algorithm solves the two-
point problem if it outputs ā′− ā with probability poly( 1

n logM ) in time poly(n logM).
Lemma 3.2. If there exists an algorithm that solves the DCP with failure pa-

rameter f, then there is an algorithm that solves the two-point problem with failure
parameter f.

Proof. Consider the following mapping from {0, . . . ,M −1}n to {0, . . . , (2M)n−
1}:

f(a1, . . . , an) = a1 + a2 · 2M + · · ·+ an(2M)n−1.

Given an input to the two-point problem, we create an input to the DCP by using
the above mapping on the last n�logM� qubits of each register. Hence, each register
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is with probability at least 1− 1
(n(log 2M))f in the state

1√
2
(|0, f(ā)〉+ |1, f(ā′)〉).

The difference f(ā′)− f(ā) is

(a′1 − a1) + (a′2 − a2) · 2M + · · ·+ (a′n − an)(2M)n−1

and is therefore fixed. Otherwise, with probability at most 1
(n(log 2M))f the register

is in the state |b, f(ā)〉 for arbitrary b, ā. This is a valid input to the DCP with
N = (2M)n since the probability of a bad register is at most 1

(n log(2M))f = 1
(logN)f .

Using the DCP algorithm with the above input, we obtain the difference

b1 + b2 · 2M + · · ·+ bn(2M)n−1,

where bi = a′i − ai. In order to extract the bi’s, we add

M +M · 2M +M(2M)2 + · · ·+M(2M)n−1.

Extracting bi from

(b1 +M) + (b2 +M) · 2M + · · ·+ (bn +M)(2M)n−1

is possible since each bi +M is an integer in the range 1 to 2M − 1. The solution to
the two-point problem is the vector (b1, . . . , bn).

3.2. A weaker algorithm. We recall several facts about an LLL-reduced basis.
Such a basis can be found for any lattice by using a polynomial time algorithm [19].
Given a basis 〈b̄1, . . . , b̄n〉, let 〈b̄∗1, . . . , b̄∗n〉 be its Gram–Schmidt orthogonalization.
That is, b̄∗i is the component of b̄i orthogonal to the subspace spanned by b̄1, . . . , b̄i−1.
An LLL-reduced basis 〈b̄1, . . . , b̄n〉 satisfies that

‖b̄∗i ‖ ≤
√

2‖b̄∗i+1‖

and that for i > j,

|〈b̄i, b̄∗j 〉| ≤
1

2
‖b̄∗j‖2.

In addition, recall that mini ‖b̄∗i ‖ is a lower bound on the length of the shortest vector.
Since b̄∗1 = b̄1 and ‖b̄∗1‖ ≤ 2(i−1)/2‖b̄∗i ‖ we get that the vector b̄1 is at most 2(n−1)/2

times longer than the shortest vector. Consider the representation of the LLL basis
in the orthonormal basis 〈

b̄∗1
‖b̄∗1‖

, . . . ,
b̄∗n
‖b̄∗n‖

〉
.

The vector b̄i can be written as (bi1, bi2, . . . , bii, 0, . . . , 0). Notice that bii = ‖b̄∗i ‖ and
that |bij | ≤ 1

2‖b̄∗j‖ for every i > j. In the following, ū denotes the shortest vector.
Lemma 3.3. Consider the representation of the shortest vector ū in the LLL-

reduced lattice basis ū =
∑n

i=1 uib̄i. Then |ui| ≤ 22n for i ∈ [n].
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Proof. Changing to the orthonormal basis,

ū =

n∑
i=1

uib̄i =

n∑
i=1

⎛⎝ n∑
j=i

ujbj,i

⎞⎠ b̄∗i
‖b̄∗i ‖

.

In addition, we know that ‖b̄∗i ‖ ≥ 2−(i−1)/2‖b̄∗1‖ ≥ 2−n‖ū‖. Hence,∣∣∣∣∣∣
n∑

j=i

ujbj,i

∣∣∣∣∣∣ ≤ 2n‖b̄∗i ‖

for every i ∈ [n]. By taking i = n we get that |un| is at most 2n. We continue
inductively and show that |uk| ≤ 22n−k. Assume that the claim holds for uk+1, . . . , un.
Then∣∣∣∣∣∣

n∑
j=k+1

ujbj,k

∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣
n∑

j=k+1

uj

∣∣∣∣∣∣ ‖b̄∗k‖ ≤ 1

2

⎛⎝ n∑
j=k+1

22n−j

⎞⎠ ‖b̄∗k‖ ≤ 1

2
· 22n−k‖b̄∗k‖.

By the triangle inequality,

|ukbk,k| ≤
∣∣∣∣∣∣

n∑
j=k+1

ujbj,k

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=k

ujbj,k

∣∣∣∣∣∣ ≤
(

1

2
22n−k + 2n

)
‖b̄∗k‖ ≤ 22n−k‖b̄∗k‖

and the proof is completed.
Let p > n2+2f be any fixed prime. The following is the main lemma of this section.
Lemma 3.4. For any f > 0, if there exists a solution to the two-point problem

with failure parameter f, then the following holds. There exists a quantum algorithm
that, given a (cunqn

1+2f)-unique lattice for some large enough constant cunq > 0 whose
shortest vector is ū =

∑n
i=1 uib̄i, two integers m, i0 and a number l returns(
u1, . . . , ui0−1,

ui0 −m
p

, ui0+1, . . . , un

)
,

with probability 1/poly(n) if the following conditions hold: ‖ū‖ ≤ l ≤ 2‖ū‖, ui0 ≡
m (mod p), and 1 ≤ m ≤ p− 1.

We first show how this lemma implies Theorem 1.1 with Θ(n1+2f) by describing
the SVP algorithm. According to Lemma 3.2 and the assumption of the theorem,
there exists a solution to the two-point problem with failure parameter f. Hence,
Lemma 3.4 implies that there exists an algorithm that, given the right values of
l,m, i0, outputs (

u1, . . . , ui0−1,
ui0 −m

p
, ui0+1, . . . , un

)
.

The value l is an estimate of the length of the shortest vector ū. Because the LLL
algorithm gives a 2(n−1)/2-approximation to the length of the shortest vector, one
of (n − 1)/2 different values of l is as required. In addition, since ū is the shortest
vector, ū/p cannot be a lattice vector, and therefore there exists an i0 such that
ui0 ≡ 0 (mod p). Hence, there are only O(pn2) possible values for l,m, and i0. With
each of these values the SVP algorithm calls the algorithm of Lemma 3.4 a polynomial
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number of times. With high probability in one of these calls the algorithm returns
the vector (

u1, . . . , ui0−1,
ui0 −m

p
, ui0+1, . . . , un

)
,

from which ū can be extracted. The results of the other calls can be easily discarded
because they are either longer lattice vectors or nonlattice vectors.

Proof of Lemma 3.4. We start by applying the LLL algorithm to the unique
lattice in order to create a reduced basis. Denote the resulting basis by 〈b̄1, . . . , b̄n〉.
Let 〈ē1, . . . , ēn〉 be the standard orthonormal basis of R

n.
Let w1, . . . , wn be n real values in [0, 1) and let M = 24n. Assume without loss

of generality that i0 = 1. The function f is defined as

f(t, ā) = (a1p+ tm)b̄1 +

n∑
i=2

aib̄i,

where t ∈ {0, 1} and ā = (a1, . . . , an) ∈ A = {0, . . . ,M − 1}n. It maps the elements
of {0, 1} × A to lattice points. In addition, consider a lattice vector v̄ represented in
the orthonormal basis v̄ =

∑n
i=1 viēi. The function g maps v̄ to the vector(

�v1/(ccubn
1
2+2f · l)− w1�, . . . , �vn/(ccubn

1
2+2f · l)− wn�

)
in Z

n, where the constant ccub > 0 will be specified later.
In the following, we describe a routine that creates one register in the input to

the two-point problem that hides the difference(
u1, . . . , ui0−1,

ui0 −m
p

, ui0+1, . . . , un

)
.

We call the routine poly(n logM) = poly(n) times in order to create a complete input
to the two-point problem. We then call the two-point algorithm and output its result.
This completes the proof of the lemma since with probability 1/poly(n logM) =
1/poly(n) our output is correct.

The routine starts by choosing w1, . . . , wn uniformly from [0, 1). We create the
state

1√
2Mn

∑
t∈{0,1},ā∈A

|t, ā〉.

Then we compute the function F = g ◦ f and measure the result, say r1, . . . , rn. The
state collapses to (normalization omitted)∑

t ∈ {0, 1} ā ∈ A
F (t, ā) = (r1, . . . , rn)

|t, ā〉|r1, . . . , rn〉.

This completes the description of the routine. Its correctness is shown in the next
two claims.

Claim 3.5. For every r̄ ∈ Z
n, there is at most one element of the form (0, ā)

and at most one element of the form (1, ā′) that get mapped to r̄ by F . Moreover, if
both (0, ā) and (1, ā′) get mapped to r̄, then ā′ − ā is the vector(

u1 −m
p

, u2, . . . , um

)
.
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Proof. Consider two different lattice points in the image of f , v̄ = f(t, ā) and
v̄′ = f(t′, ā′), that get mapped to r̄ by g. Let v̄ =

∑n
i=1 viēi and v̄′ =

∑n
i=1 v

′
iēi be

their representation in the orthonormal basis. If v̄′− v̄ is not a multiple of the shortest
vector, then

‖v̄′ − v̄‖ > cunqn
1+2f‖ū‖ ≥ 1

2
cunqn

1+2f · l.

Therefore, there exists a coordinate i ∈ [n] such that |v′i− vi| ≥ 1
2cunqn

1
2+2f · l, and for

cunq > 2ccub this implies g(v̄) = g(v̄′) no matter how w1, . . . , wn are chosen. Hence,
v̄′ − v̄ = k · ū for some integer k = 0. By considering the first coordinate of v̄′ − v̄ in
the lattice basis, we get that

(a′1p+ t′m)− (a1p+ tm) ≡ k ·m (mod p).

This implies that k ≡ t′ − t (mod p). If t = t′, then k ≡ 0 (mod p), which implies
that |k| ≥ p. Thus,

‖v̄′ − v̄‖ ≥ p‖ū‖ > ccubn
1+2f · l

and, again, g(v̄) = g(v̄′). This proves the first part of the claim. For the second part,
let t = 0 and t′ = 1. Then k ≡ 1 (mod p). As before, this can happen only when
k = 1, and hence the second part of the claim holds.

Hence, it is enough to show that the probability that this register is bad is low
enough. The probability of measuring |r1, . . . , rn〉 equals

1

2Mn
· |{(t, ā) | F (t, ā) = (r1, . . . , rn)}| .

Notice that this probability is the same as the probability that F (t, ā) = (r1, . . . , rn)
for randomly chosen t and ā. Hence, we consider a randomly chosen t and ā. If t = 0,
let

ā′ =

(
a1 +

u1 −m
p

, a2 + u2, . . . , an + un

)
,

and if t = 1 let

ā′ =

(
a1 − u1 −m

p
, a2 − u2, . . . , an − un

)
.

Claim 3.6. With probability at least 1 − 1
(n log(2M))f , for randomly chosen t and

ā, ā′ is in A and F (1− t, ā′) = F (t, ā).
Proof. We assume that t = 0, and the proof for t = 1 is similar. According

to Lemma 3.3, |ui| < 22n. Hence, unless there exists an i for which ai < 22n or
ai > M − 22n, ā′ is guaranteed to be in A. This happens with probability at most
n22n+1/M because ā is a random element of A.

Notice that f(1, ā′) − f(0, ā) = ū. Since w1, . . . , wn are randomly chosen, the
probability that F (1− t, ā′) and F (t, ā) differ on the ith coordinate is at most

|〈ū, ēi〉|
ccubn

1
2+2f · l ≤

|〈ū, ēi〉|
ccubn

1
2+2f · ‖ū‖ .
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By the union bound, the probability that F (1− t, ā′) = F (t, ā) is at most∑
i |〈ū, ēi〉|

ccubn
1
2+2f · ‖ū‖ ≤

1

ccubn2f
,

where we used the fact that the l1 norm of a vector is at most
√
n times its l2 norm.

The sum of the two error probabilities n 22n+1

M + 1
ccubn2f is at most 1

(n log(2M))f for

ccub large enough.
This concludes the proof of Lemma 3.4.

3.3. An improved algorithm. In this section we complete the proof of Theo-
rem 1.1. The algorithm we describe has many similarities with the one in the previous
section. The main difference is that it is based on n-dimensional balls instead of cubes.
The idea is to construct a ball of the right radius around lattice points and to show
that if two lattice points are close, then the two balls have a large intersection, while
for any two far lattice points the balls do not intersect. For technical reasons, we will
assume in this section that the lattice is a subset of Z

n. Any lattice with rational
points can be scaled so that it is a subset of Z

n. We begin with some technical claims.
Claim 3.7. For any R > 0, let Bn be the ball of radius R centered around the

origin in R
n and let B′

n = Bn+ d̄ for some vector d̄ be a shifted ball. Then the relative
n-dimensional volume of their intersection is at least 1−O(

√
n‖d̄‖/R), i.e.,

vol(Bn ∩B′
n)

vol(Bn)
≥ 1−O(

√
n‖d̄‖/R).

Proof. Consider a point x̄ ∈ R
n such that 〈x̄, d̄〉/‖d̄‖ ≥ ‖d̄‖/2, i.e., a point which is

closer to the center of B′
n than to the center of Bn. Notice that x̄ ∈ Bn implies x̄ ∈ B′

n.
In other words, the cap Cn of Bn given by all such points x̄ is contained in Bn ∩B′

n.
By using a symmetric argument for points x̄ ∈ R

n such that 〈x̄, d̄〉/‖d̄‖ < ‖d̄‖/2, we
get

vol(Bn ∩B′
n) = 2 · vol(Cn).

We can lower bound the volume of Cn by half the volume of Bn minus the volume of
an n-dimensional cylinder of radius R and height ‖d̄‖/2:

vol(Cn) ≥ 1

2
vol(Bn)− ‖d̄‖

2
vol(Bn−1),

where Bn−1 is the n−1-ball of radius R. We complete the proof by using the estimate
vol(Bn−1)/vol(Bn) = O(

√
n/R),

vol(Cn)/vol(Bn) ≥ 1

2
−O(

√
n‖d̄‖/R).

In the algorithm we will actually represent the balls using points of a fine grid.
Therefore, we would like to say that the above claim still holds if we consider the
number of grid points inside Bn, B′

n, and Bn ∩ B′
n instead of their volumes. The

following claim is more than enough for our needs.
Claim 3.8 (special case of Proposition 8.7 in [21]). Let L be an integer and

consider the scaled integer grid 1
LZ

n. Then, for any convex body Q that contains a
ball of radius r ≥ 1

Ln
1.5, ∣∣∣∣ | 1LZ

n ∩Q|
Lnvol(Q)

− 1

∣∣∣∣ < 2n1.5

rL
.



748 ODED REGEV

Corollary 3.9. Let L = 2n and consider the scaled integer grid 1
LZ

n. For
any R ≥ 1, let Bn be the ball of radius R centered around the origin in R

n and let
B′

n = Bn + d̄ for some vector d̄ such that R/poly(n) ≤ ‖d̄‖ ≤ R. Then the relative
number of grid points in their intersection is at least 1−O(

√
n‖d̄‖/R), i.e.,

| 1LZ
n ∩Bn ∩B′

n|
| 1LZn ∩Bn|

≥ 1−O(
√
n‖d̄‖/R).

Proof. We first note that Bn, B′
n, and Bn ∩ B′

n all contain the ball of radius
R/2 ≥ 1/2 centered around d̄/2. Using Claim 3.8 we obtain that the number of
grid points in these bodies approximates their volume up to a multiplicative error of
2n1.5

L/2 = 2−Ω(n). We complete the proof by using Claim 3.7.

Let D(·, ·) denote the trace distance between two quantum states [22], i.e.,

D(σ1, σ2) =
1

2
tr
√

(σ1 − σ2)†(σ1 − σ2).

It is known that the trace distance represents the maximum probability of distin-
guishing between the two states using quantum measurements. We need the following
simple bound on the trace distance.

Claim 3.10. For all k > 0 and density matrices σ1, . . . , σk, σ
′
1, . . . , σ

′
k,

D(σ1 ⊗ · · · ⊗ σk, σ′
1 ⊗ · · · ⊗ σ′

k) ≤
k∑

i=1

D(σi, σ
′
i).

Proof. Using the triangle inequality,

D(σ1 ⊗ · · · ⊗ σk, σ′
1 ⊗ · · · ⊗ σ′

k)

≤ D(σ1 ⊗ · · · ⊗ σk, σ′
1 ⊗ σ2 ⊗ · · · ⊗ σk)

+D(σ′
1 ⊗ σ2 ⊗ · · · ⊗ σk, σ′

1 ⊗ σ′
2 ⊗ σ3 ⊗ · · · ⊗ σk) + · · ·

+D(σ′
1 ⊗ · · · ⊗ σ′

k−1 ⊗ σk, σ′
1 ⊗ · · · ⊗ σ′

k)

= D(σ1, σ
′
1) +D(σ2, σ

′
2) + · · ·+D(σk, σ

′
k).

In addition, we will need the following lemma.
Lemma 3.11. For any 1 ≤ R ≤ 2poly(n), let

|η〉 =
1√

| 1LZn ∩Bn|
∑

x̄∈ 1
L Zn∩Bn

|x̄〉

be the uniform superposition on grid points inside a ball of radius R around the origin
where L = 2n. Then, for any c > 0, a state |η̃〉 whose trace distance from |η〉 is at
most 1/nc can be efficiently computed.

Proof. In order to bound the trace distance, we will use the fact that for any two
pure states |ψ1〉, |ψ2〉,

D(|ψ1〉, |ψ2〉) =
√

1− |〈ψ1|ψ2〉|2 ≤ ‖|ψ1〉 − |ψ2〉‖2.(3.1)

The first equality appears in [22], and the inequality follows by a simple calculation.
Consider the (continuous) uniform probability distribution q over Bn. Then one

can define its discretization q′ to the grid 1
LZ

n as

q′(x̄) =

∫
x̄+[0,1/L]n

q(ȳ)dȳ
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for x̄ ∈ 1
LZ

n. In other words, q′(x̄) is proportional to the volume of the intersection
of Bn with the cube x̄+ [0, 1/L]n. Notice that for points x̄ such that x̄+ [0, 1/L]n is
completely contained in Bn, q′(x̄) = 1/(Lnvol(Bn)). We claim that the state

|η′〉 =
∑

x̄∈ 1
L Zn

√
q′(x̄)|x̄〉

is exponentially close to |η〉. Intuitively, this holds since the two differ only on points
which are very close to the boundary of the ball, namely, of distance

√
n/L from the

boundary. The number of such points is negligible compared to the number of points
in the interior of the ball. More formally, define

|η′′〉 =

√
Lnvol(Bn)

| 1LZn ∩Bn|
|η′〉.

Using (3.1),

D(|η〉, |η′〉) ≤ ‖|η′〉 − |η〉‖2 ≤ ‖|η′〉 − |η′′〉‖2 + ‖|η′′〉 − |η〉‖2.

The first term is at most 2−Ω(n) according to Claim 3.8. For the second term, notice
that the amplitudes of |η′′〉 and |η〉 are the same except possibly on points x̄ of
distance

√
n/L from the boundary. Using Claim 3.8 again we get that the fraction of

such points is closely approximated by one minus the ratio of volumes of the ball of
radius R−√n/L and the ball of radius R. This ratio of volumes is

(1−√n/(RL))n ≥ (1−√n/L)n ≥ 1− n1.5/L = 1− 2−Ω(n).

In the following we show how to approximate the state |η′〉. This idea is essentially
due to Grover and Rudolph [10]. Let m ∈ Z be large enough so that Bn is contained
in the cube [−2m, 2m]n. Using our assumption on R, m < nc1 for some c1 ≥ 1. We
represent x̄ using K = n(m+1+ logL) < 2n1+c1 qubits, i.e., a block of m+1+ logL
qubits for each dimension. Hence, we can write |η′〉 as

|η′〉 =
∑

x1,...,xK∈{0,1}

√
q′(x1, . . . , xK)|x1, . . . , xK〉.

We now show an equivalent way of writing |η′〉. Let us extend the definition of q′

in the following way: for any k ≤ K and any x1, . . . , xk ∈ {0, 1} define q′(x1, . . . , xk)
as the sum of q′(x1, . . . , xk, xk+1, . . . , xK) over all sequences xk+1, . . . , xK ∈ {0, 1}.
Notice that q′(x1, . . . , xk) corresponds to the volume of the intersection of Bn with
a certain cuboid (also known as a rectangular parallelepiped). For example, q′(0) =
q′(1) = 1

2 since they represent the intersection of Bn with two halves of the cube
[−2m, 2m]n. Using the definition s(x1) = q′(x1) and for k > 1, s(x1, . . . , xk) =
q′(x1, . . . , xk)/q

′(x1, . . . , xk−1), we see that

|η′〉 =
∑

x1∈{0,1}

√
s(x1)

∑
x2∈{0,1}

√
s(x1, x2) . . .

∑
xK∈{0,1}

√
s(x1, . . . , xK)|x1, . . . , xK〉.

The algorithm starts with all K qubits in the state |0〉 and sets one qubit at a
time. The first qubit is rotated to the state 1√

2
(|0〉 + |1〉). Assume we are now in

the kth step after setting the state of qubits 1, . . . , k − 1. We use the fact that there



750 ODED REGEV

exists a classical algorithm for approximating the volume of a convex body up to any
1/poly(n) error (see [16] and the references therein). The body should be provided
by a “well-guaranteed weak membership oracle,” i.e., a sphere containing the body,
a sphere contained in the body, both of nonzero radius, and an oracle that, given a
point, decides whether it is inside the body or not. It is easy to construct such two
spheres and an oracle for a body given by the intersection of a ball with a cuboid.
Hence, we can compute two values s̃(x1, . . . , xk−1, 0) and s̃(x1, . . . , xk−1, 1) such that

s̃(x1, . . . , xk−1, 0) + s̃(x1, . . . , xk−1, 1) = 1

and ∣∣∣∣ s̃(x1, . . . , xk−1, i)

s(x1, . . . , xk−1, i)
− 1

∣∣∣∣ < n−c2

for i = 0, 1 and some constant c2 which will be chosen later. Then we rotate the ith
qubit to the state √

s̃(x1, . . . , xk−1, 0)|0〉+
√
s̃(x1, . . . , xk−1, 1)|1〉.

This completes the description of the procedure.
Notice that the amplitude of each basis state |x1, . . . , xK〉 in the resulting state

|η̃〉 is given by

K∏
k=1

√
s̃(x1, . . . , xk) ≥ (1− n−c2)K

K∏
k=1

√
s(x1, . . . , xk).

Hence the inner product 〈η̃|η′〉 is at least

(1− n−c2)K
∑

x1,...,xK∈{0,1}

K∏
k=1

s(x1, . . . , xk)

= (1− n−c2)K
∑

x1,...,xK∈{0,1}
q′(x1, . . . , xK)

= (1− n−c2)K ≥ 1−K · n−c2 ≥ 1− 2n1+c1−c2 .

Using (3.1),

D(|η′〉, |η̃〉) =
√

1− |〈η̃|η′〉|2 < n−c

for a large enough c2.
Let p > n2+2f be any fixed prime. The following is the main lemma of this section.

It essentially replaces Lemma 3.4 and hence implies Theorem 1.1.
Lemma 3.12. For any f > 0, if there exists a solution to the two-point problem

with failure parameter f, then the following holds. There exists a quantum algorithm
that, given a (cunqn

1
2+2f)-unique lattice for some large enough constant cunq > 0 whose

shortest vector is ū =
∑n

i=1 uib̄i, two integers m, i0 and a number l returns(
u1, . . . , ui0−1,

ui0 −m
p

, ui0+1, . . . , un

)
with probability 1/poly(n) if the following conditions hold: ‖ū‖ ≤ l ≤ 2‖ū‖, ui0 ≡
m (mod p), and 1 ≤ m ≤ p− 1.
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Proof. As before, let 〈b̄1, . . . , b̄n〉 be an LLL-reduced basis, let M = 24n, and
assume that i0 = 1. We also define f(t, ā) as before. Assume that the number of
registers needed by the two-point algorithm is at most nc1 for some constant c1 > 0.

The algorithm starts by calling the routine of Lemma 3.11 nc1 times with accuracy
parameter n−c2 and R = cbaln

1
2+2f · l for some constants c2, cbal > 0. The state we

obtain is

|η̃1〉 ⊗ · · · ⊗ |η̃nc1 〉,(3.2)

where each |η̃i〉 has a trace distance of at most n−c2 from |η〉. According to Claim 3.10,

the above tensor product has a trace distance of at most nc1−c2 from |η〉⊗nc1

. In the
following we show that the algorithm succeeds with probability at least n−c3 for some

c3 > 0 given the state |η〉⊗nc1

. This would complete the proof since, given the state
in (3.2), the algorithm succeeds with probability at least n−c3 − nc1−c2 > 1

2n
−c3 for

large enough c2.
We describe a routine that given the state |η〉 creates one register in the input

to the two-point problem. In order to produce a complete input to the two-point
problem, the algorithm calls this routine nc1 times, each time with a new |η〉 register.
It then calls the two-point algorithm and outputs the result. As required, the success
probability is 1/poly(n logM) = n−c3 for some c3 > 0.

Given |η〉, the routine creates the state

1√
2Mn

∑
t∈{0,1},ā∈A

|t, ā〉 ⊗ |η〉

or, equivalently, ∑
t∈{0,1},ā∈A,x̄∈ 1

L Zn∩Bn

|t, ā, x̄〉,

where Bn is the ball of radius R around the origin and L = 2n. We add the value
f(t, ā) to the last register, ∑

t∈{0,1},ā∈A,x̄∈ 1
L Zn∩Bn

|t, ā, f(t, ā) + x̄〉.

Finally, we measure the last register, and if x̄′ denotes the result, the state collapses
to ∑

t∈{0,1},ā∈A|x̄′∈f(t,ā)+ 1
L Zn∩Bn

|t, ā, x̄′〉.

Claim 3.13. For every x̄′, there is at most one element of the form (0, ā) and at
most one element of the form (1, ā′) such that x̄′ ∈ f(t, ā) + 1

LZ
n ∩Bn. Moreover, if

there are two such elements (0, ā) and (1, ā′), then ā′ − ā is the vector(
u1 −m

p
, u2, . . . , um

)
.

Proof. Consider two different lattice points in the image of f , v̄ = f(t, ā) and
v̄′ = f(t′, ā′), such that x̄′ is in both v̄ + 1

LZ
n ∩Bn and v̄′ + 1

LZ
n ∩Bn. This implies

that

‖v̄ − v̄′‖ ≤ cbaln
1
2+2f · l ≤ 2cbaln

1
2+2f · ‖ū‖.
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For cunq > 2cbal this means that v̄′ − v̄ = k · ū for some integer k = 0. As before, by
considering the first coordinate of v̄′ − v̄ in the lattice basis, we get that

(a′1p+ t′m)− (a1p+ tm) ≡ k ·m (mod p).

Hence, k ≡ t′ − t (mod p). If t = t′, then k ≡ 0 (mod p) and therefore |k| ≥ p, which
contradicts the above upper bound on the distance between v̄ and v̄′. This proves the
first part of the claim. For the second part, let t = 0 and t′ = 1. Then k ≡ 1 (mod p).
As before, this can happen only when k = 1, and hence the second part of the claim
holds.

Notice that the probability of measuring x̄′ is the same as that obtained by first
choosing random t and ā and then choosing a random point in f(t, ā) + 1

LZ
n ∩ Bn.

Let us define for any t and ā the vector ā′ as before.
Claim 3.14. With probability at least 1 − 1

(n log(2M))f , for randomly chosen t

and ā and a random point x̄′ in f(t, ā) + 1
LZ

n ∩ Bn, ā′ is in A and x̄′ is also in
f(1− t, ā′) + 1

LZ
n ∩Bn.

Proof. According to Lemma 3.3, |ui| < 22n. Hence, unless there exists an i for
which ai < 22n or ai > M − 22n, ā′ is guaranteed to be in A. This happens with
probability at most n22n+1/M because ā is a random element of A.

Fix ā, ā′ ∈ A. We would like to show that if x̄′ is chosen uniformly from f(t, ā) +
1
LZ

n ∩Bn, then with high probability it is also in

f(1− t, ā′) +
1

L
Z
n ∩Bn.

By translating both sets by −f(t, ā), we get the equivalent statement that if x̄′ is
chosen uniformly from 1

LZ
n ∩ Bn, then with high probability it is also in (f(1 −

t, ā′) − f(t, ā)) + 1
LZ

n ∩ Bn. Since we assumed that our lattice is a subset of Z
n,

f(1− t, ā′)− f(t, ā) ∈ Z
n and the latter set equals 1

LZ
n ∩ (f(1− t, ā′)− f(t, ā) +Bn).

Using Corollary 3.9 and the fact that ‖f(1 − t, ā′) − f(t, ā)‖ = ‖ū‖ ≤ l, we get that
the required probability is at least

1−O(
√
nl/R) = 1−O(

√
nl/(cbaln

1
2+2f · l)) = 1−O(1/(cbaln

2f)).

The sum of the two error probabilities n22n+1/M + O(1/(cbaln
2f)) is at most

1
(n log(2M))f for cbal large enough.

This concludes the proof of Lemma 3.12.

4. The dihedral coset problem. We begin this section with a description of
the average-case subset sum problem. We describe our assumptions on the subroutine
that solves it and prove some properties of such a subroutine. In the second subsection
we present an algorithm that solves the DCP with calls to an average-case subset sum
subroutine.

4.1. Subset sum. The subset sum problem is defined as follows. An input is a
sequence of numbers A = (a1, . . . , ar) and two numbers t,N . The output is a subset
B ⊆ [r] such that

∑
i∈B ai ≡ t (mod N). Let a legal input be an input for which

there exists a subset B with
∑

i∈B ai ≡ t (mod N). For a constant cr > 0, we fix r
to be logN + cr since we will only be interested in such instances. First we show that
there are many legal inputs.

Lemma 4.1. Let cr be a large enough constant. Then, for randomly chosen
a1, . . . , ar, t in {0, . . . , N − 1}, the probability that there is no B ⊆ [r] such that∑

i∈B ai ≡ t (mod N) is at most 1
2 .
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Proof. Fix a value of t. For each b̄ ∈ {0, 1}r, b̄ = 0r, define a random variable Xb̄

as
∑

i biai mod N . It is easy to check that for any b̄ = 0r, Xb̄ is uniformly distributed
on {0, . . . , N − 1} and that the random variables Xb̄ are pairwise independent. For
every b̄ ∈ {0, 1}r, b̄ = 0r, define a random variable Yb̄ as 1 if Xb̄ = t and 0 otherwise.
Then the expectation of Yb̄ is 1

N and its variance is 1
N − 1

N2 <
1
N . Hence,

E

[∑
b̄

Yb̄

]
=
∑
b̄

E[Yb̄] =
2r − 1

N
.

The Yb̄’s are defined as a function of the Xb̄’s and are therefore also pairwise inde-
pendent. Therefore, by the Chebyshev bound,

Pr

[∑
b̄

Yb̄ <
1

2
· 2

r − 1

N

]
≤ 4 · N

2r − 1
≤ 8

2cr
.

In particular, the probability of
∑

b̄ Yb̄ = 0, that is, the probability that there is no B
such that

∑
i∈B ai ≡ t (mod N), is at most 8

2cr = 1
2 for cr = 4.

We assume that we are given a deterministic subroutine S that answers a 1
logcs N

fraction of the legal subset sum inputs with parameter N , where cs > 0 is any con-
stant.2 The previous lemma implies that S answers a nonnegligible fraction of all
inputs (and not just the legal inputs). We denote by S(A, t) the result of the subrou-
tine S on the input A = (a1, . . . , ar), t and we omit N . This result can be either a
set or an error. We assume that whenever S(A, t) is not an error, it is correct; i.e.,
it represents a subset of A that sums to t modulo N . This can be assumed without
loss of generality since we can easily check the correctness of any output of S. Let
S(A) denote the set of t’s for which the subroutine returns a set and not an error,
i.e., S(A) = {t | S(A, t) = error}.

Lemma 4.2. For randomly chosen a1, . . . , ar in {0, . . . , N − 1},

Pr
A

[
|S(A)| ≥ N

4 logcs N

]
= Ω

(
1

logcs N

)
,

where A = (a1, . . . , ar).
Proof. Since S(A, t) = error only when (A, t) is a legal input,

Pr
A,t

[S(A, t) = error]

= Pr
A,t

[ S(A, t) = error ∧ (A, t) is legal ]

= Pr
A,t

[ S(A, t) = error | (A, t) is legal ] · Pr
A,t

[ (A, t) is legal ] ≥ 1

2 logcs N
.

In addition,

Pr
A,t

[S(A, t) = error] = EA

[ |S(A)|
N

]
≤ Pr

A

[
|S(A)| ≥ N

4 logcs N

]
+ Pr

A

[
|S(A)| < N

4 logcs N

]
· 1

4 logcs N

≤ Pr
A

[
|S(A)| ≥ N

4 logcs N

]
+

1

4 logcs N
.

2We could also consider randomized routines S, but this makes essentially no difference: there is
always a way to fix the random coins of a randomized routine such that the resulting deterministic
routine answers an equally large fraction of the inputs.
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We complete the proof by combining the two inequalities.
Lemma 4.3. Let T ⊆ {0, . . . , N − 1} be a set such that |T | > N

s for a certain s.

Then, for any q < N
8s there exists q′ ∈ {q, 2q, . . . , sq} such that the number of pairs

t, t+ q′ that are both in T is Ω(N
s3 ).

Proof. Define the partition of T into sets T0, . . . , Tq−1 as

Tk = {i | i ∈ T, i ≡ k (mod q)}.
At least q

2s of the sets are of size at least N
2sq since their union is T and q

2s ·Nq + N
2s < |T |.

Let Ti be such a set and for t ∈ Ti consider the values

t+ q, t+ 2q, . . . , t+ 4sq.

Therefore, the number of t ∈ Ti such that none of these values is in Ti is less than N
4sq

because

|{i | 0 ≤ i < N, i ≡ k (mod q)}| = N

q
.

Therefore, more than |Ti| − N
4sq ≥ N

4sq of the elements t ∈ Ti are such that one of

t+ q, t+ 2q, . . . , t+ 4sq

is also in Ti. Summing over all sets Ti such that |Ti| ≥ N
2sq , there are at least

N
4sq · q

2s = N
8s2 elements t ∈ T for which one of t + q, t + 2q, . . . , t + 4sq is also in T .

Thus, there exists a q′ ∈ {q, 2q, . . . , 4sq} such that the number of t ∈ T for which
t+ q′ ∈ T is at least N

32s3 .
Definition 4.4. A partial function f : {0, . . . , N − 1} → {0, . . . , N − 1} is called

a matching if for all i such that f(i) is defined, f(i) = i and f(f(i)) = i. A matching
is a q-matching if for all i such that f(i) is defined, |f(i)− i| = q. We define an equal
partition of the domain of a matching f by A1(f) = {i | f(i) defined ∧ f(i) > i}
and A2(f) = {i | f(i) defined ∧ f(i) < i}. The intersection of a matching f and a
set T ⊆ {0, . . . , N − 1} is the set {i | i ∈ T ∧ f(i) ∈ T}.

For any q we define the following q-matchings:

f1
q (t) =

⎧⎨⎩
t+ q t mod 2q < q, t+ q < N,
t− q t mod 2q ≥ q, t− q ≥ 0,
undefined otherwise.

f2
q (t) =

⎧⎨⎩
t− q t mod 2q < q, t− q ≥ 0,
t+ q t mod 2q ≥ q, t+ q < N,
undefined otherwise.

Lemma 4.5. There exists a constant cm such that for any integer q < N
logcm N

there exists a matching f among the 2 logcm N matchings

f1
q , f

1
2q, . . . , f

1
logcm Nq, f

2
q , f

2
2q, . . . , f

2
logcm Nq

such that with probability at least 1
logcm N on the choice of A, the intersection of f and

S(A) is N
logcm N . We call such an f a good matching.

Proof. According to Lemma 4.2, 1
4 logcs N of the possible values of A satisfy

|S(A)| > N
4 logcs N . For such A, Lemma 4.3 with s = 4 logcs N implies that there

exists a value

q′ ∈ {q, 2q, . . . , 4 logcs N · q}
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such that the number of pairs t, t+ q′ that are both in S(A) is Ω( N
log3cs N

). Therefore,

for such A and q′, the size of the intersection of one of the matchings f1
q′ , f

2
q′ and S(A)

is Ω( N
log3cs N

). This implies that one of the 8 logcs N matchings considered must have
an intersection of size Ω( N

log3cs N
) with at least 1

32 log2cs N
of the possible values of A.

We conclude the proof by choosing cm > 3cs.

4.2. The quantum algorithm. We begin with the following simple claim.
Claim 4.6. For any two basis states |a〉 and |b〉, a = b, there exists a routine

such that, given the state |a〉+ e(φ)|b〉, outputs the state |0〉+ e(φ)|1〉.
Proof. Consider the function f defined as f(a) = 0, f(0) = a, f(b) = 1, f(1) = b,

and f(i) = i otherwise. It is reversible and can therefore be implemented as a quantum
routine.

We now describe the main routine in the DCP algorithm.
Lemma 4.7. There exist routines R1, R2 such that given a q-matching f and

an input for the DCP with failure parameter 1, either they output a bit or they fail.
Conditioned on nonfailure, the probability of the bit being 1 is 1

2 − 1
2 cos(2πq d

N ) for R1

and 1
2 + 1

2 sin(2πq d
N ) for R2. Moreover, if f is a good matching, the success probability

is Ω( 1
logcm N ).

Proof. The routines begin by performing a Fourier transform on the last logN
qubits of each input register. Consider one register. Assuming it is a good register,
the resulting state is

1√
2N

N−1∑
i=0

e(ix/N)|0, i〉+ 1√
2N

N−1∑
i=0

e(i(x+ d)/N)|1, i〉

=
1√
2N

N−1∑
i=0

e(ix/N)(|0〉+ e(id/N)|1〉)|i〉.

We measure the last logN qubits and let a ∈ {0, . . . , N − 1} be the result. The state
collapses to

1√
2
e(ax/N)(|0〉+ e(ad/N)|1〉)|a〉.

If it is a bad register, it is in the state |b, x〉, where both b and x are arbitrary. After
the Fourier transform the state is

1√
N

N−1∑
i=0

e(ix/N)|b, i〉,

and after measuring a in the last logN qubits, the state is e(ax/N)|b, a〉. Notice that
in both cases any value a in {0, . . . , N−1} has an equal probability of being measured.

We choose the number of input registers to be r. Let A = (a1, . . . , ar) be the
sequence of values measured in the above process. Notice that this sequence is uniform
and hence can be used as an input to the average-case subset sum algorithm. In the
following, we assume that s of the r registers are bad. Later we will claim that with
good probability, none of the registers is bad. Yet, we have to show that even if one
of the registers is bad, the routine does not return erroneous results. Without loss of
generality, assume that the first s registers are bad. The resulting state is

s⊗
i=1

[e(aixi/N)|bi, ai〉]
r⊗

i=s+1

[
1√
2
e(aixi/N)(|0〉+ e(aid/N)|1〉)|ai〉

]
,
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or, by omitting the multiplication by the fixed phase and the r · �logN� fixed qubits,

s⊗
i=1

[|bi〉]
r⊗

i=s+1

[
1√
2
(|0〉+ e(aid/N)|1〉)

]
.

Denote these r qubits by ᾱ = (α1, . . . , αr).
We add r+1 new qubits, β̄ = (β1, . . . , βr) and γ. Let tᾱ denote the sum

∑r
i=1 αiai.

Next, we perform the following operations:

if S(A, tᾱ) = ᾱ ∨ S(A, f(tᾱ)) = error
then exit

if tᾱ ∈ A1(f)

then

{
β̄ ← ᾱ
γ ← 1

else if tᾱ ∈ A2(f)

then

{
β̄ ← S(A, f(tᾱ))
γ ← 1

else exit

In order to describe the state after the above procedure, we define the following
subsets of {0, 1}r:

M = {ᾱ ∈ {0, 1}r | α1 = b1, . . . , αs = bs},
L = {ᾱ ∈M | tᾱ ∈ A1(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) = error},
R = {ᾱ ∈M | tᾱ ∈ A2(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) = error}.

Using the order |ᾱ, β̄, γ〉, the resulting state is

1√
2r−s

( ∑
ᾱ∈M−L−R

e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, 0̄, 0〉

+
∑
ᾱ∈L

e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, ᾱ, 1〉+

∑
ᾱ∈R

e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, S(A, f(tᾱ)), 1〉

)

=
1√
2r−s

( ∑
ᾱ∈M−L−R

e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, 0̄, 0〉

+
∑
ᾱ∈L

(
e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, ᾱ, 1〉+ e

(
〈S(A, f(tᾱ)), ā〉 d

N

)
|S(A, f(tᾱ)), ᾱ, 1〉

))

=
1√
2r−s

( ∑
ᾱ∈M−L−R

e

(
〈ᾱ, ā〉 d

N

)
|ᾱ, 0̄, 0〉

+
∑
ᾱ∈L

e

(
〈ᾱ, ā〉 d

N

)
(|ᾱ〉+ e(q · d

N
)|S(A, f(tᾱ))〉)|ᾱ, 1〉

)
.

Now we measure β̄ and γ. If γ = 0, the routine failed. Otherwise, the state of ᾱ
is (omitting the fixed β̄ and γ)

1√
2

(
|β̄〉+ e

(
q · d

N

)
|S(A, f(tβ̄))〉

)
.
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Notice that since β̄ is known and S(A, f(tβ̄)) can be easily found by calling S, we can
transform this state to the state

1√
2

(
|0〉+ e

(
q · d

N

)
|1〉
)

by using Claim 4.6. By omitting some qubits, we can assume that this is a state on
one qubit. By using the Hadamard transform the state becomes

1

2

((
1 + e

(
q · d

N

))
|0〉+

(
1− e

(
q · d

N

))
|1〉
)
.

We measure the qubit, and the probability of measuring 1 is

1

4

∣∣∣∣1− e(q · dN
)∣∣∣∣2 =

1

4

(
2− 2 cos

(
2πq · d

N

))
=

1

2
− 1

2
cos

(
2πq · d

N

)
.

This completes the description of R1. The routine R2 applies the transform(
1 0
0 ı

)
before the Hadamard transform and thus the state becomes

1

2

((
1 + e

(
1/4 + q · d

N

))
|0〉+

(
1− e

(
1/4 + q · d

N

))
|1〉
)
,

and the probability of measuring 1 becomes

1

2
− 1

2
cos

(
π/2 + 2πq · d

N

)
=

1

2
+

1

2
sin

(
2πq · d

N

)
.

From the previous description, it is clear that the probability of measuring 1
conditioned on a nonfailure is correct. Thus, it remains to prove that when f is
a good matching the failure probability is low. The success probability equals the
probability of measuring γ = 1, which is |L ∪ R|/2r−s. Assume that none of the r
registers is bad. Then |L ∪R|/2r−s = |L ∪R|/2r and L ∪R becomes

{ᾱ ∈ {0, 1}r | tᾱ ∈ A1(f) ∪A2(f) ∧ S(A, tᾱ) = ᾱ ∧ S(A, f(tᾱ)) = error}.

Notice that the size of this set equals

|{t | t ∈ S(A) ∧ f(t) ∈ S(A)}|,

which, according to the definition of a good matching, is at least N
logcm N . Therefore

the probability of success conditioned on all of the registers being good is

|L ∪R|/2r =
1

2cr logcm N
= Ω

(
1

logcm N

)
.

This concludes the proof since with probability at least(
1− 1

logN

)r

=

(
1− 1

logN

)logN+cr

= Ω(1)
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none of the registers is bad.
Claim 4.8. Given an approximation x of sinφ and an approximation y of cosφ

with additive error ε, we can find φ mod 2π up to an additive error of O(ε).
Proof. Assume y ≥ 0 and let z = x

1+y . A simple calculation shows that z is
an estimate of sinφ

1+cosφ up to an additive error of at most 4ε. The estimate on φ is
2 arctan z. Since the absolute value of the differential of arctan is at most 1, this is an
estimate of 2 arctan( sinφ

1+cosφ ) = φ with an additive error of at most 8ε. When y < 0

we compute an estimate of 2arccot( sinφ
1−cosφ ) = φ.

Lemma 4.9. There exists a routine R3 such that with probability exponentially
close to 1, given any q < N

logcm N , finds a value q′ ∈ {q, . . . , logcm N ·q} and an estimate
x such that

x ∈
[
q′d− N

logcm+1N
, q′d+

N

logcm+1N

]
(mod N).

Proof. Assume we are given a q′-matching f . We call routines R1 and R2 log3cm+4

N times. If the number of successful calls to one of the routines is less than log2cm+3N ,
we fail. Otherwise, let x ∈ [0, 1] be the average of the successful calls to R1 and let
y ∈ [0, 1] be the average of the successful calls to R2. According to the Chernoff
bound,

Pr

[∣∣∣∣x− (1

2
− 1

2
cos

(
2πq′ · d

N

))∣∣∣∣ > 1

ce logcm+1N

]
< 2e−2 log2cm+3 N/(ce

2 log2cm+2 N),

which is exponentially low in logN for any constant ce > 0. A similar bound holds
for y. Hence, we can assume that x′ = 1− 2x and y′ = 2y − 1 are approximations of
cos(2πq′ · d

N ) and of sin(2πq′ · d
N ), respectively, up to an additive error of 2

ce logcm+1 N
.

According to Claim 4.8, this translates to an estimate of q′ · dN mod 1 with an additive
error of 1

logcm+1 N
for ce large enough.

By repeating the above procedure with all the matchings that appear in Lemma 4.5,
we are guaranteed to find a good matching. According to Lemma 4.7, a call to routine
R1 or to routine R2 with a good matching succeeds with probability at least cg

1
logcm N

for a certain cg > 0. The probability that none of logcm+1N calls to the subroutine
succeeds is (

1− cg 1

logcm N

)logcm+1 N

,

which is exponentially small. Thus, for one of the matchings, with probability expo-
nentially close to 1, we have log2cm+3N successful calls to routines R1 and R2 and
routine R3 is successful.

We conclude the proof of Theorem 1.3 with a description of the algorithm for
finding d. We begin by using routine R3 with the value 1 to obtain an estimate x1

and a value q̂ ≤ logcm N such that

x1 ∈
[
d′ − N

logcm+1N
, d′ +

N

logcm+1N

]
(mod N),

where d′ denotes (dq̂ mod N). In the following we find d′ exactly by calling R3 with
multiples of q̂. The algorithm works in stages. In stage i we have an estimate xi and



QUANTUM COMPUTATION AND LATTICE PROBLEMS 759

a value qi. The invariant we maintain is

xi ∈
[
qid

′ − N

logcm+1N
, qid

′ +
N

logcm+1N

]
(mod qiN).

We begin with x1 as above and q1 = 1. Assume that the invariant holds in stage i.
We use routine R3 with the value 2qiq̂ to obtain an estimate x with a value

q′ ∈ {2qiq̂, 4qiq̂, . . . , 2 logcm N · qiq̂}
such that

x ∈
[
qi+1d

′ − N

logcm+1N
, qi+1d

′ +
N

logcm+1N

]
(mod N),

where qi+1 = q′/q̂. Notice that our previous estimate xi satisfies

qi+1

qi
xi ∈

[
qi+1d

′ − 2N

logN
, qi+1d

′ +
2N

logN

]
(mod qi+1N).

Since this range is much smaller than N , we can combine the estimate x on
(qi+1d

′ mod N) and the estimate qi+1

qi
xi on (qi+1d

′ mod qi+1N) to obtain xi+1 such
that

xi+1 ∈
[
qi+1d

′ − N

logcm+1N
, qi+1d

′ +
N

logcm+1N

]
(mod qi+1N).

The last stage is when qi ≥ 4N
logcm+1 N

. Then d′ can be found by rounding xi

qi
to the

nearest integer. Given d′ there are at most q̂ ≤ logcm N possible values for q. Since
this is only a polynomial number of options, we can output one randomly.
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[24] M. Rötteler and T. Beth, Polynomial-Time Solution to the Hidden Subgroup Problem
for a Class of Non-Abelian Groups, preprint, 1998. Available online from http://arxiv.
org/abs/quant-ph/9812070.

[25] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.

[26] D. R. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–
1483.



COMPACTION, RETRACTION, AND CONSTRAINT SATISFACTION∗

NARAYAN VIKAS†

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 4, pp. 761–782

Abstract. In this paper, we show a very close relationship among the compaction, retraction,
and constraint satisfaction problems in the context of reflexive and bipartite graphs. The compaction
and retraction problems are special graph coloring problems, and the constraint satisfaction problem
is well known to have an important role in artificial intelligence. The relationships we present provide
evidence that, similar to the retraction problem, it is likely to be difficult to determine whether for
every fixed reflexive or bipartite graph, the compaction problem is polynomial time solvable or
NP-complete. In particular, the relationships that we present relate to a long-standing open problem
concerning the equivalence of the compaction and retraction problems.
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1. Introduction. We first introduce the following definitions and problems, and
then describe the motivation and results.

1.1. Definitions. The pair of vertices forming an edge in a graph are called the
endpoints of the edge. An edge is said to be incident with a vertex v in a graph if v
is an endpoint of the edge. An edge of a graph with the same endpoints is called a
loop. We say that a vertex v of a graph has a loop if vv is an edge of the graph. A
reflexive graph is a graph in which every vertex has a loop. An irreflexive graph is a
graph in which no vertex has a loop. Any graph, in general, is a partially reflexive
graph, meaning that its individual vertices may or may not have loops. Thus reflexive
and irreflexive graphs are special partially reflexive graphs. A bipartite graph G is
a graph whose vertex set can be partitioned into two distinct subsets GA and GB ,
such that each edge of G has one endpoint in GA and the other endpoint in GB ;
we say that (GA, GB) is a bipartition of G. Thus a bipartite graph is irreflexive by
definition. When we do not mention the terms reflexive, irreflexive, or bipartite, the
corresponding graph may be assumed to be a partially reflexive graph. We denote the
vertex set and the edge set of a graph G by V (G) and E(G) respectively. A vertex u is
said to be adjacent to a vertex v in a graph if uv is an edge of the graph; if u is adjacent
to v then v is also adjacent to u. If a vertex u is adjacent to a vertex v then u is said
to be a neighbor of v, and v is said to be a neighbor of u. A graph in which each pair
of distinct vertices are adjacent is called a complete graph. We denote an irreflexive
complete graph with k vertices by Kk. A bipartite graph, with bipartition (GA, GB),
in which every vertex in GA is adjacent to every vertex in GB is called a complete
bipartite graph. A path of length k − 1 is a graph containing k distinct vertices, say
v0, v1, v2, . . . , vk−1, such that v0v1, v1v2, . . . , vk−2vk−1 are all the nonloop edges of the
graph, k ≥ 1; we may write such a path as v0v1v2 . . . vk−1. A cycle of length k, called
a k-cycle, is a graph containing k distinct vertices, say v0, v1, v2, . . . , vk−1, such that
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v0v1, v1v2, . . . , vk−2vk−1, vk−1v0 are all the nonloop edges of the graph, k ≥ 3; we may
write such a cycle as v0v1v2 . . . vk−1v0.

Let G be a graph. A vertex v of G is said to be an isolated vertex of G if v is not
adjacent to any other vertex v′ of G, v �= v′ (note that an isolated vertex may have a
loop). When a set S is an argument of a mapping f , we define f(S) = {f(s)|s ∈ S}.
We use |S| to denote the cardinality of a set S. The distance between a pair of vertices
u and v in G, denoted by dG(u, v) or dG(v, u), is the length of a shortest path from
u to v in G if u and v are connected in G; we define dG(u, v) (and dG(v, u)) to be
infinite if u and v are disconnected in G. The diameter of G is the maximum distance
between any two vertices in G, i.e., max {dG(u, v)|u, v ∈ V (G)}, where max A gives
the maximum element in a set A. The distance between two sets X and Y of vertices
in G, denoted by dG(X,Y ) or dG(Y,X), is the minimum distance between any vertex
of X and any vertex of Y in G, i.e., dG(X,Y ) = min {dG(x, y)|x ∈ X, y ∈ Y }, where
min A gives the minimum element in a set A. If a set has only one vertex, we may
just write the vertex instead of the set. A graph H is a subgraph of G if V (H) ⊆ V (G)
and E(H) ⊆ E(G). If H is a subgraph of G such that H contains all the edges of
G that have both endpoints in V (H) then H is called the subgraph of G induced by
V (H), and we say that H is an induced subgraph of G. Given an induced subgraph
H of G, we denote by G−H, the subgraph obtained by deleting from G the vertices
of H together with the edges incident with them; thus G − H is a subgraph of G
induced by V (G) − V (H). A chordal graph is a graph which does not contain any
induced cycle of length greater than three. A chordal bipartite graph is a bipartite
graph which does not contain any induced cycle of length greater than four. In the
following, let G and H be graphs.

A homomorphism f : G → H, of G to H, is a mapping f of the vertices of G
to the vertices of H, such that f(g) and f(g′) are adjacent vertices of H whenever g
and g′ are adjacent vertices of G. If there exists a homomorphism of G to H then G
is said to be homomorphic to H. Note that for any homomorphism f : G → H, if a
vertex v of G has a loop then the vertex f(v) of H necessarily also has a loop. If G is
irreflexive then clearly G is k-colorable if and only if G is homomorphic to Kk. Thus
the concept of a homomorphism generalizes the concept of a k-colorability.

A compaction c : G→ H, of G to H, is a homomorphism of G to H, such that for
every vertex x of H, there exists a vertex v of G with c(v) = x, and for every edge hh′

of H, h �= h′, there exists an edge gg′ of G with c(g) = h and c(g′) = h′. Notice that
the first part of the definition for compaction (the requirement for every vertex x of
H) is relevant only if H has isolated vertices. If there exists a compaction of G to H
then G is said to compact to H. Given a compaction c : G→ H, if for a vertex v of G,
we have c(v) = x, where x is a vertex of H, then we say that the vertex v of G covers
the vertex x of H under c; and if for an edge gg′ of G, we have c({g, g′}) = {h, h′},
where hh′ is an edge of H, then we say that the edge gg′ of G covers the edge hh′ of
H under c (note that in the definition of compaction, it is not necessary that a loop
of H be covered by any edge of G under c).

We note that the notion of a homomorphic image used in [Harary, 1969] (also
cf. [Hell and Miller, 1979]) coincides with the notion of a compaction in the case
of irreflexive graphs (i.e., when G and H are irreflexive in the above definition for
compaction).

A retraction r : G → H, of G to H, with H as an induced subgraph of G, is a
homomorphism of G to H, such that r(h) = h, for every vertex h of H. If there exists
a retraction of G to H then G is said to retract to H. Note that every retraction
r : G→ H is necessarily also a compaction but not vice versa.
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For each vertex v of G, let L(v) be a list of vertices of H. We denote by L the
entire set of lists L(v) for the vertices v of G. A list homomorphism l : G → H, of
G to H, with respect to L is a homomorphism of G to H, such that l(v) ∈ L(v), for
every vertex v of G. If l : G→ H is a list homomorphism with respect to L then we
say that l : G→ H is a list-L-homomorphism.

Let L be the set of lists as defined above. The consistency test for G with respect
to H and L produces a set L∗ of lists L∗(v) ⊆ L(v), for all v ∈ V (G), such that
for every edge ab of G, if a vertex h ∈ L∗(a) then there exists a vertex h′ ∈ L∗(b)
such that hh′ is an edge of H, and if a vertex z ∈ L∗(b) then there exists a vertex
z′ ∈ L∗(a) such that zz′ is an edge of H; the set L∗ is obtained in such a way that
minimum number of vertices are removed from L(v), for all v ∈ V (G). Thus for an
edge ab of G, if a vertex h in L(a) has no neighbor h′ in L(b), with hh′ ∈ E(H),
then the consistency test will delete h from L(a), and similarly if a vertex z in L(b)
has no neighbor z′ in L(a), with zz′ ∈ E(H), then the consistency test will delete
z from L(b). Due to such deletions, the consistency test can propagate further such
deletions from other lists with respect to other edges of G even if those edges have
been considered before. The process of the consistency test stops after no further such
deletions are possible, at which point we obtain L∗, which is the final modified set L
of lists after all the deletions. Note that there exists a list-L-homomorphism of G to
H if and only if there exists a list-L∗-homomorphism of G to H. The consistency test
we have described is in essence the arc consistency test used in artificial intelligence
[Mackworth, 1977]. It follows from the result of [Mackworth and Freuder, 1985] that
if H is fixed then L∗ can be obtained in time linear in the size of G. We say that the
consistency test for G with respect to H and L succeeds if L∗(v) �= φ, for all v ∈ V (G);
otherwise we say that it does not succeed. We shall be using the consistency test in
our proofs. The consistency test has been an important tool in artificial intelligence
where it has been widely used for a long time, including in earlier studies on constraint
satisfaction problems [Montanari, 1974]. The consistency test has been increasingly
used in graph homomorphism problems over the last years including [Gutjahr, Welzl,
and Woeginger, 1992], [Hell, Nesetril, and Zhu, 1996], [Vikas, 2002].

An identification of two distinct vertices u and v of G is an execution of the
following steps (1), (2), and (3), resulting in a new graph: (1) For every nonloop edge
uu′ of G, if vu′ is not an edge of G then we add the edge vu′ to G (note that if uv is
an edge of G then u′ = v and we will have the loop vv). (2) If u has a loop then v
is also made to have a loop if it does not already have one. (3) Delete the vertex u
together with the edges incident with u from G.

An isomorphism f : G → H, of G to H, is a mapping f of the vertices of G
to the vertices of H, such that f is one-to-one and onto, and f(g) and f(g′) are
adjacent vertices of H if and only if g and g′ are adjacent vertices of G (we are not
assuming more than one edge between endpoints in any graph). If there exists an
isomorphism of G to H then G is said to be isomorphic to H. An automorphism of
G is an isomorphism of G to itself.

We may call a polynomial transformation under Turing reduction, just a poly-
nomial transformation, and a polynomial equivalence under Turing reduction, just a
polynomial equivalence, but the context will be clear in the proofs where we explicitly
mention Turing reduction if Turing reduction is used.

1.2. Homomorphism, compaction, retraction, and constraint satisfac-
tion problems. The problem of deciding the existence of a homomorphism to a
fixed graph H, called the homomorphism problem for H, also known as the H-coloring
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problem, and denoted as H-COL, asks whether or not an input graph G is homomor-
phic to H. If a vertex h of a graph H has a loop then every graph G is trivially
homomorphic to H, as we will have a homomorphism f : G→ H, with f(v) = h, for
all v ∈ V (G). Thus the problem H-COL is interesting only if H is irreflexive. Fur-
ther, among irreflexive graphs H, if H is bipartite then the problem H-COL is again
trivial, as explained below. Note that only a bipartite graph may be homomorphic
to another bipartite graph. If H is a bipartite graph containing an edge, say hh′,
then clearly every bipartite graph G is homomorphic to H, as we will have a homo-
morphism f : G → H, with f(a) = h and f(b) = h′, for all a ∈ GA, b ∈ GB , where
(GA, GB) is a bipartition of G. If H is a graph containing no edge then clearly only
graphs with no edge will be homomorphic to H. Thus a graph G is homomorphic to
a bipartite graph H if and only if G is also bipartite, and H has an edge if G has an
edge. Thus the problem H-COL is interesting only if H is an irreflexive nonbipartite
graph. It has been shown in [Hell and Nesetril, 1990] that H-COL is NP-complete
for any fixed irreflexive nonbipartite graph H, thus providing a complete complexity
classification of H-COL. Note that the classic k-colorability problem is a special case
of the problem H-COL when H is Kk and the input graph G is irreflexive.

The problem of deciding the existence of a compaction to a fixed graph H, called
the compaction problem for H, and denoted as COMP-H, asks whether or not an input
graph G compacts to H.

When both G and H are input graphs (i.e., H is not fixed), and H is reflexive, the
problem of deciding whether or notG compacts toH has been studied in [Karabeg and
Karabeg, 1991, 1993]. Note that unlike the problem H-COL, the problem COMP-H
is still interesting if H has a loop or H is bipartite.

The problem of deciding the existence of a retraction to a fixed graph H, called
the retraction problem for H, and denoted as RET-H, asks whether or not an input
graph G, containing H as an induced subgraph, retracts to H. Note that H is a
particular copy in G. It is possible that G contains another induced subgraph H ′ that
is isomorphic to H but distinct from H, and it may be the case that G retracts to H
but not to H ′, and vice versa.

Retraction problems have been of continuing interest in graph theory for a long
time and have been studied in various literature including [Hell, 1972, 1974], [Nowakow-
ski and Rival, 1979], [Pesch and Poguntke, 1985], [Bandelt, Dahlmann, and Schutte,
1987], [Hell and Rival, 1987], [Pesch, 1988], [Feder and Winkler, 1988], [Bandelt,
Farber, and Hell, 1993], [Feder and Hell, 1998], [Feder, Hell, and Huang, 1999].

Note that the graph H for the problems H-COL, COMP-H, and RET-H is as-
sumed to be fixed by default even if not explicitly mentioned.

We now define the constraint satisfaction problem after introducing the following
terms. The domain of a variable is a set of permissible values that the variable can
assume. A relation R on k variables x1, x2, . . . , xk, denoted by R(x1, x2, . . . , xk),
imposes constraints on the values that the variables x1, x2, . . . , xk can assume from
their domains; R is a relation name of arity k, where we assume that k is fixed,
R(x1, x2, . . . , xk) is a tuple of R, and R can be defined on several tuples. A tuple
R(a1, a2, . . . , ak) is said to be fixed if ai is fixed, for all i = 1, 2, . . . , k. A relation R
is said to be a fixed relation if all of its tuples are fixed.

Let T be a set of fixed relations, and suppose that the cardinality of T is fixed.
We call T a fixed template. Let S be a finite set of relations such that every relation
name in S is also in T with the same arity. Let VS be the set of all variables in any
tuple of S. For each variable x in VS , let D(x) be the domain of x. The domains of
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the variables in VS will be assumed to be associated with the set S, and we shall not
mention it explicitly. The set S is said to be satisfied with respect to the template T
if there exists a mapping f from S to T such that for every tuple R(x1, x2, . . . , xkR

) of
every relation R, if R(x1, x2, . . . , xkR

) is in S then f(R(x1, x2, . . . , xkR
)) defined to be

R(f(x1), f(x2), . . . , f(xkR
)) is in T , where kR denotes the arity of R, f(xi) ∈ D(xi)

if xi is a variable, and f(xi) = xi if xi is fixed, for all i = 1, 2, . . . , kR. The constraint
satisfaction problem with respect to T, denoted as CSP-T, takes S as an instance and
asks the question whether or not S is satisfied with respect to T .

The constraint satisfaction problem is known to be of great interest in artificial
intelligence. Many problems can be viewed as constraint satisfaction problems. We
give an example here to demonstrate how theH-coloring problem can be viewed as the
constraint satisfaction problem. Let H be a fixed graph with vertices h1, h2, . . . , hp.
Let a graph G with vertices v1, v2, . . . , vn be an instance of H-COL. Define T to be
a fixed template containing a single relation E such that E(hi, hj) is a tuple in T if
and only if hihj is an edge of H, for all i, j = 1, 2, . . . , p. Define S to contain the
relation E such that E(vi, vj) is a tuple in S if and only if vivj is an edge of G, for
all i, j = 1, 2, . . . , n. Define the domain of vi to be V (H), i.e., {h1, h2, . . . , hp}, for all
i = 1, 2, . . . , n. Thus S is an instance of CSP-T. Clearly, there exists a homomorphism
of G to H if and only if S is satisfied with respect to T .

The template T for the problem CSP-T is assumed to be fixed by default even
if not explicitly mentioned. Clearly, for a given template T , the problem CSP-T
is in NP. As mentioned earlier, the problem H-COL is known to be NP-complete
for all irreflexive nonbipartite graphs H [Hell and Nesetril, 1990]. We gave above
a polynomial transformation from H-COL to CSP-T, implying that CSP-T is NP-
complete for certain T . It is easy to see that there are also templates T for which
CSP-T is polynomial time solvable. It is thought to be likely difficult to determine
whether for every template T , the problem CSP-T is polynomial time solvable or
NP-complete. Issues related to the constraint satisfaction problem have also been
considered in [Feder and Vardi, 1993, 1998]. A very close relationship between the
constraint satisfaction problem and the retraction problem for bipartite graphs has
also been shown in [Feder and Vardi, 1998]. We shall describe this result later.

1.3. Motivation and results. It is not difficult to show that for every fixed
graph H, if RET-H is solvable in polynomial time then COMP-H is also solvable
in polynomial time. Is the converse true? This was also asked, in the context of
reflexive graphs, by Peter Winkler in 1988 (personal communication, cf. [Feder and
Winkler, 1988]). Thus the question is whether RET-H and COMP-H are polynomially
equivalent for every fixed graph H. The answer to this is not known even when H is
reflexive or bipartite. In this paper, we show that for every fixed reflexive (bipartite)
graph H, there exists a fixed reflexive (bipartite) graph H ′ such that RET-H and
COMP-H ′ are polynomially equivalent.

Using our above result and results of [Feder and Hell, 1998] and [Feder and Vardi,
1998], we establish that for every fixed template T of a set of relations, there exists
a fixed reflexive (bipartite) graph H such that the constraint satisfaction problem
CSP-T and the compaction problem COMP-H are polynomially equivalent. Since it
is thought to be likely difficult to determine whether for every fixed template T , the
problem CSP-T is polynomial time solvable or NP-complete, we thus provide evidence
that it is likely to be difficult to determine whether for every fixed reflexive (bipartite)
graph H, the problem COMP-H is polynomial time solvable or NP-complete. Similar
evidence has been shown for RET-H in [Feder and Hell, 1998] in the case of fixed
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reflexive graphs H, and in [Feder and Vardi, 1998] in the case of fixed bipartite
graphs H.

We however have results giving a complete complexity classification of COMP-H
and RET-H when H has four or fewer vertices, i.e., for every graph H with at most
four vertices (including whenH is partially reflexive), we determine whether COMP-H
is polynomial time solvable or NP-complete, and whether RET-H is polynomial time
solvable or NP-complete. The complexity classification of COMP-H and RET-H do
not differ for such graphs H.

We have more results showing that for several graphs H, the problems RET-H
and COMP-H are polynomially equivalent. We mention below a few classes of such
graphs. We do not know of any graph H for which the complexity classification of
RET-H and COMP-H differ.

It is known that RET-H is NP-complete when H is a reflexive k-cycle, for all
k ≥ 4, cf. [Feder and Hell, 1998], G. MacGillivray, 1988 (personal communication),
and for k = 4, also [Feder and Winkler, 1988]. It is shown in [Vikas, 1999, 2003] that
COMP-H is NP-complete when H is a reflexive k-cycle, for all k ≥ 4. In particular,
for k = 4, this result in [Vikas, 1999, 2003] solves a widely publicized open problem
posed by Peter Winkler in 1988. It is easy to see that when H is a reflexive 3-cycle,
RET-H, and hence COMP-H, are both polynomial time solvable. In fact, when H
is a reflexive chordal graph (which includes a reflexive 3-cycle), the problem RET-H
is polynomial time solvable [Feder and Hell, 1998], and hence COMP-H is also poly-
nomial time solvable.

It is also known that RET-H is NP-complete when H is an irreflexive even
k-cycle, for all even k ≥ 6, cf. [Feder, Hell, and Huang, 1999], G. MacGillivray,
1988 (personal communication). It is shown in [Vikas, 1999, 2004] that COMP-H is
NP-complete when H is an irreflexive even k-cycle, for all even k ≥ 6. This result in
[Vikas, 1999, 2004] also solves a long-standing problem that has been of interest to
various people including Pavol Hell and Jaroslav Nesetril (personal communications).
It is easily seen that when H is an irreflexive 4-cycle, RET-H, and hence COMP-
H, are both polynomial time solvable. In fact, when H is a chordal bipartite graph
(which includes an irreflexive 4-cycle), the problem RET-H is polynomial time solv-
able [Bandelt, Dahlmann, and Schutte, 1987], and hence COMP-H is also polynomial
time solvable.

The case of irreflexive odd cycles is a special case of a more general result whereby
RET-H and COMP-H are polynomially equivalent for every nonbipartite irreflexive
graph H. Note that a graph G is homomorphic to a graph H if and only if the disjoint
union G ∪ H retracts/compacts to H. Thus we have a polynomial transformation
from H-COL to RET-H and COMP-H. The problem H-COL is NP-complete for any
nonbipartite irreflexive graph H [Hell and Nesetril, 1990]. It follows that RET-H and
COMP-H are also NP-complete for any nonbipartite irreflexive graphH; in particular,
if H is an irreflexive odd k-cycle then RET-H and COMP-H are NP-complete, for all
odd k ≥ 3. Thus we conclude that RET-H and COMP-H both are NP-complete when
H is an irreflexive k-cycle, for all k ≥ 3, k �= 4.

In section 2, we give a polynomial transformation from COMP-H to RET-H under
Turing reduction. We shall need to refer to this transformation later in our proofs.
In section 3, we study the relationship between compaction and retraction problems
for reflexive graphs, and then study its consequences in relation to the constraint
satisfaction problem. In section 4, we study the relationship between compaction
and retraction problems for bipartite graphs, and its consequences in relation to the
constraint satisfaction problem.
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2. A polynomial transformation from compaction to retraction. We
prove the following theorem in this section.

Theorem 2.1. For every fixed graph H, the problem COMP-H is polynomially
transformable to the problem RET-H under Turing reduction.

Proof. Let H be a fixed graph, and let a graph G be an instance of COMP-H.
For a graph Z, let E∗(Z) denote the set of all nonloop edges of Z, and let I(Z)
denote the set of all isolated vertices in Z. We note from the definition of compaction
that if c : G → H is a compaction then part of the requirement for c is that for
all x ∈ I(H), there exists v ∈ V (G) with c(v) = x, and for all hh′ ∈ E∗(H), there
exists gg′ ∈ E∗(G) with c(g) = h and c(g′) = h′. Thus, there exists a set of |E∗(H)|
nonloop edges of G which cover all the nonloop edges of H under c, and there exists a
set of |I(H)| vertices in G which cover all the isolated vertices in H under c. In other
words, there exists a subgraph Q of G induced by V (Q′), where Q′ is a subgraph (not
necessarily an induced subgraph) of G with |E∗(Q′)| = |E∗(H)| and |I(Q′)| = |I(H)|,
such that c : Q→ H is a compaction.

In general, there may exist several such above described induced subgraphs Q
of G such that Q compacts to H, regardless of whether or not G compacts to H.
Further, if Q compacts to H then there may exist several compactions f of Q to H.
The pair (Q, f) will be used to denote such a subgraph Q of G with a compaction
f : Q → H. Note that for each such subgraph Q of G, there may be more than
one but a fixed number of such pairs (since H is fixed). Also, note that for such a
subgraph Q of G, we have |V (Q)| ≤ 2 ∗ |E∗(H)|+ |I(H)|. Thus, since H is fixed, all
such subgraphs Q of G, and all compactions f of Q to H, i.e., all the pairs (Q, f),
can be found in time polynomial in the size of G.

Let β denote the number of different possible pairs (Q, f). Clearly, β is a poly-
nomial in the size of G. Consider the ith pair (Q, f) (under an arbitrary ordering of
the pairs), 1 ≤ i ≤ β. We define Li(q) = {f(q)} (i.e., Li(q) is a singleton containing
the vertex f(q) of H), for all q ∈ V (Q), and Li(u) = V (H), for all u ∈ V (G)− V (Q).
Thus we obtain the lists Li(v) ⊆ V (H), for all v ∈ V (G), i = 1, 2, . . . , β in polynomial
time. Clearly, G compacts to H if and only if there exists an i such that there is a
list-Li-homomorphism of G to H, 1 ≤ i ≤ β.

We construct a graph Gi from G and Li, for all i = 1, 2, . . . , β, as follows. We
identify every pair of distinct vertices u and w in G if Li(u) and Li(w) are singletons
with Li(u) = Li(w), and we call the resultant graph after identifications, the graphGi,
for all i = 1, 2, . . . , β. Note that, as a result of the identifications, Gi has a copy of H
as an induced subgraph, except that possibly some of the loops, that may be present
on some of the vertices of H, may not be present in the copy of H in Gi, in which case
we add the missing loops to obtain an exact copy of H in Gi, for all i = 1, 2, . . . , β.
Since β is a polynomial, we have only polynomially many graphs G1, G2, . . . , Gβ .
Thus we obtain the graphs G1, G2, . . . , Gβ in polynomial time. Clearly, G com-
pacts to H if and only if there exists an i such that Gi retracts to H, 1 ≤ i ≤ β.
Thus we have a polynomial transformation from COMP-H to RET-H under Turing
reduction.

It follows from Theorem 2.1 that for a fixed graph H, if RET-H is solvable in
polynomial time then COMP-H is also solvable in polynomial time. We shall also refer
later the transformation from COMP-H to RET-H given in the proof of Theorem 2.1.

3. Relationship between compaction and retraction problems for re-
flexive graphs. In this section, we prove the following theorem showing a very close
relationship between compaction and retraction problems for reflexive graphs, and
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then study its consequences in relation to the constraint satisfaction problem.
Theorem 3.1. For every reflexive graph H, there exists a reflexive graph H ′

such that RET-H is polynomially equivalent to COMP-H ′.
Proof. Let H be a reflexive graph. We construct in a fixed time, a reflexive graph

H ′ from H such that the following two statements (a) and (b) hold:
(a) RET-H polynomially transforms to COMP-H ′.
(b) COMP-H ′ polynomially transforms to RET-H.

The theorem then follows from (a) and (b).
We assume that H is connected. Later, we will make remarks for the case when

H may be disconnected.
Suppose first that the diameter of H is ≤ 1. Clearly then H is a complete graph.

Let G be any graph containing H as an induced subgraph, i.e., let G be an instance
of RET-H. Clearly, G always retracts and hence compacts to H. Let H ′ also be
the graph H. Trivially, G retracts to H if and only if G compacts to H. Hence
statement (a) is trivially true. We know from Theorem 2.1 in section 2 that COMP-H
polynomially transforms to RET-H under Turing reduction. Hence statement (b) is
true. Thus the theorem holds for reflexive graphs H of diameter ≤ 1.

Now suppose that the diameter of H is > 1. The construction of H ′ is as fol-
lows. Let x be any vertex of H such that there exists a vertex at distance > 1 from
x in H. There exists such a vertex x in H, as the diameter of H is > 1. Let the
maximum distance from x to a vertex of H be s (thus s > 1). Let dH(x, h) = sh, for
all h ∈ V (H). For each vertex h of H, we add to H a path Ph = ph1p

h
2 . . . p

h
s−sh+1

containing s − sh + 1 new vertices with ph1 adjacent to h. We also add the reflex-
ive edge phi p

h
i , for all i = 1, 2, . . . , s − sh + 1, with h ∈ V (H). The resultant graph

is our H ′, which is reflexive. Clearly, H ′ is constructed in a fixed time, as H is
fixed. We shall denote the vertex phs−sh+1 by th and call it the tip of the path Ph,
with h ∈ V (H). Note that, among the paths added to H, Px is the longest path
(of length s) added to H, and Py is a shortest path (of length 0 containing only
one vertex) added to H, where y ∈ V (H) is a furthest vertex from x in H, i.e.,
dH(x, y) = s. See Figure 3.1, where we show the path Ph for an arbitrary vertex
h of H. Also shown in the figure are paths Px and Py, where y is a vertex of H
with dH(x, y) = s. The graph H is denoted as an ellipse in the figure. The loops

H
xpx

1
px
2

px
s+1= tx

y py
1 = ty

h
ph
1

ph
2

ph
= ths-s h+1

Fig. 3.1. Construction of H′.
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x x

H

H’

H

Fig. 3.2. An example of H and H′.

are not depicted in the figure but are assumed to be present on every vertex of H ′.
Clearly, H ′ retracts to H. See Figure 3.2 for an example of H and H ′. Note that
dH′(x, th) = dH′(x, phs−sh+1) = dH′(x, h)+dH′(h, phs−sh+1) = sh+(s−sh+1) = s+1,
with h ∈ V (H), and all other vertices are at distances less than s + 1 from x in H ′.
Thus dH′(x, h) ≤ s+1, for all h ∈ V (H ′), and the only vertices at distance s+1 from
x in H ′ are the tip vertices th, for all h ∈ V (H).

We prove the statements (a) and (b) in Theorem 3.1.1 and Theorem 3.1.2 respec-
tively for the case when the diameter of H is > 1.

Theorem 3.1.1. RET-H polynomially transforms to COMP-H ′.
Proof. When the diameter of H is ≤ 1, we have already shown that the theorem

is trivially proved. We assume here that the diameter of H is > 1. Let a graph G
containing H as an induced subgraph be an instance of RET-H. We construct in time
polynomial in the size of G, a graph G′ (containing G and H ′ as induced subgraphs)
such that the following statements (i) and (ii) are equivalent:

(i) G retracts to H.
(ii) G′ compacts to H ′.

This would imply that RET-H polynomially transforms to COMP-H ′.
The construction of G′ is as follows. We add to the subgraph H of G, the vertices

of V (H ′) − V (H) and the edges of E(H ′) − E(H) such that H is expanded to the
graph H ′ (the vertices of H ′ − H are not adjacent to any vertex of G − H). For
each vertex v of G−H, we add to G a path Uv = uv1u

v
2 . . . u

v
s−1 containing s− 1 new

vertices, and we add the edges xuv1 and vuvs−1. This completes the construction of G′.
Note that dG′(x, v) ≤ dG′(x, uv1)+dG′(uv1, u

v
s−1)+dG′(uvs−1, v) = 1+(s−2)+1 = s,

for all v ∈ V (G−H). Clearly then dG′(x,w) ≤ s, for all v ∈ V (G′)− V (H ′). Earlier
we noted that dH′(x, h) ≤ s+ 1, for all h ∈ V (H ′), and the only vertices at distance
s+ 1 (calculated in H ′) from x in H ′ are the tip vertices th, for all h ∈ V (H). Thus
dG′(x, u) ≤ s+1, for all u ∈ V (G′), and the only vertices that are possibly at distance
s+ 1 (calculated in G′) from x in G′ are the tip vertices th, for all h ∈ V (H). We are
saying s+ 1 to be an upper bound for dG′(x, th) also, as the presence of an edge from
a vertex of G−H to a vertex of H may result in a path of length shorter than s+ 1
from x to a tip vertex th in G′, with h ∈ V (H).

We now prove the equivalence of statements (i) and (ii), from which Theorem 3.1.1
follows.
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First suppose that r : G → H is a retraction. We define below a retraction
r′ : G′ → H ′, which by definition is also a compaction.

We define
r′(v) = r(v), for all v ∈ V (G),
r′(h′) = h′, for all h′ ∈ V (H ′)− V (H).

We now fix a vertex v ∈ V (G − H) for defining r′ for the vertices of Uv. Let
Pxv = h0h1 . . . hj be a shortest path from r(x) to r(v) in H, with r(x) = h0 and
r(v) = hj , hi ∈ V (H), for all i = 0, 1, 2, . . . , j. Clearly, the length of the path Pxv is
≤ s, as dH(x, h) ≤ s, for all h ∈ V (H). Thus j ≤ s.

For the vertices of Uv, we define
r′(uvi ) = hi, for all i = 1, 2, . . . , j − 1,
r′(uvi ) = hj−1, for all i = j, j + 1, . . . , s− 1.

It is easily verified that r′ : G′ → H ′ is a retraction, and hence a compaction.
Now suppose that c : G′ → H ′ is a compaction. We shall prove that c(h) �= c(h′),

for all h, h′ ∈ V (H ′), h �= h′. In order to prove this, we shall be proving a number of
other claims. Note that this would imply that c : H ′ → H ′ is an automorphism. As
we will see, we can easily define a retraction of G′ to H ′ from this fact, and finally
conclude that G retracts to H, proving the theorem.

We first show that c(x) = x. If c(x) �= x then either c(x) ∈ V (Px) or c(x) ∈
V (H ′)−{V (Px)∪{x}}. Since s > 0, there exists a vertex h ∈ V (H), h �= x. For every
p ∈ V (Px), we have dH′(p, th) = dH′(p, x)+dH′(x, th) > dH′(x, th) = s+1. Since there
is no vertex at distance greater than s+1 from x in G′, this implies that c(x) �= p, for
all p ∈ V (Px), as otherwise no vertex of G′ will map to th under c, contradicting that
c : G′ → H ′ is a compaction. Since dH′(z, tx) = dH′(z, x) + dH′(x, tx) > dH′(x, tx) =
s+ 1, similarly we argue that c(x) �= z, for all z ∈ V (H ′)− {V (Px) ∪ {x}}. Thus we
have shown that c(x) �∈ V (Px) and c(x) �∈ V (H ′)− {V (Px) ∪ {x}}. Hence c(x) = x.

We next show that for each vertex th, with h ∈ V (H), there exists an unique
vertex tzh , with zh ∈ V (H), such that c(tzh) = th. That is, we show that the tips
are mapped to tips under c, and exactly one tip maps to a tip under c. We have
dH′(c(x) = x, th) = s+1, for all h ∈ V (H). Also, dG′(x, u) ≤ s+1, for all u ∈ V (G′),
and the only vertices that can possibly be at distance s + 1 from x in G′ are th, for
all h ∈ V (H). This implies that for each vertex th, with h ∈ V (H), there exists a
unique vertex tzh , with zh ∈ V (H), such that c(tzh) = th. Thus every tip is mapped
to a tip under c, and exactly one tip maps to a tip under c.

Now we show that dH′(x, h′) = dH′(c(x), c(h′)), for all h′ ∈ V (H ′), and dH′(h, th)
= dH′(c(h), c(th)), for all h ∈ V (H). It follows from the above result that
dH′(c(x), c(th)) = s+1, for all h ∈ V (H). It must be that dH′(c(h), c(h′)) ≤ dH′(h, h′),
for all h, h′ ∈ V (H ′), as c : G′ → H ′ is a homomorphism. Clearly, dH′(c(x), c(th)) ≤
dH′(c(x), c(h′)) + dH′(c(h′), c(th)) ≤ dH′(x, h′) + dH′(h′, th) = dH′(x, th) = s + 1,
for all h′ ∈ {h} ∪ V (Ph), h ∈ V (H). Thus if dH′(c(x), c(h′)) < dH′(x, h′) or if
dH′(c(h′), c(th)) < dH′(h′, th) then we will have that dH′(c(x), c(th)) < s + 1, which
would be a contradiction, with h′ ∈ {h} ∪ V (Ph), h ∈ V (H). Thus dH′(c(x), c(h′)) =
dH′(x, h′), and dH′(c(h′), c(th)) = dH′(h′, th), for all h′ ∈ {h} ∪ V (Ph), h ∈ V (H).
This implies that dH′(x, h′) = dH′(c(x), c(h′)), for all h′ ∈ V (H ′), and dH′(h, th) =
dH′(c(h), c(th)), for all h ∈ V (H).

We now prove a few claims below, concluding that we can choose the compaction
c : G′ → H ′ in such a way that c(h) ∈ V (H), for all h ∈ V (H).

We show that for each path Ph, with h ∈ V (H), there exists at most one vertex
z ∈ V (H) such that c(z) ∈ V (Ph), and if c(z) ∈ V (Ph) then c(tz) = th. Suppose that
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there exist two distinct vertices z, z′ ∈ V (H) such that c(z), c(z′) ∈ V (Ph), for some
h ∈ V (H). We have dH′(c(x), p) + dH′(p, ty) = dH′(c(x), h) + dH′(h, p) + dH′(p, h) +
dH′(h, ty) > dH′(c(x), h) + dH′(h, ty) ≥ dH′(c(x), ty) = s + 1, for all p ∈ V (Ph),
y ∈ V (H), y �= h. We have dH′(x, tz) = dH′(x, z) + dH′(z, tz) = s+ 1. Under the as-
sumption that c(z) ∈ V (Ph), this implies that dH′(x, z)+dH′(z, tz) < dH′(c(x), c(z))+
dH′(c(z), ty), for all y ∈ V (H), y �= h. Since dH′(x, z) = dH′(c(x), c(z)) (as proved
earlier), we have that dH′(z, tz) < dH′(c(z), ty), implying that c(tz) �= ty, for all
y ∈ V (H), y �= h. Similarly, c(t′z) �= ty, for all y ∈ V (H), y �= h. Since tips map only
to tips under c, this would imply that c(tz) = c(tz′) = th, which is a contradiction, as
we showed earlier that exactly one tip maps to a tip under c. Thus there cannot exist
more than one vertex of H with image in V (Ph) under c, and if there exists such a
vertex z of H with c(z) ∈ V (Ph) then c(tz) = th.

We also show that c(z) �∈ V (Ph) − {ph1}, for all z, h ∈ V (H). Suppose that
c(z) ∈ V (Ph) − {ph1}, for some z, h ∈ V (H). Clearly, x is not adjacent to z in H, as
c(x) ∈ V (H) and c(z) is not adjacent to V (H) as c(z) �= ph1 . Since H is connected
and x is not adjacent to z, there exists a path from x to z of length ≥ 2 in H, and
hence there exists a neighbor z′ of z in H, z′ �= z. Since z′ is adjacent to z in H,
and c(z) ∈ V (Ph)− {ph1}, this implies that c(z′) ∈ V (Ph). Thus we have two distinct
vertices z and z′ of H which have images in V (Ph) under c. This is impossible, as
shown above.

Further, we show that c(z) �∈ V (Ph) if z has a neighbor z′ in H, z �= z′,
such that dH′(x, z′) ≥ dH′(x, z), for all z, h ∈ V (H). Suppose that c(z) ∈ V (Ph),
for some z, h ∈ V (H), and z has such a neighbor z′ in H. We proved earlier
that dH′(x, h′) = dH′(c(x), c(h′)), for all h′ ∈ V (H ′). Hence we have dH′(x, z) =
dH′(c(x), c(z)) and dH′(x, z′) = dH′(c(x), c(z′)). Since dH′(x, z′) ≥ dH′(x, z), this im-
plies that dH′(c(x), c(z′)) ≥ dH′(c(x), c(z)). Since z′ is adjacent to z, either c(z′) = h
or c(z′) ∈ V (Ph). We shall prove that c(z′) �= h. Suppose that c(z′) = h. We
have dH′(c(x), c(z′)) = dH′(x, h) and dH′(c(x), c(z)) = dH′(x, c(z)) = dH′(x, h) +
dH′(h, c(z)). Thus dH′(c(x), c(z′)) < dH′(c(x), c(z)), which is a contradiction. Thus
c(z′) �= h, and hence c(z′) ∈ V (Ph). We then have two distinct vertices z and z′ of H
which have images in V (Ph) under c. This is impossible, as shown earlier.

Thus if a vertex z of H has an image in a path Ph under c, with h ∈ V (H), then
c(z) = ph1 and dH′(x, z′) < dH′(x, z), for any neighbor z′ of z in H. Suppose that
c(z) = ph1 , for some z, h ∈ V (H). Let z′ be any neighbor of z in H, z′ �= z (since H
is connected and clearly z �= x, there exists such a neighbor). We proved earlier that
there cannot exist more than one vertex of H with image in V (Ph) under c. Since
c(z) = ph1 ∈ V (Ph) and z′ is a neighbor of z in H, this implies that c(z′) = h. As
proved earlier, since c(z) ∈ V (Ph), we have c(tz) = th. Also, as proved earlier, we have
dH′(z, tz) = dH′(c(z) = ph1 , c(tz) = th), and hence c(pzi ) = phi+1, for all i = 1, 2, . . . ,
s−sz +1 = s−sh (recall that pzs−sz+1 = tz and phs−sh+1 = th). Further, since exactly
one tip maps to a tip under c, this implies that c(tz′) = ty, for some y ∈ V (H), y �= h.
Note, it must be that the length of the path Py is smaller than the length of the
path Ph (length of Ph = length of Pz′ , as dH′(x, z′) = dH′(c(x) = x, c(z′) = h)), i.e.,
dH′(x, y) > dH′(x, h)(= dH′(x, z′)), in order that c(tz′) = ty (as some of the vertices
of Pz′ are now mapped to H under c, as dH′(z′, tz′) = dH′(c(z′) = h, c(tz′) = ty);

clearly at least c(pz
′

1 ) ∈ V (H)). We know that dH′(x, z′) < dH′(x, z), and hence
dH′(x, z′) = dH′(x, z) − 1. Thus the length of the path Pz is 1 less than the length
of the path Pz′ . Let S = {v|v ∈ V (G′)− V (H ′) and c(v) ∈ V (Ph)}. Note that apart
from the vertices of {z} ∪ Pz, only vertices in S may map to a vertex of Ph under c.
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We can define a compaction c′ : G′ → H ′ such that c′(z) ∈ V (H) by interchanging
c(tz) and c(tz′) as follows:

c′(v) = c(v), for all v ∈ V (G′)− {V (Pz) ∪ V (Pz′) ∪ {z} ∪ S},
c′(v) = h, for all v ∈ S,
c′(pz

′
i ) = phi , for all i = 1, 2, . . . , s− sz′ + 1 = s− sh + 1

(thus c′(tz′) = th = c(tz) and c(pz
′

1 ) = ph1 = c(z)),
c′(z) = c(pz

′
1 ) and c′(pzi ) = c(pz

′
i+1), for all i = 1, 2, . . . , s− sz + 1 = s− sz′

(thus c′(z) ∈ V (H), as c(pz
′

1 ) ∈ V (H), and c′(tz) = c(tz′)).
It can be easily verified that c′ : G′ → H ′ is a compaction. We have c′(z) ∈ V (H).
We apply similar arguments for any path Ph′ of H ′, with h′ ∈ V (H), to which a
vertex of H may map under c. This implies that there exists a compaction of G′

to H ′ such that all the vertices of H have images in H under this compaction. We
choose c : G′ → H ′ to be such a compaction.

We now show that for any vertex z of H, if c(z) = h, for some vertex h of H (we
assume h ∈ V (H), as we proved that we choose c such that the vertices of H map to
H under c), then c(tz) = th.

Let c(z0) = h0, for some z0, h0 ∈ V (H). Suppose that c(tz0) �= th0 . Since tips map
to tips under c, this implies that c(tz0

) = th1
, for some vertex h1 ∈ V (H), h1 �= h0.

Note that the length of the path Ph1 is necessarily smaller than the length of the
path Pz0

, as some of the vertices of Pz0
now map to H under c; clearly at least

c(pz0
1 ) ∈ V (H). From the construction ofH ′, this implies that dH′(x, h1) > dH′(x, z0).

Since dH′(x, h) = dH′(c(x), c(h)), for all h ∈ V (H ′), we have dH′(x, z0) = dH′(c(x) =
x, c(z0) = h0). Thus dH′(x, h1) > dH′(x, h0).

We show that there exists a vertex z1 ∈ Z = {z|z ∈ V (H) and dH′(x, z) =
dH′(x, h1)} such that c(tz1

) �= tz, for all z ∈ Z. Since dH′(x, h) = dH′(c(x) = x, c(h))
and c(h) ∈ V (H), for all h ∈ V (H), this implies that c(z) ∈ Z, for all z ∈ Z. First
suppose that c(y) = h1, for some vertex y ∈ Z (trivially, h1 ∈ Z). Then c(ty) �= th1

,
as c(tz0) = th1 and exactly one tip maps to a tip under c. Note that for any pair of
vertices a and b in Z, the length of the path Pa is the same as the length of the path
Pb. Hence dH′(y, ty) = dH′(z, tz) < dH′(h1, z)+dH′(z, tz) = dH′(c(y) = h1, tz), for all
z ∈ Z, z �= h1. This implies that c(ty) �= tz, for all z ∈ Z, z �= h1. Since c(ty) �= th1

,
we have c(ty) �= tz, for all z ∈ Z.

Now suppose that c(z) �= h1, for all z ∈ Z. Then clearly there exists a pair
of distinct vertices y and y′ in Z such that c(y) = c(y′) = u, for some u ∈ Z.
Since exactly one tip maps to a tip under c, we have c(ty) �= tu or c(ty′) �= tu
(both may hold). Without loss of generality, suppose that c(ty) �= tu. We have
dH′(y, ty) = dH′(z, tz) < dH′(u, z) + dH′(z, tz) = dH′(c(y) = u, tz), for all z ∈ Z,
z �= u. This implies that c(ty) �= tz, for all z ∈ Z, z �= u. Since c(ty) �= tu, we
have c(ty) �= tz, for all z ∈ Z. Earlier we showed above that if c(y) = h1, for any
vertex y ∈ Z, then c(ty) �= tz, for all z ∈ Z. Thus we have proved that there exists
a vertex z1 ∈ Z such that c(tz1) �= tz, for all z ∈ Z. Since tips map to tips under
c, this implies that c(tz1

) = th2
, for some vertex h2 ∈ V (H), h2 �∈ Z, such that

the length of the path Ph2
is smaller than the length of the path Pz1

(as some of
the vertices of Pz1 now map to H under c; clearly at least c(pz1

1 ) ∈ V (H)), i.e.,
dH′(x, h2) > dH′(x, z1) = dH′(x, h1). For convenience, we call Z the set Z1, and we
define Z0 = {z|z ∈ V (H) and dH′(x, z) = dH′(x, h0)}. Thus z0 ∈ Z0 and z1 ∈ Z1.

Earlier we showed that c(tz0) = th1 and dH′(x, h1) > dH′(x, h0), and now we have
shown that c(tz1) = th2 and dH′(x, h2) > dH′(x, h1). We can continue this argument
and show that there exists a vertex hi+1 ∈ V (H) and a vertex zi ∈ Zi = {z|z ∈ V (H)
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and dH′(x, z) = dH′(x, hi)} such that c(tzi) = thi+1
and dH′(x, hi+1) > dH′(x, hi), for

all i = 0, 1, 2, . . . , p, where dH′(x, hp+1) > s. This is a contradiction, as no vertex of
H is at distance larger than s from x in H ′. Thus our assumption that c(tz0

) �= th0

is wrong. Thus for any vertex z of H, if c(z) = h, for some vertex h of H, then
c(tz) = th.

Now suppose that c(y) = c(z) = h, for some y, z, h ∈ V (H), y �= z. From the
above result, this implies that c(ty) = c(tz) = th. This is a contradiction, as exactly
one tip maps to a tip under c. Hence c(y) �= c(z), for all y, z ∈ V (H), y �= z. Let
c(z) = h, for some z, h ∈ V (H). Since dH′(x, z) = dH′(c(x) = x, c(z) = h), it
follows from our construction that the length of the path Pz is same as the length
of the path Ph. Since, as shown above, c(tz) = th, we have c(pzi ) = phi , for all
i = 1, 2, . . . , s− sz + 1 = s− sh + 1 (recall that pzs−sz+1 = tz and phs−sh+1 = th). This
completes the proof that c(h) �= c(h′), for all h, h′ ∈ V (H ′), h �= h′.

Since c(h) �= c(h′), for all h, h′ ∈ V (H ′), h �= h′, this implies that c : H ′ → H ′ is
an automorphism. Let f : H ′ → H ′ be the automorphism c : H ′ → H ′. We define a
retraction r : G′ → H ′ as follows:

r(a) = f−1(c(a)), for all a ∈ V (G′).
Thus G′ retracts to H ′. Since H ′ retracts to H, it follows that G′ retracts to H.
Hence G retracts to H, as G is a subgraph of G′. We have thus proved that (i) is
equivalent to (ii), and the theorem follows.

Theorem 3.1.2. COMP-H ′ polynomially transforms to RET-H.
Proof. We have already shown that the theorem holds when the diameter of

H is ≤ 1. We assume here that the diameter of H is > 1. Let a graph G be an
instance of COMP-H ′. We construct in time polynomial in the size of G, polynomial
(in the size of G) number of graphs G1, G2, . . . , Gβ , each containing a copy of H ′ as
an induced subgraph, and for each Gi, we construct in time polynomial (in the size of
Gi and hence in the size of G), a graph G′

i also containing a copy of H ′ as an induced
subgraph, 1 ≤ i ≤ β, such that the following statements (i), (ii), (iii), and (iv) are
equivalent for some value of i, 1 ≤ i ≤ β:

(i) G compacts to H ′.
(ii) Gi retracts to H ′.
(iii) G′

i retracts to H ′.
(iv) G′

i retracts to H.
We prove that (i) is equivalent to (ii), (ii) is equivalent to (iii), and (iii) is equivalent
to (iv). Thus, in effect, we prove that (i) is equivalent to (iv), which shows that
COMP-H ′ polynomially transforms to RET-H under Turing reduction.

The graphs G1, G2, . . . , Gβ are constructed as in the proof of Theorem 2.1 in
section 2 (where we replace H by H ′). As discussed there, β is a polynomial in the
size of G, and the graphs G1, G2, . . . , Gβ are constructed in time polynomial in the
size of G. The equivalence of (i) and (ii) follows from the proof of Theorem 2.1.

For constructing G′
i, we go through a number of steps that follow. We define

LSTi(h) = {h}, for all h ∈ V (H ′), and LSTi(v) = V (H ′), for all v ∈ V (Gi)− V (H ′),
where H ′ is the copy in Gi, for all i = 1, 2, . . . , β. We perform the consistency test
for Gi with respect to H ′ and LSTi, and obtain Li(v) ⊆ LSTi(v) ⊆ V (H ′), for all
v ∈ V (Gi), after completing the consistency test (recall that the consistency test will
run in time linear in the size of Gi), for all i = 1, 2, . . . , β. It is clear that every
possible retraction ri : Gi → H ′ is a list-Li-homomorphism, and every possible list-
Li-homomorphism li : Gi → H ′ is a retraction, for all i = 1, 2, . . . , β. Thus Gi

retracts to H ′ if and only if there exists a list-Li-homomorphism of Gi to H ′, for all
i = 1, 2, . . . , β.
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Suppose that Gi retracts to H ′, i.e., there exists a list-Li-homomorphism of Gi

to H ′, for some value of i, 1 ≤ i ≤ β (hence Li(v) �= φ, for all v ∈ V (Gi), i.e., the
consistency test we performed for Gi has succeeded). Let r : Gi → H ′ be a retrac-
tion (thus r : Gi → H ′ is a list-Li-homomorphism). We define another retraction
r′ : Gi → H ′ below. First we partition the vertex set of Gi into two sets V1 and V2 as
follows:

V1 = {v ∈ V (Gi)|Li(v) ⊆ {hv} ∪ V (Phv
), for some vertex hv ∈ V (H)},

V2 = V (Gi)− V1.
For v ∈ V1, we let

r′(v) = h, where h is the vertex in Li(v) closest to hv, that is, dH′(h, hv) <
dH′(h′, hv), for all h′ ∈ Li(v), h

′ �= h.
For v ∈ V2, we let

r′(v) = h, if r(v) ∈ {h} ∪ V (Ph), with h ∈ V (H).
This completes the definition of r′.

Since Li(h) = {h}, for all h ∈ V (H ′), we have V (H ′) ⊆ V1 and it is clear from
the definition of r′ that r′(h) = h, for all h ∈ V (H ′). We now verify that r′ : Gi → H ′

is indeed a homomorphism (and hence a retraction). We shall do this by considering
all the edges ab of Gi and proving that r′(a)r′(b) is an edge of H ′.

Consider first an edge ab of Gi, with a, b ∈ V1. From the definition of V1, Li(a) ⊆
{ha} ∪ V (Pha

) and Li(b) ⊆ {hb} ∪ V (Phb
) (ha may be the same as hb), for some

ha, hb ∈ V (H). Let the vertex in Li(a) closest to ha be h′a, and the vertex in Li(b)
closest to hb be h′b, i.e., r′(a) = h′a and r′(b) = h′b. If ha �= hb then clearly Li(a) = {ha}
and Li(b) = {hb}, and ha is adjacent to hb in H, as Li is nonempty and these are the
only vertices the consistency test will keep. Thus if ha �= hb then r′(a)r′(b) = h′ah

′
b =

hahb is an edge of H ′. Now suppose that ha = hb. If dH′(h′a, ha) = dH′(h′b, ha) then
clearly h′a = h′b and r′(a)r′(b) = h′ah

′
b = h′ah

′
a is an edge of H ′. Now assume that

dH′(h′a, ha) < dH′(h′b, ha). If h′a is not adjacent to h′b in H ′ then this implies that h′b
is not the closest vertex to ha in Li(b), as otherwise the consistency test would have
deleted h′a from Li(a). Thus h′a is adjacent to h′b in H ′. Similarly, we argue that if
dH′(h′a, ha) > dH′(h′b, ha) and h′a is not adjacent to h′b in H ′ then h′a is not the closest
vertex to ha in Li(a), and hence h′a is adjacent to h′b in H ′. Thus r′(a)r′(b) = h′ah

′
b is

always an edge of H ′.
Next consider an edge ab of Gi, with a, b ∈ V2. Let r(a) ∈ {h} ∪ V (Ph), for some

h ∈ V (H). Since r(a)r(b) is an edge of H ′, this implies that r(b) ∈ {h} ∪ V (Ph) or
r(b) = h′, for some h′ adjacent to h, h′ ∈ V (H), h′ �= h. Hence, from the definition
of r′, we have r′(a)r′(b) = hh or hh′. Thus r′(a)r′(b) is always an edge of H ′ (and of
H).

Now consider an edge ab of Gi, with a ∈ V1 and b ∈ V2. From the definition of
V2, Li(b) �⊆ {h} ∪ V (Ph), for all h ∈ V (H). Hence there exist two vertices h1 and h2

in Li(b), with h1 ∈ {h} ∪ V (Ph) and h2 ∈ {h′} ∪ V (Ph′), for some h, h′ ∈ V (H), h �=
h′ (thus h1 �= h2). From the definition of V1, Li(a) ⊆ {ha} ∪ V (Pha), for some
vertex ha ∈ V (H). Since the consistency test we performed for Gi has succeeded, if
hj �∈ {ha} ∪ V (Pha) then hj ∈ V (H) − {ha} and is adjacent to ha, and ha ∈ Li(a),
j = 1, 2. We know that at least one of h1, h2 �∈ {ha} ∪ V (Pha), as at least one of
h, h′ is different from ha. It follows that ha ∈ Li(a), and from the definition of r′,
we have r′(a) = ha. Now first suppose that r(b) �∈ {ha} ∪ V (Pha). This implies that
r(a) = ha and r(b) = hb, for some vertex hb ∈ V (H) adjacent to ha in H ′, hb �= ha
(since r(a) ∈ Li(a) ⊆ {ha} ∪ V (Pha

) and r : Gi → H ′ is a homomorphism). Thus,
from the definition of r′, we have r′(b) = hb. Hence r′(a)r′(b) = hahb is an edge of
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H ′. Now suppose that r(b) ∈ {ha} ∪ V (Pha
). Then from the definition of r′, we have

r′(b) = ha, and hence r′(a)r′(b) = haha is an edge of H ′.
Thus we have proved that r′ : Gi → H ′ is a homomorphism, and hence a retrac-

tion. We now define a new set of lists L′
i as follows:

L′
i(v) = {r′(v)}, for all v ∈ V1,

L′
i(v) = Li(v), for all v ∈ V2.

Thus L′
i(v) ⊆ Li(v), for all v ∈ V (Gi). Since every retraction of Gi to H ′ is a list-Li-

homomorphism of Gi to H ′, it follows that r′ : Gi → H ′ is a list-Li-homomorphism
and a list-L′

i-homomorphism. Thus for every retraction r : Gi → H ′, there exists
a list-L′

i-homomorphism r′ : Gi → H ′. Clearly, every list-L′
i-homomorphism l′i :

Gi → H ′ is a retraction. Hence Gi retracts to H ′ if and only if there exists a list-L′
i-

homomorphism of Gi to H ′.
We now identify every pair of vertices v and v′ in Gi for which L′

i(v) = L′
i(v

′),
v, v′ ∈ V1 (we know that L′

i(a) is a singleton, for all a ∈ V1), and call the resultant
graph G′

i. Recall that for every vertex h ∈ V (H ′), we have Li(h) = {h}, and hence
h ∈ V1, and thus L′

i(h) = {r′(h) = h}. Clearly, G′
i retracts to H ′ if and only if there

exists a list-L′
i-homomorphism of Gi to H ′. Hence Gi retracts to H ′ if and only if

G′
i retracts to H ′. Thus we have proved that (ii) is equivalent to (iii). Note that we

could have very well chosen L′
i(v) = Li(v) ∩ V (H), for all v ∈ V2, and all the above

discussions would still hold, as r′(v) ∈ V (H), for all v ∈ V2.
We look at the structure of G′

i. Only vertices in V1 have been identified with
vertices in H ′. For corresponding vertices of Gi and G′

i, we call them the same
name. Thus V (G′

i) = V (H ′) ∪ V2. Note that no vertex v of V (G′
i) − V (H ′) = V2

is adjacent to any vertex of Ph in G′
i, for all h ∈ V (H). To see this, we recall our

earlier explanation that if a vertex v of V2 is adjacent to a vertex v′ of V1 in Gi then
hv′ ∈ Li(v

′) ⊆ {hv′} ∪ V (Phv′ ), with hv′ ∈ V (H) (due to success of the consistency
test). Hence L′

i(v
′) = {r′(v′)} = {hv′}, and in constructing G′

i, v
′ is identified with

hv′ which belongs to V (H). Hence no vertex v of V (G′
i) − V (H ′) = V2 can possibly

be adjacent to any vertex of Ph in G′
i, for all h ∈ V (H). Since G′

i contains H ′ as an
induced subgraph and no vertex of V (G′

i)−V (H ′) is adjacent to any vertex of Ph, for
all h ∈ V (H), it follows that G′

i retracts to H ′ if and only if G′
i retracts to H. Thus

we have proved that (iii) is equivalent to (iv).
Thus we have shown that G compacts to H ′ if and only if G′

i retracts to H for
some value of i, 1 ≤ i ≤ β, which shows that COMP-H ′ polynomially transforms to
RET-H under Turing reduction.

We have thus proved Theorem 3.1 when H is connected. Now suppose that H
may be disconnected. Let H1, H2, . . . , Hp be the components of H, p ≥ 1. For each
component Hi, we construct a graph H ′

i analogous to the construction described
earlier for the connected case depending on whether the diameter of Hi is ≤ 1 or > 1,
1 ≤ i ≤ p. For a graph Hi with diameter > 1, we may assume xi and si to play
the role of x and s respectively described earlier for the connected case, 1 ≤ i ≤ p.
For a graph Hi with diameter ≤ 1, we let xi be any vertex of Hi, and si (≤ 1) is
defined similarly, 1 ≤ i ≤ p. Our graph H ′ is the set of components H ′

1, H
′
2, . . . , H

′
p.

We have to prove statements (a) and (b) mentioned at the beginning of the proof of
Theorem 3.1.

For proving statement (a), we need to consider the construction of the graph G′

in the proof of Theorem 3.1.1. Let G1, G2, . . . , Gt be the components of a graph G,
with Hi as an induced subgraph of Gi, for all i = 1, 2, . . . , p. Thus G is an instance
of RET-H. If the diameter of Hi is > 1, the construction of G′

i is analogous to the
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construction described in the proof of Theorem 3.1.1, 1 ≤ i ≤ p. If the diameter of
Hi is ≤ 1 then G′

i is obtained simply by adding an edge xiv in Gi, for each vertex v
of Gi − Hi; thus the diameter of G′

i is ≤ 2, 1 ≤ i ≤ p. When constructing G′
1, we

also add an edge x1v in G1, for each vertex v of Gp+1, Gp+2, . . . , Gt. Note that the
diameter of G′

1 is still ≤ 2 if the diameter of H1 is ≤ 1. Our graph G′ is the set of
components G′

1, G
′
2, . . . , G

′
p.

If G retracts to H then it can be seen that G′ retracts to H ′, and hence G′

compacts to H ′. Now suppose that G′ compacts to H ′, and let c : G′ → H ′ be a
compaction. No two components of G′ compact to the same component of H ′ under
c, as the number of components in G′ and H ′ is the same. Without loss of generality,
suppose that the diameter of Hi is > 1, for all i = 1, 2, . . . , j, and is ≤ 1, for all
i = j+1, j+2, . . . , p, 0 ≤ j ≤ p. Since the diameter of H ′

i is ≥ 3, for all i = 1, 2, . . . , j,
and the diameter of G′

k is ≤ 2, for all k = j + 1, j + 2, . . . , p, no component among
G′

j+1, G
′
j+2, . . . , G

′
p compacts to any component amongH ′

1, H
′
2, . . . , H

′
j . Thus only the

components amongG′
1, G

′
2, . . . , G

′
j compact to the components amongH ′

1, H
′
2, . . . , H

′
j .

We know that H ′
i is an induced subgraph of G′

i, for all i = 1, 2, . . . , j. We note from
our constructions that if G′

i compacts to H ′
m under c then H ′

m must be isomorphic
to H ′

i, as otherwise we will have a tip of some component H ′
n not covered under c,

1 ≤ i ≤ j, 1 ≤ m ≤ j, 1 ≤ n ≤ j. Thus we conclude that G′
i compacts to H ′

i, for
all i = 1, 2, . . . , j. Since Hi is connected, we prove as in the proof of Theorem 3.1.1
that Gi retracts to Hi, for all i = 1, 2, . . . , j. Clearly, G′

k and Gk retract and hence
compact to H ′

k, as H ′
k, which is the same graph as Hk, is a complete graph, for

all k = j + 1, j + 2, . . . , p. Also, Gp+1, Gp+2, . . . , Gt is homomorphic to H, as H is
reflexive. Thus we have that G retracts to H. Hence statement (a) follows.

For proving statement (b), we just need to assume in the proof of Theorem 3.1.2
that if the diameter of Hi is ≤ 1 then V (Ph) = φ, for all h ∈ V (Hi), 1 ≤ i ≤ p.

3.1. Compaction to reflexive graphs in relation to constraint satisfac-
tion. It is shown in [Feder and Vardi, 1998] that for every fixed template T of a
set of relations, there exists a bipartite graph H such that the constraint satisfaction
problem CSP-T is polynomially equivalent to the retraction problem RET-H. Since it
is thought to be likely difficult to determine whether for every template T , the prob-
lem CSP-T is polynomial time solvable or NP-complete, it follows that it is equally
difficult to determine whether for every bipartite graph H, the problem RET-H is
polynomial time solvable or NP-complete.

It has been shown in [Feder and Hell, 1998] that for every bipartite graph H, there
exists a reflexive graph H ′ such that RET-H is polynomially equivalent to RET-H ′.
It follows from this result of [Feder and Hell, 1998] and the above result of [Feder and
Vardi, 1998] that for every template T of a set of relations, there exists a reflexive graph
H such that the constraint satisfaction problem CSP-T is polynomially equivalent to
the retraction problem RET-H. This is taken as evidence in [Feder and Hell, 1998] that
determining whether for every reflexive graph H, the problem RET-H is polynomial
time solvable or NP-complete is likely to be difficult also.

We have shown in Theorem 3.1 that for every reflexive graph H, there exists a
reflexive graphH ′ such that RET-H is polynomially equivalent to COMP-H ′. Thus we
have the following theorem which follows from Theorem 3.1 and the above mentioned
results of [Feder and Vardi, 1998] and [Feder and Hell, 1998].

Theorem 3.2. For every fixed template T of a set of relations, there exists a fixed
reflexive graph H such that the constraint satisfaction problem CSP-T is polynomially
equivalent to the compaction problem COMP-H.
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Thus we have evidence, due to Theorem 3.2, that it is likely to be difficult to
determine whether for every reflexive graph H, the problem COMP-H is polynomial
time solvable or NP-complete.

4. Relationship between compaction and retraction problems for bi-
partite graphs. In this section, we prove the following theorem showing a very close
relationship between compaction and retraction problems for bipartite graphs, and
then study its consequences in relation to the constraint satisfaction problem.

Theorem 4.1. For every bipartite graph H, there exists a bipartite graph H ′

such that RET-H is polynomially equivalent to COMP-H ′.
Proof. The proof is very similar to the proof of Theorem 3.1 for reflexive graphs.

Here we will only highlight the differences in the proofs.
Let H be a bipartite graph. We construct in a fixed time, a bipartite graph H ′

from H such that the following two statements (a) and (b) hold:
(a) RET-H polynomially transforms to COMP-H ′.
(b) COMP-H ′ polynomially transforms to RET-H.

The theorem then follows from (a) and (b).
We assume that H is connected. Later, we will make remarks for the case when

H may be disconnected.
We had shown how Theorem 3.1 for reflexive H was trivially proved when the

diameter of H was ≤ 1, in which case H was a complete graph. Note that for bipartite
H, if the diameter of H is ≤ 2 then H is a complete bipartite graph. Also recall that
for bipartite H, a graph G is homomorphic to H if and only if G is also bipartite, and
H has an edge if G has an edge (if the diameter of H is 0 then H has no edge and
contains a single isolated vertex). Similar to the proof for Theorem 3.1, together with
the above observation, we see that this theorem holds if the diameter of H is ≤ 2.

Now suppose that the diameter of H is > 2. Let x be any vertex of H such that
there exists a vertex at distance > 2 from x in H. There exists such a vertex x in H,
as the diameter of H is > 2. The construction of H ′ is exactly like in the proof of
Theorem 3.1 except that now we choose the vertex x as defined above, and there is
no loop present in H ′. Thus H ′ is bipartite. Recall that in the construction of H ′, we
are assuming that the maximum distance from x to a vertex of H is s. Thus s > 2
here.

In analogy to the reflexive case, we prove the statements (a) and (b) in Theorem
4.1.1 and Theorem 4.1.2 respectively for the case when the diameter of H is > 2.

Theorem 4.1.1. RET-H polynomially transforms to COMP-H ′.
Proof. As shown earlier, the theorem is trivially proved when the diameter of H is

≤ 2. We assume here that the diameter of H is > 2. Let a graph G containing H as an
induced subgraph be an instance of RET-H. Since H is bipartite, only bipartite graphs
may be homomorphic to H. Thus for nonbipartite instances of RET-H, the theorem
is trivially true. Suppose that G is bipartite. We construct in time polynomial in
the size of G, a graph G′ (containing G and H ′ as induced subgraphs) such that the
following statements (i) and (ii) are equivalent:

(i) G retracts to H.
(ii) G′ compacts to H ′.

This would imply that RET-H polynomially transforms to COMP-H ′.
Let (GA, GB) be a bipartition of G, and (HA, HB) be a bipartition of H, with

HA ⊆ GA and HB ⊆ GB . Without loss of generality, suppose that x ∈ HA. The
construction of G′ is as follows. We add to the subgraph H of G, the vertices of
V (H ′)−V (H) and the edges of E(H ′)−E(H) such that H is expanded to the graph
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H ′ (the vertices of H ′ −H are not adjacent to any vertex of G−H). Depending on
whether s is odd or even, we add paths and edges as described below.

We first assume that s is odd. For each a ∈ GA − HA, we add to G a path
Ua = ua1u

a
2 . . . u

a
s−2 containing s − 2 new vertices, and we add the edges xua1 and

auas−2 (thus we have the path xUaa of even length s−1, and hence dG′(x, a) ≤ s−1).
For each b ∈ GB −HB , we add to G a path Ub = ub1u

b
2 . . . u

b
s−1 containing s− 1 new

vertices, and we add the edges xub1 and bubs−1 (thus we have the path xUbb of odd
length s, and hence dG′(x, b) ≤ s).

Now, we assume that s is even. For each a ∈ GA − HA, we add to G a path
Ua = ua1u

a
2 . . . u

a
s−1 containing s − 1 new vertices, and we add the edges xua1 and

auas−1 (thus we have the path xUaa of even length s, and hence dG′(x, a) ≤ s). For
each b ∈ GB − HB , we add to G a path Ub = ub1u

b
2 . . . u

b
s−2 containing s − 2 new

vertices, and we add the edges xub1 and bubs−2 (thus we have the path xUbb of odd
length s− 1, and hence dG′(x, b) ≤ s− 1).

This completes the construction of G′. We thus have dG′(x, v) ≤ s, for all v ∈
V (G−H). Now we return to our claim for the equivalence of statements (i) and (ii).

First suppose that r : G → H is a retraction. We define below a retraction
r′ : G′ → H ′, which by definition is also a compaction.

We define
r′(v) = r(v), for all v ∈ V (G),
r′(h′) = h′, for all h′ ∈ V (H ′)− V (H).

We now fix a vertex v ∈ V (G − H) for defining r′ for the vertices of Uv. Let
Pxv = h0h1 . . . hj be a shortest path from r(x) to r(v) in H, with r(x) = h0 and
r(v) = hj , hi ∈ V (H), for all i = 0, 1, 2, . . . , j. Note that if v ∈ GA − HA then j is
even, as x, v ∈ GA, and further, j ≤ s− 1 when s is odd, and j ≤ s when s is even, as
dG′(x, a) ≤ s−1 when s is odd, and dG′(x, a) ≤ s when s is even, for all a ∈ GA−HA,
and we define p = s− 2 when s is odd, and p = s− 1 when s is even. If v ∈ GB −HB

then j is odd, as x ∈ GA, v ∈ GB , and further, j ≤ s when s is odd, and j ≤ s − 1
when s is even, as dG′(x, b) ≤ s when s is odd, and dG′(x, b) ≤ s− 1 when s is even,
for all b ∈ GB −HB , and we define p = s− 1 when s is odd, and p = s− 2 when s is
even.

For the vertices of Uv, we define
r′(uvi ) = hi, for all i = 1, 2, . . . , j − 1,
r′(uvi ) = hj , and r′(uvi+1) = hj−1, for all i = j, j + 1, . . . , p− 1.

It is easily verified that r′ : G′ → H ′ is a retraction, and hence a compaction.
Conversely, if G′ compacts to H ′ then the proof that G retracts to H is exactly

as in the proof of Theorem 3.1.1 for the reflexive case, except when we define c′ for
the vertices in S, which we now define as follows:

c′(v) = h, if dG′(z, v) is odd, v ∈ S,
c′(v) = h′, h′ ∈ V (H ′) is any neighbor of h, if dG′(z, v) is even, v ∈ S.

Theorem 4.1.2. COMP-H ′ polynomially transforms to RET-H.
Proof. As shown earlier, the theorem holds when the diameter of H is ≤ 2.

We assume here that the diameter of H is > 2. Let a graph G be an instance of
COMP-H ′. Since H ′ is bipartite, only bipartite graphs may be homomorphic to H ′.
Thus for nonbipartite instances of COMP-H ′, the theorem is trivially true. Suppose
that G is bipartite. We construct in time polynomial in the size of G, polynomial (in
the size of G) number of graphs G1, G2, . . . , Gβ , each containing a copy of H ′ as an
induced subgraph, and for each Gi, we construct in time polynomial (in the size of
Gi and hence in the size of G), a graph G′

i also containing a copy of H ′ as an induced
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subgraph, 1 ≤ i ≤ β, such that the following statements (i), (ii), (iii), and (iv) are
equivalent for some value of i, 1 ≤ i ≤ β:

(i) G compacts to H ′.
(ii) Gi retracts to H ′.
(iii) G′

i retracts to H ′.
(iv) G′

i retracts to H.
We prove that (i) is equivalent to (ii), (ii) is equivalent to (iii), and (iii) is equivalent
to (iv). Thus, in effect, we prove that (i) is equivalent to (iv), which shows that
COMP-H ′ polynomially transforms to RET-H under Turing reduction.

The graphs Gi and G′
i, for all i = 1, 2, . . . , β, are constructed exactly the same way

as in the proof of Theorem 3.1.2 for the reflexive case. The proof for the equivalence
of the statements (i), (ii), (iii), and (iv) is exactly as in the proof of Theorem 3.1.2,
except as noted below for defining the retraction r′ : Gi → H ′ and corresponding
changes for verifying that it is indeed a retraction.

The lists Li(v) ⊆ V (H ′), for all v ∈ V (Gi), are obtained as in the proof of
Theorem 3.1.2, as a result of performing the consistency test for Gi with respect to
H ′ and the lists LSTi(h) = {h}, for all h ∈ V (H ′), and LSTi(v) = V (H ′), for all
v ∈ V (Gi)− V (H ′), where H ′ is the copy in Gi, for all i = 1, 2, . . . , β.

Suppose that Gi retracts to H ′, for some value of i, 1 ≤ i ≤ β. This implies
that the consistency test we performed for Gi has succeeded, i.e., Li(v) �= φ, for all
v ∈ V (Gi). Let r : Gi → H ′ be a retraction (clearly, r : Gi → H ′ is a list-Li-
homomorphism). We now define another retraction r′ : Gi → H ′ as follows. We
partition the vertex set of Gi into two sets V1 and V2 just as for the reflexive case.
Recall that

V1 = {v ∈ V (Gi)|Li(v) ⊆ {hv} ∪ V (Phv ), for some vertex hv ∈ V (H)},
V2 = V (Gi)− V1.

For v ∈ V1, we let
r′(v) = h, where h is the vertex in Li(v) closest to hv, that is, dH′(h, hv) <

dH′(h′, hv), for all h′ ∈ Li(v), h
′ �= h.

For v ∈ V2, we let
r′(v) = h, if r(v) ∈ {h} ∪ V (Ph), and dH′(r(v), h) is even, with h ∈ V (H),
r′(v) = h′, if r(v) ∈ {h} ∪ V (Ph), and dH′(r(v), h) is odd, with h ∈ V (H),

and h′ ∈ V (H) is any neighbor of h in H (every vertex in H has
a neighbor, as H does not have an isolated vertex).

This completes the definition of r′.
Now we see the changes for verifying that r′ : Gi → H ′ is a retraction. We only

highlight the differences for the verification as compared to the reflexive case in the
proof of Theorem 3.1.2.

While considering the edge ab of Gi, with a, b ∈ V1, we do not need to consider
the case that dH′(h′a, ha) = dH′(h′b, ha), as this will not happen for bipartite H ′. All
other arguments for the edge hold as for the reflexive case.

While considering the edge ab of Gi, with a, b ∈ V2, if r(a) ∈ {h} ∪ V (Ph), with
h ∈ V (H), then from the definition of r′, we will have r′(a) = h and r′(b) = h′, or
we will have r′(a) = h′ and r′(b) = h, where h′ ∈ V (H) is any neighbor of h in H,
implying that r′(a)r′(b) is always an edge of H ′. All other arguments for the edge
hold as for the reflexive case.

While considering the edge ab of Gi, with a ∈ V1 and b ∈ V2, if r(b) ∈ {ha} ∪
V (Pha

), with ha ∈ V (H), then dH′(r(b), ha) must be odd, as otherwise ha �∈ Li(a)
(due to success of the consistency test), and hence from the definition of r′, we will
have that r′(a)r′(b) = hah

′
a is an edge of H ′, where h′a ∈ V (H) is any neighbor of ha
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in H. All other arguments for the edge hold as for the reflexive case.
We have now proved Theorem 4.1 when H is connected. Suppose now that H

may be disconnected. Let H1, H2, . . . , Hp, p ≥ 1, be the components of H. For
each component Hi, we construct a graph H ′

i analogous to the construction described
earlier for the connected case depending on whether the diameter of Hi is ≤ 2 or > 2,
1 ≤ i ≤ p. For a graph Hi with diameter > 2, we may assume xi and si to play
the role of x and s respectively described earlier for the connected case, 1 ≤ i ≤ p.
For a graph Hi with diameter ≤ 2, we let xi be any vertex of Hi, and si (≤ 2) is
defined similarly, 1 ≤ i ≤ p. Our graph H ′ is the set of components H ′

1, H
′
2, . . . , H

′
p.

We have to prove statements (a) and (b) mentioned at the beginning of the proof of
Theorem 4.1.

For proving statement (a), we need to consider the construction of the graph G′

in the proof of Theorem 4.1.1. Let G1, G2, . . . , Gt be the components of a graph G,
with Hi as an induced subgraph of Gi, for all i = 1, 2, . . . , p. Thus G is an instance
of RET-H. Since H is bipartite, only bipartite graphs may be homomorphic to H.
Thus for nonbipartite instances of RET-H, statement (a) is trivially true. Suppose
that G is bipartite. Let (Gi,A, Gi,B) be a bipartition of Gi, for all i = 1, 2, . . . , t.
Let (Hi,A, Hi,B) be a bipartition of Hi, with Hi,A ⊆ Gi,A, Hi,B ⊆ Gi,B , for all
i = 1, 2, . . . , p. Without loss of generality, let xi ∈ Hi,A, for all i = 1, 2, . . . , p.

Suppose first that H has no edge. Then Hi has only one vertex and the diameter
of Hi is 0, and hence from our construction, H ′

i is the graph Hi, for all i = 1, 2, . . . , p.
For G to be homomorphic to H, it must be that G also has no edge, in which case
Gi would be the graph Hi, for all i = 1, 2, . . . , p. Clearly, G retracts to H if and only
if G compacts to H ′, and hence statement (a) is true.

Now suppose that H has an edge. Without loss of generality, let H1 have an edge.
If the diameter of Hi is > 2, the construction of G′

i is analogous to the construction
described in the proof of Theorem 4.1.1, 1 ≤ i ≤ p. If the diameter of Hi is ≤ 2
then G′

i is obtained by adding a path xizia in Gi, where zi is a single new vertex
added in Gi, for all a ∈ Gi,A − Hi,A, and by adding an edge xib in Gi, for all
b ∈ Gi,B −Hi,B ; thus the diameter of G′

i is ≤ 3, 1 ≤ i ≤ p. When constructing G′
1,

we also add a path x1z1a and an edge x1b in G1, for all a ∈ Gp+1,A, Gp+2,A, . . . , Gt,A,
b ∈ Gp+1,B , Gp+2,B , . . . , Gt,B , where the vertex z1 already exists if the diameter of
H1 is ≤ 2, or is a new vertex if the diameter of H1 is > 2. Notice that the diameter
of G′

1 is still ≤ 3 if the diameter of H1 is ≤ 2. Our graph G′ is the set of components
G′

1, G
′
2, . . . , G

′
p. Also note that the diameter of H ′

i is ≥ 4 if the diameter of Hi is
> 2, and recall that the graph H ′

i is the graph Hi if the diameter of Hi is ≤ 2,
1 ≤ i ≤ p. We now argue analogous to the arguments in the proof of Theorem 3.1 for
the disconnected case for proving statement (a). We however make some remarks as
noted below.

Note that if t > p then G′
1 has edges as a result of its construction due to the

graphs Gp+1, Gp+2, . . . , Gt. If G retracts to H then in the case when t > p, the fact
that H1 has an edge establishes that G′

1 is homomorphic to H ′
1, which is a requirement

for G′
1 to compact to H ′

1.
If G′ compacts to H ′ then in the case when the diameter of Hk is 0, i.e., when

Hk has no edge, we point out the reasoning as to why Gk retracts to Hk, 1 ≤ i ≤ p.
Suppose that the diameter of Hk is 0 for some k, 1 ≤ k ≤ p. From our construction,
the graph H ′

k is the graph Hk. If a component G′
i of G′ compacts to H ′

k then the
graph H ′

i must be of diameter 0, as G′
i, which contains H ′

i as an induced subgraph,
must have no edge, 1 ≤ i ≤ p. We have that G′

k contains H ′
k of diameter 0 as an

induced subgraph. Thus if G′
k has an edge then there exists some component H ′

m of
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diameter 0 to which no component of G′ compacts, 1 ≤ m ≤ p. Hence if G′ compacts
to H ′ then the graph G′

k (and Gk) is the graph H ′
k, i.e., Hk, implying that G′

k trivially
compacts to H ′

k, and Gk trivially retracts to Hk.
For proving statement (b), we just need to assume in the proof of Theorem 4.1.2

that if the diameter of Hi is ≤ 2 then V (Ph) = φ, for all h ∈ V (Hi), 1 ≤ i ≤ p.
4.1. Compaction to bipartite graphs in relation to constraint satisfac-

tion. As we mentioned in section 3.1, it is shown in [Feder and Vardi, 1998] that for
every fixed template T of a set of relations, there exists a fixed bipartite graph H such
that the constraint satisfaction problem CSP-T and the retraction problem RET-H
are polynomially equivalent. Since it is thought to be likely difficult to determine
whether for every template T , the problem CSP-T is polynomial time solvable or
NP-complete, this is taken as evidence that to determine whether for every bipartite
graph H, the problem RET-H is polynomial time solvable or NP-complete is likely to
be difficult also.

We have shown in Theorem 4.1 that for every bipartite graph H, there exists a
bipartite graph H ′ such that RET-H is polynomially equivalent to COMP-H ′. Thus
from Theorem 4.1 and the above mentioned result of [Feder and Vardi, 1998], we have
the following theorem.

Theorem 4.2. For every fixed template T of a set of relations, there exists a
fixed bipartite graph H such that the constraint satisfaction problem CSP-T and the
compaction problem COMP-H are polynomially equivalent.

Thus we have evidence, due to Theorem 4.2, that to determine whether for every
bipartite graph H, the problem COMP-H is polynomial time solvable or NP-complete
is likely to be difficult.
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Abstract. The notion of efficient computation is usually identified in cryptography and complex-
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zero-knowledge argument of knowledge with a strict polynomial-time knowledge extractor. As in the
simulator of Barak’s zero-knowledge protocol, the extractor for our argument of knowledge is not
black-box and makes inherent use of the code of the prover. On the negative side, we show that
nonblack-box techniques are essential for both strict polynomial-time simulation and extraction.
That is, we show that no (nontrivial) constant-round zero-knowledge proof or argument can have
a strict polynomial-time black-box simulator. Similarly, we show that no (nontrivial) constant-
round zero-knowledge proof or argument of knowledge can have a strict polynomial-time black-box
knowledge extractor.
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1. Introduction. This paper deals with the issue of expected versus strict poly-
nomial-time with respect to simulators and extractors for zero-knowledge proofs and
arguments and zero-knowledge proofs and arguments of knowledge.1

1.1. Expected polynomial-time in zero knowledge. The principle behind
the definition of (computational) zero-knowledge proofs, as introduced by Goldwasser,
Micali, and Rackoff [29], is the following:

Anything that an efficient verifier can learn as a result of interacting
with the prover, can be learned without interaction by applying an
efficient procedure (i.e., simulator) to the public input.

Note that there are two occurrences of the word “efficient” in this sentence. When
providing a formal definition of zero knowledge, the issue of what is actually meant by
“efficient computation” must be addressed. The standard interpretation in cryptogra-
phy and complexity is that of probabilistic polynomial-time. However, in the context
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1In a proof system, soundness holds unconditionally and with respect to all-powerful cheating

provers. In contrast, in an argument system, soundness is only guaranteed to hold with respect to
polynomial-time bounded provers. We note that lower bounds for proofs do not necessarily hold for
arguments, because in arguments the soundness condition is only computational. Likewise, lower
bounds for arguments do not necessarily hold for proofs, because proofs are allowed to have super-
polynomial honest prover strategies, whereas arguments are not. See section 2.1.
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of zero knowledge, efficiency has also been taken to mean polynomial on the average
(also known as expected polynomial-time). That is, if we fix the input, and look at
the running time of the machine in question as a random variable (depending on the
machine’s coins), then we require only that the expectation of this random variable is
polynomial. Three versions of the formal definition of zero knowledge appear in the
literature, differing in their interpretations of efficient computation:

1. Definition 1—strict/strict: According to this definition both the verifier
and simulator run in strict polynomial-time. This is the definition adopted by
Goldreich [22, section 4.3] and is natural in the sense that only the standard
interpretation of efficiency is used.

2. Definition 2—strict/expected: This more popular (and liberal) definition
requires the verifier to run in strict polynomial-time while allowing the sim-
ulator to run in expected polynomial-time. This was actually the definition
proposed in the original paper on zero knowledge [29].

3. Definition 3—expected/expected: In this definition, both the verifier and
simulator are allowed to run in expected polynomial-time. This definition is
far less standard than the above two, but is nevertheless a natural one to
consider. As we describe below, this definition was considered by Feige [17],
who showed that (at least for one definition of expected polynomial-time) it
is problematic.

As we have mentioned, the standard interpretation of efficient computation is that
of (strict) polynomial-time. In light of this, Definition 1 (strict/strict) seems to
be the most natural. Despite this, expected polynomial-time was introduced in the
context of zero knowledge because a number of known protocols that could be proven
zero knowledge according to the more liberal strict/expected definition were not
known to satisfy the more severe strict/strict definition. In particular, until very
recently no constant-round zero knowledge argument (or proof) for NP was known
to satisfy Definition 1 (strict/strict).2 It was therefore necessary to relax the
definition and allow expected polynomial-time simulation (as in Definition 2).

Proofs of knowledge. An analogous situation arises in proofs of knowledge [29, 33,
18, 6]. There, the underlying principle is the following:

If an efficient prover can convince the honest verifier with some prob-
ability that x ∈ L, then this prover can apply an efficient procedure
(i.e., extractor) to x and its private inputs and obtain a witness for x
with essentially the same probability.

Again, the word “efficient” occurs twice, and again three possible definitions can be
used. In particular, the prover and extractor can be instantiated by strict polynomial-
time machines, expected polynomial-time machines, or a combination of both.

The different definitions—discussion. As has been observed before (e.g., see [17,
section 3.2], [22, section 4.12.3]), the definitions that allow for expected polynomial-
time computation are not fully satisfactory for several reasons:

• Philosophical considerations: Equating “efficient computation” with expected
polynomial-time is more controversial than equating efficient computation
with (strict) probabilistic polynomial-time. For example, Levin [30] (see also
[20], [22, section 4.3.1.6]) has shown that when expected polynomial-time is
defined as above, the definition is too machine dependent and is not closed
under reductions. He proposed a different definition for expected polynomial-
time that is closed under reductions and is less machine dependent. However,

2We note that throughout this paper we always refer to protocols with negligible soundness error.
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it is still unclear whether expected polynomial-time, even under Levin’s def-
inition, should be considered as efficient computation.

• Technical considerations: Expected polynomial-time is less understood than
the more standard strict polynomial-time. This means that rigorous proofs
of security of protocols that use zero-knowledge arguments with expected
polynomial-time simulators (or arguments of knowledge with expected poly-
nomial-time extractors) as components are typically more complicated (see
[31] for an example). Another technical problem that arises is that expected
polynomial-time simulation is not closed under composition. Consider, for
example, a protocol that uses zero-knowledge as a subprotocol. Furthermore,
assume that the security of the larger protocol is proved in two stages. First,
the zero-knowledge subprotocol is simulated for the adversary (using an ex-
pected polynomial-time simulator). This results in an expected polynomial-
time adversary that runs the protocol with the zero-knowledge executions
removed. Then, in the next stage, the rest of the protocol is simulated for
this adversary. A problem arises because the simulation of the second stage
must now be carried out for an expected polynomial-time adversary. How-
ever, simulation for an expected polynomial-time adversary can be highly
problematic (as the protocol of [24] demonstrates; see [31, Appendix A] for
details).

• Practical considerations: A proof of security that uses expected polynomial-
time simulation does not always achieve the “expected” level of security. For
example, assume that a protocol’s security relies on a hard problem that
would take 100 years to solve, using the best known algorithm. Then, we
would like to prove that the probability that an adversary can successfully
break the protocol is negligible, unless it runs for 100 years. However, when
expected polynomial-time simulation is used, we cannot rule out an adversary
that runs for one year and succeeds with probability 1/100. This is a weaker
level of security and may not be acceptable. See section 1.4 for a more detailed
discussion of this issue.

The liberal strict/expected definition also suffers from a conceptual drawback re-
garding the notion of zero knowledge itself. Specifically, the idea behind the definition
of zero knowledge is that anything that a verifier can learn as a result of the interac-
tion, it can learn by just looking at its input. Therefore, it seems that the simulator
should not be of a higher complexity class than the verifier. Rather, both the verifier
and simulator should be restricted to the same complexity class (i.e., either strict or
expected polynomial-time). The expected/expected definition has the advantage
of not having any discrepancy between the computational power of the verifier and
simulator. However, it still suffers from the above described drawbacks with any use
of expected polynomial-time. In addition, as Feige [17, section 3.3] pointed out, in
order to prove that known protocols remain zero knowledge for expected polynomial-
time verifiers, one needs to restrict the verifiers to run in expected polynomial-time
not only when interacting with the honest prover but also when interacting with all
other interactive machines. This restriction is somewhat controversial because any
efficient adversarial strategy should be allowed. In particular, there seems to be no
reason to disqualify an adversarial strategy that takes expected polynomial-time when
attacking the honest prover, but runs longer otherwise (notice that the adversary is
only interested in attacking the honest prover, and so its attack is efficient).

In contrast, the strict/strict definition suffers from none of the above concep-
tual difficulties. For this reason, it is arguably a preferred definition. However, as
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we have mentioned, it was not known whether this definition can be satisfied by a
protocol with a constant number of rounds. Thus a natural open question (posed by
[17, section 3.4] and [22, section 4.12.3]) was the following:

Are expected polynomial-time simulation and extraction necessary in
order to obtain constant-round zero-knowledge proofs and proofs of
knowledge?

A first step in answering the above question was recently taken by Barak in [3].
Specifically, [3] presented a zero-knowledge argument system that is both constant-
round and has a strict polynomial-time simulator. Interestingly, the protocol of [3]
is not black-box zero knowledge. That is, the simulator utilizes the description of
the code of the verifier. (This is in contrast to black-box zero knowledge where the
simulator is only given oracle access to the verifier.) Given the existence of non-
black-box zero-knowledge arguments with a constant number of rounds and strict
polynomial-time simulation, it is natural to ask the following questions:

1. Is it possible to obtain constant-round zero-knowledge arguments of knowledge
with strict polynomial-time extraction?

2. Is the fact that the protocol of [3] is not black-box zero knowledge coincidental,
or is this an inherent property of any constant-round zero-knowledge protocol
with strict polynomial-time simulation?

1.2. Our results. In this paper we resolve both the above questions. First,
we show that it is possible to obtain strict polynomial-time knowledge extraction
in a constant-round protocol. In fact, we show that it is possible to obtain strict
polynomial-time simulation and extraction simultaneously in a zero-knowledge pro-
tocol. That is, we prove the following theorem.

Theorem 1.1. Assume the existence of collision-resistant hash functions and
collections of trapdoor permutations such that the domain of each permutation is the
set of all strings of a certain length.3 Then, there exists a constant-round zero-
knowledge argument of knowledge for NP with a strict polynomial-time knowledge
extractor and a strict polynomial-time simulator.

The definition of arguments of knowledge that we refer to in Theorem 1.1 differs
from the standard definition of [6] in an important way. In the definition of [6], the
knowledge extractor is given only black-box access to the prover. In contrast, in our
definition, the knowledge extractor is given the actual description of the prover (i.e., it
has nonblack-box access). As we will see below, this modification is actually necessary
for obtaining constant-round arguments of knowledge with strict polynomial-time
extraction.

In addition to the above positive result, we show that it is impossible to obtain a
(nontrivial) constant-round zero-knowledge protocol that has a strict polynomial-time
black-box simulator. Likewise, a strict polynomial-time extractor for a constant-round
zero-knowledge argument of knowledge cannot be black-box. That is, we prove the
following two theorems.

Theorem 1.2. There do not exist constant-round zero-knowledge proofs or argu-
ments with strict polynomial-time black-box simulators for any language L /∈ BPP.

Theorem 1.3. There do not exist constant-round zero-knowledge proofs or ar-
guments of knowledge with strict polynomial-time black-box knowledge extractors for

3By this we mean that there exists a trapdoor permutation family {fs}s∈{0,1}∗ such that fs :

{0, 1}|s| → {0, 1}|s|. It actually suffices to assume the existence of a family of enhanced trapdoor
permutations [23, Appendix C.1]. Such a family can be constructed under the RSA and factoring
assumptions; see [2, section 6.2] and [23, Appendix C.1].
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any language L /∈ BPP.

We therefore conclude that the liberal definitions that allow the simulator (resp.,
extractor) to run in expected polynomial-time are necessary for achieving constant-
round black-box zero knowledge (resp., arguments of knowledge). Furthermore, our
use of nonblack-box techniques is essential in order to obtain Theorem 1.1.

We note that Theorems 1.2 and 1.3 are tight in the sense that if any super-
constant number of rounds is allowed, then zero-knowledge proofs of knowledge with
strict polynomial-time black-box extraction and simulation can be obtained. This
was shown by Goldreich in [22, section 4.7.6]. (Actually, [22] shows that a super-
logarithmic number of sequential executions of the 3-round zero-knowledge proof for
Hamiltonicity [9] suffices. However, using the same ideas, it can be shown that by
running logn parallel executions of the proof of Hamiltonicity, any super-constant
number of sequential repetitions is actually enough.)

Zero knowledge versus ε-knowledge. Our impossibility result regarding constant-
round black-box zero knowledge with strict polynomial-time simulation has an addi-
tional ramification to the question of the relation between black-box ε-knowledge [15]
and black-box zero knowledge. Loosely speaking, an interactive proof is called ε-
knowledge if for every ε, there exists a simulator that runs in time polynomial in the
input and in 1/ε, and outputs a distribution that can be distinguished from a real
proof transcript with probability at most ε. Despite the fact that this definition seems
to be a significant relaxation of zero knowledge, no separation between ε-knowledge
and zero knowledge was previously known. Our lower bound indicates a separation
for the black-box versions; that is, black-box ε-knowledge is strictly weaker than black-
box zero knowledge. Specifically, on one hand, constant-round black-box ε-knowledge
protocols with strict polynomial-time simulators do exist.4 On the other hand, as we
show, analogous protocols for black-box zero knowledge do not exist.

Witness-extended emulation. Zero-knowledge proofs of knowledge are often used
as subprotocols within larger protocols. Typically, in this context the mere existence
of a knowledge extractor does not suffice for proving the security of the larger protocol.
Loosely speaking, what is required is the existence of a machine that not only outputs
a witness with the required probability (as is required from a knowledge extractor),
but also outputs a corresponding simulated transcript of the interaction between the
prover and the verifier. Furthermore, whenever the transcript of the interaction is such
that the verifier accepts, then the witness that is obtained is valid. To explain this
further, consider a case in which the prover convinces the verifier in a real interaction
with probability p. Then, with probability negligibly close to p, the aforementioned
machine should output an accepting transcript and a valid witness. Furthermore, with
probability negligibly close to 1− p, the machine should output a rejecting transcript
(and we don’t care about the witness).

This issue was addressed in [31] by Lindell, who called such a machine a “witness-
extended emulator.” It was proved there that there exists such a witness-extended
emulator for any proof of knowledge. However, the extended emulator that is obtained
runs in expected polynomial-time, even if the original knowledge extractor runs in
strict polynomial-time. Unfortunately, we do not know how to prove an analogous
result that, given any strict polynomial-time knowledge extractor, would provide a

4Such a protocol can be constructed by taking any constant-round protocol with an expected
polynomial-time simulator and truncating the simulator’s run (outputting ⊥), if it runs for more
than 1/ε times its expected running time. By Markov’s inequality, the probability of this bad event
happening is at most ε.
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strict polynomial-time emulator. Instead, we directly construct a strict polynomial-
time witness-extended emulator for our zero-knowledge proof of knowledge (under a
slightly different definition than [31]).

1.3. On the effect of truncating expected polynomial-time executions.
A naive approach to solving the problem of expected polynomial-time in simulation
and extraction is to simply truncate the execution of the simulator or extractor after it
exceeds its expected running time by “too much.” However, this does not necessarily
work. The case of knowledge extractors is a good example. Let us fix a proof (or
argument) of knowledge for some NP-language L. Let x ∈ {0, 1}∗, and let P ∗ be a
polynomial-time prover that, for some ε, aborts with probability 1 − ε and convinces
the honest verifier that x ∈ L with probability ε. For all previously known constant-
round proofs of knowledge, the expected polynomial-time knowledge extractor works
in roughly the following way: it first verifies the proof from P ∗, and if P ∗ is not
convincing (which occurs in this case with probability 1 − ε), then it aborts. On the
other hand, if P ∗ is convincing (which happens in this case with probability ε), then
it does expected p(n) · 1

ε work (where p(·) is some fixed polynomial) and outputs a
witness for x. Clearly, the expected running time of the extractor is polynomial (in
particular, it is p(n) plus the time taken to honestly verify a proof). However, if
we halt this extractor before it completes 1

ε steps, then, with high probability, the
extractor will not output a witness. Note that 1

ε may be much larger than p(n), and
therefore the extractor may far exceed its expected running time and yet still not
output anything.

In contrast to the above, the knowledge extractor of the argument of knowledge
presented in this paper (in section 4) runs in strict polynomial-time which is inde-
pendent of the acceptance probability (i.e., ε). For example, if there exists a cheating
prover P ∗ that runs in time n2, but convinces the verifier that x ∈ L with probability
ε = n−10, then our extractor will always run in time, say, n4 and output a witness
with probability at least (negligibly less than) n−10. On the other hand, the extractors
for previous protocols would work as follows: with probability 1 − n−10 they would
do almost nothing, and with probability n−10 they would run for, say, n12 steps and
output a witness.

1.4. Trading success probability for running time. The observation in sec-
tion 1.3 about how expected polynomial-time extractors typically work raises serious
security issues with respect to the application of proofs of knowledge that have such
extractors. For example, suppose that we use a proof of knowledge for an identifi-
cation protocol based on factoring. Suppose, furthermore, that we use numbers for
which the fastest known algorithms will take 100 years to factor. We claim that in
this case, if we use a proof of knowledge with an expected polynomial-time extractor,
then we cannot rule out the possible existence of an adversary that will take one year
of computation time and succeed in an impersonation attack with probability 1/100.

In order to see this, notice that the proof of security of the identification protocol
works by constructing a factoring algorithm from any impersonator, using the ex-
tractor for the proof of knowledge. Thus, for typical protocols, what will actually be
proven is that given an algorithm that runs for T steps and successfully impersonates
with probability ε, we can construct an algorithm that solves the factoring problem
with probability ε and expected running time T . In particular, this factoring algo-
rithm may (and actually will) work in the following way: with probability 1− ε it will
do nothing and with probability ε it will run in T/ε steps and factor its input. Thus,
the existence of an impersonator that runs for one year and succeeds with probabil-
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ity 1/100 only implies the existence of a factoring algorithm that runs for 100 years.
Therefore, we cannot rule out such an impersonator. We conclude that the standard
proofs of knowledge potentially allow adversaries to trade their success probability for
running time. In the concrete example above, the impersonator lowered its running
time from 100 years to one year, at the expense of succeeding with probability 1/100
instead of 1. We stress that the fastest known algorithms for factoring do not allow
such a trade-off. That is, if the parameters are chosen so that 100 years are required
to factor, then the probability of successfully factoring after one year is extremely
small, and not close to 1/100.

We stress that not only is it the case that the definition of expected polynomial-
time extraction does not allow us to rule out such an adversary, but also that such
adversaries cannot be ruled out by the current proofs of security for known constant-
round protocols (thus, the problem also lies with the protocols and not just with the
definition). In contrast, such a trade-off is not possible if the extractor runs in strict
polynomial-time. Rather, an impersonator that runs in time T and succeeds with
probability ε yields a factoring algorithm that runs in time (polynomially related)
to T and succeeds with probability ε. Thus, in the above concrete example, an analo-
gous impersonator for a protocol with a strict polynomial-time extractor would yield a
factoring algorithm that runs for one year and succeeds with probability 1/100. How-
ever, such an algorithm is conjectured not to exist, and therefore such an impersonator
also does not exist (unless the conjecture is wrong).

1.5. Further discussion of prior work. Zero-knowledge proofs were intro-
duced by Goldwasser, Micali, and Rackoff [29], and were then shown to exist for
all NP by Goldreich, Micali, and Wigderson [26]. Constant-round zero-knowledge
arguments and proofs were constructed by Feige and Shamir [19], Brassard, Crépeau,
and Yung [11], and Goldreich and Kahan [24]. All these constant-round protocols uti-
lize expected polynomial-time simulators. Regarding zero-knowledge proofs of knowl-
edge, following a discussion in [29], the first formal definitions were provided by Feige,
Fiat, and Shamir [18], and by Tompa and Woll [33]. These definitions were later
modified by Bellare and Goldreich [6].

The issue of expected polynomial-time is treated in Feige’s thesis [17] and Gold-
reich’s book [22]. Goldreich [22, section 4.7.6] also presents a construction for a proof
of knowledge with strict polynomial-time extraction (and simulation) that uses any
super-logarithmic number of rounds (as discussed above, a variant of this construction
can be obtained that uses any super-constant number of rounds).

As we have mentioned, until a short time ago, all known constant-round zero-
knowledge protocols had expected polynomial-time simulators. However, recently this
barrier was broken by Barak [3], who provided the first constant-round zero-knowledge
argument for NP with a strict polynomial-time simulator, assuming the existence of
collision-resistant hash functions with super-polynomial hardness. Barak and Gold-
reich [4] later showed how to obtain the same result under the weaker assumption
of the existence of standard collision-resistant hash functions (with polynomial-time
hardness). The construction of [3] was also the first zero-knowledge argument to uti-
lize a nonblack-box simulator. In a similar fashion, the constant-round argument of
knowledge presented in this paper utilizes a nonblack-box knowledge extractor. We
note that [5] also utilized a nonblack-box knowledge extractor. However, their ex-
tractor ran in expected polynomial-time, and the nonblack-box access was used there
for a completely different reason (specifically, to achieve a resettable zero-knowledge
argument of knowledge).
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1.6. Organization. In section 2 we describe the basic notation and definitions
that we use. Then, in section 3 we define and construct a commit-with-extract com-
mitment scheme, which is the main technical tool used to construct our zero-knowledge
argument of knowledge. The proof of Theorem 1.1 can be found in section 4 where
we present the construction of a zero-knowledge argument of knowledge with strict
polynomial-time extraction. Finally, in section 5 we prove Theorems 1.2 and 1.3.
That is, we prove that it is impossible to construct strict polynomial-time black-box
simulators and extractors for (nontrivial) constant-round protocols.

2. Definitions.

Notation. For a binary relation R, we denote by R(x) the set of all “witnesses”

for x. That is, R(x)
def
= {y | (x, y) ∈ R}. Furthermore, we denote by LR the language

induced by the relation R. That is, LR
def
= {x | R(x) �= ∅}.

For a finite set S ⊆ {0, 1}∗, we write x ∈R S to say that x is distributed uniformly
over the set S. We denote by Un the uniform distribution over the set {0, 1}n.

A function µ(·) is negligible if for every positive polynomial p(·) and all sufficiently
large n’s, it holds that µ(n) < 1/p(n). We let µ(·) denote an arbitrary negligible
function. That is, when we say that f(n) < µ(n) for some function f(·), we mean
that there exists a negligible function µ(·) such that for every n, f(n) < µ(n). A
function f(·) is noticeable if there exists a positive polynomial p(·) such that for all
sufficiently large n’s, it holds that f(n) > 1/p(n). We note that “noticeable” is not
the complement of “negligible.”

For two probability ensembles (sequences of random variables) X = {Xs}s∈S and
Y = {Ys}s∈S (where S ⊆ {0, 1}∗ is a set of strings), we say that X is computationally

indistinguishable from Y , denoted X
c≡ Y , if for every polynomial-sized circuit family

{Dn}n∈N and every s ∈ S, it holds that |Pr[D|s|(Xs) = 1]−Pr[D|s|(Ys) = 1]| < µ(|s|).
We will sometime drop the subscripts s when they can be inferred from the context.
In all our protocols, we will denote the security parameter by n.

Let A be a probabilistic polynomial-time machine. We denote by A(x, y, r) the
output of the machine A on input x, auxiliary input y and random tape r. We stress
that the running time of A is polynomial in |x|.5 If M is a Turing machine, then we
denote by descn(M) the description of a circuit that computes M on inputs of size n.
Note that a polynomial-time machine that receives descn(M) for input runs in time
that is polynomial in the running time ofM . Let A and B be interactive machines. We
denote by viewA(A(x, y, r), B(x, z, r′)) the view of party A in an interactive execution
with machine B, on public input x, where A has auxiliary input y and random tape r,
and B has auxiliary input z and random tape r′. The view of party B is denoted
similarly. Recall that a party’s view of an execution includes the contents of its input,
auxiliary input, and random tape plus the transcript of messages that it receives
during the execution. We sometimes drop r or r′ from this notation, which means that
the random tape is not fixed but rather chosen at random. For example, we denote by
viewA(A(x, y), B(x, z)) the random variable viewA(A(x, y, Um), B(x, z, U ′

m′)), where
m (resp., m′) is the number of random bits that A (resp., B) uses on input of size |x|.

2.1. Zero knowledge. Loosely speaking, an interactive proof system for a lan-
guage L involves a prover P and a verifier V , where upon common input x, the
prover P attempts to convince V that x ∈ L. We note that the prover is often given

5We assume that y and r are on different tapes. Therefore, even if y is very long (e.g., |y| >
poly(|x|)), it is still possible for A to read r.
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some private auxiliary input that “helps” it to prove the statement in question to V .
Such a proof system has the following two properties:

1. Completeness: this states that when honest P and V interact on common
input x ∈ L, then V is convinced of the correctness of the statement that
x ∈ L (except with at most negligible probability).

2. Soundness: this states that when V interacts with any (cheating) prover P ∗

on common input x /∈ L, then V will be convinced with at most negligible
probability. (Thus V cannot be tricked into accepting a false statement.)

There are two flavors of soundness: unconditional (or statistical) soundness that
must hold even for an all-powerful cheating prover, and computational soundness
that needs hold only for (nonuniform) polynomial-time cheating provers. In proof
systems [29], unconditional soundness is guaranteed, whereas in argument systems [10]
only computational soundness must hold. We remark that a proof system is not
necessarily an argument system, because the honest prover strategy in a proof system
is not required to be polynomial-time (in contrast to arguments where the honest
prover as well as the cheating provers must be nonuniform polynomial-time). Unless
explicitly stated, when we mention “protocols” in discussion, we mean both proofs
and arguments.

Throughout this paper, we will always assume that the soundness error is at most
negligible. However, we will not always require this of completeness. Specifically, our
lower bounds in section 5 hold even if the completeness error is 1 − 1/p(n) for some
polynomial p(·); in this case, we will call p(n) the completeness bound.

We now recall the definition of zero knowledge [29]. Actually, we present (a
slightly strengthened form of) the definition of auxiliary-input zero knowledge [22,
section 4.3.3].6 The main difference between our definition below and the standard
definition is that we require the simulator to run in strict, rather than expected,
polynomial-time. We note that in this paper, when we say zero knowledge, our
intention is always auxiliary-input zero knowledge.

Definition 2.1 (auxiliary-input zero knowledge). Let (P, V ) be an interactive
proof (or argument) system for a language L. Denote by PL(x) the set of strings y
satisfying the completeness condition with respect to x ∈ L (i.e., when the complete-
ness bound is p(·), then PL(x) is the set of strings y for which the probability that
viewV (P (x, y), V (x)) is accepting is at least p(|x|)). We say that (P, V ) is auxiliary-
input zero knowledge if there exists a strict probabilistic polynomial-time algorithm S
such that for every strict probabilistic polynomial-time machine V ∗ it holds that{

viewV ∗(P (x, y), V ∗(x, z))
}
x∈L,y∈PL(x),z∈{0,1}∗

c≡
{
S(desc|x|(V ∗), x, z)

}
x∈L,y∈PL(x),z∈{0,1}∗

7

Black-box zero knowledge. A zero-knowledge proof system is called black-box
zero knowledge [27] if the simulator S only uses its input desc(V ∗) as a black-box

6We deviate from the definition of auxiliary-input zero knowledge of [22, section 4.3.3] by making
the slightly stronger requirement that there exists a single universal simulator for all verifiers, rather
than a different simulator for each verifier as in [22, section 4.3.3]. Note however, that the definition
of [22, section 4.3.3] already implies that for any c > 0 there exists a universal simulator for all
Time(nc) verifiers.

7Recall that descn(M) is the description of a circuit that computes M on inputs of size n. An
equivalent formulation provides the simulator S with the description of the actual Turing machine M .
However, in this case, it is also necessary to provide S with 1t, where t is a bound on the running
time of V ∗ on inputs of length |x|. This additional input is provided in order to allow S to run in
time which is (some fixed) polynomial in the running time of V ∗.
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subroutine. That is, S is an oracle algorithm such that{
viewV ∗(P (x, y), V ∗(x, z))

}
x∈L,y∈PL(x),z∈{0,1}∗

c≡
{
SV ∗(x,z,·,·)(x)

}
x∈L,y∈PL(x),z∈{0,1}∗

,

where V ∗(x, z, ·, ·) denotes the next-message function of the interactive machine V ∗

when the common input x and auxiliary input z are fixed (i.e., the next-message func-
tion of V ∗ receives a random tape r and a message history h and outputs V ∗(x, z, r, h)).

2.2. Zero-knowledge arguments of knowledge. Our definition of proofs and
arguments of knowledge below differs from the standard definition of [6] in two ways:

Strict polynomial-time extraction. We require that the knowledge extractor run
in strict polynomial-time (rather than in expected polynomial-time).

Nonblack-box extraction. The knowledge extractor is given access to the descrip-
tion of the prover. This is a relaxation of the standard definition of proofs of
knowledge (cf. [6, 22]) in which the knowledge extractor is given only oracle
(or black-box) access to the prover strategy. The relaxed definition appeared
originally in Feige and Shamir [19] (which differs from the definition in [18];
see discussion in [6]), and suffices for all practical applications of arguments
of knowledge.
Until recently, all known proofs of knowledge (including [19]) were coupled
with an extractor that used the prover algorithm only as a black-box. The
extra power of nonblack-box extraction (where the knowledge extractor is
given the actual description of the prover) was first used in an essential way
by [5] in order to obtain resettable zero-knowledge arguments of knowledge
for NP.8 We show in section 5 that our use of nonblack-box extraction is
also essential, as there do not exist constant-round proofs of knowledge with
black-box strict polynomial-time extractors.

We are now ready to present the following definition.
Definition 2.2 (system of proofs/arguments of knowledge). Let R be a binary

relation. We say that a probabilistic, polynomial-time interactive machine V is a
knowledge verifier for the relation R with negligible knowledge error if the following two
conditions hold:

• Nontriviality: There exists a probabilistic polynomial-time9 interactive ma-
chine P such that for every (x, y) ∈ R, all possible interactions of V with P
on common input x, where P has auxiliary input y, are accepting.

• Validity (or knowledge soundness) with negligible error: There exists a strict
probabilistic polynomial-time machine K such that for every strict probabilis-
tic polynomial-time machine P ∗ and every x, y, r ∈ {0, 1}∗, machine K sat-
isfies the following condition:

Denote by p(x, y, r) the probability (over the random tape of V )
that V accepts upon input x, when interacting with the prover P ∗

that has input x, auxiliary input y, and random tape r. Then,
machine K, upon input (desc|x|(P ∗), x, y, r), outputs a solution
s ∈ R(x) with probability at least p(x, y, r) − µ(|x|).

8The use there is critical as it can be shown that if the knowledge extractor is restricted to only
black-box access to the prover, then resettable zero-knowledge arguments of knowledge are possible
for languages in BPP only; see [12].

9The requirement that P be polynomial-time is inherent for arguments, but not for proofs. A
proof system with such a prover is called an efficient-prover proof.
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An interactive pair (P, V ) such that V is a knowledge verifier for a relation R and P is
a machine satisfying the nontriviality condition (with respect to V and R) is called an
argument of knowledge for the relation R. If the validity condition holds with respect
to any (not necessarily polynomial-time) machine P ∗, then (P, V ) is called a proof of
knowledge for R.

If an argument (resp., proof) of knowledge (P, V ) is zero knowledge for the lan-
guage LR induced by R, then we say that (P, V ) constitutes a system of zero-knowledge
arguments (resp., proofs) of knowledge for R.

2.3. Witness-extended emulation. In this section, we present an extension
of the notion of proofs of knowledge, called witness-extended emulation. This extension
is of importance when zero-knowledge proofs or arguments of knowledge are used as
subprotocols within larger protocols, as is often the case. Typically in this context,
the extractor for the proof of knowledge supplies the simulator for the larger protocol
with some secret information. This information is then used in the proof of security
of the rest of the larger protocol.

The final output of the simulator for the larger protocol is usually a transcript
of the entire simulated protocol execution (where this transcript is indistinguishable
from a real execution). Thus, the extractor needs to not only extract a witness from
the proof of knowledge, but must also obtain a matching transcript of the execution
of the proof of knowledge itself. However, by definition, the extractor only outputs a
witness and does not provide the simulator with such a transcript. This issue was ad-
dressed in [31] where, loosely speaking, it was shown that for any zero-knowledge proof
of knowledge, there exists a machine that outputs both the witness (with the appro-
priate probability) and a matching transcript of messages sent in the execution. Such
a machine was termed a “witness-extended emulator” because its role is to emulate
a protocol execution while also providing a witness (see [31] for a more detailed dis-
cussion). We proceed by presenting a slightly different definition of witness-extended
emulation and then discuss its relevance to our work. We begin with some notation
and terminology:

• Recall that viewP∗(P ∗(x, y, r), V (x)) denotes a random variable describing
the view of P ∗ in a protocol execution with the honest verifier V , where P ∗

has input x, auxiliary input y, and random tape r, and the honest verifier V
has input x. (This random variable depends only on the coins of V .)

• We say that a zero-knowledge protocol (P, V ) is publicly verifiable if given
the transcript of messages between any P ∗ and V , it is possible to efficiently
determine whether or not V accepted the proof. (For example, any protocol
can be made publicly verifiable by having the verifier send the contents of
its random tape at the end of the protocol execution. Note, however, that
this can affect other properties of the protocol. Indeed, our proof of knowl-
edge, Protocol 4.1, cannot be made publicly verifiable in this way while still
preserving the witness-extended emulation property.)
When a protocol is publicly verifiable, then V ’s accept/reject bit can be
deduced efficiently (and deterministically) from the prover’s view. We denote
by acceptV (·) the deterministic function that takes a specific view of the
prover in a protocol execution, and outputs whether or not V accepts in this
execution.

We are now ready to present the following definition.

Definition 2.3 (witness-extended emulator). Let R be a binary relation, and let
(P, V ) be an interactive proof system that is publicly verifiable. Consider a probabilis-
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tic machine E that is given the description of a probabilistic polynomial-time prover
desc|x|(P ∗), and the contents of P ∗’s input, auxiliary input, and random tapes, x, y
and r, respectively. We denote by E1(desc|x|(P ∗), x, y, r) and E2(desc|x|(P ∗), x, y, r)
the random variables representing the first and second elements of the output of E,
respectively. We say that E is a witness-extended emulator for (P, V ) and R if it runs
in strict polynomial-time and if for every probabilistic polynomial-time interactive
machine P ∗, every y, r ∈ {0, 1}∗, and all sufficiently large x’s, the following hold:

1. E1’s output distribution is indistinguishable from the distribution of the view
of P ∗ in a real execution with the honest verifier V . That is,{

E1(desc|x|(P ∗), x, y, r)
}
x,y,r

c≡ {viewP∗(P ∗(x, y, r), V (x))}x,y,r .

2. The probability that V accepts in the view of P ∗ that is output by E1, and yet
E2 does not output a correct witness, is negligible. That is,

Pr
[
acceptV (E1(desc|x|(P ∗), x, y, r))

= 1 & E2(desc|x|(P ∗), x, y, r) /∈ RL(x)
]
< µ(|x|).

Definition 2.3 differs from the definition of [31] in a number of ways. Most notably,
we provide the witness-extended emulator with the description of P ∗ (rather than just
black-box access) and also require it to run in strict polynomial-time (rather than
expected polynomial-time). The other differences are technical and are mainly due
to the need to achieve strict polynomial-time emulation. Despite the differences, the
definitions are the same in spirit and both achieve the desired goal of enabling a proof
of knowledge to be used as a subprotocol in some other, larger protocol.

Recall that [31] proved the existence of a witness-extended emulator for any proof
of knowledge. However, the emulator that is obtained runs in expected polynomial-
time and thus does not achieve our goal of strict polynomial-time emulation. We will
therefore directly prove the existence of a witness-extended emulator for our zero-
knowledge argument of knowledge.

3. Commitment with extraction. In order to construct a constant-round
zero-knowledge argument of knowledge with strict polynomial-time extraction, we
first construct a new primitive that we call commit-with-extract. Loosely speaking,
a commit-with-extract scheme is a commitment scheme with the additional property
that the committed value can be extracted from the sender. More precisely, there
exists a (strict polynomial-time) commitment extractor that is given the description
of the sender (along with the contents of its input, auxiliary input, and random tape)
and extracts the value being committed to during the commit stage of the protocol.
This notion of “extractable commitments” is not completely new. It has been used
in the context of secure multiparty computation (e.g., [21, Construction 2.3.8]) and
has been called both commit-with-knowledge [14] and nonoblivious commitment [22,
Definition 4.9.3]. One main technical difference between our primitive and previous
ones is the requirement that the extractor run in strict polynomial-time. At the end
of this section we discuss another significant difference that is related to the question
of “knowledge” versus “extraction.”

We remark that in a standard commitment scheme, the committer may not
“know” the value that it committed to. This is the case, for example, in the case
that the range of the commitment scheme is {0, 1}∗, and so any value is a valid
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commitment. Clearly, such a commitment scheme does not have the property that
the committed value can be extracted from the committer.

3.1. Definition. We begin by informally defining perfectly binding commitment
schemes.

Commitment schemes. A commitment scheme is a two-party protocol that enables
a party, known as the sender, to commit itself to a value while keeping it secret
from the receiver. A commitment scheme must be both hiding and binding. The
hiding property of a commitment scheme says that the receiver’s view in the case that
the sender commits to 0 is computationally indistinguishable from its view in the
case that the sender commits to 1. (Thus, the committed value is unknown to the
receiver.) The binding property of a commitment scheme states that in a later stage
when the commitment is opened, the “opening” can yield only a single value that was
determined in the committing phase. (Thus, the sender cannot modify its committed
value.) In a perfectly binding commitment scheme, the binding property states that
transcripts resulting from a commitment to 0 and a commitment to 1 must be disjoint.
Thus, for any given transcript, there is at most one commitment value that can yield
that transcript. See [22, section 4.4.1] for a formal definition of commitment schemes.

Commit-with-extract. As we have mentioned, a commit-with-extract scheme is
a commitment scheme with the following additional property: there exists a (strict
polynomial-time) commitment extractor that is given the description of the sender
and extracts the value being committed to during the commit stage of the protocol.
In addition to outputting the committed value, we also require the extractor to out-
put the sender’s view of an execution (this is similar in spirit to witness-extended
emulation and is needed when the commit-with-extract is used as a subprotocol).10

Of course, the committed value and sender’s view output by the extractor must be
compatible. In order to enforce this compatibility, we denote by commit-value(·) a
function that takes a sender’s view and outputs the unique committed value implicit
in this view, or ⊥ if no such value exists. (This function is well defined for perfectly
binding commitments because in such a case every transcript can define at most one
value.) Then, compatibility between the view and committed value is obtained by re-
quiring that x = commit-value(v), where x and v are the committed value and sender’s
view, respectively, as output by the extractor. We now present the formal definition.

Definition 3.1 (commit-with-extract). A perfectly binding commitment scheme
C (with sender A and receiver B) is a commit-with-extract commitment scheme if the
following holds: there exists a strict probabilistic polynomial-time commitment extrac-
tor CK such that for every probabilistic polynomial-time committing party A∗ and for
every x, y, r ∈ {0, 1}∗, upon input (desc|x|(A∗), x, y, r), machine CK outputs a pair,
denoted (CK1(desc|x|(A∗), x, y, r), CK2(desc|x|(A∗), x, y, r)), satisfying the following
conditions:

1.
{
CK1(desc|x|(A∗), x, y, r)

}
x,y,r∈{0,1}∗

c≡ {viewA∗(A∗(x, y, r), B)}x,y,r∈{0,1}∗ .

2. Pr[CK2(desc|x|(A∗), x, y, r) = commit-value(CK1(desc|x|(A∗), x, y, r))] > 1 −
µ(|x|).

We note that the requirements on the extractor CK can be relaxed such that
in the case that there is no committed value (i.e., where the view v is such that
commit-value(v) = ⊥), then CK can output any arbitrary value, and not just ⊥. This
relaxation suffices for our applications.

10The extractor outputs the view of the sender (and not the receiver) because the extraction
procedure is used in the simulation of a corrupted sender (not receiver).
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Commit-with-extract using proofs of knowledge. We note that it is possible to
achieve a commit-with-extract scheme in the following straightforward way. First,
the sender sends a standard perfectly binding commitment to the receiver. Then,
the sender proves knowledge of the committed value using a zero-knowledge proof
or argument of knowledge. A commitment extractor can easily be constructed for
this scheme by having it run the knowledge extractor from the proof of knowledge
and obtain the committed value. However, as mentioned above, known constructions
of proofs of knowledge with strict polynomial-time extraction have a nonconstant
number of rounds. In contrast, our aim is to construct a commit-with-extract scheme
that has a constant number of rounds.

Public decommitment. We say that a commitment scheme satisfies public decom-
mitment if the validity of a decommitment can be ascertained by any party that holds
the transcript of the messages between the sender and receiver from the commitment
stage. In particular, this party need not know the random coins used by the receiver
during the commitment. More formally, the specification of a commitment scheme
consists of two sender protocols and two receiver protocols: one protocol for the com-
mit phase and one for the reveal phase. In general, the input of a protocol in the
reveal phase may be the entire view of the corresponding party from the protocol of
the commit phase. We say that a commitment scheme satisfies public decommitment
if the input of the receiver protocol in the reveal phase may consist merely of the
transcript of messages sent by the parties in the commit phase, and nothing else.
That is, see the following definition.

Definition 3.2 (commitment schemes with public decommitment). A com-
mitment scheme satisfies public decommitment if the receiver’s decision in the reveal
phase depends only on the transcript of messages sent between the parties.

This notion is analogous to that of “publicly verifiable” protocols, as described
in section 2.3. (Again, as described in section 2.3, any perfectly binding commitment
scheme can be modified into one that provides public decommitment by having the
receiver send its random coins at the conclusion of the commitment phase. However,
this may affect other properties of the commitment scheme. Indeed, the extractor
for our commit-with-extract scheme would fail to generate a view that is indistin-
guishable from the sender’s view, as required in Definition 3.1, if the receiver were
required to send all of its random coins when the commitment phase concludes.) We
use the additional feature of public decommitment for constructing a zero-knowledge
argument of knowledge from a commit-with-extract scheme.

3.2. Constant-round commit-with-extract. In this section we show how to
construct a constant-round commit-with-extract commitment scheme. That is, we
prove the following theorem.

Theorem 3.3. Assume the existence of collision-resistant hash functions and
collections of trapdoor permutations such that the domain of each permutation is the
set of all strings of a certain length.11 Then, there exist constant-round commit-with-
extract string commitment schemes satisfying public decommitment.

Before presenting our scheme, we note that it suffices to present a scheme that
is perfectly binding, except with negligible probability (where the probability is taken
over the coins of the receiver). A perfectly binding scheme (with no error) can then be
obtained by augmenting the commitment phase with an additional perfectly binding
commitment. Specifically, the sender will commit to the same value twice, once using

11See footnote 3.
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a perfectly binding scheme (that does not enable extraction but is perfectly binding
with no error), and once using a commit-with-extract scheme (that enables extraction
but has a negligible error with respect to binding). The decommitment phase is then
also modified so that both commitments must be opened. The result is a commit-
with-extract scheme that is perfectly binding with no error. (We note that perfect
binding with negligible error usually suffices, and so no such augmentation is really
necessary.)

We now present our construction. In order to simplify the presentation, we start
by showing a commit-with-extract bit commitment scheme and then show how to
generalize our construction to a string commitment scheme. Our protocol is based
on the following well-known noninteractive commitment scheme that uses one-way
permutations [8]: Let f be a one-way permutation over {0, 1}n and let b be a hard-
core predicate of f . Then, in order to commit to a bit σ, the sender chooses r ∈R

{0, 1}n, lets y = f(r), and sends 〈y, b(r) ⊕ σ〉 to the receiver. Loosely speaking, our
commitment scheme is similar except that the value y is chosen jointly by the sender
and the receiver using a coin-tossing protocol (which is based on the coin-tossing
protocol of [31]). Since y is uniformly distributed, the hiding property remains as in
the original scheme. Likewise, because f is a permutation, y defines a unique value
b(f−1(y)) and thus the scheme remains perfectly binding. The novelty of our scheme is
that for every sender, there exists an extractor that can bias the coin-tossing protocol
such that it concludes with a value y for which the extractor knows the preimage
r = f−1(y). In this case, the extractor can easily obtain the commitment value σ, as
desired.

In order to allow the sender to be implementable by an efficient algorithm, we
choose f to be a trapdoor one-way permutation. Thus, the sender is able to efficiently
compute r = f−1(y), where y is the output of the coin-tossing protocol (this is similar
to the noninteractive zero-knowledge protocol constructed in [16]). Formally, the
protocol is parameterized by a family of trapdoor permutations over {0, 1}n, with a
function sampling algorithm I. We denote a permutation from the family by f and
its associated trapdoor by t. Furthermore, we denote by b a hard-core of f .

One of the components of the protocol is a constant-round zero-knowledge argu-
ment with a strict polynomial-time simulator. We note that such an argument exists
if collision-resistant hash functions exist [3, 4]. As we have mentioned above, another
component of our commit-with-extract protocol is a coin-tossing subprotocol that is
based on the protocol of [31]. We do not plug in the exact protocol of [31] (while
replacing the zero-knowledge proofs with those that run in strict polynomial-time),
because its proof of security uses extraction from a proof of knowledge, and no proof
of knowledge with strict polynomial-time extraction was previously known (indeed,
providing such a proof is the aim of our construction).

Protocol 3.4 (commit-with-extract bit commitment scheme).
• Input: The sender has a bit σ to be committed to.
• Commit phase:

1. A chooses a trapdoor permutation:
(a) The sender A chooses a trapdoor permutation f along with its trap-

door t (by running the sampling algorithm I on a uniformly chosen
string sI ∈R {0, 1}n), and sends f to the receiver B.

(b) A proves to B that f is a permutation, using any constant-round
zero-knowledge proof or argument (even one with an expected poly-
nomial-time simulator). For example, if I is such that it outputs a
permutation with probability 1, then A may prove that there exists
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a string sI such that f is the permutation output from I(sI).
12 If B

does not accept the proof, then it aborts.
2. A and B run a coin-tossing protocol:

(a) B chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1; s)
to A (where Commit(·) denotes any perfectly binding commitment
scheme, and Commit(r1; s) denotes a commitment to value r1 using
random coins s).

(b) A chooses a random string r2 ∈R {0, 1}n and sends r2 to B.
(c) B sends r1 to A (without decommitting).
(d) B proves that the string r1 sent in Step 2(c) is indeed the value that

it committed to in Step 2(a), using a constant-round zero-knowledge
argument with a strict polynomial-time simulator. Formally, B
proves that there exists a string s such that c = Commit(r1; s).

(e) The output of the coin-tossing phase is r1 ⊕ r2.
3. A sends the actual commitment:
A computes r = f−1(r1 ⊕ r2) and sends B the value v = b(r) ⊕ σ.

• Reveal phase:
1. A sends B the string r.
2. B checks that f(r) = r1⊕r2. If this is the case, then B computes b(r)⊕v

obtaining σ. Otherwise, B outputs ⊥.

(By convention, if the commit phase of the protocol is not completed, then the
committed value is defined to equal 0.) We now prove that Protocol 3.4 is a secure
commit-with-extract commitment scheme. We first show that it is a secure commit-
ment scheme. This involves demonstrating both the binding and hiding properties.
Intuitively, these properties hold because the only difference between the above pro-

tocol and the basic commitment scheme defined by Cn(σ; r)
def
= 〈f(r), b(r) ⊕ σ〉 for

r ∈R {0, 1}n is that the random string r is chosen via a coin-tossing protocol (rather
than being determined by the sender).

Proposition 3.5. Protocol 3.4 is a secure bit commitment scheme with public
decommitment.

Proof. We first claim that Protocol 3.4 satisfies public decommitment (see Defini-
tion 3.2). This is due to the fact that the only information needed by B to verify A’s
decommitment is the pair of strings r1 and r2 that appear in the transcript between
A and B from the commit phase.

Next, we prove the (almost) perfect binding property. That is, we show that ex-
cept with negligible probability, for any transcript of messages trans generated by an
execution between an arbitrary probabilistic polynomial-time sender A∗ and the hon-
est receiver B, there exists a unique value σ ∈ {0, 1} such that commit-value(trans) =
σ. Intuitively, the perfect binding property holds as long as the function f sent by A∗

is a permutation. This is the case because when f is a permutation, the values r1
and r2 in the transcript define a unique value r = f−1(r1⊕r2), which in turn uniquely
defines the value σ = v ⊕ b(r). The formal argument follows.

First, note that if B does not accept the proof provided by A∗ in Step 1(b), then
B will abort and then, by convention, σ equals 0. Likewise, if A∗ does not complete

12We note that by using the primality testers of [28] or [1], for example, the sampling algorithms
for both the RSA and Rabin families of trapdoor permutations can be made to output a permutation
with probability 1. In the case that the sampling algorithm does not output a permutation with
probability 1, a different method of proving that f is a permutation is needed. General methods for
achieving this can be found in [7].
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the entire commit phase, σ also equals 0. Therefore, the binding property trivially
holds in these cases. We continue to show that it holds when B does not abort and
the commit phase is completed.

Now, assume that the function f sent by A∗ is a permutation. In this case,
any pair of strings r1 and r2 appearing in the transcript define a single preimage
r = f−1(r1 ⊕ r2). Therefore, any bit v sent by A∗ in Step 3 defines a single value
σ = v ⊕ b(r). That is, the values r1, r2, and v in the transcript define a single com-
mitted value σ, as required. This, however, holds only as long as f is a permutation
(otherwise, there may be more than one possible preimage to r1 ⊕ r2). By the sound-
ness of the proof (or argument) of Step 1(b), we have that the probability that f
is not a permutation is at most negligible. We therefore conclude that, except with
negligible probability, the transcript defines a single committed value.

We now turn to the computational hiding property. Intuitively, the hiding prop-
erty follows from the hiding property of the noninteractive commitment scheme of [8]
and the security of the coin-tossing protocol. In particular, if r1 ⊕ r2 is uniform
(or pseudorandom), then distinguishing between a commitment to 0 and a com-
mitment to 1 is essentially equivalent to distinguishing between {f(Un), b(Un)} and
{f(Un), b(Un) ⊕ 1}. Since b is a hard-core of f , it is infeasible to distinguish between
these distributions in polynomial time. The hiding property therefore follows from
the security of the coin-tossing protocol that ensures that r1 ⊕ r2 is pseudorandom.

In the above intuition, the security of the coin-tossing protocol is reduced to
a single instance of a commitment. However, in the actual proof, we reduce the
indistinguishability of our commitment scheme to the indistinguishability of multiple
samples of the basic commitment scheme relative to a single permutation f . That
is, we show that distinguishing between a commitment to 0 and a commitment to 1
is equivalent to distinguishing between the random variables Xm

0 and Xm
1 , where

Xm
σ = 〈f, f(U

(1)
n ), b(U

(1)
n ) ⊕ σ, . . . , f(U

(m)
n ), b(U

(m)
n ) ⊕ σ〉, where f is a trapdoor one-

way permutation, b is a hard-core bit for f , and m = poly(n). One can use a standard
hybrid argument to show that Xm

0 and Xm
1 are computationally indistinguishable.

Formally, for any polynomial-size receiver B∗, denote by vB
∗

n (σ) the distribution
over B∗’s view, when the honest sender A commits to the value σ (the distribution is
over the uniform choice of random coins for A). Then, the hiding property is stated
as follows: for any polynomial-size receiver B∗, it holds that{

vB
∗

n (0)
}
n∈N

c≡
{
vB

∗
n (1)

}
n∈N

.

Assume by contradiction that there exists a polynomial-size receiver B∗, a polynomial-
time distinguisher D, and a polynomial p(·) such that for infinitely many n’s

advDn
def
=
∣∣∣Pr[D(vB

∗
n (0)) = 1] − Pr[D(vB

∗
n (1)) = 1]

∣∣∣ ≥ 1

p(n)
.(3.1)

We will use D and B∗ to construct a distinguisher D′ that will distinguish between
the random variables Xm

0 and Xm
1 mentioned above, for m = 5p(n). To get an

intuition for the operation of D′, consider the case in which B∗ doesn’t behave in an
ostensibly faulty way (i.e., B∗ does not “abort” the computation). If this is the case,
we can actually construct a distinguisher D′ for the basic commitment scheme (i.e.,
a distinguisher between X1

0 and X1
1 ). The distinguisher D′ receives a commitment

Cn(σ) = 〈f(r), b(r) ⊕ σ〉 for input (where r ∈R {0, 1}n) and works by invoking B∗

and running an execution of Protocol 3.4 with B∗, until B∗ sends a commitment
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c = Commit(r1; s) as part of the coin-tossing protocol. At this point, D′ learns r1
by running the continuation of the coin-tossing protocol with B∗. After learning r1,
algorithm D′ rewinds B∗ back to the point after B∗ sent the commitment to r1, and
then D′ feeds B∗ with the message r2 = f(r) ⊕ r1, where f(r) is the first part of its
input commitment Cn(σ) = 〈f(r), b(r) ⊕ σ〉. The result of the coin-tossing protocol
is thus r1 ⊕ r2 = f(r), which means that as the final message D′ can send B∗ its
input b(r) ⊕ σ. We see that if D distinguishes between the result of this experiment
when σ = 0 and when σ = 1, then D′ breaks the basic commitment scheme Cn and
distinguishes between X1

0 and X1
1 . Unfortunately, the fact that B∗ may ostensibly

misbehave makes the formal proof somewhat more complicated than this description.
We are now ready for the formal description of the distinguisher D′.

Distinguisher D′ receives for input a trapdoor one-way permutation f and a
sequence

〈f, f(r(1)), b(r(1)) ⊕ σ, . . . , f(r(m)), b(r(m)) ⊕ σ〉,

where r(1), . . . , r(m) are independently and randomly distributed in {0, 1}n. Algo-
rithm D′ then simulates an execution of A with B∗ as follows:

1. Simulation of A choosing a trapdoor permutation:
(a) D′ passes B∗ the permutation f that it was given as part of its input.
(b) D′ runs the zero-knowledge simulator (for the proof that f is a permu-

tation) using the residual B∗ as the verifier.13

2. Sample an execution of the coin-tossing protocol :
(a) D′ receives a commitment c from B∗ (c is supposed to equal Commit(r1)

for some r1).
(b) D′ chooses a random string r2 ∈R {0, 1}n and passes it to B∗.
(c) D′ obtains some string r1 from B∗.
(d) D′ verifies the zero knowledge argument given by B∗. If D′ accepts the

argument from B∗, then it continues. Otherwise, D′ sets Z to be the
partial transcript until the point that the execution aborted and jumps
to Step 5.

3. Iterate until successful simulation: D′ does the following for i = 1, 2, . . . ,m:
(a) D′ rewinds B∗ to the point after B∗ sent the commitment c (i.e., Step

2(a)) and sends B∗ the string r2 = f(r(i)) ⊕ r1, where r1 is the value
obtained in Step 2(c), and f(r(i)) comes from D′’s input sequence.

(b) D′ obtains some string r′1 from B∗ and verifies the zero knowledge ar-
gument given by B∗. There are three possibilities at this point:

i. If D′ does not accept the argument from B∗, then it lets i ← i+ 1
and continues on to the next iteration (i.e., it returns to Step 3(a)).
If the maximum number of attempts have elapsed (i.e., if i = m),
then D′ halts and outputs fail.

ii. If D′ does accept the argument from B∗ but r′1 �= r1, then D′ halts
and outputs fail.

iii. If D′ accepts the argument from B∗ and r′1 = r1, then D′ proceeds
to Step 4 below.

13Note that any constant-round zero-knowledge proof or argument may be used for this step in
the protocol. Therefore, the simulation of this argument by D′ may require expected (rather than
strict) polynomial-time. We therefore obtain a distinguisher that runs in expected polynomial-time.
This suffices here because in the context of distinguishing commitments (or solving a hard problem),
it is possible to truncate D′’s execution without lowering its success below what is needed for deriving
a contradiction.
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4. Simulation of the actual commitment : D′ passes the bit vi = b(U
(i)
n ) ⊕ σ

(from its input sequence) to B∗. Algorithm D′ lets Z denote the transcript
of the simulated execution and proceeds to Step 5.

5. Output : D′ passes the transcript Z of the simulated execution to D and
outputs whatever D does.
(We stress that this transcript (as passed by D′ to D) may not be complete,
as in the case that D′ does not accept the argument from B∗ in Step 2(d).)

To prove that D′ distinguishes between Xm
0 and Xm

1 with nonnegligible proba-
bility, it suffices to prove the following claim:

Claim 3.5.1. Let Zσ be the random variable that denotes the simulated transcript
that D′ feeds to D in Step 5, when D gets Xm

σ as input. Let Yσ be the random variable
that denotes the view of B∗ in an interaction with the sender A when the sender
commits to σ. Then Zσ and Yσ are 2

m -computationally indistinguishable. That is, for
every polynomial-sized circuit C,∣∣∣Pr[C(Zσ) = 1] − Pr[C(Yσ) = 1]

∣∣∣ < 2

m
.

Claim 3.5.1 is sufficient to show that D′ distinguishes between Xm
0 and Xm

1 be-
cause our contradiction hypothesis is that (for infinitely many n’s) the distinguisher D
distinguishes between Y0 and Y1 with gap 1

p(n) = 5
m . Thus, Claim 3.5.1 implies that

D will also distinguish between Z0 and Z1 with gap at least 1
m , and hence D′ will dis-

tinguish between Xm
0 and Xm

1 with this gap (in contradiction to their computational
indistinguishability). We now prove the claim.

To prove Claim 3.5.1, we will use a hybrid argument with two intermediate ran-
dom variables Z̃σ and Ẑσ that are computationally indistinguishable from Zσ and Yσ,
respectively. We then show that Z̃σ and Ẑσ are 1/m-indistinguishable.

The random variable Z̃σ. The random variable Z̃σ is defined to be the result of
the following process: Let D̃ be an algorithm that behaves exactly like D′ except
for the following two differences. First, instead of using a simulated zero-knowledge
proof in Step 1(b), it uses the honest prover algorithm (we assume that D̃ is given
the trapdoor information for the one-way permutation). Second, if D̃ accepts the
argument from B∗ but r′1 �= r1, as in Step 3(b)ii, then it does not output fail. Rather,
it proceeds to Step 4 and uses its knowledge of the trapdoor in order to complete the
commitment like an honest committer (note that D̃ can derive the value of σ from its
input sequence because it knows the trapdoor). We define Z̃σ to be the corresponding
value computed by D̃ on input Xm

σ in Step 5.
Assuming that D̃ does not accept the argument from B∗ when r′1 �= r1 (i.e.,

the case in Step 3(b)ii does not happen), the random variable Z̃σ is computationally
indistinguishable from Zσ because the only difference is whether the zero-knowledge
protocol of Step 1(b) is simulated or real. It therefore suffices to show that the
probability that D̃ accepts an argument from B∗ when r′1 �= r1 is at most negligible
(i.e., the case in Step 3(b)ii happens with at most negligible probability). In order
to see this, notice that the case in Step 3(b)ii happens if r1 �= r′1 and, in addition,
D̃ accepted an argument from B∗ that c = Commit(r1) (in Step 2(d)) and also an
argument from B∗ that c = Commit(r′1) (in Step 3(b)). However, the commitment c
that D̃ receives from B∗ in Step 2(a) is perfectly binding. Therefore, c defines a single
decommitment value; in particular, it cannot be a commitment to both r1 and r′1.
This means that one of the statements c = Commit(r1) and c = Commit(r′1) is false.
Therefore, by the soundness of the zero-knowledge argument, D̃ will accept both
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arguments from B∗ (in Steps 2(d) and 3(b)) with at most negligible probability. We
conclude that for large enough n, no polynomial-sized circuit can distinguish between
Z̃σ and Zσ with nonnegligible probability.

The random variable Ẑσ. The random variable Ẑσ is defined by considering the
output of the algorithm D̂. This algorithm behaves like D̃ except that it does not
halt after m iterations. Rather, it continues until it accepts the argument from B∗ in
Step 3(b) (irrespective of whether or not r1 = r′1). According to the above description,
in the ith iteration, algorithm D̃ sends r2 = f(r(i)) ⊕ r1 to B∗. Thus, for the first
i ≤ m iterations D̂ works in the same way as D̃ and also sends r2 = f(r(i)) ⊕ r1
to B∗. However, if D̂ exceeds m iterations, it cannot compute r2 in this way (because
its input includes only m commitments of the form 〈f(r(i)), b(r(i)) ⊕ σ〉). Rather,
it chooses r2 uniformly at random (like the honest committer) and sends it to B∗.
Then, if it accepts the argument from B∗, algorithm D̂ proceeds to Step 4, computes
f−1(r1 ⊕ r2), and commits to σ like the honest committer. (Recall that, like D̃,
machine D̂ knows the trapdoor and so it can compute f−1 and can also obtain the
value σ from its input sequence of commitments.) We stress that D̂ uses fresh random
choices for r2 in every iteration i > m.

We claim that the statistical distance between Ẑσ and Z̃σ is at most 1
m . Indeed,

one can see that the expected number of iterations that algorithm D̂ runs is at most 1:
let π be the partial execution of the protocol obtained by D̂ until the point that
B∗ sends the commitment to r1, and let pπ be the probability that B∗ successfully
proves the argument to D̂, when continuing from the partial execution π. Then, the
probability that D̂ enters Step 3 equals pπ (because if B∗ does not convince D̂ in
Step 2(d), then D̂ does not enter Step 3). Now, within the iterations of Step 3, the
probability that B∗ convinces D̂ is exactly pπ. Therefore, given that D̂ enters Step 3,
the expected number of iterations is 1

pπ
. We conclude that the overall expected number

of iterations made by D̂ in Step 3 conditioned on the initial partial execution being π
equals pπ · 1

pπ
= 1. Averaging over all partial executions we obtain that the overall

expected number of repetitions is also 1, and thus by Markov’s inequality, we have
that the probability that D̂ will require more than m iterations is less than 1

m . Notice

finally that if D̂ does not require more than m iterations, then it generates exactly
the same distribution as D̃. Therefore, the statistical difference between Z̃σ and Ẑσ

is at most 1
m .

Comparing Ẑσ with Yσ. Finally, we claim that the random variable Ẑσ is identical
to the variable Yσ, which denotes the transcript of a real execution. In order to
see this, observe that D̂ essentially does the following. It first samples a partial
execution until the point that B∗ sends its commitment to r1 (this sample is identical
to a real execution). Next, it samples the remainder of the execution. If B∗ does
not convince D̂ in the argument that it provides in this sample, then D̂ outputs
the transcripts and halts. In contrast, if B∗ does convince D̂ in this sample, then
D̂ continues until it obtains another sample in which B∗ is convincing (all of this
sampling is identical to a real execution). Assuming that D̂ eventually halts, we have
that the result is identical to Yσ. The fact that D̂ eventually halts follows from the
fact that it enters Step 3 only if there is a nonzero probability of B∗ convincing D̂.

Combining the above, we have that the random variables Zσ and Yσ can be dis-
tinguished with advantage at most 1

m +µ(n) < 2
m . With this the proof of Claim 3.5.1,

and hence the proof of the computational hiding property, is completed.
Having proven that Protocol 3.4 is a secure commitment scheme, we proceed to

show that it is also a commit-with-extract scheme, by demonstrating the existence of
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a strict polynomial-time extractor.
Proposition 3.6. Protocol 3.4 constitutes a commit-with-extract commitment

scheme.
Proof. Intuitively, the extractor CK works by biasing the outcome r1 ⊕ r2 of

the coin-tossing protocol such that it knows the preimage under f . More specifically,
CK chooses a random string r, computes f(r), and then makes the output r1 ⊕ r2
equal f(r). This is clearly not possible for a real receiver (as the coin-tossing protocol
ensures that f(r) is pseudorandom). However, recall that CK has the description of
the sender A∗, and therefore has more power than a real receiver. In particular, this
gives CK the capability of running the simulator for the proof that B provides in
Step 2(d) of the protocol. As we will see, this is enough.

Recall that CK should output a view indistinguishable from the one seen by A∗

in a real interaction, as well as the unique commitment value defined by this view.
Extractor CK receives the description of an arbitrary polynomial-time sender A∗ and
a triple (x, y, r), and works as follows:

1. A∗ chooses a trapdoor permutation:
(a) CK invokes A∗(x, y, r) and receives the description of a permutation f

from A∗.
(b) Next, CK verifies the zero-knowledge proof from A∗ attesting to the fact

that f is a permutation. If the verification fails, then CK outputs A∗’s
view until this point along with the value 0, and halts. (CK outputs 0
because, by our convention, in an aborted execution this is the default
committed value.)

2. CK biases the outcome of the coin-tossing protocol :
(a) CK passes c = Commit(0n) to A∗ (this is a commitment to “garbage”).
(b) CK obtains a string r2 from A∗.
(c) CK chooses r ∈R {0, 1}n, computes f(r), and passes A∗ the string r1 =

f(r)⊕ r2. (Notice that r1 is distributed uniformly and independently of
the initial commitment c, and that f−1(r1 ⊕ r2) = r.)

(d) CK invokes the zero-knowledge simulator, with the residual A∗ as the
verifier, for the appropriate (false) statement that there exists a string s
such that c = Commit(r1; s).

3. A∗ sends the actual commitment :
CK receives a bit v from A∗.

4. Output : CK outputs A∗’s view of the above execution along with σ = b(r)⊕v.
We first claim that CK extracts the bit committed to in the execution (we focus
on the case that A∗ does not abort; otherwise the claim trivially holds). This is
immediate because CK knows the preimage under f of f(r1 ⊕ r2) = f(r). Therefore,
b(r)⊕v is exactly the unique value committed to by A∗. (The above assumes that f is
indeed a permutation. However, by the soundness of the zero-knowledge argument of
Step 1(b), it can only occur that f is not a permutation with negligible probability.)

Next, we show that the view output by CK is computationally indistinguishable
from A∗’s view in a real execution. These two distributions differ in two aspects:
first, the commitment received by A∗ in Step 2(a) is to 0n rather than to r1. Second,
the zero-knowledge argument verified by A∗ in Step 2(d) is simulated rather than
real. Using a standard hybrid argument, computational indistinguishability can be
shown. Specifically, define a hybrid experiment whereby A∗ receives a commitment
to r1 (instead of to 0n), and yet the zero-knowledge proof that it verifies is simulated.
Then, by the hiding property of commitment schemes, A∗’s view in the hybrid exper-
iment is indistinguishable from its view output by CK. On the other hand, by the
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indistinguishability of zero-knowledge simulation, A∗’s view in the hybrid experiment
is indistinguishable from its view in a real execution. We conclude that CK outputs
a view that is indistinguishable from A∗’s view in a real execution.

It remains to show that CK runs in strict polynomial-time. However, this imme-
diately follows from the above description and from the fact that the zero-knowledge
simulator used by CK runs in strict polynomial-time. This completes the proof.

We note that any constant-round zero-knowledge argument system with a strict
polynomial-time simulator suffices for Step 2(d) of Protocol 3.4. However, the only
known such argument system is that of [3] (or its modified version in [4]) and this
system utilizes a nonblack-box simulator. Since the extractor must run this simulator,
it follows that it is also nonblack-box. As we will see in section 5, this is in fact neces-
sary for obtaining a constant-round protocol with strict polynomial-time extraction.
(Recall that any constant-round zero-knowledge protocol suffices for Step 1(b), even
one with expected polynomial-time simulation.)

Extending Protocol 3.4 to strings. To prove Theorem 3.3 we need to generalize
Protocol 3.4 to allow commitments to strings of length m (where m is polynomial
in the security parameter n), instead of just allowing commitments to single bits.
This extension can be obtained in two ways. First, one can simply run Protocol 3.4 in
parallelm times (taking care that the zero-knowledge arguments used are closed under
the parallel composition of m executions, as is the case with the bounded-concurrent
zero-knowledge protocol of [3, 4]). Alternatively, one can directly modify Protocol 3.4
and have A and B run m copies of the coin-tossing protocol in parallel, and then use
only a single zero-knowledge argument to prove a compound statement relating to all
copies.

Discussion—knowledge versus extraction. As we have mentioned, the notion of a
commitment scheme with the additional property that the committed value can be
extracted from the sender is not new. However, all previous constructions worked
by first committing to a value and then proving knowledge of this committed value.
In contrast, Protocol 3.4 works in a completely different way: it does not consist
of two distinct “commit” and “knowledge/extract” phases; rather the commitment
and extraction are intertwined. Interestingly, this results in a subtle, yet important
difference.

In order to exemplify this, consider the following sender A∗. Sender A∗ obtains
a one-way permutation and erases the corresponding trapdoor. Then, in Step 3 of
Protocol 3.4, A∗ sends a random bit b ∈ {0, 1} to B. Otherwise, A∗ follows the
instructions for A (and successfully concludes the commit stage). The important
observation here is that since r1 ⊕ r2 is uniformly distributed, A∗ cannot guess the
value of the bit that it itself committed to with probability nonnegligibly greater
than 1/2. This is very strange, especially considering the fact that extraction is
supposed to imply “knowledge.”

Such a phenomenon cannot occur in an extractable commitment scheme that
uses separate commit and extract phases. This is because the committed value is
determined before the extraction begins. Therefore, the sender can apply the extractor
to itself and thereby obtain the committed value. Thus, it makes sense to say that the
sender “knows” the committed value. However, in our protocol, the committed value
is determined only at the conclusion of the protocol. Furthermore, the value that is
committed to may also depend on the random coins of the receiver B (as is indeed the
case for the above-described sender A∗). Therefore, it is not possible for the sender
to later “apply the extractor to itself in order to obtain the committed value.”

Thus, on one hand, it seems that the intuition that the sender “knows” the
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committed value cannot be justified here. On the other hand, it seems that for
applications that use such schemes, it suffices to extract the actual committed value,
irrespective of whether or not the value is predetermined.

Open problem. Our construction of a commit-with-extract scheme requires trap-
door permutations (for finding the preimage to r1 ⊕ r2), and collision-resistant hash
functions (for the constant-round zero-knowledge argument with strict polynomial-
time simulation [3, 4]). In contrast, when the commitment extractor may run in
expected polynomial-time or when a nonconstant number of rounds may be tolerated,
such a scheme can be constructed based on one-way functions only. This raises an
interesting question as to whether a constant-round commit-with-extract scheme can
be constructed from one-way functions only.

4. A zero-knowledge argument of knowledge. Given a constant-round com-
mit-with-extract commitment scheme, it is not hard to construct a constant-round
zero-knowledge argument of knowledge with strict polynomial-time extraction, thereby
proving Theorem 1.1. The basic idea is that the prover commits to a witness using the
commit-with-extract scheme, and then proves that it has committed to a valid wit-
ness using a zero-knowledge proof of membership. Intuitively, soundness follows from
the soundness of the zero-knowledge proof of membership and from the fact that
the commit-with-extract scheme is perfectly binding. Zero knowledge follows from
the hiding property of the commit-with-extract scheme and from the zero-knowledge
property of the proof of membership. Lastly, a knowledge extractor is immediately
obtained from the extractor of the commit-with-extract scheme. Details follow.

Let R be an NP-relation. Without loss of generality, we assume that all witnesses
for R are of the same length. We construct a zero-knowledge argument of knowledge
for R as follows.

Protocol 4.1 (zero-knowledge argument of knowledge for R).

• Common input: x.
• Auxiliary input to prover: w such that (x,w) ∈ R.
• Phase 1: P and V run a commit-with-extract protocol (with public decommit-

ment) in which P commits to the witness w.
• Phase 2: P proves to V , using a constant-round zero-knowledge proof (or

argument) of membership (with a strict polynomial-time simulator) that it
has committed to a valid witness w in the previous step.
Formally, let trans be the transcript of the commit-with-extract execution of
Phase 1, and let d be the decommitment message that P would send to V in
the decommit phase of the commit-with-extract scheme. Then, P proves the
NP-statement that there exists a value d such that (trans, d) defines a value w,
such that (x,w) ∈ R.14

In Phase 2, we use a zero-knowledge argument system with a strict polynomial-
time simulator so that the resulting protocol will be a zero-knowledge argument of
knowledge with both a strict polynomial-time extractor and a strict polynomial-time
simulator. If the system used in Phase 2 has an expected polynomial-time simulator,
then the resulting protocol will have a strict polynomial-time knowledge extractor but
an expected polynomial-time simulator.

Theorem 1.1 is obtained by combining the following proposition with Theorem 3.3
(i.e., the existence of commit-with-extract schemes).

14Here we use the assumption that the commit-with-extract scheme satisfies public decommitment
as in Definition 3.2. Otherwise, the statement that P needs to prove is not guaranteed to be in NP.
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Proposition 4.2. Assume that the commitment scheme of Phase 1 is a constant-
round commit-with-extract string commitment scheme. Then, Protocol 4.1 is a con-
stant-round zero-knowledge argument of knowledge for R, as defined in Definitions
2.1 and 2.2 (i.e., it has a strict polynomial-time simulator and a strict polynomial-
time knowledge extractor). Furthermore, there exists a witness-extended emulator for
Protocol 4.1, as defined in Definition 2.3.

Proof. In order to prove that Protocol 4.1 is a zero-knowledge argument of knowl-
edge, we prove three properties: completeness, knowledge soundness (which implies
computational soundness), and zero knowledge. The proof of completeness is imme-
diate. We proceed to prove zero knowledge and knowledge soundness.

Zero knowledge. The simulator S that we build to demonstrate the zero-knowledge
property works as follows. In Phase 1 of the protocol, S follows the honest sender
strategy of the commit-with-extract scheme, but instead of committing to a real
witness w (which it does not have), it commits to garbage (e.g., to all zeros). Next, in
Phase 2, simulator S cannot prove that it committed to a correct witness (because it
indeed did not). Rather, S runs the simulator for the zero-knowledge proof of Phase 2.
The hiding property of the commit-with-extract scheme implies that the commitment
to garbage is indistinguishable from a commitment to a real witness. In addition, the
zero-knowledge property of the proof of membership implies that the simulation is
indistinguishable from a real proof of membership. Combining these together (and
using a standard hybrid argument), we obtain that the overall simulation by S is
indistinguishable from a real execution of Protocol 4.1. Formally, let V ∗ be a verifier
algorithm for Protocol 4.1. Then the simulator S works as follows.

Algorithm 4.3 (simulator S).

• Input: x ∈ L, z ∈ {0, 1}∗.
1. S plays the honest sender for the commit-with-extract scheme with V ∗(x, z) as

the receiver, and commits to 0p(|x|) (where p(n) is the length of all witnesses
for statements of length n).

2. Let trans be the series of messages sent to V ∗ in the previous step, and denote
by V ∗(x, z, trans) the residual machine that verifies the proof in Phase 2.15

Then, S runs the simulator for the zero-knowledge proof of Phase 2, with
V ∗(x, z, trans) as the verifier.

3. Output whatever V ∗ outputs (without loss of generality, we assume that V ∗

always outputs its view).

We need to prove that

{S(x, z)}x∈L,z∈{0,1}∗
c≡ {viewV ∗(P (x, y), V ∗(x, z))}x∈L,y∈RL(x),z∈{0,1}∗ ,

where P is the honest prover algorithm. This is proven using a standard hybrid
argument. We define an intermediate distribution Hx,y,z in the following way: Hx,y,z

is produced by an algorithm S′ that follows the honest prover’s strategy in the first
phase and the simulator’s strategy in the second phase (in order to enable it to run
the honest prover’s strategy in the first phase, it is explicitly given a valid witness y).
That is, on input (x, y, z), where (x, y) ∈ R, algorithm S′ runs the commit-with-
extract algorithm and commits to the value y as the honest prover does (instead of
to 0p(|x|) as the simulator S would). However, in Phase 2, algorithm S′ runs the zero-

15The residual machine V ∗(x, z, trans) is formally defined as the machine that upon receiving a
sequence of messages (α1, . . . , αi) replies with the message that V ∗(x, z) would send upon receiving
the sequence of messages (trans, α1, . . . , αi).
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knowledge simulator on V ∗(x, z, trans) exactly as S does (instead of really proving the
statement as the honest prover would).

The fact that {S(x, z)} c≡ {Hx,y,z} follows directly from the hiding (secrecy) prop-

erty of the commit-with-extract scheme. The fact that {Hx,y,z}
c≡ {viewV ∗(P (x, y),

V ∗(x, z))} follows directly from the (auxiliary-input) zero-knowledge property of the

proof of membership used in Phase 2. These two facts together imply that {S(x, z)} c≡
{viewV ∗(P (x, y), V ∗(x, z))}, as required.

We note that the simulator S inherits the properties of the underlying simulator
for the proof of Phase 2. Thus, if the underlying simulator is strict polynomial-time
and nonblack-box, then so too is S. On the other hand, if the underlying simulator
is black-box or runs in expected polynomial-time, then the same is true for S.

Knowledge soundness. Let P ∗ be a (possibly cheating) prover that convinces the
honest verifier that x ∈ L with probability ε. The extractor for the zero-knowledge
argument simply uses the extractor CK of the commit-with-extract scheme in order to
obtain P ∗’s view of the first phase, along with a string w that is the unique value that
is committed to in this phase. Intuitively, w must be a valid witness with probability
at least ε−µ(|x|), for some negligible function µ(·). This holds because in Phase 2 of
the protocol, P ∗ proves the validity of the committed witness. It then follows from
the soundness of the proof of membership that if w is not a valid witness, the verifier
rejects (except with negligible probability). In the formal proof of this, we also use
the fact that P ∗ “behaves” in a similar way in its interaction with CK and in a real
interaction with the honest verifier. (If this was not the case, then P ∗ may always
convince V , but never commit to a valid witness with CK. The extractor CK would
then never extract a valid witness from P ∗.) We note that this fact regarding the
similarity of P ∗’s behavior with CK and V follows from the fact that CK also outputs
a view that is computationally indistinguishable to P ∗’s view in a real interaction
with V . We now formally describe the knowledge extractor algorithm K.

Algorithm 4.4 (knowledge extractor K).

• Input: (desc|x|(P ∗), x, y, r).
1. Let CK be the extractor for the commit-with-extract scheme. Then, invoke
CK on input (desc|x|(P ∗), x, y, r), and obtain the view of P ∗ in Phase 1,
denoted v, along with a string w that is the committed value corresponding to
that view (i.e., w = commit-value(v)).

2. Output w.
Let p(x, y, r) be the probability that P ∗(x, y, r) convinces the honest verifier on

input x in a real execution. We claim that the probability that the witness output
by K is valid is at least p(x, y, r) − µ(|x|), for some negligible function µ(·). In order
to show this, consider a modified extractor K̃ that has the same Step 1 as K, but
in Step 2 it first verifies the proof of membership provided by P ∗ (in Phase 2 of the
protocol) and then outputs w if and only if it accepts this proof. Formally, in Step 1,
K̃ runs the extractor CK and obtains a pair (v, w), as described for K. Then, in
Step 2, K̃ verifies the proof of membership given in Phase 2 by the residual prover P ∗

that is defined by the view v (i.e., the residual prover is the original P ∗, but with
its current view set to v). Extractor K̃ then outputs w if and only if it accepts this
proof.

Now, since K̃ only contains additional checks, it follows that K outputs w when-
ever K̃ outputs w. Therefore, it suffices to show that K̃ outputs a correct witness w
with probability at least p(x, y, r) − µ(|x|). In order to demonstrate that K̃ suc-
ceeds with this probability, first recall that by the definition of a commit-with-extract
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scheme, it holds that{
viewCK

P∗ (x, y, r)
} c≡

{
viewP∗(P ∗(x, y, r), V )

}
,

where viewCK
P∗ (x, y, r) is the random variable describing the view of P ∗ as output

by CK, and viewP∗(P ∗(x, y, r), V ) is the random variable describing the view of P ∗

in a real execution with V . Therefore, the probability that K̃ accepts the proof of
membership from the residual P ∗ is negligibly close to the probability that the honest
verifier V accepts this proof of membership. (Otherwise, it is possible to distinguish
between P ∗’s real view and the view output by CK by emulating an execution of the
proof between the residual prover P ∗ and the verifier K̃, and then outputting 1 if
and only if K̃ accepts. This emulation is carried out by running the residual prover
that is defined by the view v and seeing if the honest verifier accepts. Note that
this emulation can be carried out because P ∗ is polynomial-time and, in addition,
the description of P ∗ and the view v fully define the residual prover. Therefore, the
residual prover can be obtained and run in polynomial-time.) Thus, K̃ accepts the
proof of membership with probability at least p(x, y, r) − µ(|x|). By the soundness
of this proof of membership, it must be that w is a valid witness with probability at
least p(x, y, r)−µ′(|x|), for some negligible function µ′ (otherwise, the residual prover
is able to prove a false statement with nonnegligible probability). This completes the
proof of knowledge soundness.

Witness-extended emulation. We conclude by providing a proof of the exis-
tence of a witness-extended emulator E for Protocol 4.1. Recall that, upon input
(desc|x|(P ∗), x, y, r), E must output a view that is indistinguishable from P ∗(x, y, r)’s
view in a real execution. Furthermore, if this view contains a transcript in which the
honest verifier V accepts the proof, then E must also output a valid witness (except
with negligible probability). This is easily accomplished as follows:

Emulator E extracts a witness in the same way as the extractor K described
above. However, E must also output P ∗’s complete view of an execution. In order to
do this, after CK concludes, E proceeds to verify the proof of membership of Phase 2
(like the aforementioned K̃). This suffices to obtain P ∗’s entire view: the commit-
with-extract extractor CK provides P ∗’s view from Phase 1, and the remainder of
P ∗’s view is derived from the verification of the proof of membership of Phase 2.

More formally, the witness-extended emulator E invokes the commit-with-extract
extractor CK with input (desc|x|(P ∗), x, y, r) and obtains the output. This output
contains a view v that is indistinguishable from P ∗’s view in a real execution of
commit-with-extract. Furthermore, if this view defines a committed value, then CK
also outputs this value (with overwhelming probability). Next, E verifies the proof of
membership from the residual prover P ∗ that is defined by the view v (as described
above for K̃). In this proof, E obtains the residual P ∗’s view of Phase 2. Then,
E concatenates the view output by CK in Phase 1 with P ∗’s view in Phase 2, and
outputs them both as P ∗’s view of the entire execution. Furthermore, if E accepted
the proof of Phase 2, then it outputs the witness obtained from CK in Phase 1.

It is easy to see that the view output by E is indistinguishable from P ∗’s view in
a real execution (P ∗’s view from Phase 1 is indistinguishable from its view in a real
execution, and the view from Phase 2 is identical). Furthermore, if E accepts the proof
of Phase 2, then with overwhelming probability the transcript of Phase 1 defines a
valid witness. As we have mentioned above, by the properties of CK, it follows
that with overwhelming probability it also outputs this witness. This concludes the
proof.
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5. Black-box lower bounds. In this section, we show that there does not exist
a constant-round zero-knowledge argument (resp., argument of knowledge), with a
black-box simulator (resp., extractor) that runs in strict polynomial-time. That is,
we prove Theorems 1.2 and 1.3.

Before presenting the proofs, we provide intuition as to why it is not possible to ob-
tain a strict polynomial-time black-box extractor for constant-round zero-knowledge
protocols. First, consider a very simple (cheating) prover P ∗ that at every step either
aborts or sends the honest prover message. Furthermore, the probability that it does
not abort at any given step is ε = ε(n). Then, black-box extractors for constant-round
zero-knowledge protocols typically extract a witness using the following strategy: In-
voke an execution with P ∗ and if P ∗ aborts, then also abort. However, if P ∗ does
not abort (and thus sends a prover message in some crucial round), then continually
rewind P ∗ until another prover message is obtained for this round. It is essential that
the extractor obtains at least two different prover messages, because this is what gives
it additional power over an honest verifier. (Additional power is essential because an
honest verifier should not learn anything from the prover, whereas the extractor must
obtain the actual witness.) Now, for P ∗ described above, the extractor enters the
“rewinding stage” with probability only ε. However, once it enters this stage, the ex-
pected number of rewinding attempts by the extractor until a second nonabort reply
is obtained equals 1/ε (because P ∗’s nonabort probability at every step is only ε).
We therefore have that the overall expected amount of work is bounded. However,
we cannot provide any strict polynomial upper bound on the running time of the
simulator, because for every given polynomial, it is possible to choose ε so that 1/ε is
greater than this polynomial.

This idea underlies our lower bounds. Specifically, we show that by carefully
choosing the abort probabilities, it is possible to achieve the following effect: A strict
polynomial-time black-box extractor will not have “time” to obtain two nonabort
responses from the prover P ∗ in any given round. (By “not having time,” we mean
that with noticeable probability, the extractor will have to wait longer than the bound
on its running time in order to see a second nonabort response.) Essentially, this
means that the extractor cannot “rewind” the prover. However, as we have mentioned
above, an extractor must have additional power over a real verifier, and the only
additional power awarded a black-box extractor is essentially the ability to rewind the
prover. We therefore conclude that strict polynomial-time black-box extractors cannot
exist for constant-round zero-knowledge protocols. The same argument also holds for
strict polynomial-time simulation of constant-round zero-knowledge protocols. We
now proceed to the proofs.

Theorem 5.1 (Theorem 1.2—restated). There do not exist constant-round zero-
knowledge proofs or arguments with strict polynomial-time black-box simulators for
any language L /∈ BPP.

Theorem 5.2 (Theorem 1.3—restated). There do not exist constant-round zero-
knowledge proofs or arguments of knowledge with strict polynomial-time black-box
knowledge extractors for any relation R such that the language LR /∈ BPP.

Our proofs of the above lower bounds closely follow the methodology and tech-
niques used in previous black-box lower bounds [25, 13].

5.1. Outline of the proofs. As we have mentioned above, the underlying idea
behind the proofs of both Theorems 5.2 and 5.1 is the same. We will explain the
intuition behind this idea in the context of knowledge extraction (i.e., in the context
of the proof of Theorem 5.2) and then describe how this intuition generalizes also to
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the context of simulation (for the proof of Theorem 5.1).
Theorem 5.2 is proven by showing that if a language L has a constant-round

zero-knowledge protocol (P, V ) with a black-box strict polynomial-time knowledge
extractor, then there exists a cheating verifier strategy V ∗, such that for every x ∈ L,
if V ∗ interacts with the honest prover P , then with noticeable probability, V ∗ will
obtain a witness w for x from the interaction with P . Of course, the ability to do this
contradicts the zero-knowledge property of the protocol, unless the verifier V ∗ could
obtain a witness by itself anyway. Since V ∗ runs in probabilistic polynomial-time, it
must therefore be the case that L ∈ BPP (because then, indeed, V ∗ could obtain a
witness by itself).

We construct this verifier V ∗ from the black-box knowledge extractor of the sys-
tem (P, V ). Loosely speaking, this is done in the following way:

1. We let x ∈ L and consider a cheating prover strategy P ∗ that is of the
following form: P ∗ behaves exactly as the honest prover P behaves on input x,
except that in each round of the proof, it may choose to abort the execution
with some probability. We will choose these probabilities so that P ∗ will still
have a noticeable probability to convince the honest verifier to accept x.
The actual strategy that we use for P ∗ is one that causes it to abort with quite
high probabilities (but still noticeably bounded away from 1). In particular,
P ∗ will abort in each round with probability greater than 1/2 (and even
greater than 1 − 1/n). Note, however, that since the number of rounds in
the protocol is constant, this does not preclude P ∗ from causing the honest
verifier to accept with noticeable probability.

2. Consider an execution of the knowledge extractor when it is given black-
box access to P ∗. Every query that the extractor makes to the black-box
is a list of messages (α1, . . . , αi), and the reply received by the extractor is
what P ∗ would send in a real execution when the first i verifier messages
were α1, . . . , αi. Thus, if P ∗ would abort on this series of messages in a real
execution, then the extractor receives back an abort reply, denoted by ⊥.
Note that at the end of the execution the knowledge extractor should output
a witness for x with some noticeable probability.
We show that it is possible to choose P ∗’s abort probabilities in such a
way, that if we run the knowledge extractor with black-box access to P ∗,
then with very high probability, the extractor will get at most c nonabort
replies, where c is the number of verifier messages in the protocol. Further-
more, these replies will correspond to i queries (where i ≤ c) of the form
(α1), (α1, α2), . . . , (α1, . . . , αi), where α1, . . . , αi are some strings. That is, all
these queries are prefixes of a single sequence (α1, . . . , αi). Notice that when
this occurs, the extractor’s view is like a real interaction with the honest
prover P (in particular, it does not gain anything by “rewinding” P ∗).

3. We then implement a verifier strategy V ∗ that sends these messages α1, . . . , αi

when it interacts with the prescribed prover P . Basically, the verifier works
by internally running the knowledge extractor. When the extractor makes a
query, the verifier either answers it with ⊥ or forwards the query to the prover,
and then returns the prover’s reply to the knowledge extractor. We show
that the verifier has a noticeable probability of perfectly simulating P ∗ to the
knowledge extractor. Therefore, with noticeable probability, the knowledge
extractor (in conjunction with the verifier) is able to extract a witness x
during this interaction with the prover P . We conclude that with noticeable
probability, V ∗ obtains a witness w for x from the interaction with P , and so
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the proof system cannot be zero knowledge (unless L ∈ BPP).

As mentioned above, in the simulation case (i.e., when proving Theorem 5.1) we
use a similar technique. Basically, we prove Theorem 5.1 by showing that if L has
a constant-round zero-knowledge proof or argument system (P, V ) with a black-box
strict polynomial-time simulator, then there exists a cheating prover strategy P ∗ that
does not have any auxiliary input (like a witness), and yet for every x ∈ L causes
the honest verifier V to accept x with noticeable probability. We stress that, unlike
the honest prover, this cheating strategy P ∗ does not get a witness for x as auxiliary
input. It is not hard to show that the existence of such a strategy P ∗ implies that
L ∈ BPP.

In summary, both impossibility results are due to the following two facts:

1. Intuitively, in order to successfully extract or simulate, the extractor (resp.,
simulator) must see at least two different continuations of the same transcript.
That is, it must get meaningful replies to queries of the form (α1, . . . , αi−1, αi)
and (α1, . . . , αi−1, α

′
i), where α′

i �= αi. Otherwise the extractor (resp., simula-
tor) does not have any advantage over the interactive verifier (resp., prover).
(Informally speaking, “rewinding” is essential for black-box simulation and
extraction.)

2. For any strict polynomial-time extractor or simulator, there exist provers
(resp., verifiers) for which the time required to obtain nonabort responses to
two queries (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where α′

i �= αi, is greater
than the running time of the extractor (resp., simulator).

Comparison with the black-box zero-knowledge lower bounds of [25, 13]. As we
have mentioned above, we use the methodology and techniques of [25, 13] in proving
our lower bounds. The lower bounds of [25, 13] and this paper all work by using
a black-box simulator to construct a cheating prover P ∗ that convinces an honest
verifier that x ∈ L, without having a witness. The prover P ∗ works by internally
invoking the simulator and forwarding some of the messages between the simulator
and the external honest verifier (the other messages are dealt with internally). The
main issue to be resolved is how to carry out this execution of the simulator; the
difficulty being due to the fact that the simulator is allowed to rewind the verifier
during simulation, whereas the cheating prover cannot rewind the external honest
verifier. Regarding this issue, each of the three lower bounds differs. The lower bound
of [25] for constant-round public-coin proofs follows from the fact that in public-coin
proofs, all verifier messages are independent of each other. Therefore, it is possible to
“guess” messages that should be forwarded to the verifier, and all other messages can
be internally generated by the cheating prover (independence of the verifier messages
is necessary so that the internal messages generated by the cheating prover do not
look inconsistent with messages that the external honest verifier generates). The lower
bound of [13] for the concurrent setting is proven by showing that a polynomial-time
simulator is unable to rewind the verifier in every execution (because this would
require super-polynomial time). Therefore, the messages of the execution in which
there is no rewinding can be forwarded to the external real verifier. Finally, in our
lower bound, we show that a strict polynomial-time simulator must succeed without
effectively rewinding the verifier because rewinding attempts will yield ⊥ replies with
high probability. Therefore, the messages of the simulator that do not yield ⊥ replies
can be sent to the external verifier and no rewinding will be necessary.

5.2. Proof of Theorems 5.2 and 5.1. We now proceed to the actual proofs.

Notation and conventions. We identify an interactive program A with its next
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message function (or process, if it is randomized). That is, we consider A as a
noninteractive algorithm that gets as input the history of the interaction (i.e., the
sequence of messages that A received until this point), and outputs the next message
that A would send in a protocol execution in which it sees this history.

We say that an algorithm B has oracle access to an interactive algorithm A, if
B has oracle access to A’s next message function (after fixing its random tape to
some value). That is, B can query its oracle with any sequence of messages of the
form (α1, . . . , αi) and it will receive back the next message that A would send in an
interaction in which it received this sequence of messages.

We say that an interactive program aborts an execution if it sends the mes-
sage ⊥. We assume that once a party sends the message ⊥, then (since it aborted
the execution) all its future messages are also ⊥. In the notation of the next mes-
sage function, this means that if A(α1, . . . , αi) = ⊥ for some strings α1, . . . , αi, then
A(α1, . . . , αi, αi+1, . . . , αj) = ⊥ for every choice of αi+1, . . . , αj .

The following two lemmas (whose proofs are very similar) lie at the heart of the
proofs of Theorems 5.2 and 5.1, respectively.

Lemma 5.3. Let (P, V ) be a constant-round system of proofs or arguments of
knowledge for a relation R with a black-box strict polynomial-time knowledge extractor
K. Then, there exists a probabilistic polynomial-time cheating verifier algorithm V ∗

and a polynomial p(·) such that for every x ∈ LR, the probability that V ∗ outputs a
witness for x after interacting with the honest prover P on input x is at least 1/p(|x|).

We later show that if the proof system (P, V ) is zero knowledge, then the existence
of such a cheating verifier V ∗ implies that L ∈ BPP. Likewise, we prove the following.

Lemma 5.4. Let (P, V ) be a constant-round zero-knowledge proof or argument
system for a language L, with a black-box strict polynomial-time simulator S. Then,
there exists a probabilistic polynomial-time cheating prover algorithm P ∗ and a poly-
nomial p(·) such that for every x ∈ L, the honest verifier V accepts after interacting
with P ∗(x) with probability at least 1/p(|x|).

We stress that P ∗’s only input is x and, in particular, it does not receive a
witness for x as auxiliary input. Later we will show that the existence of such a
prover P ∗ implies that L ∈ BPP (as shown in previous black-box lower bounds for
zero knowledge; e.g., see [25, 13]).

5.2.1. Proof of Lemma 5.3. Let R be a relation and let (P, V ) be a system
of proofs or arguments of knowledge for R, where the number of messages sent by
the verifier equals some constant c. Furthermore, let K be a black-box knowledge
extractor for (P, V ) that when extracting a witness for x runs for at most t(n) steps,
where n = |x| and t(·) is some polynomial. Thus, the number of oracle queries made
by K is strictly upper-bounded by a polynomial t(n).16 We assume without loss of
generality that all verifier messages in the proof system are of length m = m(n),
where m(·) is some polynomial. We also assume without loss of generality that the
first message in the system is from the verifier to the prover.

16Note that the running time of the extractor is independent of the running time of the prover.
That is, the extractor is restricted to t(n)-time (and thus oracle queries) even if the cheating prover
runs in time that is larger than t(n). This may seems like an “unfair” restriction, even for a black-box
extractor. However, we can extend our lower bound to hold even if the running time of the extractor
is allowed to be a fixed polynomial in the running time of the cheating prover. This extension
holds under the assumption that one-way functions exist and applies to any proof system that has
an efficient prover algorithm. This can be shown by considering a prover strategy P ∗ that uses a
pseudorandom function instead of a t-wise independent hash function, as we use here.
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Conventions regarding the extractor K. Recall that a black-box extractor has
oracle access to the prover from whom it extracts. Thus it can query this oracle
on sequences of messages of the form (α1, . . . , αi). For the sake of simplicity, we can
assume without loss of generality that the extractor K always behaves in the following
way:

1. It never asks the same query twice.
2. If K queries the oracle with q, then prior to this query, it has queried the

oracle with all the proper prefixes of q. (If q = (α1, . . . , αi) is a sequence of
messages, then the prefixes of q are all the sequences of the form (α1, . . . , αj)
for j ≤ i.)

3. For some polynomial t′ = t′(n), the extractor makes exactly t′(n) queries to
its black-box in every execution.

We can assume all of the above because any extractor can be easily modified such
that it behaves in the above way, without affecting its output distribution. Further-
more, if the upper bound on the number of queries made by the original extractor is
t(n), then the number of queries t′ made by the modified extractor is at most c · t(n)
(the multiplicative factor of c is used for asking all of the prefixes of a query before
the query itself). From now on, we will denote the number of queries made by K by
t = t(n), rather than by t′(n).

Our proof will follow the outline mentioned at the beginning of section 5. That
is, we will construct a prover strategy P ∗ that aborts with certain probability p∗, but
when it does not abort, uses the same strategy as the honest prover. On one hand,
the knowledge extractor K will have to output a witness with probability close to p∗

when given access to P ∗. On the other hand, we will show a cheating verifier V ∗

that can successfully simulate the behavior of KP∗
with noticeable probability, even

though it only gets access to one interaction with the honest prover P (and does not
get black-box access to P ∗).

The prover strategy P ∗. We are now ready to describe the prover strategy P ∗. Let
ε = ε(n) be some value that will be determined later (it will be of the form 1/q(n) for
some polynomial q(·)). Let H = {Hn}n∈N be a family of t(n)-wise independent hash
functions,17 such that every h ∈ Hn is a function from {0, 1}≤c·m to {0, 1}n, where
{0, 1}≤c·m denotes the set of all strings of length at most c ·m. (Recall that t = t(n)
denotes the number of queries the knowledge extractor K makes to its black-box.)

Our prover strategy P ∗ behaves as follows: in the ith round of the protocol,
with probability ε2

c−i

, it behaves exactly as the honest prover, and otherwise (with

probability 1−ε2c−i

) it aborts. The random coins the prover P ∗ uses to decide whether
to abort or continue will be chosen by applying a fixed hash function h ∈ Hn (that
was initially chosen at random) to the current message history. Before proceeding
to a more formal description of P ∗, we explain why we choose its abort probabilities
in this way. As we have described above, the main idea is to prevent an extractor
from obtaining two nonabort responses from P ∗ for the same round. More exactly, we
wish to fix the abort probabilities so that the probability that an extractor sees two
nonabort responses for the same round is significantly less than the probability that P ∗

provides a full proof without aborting at all, in which case it convinces V . (Since the
extractor must obtain a witness with the probability that P ∗ convinces V , this means

17Recall that a hash family is t-wise independent if for every t distinct values x1, . . . , xt the random
variables h(x1), . . . , h(xt) (where h is chosen at random from Hn) are independently and uniformly
distributed in the range of h. We will never make more than t queries to the function, and so one
can think of it as a truly random function.
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that there is a significant probability that the extractor will not see two nonabort
messages for any given round, but must still succeed in obtaining a witness.) Now,
by choosing the abort probabilities so that they degrade exponentially, we achieve
our aim. Specifically, for any i, the product ε2

c−1 · . . . · ε2c−i+1 · (ε2c−i

)2 (which is the
probability that two nonabort responses are obtained for the ith round) is significantly

less than the product ε2
c−1 · . . . · ε20

(which is the probability that P ∗ never aborts).
We now describe the strategy for P ∗’s operation (note that we define P ∗ in the

form of its next-message function) in the following algorithm:
Algorithm 5.5 (prover P ∗

).

• Common input: x—the statement to be proven;
• Auxiliary input: y ∈ R(x)—a witness for x;
• Random tape: (h, r)—h defines a function in Hn, and r is of the length of

the random tape required by the honest prover strategy;
• Input: series of verifier messages q = (α1, . . . , αi).
1. Step 1—decide whether or not to abort:

(a) Compute h(q′) for every prefix q′ of q. That is, for every j ( 1 ≤ j ≤ i),
compute h(α1, . . . , αj).

(b) Abort (outputting a special symbol ⊥), unless for every j, the first
2c−j log(1/ε) bits of h(α1, . . . , αj) are equal to 0.

(Notice that since the definition of P ∗ is by its next message function, we have
to ensure that it replies to q only if it would not have aborted on messages
sent prior to q in an interactive setting. This is carried out by checking that
it would not have aborted on all prefixes of q.)

2. Step 2—if the decision is to not abort, then follow the honest prover strategy:
(a) Run the honest prover P , with initial input (x, y) and random tape r,

on input messages (α1, . . . , αi), and obtain its response β.
(b) Return β.

Note that if the honest prover P is computationally efficient, then so is the cheat-
ing prover P ∗. (This is important because for the case of arguments, all provers must
be efficient.) Our first step is to show that P ∗ convinces V with noticeable prob-
ability. Suppose that the system (P, V ) has completeness bound p (i.e., the honest
prover causes the honest verifier to accept with probability at least p; recall that p is
assumed to be noticeable). Then, define p∗ = ε2

c−1p. We claim that the probability
(over P ∗’s random tape) that P ∗ convinces the honest verifier to accept is at least
p∗. Indeed, conditioned on P ∗ not aborting, its behavior is identical to the behavior
of the honest prover P , in which case it convinces V with probability p. Now, since
P ∗’s probability of not aborting is equal to ε2

c−1 · . . . · ε20

= ε2
c−1, the claim follows.

As we have mentioned above, we will choose ε so that ε > 1/q(n) for some polynomial
q(·). Then, since c is a constant, it follows that the probability p∗ that P ∗ convinces
the honest V is noticeable, as desired.

We have shown that P ∗ convinces V with probability at least p∗ = ε2
c−1p. By

the validity (or knowledge soundness) condition on the system (P, V ), this means
that when the knowledge extractor K is given oracle access to P ∗, then it outputs a
witness for the statement x with probability at least p∗−µ(|x|) (where the probability
is over the random tapes of both P ∗ and K).18 In particular, K outputs a witness

18Strictly speaking, the knowledge soundness property is defined for deterministic prover strate-
gies. That is, denote by P ∗

h,r the prover strategy of P ∗ with its random tape set to (h, r), and denote

by ph,r the probability (now over V ’s random tape only) that P ∗
h,r convinces V that x ∈ L. Then,

the knowledge soundness property states that K must extract a witness from P ∗
h,r with probability
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with probability at least p∗/2.
We now claim that if ε is chosen appropriately, then with probability at least p∗/4,

the extractor K will receive at most c non-⊥ answers from P ∗, and all of these answers
are prefixes of a single sequence (α1, . . . , αi) for some i ≤ c. Informally speaking, this
means that with probability at least p∗/4, the extractor K is unable to obtain any
meaningful information by rewinding P ∗ (all attempts at rewinding P ∗ result in abort
responses).

Claim 5.6. Let p̃ be the probability (over all choices of P ∗’s random tape) that
K obtains non-⊥ replies for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . ,
αi−1, α

′
i), where αi �= α′

i. Then, there is a choice of ε such that for every fixed random
tape for K, it holds that p̃ < p∗/4. Furthermore, ε = 1

q(n) for some polynomial q(·).
Proof. Let ε(n) = p

4·t2c (recall that p is the completeness bound of the honest
prover and that t is the number of oracle queries made by K). First, note that for this
choice of ε, there exists a polynomial q(·) such that ε = 1

q(n) . Next, for every i ≤ c and

every j, k ∈ [t], we let pij,k denote the probability that the jth query of K is of the form
(α1, . . . , αi−1, αi), the kth query of K is of the form (α1, . . . , αi−1, α

′
i), and K receives

a non-⊥ response for both of these queries. (Recall that by convention K never asks
the same query twice, so this means that αi �= α′

i.) We now bound the probability
pij,k. Recall that P ∗ decides whether or not to abort by applying a t-wise independent
hash function to the query. By the t-wise independence of the function, P ∗’s abort
decision is independent for each query. Therefore, if K makes two queries of this form,
it will obtain a reply with probability that is ε2

c−1+···+2c−i+1 · (ε2c−i

)2, which is the
probability that P ∗ does not abort in the first i− 1 rounds on history (α1, . . . , αi−1)
multiplied by the probability that P ∗ does not abort in the ith round both when given
the message αi and when given the message α′

i. Since 2c−1+· · ·+2c−i+1+2·2c−i = 2c,
we have

pij,k = ε2
c−1+···+2c−i+1+2·2c−i

= ε2
c

.

By applying the union bound over all i ∈ [c] and j, k ∈ [t], we have that p̃ ≤ t2c · ε2c

,
where p̃ is defined in the claim statement. Plugging in p∗ = ε2

c−1p, we have that
p̃ ≤ t2c · εp∗/p. Finally, since ε = p

4·t2c , we have that p̃ ≤ p∗/4, as required.
Summing up, we have shown the following. On one hand, when the extractor K is

given oracle access to P ∗, it must obtain a witness with probability at least p∗/2 (where
the probability is over the random tapes of both P ∗’s and K). On the other hand,
the probability that K views two nonabort responses from P ∗ of the form discussed
in Claim 5.6 is at most p∗/4. This means that with probability p∗/2 − p∗/4 = p∗/4,
the extractor K obtains a witness without obtaining non-⊥ replies for two queries of
the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi �= α′

i.
We are now ready to construct the verifier V ∗. Loosely speaking, the verifier V ∗

will manage to output a witness after interacting with the honest prover by internally
running the knowledge extractorK, and referring some of its queries to the real prover.
The important point is that with noticeable probability, K will work in exactly the
same way as when it is given oracle access to P ∗. The description of V ∗ is as follows.

Algorithm 5.7 (verifier V ∗
).

• Input: x (statement to be proven).

at least p̃h,r = ph,r − µ(|x|). Now, as we have shown, the expectation of ph,r taken over all of P ∗’s
random tapes is p∗ (this is the probability over both P ∗ and V ’s random tapes that P ∗ convinces V
that x ∈ L). Therefore, the expectation of p̃h,r (which is the probability over both P ∗ and K’s
random tapes that K extracts a witness for x) is at least p∗ − µ(|x|), as required.
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1. Choose a random h ∈ Hn.
2. The verifier will store the history of messages that it has sent to the prover

so far in the execution. Initially, this list is empty.
3. Run the knowledge extractor K on input x.
4. When the extractor K makes a query (α1, . . . , αk) do the following:

(a) Follow the same procedure as P ∗ in order to decide whether or not to
answer the query with ⊥ (i.e., answer the query with ⊥ unless for every
j ∈ [k] the first 2c−j log(1/ε) bits of h(α1, . . . , αj) are equal to 0).

(b) If the above decision was to not answer the query with ⊥, then check
whether the history of messages sent so far to the prover consists exactly
of (α1, . . . , αk−1). If this is the case, then send αk to the prover and
forward the prover’s response β to the knowledge extractor K. If this is
not the case, and so there was a previous query that was not answered
with ⊥ and is not a prefix of this query, then abort. (In this case we say
that the verifier failed.)

5. At the end of the execution, if the extractor outputted a witness for x, then
output this witness.

Intuitively, when V ∗ does not output fail, it perfectly emulates an execution
of K with oracle access to P ∗. Therefore, V ∗ outputs a valid witness whenever
K would output a witness without obtaining non-⊥ replies for two queries of the form
(α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi �= α′

i. This means that V ∗ outputs
a valid witness with probability at least p∗/4.

More formally, let good be the event that K outputs a witness without obtaining
non-⊥ replies for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i),

where αi �= α′
i. Then, as we have shown, the probability that the good event occurs

is at least p∗/4. Now, the probability space over which we computed the probability
that good occurs is (h, r, rK), where (h, r) is the random tape of P ∗ and rK is the
random tape of the extractor K. Recall that h was used by P ∗ for deciding whether
or not to abort and r was used by P ∗ for running the honest prover strategy. Now,
observe that the probability space over which we need to compute V ∗’s success in
outputting a valid witness is also (h, r, rK). The only difference is that here h and rK
are randomly chosen by V ∗, and r is the random tape of the honest prover with
which V ∗ interacts. Therefore the probability space is the same and we have that the
probability that V ∗ outputs a witness is also at least p∗/4, which is noticeable. This
completes the proof.

5.2.2. Concluding the proof of Theorem 5.2. To prove Theorem 5.2 we
need to show that if (P, V ) is a constant-round zero-knowledge proof of knowledge for
some relation R with a strict polynomial-time knowledge extractor, then LR ∈ BPP.
Indeed, if (P, V ) is such a system, then by Lemma 5.3, there exists a verifier V ∗

that, for every x ∈ L, outputs a witness for x with noticeable probability after in-
teracting with the honest prover. Now, since (P, V ) is zero knowledge, there exists
a simulator S∗ for V ∗ whose output is computationally indistinguishable from the
output of V ∗. Thus, for every x ∈ LR, it holds that simulator S∗(x) outputs a wit-
ness for x with noticeable probability. On the other hand, if x /∈ LR, then S∗ will
certainly not output a witness for x. Therefore, S∗ can be used to obtain a proba-
bilistic polynomial-time procedure for deciding membership in LR. In other words,
LR ∈ BPP.

5.2.3. Proof of Lemma 5.4 and Theorem 5.1. The proof of Lemma 5.4
largely follows the proof of Lemma 5.3. Given a c-round zero-knowledge protocol
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(P, V ) with a black-box strict polynomial-time simulator S, one first constructs a
verifier V ∗ that behaves identically to the honest verifier V , except that it may choose
to abort in any round. This verifier V ∗ corresponds to the cheating prover constructed
in Algorithm 5.5 within the proof of Lemma 5.3, and uses the same procedure to
decide whether or not to abort. Specifically, the probability that it does not abort
in the ith round of the protocol is ε2

c−i

, in which case it follows the instructions of
the honest verifier. Now, let p∗ = ε2

c−1 · p, where p is the completeness bound of
the zero-knowledge protocol. Then, as above, it follows that an interaction between
the honest prover and V ∗ yields an accepting transcript with probability exactly p∗.
Therefore, any simulator given oracle access to V ∗ must output an accepting transcript
with probability at least p∗ − µ(n) > p∗/2. Next, a claim analogous to Claim 5.6 is
proved. That is, we show that it is possible to choose ε so that the probability
that the (strict polynomial-time) simulator obtains non-⊥ replies from V ∗ for two
queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi �= α′

i, is at most
p∗/4. Furthermore, ε is noticeable (implying that p∗ is also noticeable). Putting
this together, we have that when given black-box access to V ∗, the simulator S has
a noticeable probability of outputting an accepting transcript, even after viewing at
most c non-⊥ responses from its oracle, where all these responses are prefixes of the
same sequence (α1, . . . , αi). Thus, S can be used to convince the honest verifier with
noticeable probability that x ∈ L. That is, in a way similar to the proof of Lemma 5.3,
we use this observation about the simulator S in order to construct a cheating prover
algorithm P ∗ (the construction of P ∗ corresponds to the cheating verifier algorithm
described in Algorithm 5.7). This prover P ∗ does not get a witness as auxiliary input,
but still for every x ∈ L, it manages to convince the honest verifier to accept with
noticeable probability. We omit the full details of the proof of Lemma 5.4.

To prove Theorem 5.1, we need to show that if (P, V ) is a constant-round zero-
knowledge protocol for L with a black-box strict polynomial-time simulator, then
L ∈ BPP. Now, let (P, V ) be such a protocol. By Lemma 5.4, there exists a prover
algorithm P ∗ such that on every input x ∈ L, the prover P ∗ with input x only
(and no witness) manages to convince the honest verifier to accept x with noticeable
probability. By the soundness of the system, we know that if x /∈ L, then the honest
verifier will accept x with negligible probability. Therefore, one can test whether
or not x ∈ L in probabilistic polynomial-time, by emulating an interaction between
P ∗ and V on input x, and outputting 1 if and only if the verifier accepts in this
execution. Thus, L ∈ BPP.
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Abstract. Multiway tables with specified marginals arise in a variety of applications in statistics
and operations research. We provide a comprehensive complexity classification of three fundamental
computational problems on tables: existence, counting, and entry-security.

One outcome of our work is that each of the following problems is intractable already for “slim” 3-
tables, with constant number 3 of rows: (1) deciding existence of 3-tables with specified 2-marginals;
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satisfying any given 1-marginals and entry upper bounds in a set of slim 3-tables satisfying suitable
2-marginals with no entry bounds. This provides a valuable tool for studying multi-index transporta-
tion problems and multi-index transportation polytopes. Remarkably, it enables us to automatically
recover a famous example due to Vlach of a “real-feasible integer-infeasible” collection of 2-marginals
for 3-tables of smallest possible size (3, 4, 6).
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1. Introduction. A d-table of size (n1, . . . , nd) is an array of nonnegative inte-
gers v = (vi1,...,id), 1 ≤ ij ≤ nj . For 0 ≤ m < d, an m-marginal of v is any of the

(
d
m

)
possible m-tables obtained by summing the entries over all but m indices. For in-
stance, if (vi,j,k) is a 3-table, then its 0-marginal is v+,+,+ =

∑n1

i=1

∑n2

j=1

∑n3

k=1 vi,j,k,

its 1-marginals are (vi,+,+) = (
∑n2

j=1

∑n3

k=1 vi,j,k), and likewise, (v+,j,+), (v+,+,k). Its

2-marginals are (vi,j,+) = (
∑n3

k=1 vi,j,k), and similarly, (vi,+,k), (v+,j,k).
Such tables appear naturally in statistics and operations research under various

names such as multiway contingency tables, transportation matrices, or tabular data.
In all these applications, the tables of interest are those satisfying various constraints
such as specified marginals or specified upper and lower bounds on the various table
entries. Tables are central products of statistical agencies (for example, see the website
[2] of the U.S. Bureau of Census).

In this article we study three essential computational problems of constrained
tables, primarily motivated by applications in statistical analysis and statistical data
security (see, e.g., [10, 12, 14] and the references therein): the table existence or fea-
sibility problem, the table counting problem, and the table entry-security problem. We
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provide comprehensive computational complexity classifications of these problems,
which are discussed, respectively in subsections 1.1–1.3 below, where we make the
precise definition, include a briefing on the motivating statistical background, and
describe our results for each problem. On the way we also show that the set of
3-tables satisfying any given 1-marginals and upper bounds on entries can be embed-
ded in a set of “slim” 3-tables satisfying suitable 2-marginals with no entry bounds;
this is discussed further, with the implications for the class of so-called multi-index
transportation polytopes (cf. [28, 29]), in subsection 1.4 below.

We demonstrate that even slim 3-tables, of size (3, c, h), having a fixed number of
rows, 3, can have an arbitrarily complex behavior. This improves on earlier results of
Irving and Jerrum [20]. For statisticians and agencies manipulating tabular data, our
results have practical repercussions: polynomial time algorithms for solving any one
of the problems (feasibility, counting, or entry-security) are unlikely to exist. Thus,
in taming 2-marginals arising in practice it will be necessary to exploit particular
features of the real data in each specific application.

Our results on the intractability of slim 3-tables stand in contrast with the efficient
methods available for 2-way contingency tables (see [16, 17]) and for the so-called
decomposable-log-linear models [11, 14, 18]. Thus, we settle a problem that has been
the focus of much recent research (see [7, 12, 26] and further references therein), that
of trying to find efficient methods for slim 3-tables, and demonstrate that already the
3-tables of smallest possible size (3, c, h) which are not decomposable-graph-log-linear
models can have an arbitrarily complex behavior.

Finally, we point out that our results on the intractability of 2-marginals in 3-
tables obviously extend to higher dimensions as 2-marginals in 3-tables can be em-
bedded in higher dimensions.

1.1. Table existence or feasibility. First, we consider the table existence prob-
lem, also called the feasibility problem (cf. [5, 28]): Given a prescribed collection of
marginals that seem to describe a d-table of size (n1, . . . , nd), does there really exist
a table with these marginals? This problem is relevant for statistical analysis; for in-
stance, disclosed or transmitted marginals may become perturbed or distorted in such
a way that a feasible table may no longer exist, in which case not only will the data
lose utility to the users, but also algorithms such as the iterative proportional fitting
can fail to converge. This can be a problem because several statistical procedures are
insensitive to existence, e.g., Fréchet-type bounds presented in [14]. See [5, 6] for a dis-
cussion of the importance of table existence in statistics applications. An obvious nec-
essary condition for the existence of a table with a specified collection of marginals is
that the collection is consistent; that is, any two given marginals must agree on any of
their common lower-dimensional marginals. For instance, for the existence of a 3-table
with specified 2-marginals (vi,j,+) and (vi,+,k), these marginals must agree on their
common 1-marginal (vi,+,+), so the 1-table equation (

∑n
j=1 vi,j,+) = (

∑n
k=1 vi,+,k)

must hold. In general, however, these consistency equations do not even guarantee
the existence of an array with nonnegative real entries (cf. [28, 29]).

The existence problem is easy to solve for 2-tables [16, 17] or 1-marginals (which
are so-called decomposable-log-linear models) [11, 14, 18]. Therefore, the first really
interesting case is that of 3-tables with all 2-marginals specified. The following theo-
rem provides an almost complete classification of the complexity of this problem. We
assume without loss of generality that the size (r, c, h) of the tables satisfies 3 ≤ r ≤
c ≤ h. For r ≤ 2 the problem reduces to the well-studied case of two-dimensional
tables (with upper bounds on entries) and is polynomial time solvable using linear
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programming over the corresponding transportation polytope. See further discussion
of these polytopes and their multi-index generalizations in subsection 1.4 below.

Theorem 1.1. The computational complexity of the existence problem for 3-
tables of size (r, c, h) with 3 ≤ r ≤ c ≤ h and all 2-marginals specified is provided by
the following table:

r, c, h fixed r, c fixed, h variable r fixed, c, h variable r, c, h variable
unary 2-marginals P P NPC NPC
binary 2-marginals P ? NPC NPC

Each entry (i, j) of this table (i = 1, 2 , j = 1, 2, 3, 4) represents a refined version
of the existence problem; any problem (2, j) is at least as hard as the problem (1, j)
above it, and for j ≥ 2, any problem (i, j) is at least as hard as the problem (i, j − 1)
to its left. Here NPC stands for NP-complete, and hence presumably intractable
and practically unsolvable for large inputs (cf. [15]), whereas P stands for polynomial
time, and hence efficiently solvable. Binary versus unary are the two standard ways of
encoding numbers: for binary marginals, the size of each marginal is taken to be the
number of digits in its binary (or decimal) expansion, and hence is proportional to its
logarithm, whereas for unary marginals, the size of each marginal is the marginal itself.

Thus, some of the entries follow at once from others but are included for complete
classification. Entry (1, 1) easily follows from an exhaustive search. However, already
entry (2, 1) requires the sophisticated algorithm of Lenstra for integer programming
in fixed dimension [21]: it would be interesting to devise a special faster polynomial
time algorithm for this entry. In section 3 we shall prove entry (1, 2), that is, the
polynomial time solvability of existence for unary marginals with r, c fixed (“small”)
and h variable (“large”). In section 2 we shall establish entries (1, 3) and (2, 3), that
is, the NP-completeness of existence for marginals with r = 3 fixed and c, h variable.
This implies at once entries (1, 4) and (2, 4) in the right column, established previously
by Irving and Jerrum [20], strengthening their results. Entry (2, 2) remains unsettled
and challenging.

1.2. Table counting. Next, we consider the table counting problem: Given
a prescribed collection of marginals, how many d-tables are there that share these
marginals? Table counting has several applications in statistical analysis, in particu-
lar independence testing, and has been the focus of much research (see [9, 10, 22] and
the extensive list of references therein). The counting problem can be formulated as
that of counting the number of integer points in the associated multi-index transporta-
tion polytope (see further discussion in subsection 1.4 below). The following analogue
of Theorem 1.1 provides a complete classification of the complexity of this problem.

Theorem 1.2. The computational complexity of the counting problem for 3-tables
of size (r, c, h) with 2 ≤ r ≤ c ≤ h and all 2-marginals specified is provided by the
following table:

r, c, h fixed r, c fixed, h variable r fixed, c, h variable r, c, h variable
unary 2-marginals P P #PC #PC
binary 2-marginals P #PC #PC #PC

Here #PC stands for #P-complete, and hence presumably intractable; see Val-
iant’s seminal paper [27], which introduces the complexity theory of counting, or
consult [15].

Entry (1, 1) is easy, but already entry (2, 1) requires the sophisticated algorithm
of Barvinok for counting integer points in polytopes in fixed dimension [4]. In section
3 we prove entry (1, 2), that is, counting in polynomial time for unary marginals with
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r, c fixed and h variable. Entry (2, 2) follows from the #P -completeness of counting
2-tables of size (2, n) with binary marginals [13]. In section 3 we also prove entry
(1, 3), that is, the #P -completeness of counting for unary marginals with r = 2 fixed
and c, h variable, implying entries (2, 3), (1, 4), and (2, 4) as well.

1.3. Table entry-security. The third problem we consider arises in the context
of secure and confidential disclosure of public statistical data (see [7, 12, 14] and the
references therein). The goal in this context is the release of some marginals of a table
in the database but not the table’s entries themselves. If the range of possible values
that an entry can attain in any table satisfying the released collection of marginals
is too narrow, or even worse, consists of the unique value of that entry in the actual
table in the database, then this entry may be exposed. This shows the importance
of determining tight integer lower and upper bounds on each entry. We consider the
following versions of this problem, the lower (respectively, upper) table entry-security
problem: Given a d-table y, a specified collection of marginals of this table, an index
tuple (i1, . . . , id), and a nonnegative integer L (respectively, U), is there a d-table x
having the same specified collection of marginals as y, whose entry xi1,...,id is greater
than or equal to L (respectively, less than or equal to U)?

There is an extensive work on the entry-security problem (see, e.g., [6, 11, 14,
25, 26]), where properties are sought that may help address the problem. The state-
of-the-art on research and practical techniques is surveyed in [12]. The following
analogue of Theorems 1.1 and 1.2 provides an almost complete classification of the
complexity of the entry-security problem as well.

Theorem 1.3. The complexity of the lower (upper) entry-security problem for
3-tables of size (r, c, h) with 3 ≤ r ≤ c ≤ h (4 ≤ r ≤ c ≤ h) and all 2-marginals
specified is provided by the following table:

r, c, h fixed r, c fixed, h variable r fixed, c, h variable r, c, h variable
unary 2-marginals P P NPC NPC
binary 2-marginals P ? NPC NPC

Once again, entry (1, 1) is easy and entry (2, 1) follows from [21]. In section 4
we prove the polynomial time solvability for the case of unary marginals with r, c
fixed and h variable (entry (1, 2)), and the intractability for r fixed and c, h variable
(entries (1, 3) and (2, 3)), strengthening earlier hardness results of Irving and Jerrum
[20] reflected in entries (1, 4) and (2, 4). Again, entry (2, 2) remains unsettled.

1.4. Multi-index transportation polytopes and the power of 2-marginals.
Given a specified collection of marginals for d-tables of size (n1, . . . , nd), possibly to-
gether with specified lower and upper bounds on some of the table entries, the associ-
ated multi-index transportation polytope is the set of all nonnegative real-valued arrays
satisfying these marginals and entry bounds (cf. [29]) and is a (typically bounded)
convex polyhedron in Rn1···nd . For instance, for 2-tables of size (n, n) with all 1-
marginals equal to 1 and no entry bounds, this is the Birkhoff polytope of n by n
bistochastic matrices. The d-tables satisfying the given marginals and entry bounds
are precisely the integer points in the associated multi-index transportation polytope.

In section 5 we show how a system of 1-marginal and entry upper bound con-
straints on 3-tables can be embedded into a system of 2-marginal constraints (with no
entry bounds) on “slim” 3-tables, demonstrating the expressive power of 2-marginals
and reducing the existence, counting, and entry-security problems for 1-marginals
with upper bounds to that for 2-marginals with no upper bounds in slim tables. We
prove the following somewhat technical statement.



THE COMPLEXITY OF THREE-WAY STATISTICAL TABLES 823

Theorem 1.4. Given 1-marginals (ui,+,+), (u+,j,+), (u+,+,k) and entry upper
bounds (pi,j,k) for 3-tables of size (r, c, h), there exist polynomial time constructible
2-marginals (vi,j,+), (vi,+,k), (v+,j,k) for 3-tables of size (3, rc, r+ c+h) such that the
set of nonnegative real (r, c, h)-arrays with the given upper bounds and 1-marginals is
in integer preserving affine bijection with the set of nonnegative real (3, rc, r+ c+ h)-
arrays with the constructed 2-marginals.

A particularly appealing outcome of our constructions is the systematic and il-
luminating derivation of “real-feasible integer-infeasible” collections of 2-marginals,
admitting nonnegative real 3-arrays but no (integer) 3-tables. Remarkably, applying
our construction to very simple {0, 1}-valued 1-marginals and entry upper bounds for
3-tables of size (2, 2, 2), we “automatically” recover a famous example due to Vlach
of a real-feasible integer-infeasible collection of {0, 1}-valued 2-marginals for 3-tables
of smallest possible size (3, 4, 6); see our Example 2.2.

We conclude this introduction with some final discussion. First, we refer to the
open problems left in the (2, 2) entries of Theorems 1.1 and 1.3. Consider the set
of 3-tables v of size (r, c, h) with r, c fixed satisfying specified marginals (vi,+,k) and
(v+,j,k) but without restriction on the marginal (vi,j,+). The projection Rr·c·h −→
Rr·c : v �→ (vi,j,+) =

∑h
k=1 vi,j,k sends the associated multi-index transportation

polytope onto a subpolytope P of the transportation polytope of all 2-tables of size
(r, c) with 1-marginals (ui,+) := (vi,+,+) and (u+,j) := (v+,j,+). The techniques of
[1, 3, 19, 23, 24] allow us to produce the vertices of P in polynomial time and check if
any given “vertical” marginal (vi,j,+) lies in P , which is necessary for the existence of
a 3-table with (vi,+,k), (v+,j,k), and (vi,j,+). Further development of the methods of
[1, 3, 19, 23, 24] combined with integer programming in fixed dimension might help
in addressing these remaining problems.

Although our results stress the complexity of handling even small and slim 3-
way tables for statistical applications, recent results using special structure in specific
systems may make such table systems amenable to geometric algorithms for practical
computations. For example, in [11, 14, 18] the specified marginals satisfy a hierarchical
structure of certain graphical models in statistics. Other approaches include the new
generation of algebraic and randomized algorithms [8, 13], which will allow, in practice,
faster computations for increasingly larger problems.

2. The table existence problem. In this section we provide the proof of The-
orem 1.1 discussed in subsection 1.1 and demonstrate our constructions with some
examples. In particular, as explained in the introduction, using our construction we
recover the smallest possible real-feasible integer-infeasible collection of 2-marginals
of 3-tables of size (3, 4, 6).

Proof of Theorem 1.1. As explained in subsection 1.1, entry (1, 1) of the
complexity table claimed by Theorem 1.1 is easy and entry (2, 1) follows from [21].
Entry (1, 2) follows from entry (1, 2) in the table of Theorem 1.2, which will be proved
in the next section: indeed, we shall show in section 3 how to compute in polynomial
time the number of 3-tables of size (r, c, h) with r, c fixed satisfying given 2-marginals
in unary, and hence in particular how to decide if this number is zero or not, providing
a solution of the existence problem as well.

We need then prove entry (1, 3) of the table, which implies at once entries
(2, 3), (1, 4), (2, 4) as well. It is easy to see that the well-known three-dimensional
matching problem (cf. [15]) is equivalent to the following problem: Given a {0, 1}-
valued 3-table p = (pi,j,k) of size (n, n, n), is there a 3-table x = (xi,j,k) with all
1-marginals equal to 1 which is dominated by p, i.e., satisfies the upper bounds
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xi,j,k ≤ pi,j,k for all i, j, k? We reduce this problem to ours, which is clearly in
NP. Then let p = (pi,j,k) be a given {0, 1}-valued 3-table of size (n, n, n). We define
efficiently constructible 2-marginals for (3, n2, 3n)-tables such that nonnegative real
arrays y with these marginals are in integer preserving affine bijection with nonnega-
tive real (n, n, n)-arrays x with all 1-marginals equal to 1 dominated by p. For clarity,
the table will be indexed by triplets of special form, which we now explain. The first
index will be an integer 1 ≤ t ≤ 3. The second index will be an ordered pair ij with
1 ≤ i, j ≤ n. The third index will belong into one of three groups—the “domination”
group, the “row” group, and the “column” group—and will consist of one of three
three-letter abbreviations gro ∈ {dom, row, col} according to the group it belongs to, along
with a numerical index 1 ≤ k ≤ n. The 2-marginals are provided by the following:

(v+,ij,gro k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 · · · 1n 21 22 · · · 2n · · · n1 n2 · · · nn

dom 1 p1,1,1 p1,2,1 · · · p1,n,1 p2,1,1 p2,2,1 · · · p2,n,1 · · · pn,1,1 pn,2,1 · · · pn,n,1

dom 2 p1,1,2 p1,2,2 · · · p1,n,2 p2,1,2 p2,2,2 · · · p2,n,2 · · · pn,1,2 pn,2,2 · · · pn,n,2

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

domn p1,1,n p1,2,n · · · p1,n,n p2,1,n p2,2,n · · · p2,n,n · · · pn,1,n pn,2,n · · · pn,n,n

row 1 1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
row 2 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

rown 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1

col 1 1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
col 2 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

coln 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(vt,ij,+) =

( 11 12 · · · 1n 21 22 · · · 2n · · · n1 n2 · · · nn

1 1 1 · · · 1 1 1 · · · 1 · · · 1 1 · · · 1
2 p1,1,+ p1,2,+ · · · p1,n,+ p2,1,+ p2,2,+ · · · p2,n,+ · · · pn,1,+ pn,2,+ · · · pn,n,+

3 1 1 · · · 1 1 1 · · · 1 · · · 1 1 · · · 1

)
,

(vt,+,gro k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3

dom 1 1 p+,+,1 − 1 0
dom 2 1 p+,+,2 − 1 0

· · ·
...

...
...

domn 1 p+,+,n − 1 0

row 1 n− 1 0 1
row 2 n− 1 0 1

· · ·
..
.

..

.
..
.

rown n− 1 0 1

col 1 0 1 n− 1
col 2 0 1 n− 1

· · ·
...

..

.
...

coln 0 1 n− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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DOM
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COL

1

2 3

11 12
.. .

.

nn

Fig. 1. Block partition of (3, n2, 3n)-arrays.

First consider any nonnegative real (n, n, n)-array x dominated by p with all 1-
marginals equal to 1. We show that it uniquely extends to a nonnegative real
(3, n2, 3n)-array with 2-marginals as above. It will be convenient to keep in mind
a partition of (3, n2, 3n)-arrays into blocks, as shown in Figure 1. Given then such an
array x, embed it in the black block (1, dom) of a (3, n2, 3n)-array y by

y1,ij,dom k := xi,j,k , 1 ≤ i, j, k ≤ n .

We now show that the block x can be uniquely extended to a whole nonnegative real
(3, n2, 3n)-array y with the above 2-marginals. First consider the entries in the grey
blocks (1, col), (2, row), and (3, dom) in Figure 1: since v1,+,col k = v2,+,row k = v3,+,dom k =
0 for all k, it follows that all the entries y1,ij,col k, y2,ij,row k, and y3,ij,dom k constituting
these blocks are zero. Next, consider the entries in the white block (1, row): using the
fact just established that all entries in the block (1, col) below it are zero, and examining
the 2-marginals v+,ij,row k and v1,ij,+ = 1, we find that y1,ij,row i = 1−∑n

k=1 y1,ij,dom k =
1 − xi,j,+ ≥ 0, whereas for k �= i we have y1,ij,row k = 0. This also yields the entries
in the white block (3, row): we have y3,ij,row i = 1 − y1,ij,row i = xi,j,+ ≥ 0, whereas for
k �= i we have y3,ij,row k = 0. Next, consider the entries in the white block (2, dom):
using the fact that all entries in the block (3, dom) to its right are zero, and examining
the 2-marginals v+,ij,dom k = pi,j,k, we find that y2,ij,dom k = pi,j,k − xi,j,k ≥ 0 for
all i, j, k. Next consider the entries in the white block (2, col): using the fact that all
entries in the block (2, row) above it are zero, and examining the 2-marginals v+,ij,col k

and v2,ij,+ = pi,j,+, we find that y2,ij,col j = pi,j,+ −
∑n

k=1 y2,ij,dom k = xi,j,+ ≥ 0,
whereas for k �= j we have y2,ij,col k = 0. This also yields the entries in the white block
(3, col): we have y3,ij,col j = 1 − y2,ij,col j = 1 − xi,j,+ ≥ 0, whereas for k �= j we have
y3,ij,col k = 0.

Next consider any nonnegative real (3, n2, 3n)-array y with the above 2-marginals,
and let x be its (n, n, n)-subarray given by the black block (1, dom) of y, defined by
xi,j,k := y1,ij,dom k for all i, j, k. We show that x is nonnegative, dominated by p, and
has all 1-marginals equal to 1. It is nonnegative since so is y. It is dominated by p
since, for all i, j, k, we have pi,j,k − xi,j,k = y2,ij,dom k ≥ 0. Finally, all the 1-marginals
of x are equal to 1 since

x+,+,k =
∑
i,j

y1,ij,dom k = v1,+,dom k = 1 , 1 ≤ k ≤ n ;
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Fig. 2. The 2-marginals v+,ij,gro k, vt,+,gro k, vt,ij,+ constructed in Example 2.1.

xi,+,+ =
∑
j

y3,ij,row i = v3,+,row i = 1 , 1 ≤ i ≤ n ;

x+,j,+ =
∑
i

y2,ij,col j = v2,+,col j = 1 , 1 ≤ j ≤ n .

Thus, the set of nonnegative real (n, n, n)-arrays x dominated by p and with all 1-
marginals 1 is in integer preserving affine bijection with the set of nonnegative real
(3, n2, 3n)-arrays y with the constructed 2-marginals. In particular, the corresponding
sets of tables are in bijection, and therefore the former is nonempty if and only if the
latter is. This completes the reduction of three-dimensional matching to our problem,
the proof of entry (1, 3), and the proof of Theorem 1.1.

The following two examples illustrate our construction.
Example 2.1. Let n = 2 and let p be the {0, 1}-valued 3-table of size (2, 2, 2)

given by

p1,1,1 = 1, p1,2,1 = 1, p2,1,1 = 0, p2,2,1 = 0, p1,1,2 = 1, p1,2,2 = 1, p2,1,2 = 0, p2,2,2 = 1 .

Our construction yields the 2-marginals for 3-tables of size (3, 4, 6) presented in Fig-
ure 2. The unique 3-table x with all 1-marginals equal to 1 which is dominated by p
is given by

x1,1,1 = 1, x1,2,1 = 0, x2,1,1 = 0, x2,2,1 = 0, x1,1,2 = 0, x1,2,2 = 0, x2,1,2 = 0, x2,2,2 = 1 ,

and the corresponding 3-table y with the above 2-marginals is given by the following
blocks:

y1,ij,gro k y2,ij,gro k y3,ij,gro k

⎛⎜⎜⎜⎜⎜⎜⎜⎝

11 12 21 22

dom 1 1 0 0 0
dom 2 0 0 0 1

row 1 0 1 0 0
row 2 0 0 1 0

col 1 0 0 0 0
col 2 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

11 12 21 22

dom 1 0 1 0 0
dom 2 1 1 0 0

row 1 0 0 0 0
row 2 0 0 0 0

col 1 1 0 0 0
col 2 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

11 12 21 22

dom 1 0 0 0 0
dom 2 0 0 0 0

row 1 1 0 0 0
row 2 0 0 0 1

col 1 0 0 1 0
col 2 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 3. Derivation of Vlach’s example from our construction.

As pointed out in the introduction, our construction can be used to systematically
obtain “real-nonempty integer-empty” multi-index transportation polytopes, namely,
collections of 2-marginals admitting nonnegative real 3-arrays but no (integer) 3-
tables. In particular, we next recover the smallest such example, first discovered by
Vlach [28], as follows.

Example 2.2. Again, let n = 2 and let p be the {0, 1}-valued 3-table of size
(2, 2, 2) given by

p1,1,1 = 1, p1,2,1 = 0, p2,1,1 = 0, p2,2,1 = 1, p1,1,2 = 0, p1,2,2 = 1, p2,1,2 = 1, p2,2,2 = 0 .

Our construction yields the 2-marginals for 3-tables of size (3, 4, 6) presented in Figure
3. It can be verified that there is a single nonnegative real array of size (2, 2, 2) with
all 1-marginals equal to 1 which is dominated by the upper-bound table p. All entries
of this array are {0, 1

2}-valued, and there is no (integer) table with the prescribed
constraints. Our construction lifts this situation to 2-marginals with no upper bounds:
all entries of the unique corresponding nonnegative real array of size (3, 4, 6) with the
2-marginals in Figure 3 are {0, 1

2}-valued, and there is no (integer) table with these
constructed 2-marginals.

3. The table counting problem. In this section we provide the proof of The-
orem 1.2 discussed in subsection 1.2.

Proof of Theorem 1.2. As explained in subsection 1.2, entry (1, 1) of the
complexity table claimed by Theorem 1.2 is easy, entry (2, 1) follows from [4], and
entry (2, 2) follows from [13].

First, we prove entry (1, 3) of the table, which implies at once entries (2, 3), (1, 4),
(2, 4) as well. We describe a direct reduction from Valiant’s canonical #P -complete
problem of computing the permanent of a {0, 1}-valued matrix [27] (recall that the
permanent of an n by n matrix A is perm(A) :=

∑
σ

∏n
i=1Ai,σ(i), the sum extending

over all permutations σ of {1, . . . , n}; for instance, the permanent of the adjacency
matrix of a subgraph of the complete bipartite graph Kn,n is the number of perfect
matchings in that subgraph).

Then let A be a {0, 1}-valued n by n matrix, the permanent of which is to be
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computed. Define 2-marginals for 3-tables of size (2, n, n) by

vi,j,+ := Ai,j , vi,+,1 := v+,j,1 := 1 , vi,+,2 := Ai,+ − 1 , v+,j,2 : = A+,j − 1,

1 ≤ i, j ≤ n.

Any 3-table x with these marginals is determined by its 2-subtable (xi,j,1) since for
all i, j we have xi,j,2 = Ai,j − xi,j,1. Now, it is not hard to see that a nonnegative
integer n by n matrix Σ can arise as the subtable (xi,j,1) of a 3-table x with the
constructed 2-marginals if and only if it is the standard representing matrix of a
permutation σ satisfying

∏n
i=1Ai,σ(i) = 1. Therefore, the permanent of A, which

is the number of such permutations σ, is precisely the number of 3-tables with the
constructed 2-marginals, completing the reduction and the proof of entry (1, 3).

Next we prove entry (1, 2) of the table of Theorem 1.2. Note that, as explained
in the proof of Theorem 1.1, this implies the corresponding entry (1, 2) in the table
of Theorem 1.1 as well.

So, r, c are fixed, and we are given unary presented 2-marginals vi,j,+, vi,+,k,
and v+,j,k for 3-tables of size (r, c, h). Let S be the set of all 2-tables s of size (r, c)
satisfying the upper bounds si,j ≤ vi,j,+ for all i, j, that is, dominated by the given
“vertical” marginals. For k = 1, . . . , h define a matrix Ak whose rows and columns
are indexed by the elements of S, with entries

(Ak)s,t :=

{
1 if (t− s)i,+ = vi,+,k for all i and (t− s)+,j = v+,j,k for all j,
0 otherwise,

s, t ∈ S.
(3.1)
For p = 1, . . . , h let Ap := A1 · A2 · . . . · Ap be the product of the matrices Ak,
k = 1, . . . , p. Further, let l, u denote, respectively, the tables in S with entries li,j := 0
and ui,j := vi,j,+ for all i, j.

We claim that for any 1 ≤ p ≤ h and for any s, t ∈ S, the number of 3-tables x of
size (r, c, p) with xi,+,k = vi,+,k , x+,j,k = v+,j,k , and xi,j,+ = (t− s)i,j for 1 ≤ i ≤ r ,
1 ≤ j ≤ c , and 1 ≤ k ≤ p is precisely equal to the entry Ap

s,t of Ap. In particular, the

number of (r, c, h)-tables with the given 2-marginals is given by Ah
l,u. Since r, c are

fixed and the 2-marginals are presented in unary, the number
∏r

i=1

∏c
j=1(vi,j,+ + 1)

of tables in S is polynomial in the size of the input, and therefore the matrix Ah and
its sought entry Ah

l,u can be computed in polynomial time.

We prove the claim by induction on p. First, consider the case p = 1 and let s, t
be any pair of tables of S. There is a unique (r, c, 1)-array x satisfying xi,j,1 = xi,j,+ =
(t − s)i,j for all i, j, and x is a table satisfying xi,+,1 = vi,+,1 and x+,j,1 = v+,j,1 if
and only if (t− s)i,+ = vi,+,1 and (t− s)+,j = v+,j,1 for all i, j, which by (3.1) holds
if and only if A1

s,t = (A1)s,t = 1.

Next, consider any 2 ≤ p ≤ h and suppose the statement is true for all val-
ues less than p. Let s, t be any pair of tables of S. Then any (r, c, p)-table x with
xi,+,k = vi,+,k , x+,j,k = v+,j,k , and xi,j,+ = (t−s)i,j for all i, j, k is obtained, for some
w ∈ S, by augmenting any of the Ap−1

s,w tables y of size (r, c, p−1) with yi,+,k = vi,+,k ,
y+,j,k = v+,j,k , and yi,j,+ = (w−s)i,j for all i, j, k by any of the (Ap)w,t tables z of size
(r, c, 1) with zi,+,1 = vi,+,p , z+,j,1 = v+,j,p , and zi,j,+ = (t − w)i,j for all i, j. Thus,
the number of such tables is

∑
w∈S A

p−1
s,w (Ap)w,t, which is precisely Ap

s,t, proving the
induction step and the claim, and thus completing the proof of entry (1, 2) and of
Theorem 1.2.
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0
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0

1

1

1
2n

bounds as
(n,n,n)
table here

Use same

Fig. 4. The entry bounds for 3-tables of size (n + 1, n + 1, n + 1).

4. The table entry-security problem. In this section we provide the proof
of Theorem 1.3 discussed in subsection 1.3.

Proof of Theorem 1.3. Once again, as explained in subsection 1.3, entry (1, 1)
of the complexity table claimed by Theorem 1.3 is easy and entry (2, 1) follows from
[21]. We need to prove entry (1, 3), which implies at once entries (2, 3), (1, 4), (2, 4) as
well, and entry (1, 2).

We begin with the proof of entry (1, 3): we prove that both the lower and upper
entry-security problems are hard. In fact, we prove stronger results by showing that
each of the following special cases is already hard: (a) we reduce three-dimensional
matching to the problem of deciding whether, given a feasible collection of 2-marginals,
there is a 3-table with a specified entry equal to the maximal possible value given by
the Fréchet upper bound (minimal value of the three 2-marginals involving this entry).
Thus, even the special case of the lower entry-security problem with L the Fréchet
upper bound is hard. (b) We reduce the table existence problem to the problem of
deciding whether, given a feasible collection of 2-marginals, there is a 3-table with a
specified entry equal to the minimal possible value zero; thus, even the special case
of the upper entry-security problem with U = 0 is hard.

We begin with part (a). We reduce the three-dimensional matching problem to
the problem of deciding whether, given feasible 2-marginals, there is a slim 3-table
with a specified entry attaining the Fréchet upper bound. As mentioned in section 2,
the three-dimensional matching problem is equivalent to the following problem: Given
a {0, 1}-valued 3-table p = (pi,j,k) of size (n, n, n), is there a 3-table x = (xi,j,k) with
all 1-marginals ui,+,+, u+,j,+, u+,+,k equal to 1 which is dominated by p, i.e., satisfies
the upper bounds xi,j,k ≤ pi,j,k for all i, j, k? Given such data, we expand it to data
for upper bounds and 1-marginals for 3-tables of enlarged size (n + 1, n + 1, n + 1)
as follows: we maintain the given upper bounds pi,j,k and the 1-marginals ui,+,+,
u+,j,+, u+,+,k equal to 1 for 1 ≤ i, j, k ≤ n; we introduce the new upper bounds
pn+1,n+1,n+1 := 2n, pi,j,n+1 := pi,n+1,k := pn+1,j,k := 0 for 1 ≤ i, j, k ≤ n, and
pi,n+1,n+1 := pn+1,n+1,k := pn+1,j,n+1 := 1 for 1 ≤ i, j, k ≤ n. Finally, the three new
1-marginals are introduced by un+1,+,+ := 2n, u+,n+1,+ := 2n, and u+,+,n+1 := 2n.
The extended bounds are shown in Figure 4 on the union of the input (n, n, n)-table
and seven other blocks. We claim that the extended 1-marginals and upper bounds
are feasible: indeed, the (n+ 1, n+ 1, n+ 1)-table x defined by setting xi,n+1,n+1 :=
xn+1,n+1,k := xn+1,j,n+1 := 1 for all 1 ≤ i, j, k ≤ n and zero in all other entries has
the specified marginals.
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Now consider any feasible extended table x: then it is not hard to see that its
(n, n, n)-subtable (xi,j,k)

n,n,n
1,1,1 is feasible for the original data (coming from the input

to the three-dimensional matching) if and only if the entry xn+1,n+1,n+1 equals the
maximal possible value 2n.

Now, we “lift” the situation to the problem with 2-marginals and no upper bounds
in slim tables as follows: To the extended upper bound and 1-marginal data for
(n + 1, n + 1, n + 1)-tables, apply the transformation described in Theorem 1.4 (to
be proved in the next section). This gives feasible 2-marginals for 3-tables of size
(3, (n+ 1)2, 3(n+ 1)). By Theorem 1.4, there is a feasible (n+ 1, n+ 1, n+ 1)-table x
whose entry xn+1,n+1,n+1 attains the maximal possible value 2n if and only if there
is a feasible (3, (n + 1)2, 3(n + 1))-table y whose entry y1,(n+1)(n+1),dom (n+1) attains
the maximal possible value 2n. This completes the proof of part (a).

Next we prove part (b). Suppose then that we are given all the 2-marginals vi,j,+,
v+,j,k, vi,+,k for 3-tables of size (r, c, h), and we need to decide whether there exists
a 3-table with these 2-marginals. For simplicity we denote the given 2-marginals by
Ai,j := vi,j,+, Bj,k := v+,j,k, and Ci,k := vi,+,k. Without loss of generality we may
assume that the given 2-marginals are consistent. Recall that consistency means that
any pair of adjacent 2-marginals agree on their common 1-marginals and 0-marginals.
This is a necessary condition for the problem to be feasible at all. Otherwise there is
no table with these marginals. In our situation, consistency means that Ai,j , Bj,k, and

Ci,k have the same 0-marginal T :=
∑r

i

∑h
k Ci,k =

∑r
i

∑c
j Ai,j =

∑c
j

∑h
k Bj,k. This

is the total entry sum of any 3-table with 2-marginals A,B,C. In addition, any pair
of adjacent 2-marginals must agree on their common 1-marginals, i.e., Ci,+ = Ai,+,
A+,j = Bj,+, and C+,k = B+,k. These consistency equalities will be useful later on.

We will now construct a feasible set of 2-marginals for a family of 3-tables Rs,t,u

of size (r + 1, c + 1, h + 1). The entry-value of a certain entry Rs,t,u can be used
to decide whether the original set of 2-marginals A,B,C is feasible. We present the
2-marginals in Figure 5 as numbers on the surface of a 3-table. The three 2-marginals
R+,t,u, Rs,+,u, Rs,t,+ are indicated by the coordinate directions in Figure 5.

The reader can verify (see Figure 5) that the assignment is done as follows: for
2-marginal Rs,+,u we set R1,+,1 = T , R1,+,2 = C+,h, R1,+,3 = C+,h−1, . . . , R1,+,t =
C+,h−t+2, . . . , R1,+,h+1 = C+,1. Similarly R2,+,1 = C1,+, . . . , Rs,+,1 = Cs−1,+, . . . ,
Rr+1,+,1 = Cr,+. Finally, we have the assignment Rs,+,u = Cs−1,u−1 for s =
2, . . . , r + 1 and u = 2, . . . , h + 1. Next for 2-marginal Rs,t,+ we have R1,1,+ = T ,
R1,2,+ = B1,+, . . . , R1,t,+ = Bt−1,+, . . . , R1,c+1,+ = Bc,+; we also have R2,1,+ =
C1,+, . . . , Rs,1,+ = Cs−1,+, . . . , Rr+1,1,+ = Cr,+, and Rs,t,+ = As−1,t−1 for s =
2, . . . , r+1 and t = 2, . . . , c+1. Finally for 2-marginal R+,t,u we have that R+,1,1 = T
and we set R+,2,1 = A+,1, . . . , R+,t,1 = A+,t−1, . . . , R+,c+1,1 = A+,c. Also from the
picture we see that R+,1,2 = C+,h, . . . , R+,1,u = C+,h−u+2, . . . , R+,1,h+1 = C+,1 and
R+,t,u = Bt−1,u−1 for t = 2, . . . , c+ 1 and u = 2, . . . , h+ 1.

Note that any such 3-table R with the given 2-marginals breaks up naturally into
eight smaller 3-tables. We show these “blocks” b(1), . . . , b(8) in Figure 6 marking their
dimensions. We will use these eight blocks to explain how to fill in the entries of the
3-table and thus to prove that our construction indeed gives (1) a feasible set of 2-
marginals and (2) the entry R1,1,1 can be filled in with zero for some 3-table satisfying
all 2-marginals if and only if the original set of 2-marginals A,B,C is feasible. The
notation we use in subsequent figures to depict a way of filling the entries of a block
is by either writing a single number (e.g., zero), which is used to fill all the block’s
entries, or listing a table (e.g., Ci,k) which indicates that the entries of that table are
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of size  (r,c,h).
Input:  2−marginals for   3−tables
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1

r

Output: Feasible 
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of  size (r+1,c+1,h+1). 

Fig. 5. The construction of feasible 2-marginals from input 2-marginals.
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1
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Fig. 6. Blocks determined by the proposed 2-marginals.
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T

0

0

C

0

0

B

A ij
ik

jk

Fig. 7. A 3-table with the proposed 2-marginals.

s

t

u

0

3−table
A+j

0

Entry  R1,1,1

0

C

0

C

Fig. 8. A 3-table with the proposed 2-marginals when R1,1,1 = 0.

copied down verbatim to be the entries of the block.

Figure 7 shows a concrete 3-table which indeed satisfies the 2-marginals given
in the construction. More explicitly, fill the entries as follows: Block b(1), a single
entry R1,1,1 = T . Block b(2) has entries R1,1,u for u = 2, . . . , h + 1. We fill them
by R1,1,u = 0. Block b(3) has entries Rs,1,1 for s = 2, . . . , r + 1. We fill them by
Rs,1,1 = 0. Block b(4) has entries Rs,1,u for s = 2, . . . , r+ 1 and u = 2, . . . , h+ 1. We
fill them by Rs,1,u = Cs−1,u−1. Block b(5) has entries R1,t,u for t = 2, . . . , c + 1 and
u = 2, . . . , h+ 1. We fill them by R1,t,u = Bt−1,u−1. Block b(6) has entries Rs,t,1 for
s = 2, . . . , c+1 and t = 2, . . . , r+1. We fill them by Rs,t,1 = As−1,t−1. The entries of
b(7) and b(8) are all zero. It is simple to verify that all the line sums agree with the
totals stated in Figure 5, because in the construction we used the 1-marginals of the
2-tables A,B,C as part of the 2-marginals, and the data is consistent. This proves
the first claim.

Now we claim that the entry R1,1,1 takes on the value zero for some 3-table Rs,t,u

of size (r+1, c+1, h+1) if and only if the 2-marginals A,B,C have a feasible solution.
Let us assume that there is a 3-table Rs,t,u of size (r+ 1, c+ 1, h+ 1) and R1,1,1 = 0.
We divide the argument into two steps illustrated on the left-hand side of Figure 8.
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If the entry R1,1,1 is zero, we must have filled R2,1,1 = C1,+, R3,1,1 = C2,+, . . . ,
R(r+1),1,1 = Cc,+ and R1,1,2 = C+,1, . . . , R1,1,2 = C+,2, . . . , R1,1,(h+1) = C+,h. The
reason is that the 2-marginals R+,1,1 and R1,1,+ are equal to the total sum T , and
T =

∑
Ci,+ =

∑
C+,j . This completes the filling of blocks b(2) and b(3). Now, the

marginals Rs,t,+ and R+,t,u attached to b(4) imply that b(4) is simply full of zeros;
otherwise we surpass the 2-marginals. This completes the first step of the argument.

For the second step we refer to the right-hand side of Figure 8. The marginal
table Rs,+,u and the assignments so far for blocks b(2) and b(3) imply that only
zero values can be put in the entries of blocks b(5) and b(6); otherwise we surpass
Rs,+,u. Now blocks b(7), b(8) are left to be determined. The 2-marginals correspond-
ing to b(8) indicate the entries of b(8) are R1,2,1 = A+,1 = B1,+, . . . , R1,j,1 = A+,j =
Bj,+, . . . , R1,(c+1),1 = A+,c = Bc,+. Note that these are in fact the 1-marginals that
follow from the input 2-marginals A,B,C. Finally, block b(7) is the only block un-
filled so far. Looking at the zeros that fill blocks b(4), b(5), and b(6), we see block
b(7) is indeed a 3-table with 2-marginals A,B,C, and this ends the proof of the
claim. Now conversely, and essentially following a reverse order, if there is a 3-
table with 2-marginals A,B,C, we can put a copy of it as block b(7). Then by the
corresponding 2-marginals we see b(4), b(5), b(6) are filled with zeros. This forces
R2,1,1 = C1,+, R3,1,1 = C2,+, . . . , R(r+1),1,1 = Cc,+ and R1,1,2 = C+,1, . . . , R1,1,2 =
C+,2, . . . , R1,1,(h+1) = C+,h. This is because the 2-marginals R+,1,1 and R1,1,+ equal
the total sum T and the 2-marginals Rs,+,u. Finally, the entry R1,1,1 is forced to be
zero. This completes the proof of part (b) and the proof of entry (1, 3), and hence
also of entries (2, 3), (1, 4), (2, 4) in the table of Theorem 1.3.

Finally, we establish entry (1, 2) in the statement of Theorem 1.3: we present
a polynomial time algorithm for deciding whether there is a 3-table x with specified
2-marginals whose entry x1,1,1 is in the range L ≤ x1,1,1 ≤ U . The lower (respectively,
upper) entry-security problem is the special case of this entry-range problem obtained
by taking U to be the Fréchet upper bound U := min{v1,1,+, v1,+,1, v+,+,1} (respec-
tively, taking L := 0). We use a simple modification of the algorithm for enumeration
presented in the proof of Theorem 1.2 in the previous section; using the notation in
that proof, we simply need to modify the definition of the first matrix A1, where for
s, t ∈ S, its (s, t)th entry is now redefined to be

(A1)s,t :=

⎧⎨⎩
1 if (t− s)i,+ = vi,+,k for all i, (t− s)+,j = v+,j,k for all j,

and L ≤ (t− s)1,1 ≤ U,
0 otherwise.

The other matrices Ak remain as before. The entry Ah
l,u of the product matrix now

yields the number of tables with L ≤ x1,1,1 ≤ U and hence is nonzero if and only if
such a table exists.

5. Multi-index transportation polytopes and the power of 2-marginals.
We conclude with the proof of Theorem 1.4 discussed in subsection 1.4.

Proof of Theorem 1.4. The proof is based on an extension of the construction
used in the proof of Theorem 1.1. We provide the construction and an abridged form
of the argumentation.

Given 1-marginals (ui,+,+), (u+,j,+), (u+,+,k) and entry upper bounds (pi,j,k) for
3-tables of size (r, c, h), we define efficiently constructible 2-marginals (vi,j,+), (vi,+,k),
(v+,j,k) for 3-tables of size (3, rc, r + c+ h) such that nonnegative real arrays y with
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these marginals are in integer preserving affine bijection with nonnegative real 3-arrays
x of size (r, c, h) satisfying the given 1-marginals and upper bounds, thus providing
an isomorphism of the corresponding multi-index transportation polytopes and sets
of tables of the two systems.

As in the proof of Theorem 1.1, (3, rc, r+c+h)-tables will be indexed by triplets,
with the first index an integer 1 ≤ t ≤ 3, the second index an ordered pair ij with 1 ≤
i ≤ r and 1 ≤ j ≤ c, and the third index a three-letter abbreviation gro ∈ {dom, row, col}
along with a numerical index 1 ≤ k ≤ h. Let U denote the minimal of the two values
max{ui,+,+ : 1 ≤ i ≤ r} and max{u+,j,+ : 1 ≤ j ≤ c}. The 2-marginals are provided
by the following three matrices:

(v+,ij,gro k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 · · · 1c 21 22 · · · 2c · · · r1 r2 · · · rc

dom 1 p1,1,1 p1,2,1 · · · p1,c,1 p2,1,1 p2,2,1 · · · p2,c,1 · · · pr,1,1 pr,2,1 · · · pr,c,1
dom 2 p1,1,2 p1,2,2 · · · p1,c,2 p2,1,2 p2,2,2 · · · p2,c,2 · · · pr,1,2 pr,2,2 · · · pr,c,2

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

domh p1,1,h p1,2,h · · · p1,c,h p2,1,h p2,2,h · · · p2,c,h · · · pr,1,h pr,2,h · · · pr,c,h

row 1 U U · · · U 0 0 · · · 0 · · · 0 0 · · · 0
row 2 0 0 · · · 0 U U · · · U · · · 0 0 · · · 0

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

row r 0 0 · · · 0 0 0 · · · 0 · · · U U · · · U

col 1 U 0 · · · 0 U 0 · · · 0 · · · U 0 · · · 0
col 2 0 U · · · 0 0 U · · · 0 · · · 0 U · · · 0

· · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

col c 0 0 · · · U 0 0 · · · U · · · 0 0 · · · U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(vt,ij,+) =

( 11 12 · · · 1c 21 22 · · · 2c · · · r1 r2 · · · rc

1 U U · · · U U U · · · U · · · U U · · · U
2 p1,1,+ p1,2,+ · · · p1,c,+ p2,1,+ p2,2,+ · · · p2,c,+ · · · pr,1,+ pr,2,+ · · · pr,c,+
3 U U · · · U U U · · · U · · · U U · · · U

)
,

(vt,+,gro k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3

dom 1 u+,+,1 p+,+,1 − u+,+,1 0
dom 2 u+,+,2 p+,+,2 − u+,+,2 0

· · ·
...

...
...

domh u+,+,h p+,+,h − u+,+,h 0

row 1 c · U − u1,+,+ 0 u1,+,+

row 2 c · U − u2,+,+ 0 u2,+,+

· · ·
...

...
...

row r c · U − ur,+,+ 0 ur,+,+

col 1 0 u+,1,+ r · U − u+,1,+

col 2 0 u+,2,+ r · U − u+,2,+

· · ·
...

...
...

col c 0 u+,c,+ r · U − u+,c,+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We make use again of a partition of (3, rc, r + c + h)-arrays into blocks similar to
Figure 1. First consider any nonnegative real (r, c, h)-array x satisfying the given 1-
marginals and upper bounds. We show that it uniquely extends to a nonnegative real
(3, rc, r+ c+ h)-array with 2-marginals as above. Given such an array x, embed it in
the black block (1, dom) of a (3, rc, r+ c+h)-array y by y1,ij,dom k := xi,j,k for all i, j, k.
We now show that the block x can be uniquely extended to a whole nonnegative
real (3, rc, r + c + h)-array y with the above 2-marginals. First, the entries in the
grey blocks (1, col), (2, row), and (3, dom) in Figure 1 are all zero since so are the 2-
marginals v1,+,col k = v2,+,row k = v3,+,dom k = 0 for all k. Next, consider the entries in
the white block (1, row): using the fact that all entries in the block (1, col) below it are
zero, and examining the 2-marginals v+,ij,row k and v1,ij,+ = U , we find that y1,ij,row i =

U−∑h
k=1 y1,ij,dom k = U−xi,j,+ ≥ 0, whereas for k �= i we have y1,ij,row k = 0. This also

yields the entries in the white block (3, row): we have y3,ij,row i = U−y1,ij,row i = xi,j,+ ≥
0, whereas for k �= i we have y3,ij,row k = 0. Next, consider the entries in the white block
(2, dom): using the fact that all entries in the block (3, dom) to its right are zero, and
examining the 2-marginals v+,ij,dom k = pi,j,k, we find that y2,ij,dom k = pi,j,k−xi,j,k ≥ 0
for all i, j, k. Next consider the entries in the white block (2, col): using the fact that all
entries in the block (2, row) above it are zero, and examining the 2-marginals v+,ij,col k

and v2,ij,+ = pi,j,+, we find that y2,ij,col j = pi,j,+ −
∑h

k=1 y2,ij,dom k = xi,j,+ ≥ 0,
whereas for k �= j we have y2,ij,col k = 0. This also yields the entries in the white block
(3, col): we have y3,ij,col j = U − y2,ij,col j = U − xi,j,+ ≥ 0, whereas for k �= j we have
y3,ij,col k = 0.

Next consider any nonnegative real (3, rc, r + c + h)-array y with the above 2-
marginals, and let x be its (r, c, h)-subarray given by the black block (1, dom) of y,
defined by xi,j,k := y1,ij,dom k for all i, j, k. We show that x is nonnegative and sat-
isfies the given upper bounds and 1-marginals. It is nonnegative since so is y. It is
dominated by p since, for all i, j, k, we have pi,j,k − xi,j,k = y2,ij,dom k ≥ 0. Finally, it
obeys the 1-marginals ui,+,+, u+,j,+, and u+,+,k since

x+,+,k =
∑
i,j

y1,ij,dom k = v1,+,dom k = u+,+,k , 1 ≤ k ≤ h ;

xi,+,+ =
∑
j

y3,ij,row i = v3,+,row i = ui,+,+ , 1 ≤ i ≤ r ;

x+,j,+ =
∑
i

y2,ij,col j = v2,+,col j = u+,j,+ , 1 ≤ j ≤ c .

Thus, the set of nonnegative real (r, c, h)-arrays x satisfying the given upper bounds
and 1-marginals is in integer preserving affine bijection with the set of nonnegative
real (3, rc, r + c + h)-arrays y with the constructed 2-marginals. In particular, the
corresponding multi-index transportation polytopes and sets of tables of the two sys-
tems are isomorphic, completing the proof.
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Abstract. We study the approximability of multidimensional generalizations of three classical
packing problems: multiprocessor scheduling, bin packing, and the knapsack problem. Specifically,
we study the vector scheduling problem, its dual problem, namely, the vector bin packing problem,
and a class of packing integer programs. The vector scheduling problem is to schedule n d-dimensional
tasks on m machines such that the maximum load over all dimensions and all machines is minimized.
The vector bin packing problem, on the other hand, seeks to minimize the number of bins needed
to schedule all n tasks such that the maximum load on any dimension across all bins is bounded
by a fixed quantity, say, 1. Such problems naturally arise when scheduling tasks that have multiple
resource requirements. Finally, packing integer programs capture a core problem that directly relates
to both vector scheduling and vector bin packing, namely, the problem of packing a maximum
number of vectors in a single bin of unit height. We obtain a variety of new algorithmic as well as
inapproximability results for these three problems.
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1. Introduction. Multiprocessor scheduling, bin packing, and the knapsack
problem are very well studied problems in combinatorial optimization. Their study
has had a large impact on the design and analysis of approximation algorithms. All
of these problems involve packing items of different sizes into bins of finite capacities.
In this work we study multidimensional generalizations of these problems where the
items to be packed are d-dimensional vectors and bins are d-dimensional objects as
well. We obtain a variety of approximability and inapproximability results in the
process, significantly improving upon earlier known results for these problems. Some
of our results include a polynomial time approximation scheme (PTAS) for the vec-
tor scheduling problem when the dimension is fixed, and an approximation algorithm
for the vector bin-packing problem that improves a two-decade-old bound. Though
our primary motivation is vector scheduling and vector bin packing, an underlying
problem that arises is the problem of maximizing the numbers of vectors that can be
packed into a bin of fixed size. This is a special case of the multidimensional knap-
sack problem that is equivalent to packing integer programs (PIPs) [27, 29]. PIPs are
an important class of integer programs that capture several NP-hard combinatorial
optimization problems including the maximum independent set problem, the disjoint
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paths problem, and hypergraph matchings. The only general technique known for ap-
proximating PIPs is to use randomized rounding on the natural LP relaxation [27, 29].
We show here that the approximation guarantee for PIPs, as obtained via randomized
rounding, is essentially the best possible unless NP = ZPP.

In addition to their theoretical importance, these problems have several appli-
cations such as load balancing, cutting stock, and resource allocation, to name a
few. One of our motivations for studying these problems comes from recent interest
[12, 13, 14] in multidimensional resource scheduling problems in parallel query opti-
mization. A favored architecture for parallel databases is the so-called shared-nothing
environment [4] where the parallel system consists of a set of independent processing
units each of which has a set of time-sharable resources such as CPU, one or more
disks, network controllers, etc. A task executing on one of these units has requirements
from each of these resources and is best described as a multidimensional load vector.
However in most work on scheduling, both in theory and practice, it is assumed that
the load of a task is described by a single aggregate work measure. This simplification
is done typically to reduce the complexity of the scheduling problem. However, for
large task systems that are typically encountered in database applications, ignoring
the multidimensionality could lead to bad performance. The work in [11, 12, 13, 14]
demonstrates the practical effectiveness of the multidimensional approach. One of the
basic resource scheduling problems that is considered in the above papers is the prob-
lem of scheduling d-dimensional vectors (tasks) on d-dimensional bins (machines) to
minimize the maximum load on any dimension (the load on the most loaded resource).
Surprisingly, despite the large body of work on approximation algorithms for multi-
processor scheduling and its several variants [15, 23], the authors in [11] had to settle
for a naive (d + 1)-approximation for the d-dimensional vector scheduling problem.
Our work here provides a PTAS when d is fixed and an O(ln2 d)-approximation when
d is arbitrary. A similar situation existed for the vector bin packing problem where
the best known approximation ratio prior to our work was (d+ ε). In this paper, we
improve this to obtain a (1 + ε · d+O(ln ε−1))-approximation for any fixed ε > 0. In
what follows, we formally define the problems that we study and provide a detailed
description of our results.

1.1. Problem definitions. We start by defining the vector scheduling problem.
For a vector x, the quantity ‖x‖∞ denotes the standard �∞ norm.

Definition 1.1 (vector scheduling (VS)). We are given a set J of n rational
d-dimensional vectors p1, . . . , pn from [0,∞)d and a number m. A valid solution is a
partition of J into m sets A1, . . . , Am. The objective is to minimize max1≤i≤m ‖Āi‖∞,
where Āi =

∑
j∈Ai

pj is the sum of the vectors in Ai.

Definition 1.2 (vector bin packing (VBP)). Given a set of n rational vec-
tors p1, . . . , pn from [0, 1]d, find a partition of the set into sets A1, . . . , Am such that
‖Āi‖∞ ≤ 1 for 1 ≤ j ≤ m. The objective is to minimize m, the size of the partition.

The following definition of PIPs is from [29]. In the literature this problem is also
referred to as the d-dimensional 0-1 knapsack problem [7].

Definition 1.3 (packing integer program (PIP)). Given A ∈ [0, 1]d×n, b ∈
[1,∞)d, and c ∈ [0, 1]n with maxj cj = 1, a PIP seeks to maximize cTx subject to
x ∈ {0, 1}n and Ax ≤ b. Furthermore if A ∈ {0, 1}d×n, b is assumed to be integral.
Finally, B is defined to be mini bi.

The restrictions on A, b, and c in the above definition are without loss of gen-
erality: an arbitrary packing problem can be reduced to the above form (see [29]).
We are interested in PIPs where bi = B for 1 ≤ i ≤ d. When A ∈ {0, 1}d×n this
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problem is known as the simple B-matching in hypergraphs [24]: given a hypergraph
with nonnegative edge weights, find a maximum weight collection of edges such that
no vertex occurs in more than B of them. When B = 1 this is the usual hypergraph
matching problem. We note that the maximum independent set problem in graphs is
a special case of the hypergraph matching problem.

1.2. Related work and our results. All the problems we consider are NP-
complete for d = 1 (multiprocessor scheduling, bin packing, and the knapsack prob-
lem). The dimension of the vectors, d, plays an important role in determining the
complexity. We concentrate on two cases, when d is a fixed constant, and when d is
part of the input and can be arbitrary. Below is an outline of the various positive and
negative results that we obtain for these problems.

Vector scheduling. For the VS problem the best approximation algorithm [13]
prior to our work had a ratio of (d+1). When d is a fixed constant (a case of practical
interest) we obtain a PTAS, generalizing the result of Hochbaum and Shmoys [19]
for multiprocessor scheduling. In addition we obtain a simpler O(ln d)-approximation
algorithm that is better than (d+1) for all d ≥ 2. When d is large we give an O(ln2 d)-
approximation that uses known approximation algorithms for PIPs as a subroutine.
We also give a very simple O(ln dm/ ln ln dm)-approximation. Finally, we show that
it is hard to approximate the VS problem to within any constant factor when d is
arbitrary.

Vector bin packing. The previous best known approximation algorithms for this
problem gave a ratio of (d + ε) for any fixed ε > 0 [6] and (d + 7/10) [9]; the latter
result holds even in an online setting. All the ratios mentioned are asymptotic; that
is, there is an additive term depending on d and on ε. Karp, Luby, and Marchetti-
Spaccamela [22] do a probabilistic analysis and show bounds on the average wastage
in the bins. We design an approximation algorithm that for any fixed ε > 0, achieves
a (1 + ε · d+O(ln ε−1))-approximation in polynomial time, thus improving upon the
previous guarantees. One useful corollary of this result is that when d is a fixed
constant we can approximate the problem to within a ratio of O(ln d). When d is

arbitrary a simple reduction from the graph coloring problem gives a d
1
2−ε hardness

for any fixed ε > 0 even when vectors are drawn from the set [0, 1]d. Moreover, even
when d = 2 the problem is APX-hard [31]; this is an interesting departure from the
classical bin packing problem (d = 1) which exhibits an asymptotic FPTAS.

Packing integer programs. For fixed d there is a PTAS for PIPs [7]. For large d
the randomized rounding technique of Raghavan and Thompson [27] yields integral
solutions of value t1 = Ω(opt/d1/B) if A ∈ [0, 1]d×n, and t2 = Ω(opt/d1/(B+1)) if
A ∈ {0, 1}d×n. Srinivasan [29] improved these results to obtain solutions of value

Ω(t
B/(B−1)
1 ) and Ω(t

(B+1)/B
2 ), respectively (see discussion at the end of section 4.1

concerning when these values are better). Thus the parameter B plays an important
role in the approximation ratio achieved, with better ratios obtained as B gets larger
(recall that entries in A are upper bounded by 1). It is natural to question if the
dependence of the approximation ratio on B could be any better. We show that PIPs

are hard to approximate to within a factor of Ω(d
1

B+1−ε) for every fixed B, thus es-
tablishing that randomized rounding essentially gives the best possible approximation
guarantees. Hardness was known only for the case B = 1 via a reduction from the
maximum independent set problem. We show how this can be amplified to work for
larger values of B and then use Hast̊ad’s result [18] on the inapproximability of the
maximum independent set problem. An interesting aspect of our reduction is that
the hardness result holds even when the optimal is restricted to choosing a solution
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that satisfies Ax ≤ 1d while the approximation algorithm is required to satisfy only
the relaxed constraint of Ax ≤ Bd.

Table 1.1 summarizes our results. For conciseness, in the table below when we
indicate that a problem is c-hard we mean that, unless NP = ZPP, no polynomial
time algorithm can approximate it to within a factor of c.

Table 1.1

Approximation bounds and inapproximability results for each problem.

Problem d = 1 Constant d ≥ 2 Arbitrary d

PTAS [19] (d + 1) (folklore) (d + 1) (folklore)

Vector PTAS (this paper) O(ln2 d) (this paper)

Scheduling NP-hard NP-hard NP-hard
c-hard ∀ c > 1 (this paper)

AFPTAS1 [6, 21] (d + ε) [6] (d + ε) [6]

Vector O(ln d) (this paper) 1 + εd + O(ln 1
ε
) (this paper)

Bin Packing NP-hard APX-hard [31] APX-hard [31]

d
1
2
−ε-hard (this paper)

Packing FPTAS [20] PTAS [7] O(d
1

(B+1) ) [26, 27, 29]

Integer Programs NP-hard NP-hard d
1
2
−ε-hard for B = 1

d
1

(B+1)
−ε

-hard ∀ B ≥ 1
(this paper)

1.3. Organization. The rest of the paper is organized as follows. Sections 2
and 3 present our approximation algorithms for the vector scheduling problem and
the vector bin packing problem, respectively. In section 4 we present our inapprox-
imability results for the three problems.

2. Algorithms for vector scheduling. For any set of vectors (jobs) A, we
define Ā to be the vector sum

∑
j∈A pj . The quantity Āi denotes component i of

the vector Ā. Throughout this section, we assume without loss of generality that the
vectors have been scaled such that the optimal schedule value is 1.

2.1. A PTAS for fixed d. Hochbaum and Shmoys [19] gave a PTAS for the
multiprocessor scheduling problem (VS problem with d = 1) using dual approximation
schemes. We now show that a nontrivial generalization of their ideas yields a PTAS
for arbitrary but fixed d.

The basic idea used in [19] is a primal-dual approach whereby the scheduling
problem is viewed as a bin packing problem. If an optimal solution can pack all
jobs with load not exceeding some height h (assume h = 1 from here on), then the
scheduling problem is to pack all the jobs into m bins (machines) of height 1. The
authors then give an algorithm to solve this bin packing problem with bin height
relaxed to (1 + ε), where ε > 0 is a fixed constant. In order to do so, they classify
a job as large or small depending on whether its size is greater than ε or not. Only
a fixed number (at most 1/ε) of large jobs can be packed into any bin. The sizes of
the large jobs are then rounded up to be one of O(ln 1/ε) distinct values. Dynamic
programming is used to pack the rounded up large jobs into the m bins such that no

1AFPTAS denotes an asymptotic FPTAS. A problem has an AFPTAS if for any ε > 0, there
exists a positive integer Nε such that there is a (1 + ε)-approximation algorithm that runs in time
polynomial in the input size and 1/ε for all instances of the problem with optimum value at least
Nε.
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bin exceeds a height of (1 + ε). The small jobs are then greedily packed on top of the
large jobs.

We take a similar approach to the problem. Our dual problem is VBP. The
primary difficulty in generalizing the above ideas to the case of jobs or vectors of
d ≥ 2 dimensions is the lack of a total order on the “size” of the jobs. It is still
possible to classify a vector as large or small depending on its �∞ norm. However, the
scheme of [19], whereby the small jobs are greedily packed on top of the large jobs,
does not apply. We need to take into account the interaction between the packing of
large and small vectors. In addition, the packing of small vectors is nontrivial. In fact
we use a linear programming relaxation and a careful rounding to pack the small jobs.
We describe our ideas in detail below. Following the above discussion we will think
of machines as d-dimensional bins and the schedule length as bin capacity (height).
Given an ε > 0 and a guess for the optimal value (that we assume is normalized to 1),
we describe an ε-relaxed decision procedure Aε that either returns a schedule of height
(1 + ε) or proves that the guess is incorrect. We can use Aε to do a binary search for
the optimal value. Let δ be ε/d.

Preprocessing step. Our first idea is to reduce to zero all coordinates of the vectors
that are too small relative to the largest coordinate. This allows us to bound the ratio
of the largest coordinate to the smallest nonzero coordinate.

Lemma 2.1. Let I be an instance of the VS problem. Let I ′ be a modified instance
where we replace each pj in I with a vector qj as follows. For each 1 ≤ i ≤ d, qij = pij
if pij > δ‖pj‖∞ and qij = 0 otherwise. Then, replacing the vector qj by the vector pj
in any valid solution to I ′ results in a valid solution to I of height at most a factor of
(1 + ε) that of I ′.

Proof. Let A be a set of vectors in I, and let B be the corresponding set of vectors
in I ′. Then it follows from the transformation described above that

Āi ≤ B̄i + δ
∑
j∈B

‖qj‖∞

≤ B̄i + δ
∑
j∈B

‖qj‖1

≤ B̄i + δ‖B‖1
≤ B̄i + δd‖B‖∞
≤ B̄i + ε‖B‖∞.

Therefore ‖A‖∞ ≤ (1 + ε)‖B‖∞. It follows that replacing vectors in I ′ by those in I ′

increases the height of the machines by only a (1 + ε) factor.
Large versus small vectors. Assume from here on that we have transformed our

instance as described in the above lemma. The second step in the algorithm is to
partition the vectors into two sets L and S corresponding to large and small. L consists
of all vectors whose �∞ norm is greater than δ, and S is the rest of the vectors. The
algorithm Aε will have two stages; the first stage packs all the large jobs, and the
second stage packs the small jobs. Unlike the case of d = 1, the interaction between
the two stages has to be taken into account for d ≥ 2. We show that the interaction
can be captured in a compact way as follows. Let (a1, a2, . . . , ad) be a d-tuple of
integers such that 0 ≤ ai ≤ �1/ε�. We will call each such distinct tuple a capacity
configuration. There are at most t = (1 + �1/ε�)d such configurations. Assume that
the t capacity configurations (tuples) are ordered in some way and let aki be the value
of coordinate i in tuple k. A capacity configuration approximately describes how a
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bin is filled. However, we have m bins. A t-tuple (m1, . . . ,mt), where 0 ≤ mi ≤ m
and

∑
imi = m, is called a bin configuration that describes the number of bins of each

capacity configuration. The number of possible bin configurations is clearly O(mt).
Since there are only a polynomial number of such configurations for fixed d and ε we
can “guess” the configuration used by a feasible packing. A packing of vectors in a
bin is said to respect a capacity configuration (a1, . . . , ad) if the height of the packing
in each dimension i is less than εai. Given a capacity configuration we can define the
corresponding empty capacity configuration as the tuple obtained by subtracting each
entry from (�1/ε�+1). For a bin configuration M we denote by M̄ the corresponding
bin configuration as the one obtained by taking the empty capacity configurations for
each of the bins in M .

Overview of the algorithm. The algorithm performs the following steps for each
bin configuration M :

(a) decide if vectors in L can be packed respecting M ,
(b) decide if vectors in S can be packed respecting M̄ .
If both steps above succeed for some M , we have a packing of height at most

(1 + ε). Otherwise we will prove that the assumption that the optimal packing has a
height of 1 is false.

Packing the large vectors. The first stage consists of packing the vectors in L.
Observe that the smallest nonzero coordinate of the vectors in L is at least δ2. We
partition the interval [δ2, 1] into q = � 2ε ln δ−1� intervals of the form (x0, (1 + ε)x0],
(x1, (1 + ε)x1], . . . , (xq−1, 1], where x0 = δ2 and xi+1 = (1 + ε)xi. We discretize every
nonzero coordinate of the vectors in L by rounding the coordinate down to the left
end point of the interval in which it falls. Let L′ be the resulting set of vectors.

Lemma 2.2. Let I ′ be an instance obtained from the original instance I by round-
ing vectors in L as described above. Then, replacing each vector in L′ by the corre-
sponding vector in L in any solution for I ′ results in a solution for I of height at most
(1 + ε) times that of I ′.

Proof. Each coordinate of a vector in L′ is at least (1+ ε)−1 times the coordinate
of the corresponding vector in L. The lemma follows trivially.

Vectors in L′ can be classified into one of s = (1 + � 2ε ln δ−1�)d distinct classes.
Any packing of the vectors into one bin can be described as a tuple (k1, k2, . . . , ks),
where ki indicates the number of vectors of the ith class. Note that at most d/δ vectors
from L′ can be packed in any bin. Therefore

∑
ki ≤ d/δ. Thus there are at most

(d/δ)s configurations. A configuration is feasible for a capacity configuration if the
vectors described by the configuration can be packed without violating the height
constraints described by the capacity configuration. Let Ck denote the set of all
configurations of the jobs in L′ that are feasible for the kth capacity configuration.
From our discussion |Ck| ≤ (d/δ)s.

Lemma 2.3. Let M = (m1,m2, . . . ,mt) be a bin configuration. There exists an
algorithm with running time O((d/δ)smns) to decide if there is a packing of the jobs
in L′ that respects M .

Proof. We use a simple dynamic programming-based algorithm. Observe that the
number of vector classes in L′ is at most s. Thus any subset of vectors from L′ can
be specified by a tuple of size s, and there are O(ns) distinct tuples. The algorithm
orders bins in some arbitrary way and assigns to each bin a capacity configuration
fromM . For 1 ≤ i ≤ m, the algorithm computes all possible subsets of vectors from L′

(tuples) that can be packed validly in the first i bins. For each i this information can
be maintained in O(ns) space. Given the tuples for bin i, the tuples for bin (i + 1)
can be computed in O(d/δ)s time per tuple since that is an upper bound on the
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number of feasible configurations for any capacity configuration. Thus for each bin i,
in O((d/δ)sns) time, we can compute the tuples that can be packed into the first
i bins given the information for bin (i − 1). The number of bins is m so we get the
required time bound.

Packing the small vectors. We now describe the second stage, that of packing the
vectors in S. For the second stage we write an integer programming formulation and
round the resulting LP relaxation to find an approximate feasible solution. Without
loss of generality assume that the vectors in S are numbered 1 to |S|. The IP formu-
lation has 0-1 variables xij for 1 ≤ i ≤ |S| and 1 ≤ j ≤ m. Variable xij is 1 if pi is
assigned to machine j. Every vector has to be assigned to some machine. This results
in the following equation.∑

j

xij = 1, 1 ≤ i ≤ |S|.(2.1)

Given a bin configuration M , we can define for each machine j and dimension k a
height bound bkj that an assignment should satisfy. Thus we obtain∑

i

pki · xij ≤ bkj , 1 ≤ j ≤ m, 1 ≤ k ≤ d.(2.2)

In addition we have the integrality constraints, namely, xij ∈ {0, 1}. We obtain a
linear program by replacing these constraints by

xij ≥ 0.(2.3)

Proposition 2.4. Any basic feasible solution to the LP defined by (2.1), (2.2),
and (2.3) has at most d ·m vectors that are assigned fractionally to more than one
machine.

Proof. The number of variables in our LP is n · m. The number of nontrivial
constraints (those that are other than xij ≥ 0) is (n+d·m). From standard polyhedral
theory [28] any basic (vertex) solution to our LP has n ·m tight constraints. Therefore
by a simple counting argument, at most (n+ d ·m) variables can be strictly positive.
Since each vector is assigned to at least one machine, the number of vectors that are
fractionally assigned to more than one machine is at most d ·m.

We can solve the above linear program in polynomial time and obtain a basic
feasible solution. Let S′ be the set of vectors that are not assigned integrally to any
machine. By the above lemma, |S′| ≤ d ·m. We partition the set S′ into m sets of at
most d vectors each in an arbitrary manner and assign the ith set to the ith machine.
Since ‖pj‖∞ ≤ δ = ε/d for every j ∈ S′, the above step does not violate the height
by more than ε in any dimension.

Putting together all the ingredients we obtain our main theorem below.
Theorem 2.5. Given any fixed ε > 0, there is a (1+ ε)-approximation algorithm

for the VS problem that runs in (nd/ε)O(s) time, where s = O(( ln(d/ε)
ε )d).

Proof. Given a correct guess for the optimal schedule height it is clear from the
description that we obtain a (1+O(ε))-approximation. Following the overview of the
algorithm we find a packing of vectors in L and S for each choice of bin configura-
tion M . The running time is dominated by the time to pack L. Since there are at most

mt = O(nO(ε−d)) bin configurations, the running time follows from Lemma 2.3. We
can guess the optimal value to within a (1 + ε) precision using the estimate provided
by a simple (d+ 1)-approximation algorithm described in section 2.2.
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2.2. The general case. We now consider the case when d is arbitrary and
present two approximation algorithms for this case. The first algorithm is determin-
istic and has an approximation ratio that is a function of only d (O(ln2 d)), while the
second algorithm is randomized and achieves an approximation ratio that is a function
of both d and m (O(ln dm/ ln ln dm)). Given a set of positive vectors A we denote by
V(A) the volume of A which is the sum of all coordinates of all vectors in A, in other
words, the �1 norm of

∑
j∈A pj . We once again assume that the optimal schedule

height is 1.

2.2.1. An O(ln2 d)-approximation. We start by analyzing a simple algorithm
which will serve as a base case for our O(ln2 d)-approximation algorithm. Recall that
J is the set of vectors in the input instance. The infinity norm of each of the job
vectors is clearly a lower bound on the optimal value. Hence

max
j∈J
‖pj‖∞ ≤ 1.(2.4)

The second lower bound is obtained by using the average volume per dimension:

V(J)

m · d ≤ 1.(2.5)

We can strengthen the above bound by splitting the sum dimension-wise:

d
max
i=1

J̄ i

m
≤ 1.(2.6)

A naive algorithm for our problem is to ignore the multidimensional aspect of
the jobs and treat them as one-dimensional vectors of size equal to the sum of their
components. The dimensionality of the bins is also ignored. Then one can apply the
standard list scheduling algorithm of Graham [16] for multiprocessor scheduling to
obtain the following theorem that uses the simple lower bounds developed above.

Lemma 2.6. Applying list scheduling on the volumes of the vectors results in a

schedule of height at most V(J)
m +maxj∈J ‖pj‖∞. This yields a (d+1)-approximation.

Proof. The upper bound follows from standard analysis of list scheduling. The
approximation guarantee follows from the lower bounds in (2.4) and (2.5).

The O(ln2 d)-approximation algorithm. Before we state the algorithm formally
we need a couple of definitions. The following problem is a special case of a general
PIP.

Definition 2.7. Given a set J of n vectors in [0, 1]d, the largest volume pack-
ing problem is the problem of finding a subset S such that ‖S̄‖∞ ≤ 1 and V(S) is
maximized. Let Vmax denote the value of the optimal solution.

Definition 2.8. An (α, β)-approximation to the largest volume packing problem
is a subset S that satisfies the conditions ‖S̄‖∞ ≤ α and V(S) ≥ βVmax.

We will typically use the above definition with α ≥ 1 and β ≤ 1.
Algorithm Volume Pack:

1. repeat for t stages
(a) for k = 1 to m do

i. Find an (α, β)-approximation to the largest volume packing problem
with the current set of job vectors.

ii. Allocate jobs in packing to machine k and remove them.
2. Find a separate schedule for the remaining jobs using naive volume based list

scheduling.
3. Combine the two schedules machine by machine in the obvious way.
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We now prove several simple lemmas to analyze the performance of the above
algorithm.

Lemma 2.9. Let J(i) be the set of jobs remaining at the beginning of the ith stage
with J(1) = J . Let Jk(i) be the set of jobs remaining after machine k has been packed
in stage i. Then

V(Jk(i)) ≤ V(J(i)) · (1− β/m)k.

Proof. We prove the lemma by induction on k. The claim is trivially true for
k = 0. Suppose the claim is true up to machine k. We show that the claim is true for
machine (k + 1). Since all jobs in J can be scheduled on m machines with height 1,
it follows that all jobs in Jk(i) can be likewise scheduled. By a simple averaging
argument we can infer that there exists a set of jobs in Jk(i) with volume at least
V(Jk(i))/m that can be packed in a machine with height at most 1. Since we obtain
a β-approximation to largest volume packing, we pack jobs with a volume of at least
β · V(Jk(i))/m. Therefore V(J(k+1)(i)) ≤ V(Jk(i)) · (1 − β/m). By our induction

hypothesis V(Jk(i)) ≤ V(J(i)) · (1− β/m)k. The lemma follows.
Corollary 2.10. V(J(i)) ≤ V(J)/e(i−1)β.
Proof. From Lemma 2.9, V(J(i)) ≤ V(J(i−1)) · (1−β/m)m. Since (1−β/m)m ≤

e−β , we get the required bound.
Lemma 2.11. Algorithm Volume Pack yields a schedule of height at most (t ·α+

d
etβ

+ 1).
Proof. Consider the machine that achieves the maximum height in the schedule

produced by Volume Pack. Let J1 and J2 be the set of jobs allocated to that machine
in the packing stage and the list scheduling stage, respectively. From the packing
property it is easy to see that the height of machine due to jobs in J1 is at most tα.
Let J ′ be the set of jobs remaining after the t stages of packing. These are scheduled
using list scheduling. From Corollary 2.10 we have that

V(J ′) ≤ V(J)/etβ .

From Lemma 2.6, the height increase of the machine due to jobs in J2 is at most

V(J ′)/m+ max
j
‖pj‖∞ ≤ d

etβ
· V(J)/(dm) + 1 ≤ d

etβ
+ 1.

In the above inequality we are using the fact that the two lower bounds are less than 1,
the optimal value. Combining the two equations gives us the desired bound.

The parameter t in the algorithm can be chosen as a function of α and β to obtain
the best ratio. Note that the largest volume packing problem is a special case of a PIP,
where ci is simply the volume of vector i. PIPs have an (O(ln d), 1/2)-approximation
via randomized rounding [27, 29] that can be derandomized by techniques from [26].
When d is fixed there is a (1, 1 − ε) approximation [7] that runs in time polynomial
in nd/ε. These observations imply the following.

Theorem 2.12. There is an O(ln2 d)-approximation algorithm for the VS prob-
lem.

Theorem 2.13. There is an O(ln d)-approximation algorithm for the VS problem
that runs in time polynomial in nd.

2.2.2. An O(ln dm/ ln ln dm)-approximation. The approximation result of
Theorem 2.12 is good when d is small compared to m. However, when d is large we
can obtain an O(ln dm/ ln ln dm)-approximation by a simple randomized algorithm
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that assigns each vector independently to a machine chosen uniformly at random
from the set of m machines. Theorem 2.15 bounds the performance of this algorithm,
referred to as Random. We need a version of the standard Chernoff bound on sums
of independent random variables.

Proposition 2.14. Let X1, . . . , Xn be independent binary random variables and
let X =

∑n
i=1 tiXi. Let T = maxi ti and µ = E [X]. Then, for any sufficiently

large h, Pr
[
X > (1 + c lnh

ln lnh )(µ+ T )
] ≤ h−c/2.

Proof. Let Yi be a random variable such that Yi = ti
TXi. Note that Yi takes on

values in [0, 1]. Let Y =
∑

i Yi. It follows that Y = X/T and that E [Y ] = µ/T .
Therefore, for any δ > 0, Pr [X > (1 + δ)(µ+ T )] = Pr [Y > (1 + δ)(µ/T + 1)]. Ap-
plying the standard Chernoff–Hoeffding bounds [25] on sums of independent random
variables that assume values in [0, 1] to Y , we get the desired result.

Theorem 2.15. Random gives an O(ln dm/ ln ln dm)-approximation with high
probability.

Proof. Consider the first machine. Let Xj be the indicator random variable
that is 1 if vector j is assigned to the first machine. The Xj ’s are independent. By
uniformity Pr [Xj = 1] = 1/m. Let P =

∑
j pjXj . Note that P is a vector since each

pj is a vector: let P i denote the ith coordinate of P . By linearity of expectations,
E[P i] =

∑
j p

i
j/m ≤ 1 (using (2.5)). Also observe that maxj p

i
j ≤ 1 (using (2.4)).

Now we estimate the probability that P i deviates significantly from its expected
value. From Proposition 2.14, Pr

[
P i > (E[P i] + maxj p

i
j)(1 + c ln dm/ ln ln dm)

] ≤
(dm)−c/2. Thus with high probability P i is O(ln dm/ ln ln dm). In general, if Ai

k is
the event that the ith dimension of machine k is greater than 2(1+ c) ln dm/ ln ln dm,
then from above we know that Pr

[
Ai

k

] ≤ (dm)−c/2. Thus Pr
[
(A = ∪di=1 ∪mk=1A

i
k)
] ≤

dm(dm)−c/2. By choosing c sufficiently large we can ensure that Pr [A] is less than
an inverse polynomial factor. But the complement of A is the event that the schedule
length is O(ln dm/ ln ln dm). Thus with high probability we get an O(ln dm/ ln ln dm)-
approximation.

3. Algorithms for vector bin packing. We now examine the problem of pack-
ing a given set of vectors into the smallest possible number of bins. Our main result
here is as follows.

Theorem 3.1. For any fixed ε > 0, we can obtain in polynomial time a (1 +
ε · d+O(ln(1/ε)))-approximate solution for vector bin packing.

This improves upon the long-standing (d+ε)-approximation algorithm of [6]. Our
approach is based on solving a linear programming relaxation for this problem. As in
section 2.1, we use a variable xij to indicate if vector pi is assigned to bin j. We guess
the least number of bins m (easily located via binary search) for which the following
LP relaxation is feasible; clearly m ≤ opt.∑

j

xij = 1, 1 ≤ i ≤ n,
∑
i

pki · xij ≤ 1, 1 ≤ j ≤ m, 1 ≤ k ≤ d,

xij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Once again, we use the fact that a basic feasible solution would make fractional

bin assignments for at most d ·m vectors. Thus at this point, all but a set S of at most
d ·m vectors have integral assignments in m bins. To find a bin assignment for S, we
repeatedly find a set S′ ⊆ S of up to k = �1/ε� vectors that can all be packed together
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and assign them to a new bin. This step is performed greedily; i.e., we seek to find
a largest possible such set in each iteration. We can perform this step by trying out
all possible sets of vectors of cardinality less than (k + 1). We now claim that this
procedure must terminate in ε · d ·m+O(ln ε−1) ·opt steps. To see this, consider the
first time that we pack less than k vectors in a bin. The number of bins used thus far
is bounded by (d ·m)/k. Moreover, the total number of vectors that remain at this
point is at most (k − 1)opt; let S′ denote this remaining set of vectors. Since the
optimal algorithm cannot pack more than (k− 1) vectors of S′ in one bin, our greedy
bin assignment procedure is identical to a greedy set cover algorithm, where each set
has size at most (k − 1). Following the analysis of the greedy algorithm in [17], the
total number of bins used in packing vectors in S′ is bounded by Hk−1 · opt (Hi is
the ith harmonic number). Putting things together, we obtain that the number of
bins used by our algorithm, A, is bounded as follows:

A ≤ m+ (d ·m)/k +Hk−1 · opt ≤ (1 + ε · d+O(ln ε−1)) · opt.

This completes the proof of Theorem 3.1. Substituting ε = 1/d, we obtain the
following simple corollary.

Corollary 3.2. For fixed d, VBP can be approximated to within O(ln d) in
polynomial time.

4. Inapproximability results. In this section we show hardness of approxima-
tion results for the three problems we consider, vector scheduling, vector bin packing,
and packing integer programs. We start with PIPs.

4.1. Packing integer programs. Randomized rounding techniques of Ragha-
van and Thompson [27] yield integral solutions of value t1 = Ω(opt/d1/B) if A ∈
[0, 1]d×n, and t2 = Ω(opt/d1/(B+1)) if A ∈ {0, 1}d×n. Srinivasan [29] improved these

results to obtain solutions of value Ω(t
B/(B−1)
1 ) and Ω(t

(B+1)/B
2 ), respectively. We

show that PIPs are hard to approximate to within a factor of Ω(d
1

B+1−ε) for every
fixed integer B. We start with the case A ∈ {0, 1}d×n and then indicate how our result
extends to A ∈ [0, 1]d×n. Our reduction uses the result of Hast̊ad [18] that shows that
unless NP = ZPP the maximum independent set problem is hard to approximate
within a factor of n1−ε for any fixed ε > 0. Since the upper bounds are in terms of d,
from here on, we will express the inapproximability factor only as a function of d.

Given a graph G = (V,E) with |V | = n and a positive integer B, we construct
an instance of a PIP, IG, as follows. Let A be a d × n 0-1 matrix with d = n(B+1)

such that each row corresponds to an element from V (B+1). Let ri = (vi1 , . . . , vi(B+1)
)

denote the tuple associated with the ith row of A. We set aij = 1 if and only if the
following conditions hold, otherwise we set it to 0: (a) the vertex vj occurs in ri, and
(b) the vertices in ri induce a clique in G.

We set c = {1}n and b = {B}d. For any fixed integer B, the reduction can be
done in polynomial time. Note that a feasible solution to IG can be described as a
set of indices S ⊆ {1, . . . , n}.

Lemma 4.1. Let X ⊆ V be an independent set of G. Then S = {i | vi ∈ X} is a
feasible solution to IG of value |S| = |X|. Furthermore, S can be packed with a height
bound of 1.

Proof. Suppose that in some dimension the height induced by S is greater than 1.
Let r be the tuple associated with this dimension. Then there exist i, j ∈ S such that
vi, vj ∈ r and (vi, vj) ∈ E. This contradicts the assumption that X is an independent
set.
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Lemma 4.2. Let S be any feasible solution to IG and let GS be the subgraph of G
induced by the set of vertices vi such that i ∈ S. Then ω(GS) ≤ B, where ω(GS) is
the clique number of GS.

Proof. Suppose there is a clique of size (B + 1) in GS ; without loss of gener-
ality assume that v1, . . . , v(B+1) are the vertices of that clique. Consider the tuple
(v1, v2, . . . , v(B+1)) and let i be the row of A corresponding to the above tuple. Then
by our construction, aij = 1 for 1 ≤ j ≤ (B+ 1). There are (B+ 1) vectors in S with
a 1 in the same dimension i, violating the ith row constraint. This contradicts the
feasibility of S.

The following is a standard Ramsey type result.

Lemma 4.3. Let G be a graph on n vertices with ω(G) ≤ k. Then α(G) ≥ n1/k.

Lemmas 4.2 and 4.3 give us the following corollary.

Corollary 4.4. Let S be any valid solution to IG of value t = |S|. Then
α(G) ≥ t1/B.

Theorem 4.5. Unless NP = ZPP , for every fixed integer B and fixed ε0 > 0,
PIPs with bound b = {B}d and A ∈ {0, 1}d×n are hard to approximate to within a

factor of d
1

B+1−ε0 . PIPs with A ∈ [0, 1]d×n and B rational are hard to approximate

to within a factor of d
1

�B�+1
−ε0 .

Proof. We first look at the case of PIPs with A ∈ {0, 1}d×n. Notice that our
reduction produces only such instances. Suppose there is a polynomial time approxi-

mation algorithm A for PIPs with bound B that has an approximation ratio d
1

B+1−ε0

for some fixed ε0 > 0. This can be reinterpreted as a d
1−ε
B+1 -approximation, where

ε = ε0(B + 1) is another constant. We will obtain an approximation algorithm G for
the maximum independent set problem with a ratio n1−δ for δ = ε/B. The hardness
of maximum independent [18] will then imply the desired result. Given a graph G,
the algorithm G constructs an instance IG of a PIP as described above and gives it
as input to A. G returns max(1, t1/B) as the independent set size of G, where t is the
value returned by A on IG. Note that by Corollary 4.4, α(G) ≥ t1/B , which proves
the correctness of the algorithm. Now we prove the approximation guarantee. We
are interested only in the case when α(G) ≥ n1−δ, for otherwise a trivial independent
set of size 1 gives the required approximation ratio. From Lemma 4.1 it follows that

the optimal value for IG is at least α(G). Since A provides a d
1−ε
B+1 -approximation,

t ≥ α(G)/d
1−ε

(B+1) . In the construction of IG, d = n(B+1). Therefore t ≥ α(G)/n(1−ε).
Simple algebra verifies that t1/B ≥ α(G)/n1−δ when α(G) ≥ n1−δ.

Now we consider the case of PIPs with A ∈ [0, 1]d×n. Let B be some real number.
For a given B we can create an instance of a PIP as before with B′ = 
B�. The only
difference is that we set b = Bd. Since all entries of A are integral, effectively the
bound is B′. Therefore it is hard to approximate to within a factor of d(1−ε)/(B′+1) =
d(1−ε)/(�B�+1). Since (
B + 1/d�+ 1) = B + 1, d(1−ε)/(�B�+1) = Θ(d(1−ε)/B).

Discussion. An interesting aspect of our reduction above is that the hardness
results hold even when the optimal algorithm is restricted to a height bound of 1
while allowing a height bound of B for the approximation algorithm. Let an (α, β)-
bicriteria approximation be one that satisfies the relaxed constraint matrix Ax ≤ αb
and gets a solution of value at least opt/β; here opt satisfies Ax ≤ b. Then we have
the following corollary.

Corollary 4.6. Unless NP = ZPP , for every fixed integer B and fixed ε > 0,

it is hard to obtain a (B, d
1

B+1−ε) bicriteria approximation for PIPs.

For a given B, we use d = nB+1, and a hardness of d
1

B+1−ε is essentially the
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hardness of n1−ε for the independent set problem. This raises two related questions.
First, should d be larger than n to obtain the inapproximability results? Second,
should the approximability (and inapproximability) results be parameterized in terms
of n instead of d? These questions are important to understand the complexity of
PIPs as d varies from O(1) to poly(n). We observe that the hardness result holds as
long as d is Ω(nε) for some fixed ε > 0. To see this, observe that in our reduction,
we can always add poly(n) dummy columns (vectors) that are either useless (their cj
value is 0) or cannot be packed (add a dummy dimension where only B of the dummy
vectors can be packed). Thus we can ensure that n ≥ poly(d) without changing the
essence of the reduction. We have a PTAS when d = O(1) and a hardness result of
d1/(B+1) when d = poly(n). An interesting question is to resolve the complexity of
the problem when d = polylog(n).

As remarked earlier, Srinivasan [29] improves the results obtained using random-

ized rounding to obtain solutions of value Ω(t
(B+1)/B
2 ), where t2 = Ω(y∗/d1/(B+1)) for

A ∈ {0, 1}d×n. In the above y∗ is the optimal fractional solution to the PIP. It might
appear that this contradicts our hardness result but observe that for the instances we
create in our reduction y∗/d1/(B+1) ≤ 1. For such instances Srinivasan’s bounds do
not yield an improvement over randomized rounding.

4.2. Vector scheduling. We now extend the ideas used in the hardness result
for PIPs to show the following hardness result for the VS problem.

Theorem 4.7. Unless NP = ZPP , for every constant γ > 1, there is no
polynomial time algorithm that approximates the schedule height in the VS problem
to within a factor of γ.

Our result here uses the hardness of graph coloring; Feige and Kilian [5] building
on the work of Hast̊ad [18] show that graph coloring is n1−ε-hard unless NP = ZPP.
Our reduction is motivated by the fact that graph coloring corresponds to covering a
graph by independent sets. We start with the following simple lemma that is easily
derived from Lemma 4.3.

Lemma 4.8. Let G be a graph on n vertices with ω(G) ≤ k. Then χ(G) ≤
O(n1−1/k lnn).

Let B = �γ�; we will show that it is hard to obtain a B-approximation using a
reduction from chromatic number. Given graph G we construct an instance I of the
VS problem as follows. We construct n vectors of nB+1 dimensions as in the proof of
Theorem 4.5. We set m, the number of machines, to be n

1
2B .

Lemma 4.9. If χ(G) ≤ m, then the optimal schedule height for I is 1.
Proof. Let V1, . . . , Vχ(G) be the color classes. Each color class is an independent

set, and by Lemma 4.1 the corresponding vectors can be packed on one machine with
height at most 1. Since χ(G) ≤ m, the vectors corresponding to each color class can
be packed in a separate machine.

Lemma 4.10. If the schedule height for I is bounded by B, then χ(G) ≤
βn1−1/2B lnn for some fixed constant β.

Proof. Let V1, V2, . . . , Vm be the partition of vertices of G induced by the as-
signment of the vectors to the machines. Let Gi be the subgraph of G induced
by the vertex set Vi. From Lemma 4.2 we have ω(Gi) ≤ B. Using Lemma 4.8
we obtain that χ(Gi) ≤ βn1−1/B lnn for 1 ≤ i ≤ m. Therefore it follows that
χ(G) ≤∑i χ(Gi) ≤ m · βn1−1/B lnn ≤ βn1−1/2B lnn.

Proof of Theorem 4.7. Feige and Kilian [5] showed that unless ZPP = NP for
every ε > 0 there is no polynomial time algorithm to approximate the chromatic
number to within a factor of n1−ε. Suppose there is a B-approximation for the
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VS problem. Lemmas 4.9 and 4.10 establish that if χ(G) ≤ n1/2B , then we can
infer by running the B-approximation algorithm for the VS problem that χ(G) ≤
βn1−1/2B lnn. This implies a βn1−1/2B lnn-approximation to the chromatic number.
From the result of [5] it follows that this is not possible unless NP = ZPP .

4.3. Vector bin packing. As mentioned before, VBP is APX-hard even for
d = 2. We show a simple d

1
2−ε hardness for VBP when d is arbitrary. The reduction

is similar to that in the previous subsection and uses hardness of graph coloring.
Given a graph G with n vertices and m edges we create an instance IG of VBP with
n vectors, each of m dimensions. For a vector vi corresponding to a vertex i of G,
the jth coordinate is 1 if i is incident on the jth edge, otherwise it is 0. If the vectors
are required to be packed into bins of height 1, it is easily seen that the number of
bins required corresponds exactly to a coloring of G. Thus the hardness of chromatic
number applies directly to VBP.

Theorem 4.11. Unless NP = ZPP , VBP is hard to approximate to within a
d

1
2−ε factor for every fixed ε > 0.

5. Conclusions. We studied multidimensional generalizations of multiprocessor
scheduling, bin packing, and the knapsack problem and obtained a variety of new
algorithmic as well as inapproximability results for them. While our work gives new
insights into the approximability of these problems, several questions remain open. In
particular, large gaps remain between the upper and lower bounds for both VS and
VBP when the number of dimensions is arbitrary. For packing integer programs, our
hardness result is essentially tight, but it applies only to fixed values of B. The quality
of approximation improves dramatically when B is allowed to grow as a logarithmic
function of d; in particular a constant factor approximation is achievable when B =
Ω(log d/ log log d). It will be interesting to see if our techniques can be extended to
obtain a hardness result when B is allowed to be a function of d.
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[17] M. M. Halldórsson, Approximating k-set cover and complementary graph coloring, in Pro-
ceedings of the Fifth IPCO Conference on Integer Programming and Combinatorial Opti-
mization, Lecture Notes in Comput. Sci. 1084, Springer-Verlag, Berlin, 1996, pp. 118–131.
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1. Introduction. Computational problems in group theory have recently been
of considerable interest in computational complexity theory. One of the main reasons
for this is that the exact complexity of many of the computational problems that arise
from group theory are not exactly characterized. For example, consider the basic
problem of testing membership in matrix groups over finite fields represented by a set
of generators. No efficient algorithm is known for this problem even for the simplest
case when the group involved in the problem instance is cyclic. While no polynomial
time algorithm exists for many problems over matrix groups, it is not known whether
it is hard for NP. The associated group-theoretic structure makes reductions to
these problems difficult. Do these problems have complexity intermediate between
P and NP? The results of this paper supports this belief. It is interesting to note
that, while most of the natural problems that are not known to be in P are proved to
be NP-complete, candidates for natural problems that are of intermediate complexity
are very few. The well-known graph isomorphism problem, the problem of testing
whether two labeled graphs are isomorphic, is one such candidate.

In order to study the complexity of computational group-theoretic problems in
a generalized framework, Babai and Szemerédi [6] introduced the theory of black-
box groups. Intuitively speaking, in this framework we have an infinite family of
abstract groups. The elements of each group in the family are uniquely encoded as
strings of uniform length. The group operations (product, inverse, etc.) are assumed
to be provided by a group oracle and hence are easily computable. Black-box groups
are subgroups of groups from such a family and are presented by generator sets.
For example, matrix groups over finite fields and permutation groups presented by
generator sets can be seen as examples of black-box groups. It is shown in [6] that
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many computational problems over black-box groups, including membership testing,
are in NP.

A central problem considered in the papers of Babai and Szemerédi [6] and
Babai [4] is order verification: given a black-box group G presented by a genera-
tor set and a positive integer n, verify that |G| = n. This problem is important
because it turns out that several other problems reduce to order verification. In [4],
using randomization to compute approximate lower bounds and sophisticated group-
theoretic tools, it is shown that order verification for general black-box groups is
in AM. As a consequence, it turns out that several problems for black-box groups
are in NP ∩ co-AM. It follows that these problems cannot be NP-complete un-
less the polynomial hierarchy collapses to Σp

2 [9, 19]. These results strongly indi-
cate that these group-theoretic problems may be of intermediate complexity between
P and NP.

In order to better understand the complexity status of these problems, researchers
have taken alternative approaches. Investigating the counting complexity of these
problems is one such approach. In these investigations, the classes of interest are
counting complexity classes SPP and LWPP, defined and studied by Fenner, Fortnow,
and Kurtz [12]. These classes can be seen as structural generalizations of the class UP.
It holds that P ⊆ UP ⊆ SPP ⊆ LWPP. The classes SPP and LWPP are of low
counting complexity in the sense they do not add power to other counting classes
such as PP and C=P when used as oracles. Membership of a problem in the class
SPP or LWPP can be seen as evidence that the problem is unlikely to be hard for the
class NP. First, intuitively we can say that problems that are in SPP or LWPP are
of low counting complexity, and hence it is unlikely that these problems are NP-hard.
Second, the classes SPP and LWPP are defined by imposing strong restrictions on the
computation tree of nondeterministic Turing machines accepting languages in them.
It would be surprising if all problems in NP can be accepted by Turing machines with
such restrictions.

Köbler, Schöning, and Torán [16] studied the counting complexity of graph iso-
morphism and certain group-theoretic problems, such as group intersection, group
factorization, etc., over permutation groups. They showed that these problems are
in the counting class LWPP. Very recently, this upper bound has been improved to
SPP by Arvind and Kurur [2].

The study of the counting complexity of black-box group problems was initiated
by Arvind and Vinodchandran in [3]. There the authors study the counting complexity
of a number of problems over a large subclass of groups called solvable black-box
groups. Since solvable groups are a generalization of abelian groups, the authors first
consider problems over abelian groups. Using a constructive version of a fundamental
theorem on the structure of finite abelian groups, they show that, over abelian groups,
the problems membership testing, order verification, group isomorphism, and group
intersection are in the class SPP. They also show lowness of the problems group
factorization, coset intersection, and double-coset membership over abelian groups
for PP and C=P.

In the case of solvable groups, using a randomized algorithm for computing the
commutator series of a solvable black-box group from [5] and a constructive version
of the fundamental theorem for abelian factor groups, in order to construct a special
set of generators called the canonical generator set, the authors of [3] show that all
the above-mentioned problems are in randomized versions of SPP or LWPP. While
these randomized versions of SPP and LWPP are low for the class PP, the lowness
properties of these problems for classes such as C=P, ModkP, and other gap-definable
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counting classes were not clear from [3].
The present paper overcomes this randomization bottleneck. We show an upper

bound of SPP (and in some cases LWPP) for a whole host of problems over solvable
black-box groups. The main technical contribution of this paper is the design of a
deterministic oracle Turing machine for converting a set of generators of a solvable
group to a canonical generator set. This oracle algorithm can then be combined with
the constructions in [3] to obtain the upper bounds for various problems. In partic-
ular, we show that, over solvable black-box groups, the problems solvability testing,
membership testing, subgroup testing, normality testing, order verification, nilpo-
tence testing, group isomorphism, and group intersection are in the class SPP. We
also show that the problems group intersection, group factorization, coset intersec-
tion, and double-coset membership over solvable groups are in the class LWPP. Thus,
at least with respect to their counting complexity, problems over solvable groups may
not be harder than their counterparts over abelian groups.

The rest of the paper is organized as follows. In section 2, we give complexity-
theoretic and group-theoretic notation and definitions which are necessary for the
paper. The definition of a canonical generator set for solvable groups and results
relating to it are also given. Section 3 is devoted to the design of a deterministic
oracle algorithm, CanonicalGenerator, for computing a canonical generator set
for a solvable group from an arbitrary generator set. In section 4, we give definitions
of the computational problems that we are interested in, and we improve the up-
per bounds on the counting complexity of these problems using the algorithm given
in section 3. Finally, in section 5, we conclude the paper with some open prob-
lems.

2. Preliminaries. In this section, we give relevant definitions from complexity
theory and group theory. We also present complexity-theoretic as well as group-
theoretic techniques that we use in this paper.

2.1. Complexity theory. We refer the reader to [7, 8] for standard complexity-
theoretic definitions. Here we give only the minimal notation and definitions. We fix
the finite alphabet Σ = {0, 1}. Let A,B ⊆ Σ∗ be two languages. The language 0A∪1B
is denoted by A ⊕ B. In [12], a uniform method for defining a number of counting
classes using GapP, the class of gap-definable functions, is given. The classes that can
be defined in this manner are called gap-definable classes. Refer to [12] for details. We
give explicit definitions of only two classes, SPP and LWPP. Let GapP [12] denote
the class of gap-definable functions. A language L is in LWPP if there are functions
f ∈ GapP and h ∈ FP (h is positive) such that x ∈ L implies that f(x) = h(|x|), and
x /∈ L implies that f(x) = 0. A language L is in SPP if there is an f ∈ GapP such
that x ∈ L implies that f(x) = 1, and x /∈ L implies that f(x) = 0. It follows that
SPP ⊆ LWPP.

The concept of lowness is a well-studied notion in structural complexity theory.
Intuitively, we say that the class L is low for class C if L is powerless as an oracle to
a machine accepting languages in C. Next we give the formal definition of lowness.

Definition 2.1. Let C be any complexity class which allows natural relativization.
Then the class L is said to be low for C if for all L ∈ L, CL = C, where CL denotes
the complexity class that is obtained by relativizing C with respect to the language L.

The main interest in these classes is because of the following theorem proved in [12]
regarding their complexity. This result indicates that SPP and LWPP are counting
classes of low complexity. It is believed that those problems in SPP or LWPP cannot
be complete for NP.
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Theorem 2.2 (see [12]). The class SPP is low for all gap-definable counting
classes. The class LWPP is low for PP and C=P.

Let M be an oracle NP machine, let A ∈ NP be accepted by an NP machine N ,
and let f ∈ FP. We say that M makes f(n)-guarded queries to A if, on length n
inputs, M asks only queries y for which N(y) has either 0 or f(n) accepting paths for
each n. In this terminology, we state a weaker version of a theorem from [16] which
gives a method for proving membership of languages in the classes SPP and LWPP.

Theorem 2.3 (see [16]). Let M be a deterministic polynomial time oracle ma-
chine and let f be a polynomial time computable function. If A ∈ NP such that M
makes f(n)-guarded queries to A, then there is a polynomial q such that the func-
tion h, where h(x) = f(|x|)q(|x|) if M on input x accepts and h(x) = 0 if M on
input x rejects, is in GapP.

For proving our upper bounds we use the following corollary of the above theorem.

Corollary 2.4. Let L be a language accepted by a deterministic polynomial
time oracle machine M with queries to a language A in NP. Let f be a polynomial
time computable function.

1. If M makes 1-guarded queries to A, then L ∈ SPP.
2. If M makes f(n)-guarded queries to A, then L ∈ LWPP.

2.2. Group theory. Here we give some notation and basic definitions from
group theory. We also state some basic results. For further results and their proofs,
please refer to standard textbooks [10, 13].

Let G be a group. A subset H of G is called a subgroup of G (denoted H < G
or G > H) if H is a group under the group operation of G. For a subset S of G, the
smallest subgroup of G containing S is called the group generated by S and is denoted
by 〈S〉. This group is the same as the set of all finite products of elements from S.
A subset S of G is a generator set for G if G is identical to 〈S〉. A group G is finite
if the cardinality of the set G is finite. In this paper, we are only interested in finite
groups. Henceforth by a group we mean a finite group. The order of G is defined as
the cardinality of the set G and is denoted by |G|. A group is said to be cyclic if it is
generated by a single element. For an element g ∈ G, the order of g (denoted as o(g))
is the order of the cyclic subgroup generated by g. This is the same as the smallest
positive integer k such that gk = e (gk denotes the product of g, k times), where e
is the identity of G. Two groups G and H are said to be isomorphic if there is a
bijection (set-theoretic) φ from G to H such that for any x, y ∈ G, φ(xy) = φ(x)φ(y).
Isomorphism preserves all structural properties of groups.

A fundamental theorem in finite group theory, due to Lagrange, states that if
H < G, then |H| divides |G|. This theorem has a large number of algorithmic
applications. For example, it follows from Lagrange’s theorem that any finite group G
is generated by a set of group elements of cardinality bounded by log |G|.

Let H be a subgroup of a group G. For g ∈ G the set {hg | h ∈ H}, denoted
by Hg, is called a right coset of H in G. Similarly, the set gH = {gh | h ∈ H}
is called a left coset of H in G. H is a normal subgroup of G if for all g ∈ G it
holds that Hg = gH. A fundamental result in the theory of groups is that if H is a
normal subgroup of G, then the set of right cosets of H in G forms a group (called
the factor group or a quotient group induced by H and denoted by G/H) under the
binary operation · defined as Hx ·Hy = Hxy. The identity element of this group is
the coset He = H. For a set X ⊆ G, the normal closure of X is the smallest normal
subgroup containing X.
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Solvable groups. Here we give the definition of a solvable group and state some
properties of them. Intuitively solvable groups can be thought of as a generaliza-
tion of abelian groups. A group G is abelian if for all x, y ∈ G, xy = yx; that is,
xyx−1y−1 = e. In general, the element xyx−1y−1 is called the commutator of ele-
ments x and y in G. The subgroup of G generated by the set {xyx−1y−1 | x, y ∈ G}
is called the commutator subgroup of G. We denote this subgroup by G′. Observe
that if G is abelian, G′ is the trivial group containing only the identity element. The
commutator subgroup G′ is actually a normal subgroup of G and the factor group
G/G′ is abelian. For a group G, the sequence G = G0 > G1 > · · · is called the com-
mutator sequence, where each group Gi is the commutator subgroup of Gi−1. G is
solvable if the commutator sequence terminates in the trivial subgroup 〈e〉 in finitely
many steps. This intuitively means that any solvable group can be decomposed into
a series of abelian factor groups. Therefore understanding the structure of a solvable
group boils down to understanding the structure of the abelian factor groups involved.
Next we state a structure theorem for abelian groups which essentially states that any
abelian group can be uniquely decomposed into a set of cyclic groups. We need some
more definitions to state the theorem.

Let p be a prime. A p-group is a finite group whose order is a power of p. Let G
be finite group such that |G| = pe11 p

e2
2 . . . perr . The existence of subgroups in G which

are p-groups is given by Sylow’s theorem. That is, for each i there is a subgroup of G
of order peii . A subgroup of G of order peii is referred to as a pi-Sylow subgroup of G.

Theorem 2.5 (see [10]). Let G be a finite abelian group such that |G| =
pe11 p

e2
2 . . . perr , where the pi’s are distinct primes. The group G can be expressed as

the direct product of its Sylow subgroups S(p1), S(p2), . . . , S(pr), where |S(pi)| = peii
for 1 ≤ i ≤ r. Furthermore, for 1 ≤ i ≤ r, each Sylow subgroup S(pi) can be uniquely
expressed as the direct product of cyclic groups of orders pei1i , pei2i , . . . , p

eisi
i such that

ei1 ≥ ei2 ≥ · · · ≥ eisi and Σsi
j=1eij = ei. This decomposition of G is unique up to

isomorphism.

Solvable groups form a large subclass of all finite groups. In fact, a celebrated
result due to Fiet and Thompson says that any finite group of odd order is solvable.
Subgroups of solvable groups are solvable. It follows from Lagrange’s theorem that,
if G is solvable, then the length of the commutator sequence is bounded by log |G|.
From a computational viewpoint this fact is very useful. It also holds that two solvable
groups G and H are isomorphic if and only if the factor group Hi−1/Hi is isomorphic
to Gi−1/Gi for all i where Hi (Gi) is the ith element in the commutator series of H
(respectively, G).

We will also consider nilpotent groups. Let H1, H2 be two subgroups of G.
The mutual commutator subgroup of H1 and H2 is the group generated by the set
{xyx−1y−1 | x ∈ H1, y ∈ H2} and is denoted by [H1, H2]. Note that using this
notation the commutator subgroup G′ of G is [G,G]. The chain of subgroups G =
L0(G) > L1(G) > · · · , where Li(G) = [G,Li−1(G)], is called the lower central series
of G. G is called nilpotent if the series terminates in the trivial subgroup {e}. A
nilpotent group is also solvable.

Computational problems over black-box groups. Now we define the notion
of black-box groups.

Definition 2.6. A group family is a countable sequence B = {Bm}m≥1 of finite
groups Bm, such that there are polynomials p and q satisfying the following conditions.
For each m ≥ 1, elements of Bm are uniquely encoded as strings in Σp(m). The group
operations (inverse, product, and testing for identity) of Bm can be performed in time
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bounded by q(m) for every m ≥ 1. The order of Bm is computable in time bounded by
q(m) for each m. We refer to the groups Bm of a group family and their subgroups
(presented by generators sets) as black-box groups. A class C of finite groups is said
to be a subclass of B if every G ∈ C is a subgroup of some Bm ∈ B.

Remark. The black-box groups we consider are a somewhat restricted version
of the black-box groups introduced in [6]. The main difference is that, while we
require identity testing to be in polynomial time, they require only that it be in
nondeterministic polynomial time. This naturally places factor groups within the
framework of black-box groups. Since in [6] the authors focus on proving many
group-theoretic problems in NP, this generality does not cause additional compli-
cations. Since we are interested on certain “uniqueness” properties, we need this
restriction.

Let Sn denote the permutation group on n elements. Then {Sn}n≥1 is a group
family of all permutation groups Sn. As another example let GLn(q) denote the
group of all n× n invertible matrices over the finite field Fq of size q. The collection
GL(q) = {GLn(q)}n≥1 is a group family. The class of all solvable subgroups, {G |
G < GLn(q) for some n and G is solvable} is a subclass of GL(q).

The following decision problems which we consider in this paper are well stud-
ied in computational group theory [4, 6, 11, 16]. Let B = {Bm}m>0 be a group
family.

Solvability testing
�
= {(0m, S) | 〈S〉 < Bm and 〈S〉 is solvable}.

Membership testing
�
= {(0m, S, g) | 〈S〉 < Bm and g ∈ 〈S〉}.

Subgroup testing
�
= {(0m, S1, S2) | 〈S1〉, 〈S2〉 < Bm and 〈S1〉 is a subgroup of 〈S2〉}.

Normality testing
�
= {(0m, S1, S2) | 〈S1〉, 〈S2〉 < Bm and 〈S1〉 is a normal subgroup

of 〈S2〉}.
Nilpotence testing

�
= {(0m, S) | 〈S〉 < Bm and 〈S〉 is nilpotent}.

Order verification
�
= {(0m, S, n) | 〈S〉 < Bm and |〈S〉| = n}.

Group isomorphism
�
= {(0m, S1, S2) | 〈S1〉, 〈S2〉 < Bm and are isomorphic}.

Group intersection
�
= {(0m, S1, S2) | 〈S1〉, 〈S2〉 < Bm and 〈S1〉 ∩ 〈S2〉 
= (e)}.

Group factorization
�
= {(0m, S1, S2, g) | 〈S1〉, 〈S2〉 < Bm and g ∈ 〈S1〉〈S2〉}.

Coset intersection
�
= {(0m, S1, S2, g) | 〈S1〉, 〈S2〉 < Bm and 〈S1〉g ∩ 〈S2〉 
= ∅}.

Double coset memb
�
= {(0m, S1, S2, g, h) | 〈S1〉, 〈S2〉 < Bm and g ∈ 〈S1〉h〈S2〉}.

The problems group factorization, coset intersection, and double coset memb are
very closely related. In particular, over permutation groups these problems are Turing
equivalent to each other [15, 18]. Also the graph isomorphism problem is a special
case of double coset memb over permutation groups [14].

Group-theoretic techniques. We are interested in the counting complexity
of the problems when the groups involved are solvable. Since solvable groups are a
generalization of abelian groups, some remarks about the complexity of these problems
over abelian black-box groups are in order. For proving tight upper bounds on the
counting complexity of the above-mentioned problems over abelian groups in [3], the
authors employ a constructive version of the structure theorem (Theorem 2.5). One
of the immediate consequences of this theorem is the existence of a special generator
set, called the independent generator set, for any abelian group. To be precise, let G
be a finite abelian group. An element g ∈ G is said to be independent of a set X ⊆ G
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if 〈g〉 ∩ 〈X〉 = {e}. A generator set S of G is an independent generator set for G if
all g ∈ S is independent of S − {g}. A set of generators of the cyclic groups involved
forms an independent generator set for any abelian group. One of the very useful
properties of independent generator sets is the following. Let S be an independent
generator set for an abelian group G. Then for any g ∈ G, there exist unique indices lh
for h ∈ S; lh < o(h) such that g =

∏
h∈S h

lh . Hence membership testing in G can
be done in a 1-guarded manner if G is presented by an independent generator set.
In [3], an algorithm for converting a given generator set to an independent generator
set is given, which is used in proving the upper bounds on the counting complexity
for problems over abelian black-box groups.

For proving the upper bounds for problems over solvable black-box groups in [3],
the authors introduce a generalization of the notion of independent generator set,
called the canonical generator set for any class of finite groups. We now give the
definition of a canonical generator set. The existence of canonical generators for the
class of solvable groups is shown in [3].

Definition 2.7. Let B = {Bm}m>0 be any group family. Let C be a subclass of B.
The class of groups C has canonical generator sets if for every G ∈ C, if G < Bm,
there is an ordered set S = {g1, g2, . . . , gs} ⊆ G such that each g ∈ G can be uniquely
expressed as g = gl11 g

l2
2 . . . glss , where 0 ≤ li < o(gi), 1 ≤ i ≤ s. Furthermore, s ≤ q(m)

for a polynomial q. S is called a canonical generator set for G.

Notice that the above definition is a generalization of the definition of an in-
dependent generator set in the sense that the uniqueness property of the indices is
preserved. Define a language L as follows:

L =

{
(0m, S, g)|S ⊆ Bm, g ∈ Bm;∀h ∈ S ∃lh; 0 ≤ lh < o(h) and g =

∏
h∈S

hlh

}
.

The following proposition brings out the fact that the language L can act as a
“pseudo membership testing” in the sense that if S is a canonical generator set, then
(0m, S, g) ∈ L if and only if g ∈ 〈S〉. More importantly in this case, the NP ma-
chine Mu (given in the proposition) will have a unique accepting path for those in-
stances inside L.

Proposition 2.8. Let B = {Bm}m>0 be any group family. Then there exists an
NP machine Mu witnessing L ∈ NP with the following property. Let C be a subclass
of B which has a canonical generator set, and suppose the input to Mu satisfies the
promise that S is a canonical generator set for 〈S〉 ∈ C. Then Mu on input (0m, S, g)
will have a unique accepting path if g ∈ 〈S〉, and Mu will have no accepting path if
g /∈ 〈S〉. The behavior of Mu is unspecified if the input does not satisfy the promise.

Proof. We know that checking whether a number is prime or not is in P [1].
Using this, one can easily design an unambiguous nondeterministic polynomial time
transducer which computes the prime factorization of any number. Let M ′ be such a
machine. Now, it is easy to see that the order of any g ∈ Bm can be computed if the
prime factorization of |Bm| is given. So, Mu first computes |Bm| in polynomial time.
Then by simulating M ′, it computes the prime factorization of |Bm| and computes
the order o(h) for all h ∈ S. Now, Mu guesses indices lh such that 1 ≤ lh < o(h) and
accepts if g =

∏
h∈S h

lh and rejects otherwise. From the definition of canonical gen-
erator sets, it follows that Mu has the behavior as described in the proposition.

The next lemma shows the existence of canonical generator sets for any solvable
group.
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Lemma 2.9 (see [3, Lemma 3.4]). Let B = {Bm}m>0 be a group family such

that |Bm| ≤ 2q(m) for a polynomial q. Let G < Bm be a finite solvable group and
let G = G0 > G1 > · · · > Gk−1 > Gk = e be the commutator series of G. Let
Ti = {hi1, hi2, . . . , hisi} be a set of distinct coset representatives corresponding to an
independent set of generators for the abelian group Hi = Gi−1/Gi. Then for any i,

1 ≤ i ≤ k, the ordered set1 Si =
⋃k

j=i Tj forms a canonical generator set for the
group Gi and |Si| ≤ q(m). Thus the class of solvable groups from B has canonical
generator sets.

The basic steps implicitly involved in the upper bound proofs given in [3], for
problems over solvable black-box groups, are the following:

1. A deterministic oracle algorithm (let us call it Canonize) is developed which
takes an arbitrary set of generators for the commutator series of a solvable
black-box group as input and converts it into a canonical generator set by
making 1-guarded queries to a language in NP.

2. By carefully combining the algorithm Canonize with a randomized algo-
rithm from [5] for computing generator sets of the commutator series for
any solvable black-box group, a randomized oracle algorithm (let us call it
RandCanonicalGenerator) for converting a generator set for any solv-
able group to a canonical generator set (which makes 1-guarded queries to an
NP language) is given.

3. RandCanonicalGenerator is then easily modified to give membership of
many computational problems over solvable groups in randomized counting
classes which are low for PP.

In this paper, we avoid the randomization involved in step 2. More precisely, by
using the algorithm Canonize as a subroutine, we give a deterministic oracle algo-
rithm CanonicalGenerator (which makes 1-guarded queries to an NP language)
for converting an arbitrary generator set to a canonical generator set for any solvable
black-box group G. This will immediately give improved upper bounds on the count-
ing complexity of many problems over solvable groups. In the next section we present
the algorithm CanonicalGenerator for converting an arbitrary generator set to a
canonical generator set for any solvable group.

Since we will be using the algorithm Canonize as a subroutine in Canonical-

Generator, we describe the behavior of Canonize as a theorem. First we state a
result (Corollary 4.9 from [3]) regarding abelian factor groups which is the building-
block for Canonize.

Lemma 2.10 (see [3, Corollary 4.9]). Let B = {Bm}m>0 be a group family.
There is a deterministic oracle machine Mf that takes as input tuples (0m, X, Y ),
where X,Y ⊆ Bm are finite sets, and a language Lf ∈ NP as oracle. Let G = 〈X〉
and H = 〈Y 〉 and suppose the input (0m, X, Y ) satisfies the following properties:

1. Y is a canonical generator set for H.
2. H is a normal subgroup of G and the factor group G/H is abelian.

Then the machine outputs a list of coset representatives corresponding to an inde-
pendent generator set for G/H and also outputs |G/H|. Furthermore, it runs in time
polynomial in input length, and it makes 1-guarded queries to the NP oracle Lf . The
behavior of the machine is not specified if the input does not satisfy the properties.

The following theorem describes the behavior Canonize. The proof essentially
follows from an iterative application of the above lemma. We omit the details.

1The elements of the set
⋃k

j=i Tj are ordered on increasing values of the index j, and lexico-
graphically within each set Tj .
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Theorem 2.11. Let B = {Bm}m≥0 be a group family. Then there is a deter-
ministic oracle machine Canonize and a language L′ ∈ NP such that Canonize

takes 〈0m, S0, . . . , Sk〉, Si ⊆ Bm as input and L′ as oracle. Suppose the input satisfies
the promise that 〈S0〉 is solvable and for 0 ≤ i ≤ k, Si generates the ith commuta-
tor subgroup of 〈S0〉. Then Canonize outputs canonical generator sets for 〈Si〉 for
0 ≤ i ≤ k. Moreover, Canonize runs in time polynomial in the length of the input
and makes only 1-guarded queries to L′. The behavior of Canonize is unspecified if
the input does not satisfy the promise.

3. Computing a canonical generator set. This section is devoted to the
proof of the following theorem.

Theorem 3.1. Let B = {Bm}m≥0 be a group family. Then there is a language
Lca ∈ NP and a deterministic oracle machine CanonicalGenerator that takes
(0m, S) as input and Lca as oracle, and outputs canonical generator set for all the
groups in the commutator series of 〈S〉 if 〈S〉 is solvable and outputs NOT SOLV-
ABLE otherwise. Moreover, CanonicalGenerator runs in time polynomial in the
length of the input and makes only 1-guarded queries to Lca.

Before going into the formal proof of the theorem, we give basic ideas behind the
proof. Let S be a set of generators for a solvable group. Let 〈S〉 = G0 > · · · > Gi >
· · · > Gk = {e} be the commutator series of 〈S〉. We are interested in computing
generator sets for all Gi. The following theorem based on normal closure provides
a method for computing a generator set for the commutator subgroup of any group.
Recall that the normal closure of X ⊆ G is the smallest normal subgroup of G which
contains X.

Theorem 3.2. Let G be a finite group generated by the set S. Then the commu-
tator subgroup of G is the normal closure of the set {ghg−1h−1 | g, h ∈ S} in G.

Proof. The proof uses standard group-theoretic argument. Let N be the normal
closure of the set X = {ghg−1h−1 | g, h ∈ S} in G and let G′ be the commutator
subgroup of G. Recall that G′ = 〈{ghg−1h−1 | g, h ∈ G}〉. It is a well-known group-
theoretic fact that G′ is normal in G and G/G′ is abelian. Moreover if H is a normal
subgroup of G such that G/H is abelian, then G′ < H. Now, from the definition of
N and G′ and the fact that G′ is normal in G, it follows that N < G′. Hence to show
that N = G′, it is enough to show that G/N is abelian. First, observe that G/N
is generated by {gN | g ∈ S}. But for all g, h ∈ S, (gN)(hN)(gN)−1(hN)−1 = N .
Hence the theorem.

The above theorem gives us the following easy polynomial time oracle algorithm
CommutatorSubgroup, which takes (0m, S) as input and membership testing as
oracle and computes a generator set for the commutator group of 〈S〉.

CommutatorSubgroup(0m, S)
1 X ← {ghg−1h−1 | g, h ∈ S}
2 while ∃g ∈ S; x ∈ X such that (0m, X, gxg−1) /∈ membership testing
3 do X ← X ∪ gxg−1

4 end-while
5 Output X

Claim 3.2.1. On input (0m, S), CommutatorSubgroup runs in polynomial
time and outputs a generator set for the commutator subgroup of 〈S〉.

Proof. We can argue that CommutatorSubgroup outputs a generator set for
the commutator subgroup of 〈S〉 as follows. From Theorem 3.2, it follows that we
need a generator set for the smallest normal subgroup of 〈S〉 containing X. Moreover
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it easily follows from the definition that, in order to check whether H = 〈X〉 is
normal in G = 〈S〉, it is enough to check for all pairs g ∈ S and x ∈ X whether
gxg−1 ∈ H. The algorithm adds new elements of the form gxg−1 to X until this
condition is satisfied. Therefore the output of this algorithm generates a normal
subgroup of 〈S〉 containing X. Since all the elements added should be contained in
any normal subgroup of 〈S〉 containing X, the output generates the smallest such
normal subgroup. To argue that CommutatorSubgroup runs in polynomial time,
let Xi be the set X at the beginning of the ith iteration of the while-loop. If, after
the ith iteration, no new element is added to Xi, then Xi is output. Otherwise, if
Xi+1 = Xi ∪ {g}, it follows from Lagrange’s theorem that |〈Xi+1〉| ≥ 2|〈Xi〉|. Hence
the number of iterations of the while-loop is bounded by the polynomial p(m).

Since in the above algorithm, the queries to the membership testing oracle may
not be 1-guarded, a straightforward adaptation of the algorithm for computing a
generator set for all elements in the commutator series seems difficult. Suppose we
can make sure that whenever a query y = 〈0m, X, g〉 to membership testing is made,
X is a canonical generator set for the solvable group 〈X〉. Then from Proposition 2.8
it follows that we can replace the membership testing oracle with the NP language L
and the query y will be 1-guarded. We ensure this promise by constructing the
commutator series in stages.

Let Sj
l denote the partial generator set for the lth element in the commutator

series of G0 constructed at the beginning of stage j. At stage 1 we have S1
0 = S and

S1
i = {e} for 1 ≤ l ≤ p(m), where p is the polynomial bounding the length of any

element in the group family. Input to Stage j is the tuple 〈i, Sj
i , . . . , S

j
p(m)〉 such that

for k > i, Sj
k is a canonical generator set for the solvable group 〈Sj

k〉. At this stage,

the only oracle queries made are with generator sets Sj
k for k > i and, in particular,

will not involve Sj
i . This allows us to make only queries that are 1-guarded. At the

end of the stage, we update each Sj
l to Sj+1

l such that Sj+1
l is still a subgroup of Gl,

the lth commutator subgroup of G0. To keep the running time within polynomial
bound, we make sure that after p(m) stages, there exists k, such that the kth partial
commutator subgroup doubles in size. Then from Lagrange’s theorem, it will follow
that the commutator series will be generated after p3(m) stages. We now formally
prove the theorem.

Proof of Theorem 3.1. We will first give the formal description of the algorithm
CanonicalGenerator and then prove the correctness.

CanonicalGenerator uses oracle algorithms CheckCommutator and Can-

onize as subroutines. CheckCommutator takes as input (0m, X, Y ) such that
X,Y ⊆ Bm and checks whether 〈Y 〉 contains the commutator subgroup of 〈X〉. This
is done by first checking whether the commutators of all the elements in X are in 〈Y 〉.
If this is not the case, the algorithm returns a commutator not in 〈Y 〉. Otherwise,
it further checks whether 〈Y 〉 is normal in 〈X〉. Notice that to do this it is enough
to verify that for all x ∈ X and y ∈ Y , xyx−1 ∈ 〈Y 〉. If this condition is false, the
algorithm returns an element xyx−1 /∈ 〈Y 〉. If both the conditions are true, it follows
from Theorem 3.2 that 〈Y 〉 contains the commutator subgroup of 〈X〉.

CheckCommutator makes oracle queries to the language L (defined in the
previous section) for testing membership in 〈Y 〉. It should be noted that, for Check-

Commutator to work as intended, Y should be a canonical generator set for the
group 〈Y 〉. Also the definition of normality requires 〈Y 〉 < 〈X〉. We will make sure
that CanonicalGenerator makes calls to CheckCommutator with (0m, X, Y )
as input only when Y is a canonical generator set for the solvable group 〈Y 〉 and
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〈Y 〉 < 〈X〉. A formal description of the subroutine CheckCommutator is given
below.

CheckCommutator(0m, X, Y )
1 if ∃x1, x2 ∈ X, such that (0m, Y, x1x2x

−1
1 x−1

2 ) /∈ L
2 then g ← x1x2x

−1
1 x−1

2

3 Return g
4 else if ∃x ∈ X, y ∈ Y such that (0m, Y, xyx−1) /∈ L
5 then g ← xyx−1

6 Return g
7 else g ← YES
8 Return g
9 end-if

10 end-if

The subroutine Canonize is the algorithm promised by Theorem 2.11 for com-
puting a canonical generator set for a solvable black-box group G, given an arbitrary
generator set for the commutator series of G. Canonize makes 1-guarded queries
to the NP language L′ if the input satisfies the promise given in Theorem 2.11. For
0 ≤ k ≤ l ≤ p(m), let [Canonize(Sj

k, . . . , S
j
p(m))]l denote the generator set produced

by Canonize for the group 〈Sj
l 〉.

The following is the description of the algorithm CanonicalGenerator. Define
the language Lca as Lca = L′ ⊕ L. Notice that the oracle access to Lca is implicit in
the description. That is, CanonicalGenerator queries L′ through the subroutine
Canonize and L through CheckCommutator.

CanonicalGenerator(0m, S)
1 S1

0 ← S; S1
i ← {e} for 1 ≤ i ≤ p(m)

2 i← 0
3 j ← 1
4 Stage j (Input to this stage is 〈i, Sj

i , . . . , S
j
p(m)〉)

5 k ← i
6 g ← CheckCommutator(0m, Sj

k, S
j
k+1)

7 while g 
= YES
8 do Sj

k+1 ← Sj
k+1 ∪ {g}

9 k ← k + 1
10 if k = p(m)
11 then Output NOT SOLVABLE
12 end-if
13 g ← CheckCommutator(0m, Sj

k, S
j
k+1)

14 end-while
15 if k = 0
16 then Output [Canonize(Sj

0, S
j
1, . . . , S

j
p(m))]l for all 0 ≤ l ≤ p(m)

17 else Sj+1
l ← Sj

l for 1 ≤ l ≤ (k − 1)

18 Sj+1
l ← [Canonize(Sj

k, S
j
k+1, . . . , S

j
p(m))]l for k ≤ l ≤ p(m)

19 i← (k − 1)
20 goto Stage j + 1
21 end-if

Now we are ready to prove the correctness of CanonicalGenerator. We first
prove a series of claims, from which the correctness will follow easily.
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Claim 3.2.2. In the algorithm CanonicalGenerator, at any stage j, it holds
that for all i, 1 ≤ i < p(m), 〈Sj

i+1〉 < 〈Sj
i 〉′.

Proof. We prove this by induction on the stages. For the base case, when j = 0,
it is clear that the claim holds. Assume that it is true for the (j − 1)th stage. Now
consider Sj

i+1 and Sj
i . Depending on how the sets Sj

i+1 and Sj
i are updated in lines

17 and 18 of CanonicalGenerator, we have the following cases.

Case 1. Sj
i = Sj−1

i ; Sj
i+1 = Sj−1

i+1 . In this case, from the induction hypothesis, it

is clear that 〈Sj
i+1〉 < 〈Sj

i 〉′.
Case 2. Sj

i = Sj−1
i ∪{gi}; Sj

i+1 = Sj−1
i+1 . From the induction hypothesis, it follows

that 〈Sj
i+1〉 = 〈Sj−1

i+1 〉 < 〈Sj−1
i 〉′ < 〈Sj

i 〉′.
Case 3. Sj

i = Sj−1
i ; Sj

i+1 = Sj−1
i+1 ∪ {gi+1}. The element gi+1 is added to the set

Sj−1
i+1 at line 8 of the algorithm, where gi+1 is the element returned by the subroutine

CheckCommutator. Suppose gi+1 is a commutator of the set Sj
i = Sj−1

i . Then

gi+1 = xyx−1y−1 for some elements x, y ∈ Sj
i . From induction hypothesis we have

that 〈Sj−1
i+1 〉 < 〈Sj−1

i 〉′ = 〈Sj
i 〉′. Also gi+1 ∈ 〈Sj

i 〉′ since gi+1 is a commutator of Sj
i .

Therefore 〈Sj
i+1〉 = 〈Sj−1

i+1 ∪{gi+1}〉 < 〈Sj
i 〉′. On the other hand, suppose gi+1 is of the

form xyx−1 for some x ∈ Sj
i = Sj−1

i and y ∈ Sj−1
i+1 . We have 〈Sj−1

i+1 〉 < 〈Sj−1
i 〉′ = 〈Sj

i 〉′.
But we know that 〈Sj

i 〉′ is normal in 〈Sj
i 〉. So, in particular gi+1 ∈ 〈Sj

i 〉′. Therefore

in this case also 〈Sj
i+1〉 = 〈Sj−1

i+1 ∪ {gi+1}〉 < 〈Sj
i 〉′.

Case 4. Sj
i = Sj−1

i ∪ {gi}; Sj
i+1 = Sj−1

i+1 ∪ {gi+1}. From induction hypothesis, we

have 〈Sj−1
i+1 〉 < 〈Sj−1

i 〉′. It follows that 〈Sj−1
i+1 〉 < 〈Sj−1

i ∪ {gi}〉′ = 〈Sj
i 〉′. Now we are

in the same situation as in Case 3, and using an argument identical to that of Case 3
we have 〈Sj

i+1〉 < 〈Sj
i 〉′.

Hence the claim.

Claim 3.2.3. In CanonicalGenerator, the input 〈i, Sj
i , S

j
i+1, . . . , S

j
p(m)〉 to

any stage j is such that for all i < t ≤ p(m), Sj
t is a canonical generator for the

solvable group 〈Sj
t 〉.

Proof. We prove this by induction. For j = 1, it is easily verified that the claim
is true. Let us assume that the claim is true for the jth stage. Let 〈i, Sj

i , . . . , S
j
p(m)〉

be the input to the jth stage. Suppose the while-loop is exited through line 14
after l iterations with the value of g = YES. (If the loop is exited through line 11,
then there are no more stages to be considered.) Then the value of k = i + l, and
for t > k, Sj

t is not updated inside the loop, and hence by induction hypothesis it
remains a canonical generator set for the solvable group 〈Sj

t 〉. Since the value of
g = CheckCommutator(0m, Sj

k, S
j
k+1) is YES we have that 〈Sj

k〉′ < 〈Sj
k+1〉. From

Claim 3.2.2 we have 〈Sj
k+1〉 < 〈Sj

k〉′. Hence 〈Sj
k+1〉 = 〈Sj

k〉′. It follows that 〈Sj
k〉 is

solvable and Sj
t for k ≤ t ≤ p(m) are generator sets for the commutator series of 〈Sj

k〉.
Hence at line 18, Canonize will output a canonical generator set for each of the
elements in the commutator series of 〈Sj

k〉. At line 19, i is updated to k − 1, and the

input to the j + 1th stage is 〈k− 1, Sj+1
k−1, S

j+1
k , . . . , Sj+1

p(m)〉, where Sj+1
t is a canonical

generator set for the solvable group 〈Sj+1
t 〉 for k ≤ t ≤ p(m). Hence the claim.2

Claim 3.2.4. In the algorithm CanonicalGenerator, for any stage j, it holds

that ∃i such that |〈Sj+p(m)
i 〉| ≥ 2|〈Sj

i 〉| if stage j + p(m) exists.

2Technically, one should establish Claims 3.2.2 and 3.2.3 together. We separated them for clarity
of presentation.
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Proof. Notice that if the algorithm at stage j enters the while-loop, then ∃i such
that Sj+1

i = Sj
i ∪ g for a g /∈ 〈Sj

i 〉, and the claim follows from Lagrange’s theorem.
So, it is enough to show that the while-loop is entered at least once after every p(m)
stages, if such a stage exists. Suppose the stage j is entered with the value of i = i′.
Note that in a stage where the algorithm does not enter the while-loop, the variable k
remains at i. So if the algorithm never enters the while-loop in the next p(m) stages,
at stage (j + p(m) + 1), the value of k = i = i′ − (p(m) + 1) < 0 for all i′ ≤ p(m).
But when k = 0 (line 15) the algorithm stops. Therefore it is not possible that k < 0.
Hence the claim.

To complete the proof of the theorem, first we shall see that the algorithm Canon-

icalGenerator runs in time polynomial in the length of the input. Observe that it
is enough to show that the number of stages executed by the algorithm is bounded
by a polynomial, since the number of iterations of the while-loop in lines 7–14 is
bounded by p(m). Now, the claim is that the number of stages executed by the algo-
rithm is bounded by 2p3(m). First, notice that for any H < Bm, |H| ≤ 2p(m). Hence

for any j,
∏p(m)

i=1 |〈Sj
i 〉| ≤ 2p

2(m). Suppose the claim is false. Now from Claim 3.2.4 it

follows that
∏p(m)

i=1 |〈Sj+p(m)
i 〉| ≥ 2

∏p(m)
i=1 |〈Sj

i 〉|. Hence
∏p(m)

i=1 |〈S2p3(m)
i 〉| > 2p

2(m), a
contradiction.

Now we shall see that CanonicalGenerator makes only 1-guarded queries to
Lca, where Lca = L′⊕L. Let us first see that the queries to L through CheckCommu-

tator are 1-guarded. It is enough to show that whenever CanonicalGenerator

calls CheckCommutator with argument (0m, Sj
k, S

j
k+1) in stage j, Sj

k+1 is a canon-

ical generator set. But from Claim 3.2.3, the input 〈i, Sj
i , S

j
i+1, . . . , S

j
p(m)〉 to any

stage j is such that for all i < t ≤ p(m), Sj
t is a canonical generator for the solvable

group 〈Sj
t 〉. In this stage CanonicalGenerator calls CheckCommutator only

with argument (0m, Sj
k, S

j
k+1) for k ≥ i. Since Sj

k+1 for k ≥ i is a canonical generator
set, the queries made to L will be 1-guarded.

To see that the queries to L′ through Canonize are 1-guarded, notice that calls
to Canonize are made outside the while-loop. This means that CheckCommu-

tator with input (0m, Sj
k, S

j
k+1) returns YES. That is, 〈Sj

k〉′ < 〈Sj
k+1〉. Hence

〈Sj
k〉′ = 〈Sj

k+1〉 from Claim 3.2.2. So it follows that calls to Canonize with argument
(Sj

i , S
j
i+1, . . . , S

j
p(m)) will be such that Sj

l for i ≤ l ≤ p(m) will generate the commu-

tator series of Sj
i for all i. It follows from Theorem 2.11 that queries to L′ will be

1-guarded.
Finally, we show that the above algorithm on input (0m, S) outputs a canonical

generator set for the group G = 〈S〉 if G is solvable and outputs NOT SOLVABLE
otherwise. Now, observe that if H1 < H2 are two finite groups, H ′

1 < H ′
2. Hence it

follows from Claim 3.2.2 that 〈Sj
i 〉 < Gi for any i at any stage j, where Gi is the ith

element in the commutator series of G. We know that after the execution of 2p3(m)
stages, the algorithm outputs either a set X ⊆ Bm or NOT SOLVABLE. Suppose
it outputs NOT SOLVABLE in stage j. This happens after the value of the variable
inside the while-loop is assigned p(m). From line 8 of the algorithm it follows that
Sj
p(m) 
= {e}. But if G where solvable, then we know that Gp(m) = {e}, and since

〈Sj
p(m)〉 < Gp(m) from Claim 3.2.2, we have a contradiction.

Suppose the algorithm outputs a set X ⊆ Bm at line 16 in stage j. Thus the
value of the variable k is 0. Notice that inside the while-loop, the value of k is
only incremented. This implies that at stage j the while-loop is not entered (the
value of i could not have become 0 at a previous stage). So input to stage j is
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〈0, Sj
0, . . . , S

j
p(m)〉. From Claim 3.2.3, it follows that for all 1 ≤ t ≤ p(m), 〈Sj

t 〉 is

solvable and Sj
t is a canonical generator set for the group 〈Sj

t 〉. From the value of
g = YES and Claim 3.2.2, it follows that 〈Sj

1〉′ = 〈Sj
2〉. Also, since Sj

0 = S for

any stage j, it follows that Sj
i generates the ith element in the commutator series of

〈S〉 = G. Hence, from Theorem 2.11, it follows that [Canonize(Sj
1, . . . , S

j
p(m))]l is a

canonical generator set for Gl. Hence the theorem.

4. Applications to computational problems. In this section we will use
the algorithm CanonicalGenerator to prove upper bounds on the complexity of
computational problems over solvable black-box groups that we defined in section 2.

Theorem 4.1. Over any group family, solvability testing is in SPP and hence
low for all gap-definable counting classes.

Proof. We can easily modify CanonicalGenerator to get an oracle machine
which makes only 1-guarded queries to an NP oracle to test whether the input group
is solvable or not. Now applying Corollary 2.4 we get that solvability testing is in
SPP.

Remark. In [5], a co-RP algorithm is given for solvability testing. While this
upper bound gives lowness for PP [17], it does not show lowness for other gap-definable
counting classes.

In view of the above theorem and the fact that PSPP = SPP, for all the problems
that we consider here, we assume without loss of generality that the groups encoded
in the problem instances are solvable.

Theorem 4.2. Over any group family, membership testing for the subclass of
solvable groups is in SPP and hence low for all gap-definable counting classes.

Proof. A direct application of Theorem 3.1, Proposition 2.8, and Corollary 2.4
shows that membership testing over solvable groups is in SPP.

Theorem 4.3. Over any group family, subgroup testing for the subclass of solv-
able groups is in SPP and hence low for all gap-definable counting classes.

Proof. Let S1 and S2 be generator sets for groups G1 and G2. Then G1 is a
subgroup of G2 if and only if for all g ∈ S1, g ∈ 〈S2〉. This testing can be done in
PSPP since membership testing is in SPP. Since PSPP = SPP, it follows that subgroup
testing is in SPP.

Theorem 4.4. Over any group family, normality testing for the subclass of
solvable groups is in SPP and hence low for all gap-definable counting classes.

Proof. Let S1 and S2 be generator sets for groups G1 and G2. In order to check
whether G2 is normal in G1 it is enough to check for pairs g1 ∈ S1 and g2 ∈ S2

whether g1g2g
−1
1 ∈ G2. This can be done in PSPP since membership testing is in

SPP. Since PSPP = SPP, it follows that normality testing is in SPP.

We have seen that checking whether a group is solvable or not is in SPP. Using
this result we can design an SPP algorithm for testing whether a group is nilpotent
or not. We need the following generalization of Theorem 3.2. We omit the proof of
this group-theoretic result.

Theorem 4.5. Let G be a group and let H1 and H2 be normal subgroups of G
generated by S1 and S2. Then the mutual commutator subgroup [H1, H2] is the normal
closure of the set {g1g2g−1

1 g−1
2 | g1 ∈ S1, g2 ∈ S2}.

Using this result we can design an oracle algorithm for computing a generator set
for the mutual commutator subgroup for a given pair of groups. The following is the
subroutine for computing a generator set for the mutual commutator subgroup. We
will be interested in the case when the groups involved are solvable. This subroutine
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will use membership testing, normality testing, and solvability testing as oracles.

MutualCommutator(0m, S, S1, S2)
1 if 〈S〉 or 〈S1〉 or 〈S2〉 not Solvable
2 then Output NA
3 if 〈S1〉 is not Normal in 〈S〉 or 〈S2〉 is not Normal in 〈S〉
4 then Output NA
5 X ← {ghg−1h−1 | g ∈ S1, h ∈ S2}
6 while ∃g ∈ S; x ∈ X such that (0m, X, gxg−1) /∈ membership testing
7 do X ← X ∪ gxg−1

8 end-while
9 Output X

Theorem 4.6. Over any group family, nilpotence testing is in SPP and hence
low for all gap-definable counting classes.

Proof. We can use the subroutine MutualCommutator for designing the fol-
lowing PSPP algorithm for nilpotence testing.

NilpotenceTester(0m, S)
1 if 〈S〉 is not Solvable
2 then Output NOT NILPOTENT
3 L0 ← S
4 for i = 1 to p(m)
5 do Li ←MutualCommutator(0m, S, S, Li−1)
6 if 〈Li〉 = 〈Li−1〉 
= {e}
7 then Output NOT NILPOTENT
8 end-for
9 Output NILPOTENT

The above algorithm first tests whether the group is solvable. Since any nilpotent
groups is also solvable, in the remaining computation we need only worry about groups
which are solvable. Hence we can use any of the problems that we have already shown
to be in SPP as oracles. The algorithm essentially computes the lower central series
of the group. If the lower central series is not terminating, then for some i between
1 and p(m) (where p is the polynomial bounding the size of Bm in the definition of
the group family) the mutual commutator subgroups Li and Li−1 must be equal and
nontrivial for some i. This is tested in line 6. Note that testing whether two solvable
groups are equal can be done with two queries to the subgroup testing oracle which
we have shown to be in SPP. Hence the overall algorithm is a PSPP algorithm which
can be converted into an SPP algorithm.

Theorem 4.7. Over any group family, order verification for the subclass of
solvable groups is in SPP and hence low for all gap-definable counting classes.

Proof. Let S be the generator for a solvable group G. Let the sequence G =
G0 > G1 > · · · > Gk = {e} be the commutator sequence of G. Then we have |G| =∏k

i=1 |
Gi−1

Gi
|. Consider an oracle machine Mo which uses oracle Lo as follows. Mo first

simulated CanonicalGenerator to construct a canonical generator set for G. Then
it simulates the oracle algorithm Mf provided in Lemma 2.10 to compute |Gi−1

Gi
| for

each i using the canonical generator forGi−1 andGi. Finally, it computes
∏k

i=1 |
Gi−1

Gi
|.

The oracle Lo is the disjoint union of the NP oracles used by CanonicalGenerator

and Mf . CanonicalGenerator makes only 1-guarded queries. Also since inputs
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to Mf are canonical generator sets, Mf makes only 1-guarded queries. Therefore Mo

makes only 1-guarded queries to Lo. Hence by Corollary 2.4, order verification for
the subclass of solvable groups is in SPP.

Theorem 4.8. Over any group family, group isomorphism for the subclass of
solvable groups is in SPP and hence low for all gap-definable counting classes.

Proof. We know that two solvable groups G and H are isomorphic if and only if
the factor group Hi−1/Hi is isomorphic to Gi−1/Gi for all i where Hi (Gi) is the ith
element in the commutator series of H (respectively, G). Isomorphism among abelian
groups can be tested by computing the orders of the elements in the independent
generators. Two abelian groups are isomorphic if the orders of the elements in their
independent generators (arranged in some fixed order, say ascending) are the same.
This suggests the following oracle algorithm Mis for testing isomorphism. Mis uses a
language Lis ∈ NP as oracle.

Let S1 and S2 be the generator sets for solvable groups G and H. Mis first
computes canonical generator sets for both G and H using CanonicalGenerator.
Then it simulates the oracle algorithm Mf provided in Lemma 2.10 to compute inde-
pendent generators sets for the abelian factor groups Hi−1/Hi and Gi−1/Gi for all i.
For each of these groups it computes the orders of all the elements in the independent
generator set, say by using Mf . Then it compares whether the orders of the elements
of the independent generator of Hi−1/Hi is the same as orders of the elements of the
independent generator of Gi−1/Gi for all i to decide whether G and H are isomorphic.
The oracle Lis is the disjoint union of the NP oracles used by CanonicalGenerator

and Mf . CanonicalGenerator makes only 1-guarded queries. Also since inputs
to Mf are canonical generator sets, Mf makes only 1-guarded queries. Therefore Mis

makes only 1-guarded queries to Lis. Hence by Corollary 2.4, group isomorphism for
the subclass of solvable groups are in SPP.

For proving upper bound for group intersection, we need a result from [3], which
we state next as a lemma.

Lemma 4.9 (see [3, Lemma 5.7]). Let B = {Bm}m>0 be a group family. There
is a deterministic polynomial time oracle machine M that takes (0m, X, Y, Z,K) as
input. Let G = 〈X〉 and H = 〈Y 〉. Suppose the input has the following properties:

1. G and H are solvable groups.
2. X and Y are canonical generator sets for G and H, respectively.
3. Z is a canonical generator set for G′ the commutator subgroup for G.
4. The number K is |G′ ∩H|.

Then the machine M outputs |G ∩ H|. Furthermore, M makes |Bm|-guarded
queries to an NP language A and 1-guarded queries to another NP language B. The
behavior of machine M is not specified for inputs that does not satisfy the above
properties.

Theorem 4.10. Over any group family, group intersection for the subclass of
solvable groups is in LWPP and hence low for the classes PP and C=P.

Proof. Let S1 and S2 be the generator sets for solvable groups G and H. We
will design an oracle algorithm Mint which first computes canonical generator sets
for all the groups in the commutator series of both G and H, and then uses the
machine M from the above result inductively to compute G ∩ H as follows. Let
G = G0 > G1 > · · · > Gk−1 > Gk = 〈e〉 be the commutator series for G. To begin
with, Gk−1 is abelian, and we have an independent generator set for it. Applying the
algorithm M of Lemma 4.9 to the groups Gk−1 and H, with Z = {e} and K = 1,
Mint can compute |Gk−1∩H|. Now, M can be used inductively to compute |Gi−1∩H|
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given canonical generator sets for Gi and H as well as the number |Gi∩H| for each i.
Since all the generator sets that input toM are canonical generator sets, it is clear that
Mint makes only |Bm|-guarded and 1-guarded queries. Also by standard techniques,
1-guarded queries can be made |Bm|-guarded. Now applying Corollary 2.4 we get
that group intersection is in LWPP.

Finally we show that group factorization, coset intersection, and double coset
memb for solvable groups are also in LWPP.

Theorem 4.11. Over any group family, the problems group factorization, coset
intersection, and double coset memb for the subclass of solvable groups are in LWPP
and hence low for the classes PP and C=P.

Proof. We give proof for group factorization. Proofs for the other two problems
are very similar and are omitted. Let B = {Bm}m≥1 be a group family with elements
of Bm uniquely encoded as strings in Σp(m) for a polynomial p. Consider the following
NP machine R, which takes 〈0m, S1, S2, g,K〉 as input, where S1 and S2 are the
generator sets for two groups, g is an element of Bm, and K divides |Bm|.

R(0m, S1, S2, g,K)
1 Verify that K divides |Bm|;
2 Guess w ∈ Σp(m);
3 Verify that w ∈ 〈S1〉 and w−1g ∈ 〈S2〉;
4 Branch into |Bm|/K paths and accept on each of them.

We are interested in the behavior of this machine only when the following condi-
tions are satisfied: S1 and S2 are canonical generator sets for two solvable groups G
and H, and K = |G ∩H|. Line 3 of this algorithm can be implemented by simulat-
ing Mu in Proposition 2.8.

Machine R accepts the input if and only if (0m, S1, S2, g) is a positive instance of
group factorization. This is because g ∈ GH if and only if there exists a w such that

w ∈ G and w−1g ∈ H. Moreover, in this case R will have |Bm|
K ∗ |G ∩H| accepting

paths since there will be exactly |G∩H| elements w satisfying w ∈ G and w−1g ∈ H.
Now consider an oracle machine Mgf which on input (0m, S1, S2, g) as input, first
computes canonical generator sets for G and H using CanonicalGenerator, then
computes |G ∩ H| using the machine Mint, and then queries the language accepted
by R the string (0m, S1, S2, g, |G∩H|). It is clear that Mgf only makes |Bm|-guarded
and 1-guarded queries. 1-guarded queries can be made |Bm|-guarded using standard
techniques. Therefore, applying Corollary 2.4, we have that group factorization is in
LWPP.

5. Conclusion and open problems. In this paper we investigated the com-
plexity of many computational group-theoretic problems over solvable black-box
groups. All the problems considered are computationally difficult: there is no known
polynomial time algorithm for any of them. But it is also not known whether they
are hard for NP. We showed that these problems over solvable black-box groups are
in the counting class SPP or LWPP. The SPP upper bound implies that they will not
provide additional power as oracles to counting classes such as PP, C=P, and ModkP.
The upper bound of LWPP implies that problems will not provide additional power
as oracles to counting classes such as PP and C=P. These upper bounds support the
belief that the problems considered are unlikely to be hard for NP. Another impor-
tant aspect of the results is that they provide more examples of natural problems in
SPP and LWPP which are not known to be in P.
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There is one major open question that arises from this investigation: extend the
above upper bound to problems defined over a general black-box group. We believe
that the problems we considered here are in SPP even over general black-box groups.
The methods we used for solvable groups will not extend for the general case. We feel
that new methods based on classification theorems about finite simple groups may
be required for the proof of this. A more general question is to show membership of
other natural problems in the counting complexity classes like SPP or LWPP.
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[6] L. Babai and M. Szemerédi, On the complexity of matrix group problems I, in Proceedings of
the 25th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1984, pp. 229–240.

[7] J. L. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity. I, Springer-Verlag, Berlin,
Hiedelberg, 1988.
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Abstract. We consider broadcasting in radio networks, modeled as undirected graphs, whose
nodes know only their own label and labels of their neighbors. In every step every node acts either as
a transmitter or as a receiver. A node acting as a transmitter sends a message which can potentially
reach all of its neighbors. A node acting as a receiver in a given step gets a message if and only if
exactly one of its neighbors transmits in this step.

Bar-Yehuda, Goldreich, and Itai [J. Comput. System Sci., 45 (1992), pp. 104–126] considered
broadcasting in this model. They claimed a linear lower bound on the time of deterministic broad-
casting in such radio networks of diameter 3. This claim turns out to be incorrect in this model
(although it is valid in a more pessimistic model [R. Bar-Yehuda, O. Goldreich, and A. Itai, Errata
Regarding “On the time complexity of broadcast in radio networks: An exponential gap between
determinism and randomization,” http://www.wisdom.weizmann.ac.il/mathusers/oded/p bgi.html,
2002]). We construct an algorithm that broadcasts in logarithmic time on all graphs from the Bar-
Yehuda, Goldreich, and Itai paper (BGI). Moreover, we show how to broadcast in sublinear time
on all n-node graphs of diameter o(log logn). On the other hand, we construct a class of graphs of
diameter 4, such that every broadcasting algorithm requires time Ω( 4

√
n) on these graphs. In view

of the randomized algorithm from BGI, running in expected time O(D logn + log2 n) on all n-node
graphs of diameter D (cf. also a recent O(D log(n/D) + log2 n)-time algorithm from [D. Kowalski
and A. Pelc, Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Com-
puting, Boston, 2003, pp. 73–82; A. Czumaj and W. Rytter, Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, Cambridge, MA, 2003, pp. 492–501]), our lower
bound gives the first correct proof of an exponential gap between determinism and randomization in
the time of radio broadcasting, under the considered model of radio communication.
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1. Introduction. A radio network is modeled as an undirected connected graph
whose nodes are transmitter-receiver devices. An edge e between two nodes means
that the transmitter of one end of e can reach the other end. Nodes send messages in
synchronous steps (time slots), measured by a global clock which indicates the current
step number. In every step every node acts either as a transmitter or as a receiver.
A node acting as a transmitter sends a message which can potentially reach all of its
neighbors. A node acting as a receiver in a given step gets a message if and only if
exactly one of its neighbors transmits in this step. The message received in this case is
the one that was transmitted. If at least two neighbors of u transmit simultaneously
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in a given step, none of the messages is received by u in this step. In this case we say
that a collision occurred at u. It is assumed that the effect at node u of more than
one of its neighbors transmitting is the same as that of no neighbor transmitting (i.e.,
a node cannot distinguish a collision from silence). We assume that nodes know only
their own label and the labels of their neighbors. Apart from that, the only a priori
information on the network available to nodes is a polynomial upper bound on the
number of nodes.

One of the fundamental tasks in network communication is broadcasting. Its goal
is to transmit a message from one node of the network, called the source, to all other
nodes. Remote nodes get the source message via intermediate nodes, along paths in
the network. In this paper we concentrate on one of the most important and widely
studied performance parameters of a broadcasting scheme, which is the total time—
that is, the number of steps it uses to inform all the nodes of the network. We measure
complexity in terms of the number of nodes in the network.

1.1. Our results. In a seminal paper [3], Bar-Yehuda, Goldreich, and Itai con-
sidered broadcasting in radio networks in the model described above. They claimed a
linear lower bound on the time of deterministic broadcasting in such radio networks
of diameter 3. This claim turns out to be incorrect, although it is valid in a more pes-
simistic model [4]. In fact, as pointed out in [4], the error is due to a gap between two
models handling collisions in radio broadcasting: that from [3] and a more pessimistic
but equally reasonable one. (See more comments on this point in subsection 1.2.) As
discussed below, a lot of work on radio broadcasting has been done following [3], most
of it modeling collisions as in [3].

Using the same model as in [3], we construct an algorithm that broadcasts in log-
arithmic time on all graphs from [3]. Moreover, we show how to broadcast in sublinear
time on all n-node graphs of diameter o(log log n). On the other hand, we construct
a class of graphs of diameter 4, such that every broadcasting algorithm requires time
Ω( 4
√
n) on one of these graphs. In view of the randomized algorithm from [3] running

in expected time O(D log n + log2 n) on all n-node graphs of diameter D (cf. also a
recent O(D log(n/D) + log2 n)-time algorithm from [23, 15]), our lower bound gives
the first correct proof of an exponential gap between determinism and randomization
in the time of radio broadcasting, in the model from [3].

1.2. Related work. Most of the results concerning broadcasting in radio net-
works can be divided into two parts: those which assume complete knowledge of the
topology of the network at all nodes, or equivalently, dealing with centralized broad-
casting for a given network, and those assuming only limited knowledge of the network
at all nodes and dealing with distributed broadcasting in arbitrary networks.

Deterministic centralized broadcasting assuming complete knowledge of the net-
work was first considered in [10], where a O(D log2 n)-time broadcasting algorithm
was given for all n-node networks of diameter D. In [18], O(D + log5 n)-time broad-
casting was proposed. On the other hand, in [1] the authors proved the existence
of a family of n-node networks of radius 2, for which any broadcast requires time
Ω(log2 n).

The study of deterministic distributed broadcasting in radio networks whose nodes
have only limited knowledge of the topology was initiated in [3]. The authors assumed
that nodes know only their own label and the labels of their neighbors (and that
collision at a node has the same effect as silence). Under this scenario, a simple
O(n)-time broadcasting algorithm based on depth-first search (DFS) follows from [2].
In [3] the authors constructed a class of n-node graphs of diameter 3, and claimed
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that every broadcasting algorithm requires time Ω(n) on one of these graphs. In [19]
this claim was further strengthened to a lower bound of n − 1 on broadcasting time
required on one of these graphs. It follows from the present paper that both these
claims (concerning lower bounds) are incorrect.

As pointed out in [4], the linear lower bound from [3] is valid in a more pessimistic
model than that of [3]. Namely, one could assume that in the case of a collision at u the
effect can be either the same as if no neighbor of u transmitted or the same as if any
single neighbor of u transmitted, the choice of the effect being left to the adversary.
That is, either noise caused by many transmitting neighbors may be undistinguishable
from background noise or else one of the competing neighbors may prevail, and it is
impossible to predict which situation occurs for a given collision. For this model,
which seems equally reasonable to that from [3], the argument and the linear lower
bound of [3] are valid (cf. [4]). In fact, as explained in [4], the error in [3] is due to
the gap between these two models.

Many authors [5, 7, 8, 9, 11, 12, 13, 14, 16, 26] studied deterministic distributed
broadcasting in radio networks under the even weaker assumption that nodes know
only their own label (but do not know the labels of their neighbors). In all these
papers the collision issue was modeled as in [3]. In [11] the authors gave a broadcasting
algorithm working in time O(n) for arbitrary n-node networks, assuming that nodes
can transmit spontaneously before getting the source message. It was shown in [24]
that if nodes know only their own label, the argument from [3] can be modified to
prove a lower bound Ω(n) on broadcasting time for networks of radius 2. Thus the
algorithm from [11] is optimal.

In [11, 12, 13, 14, 16, 26] the model of directed graphs was used. Increasingly faster
broadcasting algorithms working on arbitrary n-node (directed) radio networks were
constructed, culminating with the O(n log2 n)-time algorithm from [13]. Recently, a
O(n log n logD)-time broadcasting algorithm was shown in [22] for n-node networks of
radiusD. This was further improved toO(n log2D) in [15]. In [14] the authors showed
a lower bound Ω(n logD) on broadcasting time for n-node networks of radius D. On
the other hand, in [5, 7, 8, 9, 12, 14] the problem was to find efficient broadcasting
algorithms on radio networks of maximum in-degree ∆.

Finally, randomized broadcasting algorithms in radio networks were studied, e.g.,
in [3, 15, 25, 23]. For these algorithms no topological knowledge of the network was
assumed. In [3] the authors showed a randomized broadcasting algorithm running
in expected time O(D log n + log2 n). A faster algorithm, running in expected time
O(D log(n/D)+ log2 n) was presented in [23] (see also [15]). In [25] it was shown that
for any randomized broadcasting algorithm (and parameters D ≤ n), there exists an
n-node network of diameter D requiring expected time Ω(D log(n/D)). It should be
noted that the lower bound Ω(log2 n) from [1], for some networks of radius 2, holds for
randomized algorithms as well. This shows that the algorithm from [23] is optimal.

1.3. Organization of the paper. In section 2 we summarize the communi-
cation model (taken from [3]) and the terminology used in this paper. Section 3 is
devoted to showing a logarithmic broadcasting algorithm for the class of networks
for which a linear lower bound was claimed in [3]. In this section we first describe
the novel Procedure Echo, which is later used for more complicated algorithms. In
section 4 we describe and analyze a broadcasting algorithm working in sublinear time
on all shallow networks. This indicates that if a linear lower bound on broadcasting
time can at all be proved (for networks of sublinear diameter), then it requires the
construction of quite complicated networks. Section 5 is devoted to the proof of the
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lower bound Ω( 4
√
n) on broadcasting time in networks of bounded diameter. Finally,

section 6 contains concluding remarks and open problems.

2. Model and terminology. We consider undirected graphs whose nodes have
distinct labels belonging to the set {0, 1, . . . , r}, where r is polynomial in the number n
of nodes. The parameter r is known to all nodes. In the lower bounds we assume
that n itself is known to all nodes. A distinguished node with label 0 is called the
source. We denote by D the radius of the graph, i.e., the distance from the source
to the farthest node. (For undirected graphs, the diameter is of the order of the
radius.) The jth layer of a graph is the set of nodes at distance j from the source.
We adopt the communication model used by Bar-Yehuda, Goldreich, and Itai [3]. It
is summarized in the following definition.

Definition 2.1 (see [3]). A broadcast protocol for radio networks is a multi-
processor (multinode) protocol, the execution of which proceeds in steps (time-slots)
(numbered 0, 1, . . . ) as follows:

1. In the initial step 0, only the source transmits a message called the source
message.

2. In each step each node acts either as a transmitter or as a receiver (or is
inactive).

3. A node receives a message in a specific step if and only if it acts as a receiver
in this step and exactly one of its neighbors acts as a transmitter in that step.
The message received in this case is the message transmitted by that neighbor.

4. The action of a node in a specific step is determined as a function of its initial
input (which consists of its own label and the labels of its neighbors) and the
(sequence of) messages that it has received in previous steps. All nodes have
identical copies of the same program.

5. A node may act as a transmitter in a step > 0 only if it has received a
message in a previous time-slot (there are no “spontaneous” transmissions of
nodes other than the source in step 0).

6. The broadcast is completed at step t if all nodes have received the source
message at one of the steps 0, 1, . . . , t.

As in [3], we assume that a node cannot distinguish whether more than one
neighbor or no neighbor transmitted in a given step; i.e., we work in the model
without collision detection.

3. Logarithmic broadcasting in BGI networks. In [3] the following class
of (n+2)-node networks was defined. Let S be a nonempty subset of {1, . . . , n}. The
network GS is a graph (of radius 2) whose nodes are labeled 0, 1, . . . , n+1. The set of
edges of GS is E = {(0, i) : 1 ≤ i ≤ n}∪{(i, n+1) : i ∈ S}. Node 0 is the source, and
node n+ 1 (the only node in layer 2) is called the sink. We refer to all networks GS

as BGI-n networks (see Figure 3.1).
It was claimed in [3] that for any broadcast protocol there is a BGI-n network on

which this protocol works in time Ω(n). However, assuming the model from [3], which
is the same as that from the present paper, the proof in [3] contains the following flaw.
Predetermined sets of nodes transmitting in consecutive steps are fixed, and then a
network is constructed in which some node is not informed during any of these steps.
However, during the broadcasting process, the source may potentially acquire some
information, which it may pass to other nodes, thus modifying the sets of nodes
transmitting in subsequent steps. So, in fact, under the considered model, the proof
from [3] works only for oblivious algorithms, in which sets of nodes transmitting in a
given step must be fixed in advance.
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Fig. 3.1. BGI-n network GS .

It turns out that not only is the argument from [3] erroneous under the considered
model but, in fact, the above result itself is incorrect. (As mentioned in the introduc-
tion, the argument and the proof remain correct in a more pessimistic communication
model.) Below we give an algorithm that broadcasts in all BGI-n networks in time
O(log n). The technique of selecting one out of many simultaneously transmitting
neighbors, which is the main ingredient of this algorithm, will be further used in the
construction of a much more involved algorithm which guarantees fast broadcasting
in arbitrary networks of small radius.

The main idea of our algorithm is to simulate the collision detection capability
in some nodes of the network. (Recall that collision detection is not available a priori
in our model.) In order to get logarithmic broadcasting for BGI-n networks, it is
enough to simulate collision detection at the source. To get sublinear broadcasting
in all networks of radius o(log log n), we will need to simulate this capability in many
nodes from different levels.

Let A be a set of neighbors of the source (possibly unknown to it), and let i /∈ A
be another neighbor of the source. Suppose that nodes in A want to transmit. Our
goal is to let the source distinguish whether A has 0, 1, or more than 1 element. This
can be done using the following 2-step procedure.

Procedure Echo (i, A).
Step 1. Every node in A transmits its label.
Step 2. Every node in A ∪ {i} transmits its label.

There are 3 possible effects of Procedure Echo (i, A) at the source.
Case 1. A message is received in Step 1 and no message in Step 2. In this case

the source knows that A has 1 node and knows the label of this unique node.
Case 2. No message is received in Step 1 and a message (from i) is received in

Step 2. In this case the source knows that A is empty.
Case 3. No message is received in either step. In this case the source knows that

A has at least 2 nodes.
Procedure Echo is used to select one node in the set S of nodes connected to the

sink, in a BGI-n network GS . Once such a unique node is selected and transmits, the
sink receives the source message, and broadcast is completed. This is done using the
following algorithm. (In the original definition of BGI-n networks, nodes are labeled
by consecutive numbers 0, 1, . . . , n + 1, but we formulate our algorithm in the more
general case, when labels are chosen arbitrarily from a set {0, 1, . . . , r}, where r is
polynomial in the number of nodes. Without loss of generality, assume that r is a
power of 2.)

Algorithm Binary-Selection-Broadcast. In step 0, the source transmits
the source message and the lowest label i of its neighbor (in the original definition of
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BGI-n networks, i = 1). In step 1, node with label i transmits the source message
and its degree. If this degree is 2 (i ∈ S), the sink receives the message and broadcast
stops. Assume that the degree of i is 1.

All remaining steps 2, 3, . . . are divided into segments of length 3. In the first step
of each segment, the source transmits a range R of labels and orders the execution of
Procedure Echo (i, R ∩ S) during the last two steps of the segment. (Notice that all
nodes from layer 1 know if they are in R∩S.) In the first segment, R := {1, . . . , r/2}.
If a range R = {x, . . . , y} is transmitted in a given segment, the range to transmit in
the next segment is chosen according to the three possible effects of Procedure Echo
(i, R ∩ S), described above. In Case 1, the sink is informed and broadcast stops. In
Case 2, R := {y+1, . . . , y+(y−x+1)/2}. In Case 3, R := {x, . . . , (y+x−1)/2}.

Theorem 3.1. Algorithm Binary-Selection-Broadcast completes broadcasting in
any BGI-n network in time O(log n).

Proof. Since the size of R transmitted in the ith segment is r/2i, after at most
log r ∈ O(log n) steps, the set R ∩ S contains exactly one node, and hence broadcast
is completed in time O(log n).

4. Sublinear time broadcasting in networks of radius o(log log n). In
this section we construct a broadcasting algorithm working in time o(n) on all n-node
networks of radius o(log log n). We will use the following results from the literature.
The following two theorems assume that nodes know parameters r and d but do not
assume any knowledge of the network topology.

Theorem 4.1 (see [14]). Consider a radio network modeled by an arbitrary graph
(V,E), where V is a subset of {1, . . . , r}. Let A and B be a partition of V such that
all nodes in A have the same message m. Then there exists a protocol working in time
O(min(r, d log(r/d))), which makes message m known to all nodes v ∈ B having at
least one and at most d neighbors in A.

Theorem 4.2 (see [17, 14]). Given a radio network modeled by an arbitrary
graph (V,E), where V is a subset of {1, . . . , r} and in which every node has a (possibly
different) message, there exists a protocol working in time O(min(r, d2 log r)), upon
the completion of which, every node of degree at most d learns the messages of all its
neighbors.

It should be mentioned that, while the protocols in the above theorems were
obtained in a nonconstructive way, constructive counterparts of both these results
(involving polynomial time local computations) are known and yield only slightly
slower protocols. A constructive counterpart of Theorem 4.1 yielding a O(min(r,
d · polylog r))-time protocol follows from [20, 27], and a constructive counterpart
of Theorem 4.2 yielding a O(min(r, d2 log2 r))-time protocol follows from [21]. In
our algorithm we use protocols from Theorems 4.1 and 4.2, but these constructive
counterparts could be used as well, and our resulting broadcasting algorithm would
still work in sublinear time.

The next result refers to radio networks of known topology.
Theorem 4.3 (see [10]). Consider a radio network modeled by an arbitrary graph

(V,E), where V is a subset of {1, . . . , r}, and assume that all nodes know the topology
of the graph. Let A and B be a partition of V such that all nodes in A have the same
message m. Then there exists a protocol working in time O(log2 r), which makes
message m known to all nodes v ∈ B having a neighbor in A.

4.1. Broadcasting in networks of radius 2. We first describe a sublinear
time broadcasting algorithm working for all networks of radius 2. More generally, in
every network G, this algorithm informs all nodes in levels 1 and 2 in sublinear time.
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Fig. 4.1. Algorithm A2.

At each step of the execution, the source maintains a set DIS of discovered nodes:
those about which it knows that they received the source message. The algorithm
uses the polynomial upper bound r on the number of nodes, and two parameters d1

and d2, whose values will be specified later.

Algorithm A2 (see Figure 4.1).

Part 0. In step 0, the source transmits the source message, the set L1, and the
lowest label i ∈ L1. In step 1, node with label i transmits the source message and
the set C of its neighbors in L2. The source sets the set DIS of discovered nodes to
{0} ∪ L1 ∪ C and transmits it in step 2.

Part 1. Using a similar mechanism as in Algorithm Binary-Selection-Broadcast,
the source selects a node in L1 for which the number of undiscovered neighbors in L2

is maximum. (Every node in L1 can distinguish its neighbors in L1 and in L2.) In the
next step the selected node transmits the source message and the set of its neighbors
in L2. The source adds them to discovered nodes and transmits the updated set DIS.
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This process is repeated until there are no nodes in L1 with more than d1 undiscovered
neighbors in L2.

Part 2. Apply the protocol from Theorem 4.1 (with d = d2) to the subgraph of G
induced by L1 ∪ B and to the partition (L1, B), where B is the set of undiscovered
nodes in L2. This protocol makes the source message known to all undiscovered nodes
from L2 which have at most d2 neighbors in L1.

Part 3. Let X be the set of all nodes from L2 which received the source mes-
sage during Part 2 and have at most d2 neighbors in L1. Apply the protocol from
Theorem 4.2 (for d = d1) to the subgraph of G induced by X ∪ L1. The message
transmitted by each node contains its label and the source message.

Part 4. All nodes from L1 check if all their neighbors in L2 got the source mes-
sage. Nodes selected in Part 1 know that all their neighbors in L2 were informed and
discovered. Let Z be the set of nodes in L1 which did not get a message in Part 3
from some of their undiscovered neighbors in L2. Using a similar mechanism as in
Algorithm Binary-Selection-Broadcast, the source selects one node in Z; then this
node transmits (alone) the source message and the set of all its neighbors in L2, and
the source adds these neighbors to the set DIS of discovered nodes. After each selec-
tion, at least one currently undiscovered node gets the source message. This process
continues until all nodes in L1 know that all their neighbors in L2 received the source
message.

Theorem 4.4. Algorithm A2 completes broadcasting in any n-node network of
radius 2 in O(n2/3 log n) time.

Proof. Correctness is straightforward. The complexity of the algorithm is esti-
mated as follows. Part 0 takes 3 steps. Each selection in Part 1 takes O(log r) steps
and there are at most n/d1 selections; hence the entire Part 1 takes O((n/d1) · log r)
steps. In view of Theorem 4.1, Part 2 takes O(d2 ·log r) steps. In view of Theorem 4.2,
Part 3 takes O(d2

1 log r) steps. Each selection in Part 4 takes O(log r) steps and
there are at most nd1/d2 selections; hence the entire Part 4 takes O((nd1/d2) · log r)

steps. Taking d1 = 3
√
n and d2 =

3
√
n2, this adds up to O(n2/3 log r) = O(n2/3 log n)

steps.

4.2. Extension to arbitrary networks of radius o(log log n). We now de-
scribe an algorithm which broadcasts in sublinear time in arbitrary networks of ra-
dius o(log log n). The algorithm uses the polynomial upper bound r on the number
of nodes, and parameters dj , d

′
j , for j = 2, 3, . . . , whose values will be specified later.

The algorithm is constructed inductively. The construction is local, in the sense that
every node constructs its part of the algorithm, using some coordination guaranteed
by the properties and remarks listed below. After the kth phase of the algorithm,
where k is an integer larger than 1, the following properties will be satisfied for some
positive constant α.

Property 1. All nodes from layers Lj , j = 1, . . . , k, know the source message and
know to which layer they belong.

Property 2. For all j = 1, . . . , k, a Procedure send(j), coordinated by the source,
can be constructed, which has the following effect: if all nodes in Lj−1 have
the same message m and start at the same time, then all nodes in Lj learn
message m. (send(1) consists of one step in which the source transmits.)
Procedure send(j) lasts at most α · (dj + log r) log r time.

Remarks.
1. Let j = 1, . . . , k − 1, and A ⊆ Lj+1 be a set of nodes that want to transmit.

It follows from Property 2 that a Procedure detect(j, A), coordinated by
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the source, can be constructed, which enables every node in Lj to distinguish
whether it has 0, 1, or more than 1 neighbor in A. Procedure detect(j, A)
works as follows. Starting at a given time step t0, all nodes in A repeat
transmission in 1+α ·(dj +log r) log r consecutive time steps. Simultaneously,
nodes in Lj−1 perform Procedure send(j).
Each node v ∈ Lj detects the number of its neighbors in A similarly as in Pro-
cedure Echo. By Property 2, v would get messagem, during α·(dj+log r) log r
steps after t0, if nodes from A did not transmit. Hence v decides as fol-
lows. If it receives a message from a neighbor not in Lj−1 during Procedure
detect(j, A), it knows that it has exactly one neighbor in A and knows its
label. Otherwise, two cases are possible. (1) If v receives only messages from
Lj−1 during Procedure detect(j, A), then it knows that none of its neigh-
bors is in A. (2) If v receives no messages during Procedure detect(j, A),
then it knows that at least two of its neighbors are in A.

2. Let j = 0, . . . , k − 1, i ∈ Lj , and let A ⊆ Lj+1 be a subset of neighbors of i
that want to transmit. A Procedure select(j, i, A), coordinated by node i,
can be constructed, in which node i selects one element in A. This can be
done in α · log r steps, similarly as in Algorithm Binary-Selection-Broadcast,
where node i plays the role of the source.

Algorithm Sublinear-Broadcast. In phase 1 do nothing. In phase 2 perform
algorithm A2. Let k > 1. Suppose that Properties 1 and 2 are satisfied after phase
k. We describe phase k + 1. The source maintains a set DIS of discovered nodes:
these are nodes from Lk−1∪Lk ∪Lk+1 whose labels the source learned in phase k+1.
At the beginning of phase k + 1 this set is empty. Each node from Lk appends the
number k of its layer to all its messages.
Description of phase k + 1:

Part 0. The aim of this part is the verification of whether layer Lk is empty or
not. If Lk = ∅, then the radius of the network is D = k − 1 and broadcasting was
completed at the end of phase k − 1, by Property 1 for k. In this case the source
sends a stop message. Otherwise, the source sends a message requesting the start of
Part 1. Here is a detailed description of Part 0.

• The source initiates broadcast of the message “start verification in step t,”
by consecutive use of Procedures send(j), for j = 1, . . . , k, according to
Property 2 for k. Step t is calculated to guarantee reception of this message by
all nodes in Lj , for j = 1, . . . , k, i.e., to guarantee completion of all Procedures
send(j).
• Verification of whether layer Lk is empty starts in step t.

– Using Procedure detect(k−1, Lk), nodes from Lk−1 detect if they have
neighbors in Lk.

– Let Ak−1 be the set of nodes from Lk−1 which detected neighbors in Lk.
Using Procedure detect(k − 2, Ak−1), nodes from Lk−2 detect if they
have neighbors in Ak−1. This process continues with sets Ai ⊆ Li, until
the source detects if it has neighbors in A1.

• If the source does not have neighbors in A1 (i.e., A1 is empty, which means
that Lk is empty as well), then it initiates broadcast of the message “stop in
step t1” (for an appropriately calculated t1), by consecutive use of Procedures
send(j), for j = 1, . . . , k − 1, according to Property 2 for k. Otherwise, a
message requesting the start of Part 1 in an appropriately calculated step is
sent similarly as above (to all layers Lj for j = 1, . . . , k).

Part 1. The aim of this part is selection of consecutive nodes from Lk which
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have at least d′k+1 undiscovered neighbors. This is done as follows, using a similar
cascade of Procedures detect, as in Part 0.

• Let Bk be the set of nodes from Lk which have at least d′k+1 undiscovered
neighbors. Using Procedure detect(k − 1, Bk), nodes from Lk−1 detect if
they have neighbors in Bk.

• Let Bk−1 be the set of nodes from Lk−1 which detected neighbors in Bk.
Using Procedure detect(k − 2, Bk−1), nodes from Lk−2 detect if they have
neighbors in Bk−1. This process continues with sets Bi ⊆ Li, until the source
detects if it has neighbors in B1.

• If the source does not have neighbors in B1 (i.e., B1 is empty), then it initiates
broadcast of the message “go to Part 2 in step t2” (for an appropriately
calculated t2), by consecutive use of Procedures send(j) for j = 1, . . . , k,
according to Property 2 for k. Otherwise the source selects one node from B1,
using Procedure select(0, 0, B1).

• The selected node v performs select(1, v, B2) to select one of its neighbors
in B2. This is continued until one node w in Bk is selected.

• Node w broadcasts a message (containing the source message, the label w,
and labels of neighbors of w). All these neighbors get the source message.
Moreover, broadcast is propagated along the path containing selected nodes
from consecutive sets Bi. The source discovers neighbors of w and possibly w
itself, updates the set DIS, and propagates this information to all nodes in
layers L1, . . . , Lk, using send procedures.

This selection process continues until all nodes in Lk have less than d′k+1 undis-
covered neighbors.

Part 2. Let X be the set of all undiscovered nodes in Lk, and Y the set of all
undiscovered nodes in Lk−1 ∪Lk ∪Lk+1 which have at most dk+1 neighbors in X. A
node can tell if it is in X, since in view of Property 1 it knows if it is in Lk, and after
Part 1 of phase k + 1 it knows whether it is in set DIS.

Apply the protocol from Theorem 4.2 (for d = dk+1 and for the source message)
to the subgraph of G induced by X ∪ Y . At the end of Part 2, all nodes from Y got
the source message.

Part 3. Consider the subgraph G of the radio network induced by the set of
nodes V consisting of all undiscovered nodes in Lk−1 ∪ Lk, and of all undiscovered
nodes in Lk+1 which got the source message in Part 2. Each node knows if it is
in V , in view of Part 2, of the knowledge of DIS gotten at the end of Part 1, and of
Property 1.

Apply the protocol from Theorem 4.2 to the graph G (for d = d′k+1). The message
transmitted by each node contains its label and the source message. At the end of
Part 3, all undiscovered nodes in Lk, which have at most d′k+1 neighbors in G, know
which of their neighbors in G got the source message.

Part 4. All undiscovered nodes from Lk check if all their undiscovered neighbors
got the source message. Consider the set Z of undiscovered nodes from Lk which did
not get a message in Part 3 from some of their undiscovered neighbors. As in Part 1,
we do the following:

• Procedures detect and select are used to select one node in Z,
• this node transmits (alone) the source message and the set of all its neighbors

in Lk+1,
• this message is propagated to the source,
• the source updates the set DIS of discovered nodes (now DIS includes the

selected node from Z and all of its neighbors) and propagatesDIS to layer Lk.
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After each selection, at least one currently undiscovered node in Lk+1 gets the
source message. This process continues until all nodes in Lk know that all their
neighbors received the source message.

Theorem 4.5. Algorithm Sublinear-Broadcast completes broadcasting in arbi-
trary radio networks.

Proof. It is enough to prove that Properties 1 and 2 are satisfied after each phase
k > 1. First we prove them for k = 2, i.e., upon completion of Algorithm A2.

Property 1. By correctness of Algorithm A2, all nodes in L1 and L2 get the
source message. All nodes in L1 know that they are in L1 because they got the
message directly from the source. All nodes from L2 got the message from some
neighbor in L1, by the description of Algorithm A2. On the other hand, they know
that they are not in L1, so they deduce that they are in L2.

Property 2. Upon completion of Algorithm A2, all nodes in L2 either are dis-
covered or have at most d2 neighbors in L2. Procedure send(2) can be executed as
follows. Broadcasting assuming knowledge of topology is executed in the graph con-
taining all nodes from L1 and all discovered nodes from L2. This is done according
to the protocol from Theorem 4.3 in time α1 · log2 r. Broadcasting to the remaining
nodes is done using the protocol from Theorem 4.1 in time α2 ·(d2 log r). The property
follows for α = max(α1, α2).

Now assume that Properties 1 and 2 hold after phase k of Algorithm Sublinear-
Broadcast. We have to prove that they hold after phase k + 1.

Property 1. Every node v in Lk+1 gets a message from a neighbor w in Lk in
phase k + 1. This is proved as follows. If v did not get a message until the end of
Part 3, then all neighbors of v in Lk know that v did not get a message. Then at least
one neighbor of v from Lk is selected in Part 4 and v gets a message from it. Node v
learns that neighbor w is in Lk because w knows this by Property 1 after phase k and
attaches this information to its message. Node v also knows that itself is not in Li

for i ≤ k, so it deduces that it is in Lk+1.
Property 2. Procedure send(k + 1) is executed similarly as send(2) (described

above), by replacing L1 by Lk, L2 by Lk+1, and d2 by dk+1.
Our next result estimates time complexity of Algorithm Sublinear-Broadcast for

networks of small radius.
Theorem 4.6. Algorithm Sublinear-Broadcast completes broadcasting in time

o(n), for all n-node radio networks of radius o(log log n).
Proof. Fix a phase k > 2 of the algorithm. We estimate time complexity of each

of its five parts separately.
Part 0. All Procedures send take a total of at most 2α · (∑j<k(dj + log r) log r)

steps. All Procedures detect take a total of at most k − 1 + α · (∑j<k−1(dj +
log r) log r) steps. Hence the number of steps in the entire Part 0 is at mostO(

∑
j<k(dj+

log r) log r) = O(
∑

j<k(dj + log n) log n).
Part 1. There can be at most (n/d′k) selected nodes. We estimate the number

of steps needed for each selection. All Procedures detect take a total of at most
k − 1 + α · (∑j<k−1(dj + log r) log r) steps. All Procedures select take a total of
at most α(k − 1) · log r steps. Sending back a message to the source along a fixed
path of selected nodes takes k− 1 steps. All Procedures send take a total of at most
α · (∑j<k(dj + log r) log r) steps. Defining γ = α · (log r/ log n)2, we get the estimate

2α ·
⎛⎝∑

j<k

(dj + log r) log r

⎞⎠+ α(k − 1) · log r + 2(k − 1) ≤ 4γ ·
⎛⎝∑

j<k

(dj + log n) log n

⎞⎠
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on the number of steps for each selection. Hence the number of steps in the entire
Part 1 is at most 4γ · ((n/d′k) ·

∑
j<k(dj + log n) log n) ∈ O((n/d′k) ·

∑
j<k(dj +

log n) log n).

Part 2. By Theorem 4.2, this part takes O(d2
k log r) = O(d2

k log n) steps.

Part 3. By Theorem 4.2, this part takes O((d′k)
2 log r) = O((d′k)

2 log n) steps.

Part 4. Every node in set Z has at most d′k undiscovered neighbors (otherwise it
would be selected in Part 1). Every undiscovered neighbor w of a node v ∈ Z, from
which v did not get a message in Part 3, is not in the graph G (defined in Part 3),
hence it does not have the source message yet. By the description of Part 2, node w
has more than dk neighbors in Lk−1. Hence at most nd′k/dk selections of nodes in Z
will be performed. The number of steps for each node is O(

∑
j<k(dj + log n) log n),

similarly as in Part 1. This gives a total of O((nd′k/dk)
∑

j<k(dj + log n) log n).

We now choose the following parameters: d1 = �log r	, d′i+1 = d2
i , and di+1 =

(d′i+1)
2. This gives the following estimates of the numbers of steps in different parts

of phase k:

Part 0: O(dk−1 log n) ⊆ O(d2
k log n).

Part 1: O((n/d′k) · dk−1 log n) ⊆ O((n log n)/dk−1).

Part 2: O(d2
k log n).

Part 3: O((d′k)
2 log n) ⊆ O(d2

k log n).

Part 4: O((nd′k/dk) · dk−1 log n) ⊆ O((n log n)/dk−1).

Thus the entire phase k lasts O((n/dk−1) · log n+ d2
k log n) steps.

The last phase of the algorithm run on a radio network of radius D is D + 2 (in
fact only Part 0 of phase D+2 is executed). The total time of phases k = 3, . . . , D+2

is at most O(d2
D+2 log n+ (n log n)/d2) ⊆ O(min(n, (log n)4

D+3+1 + n/ log2 n)). Since
D ∈ o(log log n), we get that this time is o(n). By Theorem 4.4 the time of the first
two phases (occupied by execution of Algorithm A2) is O(n2/3 log n), which is o(n)
as well. Hence the entire Algorithm Sublinear-Broadcast completes broadcasting in
time o(n).

5. Lower bound. In this section we show that for every deterministic broad-
casting algorithm A, there exists a network GA of radius 2, with at most 2n nodes,
on which A requires Ω( 4

√
n) steps to complete broadcast. This network is chosen from

the family Cn of networks defined as follows. Every graph G ∈ Cn (see Figure 5.1)
consists of the source 0 and two layers L1 = {1, . . . , n} and L2 = {n+ 1, . . . , n+ q},
where q is the largest odd integer smaller than 4

√
n. The source is adjacent to all

nodes in L1, and every node in L1 is adjacent to exactly one node in L2. These are
the only edges in G. If G is fixed, we denote by V the set {0} ∪ L1 ∪ L2 of all nodes
of G. For every node v, we denote by Nv the set of its neighbors.

0

L1

L0

n+1 n+q L2

Fig. 5.1. Network G ∈ Cn.
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The idea of the proof is the following. We construct the network step by step,
using consecutive steps of the fixed broadcasting algorithm A, and assuming that
particular nodes got particular messages in given steps. In order to express this, we
use the notion of abstract history of a node, formally defined below. Intuitively, an
abstract history of a node v at a given step k consists of a neighborhood of node v
and of a sequence of messages received by this node until step k. Since the network is
not yet constructed, neighborhoods of some nodes are not determined by step k, and
consequently it is not yet known which abstract history will become the real one—the
one given by algorithm A running on the final network. We can ensure that, if a
given node had some abstract history up to a certain step, then it would behave in a
given way (this is captured by the notion of abstract action function, defined below).
Based on that we do the next step of the construction of the network (by determining
neighborhoods of two nodes in layer L2) and simultaneously define abstract histories
of nodes in this step. These abstract histories are defined so as to prevent some nodes
in layer L2 of the network from getting any message for a long time. In particular,
nodes of L2 whose neighborhood is not yet determined have not gotten the source
message so far.

When the construction is finished, we prove that if the algorithm A runs on the
resulting network, then the real histories of all nodes are identical to the abstract
(assumed) ones, and consequently some nodes of layer L2 will indeed fail to receive
the source message for Ω( 4

√
n) steps.

5.1. Construction. Fix a deterministic broadcasting algorithm A. For this
algorithm, running on any network, we define the following objects.

Histories and message format. Hk denotes the history of computation of
algorithm A until the end of step k. This is the set {Hk(v) : v ∈ V }, where Hk(v) is
the history of computation at node v, until the end of step k. For any v and k, Hk(v)
is a sequence of (received) messages (M0(v),M1(v), . . . ,Mk(v)). Messages are defined
inductively, as follows. M0(v) is either the triple (∅, ∅, ∅), called the empty message,
or the triple (0, N0, source message). Ml(v) (for l = 1, . . . , k) is the empty message
if node v did not get any message in step l. Otherwise, it is a triple consisting of

• the label of node w from which node v received a message in step l,
• the set Nw,
• history Hl−1(w).

Notice that we restrict attention to messages conveying the entire history of the
transmitter. If a particular protocol requires transmitting specific information, the
receiver can deduce this information from the received history, since programs of all
nodes are the same. History Hk(v) containing only empty messages is called the
empty history.

Action function and sets of transmitters. Given algorithm A, we denote by
π(v,Nv, Hk−1(v)) the action of node v in step k, if its set of neighbors is Nv and its
history until the end of step k−1 isHk−1(v). The values of the function π can be 1 or 0:
if the value is 1, node v is sending the message (v,Nv, Hk−1(v)) in step k, otherwise
it is receiving in step k. Under a fixed history Hk−1, we define the set of neighbors
of v transmitting in step k as follows: Tk(v) = {w ∈ Nv : π(w,Nw, Hk−1(w)) = 1}.

We construct a network GA ∈ Cn on which A will work inefficiently. We first
present the general overview of the construction and abstracts objects used in it.
The construction is by induction on steps of the algorithm A. The set of nodes
{0}∪L1 ∪L2, where L1 = {1, . . . , n} and L2 = {n+ 1, . . . , n+ q}, as well as all edges
{(0, i) : i = 1, . . . , n} are given in the beginning. At each step of the induction some
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edges between nodes from L1 and L2 are added. Since at each stage of the construction
only a part of the network GA is specified, the new edges are constructed using
algorithm A and some abstract history Ĥk until this step. Abstract histories at each
node are parametrized with a nonempty set A representing a possible neighborhood
of v to be constructed in a later step.

Abstract objects. Abstract objects (messages, histories, action function, trans-
mitters) are abstract versions of real objects, used in the construction because real
ones do not exist until the network is completely defined. Let v ∈ V and A ⊆ V . An
abstract history Ĥk(v,A) of node v, assuming that its neighborhood is A, is defined
as a sequence (M̂0(v,A), M̂1(v,A), . . . , M̂k(v,A)) of abstract messages. M̂0(v,A) =
M0(v), and M̂l(v,A), for l > 0, either is the empty message or is of the format
(w,B, Ĥl−1(w,B)), for some w ∈ V and B ⊆ V . We will construct the abstract
history step by step, in parallel with the construction of network GA. Notice that,
in general, abstract histories and abstract messages are not necessarily linked to any
particular protocol.

We also define the abstract action function π̂(v,A, Ĥk−1(v,A)) as an extension of
the action function π described above. For every v and A, if π(v,A, Ĥk−1(v,A)) is de-
fined, then π̂(v,A, Ĥk−1(v,A)) = π(v,A, Ĥk−1(v,A)). Otherwise, π̂(v,A, Ĥk−1(v,A))
= 0.

We now define sets of abstract transmitters. First consider a node v with neighbor-
hood Nv fixed at the end of step k of the construction, and assume that neighborhoods
Nw of all nodes w ∈ Nv are also fixed. Under a fixed abstract history Ĥk−1, we define
the set of abstract transmitters T̂k(v,Nv) = {w ∈ Nv : π̂(w,Nw, Ĥk−1(w,Nw)) = 1}.

Now define sets of abstract transmitters for nodes whose neighborhood is not yet
fixed. Suppose that Sk is the set of all nodes j in L2 for which the neighborhood Nj

is not fixed until the end of step k of the construction. Suppose that Rk is the set of
nodes in L1 that do not belong to any fixed neighborhood at the end of step k, i.e.,
Rk = L1 \

⋃
j∈L2\Sk

Nj . (Additionally, let S0 = L2 and R0 = L1.) For nodes of Rk

and Sk, we define the sets of abstract transmitters in step k as follows:
• if v ∈ Rk, then for any j ∈ Sk, T̂k(v, {0, j}) = {0} if π̂(0, L1, Ĥk−1(0, L1)) = 1,

and T̂k(v, {0, j}) = ∅ otherwise;
• if v ∈ Sk and R ⊆ L1, then T̂k(v,R) = {i ∈ R : π̂(i, {0, v}, Ĥk−1(i, {0, v})) =

1}.
Sets Rk and Sk will be defined dynamically in a formal way, during step k of the

construction. We will prove that these formal definitions correspond to the meaning
intended above for Rk and Sk, by proving Property 1 of the invariant after step k.

We now describe the inductive construction of the graph GA. We begin by defin-
ing the abstract history Ĥ0. Ĥ0(v,A) = (M̂0(v,A)), for all nodes v and sets A, where
M̂0(v,A) is the empty message for all v /∈ L1, and M̂0(v,A) = (0, L1, source message),
for all v ∈ L1.

We now begin step 1 of the construction, on the basis of step 1 of the algorithm
and of the abstract history Ĥ0 already defined. To this end we will need the function
First-Step-Selection, formally described below. We want to choose an element j
of the set S (corresponding to L2), to which the largest number of elements of the
set R (corresponding to L1) would transmit, if they were neighbors of j. Then we
determine neighbors of j in L1. When the function determines j, it also determines
its neighborhood, and it deletes j from S. Hence, if S was the set of nodes with
undetermined neighborhood before applying the function, it will preserve this property
after applying it. When the neighborhood of j is determined, then (since neighbors
of j are in L1 and nodes in L1 have exactly one neighbor in L2) we automatically
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determine neighborhoods of neighbors of j. These neighbors are deleted from R, and
hence R preserves the property of containing nodes with undetermined neighborhood,
similar to S.

Function First-Step-Selection(R,S).

• Choose some node j ∈ S such that the size of X = T̂1(j, R) is maximal, and
put two nodes from X to Nj (or one if X has one element, or nothing if X is
empty); then remove these nodes from R. Remove j from S.
• Modify Nj as follows:

if Nj = ∅, then put an arbitrary i ∈ R to Nj and remove i from R;

while there exists a node i ∈ R such that T̂1(v,R) = {i}, for some v ∈ S
do put i into Nj and remove i from R.

• Return (R,S, j,Nj).

Step 1 of the construction. The goal of step 1 of the construction is choosing
two nodes j′1 and j1 in L2, together with their neighborhoods, in such a way that if
some node from R1 transmits in the first step of algorithm A, then at least one other
node from R1 transmits as well. This is essential to guarantee the following property
of abstract history Ĥ1(0, L1): no node from L1 with yet undetermined neighborhood
is heard by the source.

0. Initialize R := L1 and S := L2.
1. (R,S, j′1, Nj′1) := First-Step-Selection(R,S);
R′

1 := R;
(R,S, j1, Nj1) := First-Step-Selection(R,S);
R1 := R and S1 := S.

2. We construct the abstract history Ĥ1. Its definition corresponds to the def-
inition of the “real” history, if neighborhoods are determined. Otherwise,
the definition depends on the conditions on nodes and neighborhoods, the
crucial case being the last item of the description below. History Ĥ0 is fixed;
hence it is enough to define M̂1(v,A), for all v,A. If π̂(v,A, Ĥ0(v,A)) = 1,
then M̂1(v,A) is the empty message (transmitting nodes should not receive
messages). Otherwise, M̂1(v,A) is defined as follows:
• Since nodes in (L1 \R1) ∪ (L2 \ S1) have fixed neighborhoods, and also

their neighbors have fixed neighborhoods, for each v ∈ (L1\R1)∪(L2\S1)
we define M̂1(v,Nv) = (w,Nw, Ĥ0(w,Nw)), if T̂1(v,Nv) = {w}, and we
define M̂1(v,A) as the empty message in all other cases.
• We define M̂1(v,A) as the empty message, for all nodes v ∈ S1 and all

sets A.
• We define M̂1(0, L1) as follows:

– if |T̂1(j
′
1, Nj′1) ∪ T̂1(j1, Nj1)| 
= 1, then M̂1(0, L1) is empty;

– if T̂1(j
′
1, Nj′1)∪T̂1(j1, Nj1) = {i}, then M̂1(0, L1) = (i,Ni, Ĥ0(i,Ni)).

(Note that Ni is already defined at this point.)
M̂1(0, A) is defined as the empty message, for all A 
= L1.
• For every v ∈ R1 and j ∈ S1, if T̂1(v, {0, j}) = {0}, then M̂1(v, {0, j}) =

(0, L1, Ĥ0(0, L1)), and M̂1(v,A) is the empty message in all other cases.

This concludes the first step of the construction.

For any k ≥ 1, the following invariant will be preserved after step k of the con-
struction.

Invariant after step k. The following objects are defined:
sets Sl ⊆ L2 for l = 0, 1, . . . , k;
sets Rl ⊆ L1 for l = 0, 1, . . . , k;



DETERMINISTIC BROADCASTING IN RADIO NETWORKS 885

sets R′
l ⊆ L1 for l = 1, . . . , k;

nodes j′l , jl such that Sl−1\Sl = {j′l , jl} and Rl−1\Rl = Nj′l∪Njl for l = 1, . . . , k.

The following properties hold:

1. Neighborhoods of nodes in {0} ∪ (L1 \Rk) ∪ (L2 \ Sk) are defined.
2. Histories Ĥk(v,A) are defined, for all nodes v and all sets A.
3. For all sets A, histories Ĥk(j, A) are empty for all j ∈ Sk, and histories
Ĥk−1(j, A) are empty for all j ∈ Sk−1 \ Sk.

4. For all nodes j ∈ Sk ∪ {jk} and steps l ≤ k, we have |T̂l(j, R′
k)| 
= 1.

5. For all nodes j ∈ Sk and steps l ≤ k, we have |T̂l(j, Rk)| 
= 1.
6. For all nodes j ∈ Sk−1 \ Sk and steps l < k, we have |T̂l(j,Nj)| 
= 1.

We now begin step k + 1 of the construction, on the basis of step k + 1 of the
algorithm and of the invariant after step k. We will need a function similar to Function
First-Step-Selection. Its aim is to choose j ∈ S with the property as before (see
the comment preceding the description of Function First-Step-Selection). This
is done in the first item of the formal description given below. We also need to
modify the neighborhood of j, so that choices (and elimination) of such nodes in
previous steps of the construction do not yield a single transmitter to nodes with yet
undetermined neighborhood. This is required in order to preserve Properties 4, 5,
and 6 of the invariant. Modification of the neighborhood is done in the second item
of the following formal description.

Function (k + 1)st-Step-Selection(R,S).

• Choose some node j ∈ S such that the size of X = T̂k+1(j, R) is maximal
and put two nodes from X to Nj (or one if X has one element, or nothing if
X is empty), then remove these nodes from R. Remove j from S.
• Modify Nj as follows:

if Nj = ∅, then put an arbitrary i ∈ R to Nj and remove i from R;
– set stop := 0,
– while stop = 0 do
∗ set stop := 1,
∗ while there exists a node i ∈ R such that T̂l(j

′, R) = {i}, for some
l ≤ k + 1, j′ ∈ S
do put i into Nj and remove i from R,

∗ while there exists a node i ∈ Nj such that T̂l(j,Nj) = {i}, for some
l ≤ k
do find another node i′ ∈ T̂l(j, R) (if it exists), put i′ into Nj , and
remove i′ from R, set stop := 0;

• Return (R,S, j,Nj).

Step (k + 1) of the construction (see Figure 5.2). The goal of step (k+ 1) of
the construction is choosing two nodes, j′k+1, jk+1 ∈ Sk (in L2), together with their

neighborhoods (included in Rk), and defining abstract history Ĥk+1, so as to satisfy
the invariant after step (k + 1) of the construction. Note that we do not initialize
variables R and S because their values have been fixed after step k of the construction;
indeed, at the beginning of step k + 1, we have R = Rk and S = Sk.

1. (R,S, j′k+1, Nj′k+1
) := (k + 1)st-Step-Selection(R,S);

R′
k+1 := R;

(R,S, jk+1, Njk+1
) := (k + 1)st-Step-Selection(R,S);

Rk+1 := R and Sk+1 := S.
2. We construct the abstract history Ĥk+1. Its definition corresponds to the

definition of the “real” history, if neighborhoods are determined. Otherwise,
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- edges added in step k+1
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Fig. 5.2. Step k + 1 of the construction of GA ∈ Cn.

the definition depends on the conditions on nodes and neighborhoods, the
crucial case being the last item of the description below. History Ĥk is fixed;
hence it is enough to define M̂k+1(v,A), for all v,A. If π̂(v,A, Ĥk(v,A)) = 1,
then M̂k+1(v,A) is the empty message (transmitting nodes should not receive
messages). Otherwise, M̂k+1(v,A) is defined as follows:
• Since nodes in (L1\Rk+1)∪(L2\Sk+1) have fixed neighborhoods, and also

their neighbors have fixed neighborhoods, for each v ∈ (L1\Rk+1)∪(L2\
Sk+1) we define M̂k+1(v,Nv) = (w,Nw, Ĥk(w,Nw)), if T̂k+1(v,Nv) =
{w}, and we define M̂k+1(v,A) as the empty message in all other cases.
• We define M̂k+1(v,A) as the empty message, for all nodes v ∈ Sk+1 and

all sets A.
• We define M̂k+1(0, L1) as follows:

– if |⋃j∈L2\Sk+1
T̂k+1(j,Nj)| 
= 1, then M̂k+1(0, L1) is empty;

– if
⋃

j∈L2\Sk+1
T̂k+1(j,Nj) = {i}, then M̂k+1(0, L1) = (i,Ni, Ĥk(i,Ni)).

(Note that Ni is already defined at this point.)
M̂k+1(0, A) is defined as the empty message, for all A 
= L1.
• For every v ∈ Rk+1 and j ∈ Sk+1,

if T̂k+1(v, {0, j}) = {0}, then M̂k+1(v, {0, j}) = (0, L1, Ĥk(0, L1)), and
M̂k+1(v,A) is the empty message in all other cases.

5.2. Analysis. We first show that the invariant after step k of the construction
holds if sets Rk, Sk are nonempty. This guarantees the correctness of the construction
until one of these sets becomes empty, i.e., until all nodes either of L1 or of L2 have
determined neighborhoods. Next we show that sets Rk, Sk are nonempty for k ≤ q−1

2 ,
where q is the largest odd integer smaller than 4

√
n. This implies that the construc-

tion is correct until step k = q−1
2 . Then we show how to finish the construction of

network GA. Finally, we prove that histories determined by algorithm A running on
network GA are identical to the previously constructed abstract histories. In view of
the invariant after step k = q−1

2 ∈ Ω( 4
√
n) of the construction, this implies the desired

lower bound on broadcasting time.

Lemma 5.1. The invariant after step k is preserved, for all k ≥ 1 such that Sk

and Rk are nonempty.
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Proof. The validity of the invariant after step 1 follows from the exit conditions in
the first and second executions of function First-Step-Selection(R,S), in Part 1
of step 1 of the construction.

Assume that the invariant holds after step k and that Sk+1 andRk+1 are nonempty.
We prove that it holds after step k + 1.

All required objects are defined by the construction in step k+1, using nonempti-
ness of Sk+1 and Rk+1. It remains to prove the six properties.

1. This follows from Property 1 of the invariant after step k and from the con-
struction of j′k+1, jk+1, and of their neighborhoods during Part 1 of the
construction in step k + 1.

2. Ĥk+1 was defined in Part 2 of step (k + 1) of the construction.
3. The fact that Ĥk+1(v,A) is empty for all nodes v ∈ Sk+1 and all sets A

follows from the assumption in Part 2 of step (k+1) of the construction. The
fact that Ĥk(j

′
k+1, A) and Ĥk(jk+1, A) are empty (j′k+1, jk+1 are the only

elements of Sk \ Sk+1) follows from Property 3 of the invariant after step k.
4. We prove that, for all nodes j ∈ Sk ∪ {jk} and steps l ≤ k + 1, we have
|T̂l(j, R′

k+1)| 
= 1. This follows from the exit conditions of the external and
of the first internal loop in function (k+ 1)st-Step-Selection(R,S) (more
precisely, in the first execution of this function in Part 1 of step (k + 1) of
the construction). The execution of the external loop ends if and only if
the value of stop becomes 1, which means that the condition in the second
internal loop is always false in the last turn of the external loop. Hence the
condition of the first internal loop must be false at the end of the last turn of
the external loop. This implies |T̂l(j, R′

k+1)| 
= 1, for all nodes j ∈ Sk+1 and
steps l ≤ k + 1.

5. We prove that for all nodes j ∈ Sk+1 and steps l ≤ k+1 we have |T̂l(j, Rk+1)|

= 1. This follows by an argument similar as above, applied to function
(k + 1)st-Step-Selection(R,S) (now we refer to the second execution of
this function in Part 1 of step (k + 1) of the construction).

6. The property |T̂l(j,Nj)| 
= 1, for all nodes j ∈ Sk \ Sk+1 and steps l < k + 1,
follows from the exit condition of the second internal loop in the first and
second executions of function (k+ 1)st-Step-Selection(R,S), in Part 1 of
step (k+1) of the construction. Observe that the existence of i′ in the second
internal loop follows from Property 5 of the invariant after step k and from
(the just proved) Property 4 of the invariant after step k + 1.

Lemma 5.2. The inductive construction of the network can be carried out for at
least q−1

2 steps, where q is the largest odd integer smaller than 4
√
n.

Proof. Let k ≤ (q − 1)/2. Sets Sk are decreased by two nodes during one step;
hence Sk 
= ∅, since |S0| = q.

Claim. Sets Rk are decreased by at most 2q3 nodes during one step, at most q3

for each of the chosen nodes j′k, jk.
This can be computed by analyzing loops in both executions of function kth-

Step-Selection(R,S) in Part 1 of step k of the construction. Every turn of each of
the internal loops increases the neighborhood Nj′k (resp., Njk) by at most one element
and consequently decreases R by at most one element.

Consider the first execution. During the first internal loop, at most kq ≤ q2/2
nodes can be added to Nj′k , since each action makes one set T̂l(j, R) empty, where
l ≤ k, and n + 1 ≤ j ≤ n + q. (Since we analyze subsequent executions of the loop
in the function, symbol R in the expressions containing R corresponds to the current
value of this variable, which changes dynamically. Hence values of these expressions
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may also change dynamically.)

During the second internal loop, at most k− 1 ≤ q/2 nodes can be added to Nj′k ,

since each action makes one set T̂l(j
′
k, Nj′k) of size at least 2, where l ≤ k − 1. There

may be at most k − 1 ≤ q/2 executions of the external loop, since every execution of
the external loop increases the size |T̂l(j′k, Nj′k)| to at least 2 for some l ≤ k− 1 while

performing the second internal loop. When |T̂l(j′k, Nj′k)| 
= 1, for all l ≤ k − 1, the

execution of the external loop stops. Hence Nj′k is bounded by (q2/2+q/2)·(q/2) ≤ q3,
and consequently R is decreased at the rate of at most q3 nodes per step. The same is
true for the second execution. Hence Rk is smaller than Rk−1 by at most 2q3 nodes,
which concludes the proof of the claim.

Since q < 4
√
n, we haveRk 
= ∅ for all k ≤ (q−1)/2. It follows that the construction

can be carried out for (q − 1)/2 steps.

Using Lemma 5.2, the construction of the network GA can be now concluded
as follows. All nodes in R(q−1)/2 are made adjacent to the only node in S(q−1)/2. It
follows from the construction that GA belongs to the class Cn defined in the beginning
of this section.

The histories Ĥk in consecutive steps of the construction were abstract histories
defined in order to continue the construction in subsequent steps. The next lemma
shows that the actual historiesHk(v) of all nodes v of networkGA obtained by running
algorithm A on this network, are identical to abstract histories Ĥk(v,Nv).

Lemma 5.3. Let k ≤ (q − 1)/2 be a step of the execution of algorithm A on
network GA. Then Hk(v) = Ĥk(v,Nv), for all nodes v of network GA.

Proof. In the first step of the algorithm execution, the source transmits and
all nodes in L1 receive the message. Nodes in L2 receive nothing. Hence H0(v) =
Ĥ0(v,Nv) by definition of Ĥ0.

Note that the definition of abstract history in step 1 of the construction is the
same as that in step k + 1, taken for k = 0. Hence it is not necessary to separately
analyze step 1, and we can proceed with the argument by induction, for an arbitrary
k.

Assume by induction that Hk(v) = Ĥk(v,Nv), where k < (q − 1)/2 . We prove
Hk+1(v) = Ĥk+1(v,Nv) by showing Mk+1(v) = M̂k+1(v,Nv). (Since k+1 ≤ (q−1)/2,
the abstract history Ĥk+1 is well defined, in view of Lemma 5.2.) Observe that,
since π̂ is an extension of π and Hk(v) = Ĥk(v,Nv), we have π̂(v,Nv, Ĥk(v,Nv)) =
π(v,Nv, Hk(v)). Hence, if π̂(v,Nv, Ĥk(v,Nv)) = 1, then v acts as a transmitter in
step k + 1, and hence both Mk+1(v) and M̂k+1(v,Nv) are empty messages. Thus we
assume in the following that π̂(v,Nv, Ĥk(v,Nv)) = 0, i.e., that v acts as a receiver.

Case 1. v ∈ (L1 \Rk+1) ∪ (L2 \ Sk+1).

By Property 1 of the invariant after step k + 1 of the construction, v has a fixed
neighborhood and all of its neighbors w have fixed neighborhoods. Since Ĥk(w,Nw) =
Hk(w), we get Mk+1(v) = M̂k+1(v,Nv).

Case 2. v ∈ Sk+1.

M̂k+1(v,Nv) is the empty message by Property 3 of the construction invariant
after step k + 1. Let k′ be the step in which the neighborhood Nv was constructed.
Since v ∈ Sk+1, we have k′ > k + 1. By Property 6 of the invariant after step k′ of
the construction, |T̂l(v,Nv)| 
= 1, for all steps l < k′. In particular, |T̂k+1(v,Nv)| 
= 1.
Since Ĥk(w,Nw) = Hk(w) for all w ∈ Nv, we have Tk+1(v) = T̂k+1(v,Nv), and hence
Tk+1(v) is not a singleton. It follows that Mk+1(v) is the empty message.

Case 3. v = 0.
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If j ∈ L2 \ Sk+1, then T̂k+1(j,Nj) = Tk+1(j), since Ĥk(w,Nw) = Hk(w), for

all w ∈ Nj . Hence
⋃

j∈L2\Sk+1
T̂k+1(j,Nj) =

⋃
j∈L2\Sk+1

Tk+1(j). We consider three
cases.

If |⋃j∈L2\Sk+1
T̂k+1(j,Nj)| > 1, then M̂k+1(0, L1) is empty. In this case, |Tk+1(0)|

= |⋃j∈L2
Tk+1(j)| > 1 and hence Mk+1(0) is the empty message.

If
⋃

j∈L2\Sk+1
T̂k+1(j,Nj) = {i}, then M̂k+1(0, L1) = (i,Ni, Ĥk(i,Ni)). In this

case,
⋃

j∈L2\Sk+1
Tk+1(j) = {i}. By construction of jk+1, we have T̂k+1(jk+1, Rk+1) =

∅, and hence T̂k+1(j, Rk+1) = ∅, for all j ∈ Sk+1. Consequently, Tk+1(j) = T̂k+1(j,Nj)

⊆ T̂k+1(j, Rk+1) = ∅. It follows that Mk+1(0) = (i,Ni, Hk(i)). In view of Hk(i) =
Ĥk(i,Ni), we get Mk+1(0) = M̂k+1(0, L1).

If
⋃

j∈L2\Sk+1
T̂k+1(j,Nj) = ∅, then M̂k+1(0, L1) is the empty message. In this

case,
⋃

j∈L2\Sk+1
Tk+1(j) = ∅. The same reasoning as above gives T̂k+1(j, Rk+1) = ∅

for all j ∈ Sk+1. Consequently, Mk+1(0) is the empty message.
Case 4. v ∈ Rk+1.
Since for all j ∈ Sk+1, Ĥk+1(j,Nj) = Hk+1(j) is the empty history, it follows

that each node v ∈ Rk+1 can receive a message in step k + 1 of A only from node 0,
if this node transmits. If node 0 transmits in step k + 1 of A, then v receives the
message Mk+1(v) = (0, L1, Hk(0)). Since Hk(0) = Ĥk(0, L1), by definition we have
T̂k+1(v,Nv) = {0}. By construction of message M̂k+1(v,Nv) we get M̂k+1(v,Nv) =
(0, L1, Ĥk(0, L1)). Since Hk(0) = Ĥk(0, L1), we have M̂k+1(v,Nv) = Mk+1(v). If
node 0 does not transmit in step k + 1 of A, then Mk+1(v) is empty. Since Hk(0) =
Ĥk(0, L1), by definition we have T̂k+1(v,Nv) = ∅. By construction, M̂k+1(v,Nv) is
the empty message.

Theorem 5.4. For any deterministic broadcasting algorithm A, there exists a
network GA of radius 2, with at most 2n nodes, for which this algorithm requires time
Ω( 4
√
n).
Proof. Network GA constructed above has n + 1 + q ≤ 2n nodes, since q is the

largest odd integer smaller than 4
√
n. It has radius 2 by construction. Let k = (q−1)/2.

By Lemma 5.2, Sk is nonempty. By Lemma 5.1 and Property 3 of the invariant after
step k, histories Ĥk(j,Nj) are empty for all j ∈ Sk. By Lemma 5.3, histories Hk(j)
are empty for all j ∈ Sk. Hence no node in Sk receives the source message by step k
of algorithm A. It follows that algorithm A requires time Ω( 4

√
n) to broadcast on

network GA.
Using the above technique we can prove the following more general result.
Corollary 5.5. For any deterministic broadcasting algorithm A and any pa-

rameters D ≤ n, there exists an n-node network of radius D, for which this algorithm
requires time Ω(

4
√
nD3).

6. Conclusion. In this paper we studied deterministic broadcasting time in ra-
dio networks whose nodes know only their immediate neighborhood. We presented an
algorithm for broadcasting in sublinear time in all networks of radius o(log log n) and
we proved a lower bound Ω( 4

√
n) on broadcasting time even in networks of radius 2. In

view of the randomized algorithm from [3] running in expected timeO(D log n+log2 n)
on all n-node graphs of diameter D, our lower bound proves an exponential gap be-
tween time of deterministic and randomized broadcasting in radio networks.

The main problem that remains open is the following. Is there a deterministic
broadcasting algorithm running in sublinear time on all networks with sublinear ra-
dius, if nodes know only their immediate neighborhood? If complete knowledge of the
network is available, the positive answer follows from [18].
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Abstract. We develop a parameterized complexity theory for counting problems. As the basis of
this theory, we introduce a hierarchy of parameterized counting complexity classes #W[t], for t ≥ 1,
that corresponds to Downey and Fellows’s W-hierarchy [R. G. Downey and M. R. Fellows, Parame-
terized Complexity, Springer-Verlag, New York, 1999] and we show that a few central W-completeness
results for decision problems translate to #W-completeness results for the corresponding counting
problems.

Counting complexity gets interesting with problems whose decision version is tractable, but
whose counting version is hard. Our main result states that counting cycles and paths of length k in
both directed and undirected graphs, parameterized by k, is #W[1]-complete. This makes it highly
unlikely that these problems are fixed-parameter tractable, even though their decision versions are
fixed-parameter tractable. More explicitly, our result shows that most likely there is no f(k) · nc-
algorithm for counting cycles or paths of length k in a graph of size n for any computable function
f : N→ N and constant c, even though there is a 2O(k) · n2.376 algorithm for finding a cycle or path
of length k [N. Alon, R. Yuster, and U. Zwick, J. ACM, 42 (1995), pp. 844–856].

Key words. counting complexity, parameterized complexity, paths and cycles, descriptive
complexity
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1. Introduction. Counting problems have been the source for some of the deep-
est and most fascinating results in computational complexity theory, ranging from
Valiant’s fundamental result [29] that counting perfect matchings of bipartite graphs
is #P-complete over Toda’s theorem [28] that the class P#P contains the polyno-
mial hierarchy to Jerrum, Sinclair, and Vigoda’s [20] fully polynomial randomized
approximation scheme for computing the number of perfect matchings of a bipartite
graph. In this paper, we develop a basic parameterized complexity theory for counting
problems.

Parameterized complexity theory provides a framework for a fine-grain complex-
ity analysis of algorithmic problems that are intractable in general. In recent years,
ideas from parameterized complexity theory have found their way into various areas
of computer science, such as database theory [19, 24], artificial intelligence [18], and
computational biology [6, 27]. Central to the theory is the notion of fixed-parameter
tractability, which relaxes the classical notion of tractability, i.e., polynomial time
computability, by admitting algorithms whose running time is exponential, but only
in terms of some parameter of the problem instance that can be expected to be small
in the typical applications. A good example is the evaluation of database queries:
Usually, the size k of the query to be evaluated is very small compared to the size n
of the database. An algorithm evaluating the query in time O(2k · n) may therefore
be acceptable, even quite good. On the other hand, an Ω(nk) evaluation algorithm
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usually cannot be considered feasible. Fixed-parameter tractability is based on this
distinction: A parameterized problem is fixed-parameter tractable if there is a com-
putable function f and a constant c such that the problem can be solved in time
f(k) · nc, where n is the input size and k is the parameter value.

A standard example of a fixed-parameter tractable problem is the vertex cover
problem parameterized by the size k of the vertex cover. It is quite easy to see that a
vertex cover of size k of a graph of size n can be computed in time O(2k ·n) by a simple
search tree algorithm based on the fact that at least one of the two endpoints of each
edge must be contained in a vertex cover. (As a matter of fact, such an algorithm
computes all minimum vertex covers of size at most k.) A standard example of a
problem that does not seem to be fixed-parameter tractable is the clique problem,
parameterized by the size of the clique. Indeed, all known algorithms for deciding
whether a graph of size n has a clique of size k have a running time of nΩ(k).

To give evidence that parameterized problems such as the clique problem are not
fixed-parameter tractable, a theory of parameterized intractability has been developed
(see [11, 12, 13]). It resulted in a rather unwieldy variety of parameterized complexity
classes. The most important of these classes are the classes W[t], for t ≥ 1, forming
the so-called W-hierarchy. It is believed that W[1] strictly contains the class FPT
of all fixed-parameter tractable problems and that the W-hierarchy is strict. Many
natural parameterized problems fall into one of the classes of the W-hierarchy. For
example, the parameterized clique problem is complete for the class W[1], and the
parameterized dominating set problem is complete for the class W[2] (under suitable
parameterized reductions).

So far, the parameterized complexity of counting problems has not been studied
very systematically. A few tractability results are known: First, some fixed-parameter
tractable decision problems have algorithms that can easily be adapted to the cor-
responding counting problems. An example is the vertex cover problem; since all
minimum vertex covers of size at most k of a graph of size n can be computed
in time O(2k · n), a simple application of the inclusion-exclusion principle yields a
fixed-parameter tractable counting algorithm for the vertex covers of size k. Simi-
lar counting algorithms are possible for other problems that have a fixed-parameter
tractable algorithm based on the method of bounded search tree (see [13]). More in-
teresting are results of Arnborg, Lagergren, and Seese [4], Courcelle, Makowsky, and
Rotics [10], and Makowsky [22] stating that counting problems definable in monadic
second-order logic (in various ways) are fixed-parameter tractable when parameterized
by the tree-width of the input graph. For example, Arnborg, Lagergren, and Seese’s
result implies that counting the Hamiltonian cycles of a graph is fixed-parameter
tractable when parameterized by the tree-width of the graph, and Makowsky’s result
implies that evaluating the Tutte polynomial is fixed-parameter tractable when pa-
rameterized by the tree-width of the graph. Courcelle, Makowsky, and Rotics [10]
also proved similar results for graphs of bounded clique-width. Frick [16] showed that
counting problems definable in first-order logic are fixed-parameter tractable on lo-
cally tree-decomposable graphs. For example, this implies that counting dominating
sets of a planar graph is fixed-parameter tractable when parameterized by the size of
the dominating sets.

We focus on the intractability of parameterized counting problems. We define
classes #W[t], for t ≥ 1, of parameterized counting problems that correspond to the
classes of the W-hierarchy. Our first results show that a few central completeness
results for the classes W[1] and W[2] translate to corresponding completeness results
for the first two levels #W[1] and #W[2] of the #W-hierarchy. For example, we show
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that counting cliques of size k is #W[1]-complete and counting dominating sets of
size k is #W[2]-complete (both under parsimonious parameterized reductions). We
then characterize the class #W[1] as the class of all counting problems that can be
described in terms of numbers of accepting computations of certain nondeterministic
programs. To give further evidence that the class #W[1] strictly contains the class of
fixed-parameter tractable counting problems, we show that if this were not the case
there would be a 2o(n)-algorithm counting the satisfying assignments of a 3-CNF-
formula with n variables. This is the counting version of a result due to Abrahamson,
Downey, and Fellows [1]. While these results are necessary to lay a solid foundation for
the theory and not always easy to prove, by and large they do not give us remarkable
new insights. The theory gets interesting with those counting problems that are
harder than their decision versions.

Our main result states that counting cycles and paths of length k in both directed
and undirected graphs, parameterized by k, is #W[1]-complete under parameterized
Turing reductions. It is an immediate consequence of a theorem of Plehn and Voigt [26]
that the decision versions of these problems are fixed-parameter tractable (but of
course not in polynomial time, because if they were, the Hamiltonian path/cycle
problem would be also). Alon, Yuster, and Zwick’s [2] color coding technique provides
algorithms for finding a path of length k in time O(k! ·m) in a graph with m edges
and for finding a cycle of length k in time O(2O(k) · nω) in a graph with n vertices,
where ω < 2.376 is the exponent of matrix multiplication. The hardness of the cycle
counting problem in undirected graphs may be surprising in view of another algorithm
due to Alon, Yuster, and Zwick [3] showing that cycles up to length 7 in an undirected
graph can be counted in time O(nω). Our result implies that it is very unlikely that
there is such an algorithm for counting cycles of arbitrary fixed length k.

The paper is organized as follows. After giving the necessary preliminaries in
section 2, in section 3 we discuss fixed-parameter tractable counting problems. This
section has the character of a short survey; apart from a few observations it contains
no new results. In section 4, we introduce the #W-hierarchy and establish the basic
completeness results. The hardness of counting cycles and paths is established in
section 5. Definitions of all parameterized problems considered in this paper can be
found in Appendix A.

We would like to point out that some of the results in section 4 have independently
been obtained by others in two recent papers: McCartin [23] proves the #W[1]-
completeness of clique and the #W[2]-completeness of dominating set. (Our proofs
of these results are quite different from hers.) Furthermore, she shows that a number
of further completeness results for parameterized decision problems translate to the
corresponding counting problems. Arvind and Raman [5] also obtain the #W[1]-
completeness of clique. Their main result is that the number of cycles or paths of
length k can be approximated by a randomized fixed-parameter tractable algorithm.
Indeed, they prove this not only for cycles and paths, but for arbitrary graphs of
bounded tree-width. These results nicely complement our main result that exactly
counting paths and cycles is hard.

2. Preliminaries.

2.1. Parameterized complexity theory. A parameterized problem is a set
P ⊆ Σ∗ × N, where Σ is a finite alphabet. If (x, k) ∈ Σ∗ × N is an instance of a
parameterized problem, we refer to x as the input and to k as the parameter.

Definition 2.1. A parameterized problem P ⊆ Σ∗ × N is fixed-parameter trac-
table if there is a computable function f : N→ N, a constant c ∈ N, and an algorithm
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that, given a pair (x, k) ∈ Σ∗ × N, decides if (x, k) ∈ P in at most f(k) · |x|c steps.
We usually use k to denote the parameter and n = |x| to denote the size of the

input.
To illustrate our notation, let us give one example of a parameterized problem,

the parameterized vertex cover problem, which is well known to be fixed-parameter
tractable:

p-VC
Input: Graph G.

Parameter: k ∈ N.
Problem: Decide if G has a vertex cover of size k.

From now on, we will give only brief definitions of the parameterized problems
we consider in the main text; for exact definitions we refer the reader to Appendix A.

To define the classes of the W-hierarchy, we need a few notions from proposi-
tional logic. Formulas of propositional logic are built up from propositional variables
X1, X2, . . . by taking conjunctions, disjunctions, and negations. The negation of a
formula θ is denoted by ¬θ. We distinguish between small conjunctions, denoted
by ∧, which are just conjunctions of two formulas, and big conjunctions, denoted
by
∧

, which are conjunctions of arbitrary finite sets of formulas. Analogously, we
distinguish between small disjunctions, denoted by ∨, and big disjunctions, denoted
by
∨

.
A formula is small if it contains only small conjunctions and small disjunctions.

We define Γ0 = ∆0 to be the class of all small formulas. For t ≥ 1, we define Γt to be
the class of all big conjunctions of formulas in ∆t−1 and we define ∆t to be the class
of all big disjunctions of formulas in Γt−1.

The depth of a propositional formula θ is the maximum number of nested con-
junctions or disjunctions in θ. Note that the definitions of Γt and ∆t are purely
syntactical; every formula in Γt or ∆t is equivalent to a formula in Γ0. But the trans-
lation from a formula in Γt to an equivalent formula in Γ0 usually increases the depth
of a formula. For all t, d ≥ 0 we let Γt,d denote the class of all formulas in Γt whose
small subformulas have depth at most d (equivalently, we may say that the whole
formula has depth at most d+ t). We define ∆t,d analogously.

Let CNF denote the class of all propositional formulas in conjunctive normal
form, that is, conjunctions of disjunctions of literals; if we ignore arbitrarily nested
negations, then CNF is just Γ2,0. A formula is in d conjunctive normal form if it is
a conjunction of disjunctions of at most d literals; the class of all such formulas is
denoted by d-CNF.

The weight of a truth value assignment to the variables of a propositional formula
is the number of variables set to true by the assignment. For any class Θ of proposi-
tional formulas, the weighted satisfiability problem for Θ, denoted by WSat(Θ), is the
problem of deciding whether a formula in Θ has a satisfying assignment of weight k,
parameterized by k. We are now ready to define the W-hierarchy as follows.

Definition 2.2. For t ≥ 1, W[t] is the class of all parameterized problems that
can be reduced to WSat(Γt,d) for some d ≥ 0 by a parameterized many-one reduction.

We omit the definition of parameterized many-one reductions here and refer the
reader to [13] for this definition and further background on parameterized complexity
theory.

2.2. Relational structures. A vocabulary is a finite set of relation symbols.
Associated with every relation symbol is a natural number, its arity. The arity of a
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vocabulary is the maximum of the arities of the relation symbols it contains. In the
following, τ always denotes a vocabulary.

A τ -structure A consists of a nonempty set A, called the universe of A, and a re-
lation RA ⊆ Ar for each r-ary relation symbol R ∈ τ . For example, we view a directed
graph as a structure G = (G,EG) whose vocabulary consists of one binary relation
symbol E. G = (G,EG) is an (undirected) graph if EG is symmetric. For graphs,
we often write {a, b} ∈ EG instead of (a, b) ∈ EG . In this paper, we consider only
structures whose universe is finite. We distinguish between the size of the universe A
of a τ -structure A, which we denote by |A|, and the size of A, which is defined to be

‖A‖ = |τ |+ |A|+
∑
R∈τ

|RA| · arity(R).

An expansion of a τ -structure A to a vocabulary τ ′ ⊇ τ is a τ ′-structure A′ with
A′ = A and RA′

= RA for all R ∈ τ .
A substructure of A is a structure B with B ⊆ A and RB ⊆ RA for all R ∈ τ .1

A homomorphism from a τ -structure A to a τ -structure B is a mapping h : A → B,
where for all R ∈ τ , say, of arity r, and all tuples (a1, . . . , ar) ∈ RA we have(
h(a1), . . . , h(ar)

) ∈ RB. An embedding is a homomorphism that is one-to-one.
The homomorphism problem asks whether there is a homomorphism from a given

structure A to a given structure B. We parameterize this problem by the size of A
and denote the resulting parameterized homomorphism problem by p-Hom. We will
also consider the parameterized embedding problem, denoted by p-Emb, and the pa-
rameterized substructure problem (Does structure B have a substructure isomorphic
to A?), denoted by p-Sub. Of course when considered as decision problems, p-Emb

and p-Sub are equivalent, but as counting problems they are slightly different. All
three decision problems are complete for the class W[1] under parameterized many-one
reductions [13].

2.3. Logic and descriptive complexity. Let us remark that the following
notions are not needed for understanding our results on the hardness of counting
cycles and paths or their proofs.

The formulas of first-order logic are built up from atomic formulas using the usual
Boolean connectives and existential and universal quantification over the elements of
the universe of a structure. Remember that an atomic formula, or atom, is a formula of
the form x = y or Rx1 . . . xr, where R is an r-ary relation symbol and x, y, x1, . . . , xr
are variables. A literal is either an atom or a negated atom. The vocabulary of
a formula ϕ is the set of all relation symbols occurring in ϕ. A free variable of a
formula ϕ is a variable that is not bound by any existential or universal quantifier
of ϕ.

If A is a τ -structure, a1, . . . , an are elements of the universe A of A, and
ϕ(x1, . . . , xn) is a formula whose vocabulary is a subset of τ and whose free vari-
ables are x1, . . . , xn, then we write A |= ϕ(a1, . . . , an) to denote that A satisfies ϕ if
the variables x1, . . . , xn are interpreted by a1, . . . , an, respectively. We let

ϕ(A) :=
{
(a1, . . . , an) ∈ An

∣∣ A |= ϕ(a1, . . . , an)
}
.

1Note that in logic, substructures are usually required to satisfy the stronger condition RB =
RA ∩ Ar, where r is the arity of R. Our notion of substructure is the direct generalization of the
standard graph theoretic notion of subgraph. Since we are dealing mainly with graphs, this seems
appropriate. A similar remark applies to our notion of embedding.
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To get a uniform notation, we let A0 be a one-point space and identify ∅ with false

and A0 with true. Then for a sentence ϕ (i.e., a formula without free variables), we
have A |= ϕ ⇐⇒ ϕ(A) = true. Furthermore, if the vocabulary of the formula ϕ is
not contained in the vocabulary of A, then we let ϕ(A) = ∅.

For every class Φ of formulas, we let Φ[τ ] be the class of all ϕ ∈ Φ whose vo-
cabulary is contained in τ . We let both Σ0 and Π0 be the class of all quantifier-free
first-order formulas (although we usually use Π0 to denote this class). For t ≥ 1, we
let Σt be the class of all first-order formulas of the form ∃x1 . . .∃xk ψ, where k ∈ N

and ψ ∈ Πt−1. Analogously, we let Πt be the class of all first-order formulas of the
form ∀x1 . . .∀xk ψ, where k ∈ N and ψ ∈ Σt−1.

We have to define two additional hierarchies (Σt,u)t≥1 and (Πt,u)t≥1 for every
fixed u ≥ 1. Again we let Σ0,u = Π0,u = Π0. We let Π1,u be the class of all first-order
formulas of the form ∀x1 . . .∀xk ψ, where k ≤ u and ψ ∈ Π0. For t ≥ 2, we let Πt,u

be the class of all first-order formulas of the form ∀x1 . . .∀xk1
∃y1 . . .∃yk2 ψ, where

k1, k2 ≤ u and ψ ∈ Πt−2,u. For t ≥ 1, we let Σt,u be the class of all first-order formulas
of the form ∃x1 . . .∃xk ψ, where k ∈ N and ψ ∈ Πt−1,u. Note the asymmetry in the
definitions of Πt,u and Σt,u—the length of the first quantifier block in a Σt,u-formula
is not restricted.

Definability of parameterized problems I: Model-checking problems. We can use
logic to define certain generic families of parameterized problems. For a class Φ of
formulas, the model-checking problem for Φ is the problem of deciding whether for a
given structure A and a given formula ϕ ∈ Φ we have ϕ(A) �= ∅. We parameterize this
problem by the length of the formula ϕ and obtain the parameterized model-checking
problem p-MC(Φ).

Many parameterized problems can be naturally translated into model-checking
problems. For example, the parameterized clique problem is essentially the same as
the parameterized model-checking problem for the class

ΦCLIQUE =

{ ∧
1≤i<j≤k

(Exixj ∧ xi �= xj)

∣∣∣∣∣ k ≥ 1

}
.

Model-checking problems provide another basis for the W-hierarchy: For every t ≥ 1,
W[t] is the class of all problems that are reducible to p-MC(Σt,1[τ ]) for some vocab-
ulary τ by a parameterized many-one reduction [14, 15]. Observe, furthermore, that
for all t ≥ 1 the problems p-MC(Σt,1) and p-MC(Πt−1,1) are easily reducible to each
other, because for every formula

ϕ(x1, . . . , xk) = ∃y1 . . .∃yl ψ(x1, . . . , xk, y1, . . . , yl)

and every structure A we have ϕ(A) �= ∅ if and only if ψ(A) �= ∅. This explains why
the hierarchies (Σt,u)t≥1 and (Πt,u)t≥1 are defined asymmetrically.

Definability of parameterized problems II: Fagin-definability. There is a sec-
ond way of defining parameterized problems that has been dubbed Fagin-definability
in [15]. Let ϕ be a sentence of vocabulary τ ∪ {X}, where X is a relation symbol not
contained in τ . We view X as a relation variable; to illustrate this we usually write
ϕ(X) instead of just ϕ. Let r be the arity of X. For a τ -structure A we let

ϕ(A) =
{
R ⊆ Ar

∣∣ (A, R) |= ϕ
}
,

where (A, R) denotes the τ ∪{X}-expansion of A with X(A,R) = R. For example, let
X be unary and

ϕVC(X) = ∀y∀z(Eyz → (Xy ∨Xz)).
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1 Initialize S ⊆ Pow(G) by S := {∅}
2 for all {a, b} ∈ EG do
3 for all S ∈ S do
4 if S ∩ {a, b} = ∅ then
5 S := S \ {S}
6 if |S| < k then S := S ∪ {S ∪ {a}, S ∪ {b}}.
7 output S.

Algorithm 1

Then for a graph G, ϕVC(G) is the set of all vertex covers of G.
With each formula ϕ(X) we associate a parameterized problem p-FD(ϕ(X)) which

asks whether for a given structure A, the set ϕ(A) contains a relation with k elements
(where k is the parameter). We call p-FD(ϕ(X)) the problem Fagin-defined by ϕ(X).

For example, p-FD(ϕVC(X)) is precisely the parameterized vertex cover problem.

3. Tractable parameterized counting problems. A parameterized counting
problem is simply a function F : Σ∗ × N → N, for some alphabet Σ. Arguably, this
definition includes problems that we would not intuitively call counting problems, but
there is no harm in including them.

Definition 3.1. A parameterized counting problem F : Σ∗ × N → N is fixed-
parameter tractable, or F ∈ FPT, if there is an algorithm computing F (x, k) in time
f(k) · |x|c for some computable function f : N→ N and some constant c ∈ N.

The standard example of a fixed-parameter tractable decision problem is the
parameterized version of the vertex cover problem. As a first example, we observe
that the corresponding counting problem is also fixed-parameter tractable, as shown
in the following example.

Example 3.2. The parameterized vertex cover counting problem

p-#VC
Input: Graph G.

Parameter: k ∈ N.
Problem: Count the number of vertex covers of G of

size k.

is fixed-parameter tractable.
Proof. Essentially, Algorithm 1 is the standard procedure showing that the pa-

rameterized vertex cover problem is fixed-parameter tractable. It yields, given a
graph G = (G,EG) as input and k ∈ N as parameter, a set S of subsets of cardinality
≤ k of G in time O(2k · ‖G‖) such that for the set VCk(G) of vertex covers of G of
cardinality k we have

VCk(G) = {X ⊆ G | |X| = k and S ⊆ X for some S ∈ S}.

Now, we can compute |VCk(G)| by applying the inclusion-exclusion principle to the
sets

{X ⊆ G | |X| = k and S ⊆ X}

for S ∈ S.



PARAMETERIZED COUNTING COMPLEXITY 899

We could now go through a list of known fixed-parameter tractable problems
and check if the corresponding counting problems are also fixed-parameter tractable.
Fortunately, this boring task can largely be avoided, because there are a few general
principles underlying most fixed-parameter tractability results. They are formulated
in the terminology of descriptive complexity theory.

(1) Problems definable in monadic second-order logic are fixed-parameter trac-
table when parameterized by tree-width of the structure (Courcelle [9]). This
accounts for the fixed-parameter tractability of NP-complete problems such as
3-Colorability or Hamiltonicity when parameterized by the tree-width
of the input graph.

(2) Parameterized problems that can be described as model-checking problems
for first-order logic are fixed-parameter tractable on classes of structures of
bounded local tree-width and classes of graphs with excluded minors (Frick
and Grohe [17], Flum and Grohe [15]). This implies that parameterized
versions of problems such as dominating set, independent set, or subgraph
isomorphism are fixed-parameter tractable on planar graphs or on graphs of
bounded degree.

(3) Parameterized problems that are Fagin-definable by a first-order formula
ϕ(X), where X does not occur in the scope of a negation symbol or exis-
tential quantifier, are fixed-parameter tractable (Cai and Chen [7], Flum and
Grohe [15]). This accounts for the fixed-parameter tractability of the standard
parameterization of minimization problems in the classes MIN F+Π1 [21], for
example, minimum vertex cover.

(4) Parameterized problems that can be described as parameterized model-checking
problems for Σ1-formulas of bounded tree-width are fixed-parameter tractable
(Flum and Grohe [15]). This implies, and is actually equivalent to, the re-
sults that the parameterized homomorphism problem and the parameterized
embedding problem for relational structures of bounded tree-width are fixed-
parameter tractable.

Let us consider the counting versions of these general “meta-theorems.” It has al-
ready been proved by Arnborg, Lagergren, and Seese [4] that the counting version
of (1) holds. Variants and extensions of this result have been proved by Courcelle,
Makowsky, and Rotics [10] and Makowsky [22]. Frick proved that (most of) (2) also
extends to counting problems [16]. We shall see below that (3) also extends to counting
problems. (4) is more problematic. While the counting version of the parameterized
homomorphism problem for structures of bounded tree-width is fixed-parameter trac-
table (actually in polynomial time), the general equivalence between homomorphism,
embedding, and model-checking for Σ1 breaks down for counting problems. This is
the point where counting shows some genuinely new aspects, and in some sense, most
of this paper is devoted to this phenomenon.

Let us turn to (3), the Fagin-definable problems. For a formula ϕ(X), we let
p-#FD(ϕ(X)) denote the natural counting version of the problem p-FD(ϕ(X)) Fagin-
defined by ϕ(X). Recalling the formula ϕVC(X) that Fagin-defines the parameterized
vertex cover problem, we see that the following proposition generalizes Example 3.2.

Proposition 3.3. Let ϕ(X) be a first-order formula in which X does not occur in
the scope of an existential quantifier or negation symbol. Then p-#FD(ϕ(X)) ∈ FPT.

Proof. Let X be of arity r. As for the vertex cover problem one obtains an FPT-
algorithm (cf. [15]) that, given a structure A and k ∈ N, yields a set S of subsets of
cardinality ≤ k of Ar such that
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{X ⊆ Ar | |X| = k and A |= ϕ(X)} = {X ⊆ Ar | |X| = k and S ⊆ X for some S ∈ S}.
Again, an application of the inclusion-exclusion principle allows us to compute the
cardinality of the set on the right-hand side.

This implies that the counting versions of the standard parameterizations of all
minimization problems in the class MIN F+Π1 are fixed-parameter tractable.

As we have mentioned, the situation with item (4) in the list above is more compli-
cated. The core problem for which counting remains tractable is the homomorphism
problem for graphs of bounded tree-width. Again, the algorithm showing tractability
can best be illustrated by an example.

Example 3.4. The number of homomorphisms from a given colored tree T to a
given colored graph G can be computed in polynomial time.

This can be done by a simple dynamic programming algorithm. Starting from the
leaves, for every vertex t of the tree we compute a table that stores, for all vertices v
of the graph, the number H(t, v) of homomorphisms h from Tt, the induced colored
subtree rooted at t, to G with h(t) = v. Then the total number of homomorphisms
from T to G is

∑
v∈GH(r, v), where r is the root of T .

If t is a leaf, then H(t, v) = 1 if t and v have the same color and H(t, v) = 0
otherwise. If t has children t1, . . . , tl, then if t and v have the same color we have

H(t, v) =

l∏
i=1

∑
w∈G

w adjacent to v

H(ti, w).

If t and v have distinct colors, we have H(t, v) = 0.
The previous example can easily be generalized to structures of bounded tree-

width. We just state the result, omit a definition of tree-width, and omit the proof,
which is a straightforward generalization of the example.

Proposition 3.5. Let w ≥ 1. Then the following restriction of the homomor-
phism problem is in polynomial time:

Input: Structure A of tree-width at most w, structure B.
Problem: Count the homomorphisms from A to B.

For a class Φ of formulas, we let p-#(Φ) denote the counting version of the model-
checking problem p-MC(Φ) (“given A and ϕ ∈ Φ, compute |ϕ(A)|, parameterized
by |ϕ|”).

With every first-order formula ϕ we associate a graph Gϕ as follows: The vertices
of Gϕ are the variables of ϕ, and there is an edge between two vertices if they occur
together in an atomic subformula of ϕ. The tree-width of a formula ϕ is the tree-
width of Gϕ. For a class Φ of formulas and w ≥ 1, we let Φ[tww] denote the class
of all formulas in Φ of tree-width at most w. Recall that Π0 denotes the class of all
quantifier-free formulas.

Proposition 3.6. For every w ≥ 1 we have p-#(Π0[tww]) ∈ FPT.
Proof. We can effectively transform every ϕ(x̄) ∈ Π0[tww] into an equivalent

ψ(x̄) ∈ Π0[tww] in disjunctive normal form, ψ(x̄) = ψ1(x̄) ∨ · · · ∨ ψr(x̄), where each
ψi(x̄) is a conjunction of literals and where ψi(x̄) ∧ ψj(x̄) is unsatisfiable for all i, j
with i �= j. Note that this transformation does not change the tree-width of the
formula because the set of atomic subformulas remains unchanged. Then for every
structure A we have

|ψ(A)| = |ψ1(A)|+ · · ·+ |ψr(A)|.
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Thus we can restrict our attention to formulas in Π0[tww] that are conjunctions of
literals. Since every literal of a formula whose underlying graph has tree-width at
most w contains at most w + 1 variables, by standard techniques (cf. the proof of
Theorem 4.4) the counting problem for such formulas can be reduced to the counting
version of the homomorphism problem for structures of tree-width at most w, which
is in polynomial time by Proposition 3.5.

Remark 3.7. Note that although its core is a reduction to Proposition 3.5, the
proof of the previous proposition does not yield a polynomial time algorithm. The
reason is that the transformation of a formula to an equivalent formula in disjunctive
normal form is not polynomial.

Indeed, it is easy to see that the unparameterized counting problem for quantifier-
free formulas of tree-width 0 is #P-complete.

Clearly, if p-MC(Φ) is fixed-parameter tractable, then so is p-MC(Φ∗), where Φ∗

is the closure of Φ under existential quantification. Thus in particular, for w ≥ 1 the
problem p-MC(Σ1[tww]) is fixed-parameter tractable. The situation is different for
the counting problems: The formula

ϕ(x1, . . . , xk) := ∃y
k∧

i=1

(¬Eyxi ∧ ¬y = xi)

is a Σ1-formula of tree-width 1. For all graphs G, the set ϕ(G) is the set of all tuples
(a1, . . . , ak) of vertices of G such that {a1, . . . , ak} is not a dominating set. Thus G
has a dominating set of size at most k if and only if |ϕ(G)| < nk, where n is the
number of vertices of G. Since the parameterized dominating set problem is complete
for the class W[2], this implies the following:

Proposition 3.8. If W[2] �= FPT, then p-#(Σ1[tww]) /∈ FPT.

4. Classes of intractable problems.
Example 4.1. Valiant’s [29] fundamental theorem states that counting the number

of perfect matchings of a bipartite graph is #P-complete (whereas deciding whether
a perfect matching exists is in P). We consider a trivial parameterization of the
matching problem, which is obtained by adding a “dummy” parameter as follows:

Input: Bipartite Graph G.
Parameter: k ∈ N.

Problem: Decide if G has a perfect matching.

Clearly, this problem is in polynomial time and thus fixed-parameter tractable.
On the other hand, its counting version (“Count the perfect matchings of G”) cannot
be fixed-parameter tractable unless P = #P. The reason for this is that the problem
is already #P-complete for the fixed parameter value k = 1, but if it were fixed-
parameter tractable it would be in polynomial time for any fixed parameter value.

Of course this example is quite artificial. We are more interested in the question
of whether natural parameterized counting problems are fixed-parameter tractable.
As examples of such natural problems we mention p-#Clique (“Count cliques of
size k in a graph, where k is the parameter”), p-#Dominating Set (“Count domi-
nating sets of size k”), p-#Cycle (“Count cycles of size k”), or, as a more natural
parameterization of the matching problem, p-#Matching (“Count the matchings of
size k in a bipartite graph”). An argument such as the one in Example 4.1 cannot be
used to show that any of these problems is not fixed-parameter tractable, because for
any fixed parameter value k the problems are in polynomial time.
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Recall that the decision problems p-Clique and p-Dominating Set are com-
plete for the classes W[1] and W[2], respectively, so the counting problems cannot be
fixed-parameter tractable unless W[1] = FPT (W[2] = FPT, respectively). We will
define classes #W[t] of counting problems and show for a few central W[1]-complete
and W[2]-complete problems that their counting versions are #W[1]-complete (#W[2]-
complete, respectively). More interestingly, in the next section we shall prove that
p-#Cycle and a number of similar problems whose decision versions are fixed-
parameter tractable are complete for #W[1].

Definition 4.2. Let F : Σ∗ × N → N and G : Π∗ × N → N be parameterized
counting problems.

(1) A parameterized parsimonious reduction from F to G is an algorithm that
computes for every instance (x, k) of F an instance (y, �) of G in time
f(k) · |x|c such that � ≤ g(k) and

F (x, k) = G(y, �)

(for computable functions f, g : N→ N and a constant c ∈ N).
We write F ≤fp

pars G to denote that there is a parameterized parsimonious
reduction from F to G.

(2) A parameterized T-reduction from F to G is an algorithm with an oracle
for G that solves any instance (x, k) of F in time f(k) · |x|c in such a way
that for all oracle queries the instances (y, �) satisfy � ≤ g(k) (for computable
functions f, g : N→ N and a constant c ∈ N).

We write F ≤fp
T G to denote that there is a parameterized T-reduction from

F to G.
Obviously, if F ≤fp

pars G, then F ≤fp
T G. An easy computation shows that if

G ∈ FPT and F ≤fp
T G, then F ∈ FPT.

For a class Θ of propositional formulas, we let #WSat(Θ) be the counting version
of the weighted satisfiability problem for Θ (“Count the weight k satisfying assign-
ments for a formula θ ∈ Θ”). We define the counting analogue of the W-hierarchy in
the following straightforward way:

Definition 4.3. For t ≥ 1, #W[t] is the class of all parameterized counting
problems that are fixed-parameter parsimonious reducible to #WSat(Γt,d), for some
d ≥ 0.

The notation #W[t] may be slightly misleading when compared with the notation
#P of classical complexity theory (which is not #NP), but since there is no obvious
#FPT, we think that it is appropriate. Note that we write FPT to denote both the
class of fixed-parameter tractable decision problems and the class of fixed-parameter
tractable counting problems; the intended meaning will always be clear from the
context.

4.1. #W[1]-complete problems.
Theorem 4.4. The following problems are complete for #W[1] under parame-

terized parsimonious reductions:
(1) #WSat(2-CNF),
(2) p-#Clique, p-#Sub, p-#Hom, p-#Emb,
(3) p-#(Π0[τ ]) for every vocabulary τ that is not monadic,
(4) p-#Halt (“Count the k-step accepting computation paths of a nondetermin-

istic Turing machine”).
Proof. Basically, the proof of these results amounts to checking that the many-one

reductions proving the W[1]-completeness of the corresponding decision problems are
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parsimonious (or can be made parsimonious by simple modifications). Some of these
reductions are quite simple, and we can sketch them here. For those that are more
complicated, we just give appropriate references.

A conjunctive query is a first-order formula of the form ∃x1 . . .∃xk(α1 ∧ · · · ∧α�),
where α1, . . . , α� are atoms. In particular, a quantifier-free conjunctive query is just
a conjunction of atoms. We denote the class of all conjunctive queries by CQ and the
class of all quantifier-free conjunctive queries by Π0-CQ. If Φ is a class of formulas,
then Φ[binary] is the class of all formulas ϕ ∈ Φ whose vocabulary is at most binary.

We will first establish the following chain of reductions:

p-#(Π0-CQ) ≤fp
pars p-#Hom ≤fp

pars p-#Emb ≤fp
pars p-#(Π0-CQ).(4.1)

p-#(Π0-CQ) ≤fp
pars p-#Hom: With every formula ϕ(x1, . . . , xk) ∈ Π0-CQ of

vocabulary τ we associate a τ ∪ {EQ}-structure Aϕ, where EQ is a binary relation
symbol not contained in τ . The universe of Aϕ is {x1, . . . , xk}, the set of variables
of ϕ. For R ∈ τ , say, r-ary, RAϕ is the set of all tuples (xi1 , . . . , xir ) such that
Rxi1 . . . xir is an atom of ϕ. Moreover, EQAϕ is the set of all pairs (xi1 , xi2) such that
xi1 = xi2 is an atom of ϕ. Note that ‖Aϕ‖ ∈ O(|ϕ|).

For a τ -structure B we let BEQ be the τ ∪ {EQ}-expansion of B in which EQ
is interpreted by the equality relation on B. Then it is easy to see that for all
(b1, . . . , bk) ∈ Bk we have (b1, . . . , bk) ∈ ϕ(B) if and only if the mapping xi �→ bi, for
1 ≤ i ≤ k, is a homomorphism from Aϕ to B. This yields a parsimonious reduction
from p-#(Π0-CQ) to p-#Hom.

p-#Hom ≤fp
pars p-#Emb: Suppose we have structures A and B and want to

count the homomorphisms from A to B. Let τ be the vocabulary of A and B and
τ∗ = τ ∪ {Pa | a ∈ A}, where for every a ∈ A, Pa is a new unary relation symbol that
is not contained in τ . Let A∗ be the τ∗-expansion of A with Pa = {a} for a ∈ A. We
can view A∗ as the expansion of A where each element gets its individual color. We
let B∗ be the following τ∗-structure: The universe of B∗ is A × B. For r-ary R ∈ τ
and (a1, b1), . . . , (ar, br) ∈ A × B we let

(
(a1, b1), . . . , (ar, br)

) ∈ RB∗
if and only if

(b1, . . . , br) ∈ RB. For a ∈ A let PB∗
a = {a} ×B. For a homomorphism h : A → B we

let h∗ : A∗ → B∗ be the mapping defined by h∗(a) = (a, h(a)). It is easy to see that
the mapping h �→ h∗ is a bijection between the homomorphisms from A to B and the
embeddings from A∗ to B∗.

p-#Emb ≤fp
pars p-#(Π0-CQ): For every τ -structure A we define a formula ϕA ∈

Π0-CQ of vocabulary τ∪{NEQ}, where NEQ is a new binary relation symbol. Suppose
that A = {a1, . . . , ak}. The formula ϕA has variables x1, . . . , xk. For every r-ary
R ∈ τ and every tuple (ai1 , . . . , air ) ∈ RA, ϕA contains the atom Rxi1 . . . xir . In
addition, ϕA contains the atoms NEQxixj for 1 ≤ i < j ≤ k.

For a τ -structure B we let BNEQ be the τ ∪{NEQ}-expansion of B in which NEQ
is interpreted by the inequality relation on B. Then it is easy to see that for all
mappings h : A → B we have that h is an embedding of A into B if and only if(
h(a1), . . . , h(ak)

) ∈ ϕA(B).
Next, we establish the following chain of reductions (for every d ≥ 1):

#WSat(Γ1,d) ≤fp
pars p-#(Π0-CQ) ≤fp

pars p-#(Π0-CQ[binary])

≤fp
pars p-#Clique ≤fp

pars #WSat(2-CNF) ≤fp
pars #WSat(Γ1,1).

(4.2)

Together with (4.1), this proves the #W[1]-completeness of all problems listed in
(1) and (2) except p-#Sub.
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#WSat(Γ1,d) ≤fp
pars p-#(Π0-CQ): The proof of Lemma 21 in [19] showing that

WSat(Γ1,d) is fixed-parameter many-one reducible to p-MC(CQ) yields a parsimo-
nious reduction from #WSat(Γ1,d) to p-#(Π0-CQ).

p-#(Π0-CQ) ≤fp
pars p-#(Π0-CQ[binary]): The proof of Lemma 17 in [19] showing

that p-MC(CQ) is fixed-parameter many-one reducible to p-MC(CQ[binary]) yields
the claimed parsimonious reduction. Here and in later proofs we use (variants of) the
following observation: Let ϕ(x̄) and ψ(x̄, ȳ) be formulas and A a structure. If for all
tuples ā ∈ A we have

A |= ϕ(ā) ⇐⇒ A |= ∃ȳψ(ā, ȳ),

and for all tuples ā ∈ A there exists at most one tuple b̄ ∈ A such that A |= ψ(ā, b̄),
then |ϕ(A)| = |ψ(A)|.

p-#(Π0-CQ[binary]) ≤fp
pars p-#Clique: The reduction in Proposition 22 of [19]

is parsimonious.

p-#Clique ≤fp
pars #WSat(2-CNF): Let G be a graph. For every a ∈ G let Xa

be a propositional variable. Set

αG =
∧

a,b∈G, a �=b, (a,b)/∈EG
(¬Xa ∨ ¬Xb) ∧

∧
a∈G

(Xa ∨ ¬Xa).

Then αG is (equivalent to) a formula in 2-CNF. The second part of the formula
ensures that every variable Xa with a ∈ G occurs in αG . The number of cliques of
size k is just the number of assignments of weight k satisfying αG .

#WSat(2-CNF) ≤fp
pars #WSat(Γ1,1): 2-CNF is a subset of Γ1,1, so the reduction

is trivial.

This completes the proof of (4.2). We next show (3). Let τ be a vocabulary that
is not monadic. We leave it to the reader to show that p-#Clique ≤fp

pars p-#(Π0[τ ]).

p-#(Π0[τ ]) ≤fp
pars p-#(Π0-CQ): Let A be a τ -structure and ϕ ∈ Π0[τ ]. We can

assume that ϕ = ϕ1∨· · ·∨ϕm, where each ϕi is a conjunction of literals and ϕi∧ϕj is
unsatisfiable for all i �= j. Let τ ′ := τ ∪{R̄ | R ∈ τ}∪{EQ,NEQ}, where for all R ∈ τ
the symbol R̄ is a new relation symbol of the same arity as R and EQ,NEQ are new
binary relation symbols. Let A′ be the τ ′-expansion of A in which R̄ is interpreted as
the complement of RA and EQ and NEQ are interpreted as equality and inequality,
respectively. Since the vocabulary is fixed, A′ can be computed from A in polynomial
time. If n is the size of the universe of A, then computing the relations EQA′

and
NEQA′

requires quadratic time, and for an r-ary R ∈ τ , computing R̄A′
= Ar \ RA

requires time O(nr).

Let ϕ′ be the formula obtained by replacing positive literals of the form x = y
by EQxy and by replacing negative literals by positive ones in the obvious way using
the new relation symbols R̄ and NEQ. Then ϕ′ = ϕ′

1 ∨ · · · ∨ ϕ′
m, where each ϕ′

i is a
conjunction of atoms (i.e., positive literals). Note that ϕ(A) = ϕ′(A′) and

for ā ∈ A′ there is at most one i with A′ |= ϕ′
i(ā).(4.3)

Finally we want to get rid of the disjunctions in ϕ′. For this purpose we introduce a
structure A′′ essentially consisting of m copies of A′, the ith one taking care of ϕ′

i.

More precisely, let τ ′′ := {R̂ | R ∈ τ ′} ∪ {<,T}, where arity(R̂) = arity(R) + 1 and
where < and T are binary. Define the τ ′′-structure A′′ by
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A′′ := {1, . . . ,m} ∪ ({1, . . . ,m} ×A),

<A′′
:= the natural ordering on {1, . . . ,m},

TA′′
:= {((i, a), (i, b)) | 1 ≤ i ≤ m, a, b ∈ A},

R̂A′′
:= {(i, (i, a1), . . . , (i, aarity(R))) | 1 ≤ i ≤ m, RA′

a1 . . . aarity(R)}
∪ {(i, (j, a1), . . . , (j, aarity(R))) | 1 ≤ i, j ≤ m, i �= j, a1, . . . , aarity(R) ∈ A}.

Moreover, set

ϕ′′(x1, . . . , xk, y1, . . . , ym) := y1 < · · · < ym ∧
∧

1≤�≤�′≤k

Tx�x�′ ∧
m∧
i=1

ϕ′
i
R̂yiz̄
Rz̄ ,

where ϕ′
i
R̂yiz̄
Rz̄ is obtained from ϕ′

i by replacing, for all R ∈ τ ′, atomic subformulas of

the form Rz̄ by R̂yiz̄. Clearly, ϕ(x̄, ȳ) ∈ Π0-CQ. By (4.3), we have |ϕ(A)| = |ϕ′′(A′′)|.
Next, we prove the #W[1]-completeness of p-#Sub. We observe that the number

of substructures of a structure B that are isomorphic to a structure A equals the
number of embeddings of A into B divided by the number of automorphisms of A.
Unfortunately, this does not immediately yield a parsimonious reduction from p-#Sub

to p-#Emb or vice versa. However, p-#Clique is a restriction of p-#Sub; thus we
have p-#Clique ≤fp

pars p-#Sub.
To prove that p-#Sub is in #W[1], we reduce p-#Sub to p-#Emb. Let A,B be

τ -structures and let < be a binary relation symbol not contained in τ . Let us call a
τ ∪{<}-structure C, in which <C is a linear order of the universe, an ordered τ ∪{<}-
structure. Let A1, . . . ,Am be a list of expansions of A to ordered τ ∪ {<}-structures
such that

(i) for 1 ≤ i < j ≤ m, the structures Ai and Aj are not isomorphic,
(ii) every expansion A′ of A to an ordered τ ∪ {<}-structure is isomorphic to an
Ai for some i, 1 ≤ i ≤ m.

Thus A1, . . . ,Am is a list of all ordered expansions of A, where each isomorphism
type is listed only once.

Let B< be an arbitrary expansion of B to an ordered τ ∪ {<}-structure. Then∣∣∣{A′ ⊆ B ∣∣ A′ ∼= A}∣∣∣ = m∑
i=1

∣∣∣{A′ ⊆ B<
∣∣ A′ ∼= Ai

}∣∣∣.
Moreover, for each i the number of substructures of B< isomorphic to Ai is equal to
the number of embeddings of Ai into B<.

Let ≺ be another binary relation symbol not contained in τ ∪ {<} and let τ∗ =
τ ∪ {<,≺}. Let A∗ be the τ∗-structure obtained by taking the disjoint union of
A1, . . . ,Am and defining ≺A such that for all ai ∈ Ai, aj ∈ Aj we have ai ≺A∗

aj if
and only if i < j. For 1 ≤ i ≤ m, let B∗i be the τ∗-structure obtained by replacing
the copy of Ai in A∗ by a copy of B<. Then the number of embeddings of A∗ into B∗i
is equal to the number of embeddings of Ai into B<. Finally let B∗ be the disjoint
union of B∗1 , . . . ,B∗m. Then the number of embeddings of A∗ into B∗ is equal to the
sum of the numbers of embeddings of A∗ into B∗i for 1 ≤ i ≤ m. Putting everything
together, the number of substructures of B isomorphic to A is equal to the number
of embeddings of A∗ into B∗.

It remains to prove #W[1]-completeness of p-#Halt. The proof of Theorem
8.3 in [15] implicitly contains parsimonious reductions from p-#(Π0-CQ[binary]) to
p-#Halt and from p-#Halt to p-#(Π0-CQ).
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The decision versions of all problems mentioned in Theorem 4.4 are W[1]-complete
under parameterized many-one reductions. The following theorem is interesting be-
cause it is not known whether the decision problem p-MC(Π0) is contained in the
closure of W[1] under parameterized T-reductions.

Theorem 4.5. p-#(Π0) is contained in the closure of #W[1] under parameter-
ized T-reductions.

Proof. We shall prove that p-#(Π0) ≤fp
T p-#(Π0-CQ).

Note that the reduction from p-#(Π0[τ ]) to p-#(Π0-CQ) we gave in the proof of
Theorem 4.4 does not yield a parameterized parsimonious reduction from p-#(Π0) to
p-#(Π0-CQ), because if the vocabulary is not fixed in advance the structure A′ can
get much larger than A.

At least, the same argument as given in the proof of Theorem 4.4 shows that we
can restrict our attention to conjunctions of literals (instead of arbitrary quantifier-free
formulas). Consider a formula

ϕ = α1 ∧ · · · ∧ α� ∧ ¬β1 ∧ · · · ∧ ¬βm,
where α1, . . . , α�, β1, . . . , βm are atoms. The crucial observation is that for any struc-
ture A we have

|ϕ(A)| = ∣∣(α1 ∧ · · · ∧ α� ∧ ¬β1 ∧ · · · ∧ ¬βm−1)(A)
∣∣

− ∣∣(α1 ∧ · · · ∧ α� ∧ ¬β1 ∧ · · · ∧ ¬βm−1 ∧ βm)(A)
∣∣.

Note that the two formulas on the left-hand side of the equality have fewer negated
atoms than ϕ. We can now recursively reduce the number of negated atoms in these
two formulas using the same trick until we end up with a family of quantifier-free
conjunctive queries. This gives us a parameterized Turing reduction from p-#(Π0) to
p-#(Π0-CQ).

4.2. A machine characterization of #W[1]. As it is also the case for many
other parameterized complexity classes, the definition of the classes #W[t] is a bit un-
satisfactory because all the classes are defined only as the closure of a certain problem
under a certain type of reduction. In particular, one may ask why we chose parsimo-
nious reductions and not, say, Turing reductions. Indeed, McCartin [23] defined her
version of the classes #W[t] using a different form of reductions, and that makes the
theory seem a bit arbitrary. Compare this with the situation for the class #P, which
has a natural machine characterization: A classical counting problem F : Σ∗ → N is
in #P if and only if there is a polynomial time nondeterministic Turing machine N
such that for every instance x of the problem, F (x) is the number of accepting paths
of N on input x.

Recently, a machine characterization of the class W[1] was given [8]. In this
subsection, we adapt this characterization to give a characterization of #W[1] along
the lines of the above mentioned characterization of #P.

The machine model we use, which has been introduced in [8], is based on the stan-
dard random access machines (RAMs) described in [25]. The arithmetic operations
are addition, subtraction, and division by 2 (rounded off), and we use a uniform cost
measure. The model is nonstandard when it comes to nondeterminism. A nondeter-
ministic RAM is a RAM with an additional instruction “GUESS i j” whose semantics
is “guess a natural number less than or equal to the number stored in register i and
store it in register j.” Acceptance of an input by a nondeterministic RAM program
is defined as usually for nondeterministic machines. Steps of a computation of a
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nondeterministic RAM that execute a GUESS instruction are called nondeterministic
steps.

Following [8], we call a nondeterministic RAM program P a W-program, if there
is a computable function f and a polynomial p such that for every input (x, k) with
|x| = n the program P on every run

(1) performs at most f(k) · p(n) steps;
(2) performs at most f(k) nondeterministic steps;
(3) uses at most the first f(k) · p(n) registers;
(4) contains numbers ≤ f(k) · p(n) in all registers at any time.

We call a W-program P a W[1]-program if there is a computable function h such that
for every input (x, k), for every run of P

(5) all nondeterministic steps are among the last h(k) steps.
Theorem 4.6 (Chen, Flum, and Grohe [8]). Let Q ⊆ Σ∗×N be a parameterized

decision problem. Then Q ∈W[1] if and only if there is a W[1]-program deciding Q.
The main result of this section is a counting version of Theorem 4.6.
Theorem 4.7. Let F : Σ∗ × N→ N be a parameterized counting problem. Then

F ∈ #W[1] if and only if there is a W[1]-program P such that, for all (x, k) ∈ Σ∗×N,
F (x, k) is the number of accepting paths of P on input (x, k).

Proof. First assume that F ∈ #W[1]. Then, by Theorem 4.4, there is a parsi-
monious reduction from F to p-#Halt. Hence, there are computable functions f, g,
a polynomial p, and an algorithm assigning to every instance (x, k) of F , in time
≤ f(k) · p(n), a nondeterministic Turing machine M = Mx,k and a natural number
k′ = k′(x, k) ≤ g(k) such that F (x, k) is the number of accepting paths of M of
length k′.

We can assume that the states and the symbols of the alphabet of M are natural
numbers ≤ f(k) · p(n). We define a W-program P that on input (x, k) ∈ Σ∗ × N

proceeds as follows:
1. It computes M and k′;
2. It guesses a sequence of k′ configurations of M ;
3. It verifies that the sequence of guessed configurations forms an accepting

computation of M .
We can do this, in particular line 1, with a W-program using our parameterized
parsimonious reduction from F to p-#Halt. Moreover, the number of steps needed
by lines 2 and 3 is bounded by h(k) for a suitable computable function h. Finally, the
number of accepting paths of P is exactly the number of accepting paths of M .

Assume now that we have a W[1]-program P such that for all (x, k) ∈ Σ∗ × N,
F (x, k) is the number of accepting paths of P on input (x, k). Let f, p, h witness
that P is a W[1]-program. For every instance (x, k) ∈ Σ∗ × N of F we shall define
a nondeterministic Turing machine M = Mx,k and an integer k′ such that F (x, k) is
the number of accepting paths of M of length at most k′. Of course we have to do
this in such a way that the mapping (x, k) �→ (M,k′) is a parameterized reduction.

So let (x, k) ∈ Σ∗ × N and n = |x|. The alphabet of M = Mx,k contains
0, 1, . . . , f(k) · p(n). Thus alphabet symbols can be used to represent register con-
tent and register addresses of all runs of P on input (x, k). In addition, the alphabet
contains a few control symbols. The transition function of M will be defined in
such a way that M simulates the computation of P on input (x, k) from the first
nondeterministic step onwards. The content of all the registers before the first non-
deterministic step is hardwired into M . The changes of the register contents during
the at most h(k) nondeterministic steps are written on the worktape, so eventually
the worktape contains pairs (i1, a1), . . . , (i�, a�) in any order, where (ij , aj) indicates
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that the current content of register ij is aj , and � ≤ h(k). For more details on the
definition of M we refer the reader to [8].

4.3. #W[1] and counting satisfying assignments of a 3-CNF-formula.
The following theorem gives further evidence that #W[1] �= FPT, because it seems
unlikely that counting the satisfying assignments of a 3-CNF-formula with n variables
is possible in time 2o(n). A decision version of this theorem has been proved by
Abrahamson, Downey, and Fellows [1].

Theorem 4.8. If #W[1] = FPT, then there is an algorithm counting the satis-
fying assignments of a 3-CNF-formula with n variables in time 2o(n).

Proof. Suppose that #W[1] = FPT. Then #WSat(3-CNF) is in FPT. Thus
there is an algorithm solving #WSat(3-CNF) in time f(k) · nc for some computable
function f : N→ N and constant c. Then there exists a function g : N→ N such that

(i) f(g(n)) ≤ 2o(n),
(ii) limn→∞ g(n) =∞,
(iii) g(n) can be computed in time 2o(n).
Let γ =

∧m
i=1 δi, where each clause δi is a disjunction of at most three literals,

be a formula in 3-CNF, and let X = {X1, . . . , Xn} be the set of variables of γ. We
assume that no clause appears twice; thus we have m ≤ (2n)3. We want to compute
the number of satisfying assignments of γ in time 2o(n).

Let k = g(n). Note that (ii) implies n/k ≤ o(n); we will use this repeatedly in
the following argument. For 1 ≤ j ≤ k, let

Xj =
{
Xi

∣∣∣ (j − 1) · n
k
< i ≤ j · n

k

}
.

For every S ⊆ Xj , let Y S
j be a new variable. Let Yj be the set of all Y S

j and

Y =
⋃k

j=1 Yj . Then

|Y| ≤ k · 2
n/k� ≤ 2o(n).

Call a truth value assignment to the variables in Y good if for 1 ≤ j ≤ k exactly one
variable in Yj is set to true. There is a bijection I between the truth value assign-
ments to the variables in X and the good truth value assignments to the variables
in Y defined by

I(A)(Y S
j ) = true ⇐⇒ ∀X ∈ Xj :

(
A(X) = true ⇐⇒ X ∈ S),

for all A : X → {true, false}, 1 ≤ j ≤ k, and S ⊆ Xj . Let

β =
∧

1≤j≤k
S,T⊆Xj , S �=T

(¬Y S
j ∨ ¬Y T

j )

and note that |β| ≤ k · (2
n/k�)2 ≤ 2o(n). Observe that the weight k assignments to
the variables in Y satisfying β are precisely the good assignments. Thus there is a
bijection between the weight k satisfying assignments for β and the assignments to
the variables in X .

For 1 ≤ j ≤ k and every variable X ∈ Xj , let

αX =
∧

S⊆Xj , X /∈S

¬Y S
j ,

α¬X =
∧

S⊆Xj , X∈S

¬Y S
j
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and observe that for every assignment A : X → {true, false} we have

A(X) = true ⇐⇒ I(A) satisfies αX

⇐⇒ I(A) does not satisfy α¬X .

Let γ′ be the formula obtained from γ by replacing each literal X by the formula αX

and each literal ¬X by α¬X . Then for every assignment A : X → {true, false} we
have

A satisfies γ ⇐⇒ I(A) satisfies γ′.

By applying de Morgan’s rule to each clause δj of γ (or rather to the disjunction of
conjunctions δj has become in γ′) we can turn γ′ into an equivalent conjunction of at
most

m ·
(
2
n/k�

)3

disjunctions of at most three literals each. Let γ′′ be this 3-CNF-formula and let
γ∗ = β ∧ γ′′. Then I is a bijection between the satisfying assignments of γ and the
weight k satisfying assignments of γ∗.

By our initial assumption, we can compute the number of weight k satisfying
assignments of γ∗ in time f(k) · (n∗)c, where n∗ = |Y| ≤ 2o(n) is the number of
variables of γ∗. Since f(k) = f(g(n)) ≤ 2o(n), this shows that we can compute the
number of satisfying assignments of γ in time 2o(n).

4.4. #W[2]-complete problems.
Theorem 4.9. The following problems are complete for #W[2] under parame-

terized parsimonious reductions:
(1) #WSat(CNF),
(2) p-#Dominating Set,
(3) p-#(Π1,1[τ ]) for every vocabulary τ that is not monadic.
The equivalence between (1) and (3) in Theorem 4.9 can be lifted to the other

classes of the #W-hierarchy, but we deal only with #W[2] here.
Proof of Theorem 4.9. Let Π1,1[s] denote the class of all formulas in Π1,1 whose

vocabulary is at most s-ary. We will establish the following chain of reductions for
every d ≥ 0 and s ≥ 2:

#WSat(Γ2,d) ≤fp
pars p-#(Π1,1[s]) ≤fp

pars p-#Dominating Set ≤fp
pars #WSat(CNF).

Recalling that CNF ⊆ Γ2,0 and observing that p-#Dominating Set ≤fp
pars p-#(Π1,1[τ ])

for every vocabulary τ that is not monadic, we see that this proves the theorem.
#WSat(Γ2,d) ≤fp

pars p-#(Π1,1[2]): By standard means one can show that there
is a d′ depending only on d such that every formula in Γ2,d is equivalent to a formula
of the form

α =
∧
i∈I

δi,

where for some dα ≤ d′ every δi is a disjunction of conjunctions of exactly dα literals,

δi =
∨
j∈Ji

βij
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with

βij = λij1 ∧ · · · ∧ λijdα
.(4.4)

So let such an α, say, with variables X1, . . . , Xn, and a k ∈ N be given. If we have an
assignment of weight k setting Xi1 , . . . , Xik with i1 < · · · < ik true and satisfying βij
as in (4.4), then the positive literals in βij must be among Xi1 , . . . , Xik . Thus for
every negative literal ¬Xr in βij we must have r < i1 or ik < r or is < r < is+1 for
some s. We use this fact in our reduction appropriately.

For m ∈ N set [m] := {1, . . . ,m} and

[m]2 := {(i, j) | 0 ≤ i < j ≤ m+ 1}.
For a set M and m ∈ N denote by Pow≤m(M) := {Y ⊆ M | |Y | ≤ m} the set of
subsets of M of cardinality ≤ m.

We let τ = {<,≺, E,FIRST,LAST, F,DISJ,SAT} with binary <,≺, E, F,SAT
and unary FIRST, LAST, DISJ. Let Aα be the following τ -structure: The universe
is

Aα := [n] ∪ [n]2 ∪ Pow≤dα
([n] ∪ [n]2) ∪ {δi | i ∈ I}.

Recall that I is the index set of the conjunction in the formula α. The selection of
i ∈ [n] means that the variable Xi gets the value true and the selection of (i, j) ∈ [n]2
means that all variables X� with i < � < j get the truth value false.

The relations of Aα are specified by

<Aα := the natural ordering on [n];

≺Aα := a total (“lexicographic”) ordering on Pow≤dα([n] ∪ [n]2);

EAα := {(j, (i, j)) | 0 ≤ i < j ≤ n+ 1} ∪ {(i, (i, j)) | 0 ≤ i < j ≤ n+ 1};
FIRSTAα := {(0, j) | 0 ≤ j ≤ n+ 1};
LASTAα := {(i, n+ 1) | 0 ≤ i ≤ n+ 1};

FAα := {(i,M) | i ∈ [n], M ∈ Pow≤dα([n] ∪ [n]2), i ∈M}
∪ {((i, j),M) | (i, j) ∈ [n]2, M ∈ Pow≤dα([n] ∪ [n]2), (i, j) ∈M};

DISJAα := {δi | i ∈ I};
SATAα := {(M, δi) |M ∈ Pow≤dα

([n] ∪ [n]2), i ∈ I,
there is a j ∈ J i such that for s = 1, . . . , n,

if Xs is a literal of βij , then s ∈M and

if ¬Xs is a literal of βij , then there is (�,m) ∈M with � < s < m}.
Let r := |Pow≤dα([2·k+1])|. Note that ‖Aα‖ ≤ ‖A‖c, where c = c(d), and r ≤ g(d, k)
for some computable function g.

The number of satisfying assignments of α of weight k is |ϕα,k(Aα)|, where
ϕα,k(x1, . . . , xk, z1, . . . , zk+1, u1, . . . , ur) is the Π1,1-formula

ϕα,k = ∀y
(
x1 < · · · < xk ∧

∧k
i=1(Exizi ∧ Exizi+1) ∧ FIRST z1 ∧ LAST zk+1

∧ u1 ≺ · · · ≺ ur ∧
∧r

i=1

(
Fyui →

(∨k
j=1 y = xj ∨

∨k+1
j=1 y = zj

))
∧ (DISJ y → ∨r

j=1 SATujy
))
.
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p-#(Π1,1[s]) ≤fp
pars p-#Dominating Set: For notational simplicity, we assume

s = 2. Let τ be a vocabulary that contains only unary and binary relation symbols.
Assume we are given a τ -structure A with universe A and a Π1,1[τ ]-formula

ϕ(x1, . . . , x�) = ∀yψ(x1, . . . , x�, y).

Let G = (G,EG) be the graph defined as follows: The vertex set is

G := ({1, . . . , �} ×A) ∪̇A� ∪̇ (A× {0})
∪̇ {bji | 1 ≤ i ≤ �, 1 ≤ j ≤ �+ 2}
∪̇ {bj | 1 ≤ j ≤ �+ 2}

(∪̇ denotes disjoint union), where bji and bj are new elements. The edge relation EG

is defined in such a way that

(i) every (a1, . . . , a�) ∈ A� is connected to all elements of {i} × (A \ {ai}) for
1 ≤ i ≤ �;

(ii) for ā ∈ A� and (b, 0) ∈ A× {0}: {ā, (b, 0)} ∈ EG ⇐⇒ A |= ψ(ā, b);
(iii) bji is connected to (i, a) for 1 ≤ i ≤ �, 1 ≤ j ≤ �+ 2, a ∈ A;
(iv) bj is connected to all ā ∈ A� for 1 ≤ j ≤ �+ 2.

We claim that

• Every dominating set of G of cardinality � + 1 contains exactly one element
of each {i}×A, and if we label these elements, say, (i, ai) for 1 ≤ i ≤ �, then
the (�+ 1)st element in the dominating set is (a1, . . . , a�) ∈ A�.

• For all a1, . . . , a� ∈ A,{
(i, ai)

∣∣ 1 ≤ i ≤ �} ∪ {ā} is a dominating set of G ⇐⇒ A |= ϕ(ā).

To see this, suppose that D is a dominating set of G of size � + 1. Then D must
contain at least one vertex of {i} × A for 1 ≤ i ≤ � and one vertex of A�, because
this is the only way the vertices bji and bj , for 1 ≤ j ≤ �+ 2, can be dominated with
� + 1 vertices. Suppose that D contains the vertices (1, a1), . . . , (�, a�). Let d be the
remaining element of D. If d = (d1, . . . , d�) �= (a1, . . . , a�), say, d1 �= a1, then (1, d1)
is not dominated by a1, . . . , a�, d. Therefore, d must be (a1, . . . , a�). However, d must
also dominate A× {0}, and this is possible only if A |= ψ(a1, . . . , a�, b) for all b ∈ A.

Thus |ϕ(A)| is the number of dominating sets of G of cardinality �+ 1. But note
that G is too big for a parameterized reduction, since G contains the set A�, where the
exponent depends on the parameter ϕ. So we need a more refined reduction. We can
assume that ψ(x̄, y) = ψ1 ∧ · · · ∧ ψm where each ψi is a disjunction of literals. Each
literal contains at most two variables. Therefore, we do not need A� but a copy Aij

of A2 for 1 ≤ i < j ≤ �. We replace A� above by all these copies and A × {0} by
A× {1, . . . ,m}. We replace (i) by

(i′) every (ai, aj) in the copy Aij of A2 is connected to all elements of {i} ×
(A \ {ai}) and all elements of {j} × (A \ {aj}).

Furthermore, we replace (ii) by

(ii′) for 1 ≤ i < j ≤ �, (ai, aj) in the copy Aij of A2, and for (b, k) ∈ A×{1, . . . ,m},

{(ai, aj), (b, k)} ∈ EG ⇐⇒ there is a literal λ(xi, xj , y) in ψk whose (at most
two) free variables are among xi, xj , y such that
A |= λ(ai, aj , b).
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Moreover, instead of the bji and the bj we add for every i = 1, . . . , � and for every

copy of A2 a set of �+
(
�
2

)
+ 1 new elements that ensure that every dominating set of

cardinality � +
(
�
2

)
contains exactly one element of every {i} × A and of every copy

of A2.

Then dominating sets of cardinality �+
(
�
2

)
and tuples in A satisfying ϕ are related

in a one-to-one fashion.

p-#Dominating Set ≤fp
pars #WSat(CNF): Let G = (G,EG) be a graph. For

a ∈ G let Xa be a propositional variable. Let αG be the propositional formula

αG :=
∧
a∈G

(
Xa ∨

∨
(a,b)∈E

Xb

)
.

Then, αG is (equivalent to) a formula in Γ2,0. Clearly the number of satisfying assign-
ments of αG of weight k equals the number of dominating sets of G of size k.

Remark 4.10. As opposed to the proof of Theorem 4.4, the reductions given
in the proof of Theorem 4.9 are not just variants of the standard reductions show-
ing the W[2]-completeness of the respective problems under many-one reductions.
As a matter of fact, our proof yields a new proof of the complicated result that
p-Dominating Set is W[2]-complete under parameterized many-one reductions.

5. Counting cycles and paths.

Theorem 5.1. The following problems are #W[1]-complete under parameterized
Turing reductions:

(1) p-#Cycle and p-#DirCycle

(“Count the cycles of length k in a (directed) graph”).
(2) p-#Path and p-#DirPath

(“Count the paths of length k in a (directed) graph”).

To be precise, let us define a path of length k in a directed graph (G,EG) to be
a substructure of G isomorphic to

({1, . . . , k}, {(i, i + 1) | 1 ≤ i < k}). A cycle of

length k is a substructure isomorphic to
({1, . . . , k}, {(i, i+1) | 1 ≤ i < k}∪{(k, 1)}).

Paths and cycles in undirected graphs are defined similarly.

Thus all problems in Theorem 5.1 are restrictions of the substructure problem
p-#Sub and thus in #W[1] by Theorem 4.4. The decision versions of the problems are
fixed-parameter tractable. This is an immediate consequence of Plehn and Voigt’s [26]
theorem that the parameterized embedding problem restricted to graphs of bounded
tree-width is fixed-parameter tractable and the fact that paths have tree-width 1 and
cycles have tree-width 2.

Lemma 5.2.

p-#DirCycle ≤fp
pars p-#Cycle ≤fp

T p-#Path ≤fp
T p-#DirPath.

Proof. p-#DirCycle ≤fp
pars p-#Cycle: For a directed graph G, let Gup,q be the

undirected graph obtained from G by the following two steps:

(1) Replace each vertex a of G by an undirected path of length p such that the
(directed) edges with head a in G get the first vertex of this path as their new
head and the edges with tail a in G get the last vertex of this path as their
new tail.

(2) Replace each directed edge in this graph (corresponding to an edge of G) by
an undirected path of length q.
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Fig. 5.1. A directed graph G and the corresponding Gu2,3.

Figure 5.1 gives an example.
Observe that each cycle in Gup,q has length � · p+m · q for some integers �,m ≥ 0

with � ≤ m. Further observe that each directed cycle of length k in G lifts to a cycle
of length k(p + q) in Gup,q. Given k, we want to choose p and q in such a way that
each cycle of length k(p+ q) in Gup,q is the lifting of a directed cycle of length k in G.
To achieve this, we have to choose p and q in such a way that

k(p+ q) �= � · p+m · q(5.1)

for all �,m ≥ 0 with � < m. If we choose p ≤ q, then (5.1) holds for m > 2k. So
we have to fulfill (5.1) for 0 ≤ � < m ≤ 2k. Hence, we have to avoid

(
2k+1

2

)
lin-

ear equalities. Clearly we can find natural numbers p ≤ q satisfying none of these
equalities.

For such p and q, the number of directed cycles of length k in G equals the number
of undirected cycles of length k(p+ q) in Gup,q.

p-#Cycle ≤fp
T p-#Path: Let G be an undirected graph and k ≥ 1. Without

loss of generality we can assume that k ≥ 3 because counting loops in a graph is easy.
For each e = {v, w} ∈ EG and all �,m ≥ 0, we let Ge(�,m) be the graph obtained

from G by adding vertices as v1, . . . , v�, w1, . . . , wm and adding edges between vi and w
for 1 ≤ i ≤ � and between wj and v for 1 ≤ j ≤ m.

We observe that the number xe of paths of length k+1 from v1 to w1 in Ge(�,m)
is exactly the number of cycles of length k in G containing the edge e. We now show
how to compute xe from the numbers of paths of length k + 1 in the graphs Ge(�,m)
for 0 ≤ �,m ≤ 1. This yields a parameterized Turing reduction from p-#Cycle to
p-#Path.

We observe that the vi and wj can only be endpoints of paths in Ge(�,m), and
that each path can have at most one endpoint among v1, . . . , v� and at most one
endpoint among w1, . . . , wm (because each path ending in vi must go through w and
each path ending in wj must go through v).

We let
• x = xe be the number of paths of length (k + 1) from v1 to w1 in Ge(1, 1),
• y be the number of paths of length (k + 1) in Ge(1, 1) that contain v1 but

not w1,
• z be the number of paths of length (k + 1) in Ge(1, 1) that contain w1 but

not v1,
• w be the number of paths of length (k + 1) in Ge(1, 1) that contain neither
v1 nor w1.

Let p�m be the number of paths of length (k + 1) in Ge(�,m). Then we have

p�m = w + � ·m · x+ � · y +m · z.
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For 0 ≤ �,m ≤ 1 we obtain a system of four linear equations in the variables w, x, y, z
whose matrix is nonsingular. Thus it has a unique solution which, in particular, gives
us the desired value x.

p-#Path ≤fp
T p-#DirPath: This is trivial; just replace each edge of an undi-

rected graph that is not a loop by two directed edges. Then each path (of length at
least 2) in the undirected graph corresponds to exactly two paths of the same length
in the directed graph.

Next, we will prove that p-#Clique ≤fp
T p-#DirCycle. This requires a se-

quence of lemmas. Let h : H → G be a homomorphism and, for i ≥ 1, let ki be the
number of vertices b ∈ G such that |h−1(b)| ≥ i. Then

∑
i≥1 ki = |H|. The type of h

is the polynomial

th(X) =
∏
i≥1

(X − i+ 1)ki =
∏
b∈G

(X)|h−1(b)|,

where the notation (X)i is used for the “falling factorial”; that is, (X)0 = 1 and
(X)i+1 = (X)i(X − i) for all i ≥ 0. In particular, an embedding from H into G is a
homomorphism of type X |H|.

Let Dk denote the directed cycle of length k whose vertices are 1, . . . , k in cyclic
order. We consider the following generalization of p-#DirCycle:

p-#TDC

Input: Directed graph G, polynomial t(X).
Parameter: k ∈ N.

Problem: Count the homomorphisms h : Dk → G of
type t(X).

Lemma 5.3.

p-#TDC ≤fp
T p-#DirCycle.

Proof. For a directed graph G and natural numbers �,m ≥ 1, let G�,m be the
graph obtained from G as follows:

• The universe of G�,m is

G�,m = G× {1, . . . , �} × {1, . . . ,m}.
• There is an edge from (a, i, j) to (a′, i′, j′) in G�,m either if i = � and i′ = 1

and there is an edge from a to a′ in G, or if a = a′ and i′ = i+ 1.
Figure 5.2 gives an example.

Recall that the vertices of the cycle Dk are 1, . . . , k. The projection of an em-
bedding e : Dk·� → G�,m is the homomorphism π(e) : Dk → G which maps vertex
a ∈ Dk to the first component of e((a − 1) · � + 1); that is, we let π(e)(a) = b if
e((a− 1) · �+ 1) = (b, i, j) for some i ∈ {1, . . . , �}, j ∈ {1, . . . ,m}.

Observe that for every homomorphism h : Dk → G there are

� · th(m)�

embeddings e : Dk·� → G�,m with projection π(e) = h. Let T be the set of all types
of homomorphisms from Dk into some graph. For every type t ∈ T , let xt be the
number of homomorphisms h : Dk → G with th = t. Then

b� =
∑
t∈T

xt · � · t(m)�



PARAMETERIZED COUNTING COMPLEXITY 915

Fig. 5.2. A directed graph G and the corresponding G3,2.

is the number of embeddings e : Dk·� → G�,m.

The types in T are polynomials of degree at most k. Thus for distinct t(X), t′(X) ∈
T there are at most k distinct x ∈ N such that t(x) = t′(x). Therefore, there is an
m ≤ k · |T |2 such that for all distinct t(X), t′(X) ∈ T we have t(m) �= t′(m). We fix
such an m.

We let b = (b1, . . . , b|T |), x = (xt)t∈T , and A = (a�t)1≤�≤|T |
t∈T

, where a�t = � · t(m)�.

Then

A · x = b.

Since the matrix (1
�a�t)1≤�≤|T |

t∈T

is a Vandermonde matrix and thus nonsingular, the

matrix A is also nonsingular, and thus

x = A−1b.

Now our Turing reduction from p-#TDC to p-#DirCycle works as follows:

1. Compute the set T and a suitable m.
2. For 1 ≤ � ≤ |T |, compute the graph G�,m.
3. For 1 ≤ � ≤ |T |, compute the number b� of embeddings e : Dk·� → G�·m (using

the oracle to p-#DirCycle and noting that b� is k · � times the number of
cycles of length k · � in G�·m).

4. Compute the matrix A and solve the system A · x = b.
5. Return xt, where t(X) is the input polynomial. (If t /∈ T , then return 0.)

Since the set T , the number m, and the matrix A depend only on the parameter k,
this is a parameterized Turing reduction.

For k, � ≥ 1, let Ω(k, �) denote the space of all mappings f : {1, . . . , k · �} →
{1, . . . , k} such that |f−1(i)| = � for 1 ≤ i ≤ k.

Lemma 5.4. Let k ≥ 1, and let H = (H,EH) be a directed graph with universe
H = {1, . . . , k} and EH �= H2. Then

lim
�→∞

Pr
f∈Ω(k,�)

(
f is a homomorphism from Dk·� to H) = 0

(where f is chosen uniformly at random).
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Proof. Let (x, y) ∈ H2 \ EH and m ≤ k · �. We call a tuple (i1, . . . , im) ∈ Hm

good if (ij , ij+1) �= (x, y) for 1 ≤ j ≤ m− 1 and bad otherwise. For (i1, . . . , im) ∈ Hm

chosen uniformly at random we have

Pr
(
(i1, . . . , im) good

) ≤ Pr
(∀j, 1 ≤ j ≤ m/2 : (i2j−1, i2j) �= (x, y)

)
=

(
1− 1

k2

)m/2�
.

Furthermore, for all i1, . . . , im ∈ H we have

Pr
f∈Ω(k,�)

(∀j, 1 ≤ j ≤ m : f(j) = ij
) ≤ ( �

k · �−m
)m

.

To see this inequality, note that choosing a random function f ∈ Ω(k, �) can be
modeled by randomly picking k · � balls without repetitions out of a bin that initially
contains � balls of each color 1, . . . , k. The probability that the ith ball is of color j
is at most

�

k · �− (i− 1)
,

because at most � balls of the remaining k ·�−(i−1) are of color j. Now the inequality
follows straightforwardly.

Thus

Pr
f∈Ω(k,�)

(f is a homomorphism from Dk·� to H)

≤
∑

(i1,...,im)∈Hm good

Pr
f∈Ω(k,�)

(f(j) = ij for 1 ≤ j ≤ m)

≤
∑

(i1,...,im)∈Hm good

(
�

k · �−m
)m

=

(
�

k · �−m
)m

· km · Pr
(i1,...,im)∈Hm

(
(i1, . . . , im) good

)
≤
(

k · �
k · �−m

)m

·
(

1− 1

k2

)m/2�
.

Let ε > 0. Then there exists an m(ε, k) such that for m ≥ m(ε, k) we have(
1− 1

k2

)m/2�
≤ ε

2
.

Moreover, for every m there exists an �(m) such that for � ≥ �(m) we have(
k · �

k · �−m
)m

=

(
1

1− m
k·�

)m

≤ 1(
1− m

�

)m ≤ 2.

Thus for all � ≥ �(m(ε, k)) we have

Pr
f∈Ω(k,�)

(f is a homomorphism from Dk·� to H) ≤ ε.
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Lemma 5.5.

p-#Clique ≤fp
T p-#TDC.

Proof. Let k ≥ 1. For a graph H, let
↔
H denote the directed graph with the same

vertex set and edge set{
(a, a)

∣∣ a ∈ H} ∪ {(a, b) ∣∣ {a, b} ∈ EH}.
For every graph H with k vertices and every � ≥ 1, let aH� be the number of homo-

morphisms of type (X)k� from Dk·� into
↔
H (that is, homomorphisms for which each

point in the image has exactly � preimages). Let
N

aH = (aH1, aH2, . . . ) and, for every

� ≥ 1,
�
aH = (aH1, aH2, . . . , aH�). We consider

N

aH and
�
aH as vectors in the vector

spaces Q
N and Q

�, respectively.
Let k ≥ 1, and let K be the complete graph with vertices {1, . . . , k}. Let H be

the set of all graphs with vertex set {1, . . . , k}, where up to isomorphism each graph
occurs only once in H, and let H

− = H \ {K}.
For a set S of vectors in Q

N or Q
�, we let 〈S〉 denote the linear span of S.

Claim 1.

N

aK /∈
〈{

N

aH
∣∣∣ H ∈ H

−
}〉

.

Proof. Recall that Ω(k, �) denotes the set of all mappings h : {1, . . . , k · �} →
{1, . . . , k} with the property that |h−1(i)| = � for 1 ≤ i ≤ k.

We first observe that for all � ≥ 1,

aK� = |Ω(k, �)|.
On the other hand, by Lemma 5.4 for all graphs H ∈ H

− we have

lim
�→∞

aH�

|Ω(k, �)| = 0.

Suppose for contradiction that

N

aK =

n∑
i=1

λi
N

aHi

for graphs H1, . . . ,Hn ∈ H
−. Choose � sufficiently large such that for 1 ≤ i ≤ n
aHi�

aK�
=

aHi�

|Ω(k, �)| <
1∑n

i=1 |λi|
.

Then

aK� =

n∑
i=1

λiaHi� ≤ aK�

n∑
i=1

|λi|aHi�

aK�
< aK�

n∑
i=1

|λi| 1∑n
j=1 |λj |

= aK�,

which is a contradiction. This proves Claim 1.
Claim 2. There is an � = �(k) ∈ N such that

�
aK /∈

〈{
�
aH
∣∣∣ H ∈ H

−
}〉

.
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Furthermore, the mapping k �→ �(k) is computable.
Proof. For ι ∈ N ∪ {N}, let

Vι =

〈{
ι
aH
∣∣∣ H ∈ H

−
}〉

.

Identifying (a1, . . . , ai) ∈ Q
i with (a1, . . . , ai, 0, 0, . . . ) ∈ Q

N, for all i ≥ 1 we can
view Vi as a subspace of Vj for all j ≥ i and of VN. Thus we can find an increasing
sequence

B1 ⊆ B2 ⊆ B3 ⊆ · · · ⊆ H
−

such that for all i ≥ 1 {
i
aH
∣∣∣ H ∈ Bi

}
is a basis of Vi. Since VN is a finite dimensional vector space, there is an n ∈ N such
that Bi = Bn for all i ≥ n.

Now if
i
aK was in Vi for all i ≥ 1, then for all i ≥ 1, the vector

i
aK could be written

as a unique linear combination of the vectors in
{ i
aH
∣∣ H ∈ Bi

}
. For all i ≥ n, these

linear combinations would be identical; thus
N

aK would be in VN. This contradicts
Claim 1 and thus proves that for some � ∈ N,

�
aK /∈ V�.

Clearly such an � is computable from k, since we can compute all vectors
i
aH for

H ∈ H and i ∈ N. This completes the proof of Claim 2.
Now we are ready to prove the lemma. Let k ≥ 1 and define K, H, H

−, and the

vectors
ι
aH as above. Choose � = �(k) according to Claim 2.

Let G be a graph. For every graph H ∈ H, let xH be the number of subsets A ⊆ G
such that the subgraph induced by G on A is isomorphic to H. We want to determine
the number xK. For 1 ≤ i ≤ �, let bi be the number of homomorphisms from Dk·i

into
↔
G of type (X)ki , and let

�

b = (b1, . . . , b�). The numbers bi can be computed by an
oracle to p-#TDC.

Observe that for 1 ≤ i ≤ � we have

bi =
∑
H∈H

xHaHi

and thus

�

b =
∑
H∈H

xH
�
aH.

Since
�
aK is linearly independent from

{�
aH

∣∣ H ∈ H
−}, the coefficient xK can be

computed by solving this system of linear equations.
Proof of Theorem 5.1. The theorem follows immediately from Lemmas 5.2, 5.3,

and 5.5 and Theorem 4.4.
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6. Conclusions. We have set up a framework for a parameterized complexity
theory of counting problems and proved a number of completeness results. In partic-
ular, we proved the fixed-parameter intractability of natural counting problems whose
decision version is fixed-parameter tractable.

A lot of interesting problems remain open; let us just mention two of them.

• In view of Valiant’s #P-completeness result for counting perfect matchings,
it would be quite nice to show that the parameterized matching problem
p-#Matching is #W[1]-complete. We conjecture that this is the case.

• Another interesting question is related to Toda’s theorem: Does #W[1] con-
tain the whole W-hierarchy, or maybe even the A-hierarchy (introduced in
[15])?

Appendix A: A list of problems appearing in this paper.

Vertex cover and related problems. A vertex cover of a graph G = (G,EG) is a
subset X ⊆ G such that for all edges (v, w) ∈ EG either v ∈ X or w ∈ X.

p-Vertex Cover

Input: Graph G.
Parameter: k ∈ N.

Problem: Decide if G has a vertex cover
of size k.

p-#Vertex Cover

Input: Graph G.
Parameter: k ∈ N.

Problem: Count the vertex covers of G
of size k.

A dominating set of a graph G = (G,EG) is a subset X ⊆ G such that for all vertices
w ∈ G either w ∈ X or (v, w) ∈ EG for some v ∈ X.

p-Dominating Set

Input: Graph G.
Parameter: k ∈ N.

Problem: Decide if G has a dominating
set of size k.

p-#Dominating Set

Input: Graph G.
Parameter: k ∈ N.

Problem: Count the dominating sets of
G of size k.

In general, the standard parameterization of an optimization problem is the parame-
terized decision problem asking whether there exists a solution of size k, where k is
the quantity to be optimized and the parameter. The counting version can be defined
accordingly.

Homomorphisms, embeddings, and substructures.

p-Hom

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Decide if there exists a homo-
morphism from A to B.

p-#Hom

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Count the homomorphisms
from A to B.

p-Emb

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Decide if there exists an em-
bedding of A into B.

p-#Emb

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Count the embeddings of A
into B.
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p-Sub

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Decide if B has a substructure
isomorphic to A.

p-#Sub

Input: Structures A and B.
Parameter: ‖A‖.

Problem: Count the substructures of B
isomorphic to A.

A clique in a graph G is a subsetX ofG such that for all distinct v, w ∈ X, (v, w) ∈ EG .

p-Clique

Input: Graph G.
Parameter: k ∈ N.

Problem: Decide if G has a clique of
size k.

p-#Clique

Input: Graph G.
Parameter: k ∈ N.

Problem: Count the cliques of G of
size k.

p-Path

Input: Graph G.
Parameter: k ∈ N.

Problem: Decide if G contains a path of
length k.

p-#Path

Input: Graph G.
Parameter: k ∈ N.

Problem: Count the paths of length k
in G.

p-DirPath

Input: Directed graph G.
Parameter: k ∈ N.

Problem: Decide if G contains a directed
path of length k.

p-#DirPath

Input: Directed graph G.
Parameter: k ∈ N.

Problem: Count the directed paths of
length k in G.

p-Cycle

Input: Graph G.
Parameter: k ∈ N.

Problem: Decide if G contains a cycle of
length k.

p-#Cycle

Input: Graph G.
Parameter: k ∈ N.

Problem: Count the cycles of length k
in G.

p-DirCycle

Input: Directed graph G.
Parameter: k ∈ N.

Problem: Decide if G contains a directed
cycle of length k.

p-#DirCycle

Input: Directed graph G.
Parameter: k ∈ N.

Problem: Count the directed cycles of
length k in G.

A matching of a graph is a set of edges that pairwise have no endpoint in common.

p-Matching

Input: Bipartite graph G.
Parameter: k ∈ N.

Problem: Decide if G contains a match-
ing of size k.

p-#Matching

Input: Bipartite graph G.
Parameter: k ∈ N.

Problem: Count the matchings of size k
in G.
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Logically defined problems. The weight of an assignment S for the variables of a
propositional formula is the number of variables set to true by S. Let Θ be a class
of propositional formulas

WSat(Θ)
Input: θ ∈ Θ.

Parameter: k ∈ N.
Problem: Decide if θ has a satisfying as-

signment of weight k.

#WSat(Θ)
Input: θ ∈ Θ.

Parameter: k ∈ N.
Problem: Count the satisfying assign-

ments of θ of weight k.

|ϕ| denotes the length of a formula ϕ. Let Φ be a class of first-order formulas.

p-MC(Φ)
Input: Structure A, formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Decide if ϕ(A) �= ∅.

p-#(Φ)
Input: Structure A, formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Compute |ϕ(A)|.

Let ϕ(X) be a formula of vocabulary τ ∪ {X}.

p-FD(ϕ(X))
Input: τ -structure A.

Parameter: k ∈ N.
Problem: Decide if ϕ(A) contains a re-

lation of size k.

p-#FD(ϕ(X))
Input: Structure A.

Parameter: k ∈ N.
Problem: Count the number of relations

of size k in ϕ(A).

The parameterized halting problem.

p-Halt

Input: Nondeterministic Turing ma-
chine M .

Parameter: k ∈ N.
Problem: Decide if M accepts the emp-

ty word in at most k steps.

p-#Halt

Input: Nondeterministic Turing ma-
chine M .

Parameter: k ∈ N.
Problem: Count the accepting compu-

tation paths of M of length at
most k for the empty word.
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Abstract. We consider open addressing hashing and implement it by using the Robin Hood
strategy; that is, in case of collision, the element that has traveled the farthest can stay in the slot. We
hash ∼ αn elements into a table of size n where each probe is independent and uniformly distributed
over the table, and α < 1 is a constant. Let Mn be the maximum search time for any of the elements
in the table. We show that with probability tending to one, Mn ∈ [log2 logn + σ, log2 logn + τ ] for
some constants σ, τ depending upon α only. This is an exponential improvement over the maximum
search time in case of the standard FCFS (first come first served) collision strategy and virtually
matches the performance of multiple-choice hash methods.
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1. Introduction. In hashing with chaining with a table of size n holding m =
�αn� elements, where α > 0 is a constant, the worst-case search time is equal
to the length of the longest chain. If the hash values are independent and uni-
formly distributed over the table, then the maximum chain length is asymptotic to
log n/ log log n in probability (Gonnet (1981); Devroye (1985)) for any fixed value of
α.

In this paper we consider open addressing hashing with random probing. A table
of size n is given, into which we place m = �αn� elements, where α ∈ (0, 1) is a fixed
constant. Each element has associated with it an infinite probe sequence consisting of
independently and identically distributed (i.i.d.) integers uniformly distributed over
{1, . . . , n}, representing the consecutive places of probes for that element. It is as-
sumed that when searching for an element, its infinite probe sequence is available to
the searcher. The probe sequence for the ith element is denoted byXi,0, Xi,1, Xi,2, . . . .
Elements are inserted sequentially into the table. If the ith element is placed in po-
sition Xi,j , then we say that the ith element has age j, as it requires j hops to reach
the element in case of a search. When the ith element of age j and the i′th element
of age j′ compete for the same slot (Xi,j = Xi′,j′), a collision resolution strategy is
needed. Several collision resolution strategies have dominated the literature.

The standard open addressing method resolves the collision by giving the place
to the first key to arrive there according to a first come first served (FCFS) policy, so
the test is based on min(i, i′). Amble and Knuth (1974) suggested the idea that any of
the colliding elements could get the position in the hope of speeding up unsuccessful
searches. Note that for random probing, for any strategy that does not look ahead, the
sum of the ages of all elements in a hash table has a distribution that is independent

∗Received by the editors February 28, 2002; accepted for publication (in revised form) September
29, 2003; published electronically May 25, 2004.

http://www.siam.org/journals/sicomp/33-4/40337.html
†School of Computer Science, McGill University, Montreal, Canada H3A 2K6 (luc@cs.mcgill.ca,

morin@scs.carleton.ca). Research for these authors was supported by NSERC grant A3456 and
FCAR grant 90-ER-0291.

‡Pedeciba Informatica, Districto 6, Casilla de Correo 16120, Universidad de la República, Mon-
tevideo, Uruguay (viola@fing.edu.uy). Research for this author was supported by Proyectos de
investigación CSIC fondos 2000-2002 and 2002-2004 at Universidad de la República.

923



924 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

of the collision resolution strategy. There are differences, though, when one considers
the maximal age among all elements in a table. Two of the strategies that do not look
ahead before deciding which element should get the position are the LCFS (last come
first served) heuristic (Poblete and Munro (1989)), in which the position is given to
the last element that arrives (thus, using max(i, i′)), and the Robin Hood strategy
(Celis (1986); Celis, Larson, and Munro (1985); Viola and Poblete (1998)), in which
the position is given to the element that is farthest away from its home location (the
element corresponding to max(j, j′)). The Robin Hood strategy tends to equalize
the ages of all inserted elements (hence the name Robin Hood), thus reducing the
maximum successful search time. Both FCFS and Robin Hood decrease the variance
of the search time. As pointed out earlier, for random probing, the expected search
time for a single random element is identical for all collision resolution strategies that
do not look ahead. An interesting property of Robin Hood is that every permutation
of the insertion sequence produces the same final hash table, provided that a consistent
tiebreaker is used (for example, min(i, i′)).

In open addressing hashing, most of the proposed schemes to improve the search
cost of a random element in a hash table (like Brent’s method, binary tree, optimal
and min-max hashing) have very high cost for table creation. Other methods like
multiple-choice hashing are more inefficient in the use of space. As presented in Celis
(1986), Robin Hood is an open addressing hashing scheme that is as simple to program
as the standard algorithm, takes only Θ(n log n) on the average to load a full table,
requires no additional memory for insertions, and has very small variance. This last
fact is a key observation in Celis (1986), to speed up the searching cost of a random
element. The main idea is not to probe the first position in the probe sequence but
rather the most probable place and then move away from it in both directions.

For uniform probing (that is, a probe sequence without repetition) the expected
value of the longest probe sequence for the standard FCFS algorithm for α-full tables
(α < 1) is log1/α n−log1/α(log1/α n)+O(1) and for full tables is 0.631587 . . .×n+O(1)
(Gonnet (1981)).

Poblete and Munro (1989) prove that for random probing (that is, a probe se-
quence with repetition) the expected value of the longest probe sequence for the LCFS
heuristic is bounded by

1 + Γ
−1(αn)

(
1 +

log log(1/(1− α))

log Γ−1(αn)
+O

(
1

log2
Γ−1(αn)

))
,

where Γ is the Gamma function, and

Γ
−1(αn) =

log n

log log n

(
1 +

log log log n

log log n
+O

(
1

log log n

))
.

Although this is not a tight bound, this was the first open addressing method for
which a sublogarithmic bound in n was proven.

Celis (1986) proves that the expected value of the longest probe sequence for
random probing and a full Robin Hood hash table (α = 1) is Θ(logn). Moreover,
when α < 1 he proved that for random probing, the expected value of the longest probe
sequence for the Robin Hood heuristic is bounded by 3(Hn−Hn−m)/α+�log(n−2)�,
where Hn =

∑
1≤i≤n 1/i. This bound is improved in this paper to log2 log n. For

further discussions and results, see Knuth (1998), Vitter and Flajolet (1990), Gonnet
and Baeza-Yates (1991), or Flajolet, Poblete, and Viola (1998). It is perhaps worth
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Table 1.1

Expected length of longest successful probe sequence.

n α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1021 3.629 ± .065 4.000 ± .013 4.329 ± .064 5.105 ± .041 10.443 ± .187
4093 3.967 ± .024 4.062 ± .033 4.800 ± .054 5.329 ± .064 12.133 ± .208

16273 4.014 ± .016 4.262 ± .060 5.000 ± .000 5.771 ± .057 13.819 ± .172
65537 4.029 ± .023 4.614 ± .066 5.000 ± .000 6.000 ± .000 15.181 ± .178

262139 4.098 ± .040 4.967 ± .024 5.022 ± .020 6.000 ± .000 16.815 ± .179

reproducing Table 5.9 from Celis’s dissertation, in which empirical estimates were
computed for the longest successful probe length with the Robin Hood strategy, which
suggests a Θ(log log n) complexity for the problem when α < 1 (see Table 1.1).

It is perhaps worth mentioning that there are several other ways of obtaining
dynamic hash tables with O(log log n) expected maximum successful search times.
Consider hashing with chaining, and let the elements have a choice of two randomly
picked positions. An element is placed into the slot with the least number of elements
(at the time of insertion). This simple double choice shows that the maximum slot
occupancy is in probability asymptotic to log2 log2 n (Azar et al. (1999); Broder and
Karlin (1990); Czumaj and Stemann (1997); Mitzenmacher (1997)).

There has been interest in obtaining O(1) expected worst-case performance, or
even O(1) deterministic worst-case performance, for search in hash tables. For static
hash tables, Fredman, Komlós, and Szemerédi (1984) proposed a solution. Czumaj
and Stemann (1997) showed that if each element has two randomly chosen hash
positions, then with high probability, a static (off-line) chaining hash table can be
constructed that has worst chain length 2, provided that the table size is at least αn
for some threshold constant α. For dynamic hash tables, the early research was in
the direction of dynamic perfect hash functions (Dietzfelbinger and Meyer auf der
Heide (1990); Dietzfelbinger et al. (1992); Dietzfelbinger et al. (1994); Brodnik and
Munro (1999)). Cuckoo hashing (Pagh and Rodler (2001)) is also an attempt in this
direction. It stands out though through its simplicity and the promising experimental
results reported by Pagh and Rodler: each of m data points has two hash functions,
one to be used in each of two tables of size n ≥ (1+ ε)m. The element must be placed
in one of the tables at one of the two locations. Upon insertion of a new element,
old elements get kicked out and move around, kicking out other elements if necessary,
until either a loop is detected or the insertion process halts. In case of a loop, the
entire table is rehashed. The expected time for an insertion is still O(1), and the
worst-case successful search time is bounded by 2. However, one needs a powerful
collection of hash functions, as each rehash operation requires an entirely new and
independent set of hash values.

Let us denote by Mn the maximal successful search time, that is, the maximal
age among any of the m elements in the hash table, and by Tn the maximum insertion
cost of an element. In an FCFS strategy, we note that Mn = Tn − 1, but this is no
longer true for other strategies. In fact, in this paper we show the following.

Theorem 1.1. In open addressing with Robin Hood collision resolution, there
exists a constant C depending upon α only such that

lim
n→∞P {Mn ≥ log2 log n+ C} = 0 .

We will see that C → ∞ when α → 1, so this result is meaningful only when
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α < 1. The result above implies an exponential improvement over the FCFS strategy.
Furthermore, this bound is optimal modulo a finite constant, as follows.

Theorem 1.2. In open addressing with Robin Hood collision resolution (and any
method of breaking ties),

P{Mn ≤ log2 log n− log2(6 log(8/α))} = O(1/
√
n) .

The implications of this should not be underestimated, as open addressing tables
are the oldest and simplest hashing structures. The multiple-choice hashing meth-
ods in their original form are intrinsically chaining methods, and thus slightly more
inefficient spacewise.

The log2 log n behavior follows, roughly speaking, from the following observation.
If we place all m elements in their first choice bins, then all but one element from each
bin must move to another bin. The number of these excess elements is about m2/n
times a constant. Just looking at these displaced elements, we repeat the argument k
times, obtaining increasingly smallest sets to be displaced. After k steps, the number

of elements left is of the order of n(m/n)2
k

, or nα2k

. This is of constant order when
k is about log2 log n.

1.1. Balls in urns. Throw m balls uniformly at random into n urns. Let urn i
receive Ni balls, and define

A =

n∑
i=1

(Ni − 1)+

as the number of balls left after removing one ball from each occupied urn. We say
that A has the (m,n) urn distribution.

The (m,n) urn distribution. Let A have the (m,n) urn distribution. Then

E{A} =
m∑
j=1

(
1− (1− 1/n)j−1

)
.

Note that (1− 1/n)m ≥ 1−m/n and (1− 1/n)m ≤ 1−m/n+m(m− 1)/2n2, so
that

m2

2n
≥ m(m− 1)

2n

=

m−1∑
j=1

j

n

≥ E{A}

≥
m−1∑
j=1

j

n
−

m−1∑
j=1

j(j − 1)

2n2
(1)

=
m(m− 1)

2n
− m(m− 1)(m− 2)

6n2

≥ m(m− 1)

3n

≥ m2

4n
(the last step is true only if m ≥ 4) .
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We also need some concentration inequalities for A. To present these inequalities, let
(X1, . . . , Xn) be a vector of independent random variables (on an arbitrary measurable
space S), let f : S → R be a measurable function, and set

Z = f(X1, . . . , Xm) .

Let X ′
1, . . . , X

′
m be independent copies of X1, . . . , Xm, and write

Z(i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xm) .

The Efron–Stein inequality (Efron and Stein (1981); Steele (1986)) states that

V{Z} ≤ 1

2
E

{
m∑
i=1

(Z − Z(i))2

}
.

If Z ≡ A, and X1, . . . , Xm are the urns chosen by elements 1 through m, and X ′
i is

independent of the Xj ’s and distributed as Xi, then |Z(i) − Z| ≤ 1. Thus, V{Z} ≤
m/2. With the inequalities for E{A} taken into account, we have, by Chebyshev’s
inequality, for all t > 0,

P {|A−E{A}| ≥ t} ≤ V{A}
t2

≤ m

2t2
.

1.2. The head-and-belly view. The construction of the hash table may be
looked at in a global manner for Robin Hood strategies, since every permutation of
the input sequence produces the same hash table. We start by placing all elements
at their first choices Xi,0, 1 ≤ i ≤ m. Some bins in the table may have many
elements, but that is acceptable. We call this the first stage. At the kth stage in our
construction, picture a hash table (“the head”) containing elements of age k, possibly
many per cell, and a second hash table (“the belly”) containing at most one element
per cell, and that element is of age less than k. Furthermore—and this is crucial—if
cell i in the head is occupied, then cell i is empty in the belly. This head-and-belly
view allows us to proceed, by letting k grow until finally the head is empty, and all
elements are in the belly.

The belly is initially empty, and all elements are in the head, in stage one. Given
the (k − 1)st stage situation, we construct the kth stage as follows (see Figure 1.1).

A. All elements in the (k − 1)-stage head that are in positions two and above in
their bins move to a randomly selected bin in the k-head.

B. The remaining elements of the (k − 1)-head (at most one per cell) are added
to the (k − 1)-belly (in the corresponding position). Note that this may create some
conflicts with the k-head just created.

C. While there is a head-belly conflict, take a conflicting element in the belly (that
is, an element in cell i, such that the k-head also has an element in cell i), and let it
start hopping uniformly and randomly (and aging by one with each hop), according
to the rules of Robin Hood hashing, until it, or the element it causes to move, finds a
position in a cell by itself in the belly, without conflict with the k-head, or a position
in the k-head (an element that reaches age k must move to the k-head). In the latter
case, a new conflict may be triggered. At the end of this, there is no further conflict,
and the resulting tables are called the k-head and the k-belly.

Lemma 1.3. Let N be the number of elements added to the k-head in step C,
given that the k-head has at most K elements to start with after steps A and B,
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(a)

HEAD

(b)

BELLY

(c) (d)

(e) (f)

Fig. 1.1. In (a), we show a (k − 1)-head that is not empty. The elements in position one in
their bins (in white) move to the belly (step B). The other elements (in black) move to a random
position in the k-head, shown in figure (b). This is step A. Clearly, there are some conflicts between
head and belly in (b). In step C, these are resolved. For each conflict, an element in the belly is
taken and is moved to a random position in the belly. For example, in (c), we show the moves of
an element, as it first ages to age k (so that its randomly picked position lands it in the head),
which triggers a new conflict in the belly, which is immediately taken care of by letting that element
move to a random position, which again happens to be in the head (gray element), and finally, the
last conflict generated leads to yet another element in the head, causing no further conflicts. The
resulting configuration is (d). In (e), the last remaining conflict is taken care of by random hops,
resulting in the final configuration (f) of the k-belly and k-head. In example (e), all hops remain in
the belly, and result finally in a cell in the belly being filled with a new element.

and given any distribution of elements in belly and head at that point. Then, with
λ = 1/ log(1/α), N is stochastically smaller than λGK + K, where GK is a gamma
(K) random variable. In particular, E{N} ≤ (λ+ 1)K, and

P{N ≥ (2λ+ 1)K} ≤
(

2

e

)K

.

Proof. There are initially at most K elements in the belly that can cause a conflict
with the head. When these elements move, at each step we have a probability at least
1 − α of finding an empty slot (empty for both head and belly). When such a slot
is found, the chain of moves ends. In each step, at most one element moves to the
k-head. The number of additions to the k-head to just eliminate one belly conflict is
thus stochastically smaller than one plus a geometric (α) random variable Y :

P{Y ≥ i} ≤ αi, i ≥ 0 .
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If E is unit exponential, then we see that

P{λE ≥ i} = exp

(
− i
λ

)
= αi ,

provided that α = exp(−1/λ) or λ = 1/ log(1/α). Therefore, Y ≺ E/ log(1/α).
Since we have to eliminate K possible conflict elements in the belly, the total number
of elements added to the head is stochastically smaller than K + Y1 + · · · + YK ,
where the Yi’s are independent and are all stochastically dominated by λE. Thus, if
E1, . . . , EK are independent exponential random variables, and GK is a gamma (K)
random variable, we see that the number N of additions to the head in part C is

stochastically smaller than K + λ(E1 + · · ·+ EK)
L
= K + λGK . In other words,

P{N ≥ (2λ+ 1)K} ≤ P{λGK ≥ 2λK}
= P{GK ≥ 2K}
≤ E

{
etGKe−2tK

}
(any t > 0)

=

(
e−2t

1− t
)K

=

(
2

e

)K

(take t = 1/2) .

This concludes the proof of Lemma 1.3.
It is important to note that if α → 1, then λ → ∞, so the results below are

meaningful only when α < 1.
Lemma 1.4. Define b = (2λ+ 2)α and assume that b < 1. Let D be the integer

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋
.

Let Z be the number of elements in the r-head, with r = �log2 log n�+D. Then

lim
n→∞P

{
Z ≥ nb2

r

2λ+ 2

}
= 0 .

In particular,

lim
n→∞P

{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Proof. Given that the (k − 1)-head has K elements or less, then if A denotes the
number of elements in the k-head after step A (not including steps B and C), we have

E{A} ≤ K2

2n

and

P{|A−E{A}| ≥ t} ≤ K

2t2
.

In particular, we note that

P

{
A ≥ K2

n

}
≤ 2n2

K3
.
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After steps B and C, N more elements are added to the k-head. We have

P

{
A+N ≥ (2λ+ 2)K2

n

}
≤ P

{
A ≥ K2

n

}
+ P

{
N ≥ (2λ+ 1)K2

n

∣∣∣A ≤ K2

n

}

≤ 2n2

K3
+

(
2

e

)K2

n

.

Now define the sequence ak by a0 = m,

ak+1 =
(2λ+ 2)a2

k

n
.

Then it is easy to see that for k > 0,

ak =
n

2λ+ 2

(
(2λ+ 2)a0

n

)2k

=
n

2λ+ 2
((2λ+ 2)α)

2k

.

Let Ak, Nk denote the k-head cardinalities as defined above. Then

P{Ar +Nr ≥ ar} ≤P {Ar +Nr ≥ ar | Ar−1 +Nr−1 ≤ ar−1}
+ P{Ar−1 +Nr−1 ≥ ar−1 | Ar−2 +Nr−2 ≤ ar−2}
+ · · ·+ P{A1 +N1 ≥ a1 | A0 +N0 ≤ a0} ,

since A0 + N0 = m = a0. By the definition of the ak sequence, we note that the
general term

P{Ak +Nk ≥ ak | Ak−1 +Nk−1 ≤ ak−1}
is bounded by

2n2

a3
k−1

+

(
2

e

) a2
k−1
n

.

Thus, defining b = (2λ+ 2)α, and assuming that b < 1, we have

P{Ar +Nr ≥ ar} ≤
r−1∑
k=0

⎛⎜⎝2n2

a3
k

+

(
2

e

) a2
k
n

⎞⎟⎠
=

r−1∑
k=0

⎛⎜⎝ 2(2λ+ 2)3

n ((2λ+ 2)α)
3×2k +

(
2

e

) ((2λ+2)α)2
k+1

n

(2λ+2)2

⎞⎟⎠
≤ C

⎛⎝ 1

nb3×2r−1 +

(
2

e

) nb2
r

(2λ+2)2

⎞⎠
(for some constant C) .

Let r = �log2 log n� + D for some integer D. Then 2D−1 log n ≤ 2r ≤ 2D log n, and

nb2
r ≥ nb3×2r−1 ≥ nb(3/2)2D logn = n1+(3/2)2D log b. Thus, if 2D log(1/b) < 2/3, then

lim
n→∞P{Ar +Nr ≥ ar} = 0 .
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The last statement follows from the fact that

nb2
r ≤ nb2D−1 logn

= n1−2D−1 log(1/b)

≤ n1−2
log2

(
2

3 log(1/b)

)
−2.1

log(1/b)

= n1−1/(6×20.1) .

This concludes the proof of Lemma 1.4.
Remark. The condition b = (2λ + 2)α < 1 reduces to (2 + 2/ log(1/α))α < 1.

This is satisfied if α ≤ 0.306891 . . ..
Lemma 1.5. Let r be as in Lemma 1.4. Then the probability that the (r+3)-head

has at least one element is o(1). Thus, with probability tending to one, the maximum
successful search time is bounded by r + 2.

Proof. Let r be as in Lemma 1.4, and let Z be the number of elements in the r-
head. Then it is of interest to study Zj , the number of elements in the (r+j)-head, for

j > 0. Recall that ar ≤ n1−1/(6×20.1). Given Z, we have E{Z1 | Z} ≤ (2 + λ)Z2/2n,
where we used (1) and Lemma 1.3. On Z ≤ ar, we have E{Z1 | Z} ≤ (2 +λ)a2

r/2n ≤
(2 + λ)n1−20.9/6. Thus, P{Z1 > (2 + λ) log n× n1−20.9/6 | Z} ≤ 1/ log n by Markov’s

inequality, on Z ≤ ar. Next, on Z1 ≤ (2 + λ) log n× n1−20.9/6,

E{Z2 | Z1} ≤ (2 + λ)
(
(2 + λ) log n× n1−20.9/6

)2

/2n < (2 + λ)3 log2 n× n1−21.9/6 .

Thus,

P
{
Z2 > (2 + λ)3 log3 n× n1−21.9/6 | Z1

}
≤ 1

log n
.

Finally, on Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6,

E{Z3 | Z2} ≤ (2+λ)
(
(2 + λ)3 log3 n× n1−21.9/6

)2

/2n < (2+λ)7 log6 n×n1−22.9/6 = o(1) .

Thus,

P {Z3 ≥ 1 | Z2} ≤ E{Z3 | Z2} = o(1) .

Thus,

P{Z3 > 0} ≤ P
{
Z ≥ n1−1/(6×20.1)

}
+ P

{
Z1 ≥ (2 + λ) log n× n1−20.9/6 | Z ≤ n1−1/6×20.1

}
+ P

{
Z2 ≥ (2 + λ)3 log3 n× n1−21.9/6 | Z1 ≤ (2 + λ) log n× n1−20.9/6

}
+ P

{
Z3 ≥ 1 | Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6

}
= o(1).

Thus far, we have shown that if α ≤ 0..306891 . . ., the probability that the maxi-
mal displacement of any element is more than log2 log n+C for a constant C depending
upon α only tends to zero. This matches the lower bound that we will present later
on. We will now fill the gap and show this result for all α.
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Proof of Theorem 1.1. In the proof, we letm = �αn� without loss of generality.
We define the level of an element as the number of probes required to locate it. The
level is one if the element is stored at its original location. (Thus, the level is one
more than the age of an element.) We define the level of a cell in the table as the
level of the element occupying the cell if the cell is occupied, and zero otherwise. At
time t, when the table holds t elements, we define

Nt(i) = # elements of level ≥ i .
Note that Nt(i) is monotone in t for fixed i. When inserting the tth element, let Kt

be the number of cells probed. Clearly, Kt is geometric:

P{Kt = k} =

(
1− t− 1

n

)(
t− 1

n

)k−1

, k ≥ 1 .

We begin with a rough tail bound for Nt(i).
Lemma 1.6. Define

β =
2(1 + α)

(1− α) log((1 + α)/2α)
.

Then for all t ≤ m, i ≥ 1,

P
{
Nt(i) ≥ βmαi−1

} ≤ P
{
Nm(i) ≥ βmαi−1

} ≤ exp

(
−1 + α

1− αmα
i−1

)
.

Proof. When we insert the tth element, we can increase the number of elements
of level ≥ i by at most (Kt − i)+. Therefore,

Nt(i) ≤
t∑

j=1

(Kj − i)+ ,

where K1,K2, . . . ,Kt are independent. As K1 ≺ K2 ≺ · · · ≺ Kt (where ≺ denotes
stochastic ordering), we see that

Nt(i) ≺
t∑

j=1

(Kt,j − i)+ ,

where Kt,1, . . . ,Kt,t are i.i.d. and distributed as Kt. We will use Chernoff bounding
(Chernoff (1952); Hoeffding (1963); Azuma (1967); McDiarmid (1989, 1998)). Let
λ, u > 0. Then

P{Nt(i) ≥ u} ≤ P{Nm(i) ≥ u}
≤ e−λu

(
E
{
eλ(Km−i)+

})m
≤ e−λu

⎛⎝P{Km ≤ i}+

∞∑
j=1

eλjP {Km = i+ j}
⎞⎠m

≤ e−λu

⎛⎝1 +

∞∑
j=1

eλj
(

1− m− 1

n

)(
m− 1

n

)i+j−1
⎞⎠m
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≤ e−λu

⎛⎝1 +

∞∑
j=1

eλj (α)
i+j−1

⎞⎠m

≤ e−λu

(
1 + αi−1 eλα

1− eλα
)m

= e−λu

(
1 +

1 + α

1− αα
i−1

)m

(set eλα = (1 + α)/2)

≤ exp

(
−u log((1 + α)/2α) +

1 + α

1− αα
i−1m

)
= exp

(
−1 + α

1− αα
i−1m

)
(
set u = 2(1+α)αi−1m

(1−α) log((1+α)/2α)

)
.

This concludes the proof.
Note that, for any given R, the cardinality of the R-head in the previous section is

not more than Nm(R). Assume that we were to start with an R-head of size m′ ≤ α′n,
where R and α′ are defined in Lemma 1.7. Then, by mimicking the argument of the
previous section, we have the following.

Lemma 1.7. Define b = (2λ+ 2)α′ and assume that b < 1. Define

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋
and

R = �λ log (β(2λ+ 3))� .
Let Z be the number of elements in the (R+ r)-head, with r = �log2 log n�+D. Then

lim
n→∞P

{
Z ≥ nb2

r

2λ+ 2

}
= 0 .

In particular,

lim
n→∞P

{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Note in particular that the only difference between Lemma 1.4 and Lemma 1.7 is
in the replacement of α in the definition of b by α′. The definition of λ is unaltered.
Lemma 1.5 would then imply that with probability tending to one, Mn ≤ R+ r + 2,
with r as in Lemma 1.7. Since the number of elements in the R-head is random, we
use the following argument, based on Lemma 1.6. Define

β =
2(1 + α)

(1− α) log((1 + α)/2α)
.

Then

P {Mn > R+ r + 2}
≤ P

{
Nm(R) ≥ βmαR−1

}
+ P{Mn > R+ r + 2 | Nm(R) ≤ βmαR−1}

≤ exp

(
−1 + α

1− αmα
R−1

)
+ o(1) ,



934 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

provided that βmαR−1 ≤ α′n, where α′ = 1/(2λ + 3) (to make b in Lemma 1.7 less
than one). But βmαR−1 ≤ βnαR, and thus it suffices to set

R =

⌈
log (β(2λ+ 3))

log(1/α)

⌉
= �λ log (β(2λ+ 3))� .

With this choice of R, and the choice of r given in Lemma 1.7, we thus conclude that

lim
n→∞P{Mn > R+ r + 2} = 0 .

This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. We prove the theorem by construction. This is done by
identifying a subset of elements that must be of age at least 1, a further subset of age
2, and so forth. We show that this process can be carried out at least k times with
high probability until we run out of elements, where k is of the order of log logn. We
consider all values Xi,0, 1 ≤ i ≤ m, first. Consider that ball i is dropped in urn Xi,0.
If an urn receives j elements, then at least j− 1 of them must move on, and will have
an age at least equal to 1. Who moves on depends upon the tiebreaking strategy, but
in our analysis, it only matters to know how many move on. We introduce Ar, the
number of elements that are marked in the rth step. A1 is the number of elements of
age at least 1 in the process above. We formally set A0 = m. Given Ar−1, we take
the Ar−1 elements of age at least r − 1 (note: these are not the only ones of age at
least r − 1) and look at their Xi,r values, with the number of i’s clearly being Ar−1.
We consider the subset that has to move on, so only urns with at least two elements
can be of any use. Note that in view of the tiebreaking policy, an earlier element may
move on. But in any case, if an urn receives j elements from the Ar−1, at least j−1 of
them must move on and increase their age by one. These j− 1 elements are collected
and form a further subset of size Ar, consisting entirely of elements of age at least r.

We return now to our process Ar. We observe that Ar has the (Ar−1, n) urn
distribution. The inequalities (1) suggest natural bounds for Ar. We define an integer
sequence ar such that with high probability, ar ≤ Ar. We have a0 = m = �αn�. Then
set

ar+1 = a2
r/8n .

Note that

ar = 8n(a0/8n)2
r ≥ 8n(α/8)2

r

.

Define the events

Er = ∩j≤r[aj ≤ Aj ]

and let (.)c denote the complement of an event. Observe the following:

P{Ec
r} ≤ P{Ec

1}+

r∑
j=2

P{Ec
j | E0, . . . , Ej−1} =

r∑
j=2

P{Ec
j | Ej−1} .

Also, if r is so small that at all times ar−1 ≥ 4 (a condition that is needed so that we
may apply the inequalities derived in section 1.1), we have

P{Ec
r | Er−1} ≤ P {[Ar < ar] | ar−1 ≤ Ar−1}

≤ P

{
Ar <

1

2
E{Ar | ar−1 ≤ Ar−1} | ar−1 ≤ Ar−1

}
,
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provided that ar ≤ (1/2)E{Ar | ar−1 ≤ Ar−1}. But this follows from ar = a2
r−1/8n =

(1/2)a2
r−1/4n ≤ E{Ar | ar−1 ≤ Ar−1}. We let A have the (�ar−1�, n) urn distribution.

Thus,

P{Ec
r | Er−1} ≤ P

{
A <

1

2
E{A}

}
≤ �ar−1�

2(E{A}/2)2

≤ 2�ar−1�
((�ar−1�)2/4n)2

≤ 32n2

a3
r−1

≤ (8/α)3×2r−1

16n
.

Therefore,

P{Ec
r} ≤

r−1∑
j=0

(8/α)3×2j

16n
=

1

16n

r−1∑
j=0

(8/α)3×2j ≤ (8/α)3×2r−1

16n(1− (α/8)3)
.

Set r = �log2(c log n)� for c > 0, and note that the upper bound is not more than

n3c log(8/α)−1

16(1− α/8)
;

this tends to zero if c < 1/3 log(8/α). With that choice of r, we note that

ar ≥ 8n

(8/α)3×2r ≥
8n

n6c log(8/α)
≥ 8 ,

provided we take c = 1/6 log(8/α). With such a choice, we then have

P{Ar = 0} ≤ P{Ar < ar} ≤ P{Ec
r} ≤

1

16(1− (α/8)3)
√
n
.
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Abstract. We consider online routing algorithms for routing between the vertices of embedded
planar straight line graphs. Our results include (1) two deterministic memoryless routing algorithms,
one that works for all Delaunay triangulations and the other that works for all regular triangula-
tions; (2) a randomized memoryless algorithm that works for all triangulations; (3) an O(1) memory
algorithm that works for all convex subdivisions; (4) an O(1) memory algorithm that approximates
the shortest path in Delaunay triangulations; and (5) theoretical and experimental results on the
competitiveness of these algorithms.
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1. Introduction. Path finding, or routing, is central to a number of fields, in-
cluding geographic information systems, urban planning, robotics, and communica-
tion networks. In many cases, knowledge about the environment in which routing
takes place is not available beforehand, and the vehicle/robot/packet must learn this
information through exploration. Algorithms for routing in these types of environ-
ments are referred to as online [3] routing algorithms.

In this paper we consider online routing in the following abstract setting: The
environment is a planar straight line graph [17], T , with n vertices, whose edges
are weighted by the Euclidean distance between their endpoints, the source vsrc and
destination vdst are vertices of T , and a packet can only move on edges of T . Initially,
a packet only knows vsrc, vdst, and N (vsrc), where N (v) denotes the set of vertices
adjacent to v.

We classify online routing algorithms based on their use of memory and/or ran-
domization. Define vcur as the vertex at which the packet is currently stored. A
routing algorithm is called memoryless if the next step taken by a packet depends
only on vcur, vdst, and N (vcur). An algorithm is randomized if the next step taken by
a packet is chosen randomly from N (vcur). A randomized algorithm is memoryless
if the distribution used to choose from N (vcur) is a function only of vcur, vdst, and
N (vcur).

The justification for studying the memory requirements of routing algorithms
comes from communication networks, in which memory used by an algorithm results
in header information that travels with a packet. Since this information is used only
for routing purposes and is of no use to the sender or receiver, it effectively produces
a decrease in communication bandwidth.

For an algorithm A we say that a graph defeats A if there is a source/destination
pair such that a packet never reaches the destination when beginning at the source.
If A finds a path P from vsrc to vdst, we call P the A path from vsrc to vdst. Here
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2004; published electronically May 25, 2004. This research was supported by the Natural Sciences
and Engineering Research Council of Canada.
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we use the term path in an intuitive sense rather than a strict graph theoretic sense,
since P may visit the same vertex more than once.

In this paper we also consider, as a special case, a class of “well-behaved” trian-
gulations. The Voronoi diagram [16] of S is a partitioning of space into cells such
that all points within a Voronoi cell are closer to the same element p ∈ S than any
other point in S. The Delaunay triangulation is the straight line face dual of the
Voronoi diagram; i.e., two points in S have an edge between them in the Delaunay
triangulation if their Voronoi cells have an edge in common.

In this paper we consider several different routing algorithms and compare their
performance empirically. In particular, we describe

1. a memoryless algorithm that is not defeated by any Delaunay triangulation;
2. a memoryless algorithm that is not defeated by any regular triangulation;
3. a memoryless randomized algorithm that uses 1 random bit per step and is

not defeated by any triangulation;
4. an algorithm that only remembers a constant number of vertex locations that

is not defeated by any convex subdivision (we say that such an algorithm uses O(1)
memory);

5. an algorithm for Delaunay triangulations that uses O(1) memory in which a
packet never travels more than a constant times the Euclidean distance between vsrc
and vdst; and

6. a theoretical and empirical study of the quality (length) of the paths found
by these algorithms.

The first four routing algorithms are described in section 2. Section 3 presents
theoretical and empirical results on the length of the paths found by these algorithms
and describes our algorithm for Delaunay triangulations. A discussion of related
work is provided in section 4. Finally, section 5 summarizes our results and describes
directions for future research.

2. Four simple algorithms. In this section we describe four online routing
algorithms and prove theorems about which types of graphs never defeat them. We
begin with the simplest (memoryless) algorithms and proceed to the more complex
algorithms.

However, before beginning we should note that deterministic memoryless algo-
rithms have some inherent limitations. Consider what happens when such an algo-
rithm tries to route from one of the vertices of the outer face to vdst in the graphs
shown in Figure 2.1. In each of these graphs, the neighborhoods of the corner vertices
look the same. Therefore, any deterministic memoryless algorithm must make the
same decisions at the corners in each of the graphs. There are then four cases to
consider.

1. At all three corners, the algorithm chooses to use an edge of the convex hull.
In this case, the algorithm will fail on the graph in Figure 2.1.a since it will
never enter the interior of the convex hull and will therefore never reach vdst.

2. At two of the corners, the algorithm chooses to use an edge of the convex hull
and at the third corner it does not. We can assume, without loss of generality
that the third corner is the bottom right corner. In this case, the algorithm
will fail on the graph shown in Figure 2.1.b since the only way to reach vdst

from the convex hull is via one of the two paths in the other two corners.
3. At one of the corners, the algorithm chooses to use an edge of the convex

hull and at the other two corners it does not. We may assume without loss
of generality that the corner that uses the interior edge is the top corner. In
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vdst

vsrc

vdst

vsrc

vdst

vsrc

(a) (b) (c)

Fig. 2.1. No deterministic memoryless routing algorithm can work for all 2-connected graphs.

vdst

vsrc

vdst

vsrc

(a) (b)

Fig. 2.2. Triangulations that defeat the greedy routing algorithm.

this case, the algorithm will fail on the graph in Figure 2.1.c since it will get
trapped cycling among the edges shown in bold.

4. At all of the corners, the algorithm chooses not to use an edge of the convex
hull. In this case the algorithm will also fail on the graph in Figure 2.1.c for
the same reasons as in case 3.

Since the graphs in Figure 2.1 are all 2-connected we have the following negative
result.

Lemma 2.1. No deterministic memoryless algorithm works for all 2-connected
planar graphs.

2.1. Greedy routing. The greedy routing algorithm always moves the packet
to the neighbor gdy(vcur) of vcur that minimizes dist(gdy(vcur), vdst), where dist(p, q)
denotes the Euclidean distance between p and q. In the case of ties, one of the vertices
is chosen arbitrarily. The greedy routing algorithm can be defeated by a triangulation
T in two ways (the first way is an important special case of the second): (1) the packet
can get trapped moving back and forth on an edge of the triangulation (Figure 2.2.a),
or (2) the packet can get trapped on a cycle of three or more vertices (Figure 2.2.b).
However, as the following theorem shows, neither of these situations can occur if T is
a Delaunay triangulation.

Theorem 2.2. There is no point set whose Delaunay triangulation defeats the
greedy routing algorithm.

Proof. We proceed by showing that every vertex v of T has a neighbor that is
strictly closer to vdst than v is. Thus, at each routing step, the packet gets closer to
vdst and therefore, after at most n steps, reaches vdst. Refer to Figure 2.3.

Consider the Voronoi diagram [16] VD(T ) of the vertices of T and let e be the
first edge of VD(T ) intersected by the directed line segment (v, vdst). Note that e is on
the boundary of two Voronoi cells, one for v and one for some other vertex u, and the
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v vdst

hu

u

hv

Fig. 2.3. The proof of Theorem 2.2.

vdst

vsrc

Fig. 2.4. A triangulation that defeats the compass routing algorithm.

supporting line of e partitions the plane into two open half planes hv = {p : dist(p, v) <
dist(p, u)} and hu = {p : dist(p, u) < dist(p, v)}. Since the Voronoi diagram is the
straight line face dual of the Delaunay triangulation, the edge (u, v) ∈ T . Also, by
the choice of e, vdst ∈ hu, i.e., dist(u, vdst) < dist(v, vdst).

2.2. Compass routing. The compass routing algorithm always moves the packet
to the vertex cmp(vcur) that minimizes the angle � vdst, vcur, cmp(vcur) over all ver-
tices adjacent to vcur. Here the angle is taken to be the smaller of the two angles as
measured in the clockwise and counterclockwise directions. In the case of ties, one of
the (at most 2) vertices is chosen using some arbitrary deterministic rule.

One might initially believe (as we did) that compass routing can always be used
to find a path between any two vertices in a triangulation. However, the triangulation
in Figure 2.4 defeats compass routing. When starting from one of the vertices on the
outer face of T , and routing to vdst, the compass routing algorithm gets trapped on
the cycle shown in bold. The following lemma shows that any triangulation that
defeats compass routing causes the packet to get trapped in a cycle.

Lemma 2.3. Let T be a triangulation that defeats compass routing, and let vdst

be a vertex such that compass routing fails to route a packet to vdst when given some
other vertex as the source. Then there exists a cycle C = v0, . . . , vk−1 (k ≥ 3) in T
such that cmp(vi) = vi+1 for all 0 ≤ i < k.1

Proof. Since T defeats compass routing, and the compass routing algorithm makes
the same decision each time it visits a vertex, either there is an edge (u, v) such that
cmp(u) = v and cmp(v) = u, or there is the situation described in the lemma. We
prove that there can be no such edge (u, v). Suppose such an edge (u, v) does exist.

1Here and henceforth, all subscripts are assumed to be taken modk.
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R1

R2

R3

u v

vdst

Fig. 2.5. The proof of Lemma 2.3.

vi−1 vi
vi+1

w vdst

Fig. 2.6. The proof of Lemma 2.4.

Then there is a triangle (u, v, w) in T such that w is in the same half plane bounded
by the line through u and v as vdst. Referring to Figure 2.5, the vertex w must be in
one of the regions 1, 2, or 3. But this is a contradiction, since if w is in region 1, then
cmp(v) = w; if w is in region 2, then cmp(u) = w (and cmp(v) = w); and if w is in
region 3, then cmp(u) = w.

We call such a cycle, C, a trapping cycle in T for vdst. Next we characterize
trapping cycles in terms of a visibility property of triangulations. Let t1 and t2 be
two triangles in T . Then we say that t1 obscures t2 with respect to viewpoint vdst if
there exists a ray originating at vdst that strikes t1 first and then t2. Let u and v be
any two vertices of T such that cmp(u) = v. Then define�uv as the triangle of T that
is contained in the closed half plane bounded by the line through uv, that contains
the edge uv, and that contains vdst. We obtain the following useful characterization
of trapping cycles.

Lemma 2.4. Let T be a triangulation that defeats compass routing and let C =
v0, . . . , vk−1 be a trapping cycle in T for vertex vdst. Then �vivi+1 is either identical
to or obscures �vi−1vi for all 0 ≤ i < k.

Proof. Refer to Figure 2.6. Assume that �vivi+1 and �vi−1vi are not identical;
otherwise the lemma is trivially true. Let w be the third vertex of �vivi+1. Then
w cannot lie in the cone defined by vdst, vi, and vi+1; otherwise we would have
cmp(vi) = w. But then the line segment joining w and vi+1 obscures vi and hence
�vivi+1 obscures �vi−1vi.

A regular triangulation [18] is a triangulation obtained by orthogonal projection
of the faces of the lower hull of a three-dimensional polytope onto the plane. Note
that the Delaunay triangulation is a special case of a regular triangulation in which
the vertices of the polytope all lie on a paraboloid. Edelsbrunner [8] showed that if
T is a regular triangulation, then T has no set of triangles that obscure each other
cyclically from any viewpoint. This result, combined with Lemma 2.4, yields our
main result on compass routing.

Theorem 2.5. There is no regular triangulation that defeats the compass routing
algorithm.

2.3. Randomized compass routing. In this section, we consider a randomized
routing algorithm that is not defeated by any triangulation. Let cw(v) be the vertex in
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Fig. 2.7. Definition of cw(v) and ccw(v).
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Fig. 2.8. The proof of Theorem 2.6.

N (v) that minimizes the clockwise angle � vdst, v, cw(v) and let ccw(v) be the vertex
in N (v) that minimizes the counterclockwise angle � vdst, v, ccw(v) (see Figure 2.7).
Then the randomized compass routing (RCR) algorithm moves the packet to one of
{cw(vcur), ccw(vcur)} with equal probability.

Before we can make statements about which triangulations defeat randomized
compass routing, we must define what it means for a triangulation to defeat a ran-
domized algorithm. We say that a triangulation T defeats a (randomized) routing
algorithm if there exists a pair of vertices vsrc and vdst of T such that a packet orig-
inating at vsrc with destination vdst has probability 0 of reaching vdst in any finite
number of steps. Note that proving that a triangulation T does not defeat a memory-
less routing algorithm implies that a packet reaches its destination with probability 1.

It is well known that a random walk will eventually visit every vertex of a con-
nected graph. Thus, a random walk is a randomized routing algorithm that is not
defeated by any connected graph. However, this result is not satisfactory for two
reasons: (1) Because a random walk does not take the destination into account, the
path it takes is by no means direct, and (2) the number of random bits required at
each step of a random walk is log dcur, where dcur is the degree of the current vertex.
In contrast, randomized compass routing requires only 1 bit at each step and is more
likely to take a direct path to the destination vertex.

The following theorem shows the versatility of randomized compass routing.

Theorem 2.6. There is no triangulation that defeats the randomized compass
routing algorithm.

Proof. Assume, by way of contradiction that a triangulation T exists that defeats
the randomized compass routing algorithm. Then there is a vertex vdst of T and a
minimal set S of vertices such that (1) vdst /∈ S, (2) the subgraph H of T induced by
S is connected, and (3) for every v ∈ S, cw(v) ∈ S and ccw(v) ∈ S.

Refer to Figure 2.8 for what follows. The vertex vdst lies in some face F of H. Let
v be a vertex on the boundary of F such that the line segment (v, vdst) is contained in
F . Such a vertex is guaranteed to exist [5]. The two neighbors of v on the boundary of
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F must be cw(v) and ccw(v), and these cannot be the same vertex (since F contains
(v, vdst) in its interior). Note that, by the definitions of cw(v) and ccw(v), and by
the fact that T is a triangulation, the triangle (cw(v), v, ccw(v)) is in T . But this is
a contradiction, since then v is not on the boundary of F .

2.4. Right-hand routing. The folklore “right-hand rule” for exploring a maze
states that if a player in a maze walks around never lifting her right-hand from the
wall, then she will eventually visit every wall in the maze. More specifically, if the
maze is the face of a connected planar straight line graph, the player will visit every
edge and vertex of the face [2].

Let T be any convex subdivision. Consider the planar subdivision T ′ obtained
by deleting from T all edges that properly intersect the line segment joining vsrc and
vdst. Because of convexity, T ′ is connected, and vsrc and vdst are on the boundary of
the same face F of T ′. The right-hand routing algorithm uses the right-hand rule on
the face F to route from vsrc to vdst. Right-hand routing is easily implemented using
only O(1) additional memory by remembering vsrc, vdst, and the last vertex visited.

Theorem 2.7. There is no convex subdivision that defeats the right-hand routing
algorithm.

3. Competitiveness of paths. Thus far we have considered only the question
of whether routing algorithms can find a path between any two vertices in T . An
obvious direction for research is to consider the length of the path found by a routing
algorithm. We say that a routing algorithm A is c-competitive for T if for any pair
(vsrc, vdst) in T , the length (sum of the edge lengths) of the path between vsrc and
vdst found by A is at most c times the length of the shortest path between vsrc and
vdst in T . In the case of randomized algorithms, we use the expected length of the
path. We say that A has a competitive ratio of c if it is c-competitive.

This section addresses questions about the competitive ratio of the algorithms
described so far, as well as a new algorithm specifically targeted for Delaunay trian-
gulations. We present theoretical as well as experimental results.

3.1. Negative results. It is not difficult to contrive triangulations for which
none of our algorithms is c-competitive for any constant c. Thus it is natural to
restrict our attention to a well-behaved class of triangulations. Unfortunately, even
for Delaunay triangulations none of the algorithms described so far is c-competitive.

Theorem 3.1. There exist Delaunay triangulations for which none of the greedy,
compass, randomized compass, or right-hand routing algorithms is c-competitive for
any constant c.

Proof. We begin with greedy routing. Consider the set of points that are placed
on a circle and then triangulated to obtain the zig-zag triangulation T shown in
Figure 3.1.a. Since the points are cocircular, this is a valid Delaunay triangulation.
The points are placed so that each vertex v has a neighbor on the opposite side of the
line through vsrc and vdst that is closer to vdst than v’s two neighbors on the same
side of the line.

Note that there exists a path between vsrc and vdst of length approximately (π/2)·
dist(vsrc, vdst), and this is therefore an upper bound on the length of the shortest path
between vsrc and vdst. The length of the “zig-zag” path that uses the diagonals of T
between vsrc and vdst is Θ(n) ·dist(vsrc, vdst), and this is the path taken by the greedy
routing algorithm. Thus, greedy routing is not c-competitive for this triangulation.

To show that compass routing is not c-competitive, we again consider a set of
cocircular points and make a zig-zag triangulation. Let vcur be any point on the
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Fig. 3.1. The proof of Theorem 3.1.

circle with diameter vsrc, vdst. Consider the angle α between the tangent line passing
through vcur and the line through vsrc and vdst. Compare this with the angle between
the line perpendicular to vsrc and vdst that passes through vcur and the line through
vsrc and vdst. Referring to Figure 3.1.b, we have

α = π/2− β,(3.1)

γ = π/2− 2β,(3.2)

and therefore γ + β = π/2 − β = α, i.e., the two angles are equal. Thus if compass
routing were to choose between the tangent line and the line crossing the circle, it
would be a tie. Now, by placing a point u on the circle close to vcur we can make
� u, vcur, vdst = α− ε for arbitrarily small ε > 0. Similarly, by placing a point vnxt on
the opposite side of the circle we can make � vnxt, vcur, vdst = α− ε− δ for arbitrarily
small δ > 0, so that cmp(vcur) = vnxt. Since ε and δ can be arbitrarily small, we can
repeat this construction as often as we like, thereby making the compass routing path
arbitrarily long.

To see that randomized compass routing and right-hand routing are not c-competi-
tive, consider a configuration of points like that in Figure 3.1.c. By making vsrc and
vdst almost collinear with a third point, it is possible to produce arbitrarily long thin
triangles that make the length of the path found by right-hand routing arbitrarily
long. Furthermore, in this configuration the probability that the randomized compass
routing path is the same as the right-hand path is 1/2, and thus the expected length
of the randomized compass path can be arbitrarily large.

3.2. A c-competitive algorithm for Delaunay triangulations. Since none
of the algorithms described in section 2 is competitive, even for Delaunay triangula-
tions, an obvious question is whether there exists any algorithm that is competitive
for Delaunay triangulations. In this section we answer this question in the affirma-
tive. In fact, we prove an even stronger result by giving an algorithm that finds a
path whose cost is at most a constant times dist(vsrc, vdst).

Our algorithm is based on the remarkable proof of Dobkin, Friedman, and Supowit
[7] that the Delaunay triangulation approximates the complete Euclidean graph to
within a constant factor in terms of shortest path length. In the following we will use
the notation x(p) (resp., y(p)) to denote the x-coordinate (resp., y-coordinate) of the
point p and the notation |X| to denote the Euclidean length of the path X.

Consider the directed line segment from vsrc to vdst. This segment intersects
regions of the Voronoi diagram in some order, say R0, . . . , Rm−1, where R0 is the
Voronoi region of vsrc and Rm−1 is the Voronoi region of vdst. The Voronoi routing
algorithm for Delaunay triangulations moves the packet from vsrc to vdst along the
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Fig. 3.2. A path obtained by the Voronoi routing algorithm.
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Fig. 3.3. The Voronoi routing algorithm is not c-competitive for all Delaunay triangulations.

path v0, . . . , vm−1, where vi is the site defining Ri. An example of a path obtained by
the Voronoi routing algorithm is shown in Figure 3.2. Since the Voronoi region of a
vertex v can be computed given only the neighbors of v in the Delaunay triangulation,
it follows that the Voronoi routing algorithm is an O(1) memory routing algorithm.

The Voronoi routing algorithm on its own is not c-competitive for all Delaunay
triangulations, as can be seen from Figure 3.3.

However, it does have some properties that allow us to derive a c-competitive
algorithm. As with right-hand routing, let T ′ be the graph obtained from T by
removing all edges of T that properly intersect the segment (vsrc, vdst), and let F be
the face of T ′ that contains both vsrc and vdst. Assume without loss of generality
that vsrc and vdst both lie on the x-axis and that x(vsrc) < x(vdst). The following two
lemmas follow from the work of Dobkin, Friedman, and Supowit [7].

Lemma 3.2. The Voronoi path is x-monotone, i.e., x(vi) < x(vj) for all i < j.

Lemma 3.3. Let P ′ be the collection of maximal subpaths of v0, . . . , vm−1 that re-
main above the x-axis, i.e., P ′ = {vi, . . . , vj : y(vi−1) < 0 and y(vj+1) < 0 and y(vk) ≥
0 for all i ≤ k ≤ j}. Then

∑
X∈P ′ |X| ≤ (π/2) · dist(vsrc, vdst).

Let b0, . . . , bl−1 be the subsequence of vertices of v0, . . . , vm−1 that are above or
on the segment (vsrc, vdst). (Refer to Figure 3.2.) Consider two vertices bi = vj and
bi+1 = vk, where k �= j + 1; i.e., the Voronoi path between bi and bi+1 is not a direct
edge. Let PV = (bi = p0, . . . , px = bi+1) be the portion of the Voronoi path between
bi and bi+1 and let PF = (bi = q0, . . . , qy = bi+1) be the upper boundary of F between
bi and bi+1 (see Figure 3.4). Then the following holds.

Lemma 3.4. Let cdfs = (1 +
√

5)π2 .2 Then |PV | ≤ cdfs · (x(bi)− x(bi)) or |PF | ≤
cdfs · (x(bi)− x(bi)).

Proof. Let c0, . . . , cz be the lower convex hull of PF , and let Pj be the Voronoi

2We call cdfs the Dobkin–Friedman–Supowit constant [7].
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Fig. 3.4. Definitions of PV and PF .

path from cj to cj+1. Dobkin et al. prove that

|PV | ≤ cdfs · (x(bi+1 − x(bi)) or

z−1∑
j=0

|Pj | ≤ cdfs · (x(bi+1 − x(bi)).(3.3)

We claim that this implies Lemma 3.4 and prove this by showing that Pj visits all
vertices of PF between cj and cj+1. Thus, by the triangle inequality,

|PF | ≤
z−1∑
j=0

|Pj |.(3.4)

Refer to Figure 3.5 for what follows. Assume for the sake of contradiction that there
is a vertex q in PF between cj and cj+1 that is not in Pj . As part of their proof,
Dobkin et al. show that Pj remains entirely above the segment (cj , cj+1). Therefore,
let Q be the polygon bounded by Pj and the segment (cj , cj+1). Since q is on PF

between cj and cj+1, it must be that q is contained in Q.
Since Q is monotone in the direction from cj to cj+1, it can be partioned into

trapezoids whose top sides are edges of Pj , whose bottom sides are on the line segment
(cj , cj+1), and whose left and right sides are perpendicular to (cj , cj+1). Refer to
Figure 3.5.

Let a and b be the two vertices of Pj that define the trapezoid containing q. We
claim that a and b cannot be consecutive on Pj because their Voronoi regions do not
share an edge that intersects (cj , cj+1). We will prove this by showing that in the
Voronoi diagram of q, a, and b the bisector of a and b does not intersect the segment
(cj , cj+1). This is sufficient, since this bisector contains the bisector of a and b in the
entire Voronoi diagram.

Let C be the circle with center on (cj , cj+1) and with a and b on its boundary. If
the bisector of a and b in the Voronoi diagram of q, a, and b intersects the segment
(cj , cj+1), then C must not contain q. However, C does contain the top, left, right,
and bottom sides of the trapezoid containing q. But this can’t be, since then C
contains the entire trapezoid and contains q. We conclude that there is no point q on
the boundary of F between cj and cj+1 that is not on Pj .

Our c-competitive routing algorithm will visit all the vertices b0, . . . , bl−1 in order.
If bi and bi+1 are consecutive on the Voronoi path (i.e., bi = vj and bi+1 = vj+1 for
some j), then our algorithm will use the Voronoi path (i.e., the direct edge) from
bi to bi+1. On the other hand, if bi and bi+1 are not consecutive on the Voronoi
path, then by Lemma 3.4, there exists a path from bi to bi+1 of length at most
cdfs · (x(bi+1)− x(bi)).
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Fig. 3.5. The proof of Lemma 3.4.

The difficulty occurs because the algorithm does not know beforehand which path
to take. The solution is to simulate exploring both paths “in parallel” and stopping
when the first one reaches bi+1.

3

More formally, let PV and PF be defined as in Lemma 3.4. The algorithm for
finding a path from bi to bi+1 is described by the following pseudocode.

1: j ← 0, l0 ← min{dist(p0, p1), dist(q0, q1)}.
2: repeat
3: Explore PF until reaching bi+1 or until reaching a vertex qx such that

|q0, . . . , qx+1| > 2lj . If bi+1 is reached, then quit; otherwise return to
bi.

4: j ← j + 1, lj ← |q0, . . . , qy+1|.
5: Explore PV until reaching bi+1 or until reaching a vertex py such that

|p0, . . . , py+1| > 2lj . If bi+1 is reached, then quit; otherwise return to
bi.

6: j ← j + 1, lj ← |p0, . . . , py+1|.
7: until bi+1 is reached

Lemma 3.5. Using the parallel search algorithm described above, a packet reaches
bi+1 after traveling a distance of at most 9 · cdfs · (x(bi+1)− x(bi)) ∼ 45.75 · (x(bi+1)−
x(bi)).

Proof. Clearly the algorithm reaches bi+1 in a finite number of steps, since lines 4
and 6 ensure that both paths advance by at least one edge at each iteration. Let k be
the maximum value of j, and let dj be the distance traveled during the jth exploration
step of the algorithm. Thus, the total distance d traveled by the packet is given by
d =

∑k
j=0 dj .

Since the algorithm did not terminate with j = k − 1, by Lemma 3.4 we have

dk < 2 · cdfs · (x(bi+1)− x(bi)).(3.5)

Similarly, since the algorithm did not terminate with j = k− 1 or j = k− 2, we have

lk−1 < 2 · cdfs · (x(bi+1)− x(bi)).(3.6)

3A similar algorithm for finding an unknown target point on a line is given by Baeza-Yates,
Culberson, and Rawlins [1]. See also Klein [12].
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Since lj ≥ 2lj−1 for each j > 0, we have

d ≤
k−1∑
j=0

2lj + dk(3.7)

≤
k−1∑
j=0

2lk−1/2
j + dk,(3.8)

which immediately yields a bound of 10 · cdfs · (x(bi+1) − x(bi)). To obtain a tighter
bound, we note that dk > cdfs · (x(bi+1)− x(bi)) implies lk−1 < cdfs · (x(bi+1)− x(bi)).
Subject to this constraint, (3.8) is maximized when lk−1 = 2 · cdfs · (x(bi+1)− x(bi)),
yielding

d ≤
k−1∑
j=0

4 · cdfs · (x(bi+1)− x(bi))/2
j + cdfs · (x(bi+1)− x(bi))(3.9)

< 9 · cdfs · (x(bi+1)− x(bi)).(3.10)

Given the positions of vdst and vsrc the parallel search algorithm described above
is easily implemented as part of an O(1) memory routing algorithm. We refer to the
combination of the Voronoi routing algorithm with this parallel search algorithm as
the parallel Voronoi routing algorithm.

Theorem 3.6. The parallel Voronoi routing algorithm produces a path whose
length is at most (9 · cdfs + π/2) · dist(vsrc, vdst).

Proof. The algorithm incurs two costs: (1) the cost of traveling on subpaths of
the Voronoi path that remain above the y-axis, and (2) the cost of applications of the
parallel search algorithm. By Lemma 3.3, the first cost is at most (π/2)·dist(vsrc, vdst).
By Lemma 3.5 and the fact that b0, . . . , bl−1 is x-monotone (Lemma 3.2), the cost of
the second is at most 9 · cdfs · dist(vsrc, vdst).

3.3. Empirical results. While it is sometimes possible to come up with patho-
logical examples of triangulations for which an algorithm is not competitive, it is often
more reasonable to use the competitive ratio of an algorithm on average or random
inputs as an indicator of how it will perform in practice. In this section we describe
some experimental results about the competitiveness of our algorithms. All exper-
iments were performed on sets of random points uniformly distributed in the unit
square, and each data point is the maximum of 50 independent trials.

The first set of experiments, shown in Figure 3.6, involved measuring the per-
formance of all six routing algorithms on Delaunay triangulations. Compass routing,
greedy routing, and Voronoi routing consistently achieve better competitive ratios,
with greedy routing slightly worse than the other two. Randomized compass routing,
right-hand routing, and parallel Voronoi routing had significantly higher competitive
ratios. The results for randomized compass routing and right-hand routing show a
significant amount of jitter. This is due to the fact that relatively simple configu-
rations (see Figure 3.1.b) that can easily occur in random point sets result in high
competitive ratios for these algorithms. On the other hand, parallel Voronoi routing
seems much more stable, and achieves better competitive ratios in practice than its
worst-case analysis would indicate.

The most important conclusion drawn from these experiments is that there are
no simple configurations (i.e., that occur often in random point sets) that result in
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Fig. 3.6. Empirical competitive ratios for Delaunay triangulations.
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Fig. 3.7. Empirical competitive ratios for Graham triangulations.

extremely high competitive ratios for greedy, compass, Voronoi, or parallel Voronoi
routing in Delaunay triangulations. This suggests that any of these algorithms would
work well in practice.

The four simple routing algorithms of section 2 were also tested on Graham tri-
angulations. These are obtained by first sorting the points by x-coordinate and then
triangulating the resulting monotone chain using a linear time algorithm for comput-
ing the convex hull of a monotone polygonal chain [17]. The results are shown in
Figure 3.7. In these tests it was always the case that at least one of the 50 inde-
pendent triangulations defeated greedy routing. Thus, there are no results shown for
greedy routing. The relative performance of the compass, randomized compass, and
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right-hand routing algorithms was the same as for Delaunay triangulations. However,
unlike the results for Delaunay triangulations, the competitive ratio appears to be
increasing linearly with the number of vertices.

4. Comparison with related work. In this section we survey related work
in the area of geometric online routing and compare our results with this work. We
restrict our attention to work directly related to routing between the vertices of geo-
metric graphs in which the source and destination are inputs, and we do not consider
routing in other geometric settings such as polygons (cf. [9, 10, 12]).

Keil and Gutwin [11] give an algorithm for the construction of a geometric graph
called the θ-graph for which a memoryless routing algorithm similar to compass rout-
ing always results in a path whose length is at most a constant (dependent only on
θ) times the Euclidean distance between vsrc and vdst.

Kranakis, Singh, and Urrutia [13] study compass routing and provide a proof
that no Delaunay triangulation defeats compass routing. The current paper makes
use of a very different proof technique to show that compass routing works for a larger
class of triangulations. They also describe an O(1) memory routing algorithm that
is not defeated by any connected planar graph, thus proving a stronger result than
Theorem 2.7.

Lin and Stojmenović [15] and Bose et al. [4] consider online routing in the context
of ad hoc wireless networks modeled by unit disk graphs. They provide simulation
results for a variety of algorithms that measure success rates (how often a packet
never reaches its destination) as well as hop-counts of these algorithms on unit graphs
of random point sets.

Lawson’s oriented walk [14] is a simple algorithm for point location in Delaunay
triangulations without preprocessing. The algorithm can be converted to an O(1)
memory routing algorithm that is not defeated by any Delaunay triangulation. The
results of the current paper improve on this algorithm by providing two memoryless
routing algorithms that are not defeated by any Delaunay triangulation.

De Berg et al. [6] describe an algorithm for enumerating all the vertices of a
connected planar subdivision using only O(1) additional memory. This algorithm can
also be viewed as an O(1) memory routing algorithm. Similarly, in any connected
graph with a finite number of vertices, a random walk will eventually visit every
vertex. Thus, random walking can be viewed as a randomized memoryless routing
algorithm that is not defeated by any graph. Unfortunately paths found by these
techniques will usually be much longer than the shortest path, since they are general
traversal techniques. In contrast, the right-hand routing and randomized compass
routing algorithms make use of information about the source and destination to find
more direct paths.

To the best of our knowledge, no literature currently exists on the competitiveness
of geometric routing algorithms in our abstract setting, and our parallel Voronoi
routing algorithm is the first theoretical result in this area.

5. Conclusions. We have studied the problem of online routing in geometric
graphs. Our theoretical results show which types of graphs our algorithms are guar-
anteed to work on, while our simulation results rank the performance of the algorithms
on two types of random triangulations. These results are summarized in Table 5.1.

We conclude with an open problem. In section 2 we showed that no deterministic
memoryless routing algorithm works for every 2-connected embedded planar graph.
Can a similar argument be made for triangulations, thus proving that randomization
or memory is necessary for an algorithm that is not defeated by any triangulation?
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Table 5.1

Summary of results for greedy routing (GR), compass routing (CR), randomized compass rout-
ing (RCR), right-hand routing (RHR), Voronoi routing (VR), and parallel Voronoi routing (PVR)
algorithms.

Algorithm Mem. Rand. Class of graphs Rank 1 Rank 2 Competitive

GR None No Delaunay �’s 3 – No
CR None No Regular �’s 1 1 No
RCR None Yes All �’s 5 2 No
RHR O(1) No Convex subd. 6 3 No
VR O(1) No Delaunay �’s 1 – No
PVR O(1) No Delaunay �’s 4 – Yes
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Abstract. In this paper we study the costs CN of partial match retrievals in K-dimensional tries
(K-d tries), constructed from N records. The probabilistic model that we assume is the asymmetric
Bernoulli model: keys are sequences of independently and identically distributed random variables,
which assume the values 0 and 1 with probability p �= 1

2
and 1−p, and are pairwise independent. We

determine the extremal asymptotic orders that the sequence of expectations (ECN )N≥0 may have
for different fixed queries, as well as the narrow region that contains (ECN )N≥0 for almost every
query. Furthermore we show that (ECN )N≥0 and (VarCN )N≥0 have the same asymptotics up to a
logarithmic factor and, employing a central limit theorem for martingale difference arrays, we prove

asymptotic normality of CN−E CN√
VarCN

. For random queries, assumed to be independent of the keys and

having their specified components distributed according to the same Bernoulli model, no limiting
distribution for CN exists, but we can prove asymptotic normality of lnCN , when appropriately
normalized, and determine VarCN up to a logarithmic factor, where now (ECN )2 = o(VarCN ).

Key words. K-d trie, multidimensional data, partial match retrieval, martingale, asymptotic
normality
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1. Introduction. Data structures supporting retrieval of multidimensional data
are indispensable for the design of database systems and find further applications
in the management of geographical data and the realm of computational geometry.
Among the data structures, which have been developed for retrieval of multidimen-
sional data, are Bentley’s K-dimensional (K-d) search trees [1], which are comparison
based, and Rivest’s digital K-d trees [24]. Of the latter type are also the K-d tries
(cf. [2, 10, 19]), which will be studied in this paper. Given a set of N records, a
particular problem consists in finding all records whose keys match a given query.
This means that some fixed components of the K-tuple-keys must coincide with the
corresponding components of the query, while the others are not specified and can
take arbitrary values. The cost CN of such a partial match retrieval is defined to be
the number of the K-d trie’s internal nodes visited during the search for all matches.

Partial match retrieval inK-d tries has been studied from the average-case point of
view under the Bernoulli and Poisson models of randomness. Flajolet and Puech [10]
computed asymptotics (as N → ∞) of ECN under the symmetric Bernoulli and
Poisson models. Kirschenhofer and Prodinger [16] extended these results to K-d
digital search trees and Patricia tries. Kirschenhofer, Prodinger, and Szpankowski [17]
computed ECN under the asymmetric Bernoulli model, both for the case of a random
query and the case of a fixed periodic query. (No distinction between fixed and
random queries has to be made in the symmetric Bernoulli model.) The first result
concerning VarCN in the symmetric Bernoulli model (the case K = 2) can also be
found in [17], and, using different methods, the author [25] could settle the case
K ≥ 3. Recently, relaxed variants of K-d trees have attracted interest; see [8] and [20]
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for results concerning expectation and variance of cost. Results regarding limiting
distributions have so far only been obtained for the symmetric Bernoulli model [26],
where CN−ECN√

VarCN
is shown to converge in distribution and with all its moments to a

standard normal random variable. The present paper has its focus on variance and
limiting distribution of CN under the asymmetric Bernoulli model, both for the case
of a random query and the case of a fixed query.

For results on partial match retrievals in K-d search trees and quadtrees, ranging
from expectations to limiting distributions, we refer to [3, 4, 7, 8, 10, 19, 20, 22, 23].

We start with a description of K-d tries, partial match retrieval, and the proba-
bilistic model under consideration.

1.1. Tries and K-d tries. The trie (cf. [11, 18, 19]) is designed to store data,
whose keys are given as sequences over a finite alphabet Σ. Here we confine ourselves
to the case Σ = {0, 1}. Now let a set S = {ki ∈ ΣN : 1 ≤ i ≤ N} of keys be given. The
trie built from these keys is a binary tree, whose internal nodes serve as branching
nodes. Each leaf (external node) either stores one key or is empty. If we label in this
tree each edge to the left (resp., right) 0 (resp., 1), we obtain an encoding of the leaves
by taking the 0-1-sequence along the path starting from the root. A key ki is stored
in the leaf encoded by ki’s minimal unique prefix among the N keys in S.

K-d tries (cf. [24, 10]) are built the same way, but some preprocessing of the
keys, which are now K-tuples of “simple” keys, has to be done. Given a key ki =
(ki1, . . . , kiK), where ki� = (k1

i�, k
2
i�, . . . ) ∈ ΣN, we construct a key k̃i ∈ ΣN by “shuf-

fling”:

k̃i = (k1
i1, k

1
i2, . . . , k

1
iK , k

2
i1, k

2
i2, . . . , k

2
iK , . . . ).

The trie constructed from the keys k̃i, 1 ≤ i ≤ N , is called a K-d trie. The set of all
K-d tries t built from N keys is denoted by TN , and |t| = N is said to be the size
of t.

1.2. Partial match retrieval. A partial match query is a K-tuple

q = (q1, . . . , qK) ∈ {ΣN, ∗}K .
We say that the component qi is unspecified if qi = ∗, and is otherwise specified.
The task of performing a partial match retrieval asks for all keys ki that match the
query q, which means kij = qj whenever qj is specified, and kij ∈ ΣN is arbitrary
whenever qj = ∗. The cost C(t, q̃) of the partial match retrieval in a K-d trie t is
defined to be the number of internal nodes of t visited during the search for the shuffled
query q̃ (before shuffling, each component ∗ of q is replaced by the constant sequence
(∗, ∗, ∗, . . . )). For any sequence k = (k1, k2, . . . ) we denote by k′ = (k2, k3, . . . ) the
shift to the left by one position of k, and more generally by k(m) the shift to the left
by m positions. We can now compute C(t, q̃) inductively by

C(t, q̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, |t| ≤ 1,

1 + C(t�, q̃
′), q̃ = 0q̃′,

1 + C(tr, q̃
′), q̃ = 1q̃′,

1 + C(t�, q̃
′) + C(tr, q̃

′), q̃ = ∗q̃′,

(1)

where t�, respectively, tr, denote the left, respectively, right, subtree of t when |t| ≥ 2.
The specification pattern ω of q̃ = (q̃1, q̃2, . . . ) is some element of {S, ∗}K , such

that periodic repetition of ω indicates specified and unspecified positions of q̃. The
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number of symbols ∗ in a specification pattern ω ∈ {S, ∗}K is denoted by u, and we
assume throughout the paper that 0 < u < K. The set of all q̃ with given specification
pattern ω is denoted by Kω.

1.3. The probabilistic model. We are going to analyze for fixed or random
κ ∈ Kω and N ∈ N the quantity C(t,κ), where t ∈ TN is random and independent
of κ. The probabilistic model we use for TN assumes that the shuffled keys k̃i are
independently and identically distributed (i.i.d.) sequences of elements from Σ, where
0 and 1 occur with probability p ∈ ]0, 1[ and q := 1 − p, respectively, and that keys
k̃i, k̃j are independent for 1 ≤ i < j ≤ N . If p = 1

2 , this is called the symmetric,
otherwise the asymmetric, Bernoulli model. These models give rise to a sequence of
discrete probability spaces (TN , TN , PN ), with TN simply the set of subsets of TN .
(Regarding discreteness, there are indeed only finitely many binary trees of fixed
height, and the minimal prefixes needed for the construction of the trie are almost
surely finite. On the other hand, TN is infinite for N ≥ 2, due to the fact that
leaves can be empty.) The computation of probabilities P|t|(t) is facilitated using the
binomial splitting probabilities

pN,k := P (|t�| = k
∣∣|t| = N) =

(
N

k

)
pkqN−k.

Both T0 and T1 are singletons; therefore P0(t) = P1(t) = 1 for t taken from T0,

respectively, T1. For |t| ≥ 2, t =
o
/ \
tl tr

, we have P|t|(t) = p|t|,|t�|P|t�|(t�)P|tr|(tr).

We further introduce the probability space (Kω,B(Kω), Q), where, according
to Q, the specified elements of κ ∈ Kω constitute an i.i.d. sequence of elements
from Σ, where 0 and 1 occur with the probabilities p and q, just as for the keys.

The main objects of our study are the random variables CN := C(t,κ) defined on
TN×Kω, and Fκ,N = Fκ,N (t) := C(t,κ) defined on TN , as well as F i

κ,N = F i
κ,N (t) :=

C(t,κ(i)) for i ≥ 0, defined on TN , where F 0
κ,N = Fκ,N . For some statements we need

the sequences of random variables (CN )N≥0, respectively, (F i
κ,N )N≥0, live on the

same probability space, which we choose to be (ΣN×N ×Kω,B(ΣN×N ×Kω), P ×Q),
respectively, (ΣN×N,B(ΣN×N), P ), with τττ = (ki)i∈N ∈ ΣN×N representing an infinite
sequence of keys, where, according to P , all the symbols of all the keys form an
i.i.d. sequence of elements from Σ, where 0 and 1 occur with probability p and q,
respectively. We denote by τττN = (ki)

N
i=1 the set of the first N keys and by t(τττN )

the trie built from that set. Costs for random and fixed queries are then defined by
CN = CN (τττ ,κ) = C(t(τττN ),κ) and F i

κ,N = F i
κ,N (τττ) = C(t(τττN ),κ(i)). By definition,

the random sequence (F i
κ,N )N≥0 is increasing. We let f iκ,N := EF i

κ,N and viκ,N :=

VarF i
κ,N for i ≥ 0 and use the shorthand notation fκ,N = f0

κ,N , vκ,N = v0
κ,N . The

subscript κ will frequently be suppressed.

Throughout the paper we denote convergence (resp., equality) in distribution by
D→ (resp.,

D
=). We write X ∼ F if the random variable X has distribution F , and

N (0, 1) denotes a standard normal random variable. We put a ∨ b = max(a, b) and
a ∧ b = min(a, b) for any real numbers a and b. The indicator function of a set A
is denoted by 1lA, and for a Boolean expression B we let 1l{B} be 1 if B is true
and 0 otherwise. The difference operator, ∆, is defined by ∆xk = xk+1 − xk. Bold
lowercase letters, such as κ or f i, always denote sequences, and bold uppercase letters
are used for matrices. We will use the standard asymptotic notation O, o, Ω, and Θ.
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We use the symbol ∼ also to denote asymptotic equivalence, and write occasionally
an 
 bn if an = Θ(bn).

2. Main results. Our first result, Theorem 1, and its Corollary 1, demonstrate
that in the asymmetric Bernoulli model the expectations fκ,N may enjoy a growth
between Ω(Nγ2) and O(Nγ1) and will almost surely be “close” to Nβ for certain
constants γ2 < β < γ1. Note that things are different in the symmetric Bernoulli

model, where Fκ,N
D
= CN , and hence fκ,N = ECN holds regardless of the value of

the query κ, and where ECN = Θ(Nu/K) was shown to hold in [10], with a positive
periodic function of lnN hidden in the Θ symbol.

Theorem 1. Let p ∈ [ 12 , 1[ , q := 1 − p, 0 < u < K and define β = β(p),
γ1 = γ1(p), and γ2 = γ2(p) to be the unique real solutions of the equations

(ppqq)(K−u)β(pβ + qβ)u = 1, p(K−u)γ1(pγ1 + qγ1)u = 1, q(K−u)γ2(pγ2 + qγ2)u = 1.

Moreover denote Px := px

px+qx and Qx := 1− Px for x ∈ R. Then

sup
κ∈Kω

fκ,N = Θ(Nγ1),

inf
κ∈Kω

fκ,N = Θ(Nγ2).
(2)

Furthermore, for Q-almost every κ ∈ Kω we have

lim
N→∞

| ln fκ,N − β lnN − βSκ,�cβ lnN	|
ln

1
3N ln lnN

= 0,(3)

where

Sκ,n :=

Kn∑
j=1

(
1l{κj=0} ln p+ 1l{κj=1} ln q

)− n(K − u) ln ppqq

and

cβ :=
β

u ln
(
P

−Pβ

β Q
−Qβ

β

) .
It is important to note that with

Xκ,j :=

jK∑
i=jK−K+1

(
1l{κi=0} ln p+ 1l{κi=1} ln q

)− (K − u) ln ppqq

we have Sκ,n =
∑n

j=1Xκ,j . Note further that with respect to Q, the random variables

(Xκ,j)j≥1 are i.i.d. with EXκ,1 = 0 and VarXκ,1 = (K−u)pq ln2 p
q . In fact, Xκ,1 has

the distribution of ln p
q times a centered binomially B(K − u, p) distributed random

variable. Thus the following corollary is a simple consequence of the law of the iterated
logarithm and of the central limit theorem for sums of i.i.d. random variables with
finite variance.

Corollary 1. For Q-almost every κ ∈ Kω we have

lim sup
N→∞

ln fκ,N − β lnN√
2β lnN ln ln lnN

= σ,

lim inf
N→∞

ln fκ,N − β lnN√
2β lnN ln ln lnN

= −σ,
(4)
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Fig. 1. The exponents γ1, γ2, and β from Theorem 1 and α from Remark 2 for various values
of u

K
; cf. also the table in [17].

where σ = σ(p) = β ln p
q

√(
K
u − 1

)
pq

/
ln
(
P

−Pβ

β Q
−Qβ

β

)
. Moreover

ln fκ,N − β lnN√
β lnN

D→ N (0, σ2).(5)

Remark 1. Note that 0 < γ2 < β < γ1 < 1, unless p = 1
2 , in which case

γ2 = β = γ1 = u
K ; cf. Figure 1. For an illustration of (3), see Figure 2.

Remark 2. It follows from [17, Theorem 1.1] that we have N−α
E fκ,N = Θ(1),

where the expectation is with respect to Q, and where α = α(p) is the unique real
solution of the equation

(p1+α + q1+α)K−u(pα + qα)u = 1.

We have β(p) ≤ α(p) with equality only for p ∈ { 1
2 , 1}: β( 1

2 ) = α( 1
2 ) = u

K and
limp→1 β(p) = limp→1 α(p) = 1.

Remark 3. Theorem 1 also holds true for u = K, in which case Kω = {(∗, ∗, . . . )}
is a singleton, and we have γ1 = β = γ2 = 1 and σ = 0. In the case p = 1

2 the random
variable fκ,N is constant on Kω, and again σ = 0. For 0 < u < K fixed, σ(p) appears
to be strictly increasing with p (we have not proved that), and a tedious calculation
shows that limp→1 σ(p) = 1.

The next two theorems deal with variances. It is known from [17, 25] that in the
symmetric Bernoulli model VarCN = Θ(Nu/K) holds, again with a positive periodic
function of lnN hidden in the Θ symbol, which implies VarCN = O(ECN ). As it
will turn out in Theorem 2, that property is shared, up to a logarithmic factor, by
the asymmetric fixed query model. On the other hand, Theorem 3 implies (ECN )2 =
o(VarCN ) for the asymmetric random query model. Finally, Theorem 4 shows that
also the central limit theorem known for the symmetric Bernoulli model (see [26])
persists in the asymmetric fixed query model.
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Fig. 2. An illustration of (3) for a particular κ ∈ Kω, with ω = (∗, S), p = 1
2
(
√

5 − 1), and

N ≤ 21000. The difference between the two curves seems to be bounded, as N →∞, but actually it
is not; cf. Remark 7.

Theorem 2. Uniformly in κ ∈ Kω, the variance vκ,N satisfies

vκ,N =

{
O(fκ,N lnN),

Ω(fκ,N ).

Remark 4. The stronger upper estimate vκ,N = O(fκ,N ) follows from results
obtained in [27] by means of poissonization techniques.

Corollary 2. If in Corollary 1 we replace fκ,N by CN , then (4) holds P ×Q-
almost surely, and also (5) remains valid.

Moreover all the limit laws that we can obtain for CN−bN
aN

by choosing appropriate
normalizing sequences (aN )N≥0, (bN )N≥0 are degenerate.

Theorem 3. Let 1
2 < p < 1, and let ξ = ξ(p) be defined as the unique real

solution of the equation

(p1+2ξ + q1+2ξ)(K−u)/2(pξ + qξ)u = 1.

Then α < ξ < γ1 and, for large N ,

VarCN = N2ξeO(ln lnN).

Theorem 4. We have for every fixed κ ∈ Kω

Fκ,N − fκ,N√
vκ,N

D→ N (0, 1).

The paper is organized as follows. Section 3 starts with some preliminaries and
continues with the proof of Theorem 1. Several lemmas will be needed. In particu-
lar, the close coupling between fκ,N and a certain sequence of partial sums derived
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from κ, which is expressed in (3), will become a corollary of Lemma 4, which allows
for extensions of Theorem 1 and Corollary 1 to models, where the query is still in-
dependent of the keys but need not follow the same Bernoulli model as the keys. In
section 4 we give proofs of the results concerning variances. Two lemmas used for
establishing the Ω estimate in Theorem 2 might be of independent interest. In the
proof of Theorem 3 inverse Mellin integrals of functions with dominant algebraic sin-
gularities have to be calculated. Finally in section 5 we prove Theorem 4 by invoking
a central limit theorem for martingale difference arrays, and section 6 concludes the
paper.

3. The expectation.

3.1. Some preliminaries and notation. For i ∈ N we denote by ν(i) the string
obtained by stripping off the leading 1 in i’s binary representation, i.e., ν(i) := s′,
when i = (s)2. For any binary tree t we denote by ti the subtree of t which has its
root in the node vi, which we define to be the node to which we are guided by the
string ν(i). (If vi is not in the vertex set of t, then ti is empty.) For example, v1 is
the root of t (thus t1 = t, t2 = t�, and t3 = tr), and we are guided to v5 by the string
ν(5) = 01, since 5 = (101)2.

It readily follows from (1) and properties of the Bernoulli model that for fixed
κ ∈ Kω the random variables F i

κ,N satisfy, for i,N ≥ 0,

F i
κ,N

D
= 1l{N≥2}

(
1 + a0,i+1F

i+1
κ,k + a1,i+1F̄

i+1
κ,N−k

)
,(6)

where k follows a binomial distribution B(N, p), the sequence (F̄ i+1
κ,� )�≥0 is an inde-

pendent copy of (F i+1
κ,� )�≥0, and finally

a0,i = 1l{κi∈{0,∗}} and a1,i = 1l{κi∈{1,∗}}.

Indeed, (F i
κ,N )i,N≥0 can be defined by (6), i.e., (Xi

N )i,N≥0 = (F i
κ,N )i,N≥0 is the only

finite solution, up to equality in distribution, to

Xi
N

D
= 1l{N≥2}

(
1 + a0,i+1X

i+1
k + a1,i+1X̄

i+1
N−k

)
with the same assumptions on distributions and independence as in (6). To see that,
we iterate the latter equation M − 1 times, thus representing X0

N as

X0
N

D
=

2M−1∑
m=1

ε0m1l{|tm|≥2} +

2M+1−1∑
m=2M

ε0m1l{|tm|≥2}X
M,m
|tm| ,(7)

where

εim = 1l{ν(m) matches κ(i)}.(8)

(We say that a finite string s matches a query κ if s is a prefix of some infinite string s̄

that matches κ.) Moreover XM,m
k

D
= XM

k for 2M ≤ m < 2M+1, and (XM,m
k )k≥0 and

(XM,m′
k )k≥0 are independent for 2M ≤ m < m′ < 2M+1. Now, the probability

that the second sum of (7) equals 0 is not smaller than P (height(t) ≤ M), which
approaches 1 as M → ∞; cf. [19, p. 257] for the limiting distribution of the height
of a binary asymmetric trie. This proves that the system of equations (6) indeed
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uniquely determines (F i
κ,N )i,N≥0. As a byproduct we have derived the almost surely

convergent representation

F i
κ,N =

∑
m≥1

εim1l{|tm|≥2},(9)

where εim depends only on κ, and 1l{|tm|≥2} depends only on t. Note that the random
variables summed in (9) are not independent. Equation (6) could be used to prove
that moments of all orders of Fκ,N exist. This, however, follows more easily from the
fact that Fκ,N is not larger than IN , the number of internal nodes of the corresponding
trie, which has itself moments of all orders (cf. [15]).

Proof of Theorem 1. We will actually show that the sup (and likewise the inf)
in (2) is attained for each N , and it is attained at the same κ for all N . Denoting
f iκ = (f iκ,N )N≥0, we derive from (6)

f iκ = e + a0,i+1Mpf
i+1
κ + a1,i+1Mqf

i+1
κ = e + Bi+1f

i+1
κ ,(10)

where e := (0, 0, 1, 1, 1, . . . ), f iκ,0 = f iκ,1 = 0 for i ≥ 0, the matrix Mr is defined by

(Mr)N,k :=
(
N
k

)
rk(1− r)N−k (with 00 := 1) and has the property MrMr′ = Mrr′ =

Mr′Mr, and

Bi := a0,iMp + a1,iMq =

⎧⎪⎨⎪⎩
Mp, κi = 0,

Mq, κi = 1,

Mp + Mq, κi = ∗.

Iterating (10), we obtain

fκ = (I + B1 + B1B2 + B1B2B3 + · · · )e =
∑
n≥0

n∏
i=1

Bie,

=
∑
n≥0

(Mp + Mq)
µnMρne,

(11)

where
∏0

i=1 Bi = I is the infinite identity matrix, and

µn = µn(κ) =

n∑
i=1

1l{κi=∗} =

n∑
i=1

a0,ia1,i,(12)

ρn = ρn(κ) =

n∏
i=1

(
p1l{κi∈{0,∗}} + q1l{κi∈{1,∗}}

)
=

n∏
i=1

(pa0,i + qa1,i).(13)

Several lemmas are needed in the further investigation of (11). In the following we
write x↗ if the sequence x is increasing, and we define a partial order  on sequences
by

x  y :⇔ xN ≤ yN for all N.

First we cite a lemma from [27], listing some properties of the matrices Mr.
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Lemma 1. For 0 ≤ r ≤ 1 and any sequence x we have the following:
1. x � 0 ⇒ Mrx � 0.
2. ∆Mrx = rMr∆x.
3. x↗ ⇒ x �Mrx and Mrx↗.
4. If x � 0 and |∆mxN | ≤ c xN+m

(N+m)m for some c > 0, some integer m ≥ 1,

and all N ≥ 0, then |∆m(Mrx)N | ≤ c (Mrx)N+m

(N+m)m for all N ≥ 0, where nm =

n(n− 1) · . . . · (n−m+ 1) denotes falling factorial powers.
A few simple facts concerning the sequences f i are listed in the next lemma.
Lemma 2. For i ≥ 0 and any fixed κ ∈ Kω (which we suppress) we have the

following:

1. f iN ≥ f iM ≥ M(M−1)
N(N−1) f

i
N for 2 ≤M ≤ N , in particular f i ↗.

2. f iN = Θ
(
f i+1
N

)
, as N →∞.

Proof. Since we can represent f i as

f i =
∑
n≥0

n∏
k=1

Bi+ke =
∑
k≥0

bkMpk
e,(14)

with 0 < pk ≤ 1 and bk > 0 for k ≥ 0, and since e ↗, the left inequality of the first
fact follows from property 3 of Lemma 1. Denoting for 0 < x ≤ 1

EN (x) := (Mxe)N = 1− (1− x)N −Nx(1− x)N−1 = N(N − 1)

∫ x

0

ξ(1− ξ)N−2dξ,

(15)

we deduce EM (x) ≥ M(M−1)
N(N−1) EN (x), which proves the right inequality of the first fact.

Furthermore, from (10) and f i+1 � e we deduce f iN ≤ 1 + 2f i+1
N ≤ 3f i+1

N , and, since
f i+1 ↗ and (Mp + Mq)f

i+1 � Mpf
i+1 � Mqf

i+1 = Mq/pMpf
i+1 by property 3 of

Lemma 1,

f iN ≥ 1 +

N∑
k=0

(
N

k

)
qkpN−kf i+1

k ≥
N∑

k=0

(
N

k

)
qkpN−k k(k − 1)

N(N − 1)
f i+1
N = q2f i+1

N ,

which completes the proof.
A key step in the proof of (2) is the following result.
Lemma 3. With ρn(κ) defined in (13), we let ρ(κ) = (ρn(κ))n≥0. If κ, κ̄ ∈ Kω

satisfy

ρ(κ) � ρ(κ̄),

then

fκ � fκ̄.

Proof. Since µn depends only on the specification pattern ω, we have µn (κ) =
µn (κ̄) for n ≥ 0. Using (11), we derive

fκ − fκ̄ =
∑
n≥0

(Mp + Mq)
µnMρn(κ)e−

∑
n≥0

(Mp + Mq)
µnMρn(κ̄)e

=
∑
n≥0

(
I−Mρn(κ̄)/ρn(κ)

)
Mρn(κ)(Mp + Mq)

µne � 0,

where in the latter sum each term is � 0 by property 3 of Lemma 1.
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Next we note that there are unique sequences κsup ∈ Kω ∩ {0, ∗}N

and κinf ∈
Kω ∩ {1, ∗}N

, such that ρ(κsup) � ρ(κ) � ρ(κinf) holds for κ ∈ Kω, to which
Lemma 3 applies, yielding

sup
κ∈Kω

fκ = fκsup =
∑
n≥0

(Mp + Mq)
µnMpn−µne =: f sup,

and similarly

inf
κ∈Kω

fκ = fκinf =
∑
n≥0

(Mp + Mq)
µnMqn−µne =: f inf .

To complete the proof of (2) we have to derive Θ-estimates of the sequences f sup

and f inf . Here we can resort to Kirschenhofer, Prodinger, and Szpankowski [17,
Theorem 1.2], where exact asymptotics of costs of partial match retrievals for fixed
periodic queries are obtained. The method used there is a Mellin transform approach
(cf. [9] for details) that, in our case, would make use of the representation

f sup
N = − 1

2πi

∫ −1+i∞

−1−i∞

P (p−s, q−s)(s+ 1)Γ(s)

1− p−s(K−u)(p−s + q−s)u
N−sds

(
1 +O (

N−1
))
,

where P (·, ·) is a polynomial of two variables of degree K − 1, and which allows us,
by invoking residue calculus, to derive

f sup
N = Nγ1ξ(lnN) + o (Nγ1) ,

where ξ is a continuous positive periodic function which is constant if ln p
ln q is irrational.

For more details see also [26, Theorem 1, Lemma 4]. This proves the first part
of (2), and the proof of the second part follows along the same lines, establishing
f inf
N = Θ(Nγ2).

It remains to prove (3), which will be an immediate consequence of the following
result.

Lemma 4. Assume that (ρn)n≥1, as defined in (13), is nicely approximated by a
geometric sequence in the following sense. There is r ∈ [q, p], an increasing sequence
(an)n≥1 of positive real numbers, and an increasing differentiable concave function g,
defined on [0,∞[ , with g(0) = 0, an ≤ g(n), and g′(x) = o(1), as x→∞, such that

| ln(ρ
Kn
r−(K−u)n)− ln(ρ

Km
r−(K−u)m)| < an ∨ g(|n−m|)(16)

holds for m,n ∈ N with n sufficiently large. Then, denoting S̄κ,n := ln(ρ
Kn
r−(K−u)n),

we have

ln fκ,N = b lnN + bS̄κ,nb
+O

(
anb

+G(nb) +

√
g3(nb)

nb
+ ln lnN

)
,(17)

where b satisfies (pb +qb)ur(K−u)b = 1. The constant cb = b
(
u ln(P−Pb

b Q−Qb

b )
)−1

is as

defined in Theorem 1, and nb = �cb lnN�. Moreover G(n) := maxx≥0

(
bg(x)− db x2

2n

)
,

with db :=
(
uc2bPbQb ln2 p

q

)−1
.

We are now ready to complete the proof of Theorem 1. First we claim the
following: Equation (16) of Lemma 4 is satisfied for Q-almost every κ ∈ Kω if we
choose r = ppqq, g(x) = (ln p

q )
√

2x ln(x+ 1), and an = g(
√
n).
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Note that S̄κ,n and Sκ,n, as defined in Theorem 1, coincide for r = ppqp, and that
also b = β. We define the events

En,m := {κ ∈ Kω : |Sκ,n − Sκ,m| ≥ an ∨ g(|n−m|)}.

Since S·,n
D
= ln p

q

∑n(K−u)
i=1 (Yi−p), with (Yi)i≥1 i.i.d. and P (Y1 =1) = p = 1−P (Y1 =0),

we obtain, applying Chernoff’s bound (cf. [21]),

Q(En,m) ≤ 2 exp

(
−2

√
n lnn

|n−m|
)
∧ 2 exp (−4 ln |n−m|) .

Next we find
∑

m≥1Q(En,m) = O(n−3/2), and thus
∑

n,m≥1Q(En,m) <∞. Now, by
the Borel–Cantelli lemma, Q(En,m i. o.) = 0, which proves the claim.

Next we are going to determine G(n). We have to solve bg′(x) = dβ
x
n for x, which

yields

x = xn =

(
β2 ln2 p

q

12d2
β

)
1/3

n2/3(lnn)1/3
(

1 +O
(

ln lnn

lnn

))
.

So we obtain

G(n) = βg(xn)− dβ x
2
n

n
=

(
3β4 ln4 p

q

16dβ

)
1/3

n1/3(lnn)2/3
(

1 +O
(

ln lnn

lnn

))
.

Thus, for n large enough, an ∨ G(n) ∨
√

g3(n)
n = G(n) = O(n1/3(lnn)2/3), which,

via (17), proves (3), and thus completes the proof of Theorem 1.
Remark 5. As a simple modification of the preceding proof shows, Lemma 4 allows

us to generalize (3) and Corollary 1 to queries distributed according to a Bernoulli
model that differs from the key model. Still we assume that the query is independent
of the keys, but now a specified element of the query equals 0 with probability p̄, and
1 with probability q̄, which satisfy r = pp̄qq̄. Then (3) and Corollary 1 remain true if

we replace (S, β, cβ , σ) by (S̄, b, cb, σ̄), with σ̄ = b ln p
q

√(
K
u − 1

)
p̄q̄

/
ln
(
P−Pb

b Q−Qb

b

)
.

Proof of Lemma 4. We only have to consider logarithms of fκ,N , and thus the
following crude estimate becomes useful:

fκ,N = Θ

⎛⎝∑
n≥0

[
(Mp + Mq)

unMρ
Kn

e
]
N

⎞⎠ ,(18)

where the constants implied only depend on the dimension K. This follows from (11),
from which we deduce, with the help of property 3 of Lemma 1,

∑
n≥0

Kn∏
k=1

Bke  fκ  K
∑
n≥0

Kn∏
k=1

Bke.(19)

Recall that we put Pa := pa

pa+qa and Qa := 1−Pa for a ∈ R. We extend this definition
by putting P−∞ := 0 and P∞ := 1, and we continue defining

kn = kn(N,κ) := log p
q
(Nρ

Kn
pun)(20)
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and

na = na(N,κ) := max(n ≥ 0 : Nρ
Kn
pPaunqQaun ≥ 1) = max(n ≥ 0 : kn ≥ Qaun).

(21)

By our assumption p > q, both Pa and na are increasing as a increases, and kn is
decreasing as n increases. Moreover na = Θ(lnN) holds uniformly in κ ∈ Kω and
a ∈ [−∞,∞], since from q(K−u)n ≤ ρ

Kn
≤ p(K−u)n we can deduce � 1

K log 1
q
N� ≤ na ≤

� 1
K log 1

p
N�.

The first step towards (17) is the following result.
Lemma 5. Let H : R

2 → R be defined by

H(n, k) := k ln
un

k
+ (un− k) ln

un

un− k .(22)

Then, uniformly in κ ∈ Kω,

ln fκ,N = max
n0≤n≤n2

H(n, kn) +O(ln lnN).(23)

Proof. We observe that EN (x) = Θ(1 ∧N2x2), with EN (x) defined in (15); thus
by (18)

fκ,N 

∑
n≥0

un∑
k=0

(
un

k

)
EN

(
ρ

Kn
pun−kqk

) 
∑
n≥0

un∑
k=0

(
un

k

)(
1 ∧ (

Nρ
Kn
pun−kqk

)2
)
.︸ ︷︷ ︸

ΣN,n

Note that ΣN,n grows (resp., decays) like a geometric sequence for n ≤ n0 (resp.,
n > n2); more precisely, we have

ΣN,n ≤ 2un ∧N2ρ2
Kn

(p2 + q2)un

for any n ≥ 0, and moreover ΣN,n ≥
∑

k≤Q0un

(
un
k

) ≥ 2un−1 for n ≤ n0, and

ΣN,n ≥
∑

k≥Q2un

(
un

k

)(
Nρ

Kn
pun−kqk

)2
= N2ρ2

Kn
(p2 + q2)un

∑
k≥Q2un

(
un

k

)
Pun−k

2 Qk
2

≥ cN2ρ2
Kn

(p2 + q2)un,

for n > n2 and some c > 0. (It follows from results in [13] that we can choose
c = 1

4 ∧ Q2.) Thus
∑n0

n=0 ΣN,n = O (ΣN,n0) and
∑

n≥n2
ΣN,n = O (ΣN,n2). For

n0 ≤ n ≤ n2 we have for any a ∈ [0, 2]

ΣN,n ≤
un∑
k=0

(
un

k

)(
Nρ

Kn
pun−kqk

)a
= (Nρ

Kn
)a(pa + qa)un,(24)

and an, which minimizes the right-hand side of (24), obeys

ln(Nρ
Kn

) + un(Pan ln p+Qan ln q) = 0.

Note that nam = m; cf. (21). This results in

ΣN,n ≤
(
P

−Pan
an Q

−Qan
an

)un

= eH(n,kn),
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where we used Qanun = log p
q
(Nρ

Kn
pun) = kn. Furthermore, Q2un0 ≤ kn ≤ Q0un2

implies kn = Θ(lnN), uniformly in κ ∈ Kω and n0 ≤ n ≤ n2. This is used, together
with Stirling’s formula, in the following lower estimate:

ΣN,n ≥
(
un

�kn�
)

= Ω

(
eH(n,kn)

√
lnN

)
.

Thus, (maxn0≤n≤n2
eH(n,kn))−1

∑n2

n=n0
ΣN,n is upper bounded by n2 − n0 + 1 and

lower bounded by Ω(ln− 1
2 N), so we finally obtain

ln fκ,N = ln

(
n2∑

n=n0

ΣN,n

)
+O(1) = max

n0≤n≤n2

H(n, kn) +O(ln lnN),(25)

which completes the proof of the lemma.
Some properties of the function H are explored in the following three lemmas.
Lemma 6. If either n0 ≤ m ≤ n ≤ nγ2 or n2 ≥ m ≥ n ≥ nγ1 , then

H(n, kn) ≥ H(m, km).(26)

Proof. First observe that − log p
q
pK−upu ≤ km − km+1 ≤ − log p

q
qK−upu. We let

h(t) := H(m+ t, km + (km+1 − km)t)

and assume n0 ≤ m < nγ2
, which implies am+1 ≤ γ2. Next we apply the mean value

theorem. For some 0 < τ < 1 and am < ā < am+1 we have

H(m+ 1, km+1)−H(m, km) = h(1)− h(0) = h′(τ)

= u ln
u(m+ τ)

u(m+ τ)− km − (km+1 − km)τ

+ (km+1 − km) ln
u(m+ τ)− km − (km+1 − km)τ

km + (km+1 − km)τ

= u ln
1

Pā
+ (km+1 − km) ln

Pā

Qā

≥ u ln
1

Pā
+ log p

q
(qK−upu) ln

Pā

Qā
= u ln

1

Pā
+ ā ln qK−upu

= ln
(
(pā + qā)uq(K−u)ā

)
≥ ln

(
(pγ2 + qγ2)uq(K−u)γ2

)
= 0.

This proves (26) in the case n0 ≤ m ≤ n ≤ nγ2 . The proof in the case n2 ≥ m ≥
n ≥ nγ1 follows similar lines.

Lemma 7. For 0 ≤ b ≤ 1 and Q1un ≤ k, k′ ≤ Q0un we have∣∣∣∣H(n, k)−H(n, k′)− (k − k′)b ln
p

q

∣∣∣∣ ≤ 2|k − k′|
qun

(|k −Qbun| ∨ |k′ −Qbun|) .(27)

Proof. Assume without loss of generality (w.l.o.g.) that k ≥ k′. The left-hand side

of (27) equals
∣∣ ∫ k

k′ ln Pbx
Qb(un−x)dx

∣∣ and is less than (k − k′) maxk′≤x≤k

∣∣ ln Pbx
Qb(un−x)

∣∣.
The latter absolute value can be estimated as follows:∣∣∣∣ln Pbx

Qb(un− x)
∣∣∣∣ =

∣∣∣∣∣
∫ Pbx

Qb(un−x)

dξ

ξ

∣∣∣∣∣ ≤ |Qbun− x|
un

(
1

PbQ1
∨ 1

QbP0

)
.
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Furthermore PbQ1 ∧QbP0 ≥ Q1P0 = q
2 .

Lemma 8. Let r ∈ [q, p] and b ∈ R be such that r(K−u)b(pb + qb)u = 1. Moreover
let kn and na be defined by (20) and (21), with ρ

Kn
= r(K−u)n, and for a ∈ [−∞,∞]

let νa be such that N
(
rK−upuPaquQa

)νa
= 1.

Then φN (n) := H(n, kn) is a concave function, defined for real n ∈ ]ν−∞, ν∞[ ,
which satisfies

φN (n) = b lnN − db (n− nb)2
2nb

+O
(

1 + |n− nb|
nb

+
|n− nb|3

n2
b

)
,(28)

and for some C > 0

φN (n)− b lnN ≤ −C (n− νb)2
2νb

.(29)

Proof. First note that na = �νa� for −∞ ≤ a ≤ ∞, and that

νb =
lnN

ln r−(K−u)p−Pbq−Qb
= cb lnN,

ν−∞ =
lnN

ln r−(K−u)q−u
, ν∞ =

lnN

ln r−(K−u)p−u
.

We observe that kn

un decreases from 1 to 0, as n increases from ν−∞ to ν∞; more
precisely

kn
un

=
1

un
log p

q
N +

1

u
log p

q
r(K−u)pu =

ν−∞
ν−∞ − ν∞

(
1− ν∞

n

)
,

and thus φN is well defined on ]ν−∞, ν∞[ . We are seeking the Taylor expansion of φN
at its maximum, and we derive, along lines similar to the proof of Lemma 6,

φ′N (νa) = u ln
uνa

uνa − kνa

+ ln
uνa − kνa

kνa

dkn
dn

∣∣∣∣
n=νa

= u ln
1

Pa
+ log p

q
(rK−upu) ln

Pa

Qa
= ln

(
(pa + qa)ur(K−u)a

)
,

which equals 0 iff a = b. Next

φN (νb) = uνb

(
Pb ln

1

Pb
+Qb ln

1

Qb

)
=

b

cb
νb = b lnN.

Furthermore

φ′′N (n) =
u

n
− uν∞
ν∞ − ν−∞

1

n− ν−∞
− uν−∞
ν∞ − ν−∞

1

ν∞ − n = − uν−∞ν∞
n(n− ν−∞)(ν∞ − n)

is easily seen to be strictly negative for n ∈ ]ν−∞, ν∞[ , which proves that φN is
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concave on that interval. Now we compute

φ′′N (νb) = − u
νb

(
νb
ν−∞

− 1

)−1 (
1− νb

ν∞

)−1

= − u

c2bνb

(
ln r−(K−u)q−u − 1

cb

)−1 (
1

cb
− ln r−(K−u)p−u

)−1

= − b2

uc2bνb

(
ln

1

Qb
− lnP−Pb

b Q−Qb

b

)−1 (
lnP−Pb

b Q−Qb

b − ln
1

Pb

)−1

= − 1

uc2bνb

(
PbQb ln2 p

q

)−1

= −db
νb

;

moreover,
∫ n−νb

0
x2

2! φ
′′′
N (n − x)dx, the remainder in the order two Taylor expansion

of φN at νb, can be shown to be O( |n−νb|3
ν2
b

)
as N → ∞ and uniformly for ν−∞ <

n < ν∞, using ν∞ − νb = Θ(νb) and νb − ν−∞ = Θ(νb). We thus derive

φN (n) = b lnN − db (n− νb)2
2νb

+O
( |n− νb|3

ν2
b

)
.

Now, replacing νb by nb yields (28), with the slightly changed error term. The fol-
lowing upper estimate for φ′′N on the interval ]ν−∞, ν∞[ yields the definition of the
constant C, needed for the proof of (29):

φ′′N (n) ≤ − uν−∞
(n− ν−∞)(ν∞ − n)

≤ − 4uν−∞
(ν∞ − ν−∞)2

=: −C
νb
.

We proceed in the proof of Lemma 4. Our aim is to approximate in (23) the terms
H(n, kn) corresponding to ρ

Kn
by terms H(n, k′n) corresponding to the approximating

sequence r(K−u)n. Note that kn is defined in (20), and we let

k′n := log p
q
Nr(K−u)npun.

Putting m = 0 in (16) yields

| ln(ρ
Kn
r−(K−u)n)| = |kn − k′n| ln

p

q
= o(n).

Thus kn ∈ [Qγ1un,Qγ2un] implies k′n ∈ [Q1un,Q0un] for large enough n, and we can
deduce

|H(n, kn)−H(n, k′n)| = O(|kn − k′n|) = O (g(νb) + g(|n− νb|)) ,(30)

where the left equality follows easily from Lemma 7, and the right equality is implied
by

|kn − k′n| ln
p

q
≤ |knb

− k′nb
| ln p

q
+ |kn − k′n − (knb

− k′nb
)| ln p

q

= | ln(ρ
Knb

r−(K−u)nb)|+ | ln(ρ
Kn
r−(K−u)n)− ln(ρ

Knb
r−(K−u)nb)|

= O (g(νb) + g(|n− νb|)) ,
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which holds by the assumptions made in (16).
Lemma 6 and (29) and (30) will be used in the following, where we show that the

max in (23) is attained on a small subset of [n0, n2]:

max
n0≤n≤n2

H(n, kn) = max
nγ2

≤n≤nγ1

H(n, kn)

= max
nγ2

≤n≤nγ1

(H(n, kn)−H(n, k′n) +H(n, k′n))

≤ b lnN +O(g(νb)) + max
nγ2

≤n≤nγ1

(
O(g(|n− νb|))− C (n− νb)2

2νb

)
.

Defining argmax{F (x), x ≥ 0} := sup
{
x ≥ 0 : F (x) = supy≥0 F (y)

}
for a real func-

tion F , we obtain

x∗ : = argmax

{
O(g(x))− C x2

2νb
, x ≥ 0

}
≤ sup

{
x ≥ 0 : O(g(x))− C x2

2νb
≥ 0

}
≤ sup

{
x ≥ 0 : O(g(νb))− C x2

2νb
≥ 0

}
= O

(√
νbg(νb)

)
,

where the first sup yields the estimate x∗ = O(νb), which, together with g(O(n)) =
O(g(n)), is then used to obtain the second inequality. Of course, the constants implied
by O can vary from line to line, but as they are derived from Lemma 7, they are
independent of κ. The maximizing n has to belong to the set

Nb :=
{
n ∈ N : |n− νb| = O

(√
νbg(νb)

)}
.

We continue observing that

|kn −Qbun| ∨ |k′n −Qbun| = O (g(νb) + |n− νb|) ,
which allows us to rewrite the error term of Lemma 7:

2|kn − k′n|
qunb

(|kn −Qbun| ∨ |k′n −Qbun|)

= O
(
g2(νb)

nb
+
g(νb)|n− νb|

nb
+
g(|n− νb|)|n− νb|

nb

)
.

Now we can be more precise, again employing Lemmas 7 and 8:

max
n0≤n≤n2

H(n, kn) = max
n∈Nb

(H(n, kn)−H(n, k′n) +H(n, k′n))

= max
n∈Nb

[
(kn − k′n)b ln

p

q
+O

( |kn − k′n|
nb

(|kn −Qbun| ∨ |k′n −Qbun|)
)

+ b lnN − db (n− nb)2
2nb

+O
(

1 + |n− nb|
nb

+
|n− nb|3

n2
b

)]
= b lnN + bS̄κ,nb

+O
(√

g3(nb)
nb

)
+ max

n∈Nb

[
−db (n− nb)2

2nb
+ b(S̄κ,n − S̄κ,nb

)

]
.

(31)
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By the definition of G we have

0 ≤ max
n∈Nb

[
−db (n− nb)2

2nb
+ b(S̄κ,n − S̄κ,nb

)

]
≤ max

n∈Nb

[
−db (n− nb)2

2nb
+ b

(
anb
∨ g(|n− nb|)

)]
≤ anb

∨G(nb).

(32)

Now, fitting Lemma 5 and equations (31) and (32) together finishes the proof of
Lemma 4.

Remark 6. It is clear that we need not be that precise about the constant db in
Lemma 4. Since the function G satisfies G(n) ≥ G(cn) ≥ cG(n) for 0 < c ≤ 1, i.e.,
G(cn) = Θ(G(n)) for fixed c > 0 (actually G can be shown to be increasing, concave,
and satisfying limx↘0G(x) = 0), it is only db > 0 which matters. There are, however,
two instances where we could wish to have the precise value. To these we devote the
following remarks.

Remark 7. Suppose we want to get hold of what is hidden behind the error terms
in (17), when κ is distributed according to Q, in which case we have b = β. Reworking
the preceding proof with g(x) = (ln p

q )
√

2x ln(x+ 1), we find that the terms estimated

by O(√
g3(nβ)/nβ

)
are indeed of order O(n

1/6
β ln5/6 nβ). Furthermore, anβ

+G(nβ)
is an upper bound for the quantity

Ynβ
:= max

n≥0

(
β(Sn − Snβ

)− dβ (n− nβ)2

2nβ

)
.

Donsker’s invariance principle (and scaling properties of Brownian motion) can be

used to show that D−1
β (cβ/β)1/3n

−1/3
β Ynβ

converges in distribution to the random
variable

Y := sup
t∈R

(Wt − t2),

where W is a two-sided Brownian motion, and

Dβ :=
β2 ln2 p

q

ln
(
P

−Pβ

β Q
−Qβ

β

) (
2p2q2

(
K

u
− 1

)2

PβQβ

)1/3

.

Komlós–Major–Tusnády-type strong approximation results (cf. [6]) then even allow
us to deduce

E ln fκ,N = β lnN +DβEY (β lnN)1/3 +O
(
ln1/6N ln5/6 lnN

)
.

Moreover, since Q
(
β(Sκ,n3+n2 − Sκ,n3) ≥ (dβ

2 + 2Dβ

(
β
cβ

)1/3
EY

)
n, i. o.

)
= 1, by the

second Borel–Cantelli lemma, we easily deduce

Q
(
ln fκ,N − β lnN − βSκ,�cβ lnN	 ≥ DβEY (β lnN)1/3, i. o.

)
= 1.

Since in the example depicted in Figure 2 the constant DβEY ≈ 0.02 is very small,

we do not observe the gaps of size Θ(ln1/3N) between the two curves in the plotted
range.
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The distribution of Y surfaces in a paper of Chernoff [5] and was studied ana-
lytically by Groeneboom [12]. There also seems to be a close connection to results
obtained by Steinsaltz in his thesis [29], where he develops general methods to inves-
tigate for a certain class of processes the difference of expected maximum and maxi-
mum expectation, which in many cases turns out to be approximately distributed like
a third root term times the random variable Y .

Remark 8. It is of course essential to know the dependence on p of the error terms
in (17) when we want to investigate the phase change from standard normal to Dirac
at 0 of CN−ECN√

VarCN
at the transition from the symmetric to the asymmetric Bernoulli

models. One would have to vary p with N , and p = pN = 1
2 + λ/

√
lnN with λ ≥ 0

seems to be the right choice.
Remark 9. A heuristic derivation of the values of b and nb appearing in Lemma 4

could be along the following lines. Suppose that κ satisfies ln(ρ
Kn
r−(K−u)n) = O(1),

which is a stronger regularity assumption than (16). With µn defined in (12), we let
Kn denote the set of the 2µn prefixes of length n that match κ. Given N keys, the
number of those keys having the prefix π ∈ Kn is denoted Nπ, and it is binomially
distributed. Suppose now that for some c > 0 we have f iκ,N = Θ(N c), uniformly in i.
Then (10) is iterated n − 1 times, and computing expectations, we obtain fκ,N =
O(2µn) + E

∑
π∈Kn

fnκ,Nπ
, and thus Θ(N c) = O(2µn) + Θ

(∑(
µn

k

)
(Nρnp

kqµn−k)c
)
.

Since the latter has to hold for N,n → ∞ in such a way that n = o(lnN), we must
have c = b. Suppose further that F i

κ,N

/
f iκ,N → 1 in probability as N →∞, uniformly

in i. Then, for large N , keys with prefix π (whose ∗-positions contain k zeros and
µn − k ones) will contribute a proportion of

EFn
κ,Nπ

/
fκ,N = Θ

(
(ρnp

kqµn−k)b
)

= Θ(P k
b Q

µn−k
b )

to the total cost with high probability. This suggests that we should consider a
different probabilistic model, where keys are distributed according to the Bernoulli(Pb)
model, but conditioned to match κ. Denoting by F̃κ,N (resp., ĨN ) the cost of a partial
match query for κ (resp., the number of internal nodes) in the new model, we have
F̃κ,N = Θ(ĨN ) and E ĨN = Θ(N), and therefore also

E F̃n
κ,Nπ

/
f̃κ,N = Θ(P k

b Q
µn−k
b ),

as N →∞, with high probability, where f̃κ,N := E F̃κ,N . This might convince us that
there is an asymptotic equivalence between the levels with highest expected contribu-
tion to fκ,N and f̃κ,�Nb	. Now any level ν, which contributes most to E ĨN , satisfies

ν ∼ lnN
h , where h = −Pb lnPb−Qb lnQb denotes the entropy of the Bernoulli(Pb) dis-

tribution. This follows from the u = K case of Lemma 8, but one could also argue that
only with that choice of ν do typical prefixes of length ν have probabilities of order
N−1+o(1), or one could use the fact that the depth DN of a full external node chosen
uniformly at random in a trie built from N keys according to the Bernoulli(Pb) model
is concentrated around its expected value EDN ∼ lnN

h . See Szpankowski’s book [30]
for the asymptotic equipartition property and other entropy related issues, as well as
for references and results on depth in digital data structures. From µn ∼ Kn/u we de-
duce that the main contribution to f̃κ,�Nb	 comes from levels ∼ Kb lnN

uh , and the value
of nb becomes clear, observing that Lemma 4 is stated in terms of Kn rather than n.
Finally one has to argue that nb is insensitive to small irregularities of the query, as
allowed by (16), but that due to those irregularities, the expected contributions to
fκ,N from levels n ∼ nb change by a factor of (ρ

Kn
r−(K−u)n)b = ebS̄κ,n .
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4. The variance. Note that κ is fixed throughout this section, and dependencies
on κ will mostly be suppressed.

Proof of Theorem 2. Subtracting (10) from (6), squaring, and taking expectations,
we obtain

vi = si + Bi+1v
i+1, i ≥ 0,(33)

where

siN =

N∑
k=0

(
N

k

)
pkqN−k

(
a0,i+1(f

i+1
k − (Mpf

i+1)N ) + a1,i+1(f
i+1
N−k − (Mqf

i+1)N )
)2
.

(34)

Iterating, we find

v = Is0 + B1s
1 + B1B2s

2 + · · · =
∑
n≥0

n∏
k=1

Bks
n.(35)

The O result will follow from the following more general result, which holds for
fixed nonnegative integers m, uniformly in κ ∈ Kω:

∆mvN = O
(
fN
Nm

lnN

)
.(36)

For its proof we need more information about the sequences si and thus about the
sequences ∆mf i for m ≥ 0.

Lemma 9. For any fixed integer m ≥ 0 we have

∆mf iN = O
(
f iN
Nm

)
, ∆msiN = O

(
(f iN )2

Nm+1

)
,(37)

as N → ∞, where the constants implied by the O symbols depend on neither i nor
κ ∈ Kω.

Proof. Throughout the proof i is fixed. Since |∆meN | ≤ (m + 1)! eN+m

(N+1)···(N+m) ,

we can apply property 4 of Lemma 1 to the representation (14). Furthermore we
use f iN+m = O(f iN ), which we deduce from item 1 of Lemma 2. This proves the
first statement regarding differences of f i, which is now used, together with item 1
of Lemma 2, to estimate the remainder term in the following Newton-type expansion
of f ik around k = �pN�:

f ik =

M∑
µ=0

∆µf i�pN	
(k − �pN�)µ

µ!
+O

(
f iN

NM+1
|k − pN |M+1

)
.(38)

We fix N and obtain a similar expansion of f iN ′−k around k = �pN� + ν, where
N ′ = N + ν and ν = O(1),

f iN ′−k =

M∑
µ=0

∆µf iqN�
(�pN� − k + ν)µ

µ!
+O

(
f iN

NM+1
(|k − pN |M+1 + 1)

)
,

and, expanding (k − �pN�)µ and (�pN� − k + ν)µ in powers of k − pN ′, we obtain

a0,if
i
k + a1,if

i
N ′−k = f iN

M∑
µ=0

N−µPµ (k − pN ′, ν) +O
(

f iN
NM+1

(|k − pN |M+1 + 1)

)
,
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where Pµ is a polynomial of two variables of degree µ, which depends on i and N .
More precisely, the coefficients of Pµ involve the quantities {pN} := pN − �pN�,
Nµ

fi
N

∆µf i�pN	, and Nµ

fi
N

∆µf iqN� but are uniformly bounded in i and N . Notice that in

particular P0 = a0,if
i
�pN	/f

i
N + a1,if

i
qN�/f

i
N and

P1 = a0,i
N

f iN
∆f i�pN	(k − pN ′ + νp+ {pN}) + a1,i

N

f iN
∆f iqN�(pN

′ − k + νq − {pN}).

For k following a binomial distribution B(N ′, p), we now have

si−1
N ′ = Var

(
a0,if

i
k + a1,if

i
N ′−k

)
= (f iN )2

M∑
µ,µ′=1

N−µ−µ′
Cov (Pµ (k − pN ′, ν) , Pµ′ (k − pN ′, ν))

+O
(
(f iN )2N−M

2 −1
)
.

(39)

Note that we can start the summation with µ, µ′ = 1, since Cov (Pµ, Pµ′) = 0 if
µ ∧ µ′ = 0. For µ ∧ µ′ ≥ 1 we find

Cov (Pµ, Pµ′) =

�µ+µ′
2 	∑

j=1

P̄j(N
′)pµ+µ′−2j(ν),

where P̄j and pj are polynomials of degree j, with coefficients uniformly bounded in
i and N ; thus, computing differences with respect to ν, we obtain

∆mCov (Pµ, Pµ′) = ∆m

�µ+µ′
2 	∑

j=1

P̄j(N + ν)pµ+µ′−2j(ν)

=

{
O

(
N�µ+µ′−m

2 	
)

for m < µ+ µ′,

0 for m ≥ µ+ µ′;

thus the second statement of the lemma follows with M = 2m from computing the
mth differences in (39) and from item 2 of Lemma 2. The special case m = 1 of (39)
reads

siN = Npq
(
a0,i+1∆f

i+1
�pN	 − a1,i+1∆f

i+1
qN�

)2

+O
(

(f iN )2

N2

)
.

Lemma 10. The sequences xi and yi, defined for i ≥ 0 and some integer m ≥ 0
by xiN = Nm∆msiN−m and yiN = Nm∆mviN−m, satisfy the system of equations

yi = xi + Bi+1y
i+1, i ≥ 0.(40)

If in (40) the sequences xi satisfy |xiN | ≤ c · f iN for some c > 0 and i,N ≥ 0, then y0

satisfies y0
N = O(fN lnN), and the O-constant is uniform in κ ∈ Kω.

Proof. We multiply both sides of (33) with the matrix Dm, which is defined by

(Dm)N,k = Nm

(
m

N − k
)

(−1)N−k,
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and obtain (40), since xi = Dmsi, yi = Dmvi, and Dm commutes with Mx for
m ∈ N and 0 < x ≤ 1. The latter is clear from the representations Dm = PFmP−1

and Mx = PGxP
−1, with PN,k =

(
N
k

)
and diagonal matrices Fm,Gx defined by

(Fm)N,k = NmδN,k and (Gx)N,k = xNδN,k. For the proof of the second assertion we
note that in

−c
∑
n≥0

n∏
k=1

Bkf
n  y0 =

∑
n≥0

n∏
k=1

Bkx
n  c

∑
n≥0

n∏
k=1

Bkf
n

we can estimate the first n̄ := � K
K−u log1/pN� terms of the right-hand side by

n∏
k=1

Bkf
n = f −

n−1∑
j=0

j∏
k=1

Bke  f .

For the remaining terms (for n ≥ n̄) we use f iN = O(N), which follows from (2), and
property 2 of Lemma 1:∑

n≥n̄

n∏
k=1

Bkf
n  c′

∑
n≥n̄

n∏
k=1

Bkid = c′ id
∑
n≥n̄

n∏
k=1

(a0,kp+ a1,kq)  c′′
N id,

with c′, c′′ > 0 and id denoting the sequence (N)N≥0. We conclude by obtaining
|y0

N | ≤ c(n̄fN + c′′) = O(fN lnN).
By Lemma 9, item 1 of Lemma 2, and (2) we have for m ≥ 0

Nm∆msiN−m = O
(

(f iN−m)2

N

)
= O

(
(f iN )2

N

)
= O (

f iN
)
,

and hence Lemma 10 yields (36). The proof of the O-part of Theorem 2 is thus
complete.

In order to obtain the Ω result, we define the sequence s via sN := infi≥0 s
i
N and

derive from (35)

v � (I + B1 + B1B2 + · · · )s.
Since sN ≥ 0 for all N ≥ 0 and s2 > 0, the latter because of f i+1

2 ≥ 1 and

si2 =

2∑
k=0

(
2

k

)
pkq2−k

(
a0,i+1(f

i+1
k − p2f i+1

2 ) + a1,i+1(f
i+1
2−k − q2f i+1

2 )
)2

= (f i+1
2 )2 ×

⎧⎪⎨⎪⎩
p2(1− p2), (a0,i+1, a1,i+1) = (1, 0),

q2(1− q2), (a0,i+1, a1,i+1) = (0, 1),

(p2 + q2)(1− p2 − q2), (a0,i+1, a1,i+1) = (1, 1),

we can prove vN = Ω(fN ) by applying the following two lemmas.
Lemma 11. Let sequences p and b be given, with p0 = b0 = 1 and 0 < pi < 1,

bi > 0 for i ≥ 1, and let � :=
∑

i≥0 biMpi
e. If there exists ε > 0 such that for all

0 < x < 1 we have ∑
i≥0

bi1l]εx,x](pi) ≥ ε
∑
i≥0

bi1l]x,∞[(pi)(41)

and ∑
i≥0

bip
2
i 1l]εx,x](pi) ≥ ε

∑
i≥0

bip
2
i 1l]0,εx](pi),(42)
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then for any sequence x of nonnegative terms having at least one positive term and
satisfying x0 = x1 = 0, the sequence y :=

∑
i≥0 biMpix satisfies

yN = Ω(�N ).

Proof. Let k0 ≥ 2 be the smallest k such that xk > 0. With the help of (15) it is
easily checked that

(Mpe)N ≤ 1 ∧N2p2.

Thus for N ≥ k0 we have

inf
εN−1<p≤N−1

(
N

k0

)
pk0(1− p)N−k0

=

(
N

k0

)[( ε

N

)k0
(
1− ε

N

)N−k0 ∧
(

1

N

)k0
(

1− 1

N

)N−k0
]

≥
(
N

k0

)[( ε

N

)k0

e−ε ∧
(

1

N

)k0

e−1

]
≥ k−k0

0

(
εk0e−ε ∧ e−1

)
.

We define Ck0,ε := kk0
0

(
ε−k0eε ∨ e). Using properties (41) and (42) with x = 1

N , we
obtain for N ≥ k0

�N ≤
∑

pi≤ 1
N

bi(Npi)
2 +

∑
pi>

1
N

bi ≤
(

1

ε
+ 1

) ∑
ε
N <pi≤ 1

N

bi(Npi)
2 +

1

ε

∑
ε
N <pi≤ 1

N

bi

≤
(

1 +
2

ε

) ∑
ε
N <pi≤ 1

N

bi ≤
(

1 +
2

ε

)
Ck0,ε

∑
i≥0

(
N

k0

)
bip

k0
i (1− pi)N−k0

≤
(

1 +
2

ε

)
Ck0,ε

1

xk0

∑
i≥0

biMpixN .

This completes the proof.
Remark 10. For any N ≥ 2 we have �N < ∞ iff

∑
i≥0 bip

2
i < ∞, since

1
4 (1 ∧ N2p2) ≤ (Mpe)N ≤ 1 ∧ N2p2 for N ≥ 2. Moreover, for N ≥ k0 we have
yN < ∞ iff �N < ∞ by Lemma 11 and because of yN ≤ �N maxk≤N xk. If the se-
quence p has only one limit point, it follows from (41) that this limit point must be 0,
and then from (42) that

∑
i≥0 bip

2
i <∞ holds.

Lemma 12. Let p and b be as in Lemma 11. Then the conditions (41) and (42)
of Lemma 11 are satisfied, and, moreover,

∑
i≥0 bip

2
i < ∞ holds, if the function G,

defined by G(x) := −∑
i≥0 bi1l]−∞,pi[(x), with values in [−∞, 0], has a representation

G(x) =
∑
n≥0

gn(x),

with g0(x) = −1l]−∞,1[(x) and gn(x) =
∑

i≥0 b
(n)
i gn−1

(
x

p
(n)
i

)
for n ≥ 1, where the b

(n)
i

are nonnegative, the p
(n)
i are positive and less than or equal to 1, and

inf
n≥1

∑
i≥0

b
(n)
i > 1, sup

n≥1

∑
i≥0

b
(n)
i

(
p
(n)
i

)2

< 1, and inf
n,i: b

(n)
i >0

p
(n)
i > 0

hold.
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Proof. We redefine, only for purposes of this proof, the symbol ∆: We let ∆f(x) =
f(x) − f(x−) denote the jump of the right continuous function f at x. As we will
shortly show, ∑

i≥0

bip
2
i =: C <∞(43)

holds, so we derive for x > 0

G(x) = −
∑
pi>x

bi ≥ − 1

x2

∑
pi>x

bip
2
i ≥ −

C

x2
.

Hence G is an increasing and right continuous step function on ]0,∞[ , with values in
]−∞, 0], and thus serves as a generalized distribution function (cf. [28, p. 158]) of a
discrete measure µ on ]0,∞[ given by

µ(]a, b]) := G(b)−G(a) =
∑

a<t≤b

∆G(t).

Defining another measure ν, absolutely continuous with respect to µ, by

ν(]a, b]) :=
∑

a<t≤b

t2∆G(t),

we have to prove the inequalities

µ(]εx, x]) ≥ εµ(]x,∞[), ν(]εx, x]) ≥ εν(]0, εx]),

which are obtained by rephrasing (41) and (42) in terms of µ and ν. Moreover, (43)
will be proved by showing ν(]0,∞[) <∞. Therefore we denote

α = inf
n≥1

∑
i≥0

b
(n)
i , β = sup

n≥1

∑
i≥0

b
(n)
i

(
p
(n)
i

)2

, and η = inf
n,i: b

(n)
i >0

p
(n)
i(44)

and define measures µn, νn for n ≥ 0 by

µn(]a, b]) := gn(b)− gn(a), νn(]a, b]) :=
∑

a<t≤b

t2∆gn(t).

Now we observe that for x > 0

µn(]x,∞[) = −gn(x) = −
∑
i≥0

b
(n)
i gn−1

(
x

p
(n)
i

)
≥ −αgn−1

(
x

η

)
= αµn−1(]x/η,∞[),

which results in

αµ(]x,∞[) = α
∑
n≥0

µn(]x,∞[) ≤
∑
n≥1

µn(]xη,∞[) ≤ µ(]xη,∞[)

and thus, since both sides are finite,

µ(]xη, x]) ≥ (α− 1)µ(]x,∞[).(45)
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Similarly, we obtain

νn(]0, x]) =
∑

0<t≤x

t2∆gn(t) =
∑
i≥0

b
(n)
i

∑
0<t≤x

t2∆gn−1

(
t

p
(n)
i

)

=
∑
i≥0

b
(n)
i

(
p
(n)
i

)2 ∑
0<t≤x/p

(n)
i

t2∆gn−1(t)

≤ β
∑

0<t≤x/η

t2∆gn−1(t) = βνn−1(]0, x/η]).

Starting with ν0(]0,∞[) = 1, induction yields νk(]0,∞[) ≤ βk and therefore∑
i≥0

bip
2
i = ν(]0,∞[) =

∑
n≥0

νn(]0,∞[) ≤ 1

1− β <∞,

which proves (43), and, moreover,

ν(]0, xη]) =
∑
n≥0

νn(]0, xη]) ≤ ν0(]0, xη]) + β
∑
n≥0

νn(]0, x]) = ν0(]0, xη]) + βν(]0, x]).

If x < 1, then also xη < 1 and thus ν0(]0, xη]) = 0, so we end up with

ν(]xη, x]) ≥ 1− β
β

ν(]0, xη]).(46)

The inequalities (45) and (46) remain true if we replace η, α − 1, and 1−β
β by ε :=

min
(
η, α− 1, 1−β

β

)
; thus the hypotheses (41) and (42) are valid.

We cannot apply Lemma 12 directly since the sequences b(n),p(n) that would

have to be chosen, namely, b
(n)
i = ai,n1l{0,1}(i), p

(n)
0 = p, p

(n)
1 = q, do not satisfy the

hypotheses. In the notation of (44) we have α = 1, β = p2 + q2, and γ = q, and
thus the condition α > 1 is violated. We thus recall (19) and apply Lemma 12 to the

sequences b and p given by
∑

n≥0

∏Kn
k=1 Bk =

∑
i≥0 biMpi

. The pairs of sequences

b(n),p(n) that we have to provide directly correspond to the products

Kn∏
k=Kn−K+1

Bk = (Mp + Mq)
u(Mp)

s0(Mq)
s1 ,

where 0 ≤ s0 ≤ K −u and s0 + s1 = K −u, in which case b(n) (resp., p(n)) is defined

by b
(n)
i =

(
u
i

)
(resp., p

(n)
i = pi+s0qu−i+s1) for 0 ≤ i ≤ u, and these are easily seen

to satisfy the conditions listed in Lemma 12. The estimate vN = Ω(fN ) thus follows
from ∑

n≥0

Kn∏
k=1

Bks 
∑
n≥0

Kn∏
k=1

Bks
Kn  v,

and the proof of Theorem 2 is complete.
Proof of Corollary 2. It suffices to show that for each κ ∈ Kω we have P -almost

surely
Fκ,N

fκ,N
→ 1, as N →∞, since then also P ×Q-almost surely, as N →∞,

lnCN − β lnN = ln fκ,N − β lnN + o(1).(47)
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We will derive a stronger result: For fixed κ ∈ Kω and ε > 0 we have, P -almost
surely, as N →∞,

Fκ,N − fκ,N

(fκ,N )
2/3+ε

→ 0.(48)

We suppress κ and indeed obtain, by Theorem 2 and Chebyshev’s inequality,

P

(
|FN − fN | ≥ (fN )

2/3+ε/2
)

= O
(
(fN )

−1/3−ε
lnN

)
,

so that (48) is P -almost surely fulfilled for

N = Nk := min(N ∈ N : (fN )
1/3+ε ≥ k1+3ε)

and k →∞ by the Borel–Cantelli lemma. We readily derive

fNk+1
− fNk

∼ (k + 1)3 − k3 ∼ 3k2 ≤ 3(fNk+1
)2/3,

and supk≥1 fNk+1
/fNk

< ∞. Thus, if |FN − fN | < (fN )
2/3+ε/2

holds for each N ∈
{Nk, Nk+1}, then for Nk < n < Nk+1 we obtain

|Fn − fn| ≤ |FNk
− fNk+1

| ∨ |FNk+1
− fNk

| = O
(
(fNk+1

)
2
3+ ε

2

)
= O

(
(fn)

2
3+ ε

2

)
,

using the fact that the sequence (fk)k≥0 and the random sequence (Fk)k≥0 are both
increasing. This proves (48).

Next we show that there is no limiting distribution for CN , no matter how we
normalize it. We will rather consider CNN

−β , which for N → ∞-almost surely
equals exp(βS·,n + O(n0.4)) =: Xn with n = �cβ lnN�; cf. (3) and (47). In order
to obtain a nondegenerate limiting distribution for Xn−bn

an
, we should choose an at

least of the order of the distance of the 0.25 and the 0.75 quantile of Xn, which is
ec

√
n+O(n0.4) with some c > 0. The median of Xn, which would be a good candidate

for bn, is of order eO(n0.4) = o(an), therefore we can w.l.o.g. choose bn = 0 for n ≥ 0.

Assume now that Yn := a−1
n Xn

D→ Y for some positive random variable Y which is
not almost surely constant. By appropriate choice of (an)n≥0 we can w.l.o.g. achieve
that δ := P (Y ∈ ]0, 1]) satisfies 0 < δ < 1. Then

P (Yn ∈ ]0, 1]) = P (lnXn ∈ ]−∞, ln an]) =: δn → δ,

but also

P (Yn ∈ ]0, n]) = δn + P (lnXn ∈ ] ln an, ln an + lnn])

= δn + P (βS·,n ∈ ] ln an −O(n0.4), ln an +O(n0.4)])

= δn +O(n−0.1)→ δ.

Thus for any x ≥ 1 we deduce P (Y ∈ ]0, x]) = δ, which implies δ = 1 and so
contradicts our assumption on δ.

Proof of Theorem 3. For the proof of the inequality α < ξ < γ1 we compare the
corresponding defining equations, where we have to show

ps >
(
p1+2s + q1+2s

) 1
2 > (p1+s + q1+s).
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Now, the left inequality is a simple consequence of q < p, and the right inequality
follows from the arithmetic-quadratic mean inequality.

For the result concerning VarCN we first observe

VarCN = Var fκ,N + E vκ,N

= E (fκ,N )2 − (E fκ,N )2 +O(Nα lnN)

= E (fκ,N )2 +O(N2α),

where all the expectations and variances on the right-hand side are with respect to Q.
From Lemma 5 we know that

fκ,N 

∑
n≥0

un∑
k=0

(
un

k

)(
1 ∧ (

Nρ
Kn
pun−kqk

)2
)

= eO(ln lnN) max
n0≤n≤n2

(
un

�kn�
)
,

from which we deduce

(fκ,N )2 = eO(ln lnN)
∑
n≥0

un∑
k=0

(
un

k

)2 (
1 ∧ (

Nρ
Kn
pun−kqk

)4
)
,

and furthermore E (fκ,N )2 = eO(ln lnN)Ψ(N), where

Ψ(N) =
∑
n≥0

(K−u)n∑
j=0

(
(K − u)n

j

)
p(K−u)n−jqj

un∑
k=0

(
un

k

)2 (
1 ∧ (

NpKn−k−jqk+j
)4

)
.

The asymptotics of Ψ(N) will now be determined by invoking its Mellin transform
Ψ∗(s), which will be seen to exist for −4 < �s < −2ξ.

Ψ∗(s) :=

∫ ∞

0

Ns−1Ψ(N)dN =

∫ ∞

0

Ns−1(1 ∧N4)dN · Λ(s) = − 4

s(s+ 4)
Λ(s),

where, with the abbreviation as = (p1−s + q1−s)K/u−1,

Λ(s) =
∑
n≥0

(K−u)n∑
j=0

(
(K − u)n

j

)
(p(K−u)n−jqj)1−s

un∑
k=0

(
un

k

)2

(pun−kqk)−s

=
∑
n≥0

auns [zun](1 + p−sz)un(1 + q−sz)un

=
1

2πi

∮
|z|=(pq)�s/2

dz/z

1− aus (1 + p−sz)u(1 + q−sz)uz−u

=
1

u

u∑
k=1

1

2πi

∮
|z|=(pq)�s/2

dz

z − εkas(1 + p−sz)(1 + q−sz)

=
1

u

u∑
k=1

1√
(1− εkas(p−s + q−s))

2 − 4ε2ka
2
s(pq)

−s

=
1

u

u∑
k=1

1√
(1− εkas(p−s/2 + q−s/2)2)(1− εkas(p−s/2 − q−s/2)2)

.

Here (εk)
u
k=1 denotes the set of the uth roots of unity. Next, for �s < −2ξ we have

|εkas(p−s/2 ± q−s/2)2| < a−2ξ(p
ξ + qξ)2 = 1 by the definition of ξ. Thus Ψ∗(s) is



978 WERNER SCHACHINGER

analytic for �s < −2ξ, with the exception of a simple pole at s = −4. Moreover it
can be shown that for some δ > 0 all the zeros of the functions 1−εkas(p−s/2±q−s/2)2

belonging to the strip −2ξ ≤ �s ≤ −2ξ + δ are simple and uniformly discrete in the
sense that distances between distinct zeros are lower bounded by a positive constant;
cf. [26, Lemma 4]. The function Λ(s) is analytic in a domain which is cut along rays
that start at the singularities and have the direction of the positive real axis. We can
therefore recover the asymptotics of Ψ(N) by applying the Cauchy integral theorem
to the inverse Mellin integral

Ψ(N) =
1

2πi

∫ −2+i∞

−2−i∞
Ψ∗(s)N−sds,

moving the line of integration to the right, thereby obtaining a curve which is com-
posed of vertical pieces and Hankel-type pieces encircling the singularities of Λ(s) in
the strip −2ξ ≤ �s ≤ −2ξ + δ. One of the main terms (and in the case ln p

ln q /∈ Q the

only main term; cf. [26, Lemma 4]) of the asymptotics of Ψ(N) is contributed by the
singularity at s = −2ξ. There we have the expansion

Ψ∗(s) =
d−1√−s− 2ξ

+ d0 +O
(√
−s− 2ξ

)
,

with positive d−1. Now, for r > 0 and r + δ′ ≤ δ, let the clockwise-oriented curve
C consist of the piece {te2πi : r ≤ t + 2ξ ≤ r + δ′} “below” the cut, the circle
{−2ξ + reiφ : 0 ≤ φ ≤ 2π} and the piece {t : r ≤ t + 2ξ ≤ r + δ′} “above” the cut.
Making use of Hankel’s integral representation of 1/Γ(s), we obtain

1

2πi

∫
C

Ψ∗(s)N−sds =
N2ξ

√
π lnN

(
d−1 +O

(
1

lnN

))
.

In the case ln p
ln q ∈ Q there will be infinitely many singularities with real part −2ξ

and imaginary parts that are integer multiples of some positive constant, whose total

contribution is N2ξ√
π lnN

τ(lnN) + O(N2ξ ln−3/2N), where τ is a continuous periodic

function of mean d−1. The other singularities in the strip −2ξ ≤ �s ≤ −2ξ + δ

and the vertical pieces of the contour contribute o(N2ξ ln−1/2N). Since Ψ(N) is
increasing, the periodic function τ has to be strictly positive, so we indeed obtain
Ψ(N) = N2ξeO(ln lnN), which completes the proof.

5. The limiting distribution for fixed queries.
Proof of Theorem 4. Throughout this proof, dependencies on κ, which is fixed,

will be suppressed. A central limit theorem for martingale difference arrays will be
employed. To show that the two hypotheses of that theorem are satisfied, we will
make heavy use of Lemmas 9 and 10 from the preceding section. Some notation of
the first paragraph of section 3 will be used, and in particular we note that

{ν(m) : m ≥ 2} = {0.ν(m) : m ≥ 1} ∪ {1.ν(m) : m ≥ 1},
with the dot denoting concatenation. For instance, ν(10) = 010 = 0.ν(6) implies
t10 = t�

6.
Our first goal is to represent each (F i

N − f iN )
/√

viN as the terminal value of some
martingale. We observe that XN,m := |t2m| is a random variable on TN for m ≥ 1.
Moreover we let XN,0 ≡ N and define for m ≥ 0 sigma algebras

FN,m = σ(XN,j , 0 ≤ j ≤ m),



COSTS OF PARTIAL MATCH QUERIES IN K-D TRIES 979

in particular FN,0 = {∅,TN}. This gives rise to a filtration FN := (FN,m)m≥0. For
m ≥ 1 a wordy description of FN,m would be that it accumulates knowledge of the
sizes of the 2m subtrees of a trie t built from N keys that are rooted in the two sons
of any of the nodes vj for 1 ≤ j ≤ m.

For i ≥ 0 and m ≥ 1 we define functions on
⋃

N≥0 TN by

λim(t) := εim

(
1 + a0,i+1+�(m)f

i+1+�(m)
|t2m| + a1,i+1+�(m)f

i+1+�(m)
|t2m+1| − f i+�(m)

|tm|
)

1l{|tm|≥2}

and immediately note that

λim(t) = εimλ
i+�(m)
1 (tm),

where �(m) := �log2m� denotes the level of node vm, and εim is defined in (8). We
let λiN,m be the restriction of λim to TN and claim

(i) f iN +
∑

m≥1 λ
i
N,m = F i

N ,

(ii) λiN,m is FN,m-measurable,

(iii) E
[
λiN,m

∣∣FN,m−1

]
= 0.

For the proof of (i) we observe, using εi2m = εima0,i+1+�(m) and εi2m+1 = εima1,i+1+�(m),
that the terms involving f form a telescoping series, and what remains is exactly
the series given in (9). Since |tm|, |t2m|, and |t2m+1| = |tm| − |t2m| are all FN,m-
measurable, so is λiN,m, which proves (ii). Finally we turn to (iii), which is true, since
for any fixed n ≥ 2 and for k ∼ B(n, p) we have

E
[
λiN,m

∣∣|tm| = n
]

= εimE

[
1 + a0,i+1+�(m)f

i+1+�(m)
k + a1,i+1+�(m)f

i+1+�(m)
n−k − f i+�(m)

n

]
= 0

by (10). We continue defining

ξiN,m :=
λiN,m√
viN

and observe that the sequence
(∑M

m=1 ξ
i
N,m

)
M≥1

is a martingale with respect to

the filtration FN , which converges PN -almost surely and in L2(TN , TN , PN ) to the
terminal value

F i
N − f iN√
viN

=

∞∑
m=1

ξiN,m.

By a well-known central limit theorem for martingale difference arrays [14, 28] we
have, as N →∞,

∞∑
m=1

ξiN,m
D→ N (0, 1)

if both the “conditional normalizing condition”

∞∑
m=1

E [(ξiN,m)2|FN,m−1]
P→ 1 as N →∞(No)
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and the “conditional Lindeberg condition”

∞∑
m=1

E [(ξiN,m)21l{|ξiN,m|>ε}
∣∣FN,m−1]

P→ 0 as N →∞ for all ε > 0(Li)

are satisfied.
It is easy to derive sufficient conditions for (No) and (Li): Let

V i
N :=

∞∑
m=1

E [(λiN,m)2|FN,m−1]

be the terminal value of the predictable quadratic variation process of the martingale(∑M
m=1 λ

i
N,m

)
M≥0

. As we will shortly show, V i
N satisfies the following equation, which

is reminiscent of (6):

V i
N

D
= 1l{N≥2}

(
siN + a0,i+1V

i+1
k + a1,i+1V̄

i+1
N−k

)
,

where k ∼ B(N, p), V i
k

D
= V̄ i

k , and V i
k , V̄

i
N−k are independent, conditional on k, and

where

siN = E [(λiN,1)
2|FN,0] = Var (a0,i+1f

i+1
k + a1,i+1f

i+1
N−k)

was introduced in (34). We first derive

E [(λiN,m)2|FN,m−1] = E [(εimλ
i+�(m)
|tm|,1 )2|F|tm|,0] = εimE (λ

i+�(m)
|tm|,1 )2 = εims

i+�(m)
|tm| .

Now, for m ≥ 2, let the numbers α ∈ {0, 1} and µ ∈ N be uniquely defined by

ν(m) = α.ν(µ). Then εims
i+�(m)
|tm| = aα,i+1ε

i+1
µ s

i+1+�(µ)
|(t2+α)µ| holds, which implies

V i(t) : =
∑
m≥1

εims
i+�(m)
|tm| = si|t| + a0,i+1

∑
m≥1

εi+1
m s

i+1+�(m)
|t�m| + a1,i+1

∑
m≥1

εi+1
m s

i+1+�(m)
|trm|

= si|t| + a0,i+1V
i+1(t�) + a1,i+1V

i+1(tr);

(49)

hence, with V i
N of course the restriction of V i to TN , the above distributional equation

for V i
N readily follows.

Condition (No) demands
V i
N

vi
N

P→ 1, which is implied by

VarV i
N = o

(
(viN )2

)
.(No2)

Note that by (49) we have

VarF i
N = viN = EV i

N = E

∑
m≥1

εims
�(m)+i
|tm| ,

and thus similarly (i.e., by constructing a martingale with respect to FN converging
to V i

N , and considering its predictable quadratic variation process) we obtain

VarV i
N = E

∑
m≥1

εimσ
�(m)+i
|tm| ,
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where

σi
N = Var (a0,i+1v

i+1
k + a1,i+1v

i+1
N−k).

In (Li) we fix a > 1 and use x21l{|x|>ε} ≤ x2a

ε2(a−1) to construct another sequence of
random variables

Λi
N

D
= 1l{N≥2}

(
s̃iN + a0,i+1Λ

i+1
k + a1,i+1Λ̄

i+1
N−k

)
,

where k ∼ B(N, p), Λi
k

D
= Λ̄i

k, and Λi
k, Λ̄i

N−k are independent, conditional on k, and
where

s̃iN = E [(λiN,1)
2a|FN,0].

Condition (Li) is thus implied by

E Λi
N = o

(
(viN )a

)
.(Lia)

We obtain equations of the same type as (11) and (35) for wN := VarV 0
N and yN :=

E Λ0
N , namely,

w =
∑
n≥0

n∏
i=1

Biσσσ
n, y =

∑
n≥0

n∏
i=1

Bis̃
n,

and will show wN = o((vN )2) and yN = o((vN )a). Using the expansion (38) of f ik
around k = pN (we can choose M = 0), we obtain s̃iN = O( (fi

N )2a

Na

)
, which will be

O(f iN ) if a > 1 is only small enough. With the help of Lemma 9 we obtain ∆msiN =

O( fi
N

Nm

)
, and thus upon application of Lemma 10 also ∆mviN = O( vi

N

Nm lnN
)
. Now

an expansion of vik around k = pN yields σi
N = O( (vi

N )2

N

)
= O( (fi

N )2 ln2 N
N

)
= O(

f iN
)
.

We have thus proven σi
N = O(f iN ) and s̃iN = O(f iN ), and it follows from Lemma 10

that both wN and yN are of order O(fN lnN). On the other hand, (vN )a = Ω((fN )a)
for a ≥ 0. Since lnN = o

(
(fN )a−1

)
for any a > 1 by (2), we see that (No2) and (Lia)

indeed hold.

6. Conclusion. While costs CN of partial match retrievals in K-d tries con-
structed from N records have been investigated in depth under the symmetric Ber-
noulli model (sBm), no results going beyond asymptotics of expected costs seem to
be available under the asymmetric Bernoulli model (aBm). It has been the aim of
the present paper to fill this gap. For aBm a distinction between fixed and random
queries has to be made which is not necessary for sBm. In the random query model
it turns out that for aBm we have (ECN )2 = o(EC2

N ), in contrast to sBm, where
(ECN )2 ∼ EC2

N , and due to cancellations, VarCN = Θ(ECN ) emerges. Further-
more for sBm the normalized cost CN−ECN√

VarCN
converges in distribution to a standard

normal random variable. This does not hold for aBm, where there is no nondegen-
erate limiting distribution at all. However, in this case lnCN , properly normalized,
follows a central limit law. Differences between sBm and aBm are not so drastic for
the fixed query model. Here VarCN = Θ(ECN ) and CN−ECN√

VarCN

D→ N (0, 1) are true

also for aBm, but, depending on the query, ECN may now enjoy a growth between
Ω(Nγ2) and O(Nγ1) and will almost surely be “close” to Nβ , for certain constants
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γ2 < β < γ1, where closeness is expressed in terms of a law of the iterated logarithm.
In particular, expected growth and almost sure growth are not the same for aBm.

The paper considers only alphabets of size 2, but we are quite sure that our
results can without much pain be generalized to analogous statements holding for
larger alphabets.

Acknowledgment. I wish to thank the referees for their detailed reading and
constructive comments on the first version of this paper.
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1. Introduction. It is a most basic open problem in theoretical computer sci-
ence to give circuit lower bounds for various complexity classes. The class P has
polynomial-size circuits. It is also widely believed that NP does not share this prop-
erty, i.e., that some specific set such as SAT in NP requires superpolynomial circuit
size. While this remains the most concrete approach to the NP vs. P problem, we
can’t even prove, for any fixed k > 1, that any set L ∈ NP requires circuit size > nk.

If we relax the restriction from NP to the second level of the Polynomial-time
Hierarchy1 Σp

2 , R. Kannan [Kan82] did prove that for any fixed polynomial nk, there
is some set L in Σp

2 which requires circuit size > nk. Kannan in fact proved the
existence theorem for some set in Σp

2 ∩ Πp
2 . This result has been improved by Köbler

and Watanabe [KW98], who showed, based on the technique developed in [BCGKT],
that such a set exists in ZPPNP. More recently, the work in [Cai01] implies that a yet
lower class Sp

2 contains such a set. (See [BFT98, MVW99] for related topics.)

However, Kannan’s proof for Σp
2 , and all the subsequent improvements mentioned

above, are not “constructive” in the sense that it does not identify a single Σp
2 machine

whose language requires circuit size > nk. In this paper we first remark on this point
and give some constructive proofs for Σp

2 .
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At the top level, all these proofs for the above-mentioned results are of the same
type. Let us review Kannan’s proof for Σp

2 : Either SAT does not have nk size circuits,
and then we are done, or SAT has nk size circuits, and then we can define some other
set, which by the existence of the hypothetical circuit for SAT can be shown in Σp

2 ,
and it requires circuit size > nk. Thus, in each case, we have some set L0 in Σp

2 that
has no nk size circuits; but this does not give any single Σp

2 machine whose language
requires circuit size > nk. Constructively, Kannan gave a set in Σp

4 ∩Πp
4 . In [MVW99]

a set in ∆p
3 was constructively given. We improve this to Σp

2 .

Theorem 1. For any integer k > 0, we can construct a Σp
2 machine with

O(nk
2

logk+1 n) running time that accepts a set with no nk size circuits.

Notice that Σp
2 has complete languages. Thus, by using any standard complete

language C for Σp
2 , it is easy to obtain a result like the above. We can argue as

follows: Estimate the time complexity of a reduction from L0 to C, which is possible
even from the above “nonconstructive” proof of the existence of L0. Then define a
padded version C ′ of C so that L0 is reducible to C in linear time. This C ′ is a
language that requires circuit size > nk; clearly, we can give explicitly a Σp

2 machine
recognizing C ′ and its time bound. Our contribution here is to show a way to construct
such a machine directly, which we hope to be of any help when discussing a similar
constructive proof that is open for the stronger statements, i.e., the existence of a set
with nk circuit size lower bound in Σp

2 ∩ Πp
2 (resp., ZPPNP and Sp

2).

Our main result in this paper deals with the difficulty in proving superpolynomial
circuit size lower bound for any set in the Polynomial-time Hierarchy, PH. While it
is possible to prove, for any fixed k > 0, that Σp

2 has a set with circuit size > nk,
the real challenge is to prove a superpolynomial circuit size lower bound for a single
language. Not only have we not been able to do this for any set in NP, but also no
superpolynomial lower bound is known for any set in PH. In this paper we prove that
it is infeasible to give relativizable superpolynomial lower bound for any set in the
Polynomial-time Hierarchy.

For our relativized argument, we propose a new computation model that gives us
more “stringent” relativized results. Relativization results can be generally classified
as either separation or collapsing/containment results. The implication of a relativized
separation result is that the corresponding collapse is difficult to prove. Similarly a
relativized collapsing result implies that the corresponding separation is difficult to
prove. Notice that it is still possible (and, in fact, such examples have been shown)
to have a separation or collapsing result against the corresponding relativized result;
relativized results just suggest some “difficulty” and not “impossibility.” Also we
should note that the degree of “difficulty” may depend on a relativization type. Here
we deal with relativized collapsing results, and we introduce a new relativization
notion—stringent relativization—for demonstrating the difficulty of proving circuit
lower bounds for PH.

By surveying existing relativized collapsing results, we came to realize that an
asymmetry is often present. In almost all of these relativized collapsing results the
proof is achieved by allowing stronger access to oracles by the simulating computation
than the simulated computation. For example, in the usual proof of PA = NPA or PA

= PSPACEA, we encode QBF in the oracle. In terms of the simulation by the PQBF

machine M simulating an NPQBF or PSPACEQBF computation M′ on an input x,
M will access an oracle location polynomially longer than the corresponding access
that M′ makes. That is, PA machines are given more powerful oracle access. One can
argue that this asymmetry is within a polynomial factor, but it nonetheless denies
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access to certain segments of the oracle to the simulated machine while affording such
access to the simulating machine. In our present study of specific polynomial bounds
such as nk of either circuit size or running time, this arbitrary polynomial stretch in
oracle access is not acceptable.

We study in this paper some specific circuit size lower bound with respect to some
specific, say nk, time bound. Then, as the above observation suggests, we must adopt
the following more “stringent” oracle computation model. In this more “stringent”
oracle access model, we require that, for any input, the simulating machine or circuit
does not access the oracle of length longer than the simulated machine or circuit can
access on this input. We consider circuits consisting of standard AND, OR, and NOT
gates and oracle query gates. An oracle query gate takes m input bits z = b1b2 . . . bm
and has output χ[z∈X], i.e., it outputs 1 or 0 depending on whether z ∈ X or otherwise.
Now the proviso of “stringent access to an oracle” is stated as follows: To show that,
at length n, a circuit Cn recognizes the language of machine M with running time
nk, we allow the circuit access only to those strings of length ≤ nk. For any machine
M, we say that a family of circuits {Cn}n≥0 simulates MX under a stringent access
to the oracle X if at every length n, Cn recognizes L(MX)=n by stringent access to
the oracle X.

Though we defined our stringency notion as above for the comparison between
machines and circuits with polynomial-time and polynomial-size resource bounds, we
believe that the notion of “stringent oracle access” is meaningful in a more general
setting. (For more general situations, it might be better to consider a more robust no-
tion of “stringent relativization.” We leave this issue and more general investigations
of “stringent relativization” for our future work; see, e.g., [CW04].)

From a more general perspective, the main utility of relativization is to show the
inadequacy of certain proof techniques. Certainly the more “stringent” a requirement
we place on the type of relativization, the stronger the result will be, and perhaps
it says more about the infeasibility of certain techniques. Imagine there are three
possible claims of proving a certain lower bound, such as Σp

2 requires superpolynomial
circuit size:

1. A proof totally specific to a specific set in Σp
2 that uses specific properties of the

circuit combinatorics.

2. A proof for a general Σp
2 machine that uses properties of the circuit, but which

can be carried through if the machine and circuit were allowed to access any
but the same segment of any oracle, i.e., they could ask queries within the same
length bound. (In our case, the length bound is defined as the time bound of the
simulated Σp

2 machine.)

3. A proof more general, for a general Σp
2 machine and circuit, and which can go

through even if we allowed the machine and circuit to access different segments
of the oracle.

Any relativization to the contrary says nothing about the first possibility. A
relativization to the contrary with stringent access model rules out possibilities 2 and
3. If we did not have the “stringent access requirement,” then we can only rule out
3, but not 2.

In this paper we focus on specific time/size bounds. In the stringent oracle access
model, we prove that for any alternating oracle TM M with running time O(nk),
there is an oracle X and a polynomial-size circuit family accepting it. Therefore we
rule out possibilities 2 and 3 above.

Theorem 2 (main theorem). For any integer d > 0 and any real k > 1, let M



ON PROVING CIRCUIT LOWER BOUNDS AGAINST PH 987

be an oracle Σp
d machine with running time O(nk). Then we have an oracle X and a

family of Boolean circuits {Cn}n≥0 that recognizes L(MX) under a stringent access
to the oracle X. For all sufficiently large n, the size of Cn is bounded by ncdk for
some universal constant c > 0.

From this, we can conclude that, relative to the oracle X given above, every set
in PH has some polynomial-size circuits, i.e., PHX ⊆ PX/poly. Recall that Heller
[He84] showed an oracle Y such that EXPY ⊆ PY /poly, which immediately implies
that PHY ⊆ PY /poly. But this oracle Y is not used in a stringent way; that is,
a circuit simulating a given Σp

d machine M on inputs of length n makes queries to
Y that are longer than the time bound of M on length n inputs. (Notice that our
stringency condition is for polynomial-time bounds. It would be possible to extend
it to exponential-time bounds, and we may claim that the oracle Y is used in a
stringent way in the relation EXPY ⊆ PY /poly, because any polynomial bound for
circuit size is less than exponential-time bounds of simulated EXP machines. In this
sense, our stringency notion is not robust, and we need a more robust notion for
general investigations; see, e.g., [CW04].)

Our proof technique for the main theorem is based on the decision tree version
of the Switching Lemma for constant depth circuits and the Nisan–Wigderson pseu-
dorandom generator.

As these results crucially depend on lower bounds for constant depth circuits, we
take this opportunity to publish some unpublished older results of the first author
on constant depth circuits, as it would fit the theme. These include both straight
lower bounds and inapproximability results based on decision tree–type Switching
Lemmas. We give some better constants in the exponents than previously published
lower bounds.

2. Proof of Theorem 1. R. Kannan [Kan82] proved that for any fixed poly-
nomial nk, there is some set L in Σp

2 ∩ Πp
2 with circuit size > nk. However, in terms

of explicit construction, he only gave a set in Σp
4 ∩ Πp

4 . An improvement to ∆p
3 was

stated in [MVW99].
In this section we give a constructive proof of Kannan’s theorem for Σp

2 .
For any n ≥ 0, a binary sequence χ of length � ≤ 2n is called a partial characteris-

tic sequence, which will specify lexicographically the membership of the first � strings
of {0, 1}n. We denote this subset of {0, 1}n by L(χ). We say that χ is consistent with
a circuit C with n input gates iff ∀i, 1 ≤ i ≤ �, C(xi) outputs the ith bit of χ, where
xi is the ith string of {0, 1}n.

We can encode every circuit C of size ≤ s as a string u of length len(s), where
len(s) is defined as len(s) = ccirc�s log s� with some constant ccirc. We may consider
every u with |u| = len(s) encodes some circuit of size ≤ s; if a string u is not a proper
code or the encoded circuit has size > s, we assume that this u encodes the constant
0 circuit. The following lemma is immediate by counting.

Lemma 3. For any s > 1, there exists a partial characteristic sequence of length
� = len(s) + 1 that is not consistent with any circuit of size ≤ s.

Our goal is to define a set L that has no nk size circuit but that is recognized
by some explicitly defined Σp

2 machine. Our construction follows essentially the same
outline as the one given in [MVW99], which in turn uses ideas given in Kannan’s
original proof. The further improvement is mainly an even more efficient use of
alternation.

For a given n, let � = len(nk) + 1. We try to construct a partial characteristic
sequence χnon of length � that is consistent with no circuit of size ≤ nk. We will
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introduce an auxiliary set PreCIRC that is in NP. With this PreCIRC, some Σp
2 ma-

chine can uniquely determine the desired characteristic sequence χnon (on its accepting
path). We would like to define our set L (partially) consistent with this sequence χnon.
But Σp

2 computation using some auxiliary NP set cannot be implemented, in general,
by any Σp

2 machine. Suppose here that PreCIRC has nk size circuits; then some Σp
2

machine can guess such circuits, verify them, and use them for computing χnon and
recognizing strings according to χnon. What if there are no such circuits for PreCIRC?
We will define L so that one part of L is consistent with PreCIRC (while the other
part is consistent with χnon if PreCIRC is computable by some nk size circuits). If
PreCIRC has no nk size circuit, then the part of L that is consistent with PreCIRC
can guarantee the desired hardness of L.

Now we describe our construction in detail. We fix any sufficiently large n and
let � = len(nk) + 1. By “v 	 u” we mean that u is a prefix of v. To compute
the “hard” characteristic sequence χnon, we want to determine, for a given pair of a
partial characteristic sequence χ and a string u, whether u can be extended to some
description v of a circuit that is consistent with χ. The set PreCIRC is defined for
this task. More precisely, for any n > 0, and for any strings χ of length � and u of
length ≤ len(nk), we define PreCIRC as follows.

1n0χu01len(nk)−|u| ∈ PreCIRC
⇔ (∃v 	 u) [ |v| = len(nk), and the circuit encoded by v is consistent with χ ].

Strings of any other form are not contained in PreCIRC. For simplifying our notation,

we will simply write (χ, u) for 1n0χu01len(nk)−|u|. Since n determines �, and the length

of χ is �, χ and u are uniquely determined from 0n1χu10len(nk)−|u|. The length of
(χ, u) is ñ = n+ 2�+ 1. Note that ñ is O(nk log n).

We now define our machine M. Informally we want M to accept an input x
iff either x ∈ 1{0, 1}n−1 and x ∈ PreCIRC, or x ∈ 0{0, 1}n−1 and x ∈ L, where
L=n is a set with no nk size circuits, for all sufficiently large n, if PreCIRC=n has
nk size circuits for all sufficiently large n. Specifically, M is designed so that L=n

would be L(χnon), where χnon is lexicographically the first χ of length � with no

nk size circuit, provided PreCIRC=ñ has an ñk size circuit for length ñ. Note that
L(χnon) ⊆ 0{0, 1}n−1 since |χnon| = len(nk) + 1 < 2n−1.

More formally, for any given input x of length n, if x starts with 1, then M
accepts it iff x ∈ PreCIRC. Suppose otherwise; that is, x starts with 0. Then first M
existentially guesses a partial characteristic sequence χnon of length � and a circuit
Cpre of size ñk, more precisely, a string vpre of length len(ñk) encoding a circuit for
PreCIRC=ñ of size ≤ ñk. (Below we use Cpre to denote the circuit that is encoded
by the guessed vpre.) After that, M enters the universal stage, where it checks the
following items.

(1) Cpre makes no mistake whenever it says “yes”: ∀χ, |χ| = �, and ∀u, |u| ≤
len(nk), verify that Cpre is “locally consistent” on (χ, u) if Cpre(χ, u) = 1;
that is, check as follows:

Cpre(χ, u) = 1 & |u| = len(nk) =⇒ the circuit that u encodes is consistent with χ,
Cpre(χ, u) = 1 & |u| < len(nk) =⇒ either Cpre(χ, u0) = 1 or Cpre(χ, u1) = 1.

(2) Cpre says “yes” for all positive instances: ∀u, |u| = len(nk), compute the χu of
length � defined by (the circuit encoded by) u, and verify that Cpre(χu, u

′) = 1
for every prefix u′ of u.
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(3) The guessed χnon is lexicographically the first string of length � such that no
circuit of size s is consistent with it, according to Cpre: Check Cpre(χnon, ε) =
0, and ∀χ such that |χ| = � and χ is lexicographically smaller than χnon,
check that Cpre(χ, ε) = 1 holds. (Here ε denotes the empty string.)

Finally on each universal branch, if M passes the particular test of this branch, then
M accepts the input x ∈ 0{0, 1}n−1 iff χnon has bit 1 for the string x.

For all (χ, u), such that |χ| = � and |u| ≤ len(nk), if Cpre passes item (1), then

Cpre(χ, u) = 1 =⇒ (χ, u) ∈ PreCIRC,

and if Cpre passes item (2), then

(χ, u) ∈ PreCIRC =⇒ Cpre(χ, u) = 1.

Of course there is no guarantee that there exists a circuit Cpre (more precisely, vpre)
that will pass the tests in items (1) and (2). But if there is such a Cpre, then some
existential path leads to such a Cpre together with the right χnon. This χnon is the
lexicographically first string of length � such that no circuit of size nk is consistent
with it, which exists by Lemma 3. In particular it is independent of the particular

Cpre guessed. Hence, if there is a circuit for PreCIRC=ñ of size ñk, then M accepts
x ∈ 0{0, 1}n−1 iff x is in L(χnon), where χnon is the unique lexicographically first
string of length � with no consistent circuit of size ≤ nk.

On the other hand, if no circuit of size ñk can accept PreCIRC=ñ correctly,
then no circuit passes the tests in items (1) and (2), and hence M simply rejects

all x ∈ 0{0, 1}n−1. But since PreCIRC=ñ has no ñk size circuit, the hardness is
guaranteed by the PreCIRC part of L(M). More formally, if PreCIRC=n has no
circuit of size nk infinitely often, then we are done. Otherwise, for all sufficiently

large n, and hence for all sufficiently large ñ, a circuit Cpre exists for PreCIRC=ñ of
size ñk; then the part L(M) ∩ 0{0, 1}n−1 is defined so that no nk size circuit can
accept it correctly, and hence again we are done. Therefore, we can conclude that
L(M) has no nk size circuit (which by definition means that for infinitely many n
this is so). This Σp

2 language proves Theorem 1. It can be easily checked that the

machine M runs in O(nk
2

logk+1 n) steps.

3. Proof of Theorem 2. We first give an outline of the proof.

3.1. Proof outline. Consider any Σp
d polynomial-time bounded oracle alternat-

ing Turing machine M, with time bound nk. We want to design an oracle X so that
some family of small size circuits can simulate MX with stringent oracle access. More
specifically, for any fixed sufficiently large n, we want a circuit CM that simulates MX

on inputs of length n, where, since M can query strings only of length at most nk,
we require that CM can also only ask queries of length at most nk.

It is well known from [FSS81] that a Σp
d machine M bounded in time nk with

oracle X, when given an input x of length n, gives rise to a bounded depth Boolean
circuit Cx of the following type: The inputs are Boolean variables, and their negations,

representing membership of a string z ∈ {0, 1}≤nk

in the oracleX. The Boolean circuit
Cx starts with an OR gate at the top and alternates with AND’s and OR’s with depth
d + 1, where the bottom level gates have bounded fan-in at most nk, and all other
AND and OR gates are unbounded fan-in, except by the overall circuit size, which

is bounded by nk2n
k

. Without loss of generality we may assume the Boolean circuit
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is tree-like, except for the input level, where each Boolean variable corresponding to
χ[z∈X] is represented by a pair of complemented variables, which we will denote by z
and z.

Our first idea is to use random restrictions to “kill” the circuit. By this we mean
that for any circuit C over Boolean variables x1, . . . , xn, a random restriction ρ (for
some specified parameter p) is a random function that assigns each xi either 0, 1, or ∗,
with probability Pr[ρ(xi) = ∗] = p and Pr[ρ(xi) = 0] = Pr[ρ(xi) = 1] = (1 − p)/2 for
each i independently. Assigning ∗ means to leave it as a variable. Let C |ρ denote a
circuit obtained by this random restriction. It is known that after a random restriction
ρ (for a suitably chosen parameter p), the circuit C |ρ is sufficiently weakened so as
to have either small min-terms or small max-terms. Results of this type are generally
known as Switching Lemmas, and the strongest form known is due to H̊astad [H̊as86a].
(See also [Ajt83, FSS81, Yao85, Cai86, H̊as86b].) However it turns out that we need
a different form, namely, a decision tree–type Switching Lemma [Cai86]. We want to
assign a suitably chosen random restriction ρ, after which the circuit admits a small
depth decision tree. We in fact will have to consider an aggregate of 2n such Boolean
circuits Cx simultaneously, one each for an input x of size n. We want to assign ρ,
after which all these circuits have small depth decision trees. We then will proceed
to set those variables to ensure that all these circuits are “killed”; i.e., they all have a
definite value now, either 0 or 1. We need to assign those variables consistently over
all 2n small depth decision trees. For decision trees, it is easy to achieve this by always
setting “the next variable” asked by the decision tree to 0, say; it is not clear how
to maintain this consistency in terms of min-terms and max-terms. If each decision
tree has depth bounded by t, then we will have assigned at most 2nt many variables
corresponding to those strings of length nk where ρ initially assigned an ∗ (i.e., they
are left unassigned by ρ). We will argue that there are still plenty of unassigned
variables left, where we may try to encode the now-determined computational values
of these 2n circuits. We will argue that t is sufficiently small, and yet with high
probability all 2n circuits admit decision trees of depth at most t.

The problem with this idea is that after we have coded the values of all the 2n

circuits in X, there does not seem to be any easy way to recover this information.
Since X had already been “ravaged” by the random restriction ρ, it is not clear how
to distinguish those “code bits” from those “random bits.” Further complicating
the matter are those bits assigned during the decision tree settlement. All of this
must be sorted out, supposedly, by a polynomial-size oracle circuit which is to accept
L(MX)=n. Note that, after a random restriction ρ, it is probabilistically almost
impossible to have an easily identifiable segment of the set X all assigned ∗ by ρ

(e.g., all strings in {0, 1}=nk

with a certain leading bit pattern), not to mention the
subsequent all 0 assignment to fix the decision trees. On the other hand, we have
2n computations to code. It is infeasible for the final polynomial-size oracle circuit
to “remember” more than a polynomial number of bits as the address of the coding
region. So it appears that we must have an easily identifiable region to code, identified
with at most a polynomial number of bits for its address, and, to accommodate 2n

computations, this region must be large.

To overcome this difficulty, our idea is to use not true random restrictions, but
rather pseudorandom restrictions via the Nisan–Wigderson generator [Nis91a, Nis91b,
NW88]. Nisan and Wigderson designed a pseudorandom generator (which we will call
an NW generator) provably indistinguishable from true random bits by polynomial-
size constant depth circuits. While our circuits are not of polynomial size, this can
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be scaled up easily. Our idea is then to use the output of some NW generator to
perform the “random” restriction, and to argue that all 2n circuits are “killed” with
high probability, just as before with true random restrictions. The basic argument
is that no constant depth circuits of an appropriate size can tell the difference under
either a true random assignment or a pseudorandom assignment coming from the
NW generator. However, for our purpose in this paper, we wish to say that a certain
behavior of these 2n constant depth circuits—namely, they are likely to possess small
depth decision trees after a “random” restriction with 0’s, 1’s, and ∗’s—is preserved
when “pseudorandom restrictions” are substituted for “random restrictions.” It is
vitally important that whatever property we wish to claim was maintained by the
substitution of random bits by pseudorandom bits, the property must be expressible as
a constant depth circuit with an appropriate size upper bound. It is not clear whether
the property of “having a small depth decision tree” can be expressed in this way.

We overcome this difficulty by using a weaker property which is a consequence of
“having a small depth decision tree,” which nonetheless is sufficient for our purpose.
Namely, we take directly the property that, after a restriction with 0’s, 1’s, and ∗’s,
every one of the 2n circuits can be determined by assigning additionally 0’s to a small
number of variables, which had been assigned ∗’s. This property is expressible in a
constant depth way. Then we will mimic the probability distribution of the 0’s, 1’s,
and ∗’s under the random restrictions by uniform random bits 0’s and 1’s, so that we
can come up with a constant depth circuit D with the following property: It takes
only Boolean inputs Ω of 0’s and 1’s, and D evaluates to 1 iff when a restriction ρΩ

with 0’s, 1’s, and ∗’s defined by Ω is applied to all 2n circuits Cx, every Cx can be
set to either 0 or 1 after a small number of additional variables are set to 0. We will
design D in such a way that under a uniform bit sequence Ω, D will almost certainly
evaluate to 1.

In fact we need more than that. We also need to have the property that a certain
segment of the oracle is untouched by the additional setting of 0’s in all 2n decision
tree settlements. We will argue by the pigeonhole principle that our bounds guarantee
a suitable region unspoiled by all these decision tree settlement variables. It is not
reasonable to expect that any such region is entirely assigned with ∗’s, but at least
there should be many ∗’s.

Assume now we have designed such a D satisfying all these requirements. For this
D we apply the NW generator, substituting pseudorandom bits for true random bits Ω
given to D as inputs. We conclude that D still evaluates to 1 with high probability. In
particular, there must be some setting of the source bits ω for the generator, such that
D is evaluated to 1. This implies that we can assign the oracle set X first according
to the pseudorandom restriction described by the pseudorandom bits, then according
to the 2n small depth decision trees, which are guaranteed by the evaluation of D,
and set these additional variables all to 0. This settles all the decision trees, and thus
the values of all 2n circuits Cx are determined. Furthermore, there is a significant
segment Ty0 of X free from any variables used in any decision tree settlement, where
we will code these 2n results of Cx.

Even though this segment Ty0 is free from any variables used in any decision
tree settlement, in order to code the computation results of Cx, there must be plenty
of ∗’s left, and they must be recoverable by polynomial-size circuits. We will show
that with high probability over a uniformly chosen random seed ω, the pseudorandom
restriction defined by ω will leave plenty of ∗’s in each segment such as Ty0

. We then
in fact choose a sequence of bits ω that satisfies both the requirement D = 1 and this
additional requirement.
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Finally, we will show that with a suitable choice of parameters in the combinatorial
design used in the NW generator, we will be able to recover in polynomial time the
location where we assigned ∗’s inX, in particular from within the coding segment ofX
given the address of this segment. Now our polynomial-size circuit CM is designed as
follows: It remembers (is hardwired with) y0, i.e., the address of Ty0 , and remembers
the seed ω for the NW generator, which is of polynomial length. Then on any input x,
it performs the polynomial-time computation over a finite field to extract the coded
result of Cx from the appropriate location in X.

3.2. Proof detail. Now we specify the parameters and state our proof precisely.
Fix any Σp

d polynomial-time bounded oracle alternating Turing machine M, with
time bound nk. For notational convenience we will assume k > 2 and d ≥ 7. We
assume that n is sufficiently large. On input of length n, M can query strings only
of length at most nk. We will use m to denote nk and M to denote 2m throughout
this proof.

Assume that membership in the oracle set has already been decided for all strings
of length less than m. Our task is to fix the membership for “z ∈ X?” of length
exactly m in X, so that for each input x of length n, membership “x ∈ L(MX)?”
can be decided by a polynomial-size circuit CM with oracle gates that can access
X=m. Since X<m has already been fixed, membership “x ∈ L(MX)?” is determined
by the set X=m. Here we specifically require that the circuit CM can access only
those strings that can be possibly accessed by the simulated machine M on input of
length n.

There are 2n inputs x of length n, and each computation of M on x gives rise
to a depth d + 1 Boolean circuit Cx with bottom fan-in at most m. The inputs to
each circuit Cx are the 2M literals z and z, where z ∈ {0, 1}m corresponds to the
truth value of χ[z∈X]. (To simplify our notation, we will denote by z both a string in
{0, 1}m as well as the Boolean variable corresponding to χ[z∈X].) As stated earlier,
we assume that each circuit Cx is a tree, starting with an OR gate at the top, and
alternating with AND’s and OR’s until inputs z’s and z’s, where these inputs are
duplicated to keep the tree structure. That is, each circuit Cx is a depth d + 1 tree
with size at most mM and bottom fan-in at most m.

A Switching Lemma shows that such a constant depth circuit is sufficiently weak-
ened, after a suitably chosen random restriction ρ, so as to have either small min-terms
or small max-terms. The strongest form known is due to H̊astad [H̊as86a]. For our
purpose in this paper, however, we will require something more.

The decision tree complexity of a Boolean function f , denoted by DC(f), is the
smallest depth of a Boolean decision tree computing the function. It can be shown
easily that if DC(f) ≤ t, then f can be expressed both as an AND of OR’s as well
as an OR of AND’s, with bottom fan-in at most t. Moreover, clearly, there is a
subset of no more than t variables, such that if one assigns all of them to 0, the
function f will be determined. This is an important advantage as we will have to
assign many nondisjoint subsets of variables for multiple Boolean functions, and all
these assignments need to be consistent.

A decision tree version of the Switching Lemma was first proved in [Cai86], where
a different terminology, i.e., Master-Player Game and t-monochromaticity, was in-
troduced. Adapting H̊astad’s proof to the decision tree model, one can prove the
following lemma. In section 4, we will discuss these lemmas more thoroughly. See
Remark 4 at the end of the paper for more background discussions.

Lemma 4. For any depth d+ 1 Boolean circuit C on M inputs z1, z2, . . . , zM , of
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size at most s and bottom fan-in at most t, we have

Prρ[DC(C |ρ) ≥ t] ≤ s

2t
,

where the random restriction ρ is defined for p = 1
(10t)d

.

To reduce all circuits Cx, x ∈ {0, 1}n, to small depth decision trees, we apply a
random restriction with p = 1/(20m)d to these circuits. Then by the union bound we
have the following.

Claim 1.

Prρ

⎡⎣ ∨
x∈{0,1}n

[DC(Cx |ρ) ≥ 2m]

⎤⎦ ≤ 2n · mM
22m

=
m

2m−n
.

That is, with probability close to 1, a random restriction reduces every circuit Cx

to a decision tree of depth < 2m.
Below we will carry out a sequence of transformations on the circuits Cx, x ∈

{0, 1}n, with the ultimate goal of constructing the circuit D, which, in some sense, is
a test for the success of a “random restriction.”

Step 1 (C1
x). C1

x takes 2M Boolean inputs (az, bz) for z ∈ {0, 1}m. The pair
(az, bz) will represent the status of the Boolean variable z to Cx as follows: az = 1
iff the value of z is set (to either 0 or 1, i.e., not set to ∗), and az = 0 otherwise. If
az = 1, then the 0-1 value of z is represented by bz. If the pair (az, bz) represents the
value of z, then the pair (az, bz) represents that of zi. Clearly, if z is set 0 (resp., 1),
then z must be set 1 (resp., 0).

C1
x is constructed from Cx as follows. Each gate g in Cx will be represented by a

pair of gates (gs, gv). gs = 1 iff g is set to either 0 or 1, i.e., it is determined; gs = 0
otherwise. If gs = 1, then g = gv. Thus, (gs, gv) = (0, 0) or (0, 1) represent the
situation where g has not been determined, and (gs, gv) = (1, 0) or (1, 1), respectively,
represent the case where g is set to 0 or 1, respectively.

Suppose g is an OR gate, g =
∨s

i=1 g
(i), where g(i) is an input literal or an internal

gate. Suppose g(i) is represented by the pair (g
(i)
s , g

(i)
v ). This representation is already

defined inductively. Then we let

gs =

s∨
i=1

(
(g(i)

s ∧ g(i)
v )

)
∨

(
s∧

i=1

(g(i)
s ∧ g(i)

v )

)
.

That is, g is set iff either some gi is set to 1 or else all gi are set to 0. Note that the
formula given for gs is a depth 2 circuit of size O(s). Also let

gv =

s∨
i=1

g(i)
v .

Note that gv is a “valid” value for g only when gs = 1. Also gv is depth 1 and has
size s.

The case g =
∧s

i=1 g
(i) is dual. In this case, g is set iff either some gi is set to 0

or else all gi are set to 1. Thus

gs =

s∨
i=1

(
(g(i)

s ∧ g(i)
v )

)
∨

(
s∧

i=1

(g(i)
s ∧ g(i)

v )

)
and gv =

s∧
i=1

g(i)
v .
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Again they are depth 2, size O(s), and depth 1, size s, respectively.
In order to maintain alternating forms of AND’s and OR’s in the circuit C1

x, with
all negations pushed to the input level, we can represent each gate g by both g and
its negated value g. This can introduce at most a factor of 2 in the size. (In fact we
will define only three gates gs, gv, and gv in our construction; we do not need (g)s.
But we will omit the detailed analysis of constant factors.) C1

x has two output gates
gs and gv for the output gate g of Cx. It follows that

size(C1
x) = O(size(Cx)) and depth(C1

x) = 2 depth(Cx).

We can take the constant in O(size(Cx)) to be 10, say.
Step 2 (C2

x). Let p = 1
(2m)d

. Let L = �log2
1
p� ≈ dk log2(20n). C2

x takes Boolean

inputs (az,1, . . . , az,L, bz) for z ∈ {0, 1}m. The circuit C2
x is identical to C1

x, except

instead of taking inputs az, it has az =
∨L

j=1 az,j .

Note that a random restriction ρ with parameter Pr[ρ(z) = ∗] = 1/2L on Cx is
simulated by uniformly and independently assigning all the bits (az,1, . . . , az,L, bz) to
0 or 1, in C2

x, for z ∈ {0, 1}m. The behavior of Cx is represented in C2
x exactly. Here

we have

size(C2
x) = size(C1

x) +O(ML) and depth(C2
x) = depth(C1

x) + 1.

Note also that 2−L ≤ p. The same upper bound in Lemma 4 and Claim 1 still applies
when ρ has parameter 2−L.

Step 3 (C3
x). In C3

x we will check for the existence of a subset S ⊂ [M ] of
cardinality |S| = 2m such that, first, they are assigned ∗ by the ρ, and, second, if we
further set them all to 0, it would determine the circuit Cx. We know from Claim 1
that this is almost certainly true for our random restriction.

Thus, we let

C3
x =

∨
S

[ ∧
z∈S

az ∧ [(C2
x)s]S

]
,

where
∨

S ranges over all subsets S ⊂ [M ] of cardinality |S| = 2m, and (C2
x)s is the

“set bit output” for C2
x, and [(C2

x)s]S is obtained from (C2
x)s by setting all bz = 0 for

z ∈ S. Recall that az =
∨L

j=1 az,j . Then we have

size(C3
x) ≤

(
M

2m

)
(size(C2

x) +O(m)) and depth(C3
x) = depth(C2

x) + 2.

Step 4 (D). Finally, define D by

D =
∧

x∈{0,1}n

C3
x.

Then we have

size(D) = 2n(size(C3
x)) and depth(D) = depth(C3

x) + 1.

This completes the construction of D, with

size(D) < 23m2

and depth(D) ≤ 2d+ 6 ≤ 3d− 1.
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Below we will denote 3d− 1 by d̂.
From our construction, it follows that (i) the uniform independent distribution on

the input bits of D simulates the random restriction ρ with p = 2−L ≈ 1/(20m)d, and
that (ii) D becomes true if every Cx|ρ has decision tree depth at most 2m. Hence,
the following claim follows from Claim 1.

Claim 2.

Pr[D = 1] ≥ 1 − m

2m−n
,

where the probability is over uniform input bits of D.
Now we apply an NW generator to this circuit D. First we recall some basic

notions on NW generators from [NW94].
Let U , M , m, and q be positive integers. Let [U ] be some set of cardinality U ,

e.g., {1, 2, . . . , U}. A collection of subsets S = {S1, . . . , SM} of some domain [U ] is
called an (m, q)-design if it satisfies the following conditions.

(1) ∀i, 1 ≤ i ≤M , [ |Si| = q ], and
(2) ∀i, ∀j, 1 ≤ i �= j ≤M , [ |Si ∩ Sj | ≤ m ].

Based on a given (m, q)-design S = {S1, . . . , SM} with domain [U ], we define the fol-
lowing function gS : {0, 1}U → {0, 1}M , which we call a (parity-based) NW generator :

gS(x1 · · ·xU ) = y1 · · · yM ,
where each yi, 1 ≤ i ≤M , is defined
by yi = xs1 ⊕ · · · ⊕ xsq (where Si = {s1, . . . , sq} ⊆ [U ]).

For the pseudorandomness of this generator, we have the following lemma [NW94].
Lemma 5. For any positive integers U,M,m, q, s, and e, and positive real ε, let

gS be the NW generator defined using an (m, q)-design {S1, . . . , SM} with domain
[U ], and suppose for any depth e + 1 circuit C on q input bits and of size at most
s+ cnw2mM (where cnw is some constant), the q-bit parity function has the following
bias: ∣∣∣∣Pr(u1,...,uq)∈{0,1}q [C(u1, . . . , uq) = u1 ⊕ · · · ⊕ uq] −

1

2

∣∣∣∣ ≤ ε

M
.

Then gS has the following pseudorandomness against any depth e circuit E on M
input bits and of size at most s.∣∣Pry∈{0,1}M [E(y) = 1] − Prx∈{0,1}U [E(gS(x)) = 1]

∣∣ ≤ ε.

To apply the NW generator to our depth d̂ circuit D constructed above, we set
our parameters and define our (m, q)-design, as follows. For the parameters m and M ,
we will use the same ones that have been used so far, namely, m = nk and M = 2m.
We will take a finite field F and set q = |F| and U = q2. We will take a specific
finite field F = Z2[X]/(X2·3u

+ X3u

+ 1) [vL91], where each element α ∈ F takes

K = 2 · 3u bits, and q = |F| = 2K . We choose u so that q ≥ (3m2 + 1)d̂+2. Then

q1/(d̂+2) ≥ log2(2
3m2

+ cnw2mM), where cnw is the constant in the above lemma.
Clearly q ≤ nckd will do, for some universal constant c, for example, c = 7. Then
K = O(dk log n). Thus, this field has polynomial size and each element is represented
by O(log n) bits. All arithmetic operations in this field F are easy.

We will consider precisely M = 2m polynomials fz(ξ) ∈ F[ξ], each of degree at
most m, where each fz is indexed by its coefficients, concatenated as a bit sequence
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of length exactly m. The precise manner in which this is done is not very important,
but for definiteness, we can take the following. We take polynomials of degree δ =
�m/K� = Ω(nk/(dk log n)) � n2, with exactly δ + 1 coefficients,

fz(ξ) = cδξ
δ + · · · + c1ξ + c0,

where all cj varies over F, except that cδ is restricted to exactly 2m−K·δ many values.
Note that 0 ≤ m−K · δ < K. The concatenation z = 〈cδ · · · c0〉 has exactly m bits.
Each fz defines a subset of F × F of cardinality q, {(α, fz(α)) | α ∈ F}, which we
denote by Sz. An (m, q)-design that we will use is defined as S = {S1, . . . , SM},
indexed by z ∈ {0, 1}m, which we identify with the index set {1, . . . ,M}. Note
that F × F is a domain [U ] with U = q2. The first condition of an (m, q)-design is
immediate, and the second condition, i.e., |Sz ∩ Sz′ | ≤ m ∀z �= z′, is also easy to
see by noting that deg(fz) < m and deg(fz′) < m. Note that our NW generator gS
generates a pseudorandom sequence of length M = 2m from a seed of length U = q2.

For showing the pseudorandomness of gS , we use the following lemma, which
follows from the decision tree version of the Switching Lemma.

Lemma 6. For any depth e, and for all sufficiently large q, any circuit C on q

inputs and of size at most 2q
1/(e+1)

satisfies∣∣∣∣Pr(u1,...,uq)∈{0,1}q [C(u1, . . . , uq) = u1 ⊕ · · · ⊕ uq] −
1

2

∣∣∣∣ ≤ 2−q1/(e+1)

.

Then the following claim is immediate from Lemmas 5 and 6.
Claim 3. Our NW generator gS has the following pseudorandomness against any

circuit E of size at most 23m2

and depth d̂:∣∣Pry∈{0,1}M [E(y) = 1] − Prx∈{0,1}U [E(gS(x)) = 1]
∣∣ ≤ 2m−3m2

.

Recall that the circuitD takes (L+1)M Boolean inputs, i.e., (az,1, . . . , az,L, bz) for
z ∈ {0, 1}m, where M = 2m and L = �log2

1
p�. We provide these input values by our

NW generator that produces an M -bit pseudorandom string from a q2-bit random
seed. Hence, for the seed to the generator, a random string of length (L + 1)q2

is needed, and we use a sequence of independently and uniformly distributed bits

{u(0)
α,β , u

(1)
α,β , . . . , u

(L)
α,β} for each α, β ∈ F. That is, for each j = 1, . . . , L, we use q2 bits

{u(j)
α,β | α, β ∈ F} to generate the M Boolean values of az,j for z ∈ {0, 1}m. Similarly,

the set {u(0)
α,β | α, β ∈ F} of q2 bits is used to generate the M Boolean values of bz

for z ∈ {0, 1}m. More specifically, for each z ∈ {0, 1}m and j = 1, . . . , L, we define
az,j and bz as follows:

az,j =
⊕
α∈F

u
(j)
α,fz(α) and bz =

⊕
α∈F

u
(0)
α,fz(α).

Then we have the following claim.

Claim 4. Let g
(i)
S denote the pseudorandom output sequence of gS on random

seed bits {u(i)
α,β | α, β ∈ F} for 0 ≤ i ≤ L. Then

Pr[D(g
(1)
S , . . . , g

(L)
S , g

(0)
S ) = 1] ≥ 1 − o(1),

where the probability is over independently and uniformly distributed bits {u(0)
α,β , u

(1)
α,β ,

. . . , u
(L)
α,β} for α, β ∈ F.
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Proof. Let us denote by ai and b, respectively, a sequence of M true random bits
assigned to D’s input variables az,i and bz for z ∈ {0, 1}m. Then our goal is to show

that Pr[D(g
(1)
S , . . . , g

(L)
S , g

(0)
S ) = 1] is close to 1. We claim Pr[D(g

(1)
S , . . . , g

(L)
S , g

(0)
S ) �=

1] ≤ 1/2n−1. For a contradiction suppose it is > 1/2n−1.
Recall that from Claim 2 Pr[D(a1, . . . ,aL, b) �= 1] ≤ m/2m−n.
Then we have∣∣∣Pr[D(a1, . . . ,aL, b) �= 1] − Pr[D(g

(1)
S , . . . , g

(L)
S , g

(0)
S ) �= 1]

∣∣∣ >
1

2n−1
− m

2m−n
>

1

2n
.

This implies, by the telescoping argument

1

2n
<

∣∣∣Pr[D(a1, . . . ,aL, b) �= 1] − Pr[D(g
(1)
S , . . . , g

(L)
S , g

(0)
S ) �= 1]

∣∣∣
≤

∣∣∣Pr[D(a1, . . . ,aL, b) �= 1] − Pr[D(g
(1)
S ,a2, . . . ,aL, b) �= 1]

∣∣∣
+

∣∣∣Pr[D(g
(1)
S ,a2, . . . ,aL, b) �= 1] − Pr[D(g

(1)
S , g

(2)
S ,a3, . . . ,aL, b) �= 1]

∣∣∣
· · ·
+

∣∣∣Pr[D(g
(1)
S , . . . , g

(L)
S , b) �= 1] − Pr[D(g

(1)
S , . . . , g

(L)
S , g

(0)
S ) �= 1]

∣∣∣ ,
that there exists some i such that∣∣∣ Pr [D(g

(1)
S , . . . , g

(i−1)
S ,ai, . . . ,aL, b) �= 1]

− Pr[D(g
(1)
S , . . . , g

(i−1)
S , g

(i)
S ,ai+1, . . . ,aL, b) �= 1]

∣∣∣ > 1

L2n
.

By an averaging argument, this bound still holds by appropriately fixing random

bits other than ai and the source bits for g
(i)
S . In other words, for some circuit D′

with M input variables of size at most size(D) = 23m2

and depth depth(D) = d̂, we
have ∣∣∣Pr[D′(ai) = 1] − Pr[D′(g(i)

S ) = 1]
∣∣∣ >

1

L2n
.

This is a contradiction of Claim 3, the pseudorandomness of the generator gS , since
L = O(d logm).

This claim states that with high probability, a pseudorandom sequence satisfies
D, meaning that the random restriction induced from the pseudorandom sequence
reduces every Cx to a simple function (e.g., a small decision tree) whose value can
be fixed by fixing t = 2m additional variables (for each Cx) to 0. Next we will argue
that for such a pseudorandom restriction, one can find some space to encode the
determined value of each Cx.

Consider a restriction induced by a pseudorandom sequence satisfying D. Apply
this restriction to all variables z of circuits Cx, and fix further the value of some set
Y of variables to 0 in order to determine the value of circuits Cx ∀x ∈ {0, 1}n. We
may assume that the size of Y is at most 2m2n, which is guaranteed by the fact that
D = 1 with our pseudorandom sequence. Then there exists y0 of length n2/2 such
that a segment Ty0

= {z ∈ {0, 1}m | y0 is a prefix of z} has no intersection with Y ;
that is, all variables in Ty0

are free from any variables used to fix the value of circuits

Cx . This is simply because 2m2n � 2n
2/2. Our plan is to code the results of Cx by a

Boolean variable z of the form z = y0xw for some w. The key requirements are that
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(i) the variable z is assigned ∗ by the pseudorandom restriction, and (ii) it is easy
to find such z (i.e., w) from a given x. (We may assume that the string y0 and the
seed for the chosen pseudorandom sequence are remembered by being encoded in the
target polynomial-size circuit CM.)

Let uα,β be a column vector of 0-1 uniform bits (u
(1)
α,β , u

(2)
α,β , . . . , u

(L)
α,β)T. Recall

that in D’s simulation of circuits Cx, a Boolean variable z (of Cx) is assigned ∗ iff
az,j = 0 ∀j = 1, . . . , L. Hence, z is assigned ∗ by a pseudorandom restriction iff∑

α∈F uα,fz(α) = 0 in ZL
2 . y0 is determined by the pigeonhole principle and depends

on the source bits uα,β . We also need to have plenty of ∗’s in the segment Ty0
. Since

we cannot predetermine y0, we demand all segments Ty have plenty of ∗’s. So, we
want our source bits uα,β to satisfy the following condition:

∀y ∈ {0, 1}n2/2, ∀x ∈ {0, 1}n, ∃z = yxw ∈ {0, 1}m
[ ∑

α∈F

uα,fz(α) = 0

]
.(1)

Furthermore, such a w should be easy to compute from the source bits uα,β , and the
given y, and x.

Recall that for any z ∈ {0, 1}m, fz is defined by the sequence of the coefficients
〈cδ · · · c0〉, which concatenates to z. Let γ be the largest index such that the binary
concatenation 〈cδ · · · cγ〉 becomes longer than n2/2+n bits, so n2/2+n < |〈cδ · · · cγ〉| ≤
n2/2+n+K. Then for any y ∈ {0, 1}n2/2 and x ∈ {0, 1}n, we have some subsequence
of coefficients cδ, . . . , cγ such that yx0v = 〈cδ · · · cγ〉, with some v for padding. Note
that γ > 0, since m = nk and k > 2. We will show (see Claim 5 below) that with
high probability a sequence of random source bits uα,β satisfies the following:

∀cδ ∈ F, . . . , ∀cγ ∈ F, ∃c0 ∈ F

[ ∑
α∈F

uα,fz∗ (α) = 0

]
,(2)

where z∗ is a string in {0, 1}m that is the concatenation 〈cδ · · · cγ0 · · · 0c0〉. Observe

that condition (2) is sufficient for our requirement (1). Consider any y ∈ {0, 1}n2/2

and x ∈ {0, 1}n, and let cδ, . . . , cγ be the coefficients corresponding to yx0v. Then
from (2), there exists some c0 by which we can define z∗ = 〈cδ · · · cγ0 · · · 0c0〉 satisfying
the condition of (1). Furthermore, we will show that we can easily find such c0 (thus
z∗) given uα,β , and cδ, . . . , cγ , by checking all q elements of F.

We now summarize our oracle construction. Choose any setting of the random
bits ω = uα,β , such that it generates (L+ 1)M pseudorandom bits Ω satisfying both
D = 1 and (2); let ρΩ be the restriction induced by this pseudorandom sequence. We
construct the segment X=m of our oracle by ρΩ as follows. Below z denotes a string
in {0, 1}m whose membership to X has not been determined yet in the construction.
Let Xfixed (resp., Xfixed) be the set of strings in {0, 1}m whose membership to X
(resp., X) has been determined. Initially, both Xfixed and Xfixed are empty. First
fix the membership according to ρΩ; that is, z is put into Xfixed (resp., Xfixed) iff ρΩ

sets 1 (resp., 0) to the corresponding variable. Secondly, choose a set Y ⊆ {0, 1}m −
(Xfixed ∪ Xfixed) of at most 2m2n strings such that adding Y to Xfixed determines
the value of circuits Cx ∀x ∈ {0, 1}n. This set Y is guaranteed by D = 1. Add Y to
Xfixed. Fix one y0 such that Ty0 ∩ Y = ∅. This y0 exists by the pigeonhole principle.
Then for any x ∈ {0, 1}n, put any z of the form y0xw for some w into Xfixed (resp.,
Xfixed) iff the (already determined) value of Cx is 1 (resp., 0). Then put all remaining
z into Xfixed.
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Now we explain how to design a polynomial-size circuit CM simulating MX . We
may assume that the information on the seed ω (of length (L + 1)q2 = nO(kd)) and
y0 are hardwired into the circuit, and they can be used in the computation. For a
given input x, the circuit exhaustively searches for c0 ∈ F satisfying the condition
of (2) for the coefficients cδ, . . . , cγ corresponding to y0x0

v. Since the seed is given,
for any z∗ = 〈cδ · · · cγ0 · · · 0c0〉, one can compute

∑
α∈F uα,fz∗ (α) within polynomial

time in n. Also the size of F is q = nO(kd). Thus, the desired c0 (and hence z∗) is
computable in polynomial time. When z∗ is obtained, the circuit queries the oracle
whether “z∗ ∈ X?” and accepts the input iff z∗ ∈ X. It is easy to check whether the
whole computation can be implemented by some circuit of size nckd for some constant
c > 0.

We complete the proof by proving the following claim.

Claim 5. Over q2L independent and uniform random bits {u(1)
α,β , . . . , u

(L)
α,β | α, β ∈

F}, condition (2) holds with probability 1 − o(1).
Proof. For any fixed cδ, . . . , cγ , let z∗(c) denote 〈cδ · · · cγ0 · · · 0c〉. Then fz∗(c)(ξ)

is expressed as fz∗(c)(ξ) = g(ξ) + c, where the polynomial g(ξ) = cδξ
δ + · · · + cγξ

γ is
independent of c.

Define u∗
α,c = uα,g(α)+c. Then since u∗

α,c = uα,fz∗(c)(α), condition (2) can be
stated as

∀cδ, . . . , ∀cγ , ∃c0

[ ∑
α∈F

u∗
α,c0 = 0

]
.

Notice that for any fixed cδ, . . . , cγ , for any α, α′, c, and c′, the vectors u∗
α,c and

u∗
α′,c′ consist of disjoint sets of bits, unless α = α′ and c = c′. Hence, if c �= c′, they are

(probabilistically) independent, from which the following bound follows: ∀cδ, . . . , cγ ,

Pr

[
∀c0

[ ∑
α∈F

u∗
α,c0 �= 0

] ]
=

∏
c∈F

Pr

[ ∑
α∈F

u∗
α,c �= 0

]
=

(
1 − 1

2L

)q

< e−Ω(q/(20m)d),

where the probability is taken uniformly over all the bits u
(1)
α,β , . . . , u

(L)
α,β ∀α, β ∈ F.

Then the claim is proved as follows:

Pr

[
∀cδ, . . . , ∀cγ , ∃c0

[ ∑
α∈F

u∗
α,c0(α) = 0

] ]
≥ 1 − 2n

2/2+n+Ke−Ω(q/(20m)d) = 1 − o(1).

Remark 1. For convenience we assumed in the proof that k > 2 and d ≥ 7. This
is only to simplify notation. Clearly d ≥ 7 is unnecessary. We only need to forgo the
estimate of 2d+ 6 ≤ 3d− 1 and use 2d+ 6. Also any machine M in Σp

d for d < 7 can
always be considered in a higher level. Similarly, k > 2 is not necessary. If one traces
through the proof, with slight modification, any real number k > 1 is sufficient.

Remark 2. The final computation by the polynomial-size circuit can be done in
NC1. We only need to evaluate some arithmetic operations in the finite field F. It
turns out that since elements in F are represented by O(log n) bits, the only step that
really requires NC1 is the parity sum of nO(1) terms, when we evaluate the polynomial
fz.

Remark 3. Though the proof is stated for simulating one machine M, it is also
possible to construct a single oracle X such that for every d and k, and every Σp

d
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machine M running in time O(nk), the language L(MX) can be recognized by some
polynomial-size circuit family with stringent access to oracle X.

4. Some results on constant depth circuits. As lower bound results on
constant depth circuits play a crucial role in this work, we take this opportunity to
present some previously unpublished older results of the first author on these circuits.
In particular we emphasize the decision tree viewpoint and give some better constants
in the exponents than previously published lower bounds. We give a historical account
at the end of the section.

The decision tree perspective was first proposed in [Cai86], where a weaker ver-
sion of the following lemma was proved. The following proof essentially adapts the
techniques from [H̊as86a].

We say a Boolean function G on variables {x1, . . . , xn} is a t-AND-OR if G =
G1∧G2∧· · ·∧Gw, where each Gi is the OR of at most t literals (a literal is a variable
or its complement). Similarly, we say G is a t-OR-AND if G = G1 ∨ G2 ∨ · · · ∨ Gw,
where each Gi is the AND of at most t literals.

As a base step for analyzing general circuits, we first prove the following lemma.

Lemma 7. Let G be a t-AND-OR formula G1 ∧G2 ∧ · · ·∧Gw. Let ρ be a random
p-restriction. Then, ∀∆ ≥ 0,

Pr[ DC(G|ρ) ≥ ∆ ] ≤ (5pt)∆.(3)

Proof. The lemma is proved by an induction on w. Concerning G1, immediately
there are 2 cases, either G1|ρ ≡ 1 or G1|ρ �≡ 1. By renaming literals, we may assume
G1 =

∨
i∈T xi. Then G1|ρ ≡ 1 is equivalent to ρ(i) = 1 for some i ∈ T . If G1|ρ ≡ 1,

we want to prove that the conditional probability that the rest of G has DC(G|ρ) ≥ ∆
is no larger. If, however, G1|ρ �≡ 1, we want to carefully analyze what happens to
the variables in T . All of this will accumulate as some prior condition on ρ. It will
be seen that the inductive step will carry a condition that refers to some collection
of subsets of variables on each of which ρ has assigned some variable of it in some
definite way. In the earlier proof of Yao [Yao85], as well as in the proof of Cai [Cai86],
these conditions were explicitly carried along in the proof. The following device used
in H̊astad’s proof [H̊as86a] is more elegant.

One makes the stronger claim that for any Boolean function F , we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] ≤ α∆,(4)

where α will be set to 5pt, and we agree that the conditional probability is 0 if the
condition is not satisfied. The lemma follows from (4) by taking F to be the constant
function 1.

The statement (4) is trivially true for ∆ = 0, since the right-hand side becomes
1 in this case. Similarly, if α ≥ 1, then the statement is true. Thus, we may assume
∆ > 0 and α < 1.

We prove (4) by induction on w. If w = 0, then G ≡ 1 by definition and the
statement holds since the left-hand side is 0. Let w > 0. Put G = G1 ∧ G′, where
G′ = G2 ∧ · · · ∧Gw. Now, either G1|ρ ≡ 1 or G1|ρ �≡ 1. If G1|ρ ≡ 1, then we have, by
induction,

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ ≡ 1 ]

= Pr[ DC(G′|ρ) ≥ ∆ | (F ∧G1)|ρ ≡ 1 ] ≤ α∆.
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Now consider the case G1|ρ �≡ 1. We want to prove

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ �≡ 1 ] ≤ α∆(5)

as well. We have renamed the variables so that G1 =
∨

i∈T xi. Then G1|ρ �≡ 1
means that for each i ∈ T , ρ(i) = 0 or ∗. Moreover, since ∆ > 0, it cannot be that
ρ(i) = 0 ∀i ∈ T , or else G1|ρ ≡ 0, and DC(G|ρ) = 0. Thus, the set of restrictions ρ
such that F |ρ ≡ 1, G1|ρ �≡ 1, and DC(G|ρ) ≥ ∆ is contained in⋃

∅�=Y⊆T

{ρ : ρ(Y ) = ∗, ρ(T − Y ) = 0, F |ρ ≡ 1,DC(G|ρ) ≥ ∆ }.

Suppose ρ(Y ) = ∗ and ρ(T − Y ) = 0 for some ∅ �= Y ⊆ T .
First we assume |Y | < ∆. Then there must be some assignment σY : Y →

{0, 1}, and σY �= 0Y , where we denote by 0Y the all-0 assignment on Y , such that
DC(G|ρ|σY

) ≥ ∆ − |Y |. For otherwise, one could obtain some decision tree of depth
< ∆ for G|ρ by first asking all the variables in Y . Note that such a σY �= 0Y because
the all-0 assignment leads to G1|ρ|0Y ≡ 0.

For σY �= 0Y , G1|ρ|σY
≡ 1, so that G|ρ|σY

≡ G′|ρ|σY
. Then

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 ]

≤
∑

σY :Y →{0,1}
σY �=0Y

Pr[ DC(G′|ρ|σY
) ≥ ∆ − |Y | | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0) ].(6)

Set

0T−Y = the all-0 assignment on T − Y ,

F̃ =
∧

τY :Y→{0,1} F |0T−Y |τY , and

ρ̃ = ρ restricted to the complement of T ;

then under the condition ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 we have

F |ρ ≡ 1 ⇐⇒ F̃ |
ρ̃
≡ 1.

Hence, the sum in (6) has the upper bound∑
σY :Y →{0,1}

σY �=0Y

Pr[ DC(G′|0T−Y |σY
|
ρ̃
) ≥ ∆ − |Y | | F̃ |

ρ̃
≡ 1 ] ≤ (2|Y | − 1)α∆−|Y |,(7)

by induction.
The upper bound (7) holds for

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 ](8)

∀Y �= ∅ with |Y | < ∆. However, for |Y | ≥ ∆, the bound in (7) holds trivially for a
probability (8), since in this case the bound in (7) is ≥ 1, as |Y | ≥ ∆ > 0 and α < 1.
Hence in fact it holds ∀Y �= ∅.

Let

aY = Pr[ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 | F |ρ ≡ 1 ∧G1|ρ �≡ 1 ],

bY = Pr[ ρ(Y ) = ∗ | F |ρ ≡ 1 ∧G1|ρ �≡ 1 ].
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Then

bY =
∑

Y⊆Z⊆T

aZ ,

and by the Möbius inversion formula,

aY =
∑

Y⊆Z⊆T

(−1)|Z−Y |bZ .

It follows that

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ �≡ 1 ]

≤
∑

∅�=Y⊆T

aY · (2|Y | − 1)α∆−|Y |

=
∑
Y⊆T

aY · (2|Y | − 1)α∆−|Y |.

Substituting bZ for aY , we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ �≡ 1 ]

≤
∑
Y⊆T

∑
Y⊆Z⊆T

(−1)|Z−Y |bZ · (2|Y | − 1)α∆−|Y |

=
∑
Z⊆T

bZ
∑
Y⊆Z

(−1)|Z−Y |(2|Y | − 1)α∆−|Y |

=
∑
Z⊆T

bZ(−1)|Z|α∆
∑
Y⊆Z

[(
−2

α

)|Y |
−

(
−1

α

)|Y |]

= α∆
∑
Z⊆T

bZ(−1)|Z|
[(

1 − 2

α

)|Z|
−

(
1 − 1

α

)|Z|]

= α∆
∑
Z⊆T

bZ

[(
2

α
− 1

)|Z|
−

(
1

α
− 1

)|Z|]
.

Concerning bZ , intuitively, under the condition that F |ρ ≡ 1 ∧ G1|ρ �≡ 1, the proba-
bility of ρ(Z) = ∗ is at most q|Z|, where q = p/(p + 1−p

2 ) ≈ 2p, i.e., bZ ≤ q|Z|. We
already saw that G1|ρ �≡ 1 means that each variable in Z is assigned either 0 or ∗.
The additional condition that F |ρ ≡ 1 can only decrease the probability that some
variable is assigned an ∗. We will argue this point more carefully. For the moment,
we accept the upper bound bZ ≤ q|Z|.

Then, since the coefficients of bZ are nonnegative, we have

α∆
∑
Z⊆T

bZ

[(
2

α
− 1

)|Z|
−

(
1

α
− 1

)|Z|]

≤ α∆
∑
Z⊆T

q|Z|
[(

2

α
− 1

)|Z|
−

(
1

α
− 1

)|Z|]

= α∆

{[
1 + q

(
2

α
− 1

)]|T |
−

[
1 + q

(
1

α
− 1

)]|T |}
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≤ α∆

{[
1 − q +

2q

α

]t
−

[
1 − q +

q

α

]t}
.(9)

At this point, we can recover the bound (5pt)∆ as follows [H̊as86a]. Observe that[
1 − q +

2q

α

]t
−

[
1 − q +

q

α

]t
≤

(
1 +

2q

α

)t

−
(
1 +

q

α

)t

.(10)

If we set c = 1/ log φ ≈ 2.078, where φ = 1+
√

5
2 ≈ 1.618 is the golden ratio, then we

have e2/c − e1/c = 1. Then, setting α = cqt < 5pt, we get(
1 +

2q

α

)t

−
(
1 +

q

α

)t

=

(
1 +

2

ct

)t

−
(

1 +
1

ct

)t

< e2/c − e1/c = 1.

Then

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ �≡ 1 ] < α∆.

This completes the proof of

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] < (5pt)∆.

Finally, we show that bZ ≤ q|Z|. Note that for Z ⊆ T , we have

Pr[ ρ(Z) = ∗ | G1|ρ �≡ 1 ] = q|Z|.

This is because G1|ρ �≡ 1 is the same as ρ assigns only ∗ or 0 on T .
We show that F |ρ ≡ 1 cannot increase the probability of ρ(Z) = ∗. This is trivial

if Z = ∅. Suppose Z �= ∅. Consider any fixed restriction ρ′ on the complement of Z,
ρ′ : Zc → {0, 1, ∗}. Then there is a unique extension of ρ′ over Z—call it ρ∗—that
satisfies ρ∗(Z) = ∗.

We claim that

Pr[ ρ(Z) = ∗ | F |ρ ≡ 1, G1|ρ �≡ 1, ρ|Zc = ρ′ ] ≤ q|Z|.

The event ρ(Z) = ∗ refers to the unique ρ∗, under the condition ρ|Zc = ρ′. If F |ρ∗ �≡ 1,
then the above conditional probability is 0 and the claim trivially holds. Otherwise,
F |ρ ≡ 1 for all extensions ρ of ρ′ to Z. Hence F |ρ ≡ 1, G1|ρ �≡ 1, ρ|Zc = ρ′ refers
to exactly 2|Z| assignments ρ, such that ρ(i) ∈ {0, ∗} ∀i ∈ Z. The claim follows.
Lemma 7 is proved.

If we take p = 1
10t , then we get the following bound: For any G as in Lemma 7,

and ∀∆ ≥ 0,

Pr[ DC(G|ρ) ≥ ∆ ] ≤ 2−∆.(11)

Using this bound as the base case, we can inductively prove Lemma 4.
On the other hand, it is possible to obtain a slightly stronger bound from (9).

In fact the use of the inclusion-exclusion formula has been ignored in (10). In the
following, we will show this slightly stronger bound.

We will set q = β/t for some constant β > 0, to be determined later. Set

α = β / ln

[
1 +

√
1 + 4eβ

2

]
.



1004 JIN-YI CAI AND OSAMU WATANABE

Then

e2β/α − eβ/α = eβ .

It follows that [
1 − q +

2q

α

]t
−

[
1 − q +

q

α

]
=

[
1 +

(
2β

α
− β

)
1

t

]t
−

[
1 +

(
β

α
− β

)
1

t

]t
< e

2β
α −β − e

β
α−β = 1.

Replacing the analysis after (9) in the above proof, we obtain the following lemma.
Lemma 8. Let G be a t-AND-OR formula G1∧G2∧· · ·∧Gw. For any β, 0 < β < t,

let ρ be a random p-restriction, where p = β
t−β , and let α = β/ ln

[ 1+
√

1+4eβ

2

]
. Then

∀∆ ≥ 0, we have

Pr[ DC(G|ρ) ≥ ∆ ] ≤ α∆.

Minimizing α we find at β0 = 0.227537, α0 = α(β0) ≈ 2−1.2638031 ≈ 0.4164447.
Let γ0 = β0/2 ≈ 0.1137685. Then we have the following bound. This is a strength-
ening of (11).

Lemma 9. Let G be a t-AND-OR formula G1 ∧ G2 ∧ · · · ∧ Gw, and let ρ be a
random γ0/t-restriction. Then ∀∆ ≥ 0, we have

Pr[ DC(G|ρ) ≥ ∆ ] ≤ α∆
0 .

Proof. Let q = β0/t and p = q
2−q . Then q = 2p

1+p is the probability of getting a 0
or an ∗ in a random p-restriction.

We have shown that

Pr[ DC(G|ρ′) ≥ ∆ ] ≤ α∆
0 ,

where ρ′ is a random p-restriction.
Since p > q/2 = γ0/t, a random γ0/t-restriction ρ can be realized by first applying

a random p-restriction ρ′, followed by a γ0/(pt)-restriction. Note that if DC(G|ρ′) <
∆, then DC(G|ρ) < ∆. The lemma follows.

Now consider general constant depth circuits. Denote by Cd(s, t) the class of
depth d circuits with bfi2 ≤ t, and the number of gates above the first level ≤ s.
Denote by Cd(s) the class of depth d circuits without a bfi condition but with total
size ≤ s. By extending one level with fan-in 1, clearly Cd(s) = Cd+1(s, 1). (Here in
this notation we suppress the number n of variables and the depth d, where s and t
are understood to be functions of one or both of them.)

Lemma 10. For all C ∈ Cd(s, γ0n
1/d), we have

Pr[ DC(G|ρ) ≥ γ0n
1/d ] ≤ s · αγ0n

1/d

0 ≈ s · 2−0.143781·n1/d

,

where ρ is a random 1/n
d−1
d -restriction.

2bfi is the abbreviation of bottom fan-in, the maximum fan-in of the bottom level gates. By a
“bfi condition” we mean a bound of the form bfi ≤ t that is given in each context.
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Proof. Apply Lemma 9 repeatedly d − 1 times, each time with a random 1/n
1
d -

restriction. Note that any function with decision tree depth ≤ ∆ can be expressed
both as a ∆-AND-OR as well as a ∆-OR-AND. After switching bottom level AND-
OR formulas to OR-AND’s, or vice versa, one can merge two successive levels of gates
and reduce the depth by 1. Then the lemma follows.

Let C ∈ Cd(s) with no bfi requirement. By considering C ∈ Cd+1(s, 1) we
may first apply Lemma 9 to each of the bottom depth 2 subcircuits with bfi 1, with a
random γ0-restriction. But we can actually do slightly better by looking at it directly.

Fix any 1-OR-AND formula S. (The case with any 1-AND-OR is dual.) S is just
a simple OR; by renaming variables, we may assume S =

∨m
i=1 xi. Fix any ∆ > 0. If

we apply a random p-restriction ρ, and if ρ assigns any xi = 1, or if ρ assigns all xi
to 0 or ∗ but fewer than ∆ of them are assigned ∗, then DC(S|ρ) < ∆. Thus

Pr[ DC(S|ρ) ≥ ∆ ] ≤
∑

J⊆{1,...,m}
|J|≥∆

Pr[ ρ(J) = ∗, ρ(Jc) = 0 ]

=

(
1 + p

2

)m m∑
j=∆

(
m

j

)
qj(1 − q)m−j ,

where Pr[ ρ(i) �= 1 ] = p+ 1−p
2 = 1+p

2 , and q = Pr[ ρ(i) = ∗ | ρ(i) �= 1 ] = 2p
1+p . Hence

Pr[ DC(S|ρ) ≥ ∆ ] ≤ q∆
(

1 + p

2

)m m∑
i=0

(
m

i

)
(1 − q)m−i = q∆ < (2p)∆.

So if we first apply a random restriction with p = α0

2 ≈ 0.2082223, with probability

> 1−s1αγ0n
1/d

0 , all bottom level 1-OR-AND subcircuits are switched to γ0n
1/d-AND-

OR (or all 1-AND-OR switched to γ0n
1/d-OR-AND), where s1 is the total number of

level 1 gates in the depth d circuit C, which are the depth 2 gates in the depth d+ 1
circuit with bfi 1. After the switching we get a circuit of depth d+1 with bfi ≤ γ0n

1/d,
but with the same type of gates on the 2 levels just above the bottom level gates.
After merging these two levels, we get a circuit in Cd(s′, γ0n

1/d), where s′ = s − s1.
Now we apply Lemma 10. This gives the following bound.

Lemma 11. For all C ∈ Cd(s), we have

Pr[ DC(G|ρ) ≥ γ0n
1/d ] < s · αγ0n

1/d

0 ≈ s · 2−0.143781·n1/d

,

where ρ is a random α0/(2n
d−1
d )-restriction.

These results can be used to prove circuit lower bounds for such circuits. Consider
any circuit C in Cd(s, γ0n

1/(d−1)). Applying d − 2 rounds of random 1/n1/(d−1)-

restrictions, with probability greater than 1− s · 2−0.143781·n1/(d−1)

, we get a circuit in
C2(1, γ0n

1/(d−1)) after switching and merging. The number of variables N left has
expectation Exp[N ] = n1/(d−1). By Chernoff bound, we have

Pr[N ≤ γ0n
1

d−1 ] = Pr[N−n 1
d−1 ≤ −(1−γ0)n

1
d−1 ] < e−

(1−γ0)2

2 ·n
1

d−1
< e−0.3927n

1
d−1

.

Hence, if s < 20.143781·n1/(d−1)

, the probability is approaching 1 that both C is reduced
to a circuit in C2(1, γ0n

1/(d−1)) and N > γ0n
1/(d−1). Therefore C does not compute

the parity.
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Lemma 12. For all C ∈ Cd(s, γ0n
1/(d−1)), if C computes the parity function,

then its size s must satisfy

s ≥ 20.143781·n1/(d−1)

.

Let C ∈ Cd(s) with no bfi requirements. As in the proof of Lemma 11 we will
separate the bottom level gates from the rest. Thus we first apply a random α0/2-
restriction followed by d − 2 rounds of random (n1/(d−1))−1-restrictions. Thus alto-

gether we applied a random α0 · (2n
d−2
d−1 )−1-restriction, and with probability greater

than 1 − (s − 1) · 2−0.143781·n1/(d−1)

we end up with a circuit in C2(1, γ0n
1/(d−1)).

By Chernoff bound again, if N is the number of variables left, then Exp[N ] =
α0n

1/(d−1)/2, and therefore

Pr[N ≤ γ0n
1

d−1 ] = Pr

[
N − α0n

1/(d−1)

2
≤ −

(α0

2
− γ0

)
n

1
d−1

]
< e−0.021423n

1
d−1

.

Hence, if s < 20.143781·n1/(d−1)

, C does not compute the parity.
Theorem 13. For all C ∈ Cd(s), if C computes the parity function, then its size

s must satisfy

s ≥ 20.143781·n1/(d−1)

.

Now we consider the inapproximability-type lower bound. The decision tree depth
lower bound is ideally suited for deriving the inapproximability-type lower bound, and
the decision tree perspective was introduced precisely for this reason.

Denote for the rest of this section m = n1/d. Let C be a depth d circuit. Note that
after some restriction ρ, if C is reduced to a decision tree of depth smaller than the
number of variables left, then for exactly half of the 0-1 extensions of ρ, C agrees with
parity. This is because at every leaf of the decision tree, the circuit C is completely
determined. (This property was called monochromaticity in [Cai86].)

Consider Pr[ C(x1, . . . , xn) = ⊕(x1, . . . , xn) ], where ⊕(x1, . . . , xn) denotes the
parity function, and the probability is over all 2n assignments. This can be evaluated
by first assigning any random restriction, followed by an unbiased 0-1 assignment for
all the remaining variables. Let E = E1 ∧ E2, where E1 denotes the event that after
the random restriction, we end up with a decision tree of depth t, and E2 denotes
the event that the number of variables N assigned to ∗ is more than t, where t will
be specified later as O(m). Let [C = ⊕ ] denote [C(x1, . . . , xn) = ⊕(x1, . . . , xn) ] for
short.

Note first

Pr[C = ⊕ ] = Pr[E] · Pr[C = ⊕ |E ] + Pr[¬E] · Pr[C = ⊕ |¬E ]

= Pr[C = ⊕ |E ] + Pr[¬E]( Pr[C = ⊕ |¬E ] − Pr[C = ⊕ |E ] ).

As we noted Pr[C = ⊕ |E ] = 1
2 . Then∣∣∣∣Pr[C = ⊕ ] − 1

2

∣∣∣∣ ≤ 1

2
Pr[¬E].

Also since Pr[C = ⊕ ] − Pr[C �= ⊕ ] = 2(Pr[C = ⊕ ] − 1
2 ), we have

|Pr[C = ⊕ ] − Pr[C �= ⊕ ]| ≤ Pr[¬E].
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Now we specify the parameter of the random restrictions.
First consider any C ∈ Cd(s, γ0m). Then let t = γ0m, and we apply Lemma 10.

With a random (n
d−1
d )−1-restriction, we have

Pr[¬E1] ≤ sαt
0 ≈ s · 2−0.143781·m.

Then again by using the Chernoff bound, we estimate Pr[¬E2] = Pr[N ≤ γ0m ] as
follows:

Pr[¬E2] ≤ e−
(1−γ0)2

2 m < e−0.3927m.

Thus Pr[¬E2] is dominated by Pr[¬E1]. This analysis gives the following bound.

Lemma 14. For all C ∈ Cd(20.07189n1/d

, γ0n
1/d), we have

|Pr[C = ⊕ ] − Pr[C �= ⊕ ]| ≤ 2−0.07189n1/d

.

Finally we consider C ∈ Cd(s) with no bfi condition. This time we have to work
harder to optimize the exponents. Our strategy is as follows. We will first assign a
α0

2 -restriction, and this will give us a depth d circuit with bfi ≤ γ0m. Then we assign
d− 2 rounds of 1/m-restrictions, each time using Lemma 9 with the same parameters
p = 1/m and t = ∆ = γ0m. This will give us a depth 2 circuit with bfi ≤ γ0m. So
far the failure probability is (s − 1)αγ0m

0 . Finally we assign another 1/m-restriction,
but this time using the parameters t = γ0m and ∆ = xγ0m, where 0 < x < 1 is to
be determined later. The overall failure probability is < sαγ0m

0 + α∆
0 + Pr[N ≤ ∆ ],

where N is the number of variables left.
It turns out that if we used the same values for t and ∆ for the estimate in the

last round, the bound for Pr[N ≤ ∆ ] would be too weak. We will use a more exacting
form of the Chernoff bound, and then optimize the overall bound by balancing the
last two terms with a judicious choice of x.

We use the following version of the Chernoff bound. (See, for example, p. 70 of
[MR95].)

Pr[N < (1 − δ)Exp[N ] ] < exp [−Exp[N ] · (δ + (1 − δ) · ln(1 − δ))] .

Here we have

Exp[N ] =
α0

2
m and δ = 1 − 2γ0x

α0
.

We balance the two bounds by setting x such that

xγ0 ln
1

α0
=

α0

2
[ δ + (1 − δ) · ln(1 − δ) ] .

This leads to choosing x = 0.617945, and we get both

α∆
0 < 2−0.0888488·m and Pr[N ≤ ∆ ] < 2−0.0888488·m.

Then by setting s = 20.07189·m we get a balanced discrepancy lower bound.

Theorem 15. For all C ∈ Cd(20.07189n1/d

), we have

|Pr[C = ⊕ ] − Pr[C �= ⊕ ]| ≤ 2−0.07189n1/d

.
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Note that the bound in Theorem 15 is the same as that of Lemma 14 with the
bfi condition. Lemma 6 follows from Theorem 15 for large input size.

Remark 4. The original motivation for Furst–Saxe–Sipser [FSS81], where super-
polynomial lower bounds were proved for parity against constant depth circuits, was
to provide an oracle separation of PH and PSPACE. This was achieved in a break-

through result by Yao [Yao85], who proved a lower bound of the form 2n
Ω(1/d)

for
parity on n bits for depth d circuits. Yao’s bound was further improved by H̊astad

[H̊as86a] from 2−nΩ(1/d)

to 2−
1
10n

1
d−1

, and his proof has become the standard proof.
Independently, Yao’s work was improved upon in another direction. Cai investigated

in [Cai86] whether constant depth circuits of size 2n
Ω(1/d)

must err on an asymptoti-
cally 50% of inputs against parity. This was motivated by another long-standing open
problem, that of random oracle separation of PH and PSPACE (see also [Bab87]). To
attack this problem, the decision tree point of view was first adopted in [Cai86],
although a different but completely synonymous terminology (Master-Player Game
and t-monochromaticity) was used. It was proved in [Cai86] that after a suitable ran-
dom restriction ρ, with high probability, the constant depth circuit C |ρ has decision
tree depth smaller than the number of unassigned Boolean variables. In such cases,
Pr[C = ⊕] is exactly 1

2 . Thus the discrepancy

|Pr[C = ⊕] − Pr[C �= ⊕]|(12)

was shown to be o(1) for circuits of depth d and size 2n
Ω(1/d)

. Implicitly a bound

of the form 2−nΩ(1/d)

for the discrepancy (12) was proved there as well [Cai86]. The
o(1) upper bound for the discrepancy was sufficient for the random oracle separation
result, which was the purpose of [Cai86], but one needs H̊astad’s technique to improve

the bound from 2−nΩ(1/d)

to 2−cn
1
d as in Theorem 15. However, the weaker bound

2−nΩ(1/d)

would have sufficed for our Theorem 2. Ko [Ko89a] also used circuit lower
bounds to establish the following: For any k, one can construct an oracle with which
the polynomial hierarchy collapses to exactly k levels.

It was a marvelous application by Nisan and Wigderson [Nis91a, Nis91b, NW88]
that turned the inapproximability type of lower bounds based on decision trees on its
head and produced an explicit construction—usually considered an upper bound—
of a pseudorandom generator provably indistinguishable from true random bits by
polynomial-size constant depth circuits. A central ingredient in [Nis91a, Nis91b,
NW88] is a suitable combinatorial design. Seen in this way, our proof of Theorem 2
can be viewed as using a lower bound (Switching Lemma) to get an upper bound (the
NW pseudorandom generator) to prove a lower bound (to kill all 2n circuits Cx simul-
taneously with the pseudorandom assignments) to finally prove an upper bound (to be
able to code all the computations). And all this is to show that it is impossible to prove
a superpolynomial circuit lower bound for any fixed language in the Polynomial-time
Hierarchy, with a relativizable proof with stringent access to an oracle.

Acknowledgment. We would like to thank the anonymous referees for their
detailed comments, which helped us improve the presentation of the paper.
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Abstract. We address the problem of designing optimal off-line algorithms that minimize the
required bandwidth for media-on-demand systems that use stream merging. We concentrate on the
case where clients can receive two media streams simultaneously and can buffer up to half of a full
stream. We construct an O(nm) optimal algorithm for n arbitrary time arrivals of clients, where m
is the average number of arrivals in an interval of a stream length. We then show how to adopt our
algorithm to be optimal even if clients have a limited size buffer. The complexity remains the same.

We also prove that using stream merging may reduce the required bandwidth by a factor of order
ρL/ log(ρL) compared to the simple batching solution where L is the length of a stream and ρ ≤ 1
is the density in time of all the n arrivals. On the other hand, we show that the bandwidth required
when clients can receive an unbounded number of streams simultaneously is always at least 1/2 the
bandwidth required when clients are limited to receiving at most two streams.

Key words. media-on-demand, stream merging, dynamic programming, monotonicity property

AMS subject classifications. 68W05, 68W40
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1. Introduction. Media-on-demand is the demand by clients to play back, view,
listen to, or read various types of media such as video, audio, and large files with as
small as possible startup delays and with no interruptions. The solution of dedicating
a private channel to each client for the required media is implausible even with the ever
growing available network bandwidth. Thus, multicasting popular media to groups
of clients seems to be the ultimate solution to the ever growing demand for media.
The first, and most natural, way to exploit the advantage of multicasting is to batch
clients together. This implies a trade-off between the overall server bandwidth and
the guaranteed startup delay. The main advantage of the batching solutions lies in
their simplicity. The main disadvantage is that the guaranteed startup delay may be
too large.

The pyramid broadcasting paradigm, pioneered by Viswanathan and Imielinski
[43, 44], was the first solution that dramatically reduced the bandwidth requirements
for servers by using larger receiving bandwidth for clients and by adding buffers to
clients. Many papers have followed this line of research; all of them have demonstrated
the huge improvement over the traditional batching solutions. We adopt the stream
merging technique, introduced by Eager, Vernon, and Zahorjan [18, 19]. Stream merg-
ing seems to incorporate all the advantages of the pyramid broadcasting paradigm and
is very useful in designing and implementing efficient off-line and on-line solutions.

A system with stream merging capabilities is illustrated in Figure 1. The server
multicasts the popular media in a staggered way via several channels. Clients may
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Client

Multicast Channels

Player

(a)

Server

(b)

Buffer

Multicast Channels

Player

Client

Buffer

Server

Fig. 1. The mechanism of receiving data from two streams simultaneously.

receive data from two streams simultaneously while playing data they have accumu-
lated in their buffers. The playback rate is identical to each of the channels, so that
the receiving bandwidth is twice the playback bandwidth. The initial position is il-
lustrated in (a) where the client is about to receive data from a new stream and a
stream that was initiated earlier. After some time the system may look as illustrated
in (b). The client still receives data from both streams. The top of its buffer, which
represents the beginning of the stream, has been viewed by the player. This technique
is called stream merging because eventually, as the client receives both the earlier and
later streams, it no longer needs the later stream because it already has the data from
buffering the earlier one. At this point, if no other client needs the later stream, it
can terminate. In a sense the later stream merges with the earlier one, forming just
one stream. The termination of the later stream is where bandwidth is saved.
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Fig. 2. The figure on the left shows batching, while the figure on the right shows batching
with stream merging.

It is interesting to contrast stream merging with batching, the most common
technique for reducing server bandwidth in the presence of multicast. In batching time
is divided into intervals. A client that arrives in an interval is satisfied by a full stream
at the end of the interval. Bandwidth is saved at the expense of longer guaranteed
startup delay for the clients. Stream merging and batching can be combined so that
there is a bandwidth saving from both stream merging and batching. Figure 2 shows
the difference between pure batching and stream merging with batching. In this figure
full streams are of length 5. The three clients require 2 full streams (10 units) with
batching alone, but require only 1.4 streams (7 units) with stream merging. The
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second and the third clients receive parts 3 and 4 of the first stream at the same time
they receive parts 1 and 2 from the second stream; then they receive part 5 from the
first stream.

Given a sequence of arrivals, there can be a number of different stream merging
solutions to accommodate this sequence. Typically, a stream merging solution has
a number of full streams each associated with a number of other truncated streams
that eventually merge to this full stream. We measure the bandwidth required by
a solution as the sum of the lengths of all the individual (full or truncated) streams
in the solutions. We call this sum the full cost of the solution. This cost represents
the total bandwidth required by the solution and by dividing it by the time span
of arrivals it represents the average bandwidth to serve the clients during that time
span. In our example of Figure 2, the full cost of the batching solution is 10 units
(or 2 streams) and the full cost of the stream merging with the batching solution is 7
units (or 1.4 streams).
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Fig. 3. Comparison of bandwidth required for batching and batching with optimal stream
merging. The figure plots the bandwidth requirement vs. delay for a 2-hour movie, with
Poisson arrivals averaging every 10 seconds.

Figure 3 shows the bandwidth requirement vs. delay for a popular 2-hour movie,
with Poisson arrivals averaging every 10 seconds. The guaranteed startup delay ranges
from 1 second to 30 minutes. For stream merging with batching we used an optimal
stream merging algorithm. At 1 second delay the difference in bandwidth is dramatic.
For batching the bandwidth required is almost the same as it would be if each client
had its own stream. On the other hand, at 1 second delay, stream merging with
batching uses 1/60 the bandwidth of batching.

1.1. Contributions. The main goal of this paper is to find efficient ways to
compute the optimal stream merging solutions, those that minimize the full cost. To
determine an optimal solution, we have to decide when to start full streams and how
to merge the rest of the streams into the full streams. We assume that the arrival
times of clients are known ahead of time and we call this the off-line problem, as
opposed to the on-line problem where client arrivals are not known ahead of time.
Computing the optimal off-line solution quickly is a major focus of this paper. The
off-line scenario happens when clients make reservations for when their streams will
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begin. However, good on-line solutions are required for media-on-demand systems
that run in real time. The optimal off-line solution is the gold standard against which
on-line solutions should be compared. Fast algorithms for computing an optimal off-
line solution allow us to evaluate the quality of on-line solutions on large numbers of
media requests.

In our main model a client is capable of receiving two streams simultaneously.
We call this the receive-two model. It is instructive to consider the receive-all model
in which a client is capable of receiving any number of streams simultaneously. There
are several reasons to consider this case. First, we will see that there is very little
gain in going from the receive-two model to the receive-all model. Most of the benefit
of stream merging comes from just the ability to receive two streams simultaneously.
Second, we will see that many of the results from the receive-two model carry over in
a simpler form to the receive-all model.

Our first contribution is a novel model for the stream merging technique. A key
concept in our model is that of a merge tree, which is an abstraction of the diagram
in Figure 2. See Figure 4 for an example. A sequence of merge trees is called a merge
forest. The root of a merge tree represents a full stream; its structure represents the
merging pattern of the remaining streams that are associated with its descendent. A
sequence of merge trees is called a merge forest. We show that the knowledge of the
arrival times and the structure of the merge trees is sufficient to compute the lengths
of all the streams and to compute the full cost (total bandwidth) required by the
merge forest. A key component of our approach is the concept of merge cost. For a
given merge tree, the merge cost is the sum of the lengths of all the streams except
the root stream. The full cost counts everything, merge cost and the length of the
roots for all the merge trees in the forest. This separation into merge cost and full
cost helps in designing the optimal algorithms and in having a cleaner analysis. Later
in the paper, we first show how to construct an optimal merge tree for a sequence
that forms a single tree and then show how to construct the optimal merge forest for
a given sequence.

We show several properties that optimal merge trees must have. For example,
there is no gain in having streams that do not start at an arrival time of some clients.
Other properties will be defined in section 2. These properties were assumed implicitly
by all the on-line algorithms that use the stream merging technique [18, 19, 5, 14, 11,
12]. Thus our model, in a way, builds the foundations for designing “good” on-line
algorithms.

Our main focus is in designing efficient optimal algorithms in the receive-two
model, that is, algorithms that, for a given a sequence of arrivals, either find a merge
tree that minimizes merge cost or find a merge forest that minimizes full cost. We
have the following results depending on n, the number of arrivals. For the merge
cost, we present an efficient O(n2) time algorithm improving the known O(n3) time
algorithm (see [2, 19]). The latter algorithm is based on a straightforward dynamic
programming implementation. Our algorithm implements the dynamic programming
utilizing the monotonicity property ([34]) of the recursive definition for the merge
cost. For the full cost we use the optimal solution of the merge cost as a subroutine.
We describe an O(nm) time algorithm where m is the average number of arrivals in an
interval that begins with an arrival and whose length is a full stream length. We also
have efficient algorithms for a model in which clients have a limited buffer size. We
maintain the O(nm) complexity where this time m is the average number of arrivals
in an interval that begins or ends with an arrival and whose length is the minimum
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between the stream length and the maximum buffer size.

Additional results establish the performance of the optimal stream merging so-
lutions. Let L be the length of a full stream in slots, where a slot is the worst-case
waiting time for any arrival before it receives the first segment of the media. For a
fixed length media, as the parameter L grows the waiting time tends to zero. De-
fine ρ ≤ 1 to be the ratio of slots that have at least one arrival to all the slots in
a given period of time. We show that an optimal stream merging solution reduces
the required full cost by a factor of order ρL/ log(ρL) for the full cost compared to
the simple batching solution. Note that the improvement is huge for large L because
simple batching solutions must dedicate a full stream for each arrival. However, L
cannot grow forever because then ρ would approach zero.

Finally, we present optimal algorithms for the receive-all model that have the
same time complexity bounds as the receive-two model. We show that the full cost
required in an optimal solution in the receive-all model is always at least half the
optimal full cost required in the receive-two model.

1.2. Related research. Several papers (e.g., [15, 13, 3]) proposed various batch-
ing solutions demonstrating the trade-off between the guaranteed startup delay and
the required server bandwidth. The solutions are simple but may cause large startup
delays. The seminal pyramid broadcasting solution [43, 44] was the first paper to
explore the trade-off with two other resources: the receiving bandwidth of clients and
the buffer size of clients. Many researchers were concerned about reducing the buffer
size (see e.g., [1]). However, all of them demonstrated the huge improvement over the
traditional batching solutions.

The skyscraper broadcasting paper [27] showed that the receive-two model al-
ready exploits the dramatic improvement. Researchers also demonstrated the trade-
off between the server bandwidth and the receiving bandwidth [26, 20, 37, 38] in
this framework. All of these papers assumed a static allocation of bandwidth per
transmission. The need for dynamic allocation (or on-line algorithms) motivated the
papers [17, 16] that still used the skyscraper broadcasting model. The patching solu-
tion [25, 21, 8], the tapping solution [9, 10], the piggybacking solution [2, 23, 24, 35],
and the stream merging solution [18, 19] assumed the attractive dynamic allocation
of bandwidth to transmissions. The early papers regarding patching assumed that
clients may merge only to full streams. Later papers regarding patching assumed a
model that is essentially the stream merging model. New research regarding patching
[40] assumed that streams may be fragmented into many segments.

The original stream merging algorithms [18, 19] were on-line and event-driven,
where telling clients which streams to listen to was done at the time of an event.
The specific events were the arrival of a client, the merge time of two streams, and
the termination of a stream. The papers reported good practical results compared to
the optimal algorithm on Poisson arrivals. These event-driven algorithms are quite
different in character from the series of on-line algorithms that appeared subsequently
[5, 14, 11, 12]. Unlike in the event-driven algorithms, in the newer algorithms, a client
learns all the streams it will be receiving from at the time it arrives. The dynamic
Fibonacci tree algorithm of [5] used merge trees and had a competitive analysis. Next,
the dyadic algorithm [14] was proposed and analyzed for its average performance on
Poisson arrivals. Next, an algorithm based on a new version of merge trees called
rectilinear trees was shown to be 5-competitive (full cost no more than 5 times that
of the optimal) [11]. Later these same authors proved that the dyadic algorithm
is 3-competitive [12]. A comparison of the performance of on-line stream merging
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algorithms can be found in [4].
Finally, the following is a partial list of additional papers that address trade-offs

among the four parameters: server bandwidth, delay guaranteed, receiving band-
width, and buffer size: [28, 29, 30, 31, 32, 36, 39, 7, 22, 41, 42].

1.3. Paper organization. In section 2 we define our stream merging model and
prove properties of optimal solutions. Section 3 presents our algorithm in the receive-
two model with unbounded buffers. In section 4, we consider the limited buffer size
case. In section 5, we describe our results for the receive-all model. Finally, we discuss
our results and some related problems in section 6.

2. The stream merging model.
Basic definitions. Assume that time starts at 0 and is slotted into unit sized

intervals. For example, a 2-hour movie could be slotted into time intervals of 15
minutes. Thus, the movie is 8 units long. For a positive integer t, call the slot that
starts at time t− 1 slot t. The length of a full stream is L units. There are n arrival
times for clients denoted by integers 0 ≤ t1 < t2 < · · · < tn. Clients that arrive at
the same time slot are considered as one client. At each arrival time a stream must
be scheduled, although for a given arrival the stream may not run until conclusion
because only an initial segment of the stream is needed by the clients. A client may
receive and buffer data from two streams at the same time while viewing the data it
accumulated in its buffer. The objective of each client is to receive all the L parts
of the stream and to view them without any interruption starting at the time of its
arrival.

At this point we would like to note the following:
• We will show later that there is no gain in scheduling streams except at arrival

times. Hence, it is very useful to use the client arrival time t as both a name
for the client that arrives at time t and for the stream that is initiated at time
t. Moreover, for ease of presentation, in the rest of this section we assume
that only such streams exist.
• Our results hold for the nondiscrete time model as well by letting the time

slots be as small as desired and therefore the value of L as large as needed.
We adopt the discrete time model for ease of presentation.

Merge forests and merge trees. A solution to an arrival sequence is a merge forest
which is a sequence of merge trees. A merge tree is an ordered labeled tree, where each
node is labeled with an arrival time and the stream initiated at that time. The root
is labeled t1 and if a nonroot node is labeled ti, then its parent is labeled tj , where
j < i. This requirement means that a stream can merge only to an earlier stream.
Additionally, if tj is a right sibling of ti then j > i. This requirement means that
the children of a node are ordered by their arrival times. Clearly, in a merge forest
all the arrival times in one tree must precede the arrival times in the successive tree.
We say that an ordered labeled tree has the preorder traversal property if a preorder
traversal of the tree yields the arrival times in order. Any ordered labeled tree with
the preorder traversal property is a merge tree, but not necessarily vice versa. We will
see later in Lemma 2.2 that every optimal merge tree satisfies the preorder traversal
property.

Figure 4 illustrates a merge tree and a concrete diagram showing how merging
would proceed for the given merge tree. In the concrete diagram each arrival is shown
on the time axis and for each arrival a new stream is initiated. The vertical axis shows
the particular unit of the stream that is transmitted. The root stream, t1, is of full
length, while all the other streams are truncated. A stream is truncated because all
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Fig. 4. On the left is a concrete diagram showing the length of each stream with its
merging pattern. On the right is its corresponding merge tree. In this example there are 13
arrivals at times 0, . . . , 12.

the clients that were receiving the stream no longer need any data from it, having
already received the data from some other stream(s). Note that although the merge
tree does not show the stream lengths, it implicitly contains all the information in the
concrete diagram, as will be shown in Lemma 2.1.

For the moment, we postpone the explanation of how we calculate the lengths
of the truncated streams because we need more explanations of how merging works.
Nonetheless, we can now explain that the problem we are addressing is how to find a
solution that minimizes the sum of the lengths of all the streams in the solution. This
is equivalent to minimizing the total number of units (total bandwidth) needed to
serve all the clients. Minimizing the total bandwidth is essentially the same as mini-
mizing the average bandwidth needed to satisfy the requests. The average bandwidth
required to satisfy the requests by the forest F is the sum of the total bandwidth
required by F divided by (tn − t1) which is the time span of the n arrivals. The
equivalence follows since the quantity tn − t1 is independent of the solution.

Receiving procedures. Clients receive and buffer data from various streams ac-
cording to their location in the forest. At any one time a client can receive data from
at most two streams. Informally, a client arriving at time x receives data from all the
nodes on the path from x to the root of the tree. At the same time it receives data
from a node y and its parent until it does not need any more data from the node.
At that point the client moves closer to the root by receiving data from the parent
of y and its parent. We call this transition a merge operation. In the following we
formally define the actions of a client in the merge tree.

Let x0 < x1 < . . . < xk be the path from the root x0 to node xk that is the
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arrival time of a specific client. We call this sequence of length k + 1 the receiving
procedure of the client. Denote by x0, x1, . . . , xk the streams that are scheduled at the
corresponding arrival times. The client obeys the following stream merging rules.

Stage i, 0 ≤ i ≤ k − 1: For xk−i − xk−i−1 time slots from time 2xk − xk−i to time
2xk−xk−i−1 the client receives parts 2xk−2xk−i+1, . . . , 2xk−xk−i−xk−i−1

from stream xk−i and parts 2xk −xk−i−xk−i−1 + 1, . . . , 2xk − 2xk−i−1 from
stream xk−i−1.

Stage k: For L− 2(xk − x0) time slots from time 2xk − x0 to time x0 +L the client
receives parts 2(xk − x0) + 1, . . . , L from stream x0.

This describes how the client arriving at xk receives the entire transmission of the
stream. In particular, part j of the stream is received in stage i = k if 2(xk − x0) < j
and in stage i < k if 2(xk−xk−i) < j ≤ 2(xk−xk−i−1). Notice that if xk−x0 ≤ �L/2�,
then the client is busy receiving data for L − (xk − x0) time slots since in xk − x0

slots it receives data from two streams, and if xk−x0 > �L/2�, then the client is busy
receiving data for xk − x0 time slots since in L− (xk − x0) slots it receives data from
two streams.

Consider the example depicted in Figure 4. Assume a full stream of length 26
and the following stream merging rules for the client that arrives at time t13 = 12. In
this case, we have k = 3 with x0 = 0, x1 = 8, x2 = 11, x3 = 12. From time 12 to time
13 the client receives part 1 from stream x3 and part 2 from stream x2. From time
13 to time 16 the client receives parts 3, . . . , 5 from stream x2 and parts 6, . . . , 8 from
stream x1. From time 16 to time 24 the client receives parts 9, . . . , 16 from stream
x1 and parts 17, . . . , 24 from stream x0. Finally, from time 24 to time 26 the client
receives parts 25, 26 from stream x0.

Length of streams. Given the stream merging rules, we must still determine the
minimum length of each stream so that all the clients requiring the stream receive
their data. In a merge tree T the root is denoted by r(T ). If x is a node in the merge
tree, then we define �T (x) to be its length in T . That is, �T (x) is the minimum length
needed to guarantee that all the clients can receive their data from stream x using the
stream merging rules. For a nonroot node x define pT (x) to be its parent and zT (x)
to be the latest arrival time of a stream in the subtree rooted at x. If x is a leaf, then
zT (x) = x. We drop the subscript T when there is no ambiguity.

We can see from our definition of the stages that the length L of the root stream
must satisfy z−r(T ) ≤ L−1, where z is the last arrival in the merge tree T . Otherwise,
the clients arriving at z do not receive data from the stream initiated at r(T ). The
next lemma shows how to compute the lengths of all the nonroot streams.

Lemma 2.1. Let x �= r(T ) be a nonroot node in a tree T . Then

�(x) = 2z(x)− x− p(x).(1)

In particular, if x is a leaf, then �(x) = x− p(x) since z(x) = x.
Proof. First observe that if clients y′ < y both receive data from x, then client

y receives later parts of the stream x. This implies that the length of the stream
x is dictated by the needs of the client that arrives at time z(x). Let x0, x1, . . . , xk
be the path from the root of the tree T that contains both x and z(x). That is,
x = xi and p(x) = xi−1 for some i > 0 and z(x) = xk. By the stream merging
rule of stage k − i, the client z(x) receives data from the stream x = xi until time
2xk − xi−1 = 2z(x) − p(x). Since z(x) is the last client requiring stream x, then no
more transmission of stream x is required. Since the stream x begins at time x and
ends at time 2z(x)− p(x), its length is 2z(x)− x− p(x).
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In this paper, we will use for �(x) either expression (1) or the following two
alternative expressions:

�(x) = (x− p(x)) + 2(z(x)− x)(2)

= (z(x)− x) + (z(x)− p(x)).(3)

Expression (3) could be viewed as follows. The length of the stream x is composed of
two components. The first component is the time needed for clients arriving at time
x to receive data from stream x before they can merge with stream p(x). The second
component is the time stream x must spend until the clients arriving at time z(x)
merge to p(x).

2.1. The merge cost. Let T be a merge tree. The merge cost of T is defined
as

Mcost(T ) =
∑

x�=r(T )∈T

�(x).

That is, the merge cost of a tree is the sum of all lengths in the tree except the length
of the root of the tree. For an arrival sequence t1, . . . , tn, define the optimal merge
cost for the sequence to be the minimum cost of any merge tree for the sequence. An
optimal merge tree is one that has optimal merge cost. The following technical lemma
justifies restricting our attention to merge trees with the preorder traversal property.

Lemma 2.2. Every optimal merge tree satisfies the preorder traversal property.
Proof. The proof is by induction on the number of arrivals. The lemma is clearly

true for one arrival. Assume we have n > 1 arrivals and the lemma holds for any
number of arrivals less than n. Let T be an optimal merge tree for the arrivals and
let x be the last arrival to merge to the root r of T . Define TR to be the subtree
of T rooted at x and let TL be the subtree of T obtained by removing TR. By the
induction hypothesis we can assume that TR and TL both have the preorder traversal
property. Let w be the last arrival in the subtree TL and let z be the last arrival
in the subtree TR. If w < x, then the entire tree T must already have the preorder
property, and we are done. We need consider only the case where w > x. In this case
we will construct another merge tree T ′ for the same arrivals whose merge cost is less
than T ’s, contradicting the optimality of T .

Define a high tree to be a subtree of TL whose root is greater than x and whose
parent of the root is less than x. Let T ′ be the tree T where all the high trees are
removed from TL and are inserted as children of x. Naturally, the high trees must be
inserted so that all the children of x in T ′ are in arrival order. For all nodes u in T
such that u �= x or u is not an ancestor of a root of a high tree, we have �T (u) = �T ′(u).
For an ancestor u of a root of a high tree we have �T (u) > �T ′(u), and for x we have
�T (x) < �T ′(x). Let p be the parent of the root of the high tree containing w. We
must have p �= r for otherwise x would not be the last arrival to merge to the root
because the root of the high tree containing w is greater than x. We can just examine
the change in length of the nodes p and x. We have

Mcost(T )−Mcost(T ′) ≥ �T (p)− �T ′(p) + �T (x)− �T ′(x).

Let w′ be the largest arrival in the tree rooted at p in T ′. We must have w′ < x;
otherwise, w′ is in some high tree that was removed from TL and made a child of x in
T ′. Since w is the largest arrival in the tree rooted at p in T , we have �T (p)−�T ′(p) =
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2(w − w′) by Lemma 2.1. There are two cases to consider depending on whether
w < z or w > z. If w < z, then �T (x) = �T ′(x) because z is the largest arrival in the
subtree rooted at x in both T and T ′. By definition w > w′; hence,

Mcost(T )−Mcost(T ′) ≥ 2(w − w′) > 0.

If w > z, then �T (x)− �T ′(x) = 2(z − w) by Lemma 2.1. Hence,

Mcost(T )−Mcost(T ′) ≥ 2(w − w′) + 2(z − w) = 2(z − w′) > 0

because w′ < x ≤ z.
Lemma 2.2 allows us to consider only merge trees with the preorder traversal

property. As a consequence, henceforth, we assume that all merge trees have the
preorder traversal property. Hence, a key property of merge trees is that for any
node ti, the subtree rooted at ti contains the interval of arrivals ti, ti+1, . . . , tj , where
z(ti) = tj . Furthermore, tj is the rightmost descendant of ti. As a result, we can
recursively decompose any merge tree into two in a natural way as shown in the
following lemma and seen in Figure 5.

T’’

x

z

T r

T’

Fig. 5. The recursive structure of a merge tree T with root r. The last arrival to merge
directly with r is x. All the arrivals before x are in T ′ and all the arrivals after x are in T ′′

and z is the last arrival.

Lemma 2.3. Let T be a merge tree with root r and last stream z and let x be the
last stream to merge to the root of T .

Mcost(T ) = Mcost(T ′) + Mcost(T ′′) + 2z − x− r,(4)

where T ′ is the subtree of all arrivals before x including r and T ′′ is the subtree of all
arrivals after and including x.

Proof. The length of any node in T ′ and T ′′ is the same as its length in T .
Since the root of T ′ is the root of T , it follows that x is the only node in Mcost(T )
whose length is not included in Mcost(T ′) or Mcost(T ′′). The lemma follows, since
by Lemma 2.1 the length of x is 2z(x)− x− p(x) = 2z − x− r.

We now prove that there is no gain in broadcasting a prefix of the full stream if
there is no arrival for it. That is, an optimal merge tree does not contain a node that
represents a prefix of the stream if this prefix does not start at ti for some 1 ≤ i ≤ n.
We first prove a lemma that shows that adding nodes to a merge tree always increases
the merge cost.

Lemma 2.4. Let T be a merge tree and let x ∈ T be one of its nodes. Then there
exists a merge tree T ′ on the nodes T − {x} such that Mcost(T ′) < Mcost(T ).
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Proof. Assume first that x is a leaf. Then let T ′ be T without x. We get that
Mcost(T ) ≥ Mcost(T ′) + �T (x) and therefore Mcost(T ′) < Mcost(T ). Let x be a
nonleaf node of T and let w be its leftmost child in T . The first modification is for
node w. If x is not the root of T , then let the parent of x in T be the parent of w
in T ′. Otherwise, make w the root of T ′. The second modification is for the rest of
the children of x in T . Make all of them children of w in T ′ and add them after w’s
own children, preserving their original order in T . The rest of the nodes maintain in
T ′ their parent-child relationship from T . By (1),

�T (v) = �T ′(v) for pT (v) �= x.(5)

That is, the length of any node v that is not a child of x in T remains the same in T ′

because there is no change in p(v) and z(v). If v �= w is a child of x, then (1) implies
that

�T (v)− �T ′(v) = w − x > 0 for v �= w and pT (v) = x,(6)

since w is a later arrival than x. As for w, there are two cases to consider depending
on whether w is the root of T ′ or not. If w is the root of T ′, then x is the root of
T . Hence, �T (x) is not counted in Mcost(T ) and �T ′(w) is not counted in Mcost(T ′).
Hence, we have by inequalities (5) and (6)

Mcost(T )−Mcost(T ′) = �T (w) +
∑

(v �=w)∧(pT (v)=x)

(�T (v)− �T ′(v)) > 0.

If w is not the root of T ′, then we might have �T ′(w) > �T (w). However, this is more
than compensated for by the inequality

�T (x) > �T ′(w).(7)

To see inequality (7), note that zT (x) = zT ′(w) and that pT (x) = pT ′(w); hence by
(1), �T (x)−�T ′(w) = w−x > 0. By combining inequalities (5), (6), and (7) we obtain
the following:

Mcost(T )−Mcost(T ′) = �T (x)+�T (w)−�T ′(w)+
∑

(v �=w)∧(pT (v)=x)

(�T (v)−�T ′(v)) > 0,

which is our desired result.
Lemma 2.5. For arrivals t1, t2, . . . , tn every node (stream) x in an optimal merge

tree starts at time ti for some 1 ≤ i ≤ n.
Proof. Assume to the contrary that there exists a stream x that starts at time t

that is not one of the n arrival times t1, . . . , tn. By definition, no client needs stream
x. Hence, by Lemma 2.4, we could omit node x from T to get a tree T ′ without x,
whose merge cost is smaller than the merge cost of T and is a contradiction to the
optimality of T .

Remark. Optimal merge trees also give a lower bound on the bandwidth for the
more dynamic event-driven algorithms [18, 19]. A client’s receiving procedure, which
streams it listens to and when, is determined, in part, by future arrivals. Nonetheless,
in the end, the final receiving pattern of a client forms a path in a merge tree. At
any point in time only a set of subtrees of the final merge tree is known. Each root of
a subtree represents an active stream at that time. When a merge event occurs, the
root of some subtree becomes the child of some root in another subtree.
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2.2. The full cost. Let F be composed of s merge trees T1, . . . , Ts. The full
cost of F is defined as

Fcost(F ) = s · L+
∑

1≤i≤s

Mcost(Ti).

The above definition is a bit problematic since in the way we define the merge cost
it could be the case that a length of a stream is L or larger. Consider the following
example. Suppose that the root arrives at time 0 and there are two additional arrivals
at times L − 2 and L − 1. In one optimal merge tree the third arrival first merges
with the second arrival and then both merge with the root; that is, p(L− 1) = L− 2
and p(L− 2) = 0. The cost of this tree is L for the root, L for the second arrival, and
1 for the third arrival for a total cost of 2L+ 1. It is clear that this single merge tree
can be considered as a merge forest of two merge trees, the first with one arrival, 0,
and the second with two, L− 2 and L− 1. A more serious problem is exposed by the
following example where the arrival times are 0, L − 3, and L − 1. In this case the
definition of a merge tree would allow p(L− 1) = L− 3 and p(L− 3) = 0. In this case
the full cost of the merge tree is 2L + 3. Length L for the root 0, length L + 1 for
L− 3, and length 2 for L− 1. We have �(L− 3) greater than L. However, this merge
tree is not an optimal merge forest for these three arrivals. The optimal merge forest
has two trees, one with root 0 and one with root L− 3 for a full cost of 2L+ 2.

Naturally, we cannot allow the length of any stream to be greater than L. To
remedy this problem we define an L-tree to be a merge tree in which the length of
each stream has length less than or equal to L and the length of the root is L. The
first example above is an L-tree, but the second is not. It should be clear that an
L-tree with a nonroot x of length L can be split into two L-trees of the same cost by
simply making x a new root. An L-forest is a merge forest that is composed of L-trees
only. For an arrival sequence t1, . . . , tn and stream length L define the optimal full
cost for the sequence to be the minimum full cost of any L-forest for the sequence.
An optimal L-forest is one that has optimal full cost.

Our strategy for searching for the optimal L-forest is to consider all possible merge
forests as candidates for the optimal. The following lemma shows that this extended
search always yields an L-forest as the optimal.

Lemma 2.6. Any merge forest F that minimizes Fcost(F ) is an L-forest.

Proof. Define the following split operation on trees. Let T be a merge tree on
the arrivals t1, . . . , tn. Let x = ti be a node in the tree. Then the x-split of T creates
two trees: T ′ and T ′′. T ′ is rooted at t1 and contains the arrivals t1, . . . , ti−1 with
the same parent-child relation as in T . T ′′ is rooted at x and contains the arrivals
ti, . . . , tn. The parent relation in T ′′ is defined as follows: Let y = tj for i < j ≤ n
and let w = p(y) be the parent of y in T . If w > x, then w = p(y) in T ′′ as well.
Otherwise, x = p(y) in T ′′.

Let T be a non-L-tree and let x ∈ T be a node whose length is �(x) > L. We
claim that

Fcost(T ′) + Fcost(T ′′) < Fcost(T ).(8)

We prove this claim by showing that the length of each node, other than x, in T ′ or
T ′′ is no more than its length in T . Since the length of x is greater than L in T and
equal to L in T ′′, we are done. There are two cases to consider: (i) The length of all
the nodes that have the same parent in T ′ or T ′′ as they had in T remains the same;
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(ii) By Lemma 2.1, the length of all nodes y such that w = p(y) in T but x = p(y) in
T ′′ is reduced since w < x.

To prove the lemma, let F be a merge forest that minimizes Fcost(F ). If F is not
an L-forest, then there is some merge tree T in F which is not an L-tree. Apply the
above split procedure to this tree to obtain a new merge forest with less cost than F .
Thus, F must be an L-forest.

3. The optimal algorithm. In this section we give efficient algorithms for
finding a merge tree that minimizes the merge cost and for finding a merge forest that
minimizes the full cost. For the merge cost case we assume that the root has length
infinity and that all the arrivals can merge to it. In the full cost case we assume that
the length of a full stream is L. We then search for the best assignment of roots among
the n arrivals. Although some of the assignments may lead to non-L-trees (trees in
which some of the nodes have length greater than L), by Lemma 2.6 we know that
an optimal merge forest is an L-forest.

For the merge cost we present an efficient O(n2) time algorithm improving the
known O(n3) time algorithm (see [2, 19]). The latter algorithm is based on a straight-
forward dynamic programming implementation. Our algorithm implements the dy-
namic programming utilizing the monotonicity property of the recursive definition for
the merge cost. For the full cost we use the optimal solution of the merge cost as a
subroutine. We describe an O(nm) time algorithm where m is the average number of
arrivals in an interval of length L− 1 that begins with an arrival.

3.1. Optimal merge cost. Let t1, t2, . . . , tn be a sequence of arrivals. Define
M(i, j) to be the optimal merge cost for the input sequence ti, . . . , tj . In a dynamic
programming fashion we show how to compute M(i, j). The optimal cost for the
entire sequence is M(1, n). By Lemma 2.3 we can recursively define

M(i, j) = min
i<k≤j

{M(i, k − 1) +M(k, j) + (2tj − tk − ti)}(9)

with the initialization M(i, i) = 0. Using the notation of Lemma 2.3, ti is the root r,
tj is the last arrival z, and we are looking for the optimal last arrival tk, which is x,
that merges to the root. This recursive formulation naturally leads to an O(n3) time
algorithm using dynamic programming. The following theorem shows that this can
be significantly improved.

Theorem 3.1. An optimal merge tree can be computed in time O(n2).
Proof. To reduce the time to compute the optimal merge cost to O(n2) we employ

monotonicity, a classic technique pioneered by Knuth [33, 34]. Define r(i, i) = i and
for i < j

r(i, j) = max {k : M(i, j) = M(i, k − 1) +M(k, j) + 2tj − tk − ti} .

That is, r(i, j) is the last arrival that can merge to the root in some optimal merge
tree for ti, . . . , tj . Monotonicity is the property that for 1 ≤ i < n and 1 < j ≤ n

r(i, j − 1) ≤ r(i, j) ≤ r(i+ 1, j).(10)

We should note that there is nothing special about using the max in the definition of
r(i, j); the min would yield the same inequality (10). Once monotonicity is demon-
strated then the search for the k in (9) can be reduced to r(i+ 1, j)− r(i, j − 1) + 1
possibilities from j − i possibilities. Hence, the sum of the lengths of all the search
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intervals is reduced to
∑

1≤i<n

∑
i<j≤n(r(i + 1, j) − r(i, j − 1) + 1) = O(n2) from∑

1≤i<j≤n(j − i) = O(n3). This yields an O(n2) algorithm.
Fortunately, for our problem we can apply the very elegant method of quadrangle

inequalities, pioneered by Yao [45] and extended by Borchers and Gupta [6], that
leads to a proof of monotonicity. Define h(i, k, j) = 2tj − tk − ti which is the third
term in (9). Borchers and Gupta show that if h satisfies the following two properties,
then monotonicity holds. For i ≤ j < t ≤ k ≤ l and i < s ≤ l,

1. if t ≤ s, then h(i, t, k) − h(j, t, k) + h(j, s, l) − h(i, s, l) ≤ 0 and h(j, s, l) −
h(i, s, l) ≤ 0;

2. if s ≤ t, then h(j, t, l) − h(j, t, k) + h(i, s, k) − h(i, s, l) ≤ 0 and h(i, s, k) −
h(i, s, l) ≤ 0.

In our case, both four-term sums are identically zero, while h(j, s, l) − h(i, s, l) =
ti − tj ≤ 0 and h(i, s, k)− h(i, s, l) = 2(tk − tl) ≤ 0.

As a byproduct of the computation of r(i, j) we can recursively compute the
optimal merge tree using the recursive characterization of Lemma 2.3. We define a
recursive procedure for computing an optimal merge tree for the input ti, . . . , tj as
follows. If i = j, then return the tree with one node labeled ti. Otherwise, recursively
compute optimal merge trees T ′ for the input ti, . . . , tr(i,j)−1 and T ′′ for tr(i,j), . . . , tj ,
then attach the root of T ′′ as an additional last child of the root of T ′ and return
the resulting tree. This procedure is then called for the input t1, . . . , tn to get the
final result. With an elementary data structure, and with r(i, j) already computed
for 1 ≤ i ≤ j ≤ n, the construction of the optimal merge tree can be done in linear
time.

We conclude this subsection with an upper bound on the merge cost of an arrival
sequence t1, t2, . . . , tn. Denote by N = tn− ti the span of the arrivals. We are looking
for an upper bound that depends only on N and n and not on the sequence itself. In
the following theorem we establish an O(N log n) upper bound based on a full binary
merge tree.

Theorem 3.2. The optimal merge cost is O(N log n).
Proof. Using the notation of this subsection, we prove that

M(i, j) ≤ c(tj − ti) log2(j − i+ 1)

by induction on h = j − i, for some constant c ≥ 4. For the rest of the proof we
omit the base 2 from the log function. The theorem follows by choosing i = 1 and
j = n. The claim trivially holds for h = 0. For h = 1 the claim holds for c = 1 since
M(i, i+ 1) = ti+1 − ti. Assume h ≥ 2 and that the claim holds for 1, . . . , h− 1. We
distinguish between the cases of an odd h and an even h. In both cases assume that
j − i = h for some 1 ≤ i < j ≤ n.

An odd h.

M(i, j) ≤M (i, (i+ j − 1)/2) +M ((i+ j + 1)/2, j) + 2tj − t(i+j+1)/2 − ti
≤ c(t(i+j−1)/2 − ti) log ((h+ 1)/2) + c(tj − t(i+j+1)/2) log ((h+ 1)/2) + 2(tj − ti)
≤ c(tj − ti) log ((h+ 1)/2) + 2(tj − ti)
≤ c(tj − ti) log(h+ 1)− (c− 2)(tj − ti)
≤ c(tj − ti) log(h+ 1).

The first inequality is based on (9). The second inequality is by the induction hy-
pothesis and by the fact that t(i+j+1)/2 > ti. The third inequality is valid since
tj − ti ≥ (t(i+j−1)/2) − (ti + tj − t(i+j+1)/2). The fourth inequality is implied since
log((h+ 1)/2) = log(h+ 1)− 1. Finally, the last inequality holds for c ≥ 2.
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An even h.

M(i, j) ≤M (i, (i+ j − 2)/2) +M ((i+ j)/2, j) + 2tj − t(i+j)/2 − ti
≤ c(t(i+j−2)/2 − ti) log (h/2) + c(tj − t(i+j)/2) log ((h+ 2)/2) + 2(tj − ti)
≤ c(tj − ti) log ((h+ 2)/2) + 2(tj − ti)
≤ c(tj − ti) log(h+ 2)− (c− 2)(tj − ti)
≤ c(tj − ti) log(h+ 1) + 0.5c(tj − ti)− (c− 2)(t− j − ti)
≤ c(tj − ti) log(h+ 1)− (0.5c− 2)(t− j − ti)
≤ c(tj − ti) log(h+ 1).

The first inequality is based on (9). The second inequality is by the induction hy-
pothesis and by the fact that t(i+j)/2 > ti. The third inequality is valid since
tj − ti ≥ (t(i+j−1)/2 − ti) + (tj − t(i+j+1)/2) and log((h + 2)/2) ≥ log(h/2). The
fourth inequality is implied since log((h+ 2)/2) = log(h+ 2)− 1. The fifth inequality
is due to the fact that log2(h + 2) ≤ log2(h + 1) + 0.5 for h ≥ 2. Rearranging terms
implies the sixth inequality. Finally, the last inequality holds for c ≥ 4.

3.2. Optimal full cost. The optimal algorithm for full cost uses the optimal
algorithm for merge cost as a subroutine. Let t1, t2, . . . , tn be a sequence of arrivals
and let L be the length of a full stream. We know that a full stream must begin at
t1; then there are two possible cases in an optimal solution. Either all the remaining
streams merge to this first stream or there is a next full stream tk for some k ≤ n. In
the former case, the optimal full cost is simply L + M(1, n). In the latter case, the
optimal full cost is L+M(1, k−1) plus the optimal full cost of the remaining arrivals
tk, . . . , tn. In both cases, the last arrival to merge to the first stream must be within
L− 1 of the first stream. That is, in the former case tn− t1 ≤ L− 1 and in the latter
case tk−1 − t1 ≤ L− 1.

For 1 ≤ i ≤ n, define G(i) to be the optimal full cost for the last n− i+1 arrivals
ti, . . . , tn. By the analysis above, we can define G(n+ 1) = 0 and for 1 ≤ i ≤ n

G(i) = L+ min {M(i, k − 1) +G(k) : i < k ≤ n+ 1 and tk−1 − ti ≤ L− 1} .(11)

The order of computation is G(n+ 1), G(n), . . . , G(1). The optimal full cost is G(1).
This analysis leads us to the following theorem.

Theorem 3.3. An optimal L-forest can be computed in time O(nm) where m
is the average number of arrivals in an interval of length L − 1 that begins with an
arrival.

Proof. We begin by giving an algorithm for computing the optimal full cost and
then show how it yields an algorithm to construct an optimal merge forest. By Lemma
2.6 this optimal merge forest is an L-forest. The optimal full cost algorithm proceeds
in two phases. In the first phase we compute the optimal merge cost M(i, j) for all
i and j such that 0 ≤ tj − ti ≤ L − 1, so that these values can be used to compute
G(i). In the second phase we compute G(i) from i = n down to 1 using (11). Define
mi to be the cardinality of the set {j : 0 ≤ tj − ti ≤ L− 1} and define m to be the
average of the mi’s, that is, m =

∑n
i=1mi/n. The quantity m can be thought of

as the average number of arrivals in an interval of length L − 1 that begins with an
arrival.

We argue that each of the two phases can be computed in O(nm) = O (
∑n

i=1mi)
time. This is mostly a data structure issue because the number of additions and
subtractions in the two phases is bounded by a constant times

∑n
i=1mi. To facilitate
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the computations we define an array A[1..n] of arrays. The array A[i] is indexed from
0 to mi − 1. Ultimately, the array entry A[i][d] will contain M(i, i+ d) for 1 ≤ i ≤ n
and 0 ≤ d < mi. Initially, A[i][0] = 0 and A[i][d] = ∞ for 1 ≤ d < mi. In phase
one, a dynamic program based on (9) can be used to compute the ultimate value of
A[i][d] = M(i, i+ d). Here, a specific order is required for the computation of all the
nm entries in the array A[1..n]. Using the monotonicity property, it can be done in
time O(nm). In phase two, we use the array A to access the value M(i, k − 1) when
it is needed. Since the minimization in (11) ranges over at most mi values, the time
of phase two is bounded by a constant times

∑n
i=1mi. Hence both phases together

run in time O(nm).
We have already seen how to construct an optimal merge tree, so all that is left

is to identify the full streams. This is done inductively using the values G(i) for
1 ≤ i ≤ n that we have already computed. We know that t1 is a full stream. Suppose
that we know the first j ≥ 1 full streams that are indexed f1, f2, . . . , fj . We want to
determine if fj is the last full stream, or that the next full stream is indexed fj+1.
Find the smallest k such that

G(fj) = L+M(fj , k − 1) +G(k),

where fj < k ≤ n + 1 and tk−1 − tfj ≤ L − 1. If k = n + 1, then fj is the last full
stream. If k < n + 1, then the next full stream is indexed fj+1 = k. When we are
done, suppose there are s full streams which start at the arrivals indexed f1, f2, . . . , fs.
We then compute s merge trees where the ith merge tree is for inputs tfi , . . . , tfi+1−1

if i < s and for inputs tfs , . . . , tn if i = s. Given that G(i) for 1 ≤ i ≤ n + 1 and
M(i, j) and r(i, j) for tj− ti ≤ L−1 are already computed, then the time to compute
the sequence f1, f2, . . . , fs and to compute the merge trees rooted at these arrivals is
O(
∑n

i=smfi) which is O(n).
We now compute an upper bound on the full cost of an arrival sequence t1, t2, . . . , tn,

where n ≥ 2. This time we are looking for an upper bound that depends only on
N = tn − t1, n, and L and not on the sequence itself. Define ρ = n/N to be the
density of the n arrivals. We have 0 < ρ ≤ 1. If ρ is near zero, then there are very
few arrivals over the span N , so we would expect the optimal full cost to be O(nL).
On the other hand, if ρ is large, we would expect a lot of merging to occur, reducing
the full cost considerably. This intuition is quantified in the following theorem.

Theorem 3.4. The optimal full cost is O(nL) for any values of n and N . The
optimal full cost is O(N log(ρL)) for ρ ≥ α/L for some positive constant α.

Proof. The first statement of the theorem is true for any solution since in the
worst case each arrival gets a full stream for a total cost of nL. This is optimal if any
two arrivals are more than L apart.

To prove the second statement of the theorem, assume that the optimal full cost
is obtained by the L-forest F that contains s L-trees. Let the cardinalities of these
trees be m1,m2, . . . ,ms, where mi ≥ 1 for 1 ≤ i ≤ s and

∑s
i=1mi = n. It follows

that

Fcost(F ) = sL+
s∑

i=1

Mcost(mi).

By Theorem 3.2 there is a constant c (c = 4 log2 e is sufficient) such that

Fcost(F ) ≤ sL+ cL
s∑

i=1

logemi.
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The convexity of the function loge implies that

Fcost(F ) ≤ sL+ cL

s∑
i=1

loge(n/s) = sL+ csL loge(n/s) = sL(c loge(n/s) + 1).(12)

The expression sL(c loge(n/s) + 1) as a function of s is concave and, by calculus,
achieves a global maximum of ce−1+1/cnL at s = e−1+1/cn.

We now show a natural upper bound on s:

s ≤ 4N

L
.(13)

To see this we argue that there cannot be three full streams in an interval of length
L/2. In such a case, the last arrival of the second tree is less than L/2 slots far from
the root of the first tree. One could save cost by merging the root of the second tree
to the root of the first tree. The worst case happens when every L/4 + 1 slots there
is a new stream.

We conclude the proof of the second statement by letting α = 4e1−1/c and as-
suming that ρ ≥ α/L. It follows that e−1+1/cn ≥ 4N/L. The concavity of the Fcost
as a function of s implies that Fcost(F ) is bounded above when s = 4N/L which is
the maximum value for s by (13). By plugging this value for s into (12) we get

Fcost(F ) ≤ 4N

L
L

(
c loge

n

4N/L
+ 1

)
= O(N log(ρL)).

The statement of Theorem 3.4 seems to be different from the statement of Theo-
rem 3.2. Here the performance depends on L as well. Nevertheless, when ρ is large,
the term ρL, which is close to the average number of arrivals in an interval of length
L, is analogous to n.

We conclude this section by comparing analytically the performance of the tradi-
tional batching with the performance of the optimal full cost using the upper bound
of Theorem 3.4.

Theorem 3.5. There is a positive constant α such that if ρ ≥ α/L, then batching
with stream merging is Ω(ρL/ log(ρL)) better than batching alone.

Proof. Choose α by Theorem 3.4. The cost of batching the n full streams is nL.
Therefore, by Theorem 3.4, the ratio between the performance of batching alone and
batching with stream merging is

Ω

(
nL

N log(ρL)

)
= Ω

(
ρL

log(ρL)

)
.

If ρ < α/L, then the gain is at most a constant factor in using batching with
stream merging over batching alone.

4. Limited buffer size. In this section we show how to adapt our solution to
the case in which each client has a limited buffer size for storing later parts of streams.
Let B be the maximum buffer size. Clients start viewing the stream immediately while
being able to receive data from at most two streams. Therefore, if a client has b parts
in its buffer it must have viewed the first b parts of the stream. Hence, clients never
need a buffer of size more than �L/2�. In this section, we assume that B < �L/2�
and we modify the algorithms accordingly.
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Suppose that arrival x belongs to the merge tree T that is rooted at r < x.
Assume further that T is an L-tree (the length of all nonroot nodes in the tree is
less than or equal to L). Our goal is to calculate b(x), the buffer size required by
clients that arrive at time x. These clients base their receiving procedure only on
earlier arrivals; therefore in calculating b(x), it is enough to consider the merge tree
T without all the arrivals after x. Define T (x) to be this tree; in particular, x is the
last arrival in T (x).

Lemma 4.1. The buffer size required by clients arriving at x in the merge L-tree
T rooted at r is

b(x) = min {x− r, L− (x− r)} .

Proof. We distinguish between the following two cases.
Case 1. Assume 0 < x−r ≤ �L/2�. Let y be the ancestor of x in T (x) (could be x

itself) that is the child of the root r. It follows that x merges to r at time y+�(y) that
is the end time of the stream that was initiated at y. Now, �(y) = (x−y)+(x−r) by (3)
which implies that xmerges to r at time 2x−r. At this time x spent (2x−r)−x = x−r
slots receiving data from two streams and from this time on x receives data from only
one stream. Hence, b(x) = x− r.

Case 2. Assume �L/2� < x − r ≤ L − 1. By the assumption T is an L-tree and
hence the length of all the ancestors of x is strictly less than L. It follows that x
receives the Lth part of the stream from the root and stops buffering after time r+L
which is the end time of the stream initiated at the root. This implies that x buffers
exactly L+ r − x parts of the stream.

The lemma follows since if x − r ≤ �L/2�, then x − r < L − (x − r) and if
�L/2� < x ≤ L− 1, then L− (x− r) < x− r.

We are now ready to describe the optimal algorithm for the full cost assuming
B < �L/2�. Let t1, t2, . . . , tn be the sequence of arrivals. The only change is in the
definition of G(i) in (11). In this equation the search for the minimum value was for
i < k ≤ n+ 1 such that tk−1 − ti ≤ L− 1. In what follows we modify this condition.

Lemma 4.2. For 1 ≤ i ≤ i′ ≤ n, let ti′ be the last arrival that can merge to ti
assuming ti is a root. Then either (i) ti′ − ti ≤ B, or (ii) L− (ti′ − ti) ≤ B and there
are no arrivals tj such that ti +B < tj < ti + L−B.

Proof. Assume first that there exists an arrival tj such that ti+B < tj < ti+L−B.
By Lemma 4.1 it follows that if tj belongs to a tree rooted at ti then its buffer size
must be greater than B. This means that tj must belong to a tree rooted at a later
arrival than ti. Thus, in this case ti′−ti ≤ B. Assume now that there are no arrivals tj
such that ti +B < tj < ti +L−B. The same lemma implies that arrivals in the range
[ti +L−B, ti +L− 1] need buffer size less than or equal to B if they merge to a tree
rooted at ti. Hence, if there exists an arrival tj such that ti +L−B ≤ tj ≤ ti +L− 1,
then L− (ti′ − ti) ≤ B. Otherwise, ti′ − ti ≤ B since arrivals after ti + L− 1 cannot
merge to a tree rooted at ti.

Let ti′ be the last arrival that can belong to a merge L-tree rooted at ti as implied
by Lemma 4.2. Define GB(i) to be the optimal full cost for the last n− i+ 1 arrivals
ti, . . . , tn. We can define GB(n+ 1) = 0 and for 1 ≤ i ≤ n

GB(i) = L+ min {M(i, k − 1) +GB(k) : i < k ≤ n+ 1 and tk−1 ≤ ti′} .(14)

The order of computation is GB(n + 1), GB(n), . . . , GB(1). The optimal full cost is
G(1). The following theorem is a modification of Theorem 3.3.
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Theorem 4.3. An optimal merge forest can be computed in time O(nm) where
m is the average number of arrivals in an interval of length B that begins or ends with
an arrival.

Proof. The proof is almost identical to the proof of Theorem 3.3. The only
change is the definition of m. The O(nm) is true since by Lemma 4.2 the search for
the minimum in computing GB(i) is conducted in at most in two intervals each of
size B.
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Fig. 6. Comparison of bandwidth required for batching, batching in the receive-two model,
and batching in the receive-all model. The figure plots the bandwidth requirement vs. delay
for a 2-hour movie, with Poisson arrivals averaging every 10 seconds.

5. The receive-all model. In this section we consider the receive-all model.
In this model a client is capable of receiving data from all the existing streams.
Surprisingly, the gain is very little compared to the receive-two model. Experimentally
these two models are compared with the traditional batching (receive-one) in Figure 6.
We added batching in the receive-all model to the plot of Figure 3. The figure speaks
for itself. The rest of the section is devoted to demonstrating analytical comparisons
of the full cost. In particular, we show a gain of at most 2. Recall that the gain from
the traditional batching to the receive-two model is Ω(ρL/ log(ρL)) (for ρ ≥ α/L for
some α).

We omit some of the details in the proofs of our claims in this section since
the proofs are very similar to those in the receive-two model. We first prove some
preliminary results as we did in the receive-two model.

In the receive-all model we define merge trees in exactly the same way as the
receive-two model. Without going into detail, if x0, x1, . . . , xk is the path from the
root x0 to node xk that is the arrival time of a specific client, then the client xk can
receive data from all the streams x0, . . . , xk. As in the receive-two model each stream
starts at the beginning and runs continuously until it terminates, perhaps early.

Given a merge tree T and a node x, define �ω(x) to be the minimum length needed
to guarantee that all the clients can receive the stream using the receive-all stream
merging rules.
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Lemma 5.1. Let x �= r(T ) be a nonroot node in a tree T . Then

�ω(x) = z(x)− p(x).(15)

In particular, if x is a leaf, then �(x) = x− p(x) since z(x) = x.
Proof. Let a path from the root r to a leaf y be r = x0, x1, . . . , xk = y. At time

xk the clients arriving at y receive the following parts of the stream: part 1 from xk,
part 1 + (xk − xk−1) from xk−1, part 1 + (xk − xk−2) from xk−2, and in general part
1 + (xk − xi) from xi. In particular they receive part 1 + (xk − x0) from the root.
This means that the stream at xk must last for at least xk − xk−1 slots in order for
the clients arriving at y to receive parts [1, (xk − xk−1)]. Since the only stream that
can provide parts [1 + (xk − xk−1), (xk − xk−2)] to these clients is the one at xk−1,
this stream must last for at least xk − xk−2 slots. In general, since the stream at xi
provides parts [1 + (xk − xi), (xk − xi−1)] to these clients, this stream must last for
at least xk − xi slots.

Now let x be a node in the tree, let p(x) be its parent, and let z(x) be the
node representing the last arrival in the subtree rooted at x. The above arguments
imply that the stream at x provides parts [1 + (z(x)− x), (z(x)− p(x))] to the clients
arriving at z(x). Since a stream is always a prefix of the full transmission, the length
of the stream at x must be at least z(x)− p(x). The proof is completed, since by the
definition of z(x), no other clients require later parts from the stream at x.

Define Mcostω(T ) to be the sum of �ω(x) for all x in T except the root. For
a merge forest F consisting of merge trees T1, . . . , Ts, define Fcostω(F ) = s · L +∑s

i=1 Mcostω(Ti), where L is the length of a full stream. Again we have an elegant
recursive formula for the merge cost.

Lemma 5.2. Let T be a merge tree with root r and last stream z and let x be the
last stream to merge to the root of T . Then we have

Mcostω(T ) = Mcostω(T ′) + Mcostω(T ′′) + (z − r),(16)

where T ′ is the subtree of all arrivals before the last stream to merge to the root of T
and T ′′ is the subtree rooted at the last stream to merge to the root.

Proof. The length of any node in T ′ and T ′′ is the same as its length in T .
Since the root of T ′ is the root of T , it follows that x is the only node in Mcost(T )
whose length is not included in Mcost(T ′) or Mcost(T ′′). The lemma follows, since
by Lemma 5.1 the length of x is z(x)− p(x) = z − r.

We are now ready to compute the merge cost and then the full cost. Let t1, . . . , tn
be a sequence of arrivals. Define Mω(i, j) to be the minimum cost of a merge tree in
the receive-all model for the input sequence ti, . . . , tj . Similar to the way we computed
M(i, j) we can compute Mω(i, j) using the recursive formulation based on (16):

Mω(i, j) = min
i<k≤j

{Mω(i, k − 1) +Mω(k, j)}+ (tj − ti)(17)

with the initialization Mω(i, i) = 0 for 1 ≤ i ≤ n. The optimal cost for the entire
sequence is Mω(1, n). Because tk does not appear as a parameter in (17), we can use
the simpler approach of Yao [45] to show monotonicity. As a result we have an O(n2)
time algorithm for computing an optimal merge tree in the receive-all model.

Equations (9) and (17) allow us to give bounds on the gain in optimal merge cost
that can be achieved by moving to the receive-all model.

Theorem 5.3. For any arrival sequence t1, . . . , tn and 1 ≤ i ≤ j ≤ n
Mω(i, j) ≤M(i, j) ≤ 2Mω(i, j).
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Proof. The proof is by induction on j−i. If j−i = 0, then M(i, j) = Mω(i, j) = 0.
If j − i > 0, then let k and h be such that

M(i, j) = M(i, k − 1) +M(k, j) + 2tj − tk − ti,(18)

Mω(i, j) = Mω(i, h− 1) +Mω(h, j) + tj − ti.(19)

The following proves the lower bound claim of the theorem.

Mω(i, j) ≤Mω(i, k − 1) +Mω(k, j) + tj − ti
≤M(i, k − 1) +M(k, j) + tj − ti
≤M(i, k − 1) +M(k, j) + 2tj − tk − ti
≤M(i, j).

The first inequality follows since Mω(i, j) is a minimization. By the induction hy-
pothesis, we get the second inequality. The third inequality is implied since tj ≥ tk.
Finally, (18) yields the last inequality.

The following proves the upper bound claim of the theorem:

M(i, j) ≤M(i, h− 1) +M(h, j) + 2tj − th − ti
≤ 2Mω(i, h− 1) + 2Mω(h, j) + 2tj − th − ti
≤ 2Mω(i, h− 1) + 2Mω(h, j) + 2(tj − ti)
≤ 2Mω(i, j).

The first inequality follows since M(i, j) is a minimization. By the induction hy-
pothesis, we get the second inequality. The third inequality is implied since th ≥ ti.
Finally, (19) yields the last inequality. In the same way as we did for the receive-
two model, define Gω(i) to be the optimal full cost in the receive-all model for the
sequence ti, . . . tn, the last n− i+ 1 arrivals. We have G(n+ 1) = 0 and for 1 ≤ i ≤ n

Gω(i) = L+ min {Mω(i, k − 1) +Gω(k) : i < k ≤ n+ 1 and tk−1 − ti ≤ L− 1} .(20)

The order of computation is Gω(n + 1), Gω(n), . . . , Gω(1). The optimal full cost is
Gω(1). Using exactly the same technique as we did for the receive-two model, we
achieve an O(nm) algorithm for computing an optimal merge forest in the receive-all
model, where m is the average number of arrivals in a interval of length L − 1 that
begins with an arrival.

We now apply Theorem 5.3 to show the same factor of 2 bound on the optimal
full cost.

Theorem 5.4. For any arrival sequence t1, . . . , tn and 1 ≤ i ≤ n+ 1,

Gω(i) ≤ G(i) ≤ 2Gω(i).

Proof. The proof is by a reverse induction from n + 1 to 1. For n + 1 we have
Gω(n + 1) = G(n + 1) = 0. If i < n + 1, then we proceed in a way similar to the
proof of theorem 5.3, by letting k > i and h > i be such that tk−1 − ti ≤ L − 1,
th−1 − ti ≤ L− 1, and

G(i) = L+M(i, k − 1) +G(k),(21)

Gω(i) = L+Mω(i, h− 1) +Gω(h).(22)
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The following proves the lower bound claim of the theorem:

Gω(i) ≤ L+Mω(i, k − 1) +Gω(k)

≤ L+M(i, k − 1) +G(k)

≤ G(i).

The first inequality follows since Gω(i) is a minimization. The induction hypothesis
and Theorem 5.3 imply the second inequality. The last inequality is by (21).

The following proves the upper bound claim of the theorem:

G(i) ≤ L+M(i, h− 1) +G(h)

≤ 2L+ 2Mω(i, h− 1) + 2Gω(h)

≤ 2Gω(i).

The first inequality follows since G(i) is a minimization. The induction hypoth-
esis, Theorem 5.3, and the fact that L is positive imply the second inequality. The
last inequality is by (22).

The factor of 2 is not at all tight for optimal full cost. For example, if L = 2,
then it can be shown that the optimal full cost in the receive-two model is identical
to the optimal full cost in the receive-all model.

6. Conclusions. In this paper, we addressed the problem of designing efficient
off-line algorithms to compute the optimal stream merging in media-on-demand sys-
tems. In a stream merging system, clients are assigned to receive data from streams
that transmit a popular media where they are capable of receiving data from two
streams simultaneously. When clients arrive, they get a receiving program that in-
structs them from which streams to receive data and when. Their program is inde-
pendent of later arrivals and is simple. Streams are broadcast by the server each time
clients request to view the transmission. However, very few of the streams are full
streams, thus allowing the savings in the total utilized bandwidth per one popular
media. The main advantage of stream merging is its flexibility. With stream merging,
it is easier to allocate channels dynamically to various media based on the current
demand.

The main objective of this paper was to construct an efficient optimal algorithm.
Recall that n is the number of arrivals, L is the length of the full stream, and m is the
average number of arrivals in an interval of length L − 1 that starts with an arrival.
With these parameters, we have an O(nm) optimal algorithm. We also showed how
to modify our algorithm to be optimal even if the buffer of clients is limited in its
size while maintaining the same running time complexity. To obtain these results, we
introduced a new abstract model for the stream merging paradigm. Our merge forest
model captures all the information regarding the system. We first analyze a single
merge tree and then the merge forest itself.

Finally, we considered a stronger model in which clients may receive data from
all the existing streams simultaneously. We showed how our techniques extend to this
model with less effort. We used these results to show that analytically the gain from
the receive-two model to the receive-all model is at most 2, whereas the gain from the
traditional batching to the receive-two model is of order ρL/ log(ρL), where ρ ≤ 1 is
the density of the n arrivals in the time interval between the first and the last arrival
and ρ is large enough. This phenomenon was known experimentally and we support
it with analytical results.
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Abstract. For most scheduling problems the set of machines is fixed initially and remains
unchanged for the duration of the problem. Recently Imreh and Noga proposed adding the concept
of machine cost to scheduling problems and considered the so-called list model problem. For this
problem, we are given a sequence of independent jobs with positive sizes, which must be processed
nonpreemptively on a machine. No machines are initially provided, and when a job is revealed the
algorithm has the option to purchase new machines. The objective is to minimize the sum of the
makespan and cost of machines. In this paper, we first present an online algorithm with a competitive
ratio at most 1.5798, which improves the known upper bound 1.618. Then for a special case where
every job size is no greater than the machine cost, we present an optimal online algorithm with a
competitive ratio 4/3. Last, we present an algorithm with a competitive ratio at most 3/2 for the
semionline problem with known largest size, which improves the known upper bound 1.5309.
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1. Introduction. In the classical parallel identical machine scheduling problem
P |online|Cmax, we are given a sequence J of independent jobs with positive processing
times (sizes) p1, p2, . . . , pn, which must be nonpreemptively scheduled on m parallel
and identical machines with the objective to minimize the makespan Cmax (i.e., the
maximum machine load, where machine load means the total size of jobs assigned to
this machine). Jobs come one by one (online over list), and it requires one to schedule
jobs irrevocably to a machine as soon as they are given, without any knowledge
about jobs that follow later on. There has been a great deal of work on this problem
[1, 2, 3, 5, 6, 7, 8, 12, 14], but the optimal online algorithm is still unknown for m > 3.
In [11], Imreh and Noga proposed a variant of the above problem. The differences are
that (1) no machines are initially provided, (2) when a job is revealed the algorithm
has the option to purchase new machines, and (3) the objective is to minimize the
sum of the makespan and cost of machines. We refer to this problem as the list model.

This problem is quite different from the classical scheduling problems, where
we typically have a fixed number m of machines, the algorithm (scheduler) makes
no decision regarding the machine number nor is it allowed to change the machine
number later, and the provided machines can be utilized without cost. Imreh and
Noga [11] proposed adding the concept of machine cost to the scheduling problem
due to the following main motivation: First, real machines have cost. Second, the
performance of an algorithm on a given input can be highly dependent on the number
of machines. This seems particularly true when considering worst-case measures (such
as competitive analysis). Last, by considering such a variant we may find other
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interesting problems and/or gain insight into the original.
Following [11], He and Cai [9, 4] considered a variant of the list model problem.

They studied the problem in a semionline environment. Here semionline means that
we have partial knowledge of jobs before constructing a schedule, and we still cannot
rearrange any job which has been assigned to machines. If the problem is semionline
with known largest size, then we know the size of the largest job as a priori. If the
problem is semionline with known total size, then we know the sum of sizes of all jobs
in advance. If the problem is semionline with decreasing sizes, then we know that
jobs come in an order of nonincreasing sizes. Note that the semionline problem with
known largest size can be viewed as a relaxation of the problem with decreasing sizes.
These semionline versions were first proposed by different authors when the problem
P ||Cmax was studied [10, 13, 8, 16].

The quality of an online or semionline algorithm A is measured by its competitive
ratio. For any sequence I of jobs, letA(I) denote the corresponding objective value of a
schedule produced by A, and let OPT (I) denote the optimal objective value. Then the
competitive ratio of A is defined as the smallest number c such that A(I) ≤ cOPT (I)
for all sequences. An algorithm with a competitive ratio c is called a c-competitive
algorithm. An online (semionline) scheduling problem has a lower bound ρ if no online
(semionline) algorithm has a competitive ratio smaller than ρ. An online (semionline)
algorithm is called optimal if its competitive ratio matches the lower bound of the
problem.

For the list model problem, Imreh and Noga [11] presented an online (1+
√

5)/2 ≈
1.618-competitive algorithm Aρ while the lower bound was 4/3. If randomization is
allowed, Seiden [15] provided a lower bound 1.06532. For the semionline problem with
known largest size, He and Cai [9] presented an algorithm with a competitive ratio at
most 1.5309 while the lower bound was 4/3. For the semionline problem with known
total size, He and Cai [9] presented an algorithm with a competitive ratio at most 1.414
while the lower bound was 1.161. For the semionline problem with decreasing sizes,
Cai and He [4] presented an algorithm with a competitive ratio 3/2 while the lower
bound was still 4/3. These semionline algorithms are essentially modified from Aρ.

In this paper, we continue to consider the list model problem and its semionline
problem with known largest size. We first present a new online algorithm with a
competitive ratio at most (2

√
6 + 3)/5 ≈ 1.5798, which improves the known upper

bound 1.618. Then for a special case where every job has a size no greater than
the machine cost (called small job), we present an optimal online algorithm with a
competitive ratio 4/3. Last, we present a new two-phase algorithm with a competitive
ratio at most 3/2 for the semionline problem with known largest size, which also
improves the known result. Compared with Aρ, our algorithms apply new strategies
to decide when to purchase machines. In fact, the decision regarding when to purchase
new machines depends on the current makespan, and the current objective value with
respect to the lower bounds of the current optimal value, while Aρ simply depends on
the total size of all arrived jobs.

The paper is organized as follows. Section 2 presents several preliminary results.
Section 3 considers the general case and small job case of the list model problem.
Section 4 deals with the semionline problem with known largest size. Finally section 5
contains some remarks.

2. Preliminaries. Throughout the remainder of the paper, we will use the
following notation. Denote by L = max1,2,...,n{pi} the largest size of all jobs, by

P =
∑n

i=1 pi the total size of all jobs, and by Pk =
∑k

j=1 pj the total size of the first
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k jobs. By normalizing, we assume that the cost of purchasing a machine is 1. If m′

is the number of machines used by an online or semionline algorithm A after all jobs
are assigned, and Cmax is its makespan, then the objective value produced by A is
A(I) = Cmax +m′.

Lemma 2.1 (see [11]). The optimal objective value is at least 2
√
P . Further, if

L ≥ √P , then the optimal objective value is at least L+P/L; or, equivalently, if there
is a job pk such that pk ≥

√
P , then the optimal objective value is at least pk +P/pk.

The following online algorithm Aρ was presented by Imreh and Noga [11] to solve
the list model problem.

Algorithm Aρ. Set ρ = {ρ1, ρ2, ρ3, . . . , ρi, . . . } = {0, 4, 9, 16, . . . , i2, . . . }. When
job pi is revealed Aρ purchases machines (if necessary) so that the current number of
machines j satisfies ρj ≤ Pi < ρj+1. Aρ then assigns job pi to the machine with the
minimum current load.

In [11], Imreh and Noga have shown that Aρ is (1+
√

5)/2-competitive. Lemma 2.2
shows that the ratio can be tightened for a special case.

Lemma 2.2 (see [9]). If L ≤ 3, then Aρ has a competitive ratio 3/2.

Lemma 2.3 (see [11, 9]). Any online algorithm for the problem with small jobs and
any semionline algorithm for the problem with known largest size have a competitive
ratio at least 4/3.

Proof. We show the result by adversary method. Let the largest size be L = 1/N ,
where N is a sufficiently large positive integer. Consider a long sequence of jobs, each
with size L. If an algorithm A never purchases a second machine, then 8N jobs come.

It follows that A(I)
OPT (I) ≥ 8N/N+1

8N/(2N)+2 = 3
2 . So we assume that A purchases a second

machine when job pi arrives. Then no new job comes. If Pi ≤ 2, then in the optimal

schedule all jobs are processed on one machine and A(I)
OPT (I) ≥ Pi−1/N+2

Pi+1 ≥ 4−1/N
3 .

If Pi > 2, then in the optimal schedule all jobs can be split nearly evenly between

two machines and A(I)
OPT (I) ≥ Pi−1/N+2

Pi/2+2 ≥ 4−1/N
3+1/N . Since we choose N to be arbitrarily

large, we obtain the result.

Before going to the main content, we further define some notation. When ana-
lyzing an online or semionline algorithm in the later sections, we use the following:

m = the current number of machines purchased;

m0 = �L�;
pij = the first job which is processed on the jth machine, j = 1, . . . ,m.

Right after the algorithm scheduling job pk, k = 1, 2, . . . , n, we define

sj,k = the current load of the jth machine, j = 1, 2, . . . ,m;

sk = the minimum current machine load, i.e., sk = min {sj,k|j = 1, . . . ,m};
Ck = the current makespan;

zk = the current objective value, i.e., zk = Ck +m;

C1,k = 2
√
Pk, a lower bound of the current optimal objective value;

C2,k = L+ Pk

L , another lower bound of the current optimal objective value, where
L ≥ √Pk.

3. Online algorithms.

3.1. Better online algorithm for general case. This subsection considers the
original list model problem. We present an algorithm H1 with a competitive ratio

at most 2
√

6+3
5 ≈ 1.5798. Compared with Aρ, H1 uses a different strategy to decide

when a new machine is purchased. It always assigns an incoming job to the machine
with minimum current load as long as its new load would be no greater than 2m,
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where m is the current machine number. Otherwise, a new machine is purchased to
process the incoming job. Formally, it can be described as follows.

Algorithm H1.
1. Assign p1 to the first machine. Let k = 2, m = 1.
2. Assign pk to the machine with minimum current load if the new load will be

no more than 2m, and go to 4. Else go to 3.
3. Assign pk to a new machine, m = m+ 1, go to 4.
4. Let k = k + 1, if k > n, stop. Otherwise, return 2.

Lemma 3.1. Let m ≥ 2 be the number of machines currently purchased by H1. If
the current minimum machine load satisfies sk ≤ m− 1, then the sum of the current
machine loads is

m∑
j=1

sj,k ≥ s2k − (m− 1)sk + (m− 1)m.

Proof. Obviously for any 1 ≤ j < l ≤ m, we have that

sj,k + sl,k ≥ sk + pil > 2 (l − 1)

by the algorithm rule. Consider the following parametric nonlinear program with
parameter sk ∈ [0,m− 1]:

min u(sk) =

m∑
j=1

sj,k

s.t. sj,k + sl,k ≥ 2 (l − 1) , 1 ≤ j < l ≤ m,
min {sj,k : 1 ≤ j ≤ m} = sk.

Assume that i ≤ sk < i + 1 ≤ m − 1 for some integer i ≥ 0. Then it is easy to see
that its optimal solution is

sj,k =

{
sk if 1 ≤ j ≤ i+ 1,
2(j − 1)− sk if i+ 1 < j ≤ m,

and its minimum value is

u∗(sk) =

{
s2k − (m− 1)sk + (m− 1)m if sk = i,
(m+ i)(m− i− 1)−msk + 2(i+ 1)sk if i < sk < i+ 1.

We define the functions f1(sk) = s2k− (m−1)sk +(m−1)m on the interval [0,m−1],
and f2(sk) = (m+i)(m−i−1)−msk+2(i+1)sk on [i, i+1] for each i = 0, 1, . . . ,m−2.
Since the function f2(sk) is linear on the interval [i, i + 1], and f2(sk) = f1(sk) at
sk = 0, 1, . . . ,m− 1, hence the function u∗(sk) is continuous and piecewise linear on
[0,m− 1]. Further, the function f1(sk) is convex on [0,m− 1], and we conclude that
u∗(sk) ≥ f1(sk) for any 0 ≤ sk ≤ m − 1. Therefore we know that u(sk) ≥ u∗(sk) ≥
f1(sk) = s2k − (m− 1)sk + (m− 1)m for any 0 ≤ sk ≤ m− 1.

Corollary 3.2. Under the same conditions as those of Lemma 3.1, we have∑m
j=1 sj,k ≥ 3

4 (m− 1)2 + (m− 1) > 3
4m(m− 1).

Proof. The function s2k − (m− 1)sk + (m− 1)m attains its minimum value when
sk = m−1

2 .
Remark 3.1. Let m ≥ 2 be the number of machines currently purchased by H1.

If the minimum current machine load satisfies sk ≥ m− 1, then trivially
∑m

j=1 sj,k ≥
(m− 1)m.
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To prove the competitive ratio of H1, we introduce more notation. For any l ≥ 1,
denote ul = max{pi|1 ≤ i ≤ l}, and define

C ′
l =

{
C1,l if ul ≤

√
Pl,

C2,l if ul >
√
Pl.

It is clear that C ′
l ≥ C1,l for any l ≥ 1.

Lemma 3.3. C ′
l is increasing with regard to l, i.e., C ′

1 ≤ C ′
2 ≤ · · · ≤ C ′

n.
Proof. If C ′

l−1 = C1,l−1, then trivially C ′
l ≥ C1,l > C1,l−1 = C ′

l−1. Hence

suppose that C ′
l−1 = C2,l−1. If further C ′

l = C2,l, then from ul−1 ≥
√
Pl−1, we have

C ′
l = C2,l = Pl

ul
+ul >

Pl−1

ul
+ul ≥ Pl−1

ul−1
+ul−1 = C2,l−1 = C ′

l−1. Otherwise C ′
l = C1,l,

and we know that u2
l−1 > Pl−1 and u2

l ≤ Pl. It follows that C ′
l = C1,l = 2

√
Pl ≥

2ul ≥ ul−1 + ul−1 > ul−1 + Pl−1

ul−1
= C2,l−1 = C ′

l−1. We are done.

Theorem 3.4. The competitive ratio of H1 is at most α
.
= 2

√
6+3
5 ≈ 1.5798.

Proof. We show by induction that for every l = 1, 2, . . . , n, zl ≤ αC ′
l holds. It

follows that the competitive ratio of H1 is at most α.
It is clear that the result is true for l = 1. Assuming that the result is true for

l = k − 1, two cases are considered according to the assignment of pk.
Case 1. pk is assigned to one of m machines by step 2. If the makespan is

unchanged (i.e., Ck = Ck−1), then zk = zk−1 and thus the result trivially holds
for l = k by the induction assumption and Lemma 3.3. Hence we assume that the
makespan is increased and equal to Ck = sk−1 + pk, and

zk = Ck +m = sk−1 + pk +m.(3.1)

We distinguish three subcases according to the value of m.
Subcase 1.1. m = 1 or m = 2. From αC ′

k ≥ αC1,k ≥ 3
√
Pk and (3.1), it suffices

to show

sk−1 + pk +m ≤ 3
√
Pk.(3.2)

Ifm = 1, then by the algorithm rule we have sk−1+pk ≤ 2m = 2. If sk−1+pk < 1,
then zk < 2, from which it follows that in the optimal schedule there is also only one
machine and thus the schedule yielded by H1 is optimal. If 1 ≤ sk−1 + pk ≤ 2, then
trivially sk−1 + pk + 1 ≤ 3

√
sk−1 + pk holds, and we thus get (3.2).

If m = 2, then by the algorithm rule we have sk−1 + pk ≤ 4. On the other hand,
right after pi2 is assigned to the second machine, the sum of all job sizes is more
than 2; thus the makespan sk−1 + pk must be greater than 1. 1 < sk−1 + pk ≤ 4
implies sk−1 +pk +2 ≤ 3

√
sk−1 + pk, and thus sk−1 +pk +2 ≤ 3

√
sk−1 + pk ≤ 3

√
Pk.

Subcase 1.2. 2 < m ≤ sk−1 + 1. If further m ≤ sk−1, then trivially Pk ≥
sk−1m + pk ≥ m2, and thus zk = sk−1 + pk + m ≤ 2m + m ≤ 3

√
Pk = 3

2C1,k. The
desired competitive ratio is obtained; hence we assume that m − 1 ≤ sk−1 < m. If
pk > sk−1 + 1, then Pk ≥ sk−1m+ pk ≥ (m− 1)m+m = m2, and again zk ≤ 3

2C1,k.
If pk ≤ sk−1, then by (3.1) and 1

4 ≤ sk−1

m ≤ 1, we have that zk ≤ 2sk−1 + m ≤
3
√
sk−1m ≤ 3

√
Pk = 3

2C1,k. Last, if sk−1 < pk ≤ sk−1 + 1, then similarly zk ≤
2sk−1 + 1 +m ≤ 3

√
sk−1m+ sk−1 ≤ 3

√
Pk = 3

2C1,k since 1
4 ≤ sk−1

m+1 ≤ 1.
Subcase 1.3. m > sk−1 + 1. If pk ≤ m − sk−1, then zk ≤ 2m by (3.1). By

Corollary 3.2, we have Pk ≥ 3
4m (m− 1). m > 2 implies 2m ≤ 3

√
3
4m (m− 1), and

we thus get zk ≤ 3
2C1,k. Hence we assume that

pk > m− sk−1.(3.3)
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Combining (3.3) with Lemma 3.1, we have

Pk =

m∑
j=1

sj,k + pk ≥ s2k−1 − (m− 1) sk−1 + (m− 1)m+ pk(3.4)

> s2k−1 −msk−1 +m2.

If pk ≤
√
Pk, then by (3.1) and (3.4), we have

zk ≤
√
Pk + sk−1 +m ≤

√
Pk + 2

√
s2k−1 −msk−1 +m2 < 3

√
Pk =

3

2
C1,k.

Hence we assume that pk ≥
√
Pk. It follows from Lemma 2.1 that pk + Pk

pk
(≤ C ′

k) is a
valid lower bound of the current optimal objective value. In order to get the desired
competitive ratio, from (3.1) and (3.4), it suffices to prove

sk−1 + pk +m− α
(
pk +

s2k−1 −msk−1 +m2

pk

)
≤ 0.(3.5)

To see it, we first consider the case of sk−1

m > 3
5 . Since α ≤ 8

5 , sk−1 + pk ≤ 2m, and
pk

2 ≥ Pk > s2k−1 −msk−1 + m2, the derivative of the left side of (3.5) with respect
to pk is

1− α
(

1− s2k−1 −msk−1 +m2

pk2

)
> 1− 8

5

(
1− s2k−1 −msk−1 +m2

(2m− sk−1)2

)
> 0,

where the last inequality is equivalent to 5( sk−1

m )2 + 4 sk−1

m − 4 > 0, which is trivially
true due to sk−1

m > 3
5 . Hence we only need to show (3.5) is valid when pk = 2m−sk−1.

Substituting pk = 2m−sk−1 into (3.5), we have 3m ≤ α(2m−sk−1+
s2k−1−msk−1+m2

2m−sk−1

)
,

i.e.,

3 ≤ α
(

2− sk−1

m
+

( sk−1

m )2 − sk−1

m + 1

2− sk−1

m

)
.(3.6)

Note that the minimum value of the function

f3

(sk−1

m

)
.
= 2− sk−1

m
+

( sk−1

m )2 − sk−1

m + 1

2− sk−1

m

is achieved at sk−1

m = 2−√3/2, and f3(2−
√

3/2) = 4
√

3/2−3. Since α·(4√3/2−3) =
3, we are done.

Now we assume that sk−1

m ≤ 3
5 . The derivative of the left side of (3.5) with

respect to sk−1 is 1− α 2sk−1−m
pk

. If 1− α 2sk−1−m
pk

≤ 0, then from sk−1

m ≤ 3
5 , we have

sk−1 + pk ≤ sk−1 + α (2sk−1 −m) < 3
5m + 8

5 · 1
5m < m, which contradicts (3.3). In

the opposite case this derivative is positive, thus we only need to show that (3.5) is
valid when sk−1 = 3

5m. That is to say,

pk +
3

5
m+m ≤ α

(
pk +

(
9
25 − 3

5 + 1
)
m2

pk

)
.(3.7)

In fact, the right side of (3.7) equals pk + (α− 1)pk + 19αm2

25pk
≥ pk + 2

√
19(α−1)α

25 m >

pk + 8
5m, and thus the proof of Case 1 is finished.
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Case 2. pk is the first job assigned to the mth machine (i.e., pk is assigned by
step 3). Hence we have m ≥ 2 and sj,k−1 +pk > 2(m−1) for all 1 ≤ j ≤ m−1. From
the algorithm rule, we know that sj,k−1 ≤ max{uk, 2(m− 1)} for all 1 ≤ j ≤ m− 1.
We obtain the following basic propositions which are useful in obtaining the desired
competitive ratio for Case 2.

We first show that uk ≤ 2(m − 1). Otherwise, we suppose that uk > 2(m − 1).
Note that the makespan is no greater than uk right before assigning pk; we have
Pk =

∑m−1
j=1 sj,k−1 + pk ≤ (m − 1)uk + uk = ukm ≤ uk · 2(m − 1) < u2

k. It follows
that C ′

k = C2,k. Furthermore, we get that zk ≤ max{pk, 2(m− 1)}+m ≤ uk +m <
3
2 (uk + 1) ≤ 3

2

(
uk + Pk

uk

)
, and we are done. Hence we have uk ≤ 2(m− 1). It follows

that

Ck−1 = max {sj,k−1 | 1 ≤ j ≤ m− 1} ≤ 2(m− 1).(3.8)

Next we show that Pk < (m − 2
3 )2 and pk > m − 2

3 . If Pk ≥ (m − 2
3 )2, then

we have zk ≤ max{uk, 2(m − 1)} + m ≤ 3m − 2 ≤ 3
√
Pk = 3

2C1,k, and the desired
competitive ratio is proved. Hence we assume that Pk < (m − 2

3 )2 in the following.
If pk ≤ m− 2

3 , considering that sj,k−1 > 2(m− 1)− pk for all 1 ≤ j ≤ m− 1, we have
Pk > (m−1) (2(m− 1)− pk)+pk ≥ 2(m−1)2− (m− 2)

(
m− 2

3

)
> (m− 2

3 )2. Hence
we can assume that pk > m− 2

3 .
Pk < (m− 2

3 )2 and pk > m− 2
3 , implying that pk ≥

√
Pk; hence we have C ′

k = C2,k.
Now we show the result by considering three subcases according to the values of Ck−1

and pk.
Subcase 2.1. Ck−1 ≤ pk. In this subcase pk is the largest job, and zk = pk +m.

By Corollary 3.2 and Remark 3.1, we know that Pk >
3
4 (m− 1)m; hence it suffices to

prove pk +m ≤ 3
2

(
pk +

3
4 (m−1)m

pk

)
, i.e.,

m ≤ pk
2

+
9(m− 1)m

8pk
.(3.9)

In fact, the right-hand side of (3.9) is at least 2
√

9
16 (m− 1)m = 3

2

√
(m− 1)m ≥ m;

we thus finish Subcase 2.1.
Subcase 2.2. Ck−1 > pk and uk ≥ 3

2 (m− 1). Similarly we have Pk >
3
4 (m− 1)2 +

m − 1 by Corollary 3.2 and Remark 3.1. Combining it with (3.8), we only need to
show that

zk = Ck−1 +m ≤ 2(m− 1) +m ≤ 3

2

(
uk +

3
4 (m− 1)2 +m− 1

uk

)
.(3.10)

Inequality (3.10) is equivalent to 0 ≤ 12uk
2 − 8(3m− 2)uk + 9m2 − 6m− 3, i.e.,(

uk − 3(m− 1)

2

)(
uk − 3m+ 1

6

)
≥ 0.(3.11)

Since uk ≥ 3
2 (m− 1), (3.11) is obviously true.

Subcase 2.3. Ck−1 > pk and uk <
3
2 (m − 1). For this subcase, we need to apply

the induction assumption.
If zk−1 ≤ αC1,k−1, i.e., Ck−1 + m − 1 ≤ 2α

√
Pk−1, we show that zk ≤ αC1,k

also holds, i.e., Ck−1 + m ≤ 2α
√
Pk = 2α

√
Pk−1 + pk. It suffices to show that

2α
√
Pk−1 + pk ≥ 2α

√
Pk−1 + 1, i.e.,

pk ≥ 1

α

√
Pk−1 +

1

4α2
.(3.12)
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In fact, by applying pk > m − 2
3 and Pk < (m − 2

3 )2, we have pk > m − 2
3 =

1
α

(
m− 2

3

)
+ (1− 1

α )(m− 2
3 ) > 1

α

√
Pk + 1

4α2 >
1
α

√
Pk−1 + 1

4α2 .

If zk−1 ≤ αC2,k−1, i.e., Ck−1 + m − 1 ≤ α
(
uk−1 + Pk−1

uk−1

)
, then we have uk−1 ≥√

Pk−1 by the induction assumption. It follows that α
(
uk−1 + Pk−1

uk−1

) ≤ α(uk + Pk−1

uk

)
.

Hence we only need to show

α
Pk−1 + pk

uk
≥ αPk−1

uk
+ 1(3.13)

to get zk = Ck−1 +m ≤ α(uk + Pk−1+pk

uk

)
= αC2,k. Inequality (3.13) is equivalent to

pk ≥ 1
αuk, which immediately follows from pk > m− 2

3 and uk <
3
2 (m− 1).

In summary, we have shown that the result is true for l = k. We thus get
Theorem 3.4.

3.2. Optimal online algorithm for small job case. In this subsection we
assume that all jobs have sizes no greater than 1, i.e., L ≤ 1. We present an online
algorithm which is optimal with a competitive ratio 4/3. Note that by considering the
job sequence p1 = · · · = p4N = 1/N , where N is a sufficiently large positive integer,
we get Aρ(I)/OPT (I) = (6−1/N)/4 −→ 3/2. It concludes that the competitive ratio
of Aρ cannot be smaller than 3/2 for small job case.

Algorithm H2. The algorithm works in the same way as H1 except that step 2
is defined as follows:

2. Assign pk to the machine with minimum current load if the new load will be
no more than m+ 1, and go to 4. Else go to 3.

Lemma 3.5. Let m ≥ 2 be an integer, and let b satisfy m < b ≤ m+ 1.

(1) Define the function f4 (i) = (m−1)2+1
i + i for any integer i ≥ 1. Then the

minimum value of f4(i) is 2(m− 1) + 1
m−1 .

(2) Define the function f5 (i) = m(b−1)
i + i for any integer i ≥ 1. Then the

minimum value of f5(i) is b+m− 1.

Proof. (1) Define g (x) = (m−1)2+1
x + x for any real number x ≥ 1. Then

g′ (x) =
1

x2

(
x2 − ((m− 1)2 + 1

))
=
x+

√
(m− 1)2 + 1

x2

(
x−

√
(m− 1)2 + 1

)
,

g′′ (x) =
2((m− 1)2 + 1)

x3
> 0.

Therefore the function g(x) achieves its minimum value at x =
√

(m− 1)2 + 1, and

the function f4(i) achieves its minimum at i =
⌊√

(m− 1)2 + 1
⌋

= m − 1 or i =⌈√
(m− 1)2 + 1

⌉
= m. On the other hand, it is easy to see that f4 (m− 1) =

(m−1)2+1
m−1 +m− 1 ≤ f4 (m) = (m−1)2+1

m +m for any given m ≥ 2. We thus get (1).
(2) It can be proved similarly that the minimum value is achieved at i = m.
Theorem 3.6. The competitive ratio of H2 is 4/3 if every job has size no greater

than 1, and thus it is optimal.
Proof. Analogous to the proof of Theorem 3.4, we show the result by distinguish-

ing the value of m′, the number of machines purchased by H2 right after scheduling
all jobs, and the assignment of the last job pn.

Case 1. m′ = 1. Then by the algorithm rule, we have Cmax = P =
∑n

i=1 pi ≤ 2,
and H2(I) = Cmax +m′ ≤ 3. It follows that there are at most two machines in the
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optimal schedule. If there is one machine in the optimal schedule, then obviously H2
yields the optimal schedule. Otherwise, OPT (I) ≥ P

2 + 2 by averaging argument. It

is straightforward to see that H2(I) = P + 1 ≤ 4
3

(
P
2 + 2

) ≤ 4
3OPT (I).

Case 2. m′ ≥ 2 and pn is the first job assigned to the m′th machine (i.e., pn is
assigned by step 3). Then right before scheduling pn, there are exactlym′−1 machines.
By the algorithm rule, we have sj,n−1 + pn > m′ for every j = 1, . . . ,m′− 1. Thus we
get

m′−1∑
j=1

(sj,n−1 + pn) =

m′−1∑
j=1

sj,n−1 + (m′ − 1)pn > m′(m′ − 1).

Combining it with pn ≤ 1, we obtain

P =

m′−1∑
j=1

sj,n−1 + pn > m′(m′ − 1)− (m′ − 2) pn

≥ m′(m′ − 1)− (m′ − 2) = (m′ − 1)2 + 1.

By averaging argument, we have OPT (I) ≥ mini≥1

{ (m′−1)2+1
i + i

}
, where i is the

possible machine number in the optimal schedule. By Lemma 3.5(1), we get that
OPT (I) ≥ 2(m′− 1) + 1

m′−1 . On the other hand, it is clear that Cmax ≤ m′ from the

algorithm rule; thus H2(I) = Cmax +m′ ≤ 2m′. For every m′ ≥ 2, 2m′−3
2m′2−4m′+3 ≤ 4

3
holds trivially. Therefore we have

H2(I)

OPT (I)
≤ 2m′

2(m′ − 1) + 1
m′−1

=
2 (m′ − 1)m′

2(m′ − 1)2 + 1
= 1 +

2m′ − 3

2m′2 − 4m′ + 3
≤ 4

3
.

Case 3. m′ ≥ 2 and pn is assigned to one of m′ machines by step 2. It is clear that
the final makespan Cmax ≤ m′ + 1 and H2(I) = Cmax + m′. If further Cmax ≤ m′,
we have H2(I) ≤ 2m′. Assume that the m′th machine is purchased when assigning
job pk. By the same argument as that in Case 2, we get Pn ≥ Pk ≥ (m′ − 1)2 + 1,
and thus H2(I)/OPT (I) ≤ 4/3.

Hence we can assume that m′ < Cmax ≤ m′ + 1. Since pn is assigned to the
machine with minimum current load, the load of every machine is at least Cmax−pn ≥
Cmax−1; thus the sum of all sizes P ≥ (m′−1) (Cmax − 1)+Cmax > m′ (Cmax − 1). It

follows that OPT (I) ≥ mini≥1

{m′(Cmax−1)
i + i

}
. By Lemma 3.5(2), we get OPT (I) ≥

Cmax +m′ − 1. Hence we get that

H2(I)

OPT (I)
≤ Cmax +m′

Cmax +m′ − 1
= 1 +

1

Cmax +m′ − 1
≤ 4

3
,

where the last inequality follows from m′ ≥ 2 and Cmax > m′ ≥ 2.

Therefore we have shown that H2 is 4/3-competitive, and the optimality is ob-
tained directly from Lemma 2.3.

Remark 3.2. H2 also works for the case 1 < L ≤ 3 by simple modification as
follows: The algorithm is the same as H2 except that in step 2, m + 1 is replaced
by m+ L. It can be shown similarly that the competitive ratio of modified H2 is no
greater than 3/2 for the problem where L is known in advance and 1 < L ≤ 3.
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4. Semionline algorithm for the problem with known largest size. In
this section, we assume that jobs arrive one by one and the largest size L of all
jobs is known in advance. As we have seen in previous sections, if L ≤ 1, H2 is
4/3-competitive, and if 1 < L ≤ 3, both Aρ and modified H2 have a competitive ratio
at most 3/2; therefore we assume that L > 3 in the remainder of the section. We
present a two-phase algorithm with a competitive ratio at most 3/2, which uses new
strategies to purchase machines in two phases.

Algorithm H3.
Phase 1.

1.1 Let k = 1, m = 1.
1.2 Assign pk to the machine with minimum current load if the new load will be

no more than 3
2L, and go to 1.4. Else go to 1.3.

1.3 Assign pk to a new machine, and let m = m+ 1. If m = m0, then go to 2.6
in Phase 2, else go to 1.4.

1.4 Let k = k + 1, if k > n, stop. Otherwise, go to 1.2.
Phase 2.

2.1 Compute the current value C1,k = 2
√
Pk, and the minimum current machine

load sk−1.
2.2 If sk−1 + pk is not greater than the current makespan, then assign pk to the

machine with minimum current load, go to 2.6.
2.3 If Pk > m2, then assign pk to a new machine, let m = m+ 1, go to 2.6.
2.4 If sk−1 + pk +m > 3

2C1,k, then assign pk to a new machine, let m = m+ 1,
go to 2.6.

2.5 Else assign pk to the machine with minimum current load, go to 2.6.
2.6 Let k = k + 1. If k > n, stop. Else return 2.1.
Theorem 4.1. The competitive ratio of H3 is at most 3/2.
We prove Theorem 4.1 step by step by showing a series of technical lemmas in

the following. We first consider Phase 1.
Lemma 4.2. For every m ≤ m0, we have Pim > 3

4mL.
Proof. It is clear that Pim =

∑m
l=1 sl,im . By the rule of Phase 1, we know that

sl,im + sj,im ≥ sim + pij >
3
2L for all 1 ≤ l < j ≤ m. Summing up these inequalities,

we get Pim > 3
4mL.

Lemma 4.3. If H3 stops at Phase 1, then the competitive ratio is no greater
than 3/2.

Proof. Suppose a total of m′ ≤ m0 machines are purchased by H3. Then by
Lemma 4.2, we know P ≥ Pim′ >

3
4m

′L. If P ≤ L2, then by Lemma 2.1 we get

3

2
OPT (I) ≥ 3

2
C2,n =

3

2

(
L+

P

L

)
>

3

2

(
L+

3

4
m′
)

(4.1)

=
3

2
L+

9

8
m′ > Cmax +m′ = H3(I).

If P > L2, then again by Lemma 2.1 we have

3

2
OPT (I) ≥ 3

2
C1,n ≥ 3

√
L2 =

3

2
L+

3

2
L ≥ Cmax +m′ = H3(I),(4.2)

where the last inequality follows from m′ ≤ m0 = �L� and L > 3.
In the remainder of this section, we focus on analyzing Phase 2. We are going to

prove zk ≤ 3
2C1,k for every k = im0 , . . . , n, from which it follows that the competitive

ratio of H3 is at most 3/2. Note that at the beginning of Phase 2 we have purchased
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exactly m0 machines, there is only one job pim0
assigned to the m0th machine, the to-

tal size of all arrived jobs Qm0 is between 3
4m0L and 3

2m0L, and the current makespan
is no greater than 3

2L.
Lemma 4.4. zim0

≤ 3
2C1,im0

.

Proof. By Lemma 4.2, we get Pim0
≥ 3

4m0L. As zim0
≤ m0 + 3

2L and C1,im0
=

2
√
Pim0

, it suffices to show 3
√

3
4m0L ≥ 3

2L + m0, i.e., 9
(

L
m0

)2 − 15
(

L
m0

)
+ 4 ≤ 0.

Since L > 3, it is obvious that 1
3 ≤ L

m0
≤ 4

3 , from which it follows that the desired
inequality is true.

Notice that in Phase 2, the competitive ratio may become worse than 3/2 only
when a new machine is purchased by steps 2.3 and 2.4 and the incoming job is assigned
to this machine. Thus if zk−1 ≤ 3

2C1,k−1 holds and job pk is assigned by step 2.2 or
by step 2.5, then we have zk ≤ 3

2C1,k. In the following, we mainly focus on analyzing
steps 2.3 and 2.4, that is, considering the assignment of pim and estimating zim ,
m ≥ m0 + 1.

Lemma 4.5. At Phase 2, if zk ≤ 3
2C1,k holds, then we know that the current

makespan Ck ≤ 2m, where m is the number of currently purchased machines.
Proof. It is clear that no job can have a size greater than 2m at Phase 2. Hence

the makespan may be increased to more than 2m only at step 2.5. But in this case we
have Pk ≤ m2, and thus zk = Ck +m ≤ 3

2C1,k ≤ 3m. It follows that Ck ≤ 2m.
Lemma 4.6. If the mth machine is purchased by step 2.3, where m ≥ m0 + 1,

and if zim−1 ≤ 3
2C1,im−1 holds, then we have zim ≤ 3

2C1,im .
Proof. Since the mth machine is purchased by step 2.3 (i.e., pim is not assigned

by step 2.2), there exists some β > 1 such that Pim = β(m− 1)2, and

Cim−1 < sim−1 + pim ≤ sim−1 + L ≤ sim−1 +m− 1.(4.3)

By Lemma 4.5, we get that

Pim ≤ (m− 1)Cim−1 + pim ≤ 2(m− 1)2 + (m− 1) ≤ 3(m− 1)2,(4.4)

and thus β ≤ 3. We estimate the value of Cim−1 as follows. If Cim−1 > 3
√
β(m−1)−

m, then we know from (4.3) that sim−1 > 3
√
β(m− 1)−m− (m− 1). Therefore

Pim =

m−1∑
j=1

sj,im−1 + pim ≥ (m− 2) sim−1 + Cim−1

> (m− 1)
(
3
√
β(m− 1)−m

)
− (m− 2) (m− 1)

= (m− 1)2(3
√
β − 2) > β(m− 1)2 = Pim ,(4.5)

where the last inequality follows from 1 < β ≤ 3—a contradiction. Hence we have
Cim−1 ≤ 3

√
β(m− 1)−m. With this estimation, we obtain

zim = Cim−1 +m ≤ 3
√
β(m− 1) = 3

√
Pim =

3

2
C1,im ,

or

zim = pim +m ≤ 2m− 1 < 3(m− 1) < 3
√
β(m− 1) =

3

2
C1,im .

Lemma 4.7. If the (m−1)th machine is purchased by step 2.3, where m > m0+1,
then so is the mth machine. It follows that H3 will not enter step 2.4 since then, i.e.,
all remaining new machines (if necessary) are purchased by step 2.3.
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Proof. If Pim > (m− 1)
2
, i.e., all the arrived jobs have total size greater than

(m− 1)
2

before purchasing the mth machine, then the algorithm enters step 2.3 by
the rule, and the statement is clearly true. Hence we assume that Pim−1 ≤ Pim ≤
(m− 1)

2
. Since the (m − 1)th machine is purchased by step 2.3, we get Pim−1 ≥

Pim−1
> (m− 2)2 by the algorithm rule.

To prove that the mth machine must be purchased by step 2.3, we verify that
sim−1 + pim +m− 1 ≤ 3

2C1,im . To see it, since sim−1 ≤ Pim−1

m−1 by averaging argument

and C1,im = 2
√
Pim−1 + pim , it suffices to verify that

Pim−1

m− 1
+ pim +m− 1− 3

√
Pim−1 + pim ≤ 0.(4.6)

The derivative of the left side of (4.6) with respect to Pim−1 is 1
m−1 − 3

2
√

Pim−1+pim

.

From Pim−1 ≤ (m− 1)
2

and pim ≤ L ≤ m−2, we know that the derivative is negative.
Thus from Pim−1 > (m− 2)2, it suffices to show that

(m− 2)
2

m− 1
+ pim +m− 1− 3

√
(m− 2)

2
+ pim ≤ 0,(4.7)

i.e.,

2m− 4 +
1

m− 1
+ pim − 3

√
(m− 2)

2
+ pim ≤ 0.(4.8)

The derivative of the left side of (4.8) with respect to pim is 1 − 3

2
√

(m−2)2+pim

>

0 because m > m0 + 1 ≥ 5. Since pim ≤ m − 2, 1
m−1 < 1, and 3m − 5 −

3

√
(m− 2)

2
+m− 2 ≤ 0, we can conclude that (4.8) is true. The lemma is thus

proved.
Remark 4.1. From Lemmas 4.6 and 4.7, we can conclude that once a new machine

is purchased by step 2.3—and at this time the competitive ratio of H3 is no greater
than 3/2—then the competitive ratio cannot become worse than 3/2 after that. For
example, if the (m0 + 1)th machine is purchased by step 2.3, then from Lemma 4.4,
we conclude that the competitive ratio of H3 must be no greater than 3/2 after
assigning all jobs. Take another example: if there exists some m ≥ m0 + 1 such that
Pim > (m− 1)

2
, and the competitive ratio is not greater than 3/2 before purchasing

the mth machine, then we can also conclude that the competitive ratio of H3 must
be no greater than 3/2 after assigning all jobs. Hence we assume that Pim ≤ (m− 1)

2

for every m ≥ m0 + 1.
Lemma 4.8. sim0+1−1 >

m0

2 .

Proof. Otherwise sim0+1−1 + pim0+1
+ m0 ≤ 3

2m0 + L. Analogous to the proof

of Lemma 4.4, we get that 3
2m0 + L ≤ 3

√
3
4Lm0 ≤ 3

2C1,sim0+1
. Then it follows that

the (m0 + 1)th machine is purchased by step 2.3, and by Remark 4.1 the proof is
complete.

Lemma 4.9. If m0 ≤ 11 and Pim0+1 ≤ m2
0, then sim0+1−1 + pim0+1 + m0 ≤

3
2C1,im0+1

. It follows that the (m0 + 1)th machine is purchased by step 2.3.
Proof. Otherwise, we have

sim0+1−1 + pim0+1 +m0 >
3

2
C1,im0+1 = 3

√
Pim0+1 ,(4.9)
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and the (m0 +1)th machine would be purchased by step 2.4. We distinguish two cases
according to the value of sim0+1−1 to get a contradiction.

Case 1. sim0+1−1 ≥ 3
4L. Because Pim0+1 ≥ sim0+1−1m0 + pim0+1 , (4.9) implies

that

sim0+1−1 + pim0+1 +m0 − 3
√
sim0+1−1m0 + pim0+1 > 0.(4.10)

The derivative of the left side of (4.10) with respect to pim0+1 is

1− 3

2
√
sim0+1−1m0 + pim0+1

> 0

because m0 ≥ L > 3 and sim0+1−1 ≥ 3
4L. Thus it follows from pim0+1 ≤ L that

sim0+1−1 + L+m0 − 3
√
sim0+1−1m0 + L > 0.(4.11)

Again, the derivative of the left side of (4.11) with respect to sim0+1−1 is

1− 3m0

2
√
sim0+1−1m0 + L

.

Pim0+1
≤ m2

0 implies sim0+1−1 ≤ m0. Combining it with sim0+1−1m0+L ≤ m2
0+m0 <

9
4m

2
0, we know that the derivative is negative. Because sim0+1−1 ≥ 3

4L, it follows from
(4.11) that

3

4
L+ L+m0 > 3

√
3

4
Lm0 + L,(4.12)

i.e., (7
4L+m0)

2 > (3
√

3
4Lm0 + L)2. Therefore we have

f6(L)
.
= 49L2 − (52m0 + 144)L+ 16m2

0 > 0(4.13)

for any L > 3 and m0 = �L� ≥ 4.
On the other hand, it is clear that the function f6(L) achieves the maximum value

at L = m0 if m0 > 4, and at L = m0 − 1 if m0 = 4. Therefore the maximum value
is f6(3) = 49 · 32 − (52 · 4 + 144) 3 + 16 · 42 = −359 < 0 if m0 = 4, or f6(m0) =
49m2

0 − (52m0 + 144)m0 + 16m2
0 < 0 if 4 < m0 ≤ 11, which contradicts (4.13).

Case 2. sim0+1−1 <
3
4L. Then from (4.9) and Lemma 4.2, we get

sim0+1−1 + pim0+1 +m0 − 3

√
3

4
Lm0 + pim0+1 > 0.(4.14)

Again, the derivative of the left side with respect to pim0+1 is positive; thus it follows
from pim0+1 ≤ L that

sim0+1−1 + L+m0 − 3

√
3

4
Lm0 + L > 0.(4.15)

Substituting sim0+1−1 <
3
4L into (4.15), we get (4.11) again. Then the same argument

can yield a contradiction.



1048 GYÖRGY DÓSA AND YONG HE

By Lemma 4.9, we know that H3 may enter step 2.4 only if m0 ≥ 12 (and

Pim ≤ (m− 1)
2

for every m ≥ m0 + 1, as declared before). Hence we further assume
in the following that m0 ≥ 12. Suppose that H3 is worse than 3/2-competitive. Then
there must exist an m with m0 + 1 ≤ m such that the mth machine is purchased
by step 2.4, and right after assigning pim to this machine, H3 becomes worse than
3/2-competitive. In the following lemmas we will see that there is no such m. Next
Lemmas 4.10–4.12 consider the case m0 ≤ m ≤ 2m0, and Lemmas 4.13 and 4.14
consider the case m > 2m0.

Lemma 4.10. For every m0 ≤ m ≤ 2m0, we have pim+1 > sim+1−1.

Proof. First we show that the result is true for m = m0. Suppose in contrast
that pim0+1

≤ sim0+1−1. We show that sim0+1−1 + pim0+1
+ m0 ≤ 3

√
Pim0+1 , which

implies that the (m0+1)th machine is purchased by step 2.3. It is clear that Pim0+1 ≥
m0sim0+1−1. Thus it suffices to prove that 2sim0+1−1 + m0 ≤ 3

√
m0sim0+1−1. This

is equivalent to 1
4 ≤

sim0+1−1

m0
≤ 1, which is obviously true since sim0+1−1 >

m0

2 by

Lemma 4.8 and sim0+1−1 ≤
Pim0+1−1

m0
≤ m0. Hence we get pim0+1

> sim0+1−1.

Since the minimum current machine load is not decreased before or right when a
new machine is purchased, hence we know that sim0+2−1 ≥ min{pim0+1 , sim0+1−1} >
m0

2 . On the other hand, sim0+2−1 ≤
Pim0+2−1

m0+1 ≤ m0 + 1, and hence we have 1
4 ≤

sim0+2−1

m0+1 ≤ 1. Then by the same argument as above we can show that pim0+2
>

sim0+2−1. The result for other m = m0 + 2, . . . , 2m0 can be obtained similarly.

Remark 4.2. By Lemma 4.10, we know that through m0 ≤ m ≤ 2m0, the
minimum current machine load is not decreased. That is, sim+1−1 ≥ sim0+1−1 for any

m0 + 1 ≤ m ≤ 2m0. Furthermore if sim0+1−1 ≥ 3
4L, then pim+1

≥ sim0+1−1 ≥ 3
4L for

allm0 ≤ m ≤ 2m0, and thus from Lemma 4.2, we get Pim ≥ Pim0
+pim0+1

+· · ·+pim ≥
3
4Lm0 + 3

4L (m−m0) = 3
4Lm for every m0 ≤ m ≤ 2m0.

Lemma 4.11. For every m0 ≤ m ≤ 2m0, we have pim+1 ≥ 3
4L, and thus Pim ≥

3
4Lm.

Proof. Suppose pim0+1
< 3

4L. By Remark 4.2, we only need to consider the case

sim0+1−1 <
3
4L. It suffices to show that sim0+1−1 + pim0+1

+m0 ≤ 3
√
Pim0+1

, which
implies that the (m0 + 1)th machine is purchased by step 2.3, and we are done by
Remark 4.1. Because of sim0+1−1 < 3

4L, we only need to show that 3
2L + m0 ≤

3
√

3
4Lm0. This is equivalent to 1

3 ≤ L
m0
≤ 4

3 , which is obviously true. Hence we

have pim0+1
≥ 3

4L and thus Pim0+1
≥ 3

4L(m0 + 1) by an argument similar to that in
Remark 4.2. The result for m = m0 + 1, . . . , 2m0 can be obtained similarly one by
one.

Lemma 4.12. If for some m0 ≤ m ≤ 2m0, the (m + 1)th machine is purchased
by step 2.4, and zim+1−1 ≤ 3

2C1,im+1−1 holds, then we have zim+1
≤ 3

2C1,im+1
.

Proof. If pim+1
≥ max{sj,im+1−1| j = 1, . . . ,m}, then it is easy to see that

zim+1 = pim+1 +m+ 1 ≤ L+m+ 1 ≤ 3
√

3
4Lm ≤ 3

2C1,im+1 , where the last inequality

follows from Lemma 4.11. In the opposite case the objective value is increased by 1,
because the makespan remains unchanged. Since zim+1−1 ≤ 3

2C1,im+1−1 holds, to get

the desired result, it suffices to show that 3
√
Pim+1−1 + pim+1 ≥ 3

√
Pim+1−1 + 1, i.e.,

pim+1 ≥
2

3

√
Pim+1−1 +

1

9
.(4.16)
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Let Pim+1−1 = βm2 with some β ≤ 1. From L
m > m0−1

2m0
≥ 1

2− 1
24 >

4
9 and Lemma 4.11,

we get Pim+1−1 ≥ Pim ≥ 3
4Lm > 1

3m
2. Thus 1

3 < β ≤ 1. Since the (m+1)th machine
is purchased by step 2.4, we have

sim+1−1 + pim+1
+m > 3

√
Pim+1−1 = 3

√
βm.(4.17)

By applying sim+1−1 ≤ Pim+1−1

m = βm, we get pim+1 >
(
3
√
β − β − 1

)
m. Thus (4.16)

holds if we can show that(
3
√
β − β − 1

)
m >

2

3

√
βm+

1

9
,(4.18)

i.e.,
(

7
3

√
β − β − 1

)
m > 1

9 . This inequality holds obviously since 1
3 < β ≤ 1 and

m ≥ 12.

By Lemmas 4.10–4.12, we conclude that the competitive ratio of Algorithm H3
must be no greater than 3/2 before the (2m0 + 1)th machine is purchased.

Lemma 4.13. Let m satisfy m0 ≤ m ≤ 2m0. Then we know pim+1
> y, where

y = 3

√
3

4
Lm0 −m0 − 3

4
L.

Proof. By the algorithm rule it is clear that for any m0 ≤ m ≤ 2m0, we have
sim+1−1 + pim+1 +m > 3

2C1,im+1 ≥ 3
√
sim+1−1m, since otherwise the mth machine is

purchased by step 2.3. Hence we obtain

pim+1 > 3
√
sim+1−1m− sim+1−1 −m.(4.19)

Define the function f (st,m) = 3
√
stm − st − m. It is clear that this function is

symmetric, and increasing in both variables, since now st < m holds. Recall that for
any m0 ≤ m1 < m2 ≤ 2m0, we have that sim1

≤ sim2
by Remark 4.2.

If sim+1−1 ≥ 3
4L, we then have

pim+1
> 3
√
sim+1−1m− sim+1−1 −m(4.20)

≥ 3
√
sim+1−1m0 − sim+1−1 −m0

≥ 3
√
sim0+1−1m0 − sim0+1−1 −m0

≥ 3

√
3

4
Lm0 − 3

4
L−m0 = y.

If sim+1−1 < 3
4L, then by Lemma 4.11 and the algorithm rule, we have pim+1

+

sim+1−1 +m > 3
2C1,im+1 ≥ 3

√
3
4Lm. Thus we get similarly that

pim+1 > 3

√
3

4
Lm− sim+1−1 −m(4.21)

> 3

√
3

4
Lm− 3

4
L−m

≥ 3

√
3

4
Lm0 − 3

4
L−m0 = y.
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Lemma 4.14. The (2m0 + 1)th machine is not purchased by step 2.4.
Proof. First we consider the case si2m0+1−1 ≥ 3

4L. By Lemma 4.13, we get that

Pi2m0+1 ≥ m0si2m0+1−1 + pim0+1 + · · ·+ pi2m0

> m0si2m0+1−1 +m0y

= m0

(
si2m0+1−1 + y

)
,

where y = 3
√

3
4Lm0 − 3

4L−m0. To get the result, due to pi2m0+1 ≤ L, we only need

to show that

L+ si2m0+1−1 + 2m0 < 3
√
m0

(
si2m0+1−1 + y

)
.(4.22)

By an argument similar to what we have used before, it suffices to prove

7

4
L+ 2m0 < 3

√
3m0

√
3

4
Lm0 −m2

0,(4.23)

which can be verified easily since L ≤ m0 and m0 ≥ 12.
For the case si2m0+1−1 < 3

4L, we have Pi2m0+1 ≥ Pi2m0
≥ 3

4Lm0 + m0y =

3m0

√
3
4Lm0 −m2

0. Hence we need to show that

L+ si2m0+1−1 + 2m0 < 3

√
3m0

√
3

4
Lm0 −m2

0.(4.24)

Since si2m0+1−1 <
3
4L, it suffices to prove the stronger inequality (4.23), which can be

done by the same argument.
Combining Lemmas 4.14 and 4.12 and Remark 4.1, we have shown in all cases

that Algorithm H3 has a competitive ratio no greater than 3/2. We thus finish the
proof of Theorem 4.1.

5. Conclusions. Even for the basic online scheduling problem Pm|online|Cmax,
where the machine number m is fixed, we do not know its optimal online algorithm
for any m > 3; therefore it may not be easy to get the optimal online algorithm
for the list model problem, too. In this paper, we first devised an online algorithm
with a competitive ratio at most (2

√
6 + 3)/5 ≈ 1.5798. It improves upon the known

algorithm, which has a competitive ratio (1 +
√

5)/2 ≈ 1.618. As another attempt to
make problem easier to solve, in this paper we considered a special case with small
jobs. We presented its optimal online algorithm with a competitive ratio 4/3. We
further considered the semionline problem with known largest processing time. A new
algorithm with a competitive ratio no greater than 3/2 was presented which improves
the known upper bound 1.5309.

To tighten the upper bounds, our algorithms applied new strategies for deciding
when to purchase machines. Their decision regarding when to purchase machines
depends on the current makespan, and upon the current objective value with respect
to the lower bounds of the current optimal value, which is quite different from Aρ,
whose decision simply depends on the total size of arrived jobs. We conjecture that
it is valuable to get a tighter lower bound of the optimal value for improving online
and semionline algorithms (with competitive analysis). On the other hand, all known
algorithms assign jobs to machines in greedy ways (by the classical LS rule). It is well
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known that LS is not an optimal algorithm for the problem Pm|online|Cmax when
m > 3. Hence it is interesting whether we can obtain better algorithms by combining
the new purchasing strategies and improved algorithms for Pm|online|Cmax.

Although we have a randomized lower bound 6e/(6e−1) > 1.06532 for the online
list model problem [15], which is clearly also valid for the semionline problem with
known largest size, to the best of the authors’ knowledge, randomized algorithm is
still unknown. Hence it is promising to devise randomized online and semionline
algorithms for the discussed problems. It will also be interesting to devise improved
algorithms for other semionline problems of the list model.
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Abstract. Enumerating all solutions of a relational algebra equation is a natural and powerful
operation which, when added as a query language primitive to the nested relational algebra, yields a
query language for nested relational databases, equivalent to the well-known powerset algebra. We
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1. Introduction. Suppose we are allowed to see only a view on a database B,
computed by a relational algebra expression e. If we still want to find out what B
is, we might try to “invert” e (assuming we know this expression), which will only
work when we also know the finite domain D of B. Specifically, we can enumerate all
databasesX overD, and test for eachX whether it satisfies the equation e(X) = e(B).
One of these solutions will be B, of course, so if the set of all solutions is not too big,
it might provide us with useful information for starting our detective work.

The above simple scenario from database security led us to wonder what can be
said in general about the solution of equations in the relational algebra. Generally,
if e1 and e2 are two algebra expressions over some database schema augmented with
some relation variables X1, . . . , Xp, we can consider the equation e1 = e2. A solution
of this equation, given a database B with finite domain D, is a tuple (X1, . . . , Xp) of
relations over D such that e1 and e2 evaluate to the same relation on the augmented
database (B,X1, . . . , Xp).

Asking whether there exists a solution of a relational algebra equation on a
database is almost exactly the same thing as asking whether an existential second-
order logic sentence is true on that database. Hence, by Fagin’s theorem [Fag74,
EF95], the problems that can be formulated as finding a solution of some relational
algebra equation are nothing but the problems in NP.

However, in the present paper, we start from the observation that the set of
all solutions of an equation, being a set of tuples of relations, is a nested relation.
One can therefore consider the enumeration of all solutions of an equation as a query
language primitive, which can be added to the nested relational algebra. We introduce
and study this extension of the nested relational algebra, which we call the equation
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algebra. The equation algebra is extremely powerful: it is equivalent to the well-known
powerset algebra for nested relations. Our particular interest, however, is in what can
be expressed in the equation algebra by using only equations that have a solution set
of polynomial size on each database. We call such equations sparse.

Our interest in sparse equations does not stem from time efficiency considerations.
Indeed, it is not obvious how knowing that an equation is sparse would help in actually
finding even one solution more quickly. Neither is it obvious, however, that it would
not help. For example, consider the problem of checking on a given database whether
some fixed sparse relational algebra equation has a solution. Using an extension
of Fagin’s theorem to nested relational databases, we show that this problem can
be NP-hard only if every problem in NP can already be decided by a polynomial-
time nondeterministic Turing machine that has only polynomially many accepting
computations on each input. The latter is one of the many unresolved questions in
computational complexity theory [All86].

Nevertheless, sparse equations are still interesting from a space efficiency stand-
point. Indeed, for the natural evaluation strategy for equation algebra expressions to
run in polynomial space, it is necessary that all equations occurring in the expression
be sparse. Interest in fragments of powerful query languages for which the natu-
ral evaluation strategy is polynomial-space is not new to database theory research.
For example, Abiteboul and Vianu [AV91] showed that the parity query is not ex-
pressible in the polynomial-space fragment of various computationally complete query
languages.

Closer to our topic is the work of Suciu and Paredaens [SP97], who showed that
queries such as transitive closure and parity are not expressible in the polynomial-
space fragment of the powerset algebra for nested relations. This fragment consists of
all powerset algebra expressions where all intermediate results are of polynomial size,
on each database. Note that this fragment does make sense, as there are expressions
that always produce a result of logarithmic size; applying the (exponential) powerset
operator to such expressions produces a result of polynomial size.

We also mention Grumbach and Vianu [GV95], who also studied a sparsity notion
in connection with queries over nested relational databases, although they considered
sparsity as a property of databases rather than of query language expressions.

Suciu and Paredaens conjectured in general that the polynomial-space fragment
of the powerset algebra has no more power than the nested relational algebra without
powerset. (This conjecture has been confirmed for monadic database schemas [VdB].)
At first sight, the operator that we add to the nested relational algebra, to enumerate
all solutions of an equation, does not seem to be that different from the powerset
operator. After all, both operators perform some kind of potentially exponential
enumeration.

Yet, as we will point out, the analogue of the Suciu–Paredaens conjecture does
not hold for the sparse fragment of the equation algebra. Specifically, using sparse
equations only, we can express transitive closure; in fact, we can express any fixpoint
query. This complements a result by Abiteboul and Hillebrand [AH95], who showed
that transitive closure becomes expressible in the powerset algebra in polynomial
space, provided we use a more clever “pipelined” evaluation strategy. Actually, every
fixpoint query is already expressible using equations that are not just sparse, but
even unambiguous: they have a unique solution on each database. Unambiguous
equations in the relational algebra are known as implicit definitions in first-order
logic, and were studied in the context of finite model theory by Kolaitis [Kol90].
Kolaitis already showed that every fixpoint query can be implicitly defined. We offer
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a straightforward, direct proof.
Another example of the differences between the sparse fragment of the equation

algebra and that of the powerset algebra is given by the well-known nesting operator
of the nested relational algebra. This operator becomes redundant once we extend
the algebra with the solution operator or with the powerset operator. However, the
original nesting operator never blows up exponentially. We show that, without using
the nesting operator itself, nesting is expressible in the equation algebra using sparse
equations only, but that the same is not possible with a polynomial-space powerset
algebra expression.

However, there are also similarities between the two fragments. Specifically, we
prove an analogue to the Suciu–Paredaens result, to the effect that the parity query
is not expressible in the sparse fragment of the equation algebra either. This is our
main technical contribution; the proof is in the style of an elegant argument of Liebeck
[Lie83], invoking Bochert’s theorem on the order of primitive permutation groups.
Coming back to connection with implicit definitions in first-order logic, our result
generalizes the known and easy fact that the parity query cannot be defined implicitly
[Kol90], in two directions: from unambiguous to sparse, and from a single equation
to an arbitrarily complex expression involving several, possibly nested, equations.

This paper is organized as follows. Section 2 recalls the nested relational data
model. Section 3 introduces relational algebra equations. Section 4 introduces the
equation algebra. Section 5 introduces sparse equations, as well as the natural evalu-
ation strategy for equation algebra expressions. Section 6 studies the time complexity
of sparse equations. Finally, section 7 presents the comparison with the polynomial-
space powerset algebra.

2. Preliminaries. We quickly recall the nested relational data model and alge-
bra [TF86, AHV95].

Relation types are defined as follows. The symbol 0 is a type, and, if τ1, . . . , τk
are types, then so is (τ1, . . . , τk). For a type τ and some set D of atomic values, the
relations of type τ on D are inductively defined as follows. A relation of type 0 on
D is just an element of D (this serves merely as the base case for the induction). A
relation of type (τ1, . . . , τk) on D is a set of k-tuples (x1, . . . , xk) such that xi is a
relation of type τi on D for i = 1, . . . , k.

A database schema is a finite set S of relation names, where each relation name
has an associated type different from 0. A database B over S consists of a nonempty
finite domain D of atomic values, together with, for each relation name R in S, a
relation RB of type τ on D, where τ is the type of R.

The operators of the nested relational algebra are those of the standard relational
algebra (union ∪ and difference − of relations of the same type; Cartesian product
×; projection π; selection σ for equality, which can now be set-equality of nested
relations), plus the operators nesting ν and unnesting µ, defined as follows.

Let R be a relation of type (τ1, . . . , τk), and let i1, . . . , ip ∈ {1, . . . , k}. Then the
nesting νi1,...,ip(R) equals the relation{(

x1, . . . , xk,
{
(yi1 , . . . , yip) | (y1, . . . , yk) ∈ R

and xj = yj for each j ∈ {1, . . . , k} − {i1, . . . , ip}
})

∣∣∣ (x1, . . . , xk) ∈ R
}

of type (τ1, . . . , τk, (τi1 , . . . , τip)).
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Let R be as in the previous paragraph, and let i ∈ {1, . . . , k} such that τi �= 0;
thus τi is of the form (ω1, . . . , ω�). Then the unnesting µi(R) equals the relation

{(x1, . . . , xk, y1, . . . , y�) | (x1, . . . , xk) ∈ R and (y1, . . . , y�) ∈ xi}

of type (τ1, . . . , τk, ω1, . . . , ω�).
The expressions of the nested relational algebra over a schema S are now built

up using the above operators from the relation names in S and the symbol D, which
stands for the finite domain of the input database. The relation to which an expression
e evaluates on a database B is denoted by e(B).

One can extend the nested relational algebra to the powerset algebra by adding
the powerset operator, defined as follows. Let R be a relation of type (τ1, . . . , τk).
Then the powerset Π(R) equals the relation {S | S ⊆ R} of type ((τ1, . . . , τk)).

3. Equations. Let S and X be disjoint database schemas; S is the actual
database schema, while X is thought of as a set of additional relation variables. Let
e1 and e2 be two expressions over the expanded schema S ∪ X .

Definition 3.1. Given a database B over S, a solution to the equation e1 = e2
is a database A over X with the same finite domain as B, such that e1(B,A) =
e2(B,A).

Here, (B,A) denotes the expansion of B with A, i.e., the database over S ∪ X
that has the same finite domain as B, that equals B on S, and that equals A on X .

Example 3.2. For a very simple example, let R ∈ S and let X = {X}, where X
has the same type as R. Then X ∪ R = R is an equation. Given a database B over
S, a database A over {X} is a solution if and only if XA ⊆ RB .

For another example, let X be a relation variable of type (0, 0). One can write
a relational algebra expression e such that on any database A over {X} with finite
domain D, e(A) is empty if and only if XA is one-to-one, the projections π1(X

A) and
π2(X

A) are disjoint, and their union equals D. An example of an e that works is

π1σ2 �=4σ1=3(X ×X) ∪ π2σ2=4σ1 �=3(X ×X)

∪ (π1(X)− (π1(X)− π2(X))
)

∪ (D − (π1(X) ∪ π2(X))
) ∪ ((π1(X) ∪ π2(X))−D).

Then the equation e = ∅ has a solution on a database B with finite domain D if and
only if the cardinality of D is even. (Technically, e = ∅ is not an equation because
the symbol ∅ is not an expression, but we can easily take ∅ here to stand for the
expression D −D, which always evaluates to the empty relation.)

Remark 3.3. In the above example, we used an equation of the special form
e = ∅. Actually, this form is not so special at all, because any equation e1 = e2 can
be brought in this form as e1 ∆ e2 = ∅, where e1 ∆ e2 stands for (e1 − e2)∪ (e2 − e1)
(symmetric difference).

Alternatively, one might wonder about the use of disequations, of the form e �= ∅.
These are nothing but equations in disguise, because they can also be written as
π1(D×e) = D. Conversely, any equation e1 = e2 can also be written as the disequation
D − π1(D × (e1 ∆ e2)) �= ∅.

4. The equation algebra. We are now ready to extend the nested relational
algebra with a solution operator for equations. We refer to the resulting algebra as
the equation algebra.
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To allow for an elegant definition, we do not fix a schema S in advance. Rather,
we assume a sufficiently large supply of relation names of all possible types. Any
relation name can now occur in an expression. Like in logic formulas, some will occur
free and others will occur bound. Bound relation names are bound by the solution of
an equation, and serve as the variables of the equation. Within the equation, however,
they are still free. We denote the set of relation names that occur free in an equation
algebra expression e by free(e).

For the constructs of the nested relational algebra, this is all straightforward: for
a relation name R, we have free(R) := {R}; for expressions e of the form (e1 ∪ e2),
(e1 − e2), or (e1 × e2), we have free(e) := free(e1) ∪ free(e2); for expressions e of the
form σ(e′), π(e′), ν(e′), or µ(e′), we have free(e) := free(e′). For the expression D,
we have free(D) := ∅.

The definition of the new solution operator is now the following.
Definition 4.1. Let e1 and e2 be expressions, and let X1, . . . , Xp be a sequence

of distinct relation names. Then

{(X1, . . . , Xp) | e1 = e2}

is also an expression (called a solution expression). We define its free set as (free(e1)∪
free(e2))− {X1, . . . , Xp}. We say that the Xi become bound.

Note that this is a recursive definition, in the sense that e1 and e2 can contain
solution operators in turn. To avoid clutter, we disallow equation algebra expressions
in which a free relation name at the same time becomes bound in some subexpression,
as in X × {(X) | X ∪R = R}.

An expression e in the equation algebra can be evaluated on databases B over
any schema that contains free(e). We already know how this evaluation is defined for
the constructs of the nested relational algebra. So we only have to give the following
definition.

Definition 4.2. For a solution expression, e, of the form {(X1, . . . , Xp) | e1 =
e2}, and a database B, the evaluation e(B) equals the relation

{(XA
1 , . . . , X

A
p ) | A is a database over {X1, . . . , Xp}

that is a solution of e1 = e2, given B}.

This relation is of type (τ1, . . . , τp), where τi is the type of Xi for i = 1, . . . , p.
Example 4.3. Recall the simple example equation X ∪R = R from Example 3.2.

We can turn this equation into the following equation algebra expression e: {(X) |
X ∪ R = R}, or, more readibly, {(X) | X ⊆ R}. Note that free(e) = {R}. On any
database B over {R}, the relation e(B) equals Π(RB) (recall the powerset operator
Π from section 2). In other words, the equation algebra expression e is equivalent to
the powerset algebra expression Π(R).

The equation algebra allows equations to be used inside equations. For example,
if we want to compute the powerset of the powerset of R, we can write:{

(Y ) | Y ⊆ {(X) | X ⊆ R}}.
As a third example, let R and T be relation names of the same binary type

(τ, τ) for some τ . One can write a relational algebra expression etc such that on any
database C over {R, T}, etc is empty if and only if RC ⊆ TC and TC is transitively
closed. One can also write a nested relational algebra expression emin that selects, out
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of a set of binary relations, the minimal ones w.r.t. set inclusion. Explicit forms for
etc and emin have been given by Gyssens and Van Gucht [GVG]. Then the following
equation algebra expression computes the transitive closure of relation R:

π2,3µ1emin

({(T ) | etc = ∅}).
Indeed, the subexpression {(T ) | etc = ∅} returns the collection of all transitively
closed relations on the same domain as R and containing R; applying emin to that
collection results in the singleton consisting of the minimal element, i.e., the transitive
closure of R (by definition of transitive closure); applying unnesting µ1 produces the
actual tuples in the transitive closure, keeping the nested relation (cf. our definition of
the effect of µ in section 2); and applying π2,3 finally removes the nested relation.

In the above example we saw that the powerset operator is expressible in the
equation algebra. Conversely, the solution operator is easily expressed in the powerset
algebra. Hence, we obtain the following.

Proposition 4.4. The equation algebra is equivalent to the powerset algebra.
Proof. To see that {(X1, . . . , Xp) | e1 = e2} can be expressed in the powerset

algebra, we begin by noting that for any relation type τ one can write a powerset
algebra expression Πτ yielding the collection of all relations of type τ on D. For
example, Π(0,0) is Π(D×D), and Π(0,(0)) is Π(D×Π(D)). Hence, if the type of Xi is
τi for i = 1, . . . , p, then Πτ1 × · · · ×Πτp yields the collection of all potential solutions.
Now it suffices to observe that one can write nested relational algebra expressions
that apply e1 or e2 to each database in this collection separately. Explicit forms of
such expressions have been given by Gyssens and Van Gucht [GVG]. After that, the
actual solutions can be selected by an equality selection.

5. Sparse equations. So far, the equation algebra is merely another syntax for
the powerset algebra, or, if you want, higher-order logic. However, when we consider
a natural evaluation strategy for equation algebra expressions, we start to notice some
differences.

By the natural strategy to evaluate a solution expression of the form {(X1, . . . , Xp) |
e1 = e2}, we mean the following. Enumerate all databases A over {X1, . . . , Xp}, on
the finite domain of the given input database, one by one, reusing the same space.
For each A we test whether it is a solution (by recursively evaluating e1 and e2), and
if so, we include it in the result.

For the constructs of the nested relational algebra, the natural evaluation strategy
is clear: if we have to evaluate an expression of the form e1 Θ e2, with Θ ∈ {∪,−,×},
we create two intermediate results by recursively evaluating e1 and e2, and then apply
Θ to these two intermediate results. Similarly, if we have to evaluate an expression of
the form θ(e), with θ ∈ {π, σ, ν, µ} (and parameters added in subscript), we create an
intermediate result by recursively evaluating e, and then apply θ to this intermediate
result.

In view of this natural evaluation strategy, we now propose the following.
Definition 5.1. An equation is called sparse if all its relation variables are

of flat type, i.e., of the form (0, . . . , 0), and the number of solutions on any given
database is at most polynomial in the size of that database.

Example 5.2. The two equations from Example 3.2 are not sparse. Probably the
simplest example of a nontrivial sparse equation is the following. Let X be a relation
name of type (0). One can write a relational algebra expression e over {X} such that
on any database A over {X}, e(A) is empty if and only if XA is a singleton. Then the
equation e = ∅, where X is taken as the relation variable to be solved for, is sparse.
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Indeed, given any database B with finite domain D, the solutions are precisely all
singleton subsets of D. There clearly are only a linear (and thus at most polynomial)
number of possible solutions.

Remark 5.3. A natural alternative definition of sparsity would be the one where,
in Definition 5.1, we would look only at databases over the schema consisting of the
relation names that actually occur free in the equation. One easily sees, however, that
this alternative definition yields the same notion of sparsity.

Sparse equations are connected to the natural evaluation strategy in the following
way.

Proposition 5.4. The natural strategy for evaluating an equation algebra ex-
pression e runs in polynomial space if and only if all equations occurring in e are
sparse.

Here, we count not only the space occupied by the intermediate results stored
during evaluation, but also the size of the final result.

Proof. The if direction is clear. For the only-if direction, we work by induction
on the nesting depth of equations. The base case—expressions that do not contain
any equations at all—is trivial.

For the inductive step, consider a top-level equation {(X1, . . . , Xp) | e1 = e2}
occurring in e. The natural strategy for evaluating this equation runs in polynomial
space, so in particular, for each expansion of each database B over free(e) with a
candidate solution A over {X1, . . . , Xp}, the natural evaluation of e1 and e2 on (B,A)
runs in polynomial space. In this way we consider every possible database C over
free(e) ∪ {X1, . . . , Xp}, because the restriction of C to free(e) is a possible B, and C
itself then is a possible expansion of B. Hence, the natural evaluation strategies of e1
and e2 in general run in polynomial space.

Formally, we must note here that e1 and e2 might not actually mention certain
relation names in free(e) or {X1, . . . , Xp}, and that there is still the formal possibility
that their natural evaluation might not run in polynomial space on databases over
schemas not containing these names. However, using Remark 5.3, it can be seen that
this is impossible.

By induction, we can therefore conclude that all equations occurring nested inside
a top-level equation are sparse.

The top-level equation itself must also be sparse. In proof, if one of the Xi would
be of nonflat type, even one candidate solution can already be of exponential size.
Indeed, even in the simplest case where Xi would be of type ((0)), on a domain with
n elements, a possible candidate value for Xi is the collection of all subsets of that
domain, which is of size 2n. Thus, every Xi is of flat type. Furthermore, since we
store the solution set as an intermediate result, it must be of at most polynomial size
on all databases over free(e). Since the individual solutions are flat databases and
thus of polynomial size, the cardinality of the solution set must therefore be at most
polynomial.

6. Time complexity of equation nonemptiness. The time complexity of
solving sparse equations is closely linked to an open question from computational
complexity theory. Unlike the previous section, in this section we are not talking about
the natural evaluation strategy, whose time complexity is clearly at least exponential
as soon as there are equations to be solved. Instead, we will be looking at the time
complexity of the nonemptiness problem of equations.

The nonemptiness problem of an equation over a schema S with relation variables
X is the problem of deciding, given a database over S, whether the equation has a
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solution on that database. In the present section we will consider only equations that
do not contain equations inside.

Let us begin by considering equations that are not necessarily sparse but that still
have only flat variables. The nonemptiness problem of such a flat-variable equation is
clearly in NP. Now suppose, moreover, that the database schema S is also flat; then
S ∪ X (the expansion of S with the relation variables of the equation) is an entirely
flat schema. Of course, the equation e1 = e2 is still in general in the nested relational
algebra; i.e., e1 and e2 can contain ν and µ operators. A result by Paredaens and
Van Gucht [PVG92], however, implies that the nested relational algebra condition
e1 = e2 can also be expressed in the form e �= ∅, with e a flat relational algebra ex-
pression. The nonemptiness problem of the equation thus amounts to asking whether
{(X1, . . . , Xp) | e �= ∅} is nonempty on a given database B over S. Equivalently, we
ask whether the existential second-order logic (∃SO) sentence ∃X1 . . .∃Xp ϕe is true
on B, where ϕe is a first-order logic sentence expressing that e �= ∅. Moreover, by
the equivalence of relational algebra and first-order logic, any ∃SO property can be
obtained in this way. Now, Fagin’s theorem [Fag74, EF95] states that ∃SO captures
exactly the NP properties of flat relational databases. Hence, the class of nonempti-
ness problems of flat-variable equations over flat database schemas is exactly the class
of NP properties of flat relational databases.

What if S is not necessarily flat? We next show that we still get exactly NP. In
essence, this is an extension of Fagin’s theorem to nested relational databases.

Proposition 6.1. Every property of nested relational databases over some fixed
schema S that is in NP and closed under isomorphism corresponds to the nonempti-
ness problem of some flat-variable equation over S.

Proof. The crux is a representation of nested relational databases by “pseudoflat”
ones, also used by Gyssens, Suciu, and Van Gucht [GSVG01]. Given a nested rela-
tional database B, we define its extended domain, denoted by edom(B), as the union
of its finite domain of atomic values with the set of all relations occurring (possibly
deeply nested) in B. We regard the relations in the extended domain as if they were
atomic values. Now for any nested relational database schema S we can construct a
flat one S̄, together with a mapping rep from the set of databases over S̄ onto the set
of databases over S, expressible in the nested relational algebra. The details of this
mapping need not concern us here. Important is that we can furthermore construct
a converse mapping flat from the set of databases over S to the set of databases
over S̄, also expressible in the nested relational algebra, with the following properties
for each database B over S: (1) the finite domain of flat(B) equals edom(B); and
(2) rep(flat(B)) = B. Note that while flat is expressed in the nested relational alge-
bra, the result flat(B) is not really a flat database, because of the nested relations in
the extended domain. However, it is “pseudoflat,” in the sense that we regard these
relations as if they were atomic values. For any relation name R of S̄, we denote the
nested relational algebra expression defining the R-component of the mapping flat by
flatR. Likewise, we denote the expression defining the D-component by flatD.

Given this representation, the proof is straightforward. Let L be an NP property
of databases over S, closed under isomorphism. Define the property L̄ of databases
over S̄ as follows: F satisfies L̄ if rep(F ) satisfies L. Then L̄ is in NP and is also closed
under isomorphism. Hence, Fagin’s theorem gives us an ∃SO sentence ∃X1 . . .∃Xp ϕ
over S̄ expressing L̄. By the equivalence of relational algebra and first-order logic,
there is a flat relational algebra expression e over S̄ ∪ {X1, . . . , Xp} such that the
first-order logic sentence ϕ is equivalent to e �= ∅. Now modify e as follows: for every
relation name R of S̄, replace every occurrence of R in e by flatR. Likewise, replace
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every occurrence of D in e by flatD. Denote the resulting nested relational algebra
expression by e′.

We now have, for any database B over S, that B satisfies L if and only if
∃X1 . . . Xp e

′ �= ∅ is true on B. The condition e′ �= ∅ can easily be written as
an equation (cf. Remark 3.3).

We are now ready to turn to sparse equations. Their nonemptiness problem is
not just in NP, but actually in the complexity class FewP [All86], consisting of all
problems that can be decided by a polynomial-time nondeterministic Turing machine
that has at most polynomially many accepting computations on each input. Clearly,
P ⊆ FewP ⊆ NP, but the strictness of these inclusions remains open.

The obvious question to ask is whether Proposition 6.1 remains true if we focus
on sparse equations, and replace “NP” by “FewP.” The answer is an easy “yes,” but
then we must restrict our attention to ordered databases: databases that include a
total order on their finite domain as one of their relations.

Proposition 6.2. Every property of ordered nested relational databases over
some fixed schema S that is in FewP and closed under isomorphism corresponds to
the nonemptiness problem of some sparse equation over S, when restricted to ordered
databases only.

Proof. The usual proof of Fagin’s theorem immediately yields the case where S is
flat. Indeed, in that proof, to express an NP property decided by some polynomial-
time bounded nondeterministic Turing machine M , one writes an ∃SO sentence
∃X1∃X2 . . .∃Xp ϕ, where X1 stands for an order on the domain, X2, . . . , Xp encode
(using the order in X1) a computation of M , and ϕ checks whether the computation
is accepting. As we are dealing with a FewP property, M has only polynomially
many accepting computations. Hence, the equation {(X1, . . . , Xp) | ϕ} would be
sparse, were it not for X1, as there are exponentially many possible orders on a finite
domain. On ordered databases, however, there is no need for X1, and we obtain a
genuinely sparse equation.

This is for flat databases; for general nested relational databases we use the same
representation technique as in the proof of Proposition 6.1.

As a corollary we get the following.
Corollary 6.3. There exists a sparse equation whose nonemptiness problem is

NP-complete, if and only if FewP = NP.

7. Sparse equations versus sparse powerset expressions. Naturally, we
call an equation algebra expression sparse if all equations occurring in it are sparse.
Inspired by Proposition 5.4, we can also define a sparsity condition on powerset algebra
expressions: call a powerset algebra expression sparse if its natural evaluation strategy
(defined in the obvious way) runs in polynomial space.

Remark 7.1. Using standard techniques, one can show that sparsity is unde-
cidable for equation algebra expressions as well as powerset algebra expressions. An
interesting question, raised by an anonymous referee, is whether one can give useful
syntactic restrictions that guarantee sparsity. Ideally every sparse expression would
be equivalent to one satisfying the syntactic restrictions.

Suciu and Paredaens [SP97] showed that transitive closure of a flat binary relation
is not expressible by a sparse powerset expression. In Example 4.3, we gave an obvious
equation algebra expression for transitive closure, but that expression was not sparse.
We can do better, as in the following.

Proposition 7.2. Transitive closure of a flat relation is expressible by a sparse
equation algebra expression.
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Proof. Given a binary relation R and a natural number n � 1, we define the
relation Rn as R ◦ · · · ◦ R (n times R), where ◦ is the classical composition operator
of binary relations: S ◦ T = π1,4σ2=3(S × T ). Further, define R�n as

⋃n
i=1R

i, and
define R=n as Rn − R�n−1. Note that R�|R| equals the transitive closure of R, and
that for n > |R|, R�n = R�|R|.

Now consider the following 6-ary relation Run:

Run :=

|R|⋃
i=1

R�i ×R�i+1 ×R=i+1.

We show next that there is an equation whose only solution, given R, is Run.
This proves the proposition, because all we then have to do is unnest the solution
set and project on the middle two columns to get the transitive closure. (The only
exception is when Run is empty, in which case the transitive closure of R is R itself,
but this can also easily be tested in the nested relational algebra.)

The desired equation expresses the conjunction of the following conditions on
relation variable X:

1. For any pair (x5, x6) ∈ π5,6(X), we denote the relation

{(x1, x2, x3, x4) | (x1, . . . , x6) ∈ X}

by X̃(x5, x6), and denote further

X̂(x5, x6) := π1,2(X̃(x5, x6)) and

X̌(x5, x6) := π3,4(X̃(x5, x6)).

Then for every (x, y) ∈ π5,6(X) we must have

(a) X̃(x, y) = X̂(x, y)× X̌(x, y);
(b) X̂(x, y) ⊇ R;
(c) X̌(x, y) = X̂(x, y) ∪ X̂(x, y) ◦R; and
(d) (x, y) ∈ X̌(x, y)− X̂(x, y).
(e) Furthermore, every pair (x′, y′) in difference (d) above belongs to π5,6(X),

with X̂(x′, y′) = X̂(x, y) (and thus also X̌(x′, y′) = X̌(x, y)).
2. R=2 ⊆ π5,6(X), and for every (x, y) ∈ R=2 we have X̂(x, y) = R.
3. For every (x, y) ∈ π5,6(X) such that X̌(x, y) ◦ R − X̌(x, y) �= ∅, there exists

a pair (x′, y′) ∈ π5,6(X) with X̂(x′, y′) = X̌(x, y).

4. For every (x, y) ∈ π5,6(X) such that X̂(x, y) �= R, there exists a pair (x′, y′) ∈
π5,6(X) with X̌(x′, y′) = X̂(x, y).

The conjunction of the above conditions expresses that X equals Run. Indeed,
by (2), (1c), and (1a) we know that R�1×R�2×R=2 ⊆ X. By induction and by (3),
(1c), (1e), and (1a) we know that R�i × R�i+1 × R=i+1 ⊆ X and hence Run ⊆ X.
Moreover, for every (x, y) ∈ R=i+1 we have {(x1, y1, x2, y2) | (x1, y1, x2, y2, x, y) ∈
X} = R�i × R�i+1. On the other hand, if (x, y) ∈ π5,6(X), then X̂(x, y) = R,

in which case (x, y) ∈ R=2 by (1c) and (1d), or X̂(x, y) �= R, in which case we
know by induction and by (4) and (1b) that (x, y) ∈ R=i+1 for some i. This proves
X = Run.

Remark 7.3. The equation constructed in the above proof is not only sparse,
it is unambiguous: it has a unique solution on each input database. Moreover, the
same proof works more generally for any fixpoint query [AHV95] on flat databases.
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The only difficulty is that fixpoint queries start from the empty relation, while in
our proof of Proposition 7.2 we start from R, but that is easily dealt with. As
already explained in the Introduction, we thus basically rediscovered an earlier result
by Kolaitis to the effect that every fixpoint query is implicitly definable in first-order
logic [Kol90]. But note the directness of our proof, straightforwardly specifying the
run of the fixpoint computation in an unambiguous way. The original proof (also
presented by Ebbinghaus and Flum [EF95]) is a bit more roundabout, specifying the
“stage comparison” relation instead.

Another, perhaps a bit frivolous, example of a query that is expressible using
sparse equations but not using sparse powerset expressions is the nesting operator ν.
It is easy to express ν in the powerset algebra using the powerset operator and the
other operators, but not ν itself; so ν is not primitive in the powerset algebra. As a
consequence (Proposition 4.4), ν is not primitive in the equation algebra either. We
next observe that when we restrict our analysis to sparse expressions, nesting remains
imprimitive in the equation algebra, but becomes primitive again in the powerset
algebra.

Proposition 7.4. Nesting is not expressible by a sparse powerset expression
without using the ν operator itself.

Proof. Suppose we want to express nesting of a flat binary relation R. The first
application of the powerset operator is to the result of a flat relational algebra ex-
pression e applied to R. Let us focus on the case where R is the identity relation on
a finite domain of n elements. A straightforward argument by structural induction
shows that, on identity relations, every relational algebra expression is equivalent to
a finite disjunction of equality types. Here, an equality type is a maximally consis-
tent conjunction of equalities xi = xj and nonequalities xi �= xj over the variables
x1, . . . , xk, where k is the output arity of e. We thus see that either e(R) is empty on
all such R (this is when the disjunction is empty), or e(R) is of size at least n when
n is at least k. In the empty case, the powerset operator is useless, and we continue
to the next application of powerset. Otherwise, the powerset operator explodes, and
the overall expression is not sparse.

Proposition 7.5. Nesting is expressible by a sparse equation algebra expression
without using the ν operator itself.

Proof. Let R be a relation name of type (0, 0), and let X and Y be relation
variables of type (0). We can write a relational algebra expression e such that on any
database C over {R,X, Y }, e(C) is empty if and only if X is a singleton {x} with
x ∈ π1(R), and Y = {y | (x, y) ∈ R}. An example of an e that works is (∆ stands for
symmetric difference)

π1σ1 �=2(X ×X) ∪ (X − π1(R)) ∪ (Y ∆ π3σ1=2(X ×R)).

Hence, the expression

µ1

({(X,Y ) | e = ∅})
is a sparse equation algebra expression equivalent to ν2(R).

The construction for general nesting operations is analogous.
Our final, and main technical, contribution concerns the parity query. Suciu and

Paredaens showed that the parity of the cardinality of a finite set is not expressible
by a sparse powerset expression. We show the analogue for the equation algebra as
follows.
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Proposition 7.6. The parity query is not expressible by a sparse equation algebra
expression.

Proof. Suppose, to the contrary, that we have a sparse equation algebra expression
to express the parity of the cardinality of a finite domain D. We may assume that the
input schema is empty; i.e., an input database consists ofD and nothing else. Consider
an innermost equation E0 occurring in our expression. It may be nested inside other
equations E1, . . . , Ek, enumerated from the inside to the outside. By Remark 3.3, for
each j ∈ {0, . . . , k}, Ej can be written in the form {(Xj

1 , . . . , X
j
ij

) | ej �= ∅}, for some

ij , where ej is a flat relational algebra expression over the flat schema {Xj
1 , . . . , X

j
ij
}

possibly expanded with certain free variables X l
m, where l > j and m ≤ il.

By our assumption, there are at most polynomially many solutions to equation
Ek. For each solution Ak of Ek there are at most polynomially many solutions Ak−1

of ek−1 and so on. A sequence Ā = (Ak, . . . , A0) of databases is a solution vector
for E0 if Ak is a solution for Ek, and each Aj , j < k, is a solution for Ej , given
Ak, . . . , Aj+1.

Now let Ā = (Ak, . . . , A0) be a solution vector for E0, given an input D of size
n. Then for every permutation f of D, f(Ā) = (f(Ak), . . . , f(A0)) is also a solution
vector for E0. The number of different such f(Ā) is precisely n!/|Aut(Ā)|, where
Aut(Ā) is the group of automorphisms of Ā. Since all equations are supposed to be
sparse, this number is at most n� for some fixed �, or, equivalently, |Aut(Ā)| � n!/n�.
Setting k = �+ 1, this implies |Aut(Ā)| � (n− k)! for sufficiently large n.

We thus need to know more about large permutation groups. The following
crucial lemma will give us the information we need. The group of permutations of a
finite set D is denoted by Sym(D), and its alternating subgroup of even permutations
by Alt(D). If G is a subgroup of Sym(D), a fixed set for G is a subset ∆ ⊆ D such
that every g ∈ G maps ∆ to ∆. The action of G on a fixed set ∆ (as a subgroup of
Sym(∆)) is denoted by G∆.

Lemma 7.7. Let k be a fixed natural number. Let G be a subgroup of Sym(D),
|D| = n, n sufficiently large. Then |G| � (n− k)! implies the existence of a fixed set
∆ with |∆| � n− k, such that G∆ contains Alt(∆).

Proof of Lemma 7.7. For background on finite permutation groups, we refer to
Wielandt’s book [Wie64], but here are a few preliminaries. An orbit of a permutation
group G on a set D is a set of the form {g(x) | g ∈ G}, for some x ∈ D. We call G
transitive if D is one single orbit of G. Further, G is called primitive if it is transitive
and has no nontrivial blocks. Here, a block of G is a subset ∆ ⊆ D such that for all
g ∈ G the set g(∆) is either equal to ∆ or disjoint from it. Trivial blocks are ∅, D,
and the singletons. If G is not primitive but transitive, there is always a complete block
system which partitions D into equal-sized nontrivial blocks. We recall the following.

Bochert’s Theorem (1889). Let G be primitive on D, not containing Alt(D).
Let |D| = n. Then |G| � n!/	n/2
!.

For the proof of the lemma, first assume that G is transitive. There are two
possibilities:

1. G is imprimitive with, say, b blocks of size a (a > 1, b > 1, ab = n). Then
|G| � b! (a!)b, which in turn is at most 2(�n/2�!)2 for n sufficiently large.
Thus, by what is given about |G|,

(n− k)! � 2(�n/2�!)2.(7.1)

However, this is impossible for n sufficiently large.
2. G is primitive. Then, unless G contains Alt(D) (in which case the lemma is
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proved), by Bochert’s theorem,

(n− k)! � n!

	n/2
! .(7.2)

Again, this is impossible for n sufficiently large.
Now assume G is intransitive. Let ∆ be an orbit of G of maximal size; let � � 1 be

such that the size of ∆ equals n− �. We have |G| � (n− �)! �!. Suppose � > k. Then
(n−�)! �! reaches its maximum at � = k+1. Hence, (n−k)! � |G| � (n−k−1)! (k+1)!,
and thus n− k � (k + 1)!, which is impossible for large enough n.

Thus, � � k, or in other words, the size of ∆ is at least n − k. We have |G| �
�! |G∆| � k! |G∆|, and so |G∆| � (n − k)!/k!. By definition, G∆ is transitive on ∆.
We can now apply the same arguments as in the case “G is transitive” above, for G∆

instead of G, and get that G∆ must contain Alt(∆). Indeed, in the right-hand sides of
inequalities (7.1) and (7.2), n now becomes n− �, which has for effect that the upper
bounds become smaller. Hence, as these inequalities already were impossible, they
now become even more impossible. The extra factor of 1/k! in the left-hand sides
does not have a significant influence.

Invoking this lemma for G = Aut(Ā), we get a fixed set ∆ of size at least n − k
such that any even permutation of ∆ can be extended to an automorphism of Ā.

Now let X be one of the relation variables of an equation Ej , of arity, say, r, and
consider any r-tuple t whose components either are the symbol ∗ or are in D − ∆.
Let r′ be the number of components that are the symbol ∗. Further, let ξ be an
equality type of r′-tuples. Denote by NeighborsĀX(t, ξ) the set of r′-tuples over ∆ of
equality type ξ such that, if we replace the ∗-components of t by the components of
the r′-tuple (from left to right), we get a tuple in XĀ.

Claim 7.8. NeighborsĀX(t, ξ) either is empty or consists of all r′-tuples over ∆
of equality type ξ.

Proof of Claim 7.8. Suppose to the contrary that N := NeighborsĀX(t, ξ) is neither
empty nor full. Take h1 in N , and take h2 (of arity r′ and of type ξ) not in N . Take
two arbitrary elements from ∆ that appear neither in h1 nor in h2, and remove them
from ∆, resulting in ∆′. Take a third tuple h3 (of the right arity and type) over ∆′,
and disjoint from h1 and h2. If h3 is in N , initialize the set I to {h2, h3}; otherwise,
set I := {h1, h3}. Now complete I to a maximal set of pairwise disjoint r′-tuples over
∆′ of equality type ξ. There are at least (n− k − 2)/r′ tuples in I.

Assume that at least half of I is outside N ; denote the set of these by I ′. (The
case where at least half of I is in N is symmetric.) Fix an h ∈ I ∩N . For each tuple s
in I ′, we consider the permutation 
s that transposes s and h and leaves everything
else fixed. If 
s happens to be odd, we make it even by adding the transposition
of the two dummy elements we took out of ∆ (when we defined ∆′). Then each set

s(N) contains s but does not contain any other tuples from I ′. Thus, we produce
in this way at least f(n) := (n − k − 2)/2r′ different sets of r′-tuples over ∆. Since
they are even, each 
s can be extended to an automorphism. Hence, each of the f(n)
sets must be the NeighborsĀX(t′, ξ) of some t′. However, there are less than (k + 1)r

different possibilities for t′, while f(n) is larger than (k + 1)r for n sufficiently large.
Thus we get to the desired contradiction.

We call (t, ξ) an r-ary pattern. If NeighborsĀX(t, ξ) is nonempty (and thus full), we

say that the pattern is instantiated in XĀ. Note also that the extreme cases, where
t consists exclusively of stars or where t has no star at all, are also allowed and make
sense.
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By the above, we thus see that any solution vector Ā can be generated by the
following nondeterministic procedure:

1. Initialize all relations of Ā to empty.
2. Choose at most k different elements from D, playing the role of the elements

outside ∆.
3. For every relation variable X (of arity r, say), run through all r-ary patterns,

and for each of them, choose nondeterministically to instantiate it in XĀ or
not.

Since k and the number of relation variables are fixed, the number of possible patterns
is also fixed. Hence, we can write an expression in the nested relational algebra that,
given D, constructs the set of all possible vectors Ā of the above nondeterministic
procedure. This set is a superset of the actual set of solution vectors for E0. Equation
E0 can now be replaced by a nested relational algebra expression which (1) constructs
the set of solution candidates Ā, (2) projects out the relations for X0

1 , . . . , X
0
i0

, and
(3) selects those relations which fulfil E0. The latter is an easy task for the nested
relational algebra [GVG].

Hence, we can get rid of E0. Repeating this process, we can get rid of all equations,
so that in the end we are left with a standard nested relational algebra expression for
the parity query. But this is well known to be impossible [AHV95, PVG92].

Remark 7.9. Note that we have actually shown that over the empty schema,
where databases consist of a finite domain and nothing else, the sparse equation
algebra is no more powerful than the standard relational algebra. As a matter of
fact, the proof can easily be generalized to apply also to schemas having only relation
names of type (0).

Acknowledgment. We are indebted to László Babai, who pointed us to Liebeck’s
paper.
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Abstract. We consider quantum versions of two well-studied models of learning Boolean func-
tions: Angluin’s model of exact learning from membership queries and Valiant’s probably approx-
imately correct (PAC) model of learning from random examples. For each of these two learning
models we establish a polynomial relationship between the number of quantum or classical queries
required for learning. These results contrast known results that show that testing black-box functions
for various properties, as opposed to learning, can require exponentially more classical queries than
quantum queries. We also show that, under a widely held computational hardness assumption (the
intractability of factoring Blum integers), there is a class of Boolean functions which is polynomial-
time learnable in the quantum version but not the classical version of each learning model. For the
model of exact learning from membership queries, we establish a stronger separation by showing that
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1. Introduction.

1.1. Motivation. In recent years many researchers have investigated the power
of quantum computers which can query a black-box oracle for an unknown function
[1, 5, 6, 9, 14, 10, 11, 15, 17, 20, 21, 24, 40, 46]. The broad goal of research in this
area is to understand the relationship between the number of quantum or classical
oracle queries which are required to answer various questions about the function
computed by the oracle. For example, a well-known result due to Deutsch and Jozsa
[17] shows that exponentially fewer queries are required in the quantum model in
order to determine with certainty whether a black-box oracle computes a constant
Boolean function or a function which is balanced between outputs 0 and 1. More
recently, several researchers have studied the number of quantum oracle queries which
are required to determine whether the function computed by a black-box oracle is
identically zero [5, 6, 9, 15, 24, 46].

A natural question which arises in this framework is the following: what is the
relationship between the number of quantum and classical oracle queries which are
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required in order to exactly identify the function computed by a black-box oracle? Here
the goal is not to determine whether a black-box function satisfies some particular
property, such as ever taking a nonzero value, but rather to precisely identify an
unknown black-box function from some restricted class of possible functions. The
classical version of this problem has been well studied in the computational learning
theory literature [2, 12, 22, 26, 27] and is known as the problem of exact learning from
membership queries. The question stated above can thus be rephrased as follows:
what is the relationship between the number of quantum or classical membership
queries which are required for exact learning? We answer this question in this paper.

In addition to the model of exact learning from membership queries, we also
consider a quantum version of Valiant’s widely studied PAC (probably approximately
correct) learning model, which was introduced by Bshouty and Jackson [13]. While a
learning algorithm in the classical PAC model has access to labeled examples drawn
from some fixed probability distribution, a learning algorithm in the quantum PAC
model has access to some fixed quantum superposition of labeled examples. Bshouty
and Jackson gave a polynomial-time algorithm for a particular learning problem in
the quantum PAC model, but did not address the general relationship between the
number of quantum versus classical examples which are required for PAC learning.
We answer this question as well.

1.2. Our results. We show that in an information-theoretic sense, quantum
and classical learning are equivalent up to polynomial factors: for both the model
of exact learning from membership queries and the PAC model, there is no learning
problem which can be solved using significantly fewer quantum queries than classical
queries. More precisely, our first main theorem is the following.

Theorem 1. Let C be any class of Boolean functions over {0, 1}n, and let D and
Q be such that C is exact learnable from D classical membership queries or from Q
quantum membership queries. Then D = O(nQ3).

Our second main theorem is an analogous result for quantum versus classical PAC
learnability.

Theorem 2. Let C be any class of Boolean functions over {0, 1}n, and let D
and Q be such that C is PAC learnable from D classical examples or from Q quantum
examples. Then D = O(nQ).

These results draw on lower bound techniques from both quantum computation
and computational learning theory [2, 5, 6, 8, 12, 26]. A detailed description of the
relationship between our results and previous work on quantum versus classical black-
box query complexity is given in section 3.4.

Theorems 1 and 2 are information-theoretic rather than computational in nature;
they show that for any learning problem, if there is a quantum learning algorithm
which uses polynomially many examples, then there must also exist a classical learn-
ing algorithm which uses polynomially many examples. However, Theorems 1 and
2 do not imply that every polynomial-time quantum learning algorithm must have a
polynomial-time classical analogue. In fact, we show that a separation exists between
efficient quantum learnability and efficient classical learnability. Under a widely held
computational hardness assumption for classical computation (the hardness of factor-
ing Blum integers), we observe that for each of the two learning models considered in
this paper there is a concept class which is polynomial-time learnable in the quantum
version but not in the classical version of the model.

For the model of exact learning from membership queries we give an even stronger
separation between efficient quantum and classical learnability. Our third main the-
orem is the following.
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Theorem 3. If any one-way function exists, then there is a concept class C
which is polynomial-time exact learnable from quantum membership queries but is not
polynomial-time exact learnable from classical membership queries.

This result establishes a robust separation between efficient quantum and classical
learnability. Even if a polynomial-time classical factoring algorithm were to be discov-
ered, the separation would hold as long as any one-way function existed (a universally
held belief in public-key cryptography). As discussed in section 9, our results prove
the existence of a quantum oracle algorithm which defeats a general cryptographic
construction secure in the classical setting. More precisely, given any one-way func-
tion, we construct a family of pseudorandom functions which are classically secure
but can be distinguished from truly random functions (and in fact exactly identified)
by an algorithm that can make quantum oracle queries. To our knowledge, this is the
first break of a generic cryptographic construction (not based on a specific assumption
such as factoring) in a quantum setting.

The main cryptographic tool underlying Theorem 3 is a new construction of
pseudorandom functions which are invariant under an XOR mask (see section 7).
As described in section 8.1, each concept c ∈ C combines these new pseudorandom
functions with pseudorandom permutations in a particular way. Roughly speaking,
the XOR mask invariance of the new pseudorandom functions ensures that a quantum
algorithm due to Simon [40] can be used to extract some information about the
structure of the target concept and thus make progress towards learning. On the other
hand, the pseudorandomness ensures that no probabilistic polynomial-time learning
algorithm can extract any useful information, and thus no such algorithm can learn
successfully.

1.3. Organization. We set notation, define the exact learning model and the
PAC learning model, and describe the quantum computation framework in section
2. We prove the relationship between quantum and classical exact learning from
membership queries (Theorem 1) in section 3, and we prove the relationship between
quantum and classical PAC learning (Theorem 2) in section 4. In section 5 we observe
that if factoring Blum integers is classically hard, then in each of these two learning
models there is a concept class which is quantum learnable in polynomial time but not
classically learnable in polynomial time. We prove Theorem 3 in sections 6 through
8.

2. Preliminaries. For α, β ∈ {0, 1} we write α⊕β to denote the exclusive-or
α + β (mod 2). Similarly for x, y ∈ {0, 1}n we write x⊕y to denote the n-bit string
that is the bitwise XOR of x and y. We write x · y to denote the inner product
x1y1 + · · · + xnyn (mod 2), and we write |x| to denote the length of string x.

We use script capital letters to denote probability distributions over sets of func-
tions; in particular, Fn denotes the uniform distribution over all 2n2n

functions from
{0, 1}n to {0, 1}n. If S is a finite set, we write Prs∈S to denote a uniform choice of s
from S.

We write M(s) to indicate that algorithm M is given string s as input, and Mg

to indicate that M has access to an oracle for the function g. If M is a probabilistic
polynomial-time (henceforth abbreviated p.p.t.) algorithm which has access to an
oracle g : {0, 1}�1 → {0, 1}�2 , then the running time of Mg is bounded by p(�1 + �2)
for some polynomial p.

A concept c over {0, 1}n is a Boolean function over the domain {0, 1}n, or equiv-
alently a concept can be viewed as a subset {x ∈ {0, 1}n : c(x) = 1} of {0, 1}n. A
concept class C = ∪n≥1Cn is a collection of concepts, where Cn = {c ∈ C : c is a
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concept over {0, 1}n}. For example, Cn might be the family of all Boolean formulae
over n variables which are of size at most n2. We say that a pair 〈x, c(x)〉 is a labeled
example of the concept c.

While many different learning models have been proposed, most models follow
the same basic paradigm: a learning algorithm for a concept class C typically has
access to some kind of oracle which provides examples that are labeled according to
a fixed but unknown target concept c ∈ C, and the goal of the learning algorithm
is to infer (in some sense) the target concept c. The two learning models which we
discuss in this paper, the model of exact learning from membership queries and the
PAC model, make this rough notion precise in different ways.

2.1. Classical exact learning from membership queries. The model of
exact learning from membership queries was introduced by Angluin [2] and has since
been widely studied [2, 12, 22, 26, 27]. In this model the learning algorithm has access
to a membership oracle MQc, where c ∈ Cn is the unknown target concept. When
given an input string x ∈ {0, 1}n, in one time step the oracle MQc returns the bit
c(x); such an invocation is known as a membership query since the oracle’s answer
tells whether or not x ∈ c (viewing c as a subset of {0, 1}n). The goal of the learning
algorithm is to construct a hypothesis h : {0, 1}n → {0, 1} that is logically equivalent
to c, i.e., h(x) = c(x) for all x ∈ {0, 1}n. Formally, we say that an algorithm A is
an exact learning algorithm for C using membership queries if for all n ≥ 1, for all
c ∈ Cn, if A is given n and access to MQc, then with probability at least 2/3 (over
the internal randomness of A) algorithm A outputs a Boolean circuit h such that
h(x) = c(x) for all x ∈ {0, 1}n. The sample complexity T (n) of a learning algorithm
A for C is the maximum number of calls to MQc which A ever makes for any c ∈ Cn.

2.2. Classical PAC learning. The PAC model of concept learning was intro-
duced by Valiant in [41] and has since been extensively studied [4, 29]. In this model
the learning algorithm has access to an example oracle EX(c,D), where c ∈ Cn is the
unknown target concept and D is an unknown distribution over {0, 1}n. The oracle
EX(c,D) takes no inputs; when invoked, in one time step it returns a labeled example
〈x, c(x)〉, where x ∈ {0, 1}n is randomly selected according to the distribution D. The
goal of the learning algorithm is to generate a hypothesis h : {0, 1}n → {0, 1} that is an
ε-approximator for c under D, i.e., a hypothesis h such that Prx∈D[h(x) �= c(x)] ≤ ε.
An algorithm A is a PAC learning algorithm for C if the following condition holds: for
all n ≥ 1 and 0 < ε, δ < 1, for all c ∈ Cn, for all distributions D over {0, 1}n, if A is
given n, ε, δ and access to EX(c,D), then with probability at least 1− δ algorithm A
outputs a circuit h which is an ε-approximator for c under D. The sample complexity
T (n, ε, δ) of a learning algorithm A for C is the maximum number of calls to EX(c,D)
that A ever makes for any concept c ∈ Cn and any distribution D over {0, 1}n.

2.3. Quantum computation. Detailed descriptions of the quantum computa-
tion model can be found in [7, 16, 31, 45]; here we outline only the basics using the
terminology of quantum networks as presented in [5]. A quantum network N is a
quantum circuit (over some standard basis augmented with one oracle gate) that acts
on an m-bit quantum register; the computational basis states of this register are the
2m binary strings of length m. A quantum network can be viewed as a sequence of
unitary transformations

U0, O1, U1, O2, . . . , UT−1, OT , UT ,
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where each Ui is an arbitrary unitary transformation on m qubits and each Oi is
a unitary transformation which corresponds to an oracle call.1 Such a network is
said to have query complexity T. At every stage in the execution of the network, the
current state of the register can be represented as a superposition

∑
z∈{0,1}m αz|z〉,

where the αz are complex numbers that satisfy
∑

z∈{0,1}m ‖αz‖2 = 1. If this state is

measured, then with probability ‖αz‖2 the string z ∈ {0, 1}m is observed and the state
collapses down to |z〉. After the final transformation UT takes place, a measurement
is performed on some subset of the bits in the register, and the observed value (a
classical bit string) is the output of the computation.

Several points deserve mention here. First, since the information which our quan-
tum network uses for its computation comes from the oracle calls, we may stipulate
that the initial state of the quantum register is |0m〉. Second, as described above, each
Ui can be an arbitrarily complicated unitary transformation (as long as it does not
contain any oracle calls) which may require a large quantum circuit to implement.
This is of small concern since we are chiefly interested in query complexity and not
circuit size. Third, as defined above, our quantum networks can make only one mea-
surement at the very end of the computation; this is an inessential restriction since
any algorithm which uses intermediate measurements can be modified to an algorithm
which makes only one final measurement. Finally, we have not specified just how the
oracle calls Oi work; we address this point separately in sections 3.1 and 4.1 for each
type of oracle.

If |φ〉 =
∑

z αz|z〉 and |ψ〉 =
∑

z βz|z〉 are two superpositions of basis states, then
the Euclidean distance between |φ〉 and |ψ〉 is ||φ〉−|ψ〉| = (

∑
z |αz−βz|2)1/2. The total

variation distance between two distributions D1 and D2 is defined to be
∑

x |D1(x)−
D2(x)|. The following fact (Lemma 3.2.6 of [7]), which relates the Euclidean distance
between two superpositions and the total variation distance between the distributions
induced by measuring the two superpositions, will be useful.

Fact 1. Let |φ〉 and |ψ〉 be two unit-length superpositions which represent possible
states of a quantum register. If the Euclidean distance ||φ〉 − |ψ〉| is at most ε, then
performing the same observation on |φ〉 and |ψ〉 induces distributions Dφ and Dψ,
which have total variation distance at most 4ε.

3. Exact learning from quantum membership queries.

3.1. Quantum membership queries. A quantum membership oracle QMQc

is the natural quantum generalization of a classical membership oracle MQc: on in-
put of a superposition of query strings, the oracle QMQc generates the corresponding
superposition of example labels. More formally, a QMQc gate maps the basis state
|x, b〉 (where x ∈ {0, 1}n and b ∈ {0, 1}) to the state |x, b⊕c(x)〉. If N is a quantum
network which has QMQc gates as its oracle gates, then each Oi is the unitary trans-
formation which maps |x, b, y〉 (where x ∈ {0, 1}n, b ∈ {0, 1} and y ∈ {0, 1}m−n−1) to
|x, b⊕c(x), y〉.2 Our QMQc oracle is identical to the well-studied notion of a quantum
black-box oracle for c [5, 6, 7, 9, 10, 11, 15, 17, 24, 46].

A quantum exact learning algorithm for C is a family N1,N2, . . . of quantum
networks, where each network Nn has a fixed architecture independent of the choice
of c ∈ Cn, with the following property: for all n ≥ 1, for all c ∈ Cn, if the oracle gates
of Nn are instantiated as QMQc gates, then with probability at least 2/3 the network

1Since there is only one kind of oracle gate, each Oi is the same transformation.
2Note that each Oi affects only the first n + 1 bits of a basis state. This is without loss of

generality since the transformations Uj can “permute bits” of the network.
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Nn outputs a representation of a (classical) Boolean circuit h : {0, 1}n → {0, 1} such
that h(x) = c(x) for all x ∈ {0, 1}n. The quantum sample complexity of a quantum
exact learning algorithm for C is T (n), where T (n) is the query complexity of Nn.

3.2. Lower bounds on classical and quantum exact learning. Two dif-
ferent lower bounds are known for the number of classical membership queries which
are required to exact learn any concept class. In this section we prove two analogous
lower bounds on the number of quantum membership queries required to exactly learn
any concept class. Throughout this section for ease of notation we omit the subscript
n and write C for Cn.

A lower bound based on similarity of concepts. Consider a set of concepts which
are all “similar” in the sense that for every input almost all concepts in the set agree.
Known results in learning theory state that such a concept class must require a large
number of membership queries for exact learning. More formally, let C ′ ⊆ C be any
subset of C. For a ∈ {0, 1}n and b ∈ {0, 1} let C ′

〈a,b〉 denote the set of those concepts in

C ′ which assign the label b to example a, i.e., C ′
〈a,b〉 = {c ∈ C ′ : c(a) = b}. Let γC

′
〈a,b〉 =

|C ′
〈a,b〉|/|C ′| be the fraction of such concepts in C ′, and let γC

′
a = min{γC′

〈a,0〉, γ
C′
〈a,1〉};

thus γC
′

a is the minimum fraction of concepts in C ′ which can be eliminated by
querying MQc on the string a. Let γC

′
= max{γC′

a : a ∈ {0, 1}n}. Finally, let γ̂C be
the minimum of γC

′
across all C ′ ⊆ C such that |C ′| ≥ 2. Thus

γ̂C = min
C′⊆C,|C′|≥2

max
a∈{0,1}n

min
b∈{0,1}

|C ′〈a,b〉|
|C ′| .

Intuitively, the inner min corresponds to the fact that the oracle may provide a worst-
case response to any query; the max corresponds to the fact that the learning algo-
rithm gets to choose the “best” query point a; and the outer min corresponds to the
fact that the learner must succeed, no matter what subset C ′ of C the target concept
is drawn from. Thus γ̂C is small if there is a large set C ′ of concepts which are all
very similar in that any query eliminates only a few concepts from C ′. If this is the
case, then many membership queries should be required to learn C; formally, we have
the following lemma, which is a variant of Fact 2 from [12].

Lemma 4. Any (classical) exact learning algorithm for C must have sample

complexity Ω(1/γ̂C).
Proof. Let C ′ ⊆ C, |C ′| ≥ 2, be such that γC

′
= γ̂C . Consider the following

adversarial strategy for answering queries: given the query string a, answer the bit b
which maximizes γC

′
〈a,b〉. This strategy ensures that each response eliminates at most a

γC
′

a ≤ γC
′
= γ̂C fraction of the concepts in C ′.After 1

2γ̂C −1 membership queries, fewer

than half of the concepts in C ′ have been eliminated, so at least two concepts have
not yet been eliminated. Consequently, it is impossible for A to output a hypothesis
which is equivalent to the correct concept with probability greater than 1/2.

We now develop some tools which will enable us to prove a quantum version
of Lemma 4. Let C ′ ⊆ C, |C ′| ≥ 2, be such that γC

′
= γ̂C , and let c1, . . . , c|C′|

be a listing of the concepts in C ′. Let the typical concept for C ′ be the function
ĉ : {0, 1}n → {0, 1} defined as follows: for all a ∈ {0, 1}n, ĉ(a) is the bit b such that
|C ′

〈a,b〉| ≥ |C ′|/2. (Ties are broken arbitrarily; note that a tie occurs only if γ̂C = 1/2.)

The typical concept ĉ need not belong to C ′ or even to C. The difference matrix D is
the |C ′| × 2n zero/one matrix where rows are indexed by concepts in C ′, columns are
indexed by strings in {0, 1}n, and Di,x = 1 iff ci(x) �= ĉ(x). By our choice of C ′ and
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the definition of γ̂C , each column of D has at most |C ′| · γ̂C ones, so the L1 matrix
norm of D is ‖D‖1 ≤ |C ′| · γ̂C .

Our quantum lower bound proof uses ideas which were first introduced by Bennett
et al. [6]. Let N be a fixed quantum network architecture and let U0, O1, . . . , UT−1,
OT , UT be the corresponding sequence of transformations. For 1 ≤ t ≤ T let |φct〉
be the state of the quantum register after the transformations up through Ut−1 have
been performed (we refer to this stage of the computation as time t) if the oracle gate
is QMQc. As in [6], for x ∈ {0, 1}n let qx(|φct〉), the query magnitude of string x at
time t with respect to c, be the sum of the squared magnitudes in |φct〉 of the basis
states which are querying QMQc on string x at time t; thus if |φct〉 =

∑
z∈{0,1}m αz|z〉,

then

qx(|φct〉) =
∑

w∈{0,1}m−n

‖αxw‖2.

The quantity qx(|φct〉) can be viewed as the amount of amplitude which the net-
work N invests in the query string x to QMQc at time t. Intuitively, the final outcome
of N ’s computation cannot depend very much on the oracle’s responses to queries
which have little amplitude invested in them. Bennett et al. formalized this intuition
in the following theorem [6, Theorem 3.3].

Theorem 5. Let |φct〉 be defined as above. Let F ⊆ {0, . . . , T − 1} × {0, 1}n
be a set of time-string pairs such that

∑
(t,x)∈F qx(|φct〉) ≤ ε2

T . Now suppose that the

answer to each query instance (t, x) ∈ F is modified to some arbitrary fixed bit at,x
(these answers need not be consistent with any oracle). Let |φ̃ct〉 be the state of the
quantum register at time t if the oracle responses are modified as stated above. Then
||φcT 〉 − |φ̃cT 〉| ≤ ε.

The following lemma, which is an extension of Corollary 3.4 from [6], shows
that no quantum learning algorithm that makes few QMQ queries can effectively
distinguish many concepts in C ′ from the typical concept ĉ.

Lemma 6. Fix any quantum network architecture N which has query complexity
T. For all ε > 0 there is a set S ⊆ C ′ of cardinality at most T 2|C ′|γ̂C/ε2 such that
for all c ∈ C ′ \ S we have ||φĉT 〉 − |φcT 〉| ≤ ε.

Proof. Since ||φĉt〉| = 1 for t = 0, 1, . . . , T −1, we have
∑T−1

t=0

∑
x∈{0,1}n qx(|φĉt〉) =

T. Let q(|φĉt〉) ∈ �2n

be the 2n-dimensional vector which has entries indexed by
strings x ∈ {0, 1}n and which has qx(|φĉt〉) as its xth entry. Note that the L1 norm
‖q(|φĉt〉)‖1 is 1 for all t = 0, . . . , T − 1. For any ci ∈ C ′ let qci(|φĉt〉) be defined
as
∑

x:ci(x) 	=ĉ(x) qx(|φĉt〉). The quantity qci(|φĉt〉) can be viewed as the total query
magnitude with respect to ĉ at time t of those strings which distinguish ci from ĉ.
Note that Dq(|φĉt〉) ∈ �|C′| is a |C ′|-dimensional vector whose ith element is pre-
cisely

∑
x:ci(x) 	=ĉ(x) qx(|φĉt〉) = qci(|φĉt〉). Since ‖D‖1 ≤ |C ′| · γ̂C and ‖q(|φĉt〉)‖1 = 1,

by the basic property of matrix norms we have that ‖Dq(|φĉt〉)‖1 ≤ |C ′| · γ̂C , i.e.,∑
ci∈C′ qci(|φĉt〉) ≤ |C ′| · γ̂C . Hence

T−1∑
t=0

∑
ci∈C′

qci(|φĉt〉) ≤ T |C ′| · γ̂C .

If we let S = {ci ∈ C ′ :
∑T−1

t=0 qci(|φĉt〉) ≥ ε2

T }, by Markov’s inequality we have

|S| ≤ T 2|C ′|γ̂C/ε2. Finally, if c /∈ S, then
∑T−1

t=0 qc(|φĉt〉) ≤ ε2

T . Theorem 5 then
implies that ||φĉT 〉 − |φcT 〉| ≤ ε.
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Now we can prove our quantum version of Lemma 4.

Theorem 7. Any quantum exact learning algorithm for C must have sample

complexity Ω
((

1/γ̂C
)1/2)

.

Proof. Suppose that N is a quantum exact learning algorithm for C which makes
at most T = 1

64 · ( 1
γ̂C )1/2 quantum membership queries. If we take ε = 1

32 , then

Lemma 6 implies that there is a set S ⊂ C ′ of cardinality at most |C′|
4 such that for

all c ∈ C ′ \S we have ||φcT 〉 − |φĉT 〉| ≤ 1
32 . Let c1, c2 be any two concepts in C ′ \S. By

Fact 1, the probability that N outputs a circuit equivalent to c1 can differ by at most
1
8 if N ’s oracle gates are QMQĉ as opposed to QMQc1 , and likewise for QMQĉ versus
QMQc2 . It follows that the probability that N outputs a circuit equivalent to c1 can
differ by at most one fourth if N ’s oracle gates are QMQc1 as opposed to QMQc2 ,
but this contradicts the assumption that N is a quantum exact learning algorithm
for C.

Well-known results [9, 24] show that O(
√
N) queries are sufficient to search a

quantum database of N unordered items for a desired item. These upper bounds can
easily be used to show that Theorem 7 is tight up to constant factors.

A lower bound based on concept class size. A second reason why a concept class
can require many membership queries is its size. Angluin [2] has given the following
simple bound, incomparable to the bound of Lemma 4, on the number of classical
membership queries required for exact learning.

Lemma 8. Any classical exact learning algorithm for C must have sample com-
plexity Ω(log |C|).

Proof. Consider the following adversarial strategy for answering queries: if C ′ ⊆ C
is the set of concepts which have not yet been eliminated by previous responses to
queries, then given the query string a, answer the bit b such that γC

′
〈a,b〉 ≥ 1

2 . Under this

strategy, after log |C| − 1 membership queries, at least two possible target concepts
will remain.

In this section we prove a variant of this lemma for the quantum model. Our
proof uses ideas from [5], so we introduce some of their notation. Let N = 2n. For
each concept c ∈ C, let Xc = (Xc

0 , . . . , X
c
N−1) ∈ {0, 1}N be a vector which represents

c as an N -tuple, i.e., Xc
i = c(xi), where xi ∈ {0, 1}n is the binary representation of

i. From this perspective we may identify C with a subset of {0, 1}N , and we may
view a QMQc gate as a black-box oracle for Xc which maps basis state |xi, b, y〉 to
|xi, b⊕Xc

i , y〉.
Using ideas from [20, 21], Beals et al. have proved the following useful lemma,

which relates the query complexity of a quantum network to the degree of a certain
polynomial [5, Lemma 4.2].

Lemma 9. Let N be a quantum network that makes T queries to a black-box X,
and let B ⊆ {0, 1}m be a set of basis states. Then there exists a real-valued multilinear
polynomial PB(X) of degree at most 2T which equals the probability that observing the
final state of the network with black-box X yields a state from B.

We use Lemma 9 to prove the following quantum lower bound based on concept
class size. (de Wolf has observed [18] that this lower bound can also be obtained from
the results of [19].)

Theorem 10. Any exact quantum learning algorithm for C must have sample

complexity Ω
( log |C|

n

)
.

Proof. Let N be a quantum network which learns C and has query complexity
T. For all c ∈ C we have the following: if N ’s oracle gates are QMQc gates, then
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with probability at least 2/3 the output of N is a representation of a Boolean circuit
h which computes c. Let c1, . . . , c|C| be all of the concepts in C, and let X1, . . . , X |C|

be the corresponding vectors in {0, 1}N . For all i = 1, . . . , |C| let Bi ⊆ {0, 1}m be the
collection of those basis states which are such that if the final observation performed
by N yields a state from Bi, then the output of N is a representation of a Boolean
circuit which computes ci. Clearly for i �= j the sets Bi and Bj are disjoint. By
Lemma 9, for each i = 1, . . . , |C| there is a real-valued multilinear polynomial Pi of
degree at most 2T such that for all j = 1, . . . , |C| the value of Pi(X

j) is precisely the
probability that the final observation on N yields a representation of a circuit which
computes ci, provided that the oracle gates are QMQcj gates. The polynomials Pi

thus have the following properties:
1. Pi(X

i) ≥ 2/3 for all i = 1, . . . , |C|;
2. for any j = 1, . . . , |C|, we have

∑
i 	=j Pi(X

j) ≤ 1/3 (since the total probability
across all possible observations is 1).

Let N0 =
∑2T

i=0

(
N
i

)
. For any X = (X0, . . . , XN−1) ∈ {0, 1}N let X̃ ∈ {0, 1}N0 be

the column vector which has a coordinate for each monic multilinear monomial over
X0, . . . , XN−1 of degree at most 2T. Thus, for example, if N = 4 and 2T = 2, we have
X = (X0, X1, X2, X3) and

X̃t = (1, X0, X1, X2, X3, X0X1, X0X2,

X0X3, X1X2, X1X3, X2X3).

If V is a column vector in �N0 , then V tX̃ corresponds to the degree-2T polynomial
whose coefficients are given by the entries of V. For i = 1, . . . , |C| let Vi ∈ �N0 be
the column vector which corresponds to the coefficients of the polynomial Pi. Let M
be the |C| ×N0 matrix whose ith row is V t

i ; note that multiplication by M defines a
linear transformation from �N0 to �|C|. Since V t

i X̃
j is precisely Pi(X

j), the product
MX̃j is a column vector in �|C| which has Pi(X

j) as its ith coordinate.
Now let L be the |C|× |C| matrix whose jth column is the vector MX̃j . A square

matrix A is said to be diagonally dominant if |aii| >
∑

j 	=i |aij | for all i. Properties 1
and 2 above imply that the transpose of L is diagonally dominant. It is well known
that any diagonally dominant matrix must be of full rank (see, e.g., [32]). Since L is
of full rank and each column of L is in the image of M, it follows that the image under
M of �N0 is all of �|C|, and hence N0 ≥ |C|. Finally, since N0 =

∑2T
i=0

(
N
i

)
≤ N2T ,

we have T ≥ log |C|
2 logN = log |C|

2n , which proves the theorem.
The lower bound of Theorem 10 is nearly tight, as witnessed by the following

example: let C be the collection of all 2n parity functions over {0, 1}n, so that each
function in C is defined by a string a ∈ {0, 1}n and ca(x) = a · x. The quantum
algorithm which solves the well-known Deutsch–Jozsa problem [17] can be used to
exactly identify a and thus learn the target concept with probability 1 from a single
query. It follows that the factor of n in the denominator of Theorem 10 cannot be
replaced by any function g(n) = o(n).

3.3. Quantum and classical exact learning are equivalent. We have seen
two different reasons why exact learning of a concept class can require a large number
of classical membership queries: the class may contain many similar concepts (i.e.,
γ̂C is small) or the class may contain very many concepts (i.e., log |C| is large). The
following lemma, which is a variant of Theorem 3.1 from [26], shows that these are
the only reasons why many membership queries may be required.

Lemma 11. There is an exact learning algorithm for C which has sample com-
plexity O((log |C|)/γ̂C).
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Proof. Consider the following learning algorithm A: at each stage in its execution,
if C ′ is the set of concepts in C which have not yet been eliminated by previous
responses to queries, algorithm A’s next query string is the string a ∈ {0, 1}n, which
maximizes γC

′
a . By following this strategy, each query response received from the

oracle must eliminate at least a γC
′

fraction of the set C ′, so with each query the
size of the set of possible target concepts is multiplied by a factor which is at most
1 − γC

′ ≤ 1 − γ̂C . Consequently, after O((log |C|)/γ̂C) queries, only a single concept
will not have been eliminated; this concept must be the target concept, so that A can
output a hypothesis h which is equivalent to c.

Combining Theorem 7, Theorem 10, and Lemma 11, we obtain the following
relationship between the quantum and classical sample complexity of exact learning.

Theorem 12. Let C be any concept class over {0, 1}n, and let D and Q be such
that C is exact learnable from D classical membership queries or from Q quantum
membership queries. Then D = O(nQ3).

We note that a QMQc oracle can clearly be used to simulate an MQc oracle, and
thus Q ≤ D as well.

3.4. Discussion. Theorem 12 provides an interesting contrast to several known
results for black-box quantum computation. Let F denote the set of all 22n

functions
from {0, 1}n to {0, 1}. Beals et al. [5] have shown that if f : F → {0, 1} is any total
function (i.e., f(c) is defined for every possible concept c over {0, 1}n), then the query
complexity of any quantum network that computes f is polynomially related to the
number of classical black-box queries required to compute f. Their result is interesting
because it is well known [7, 11, 17, 40] that, for certain concept classes C ⊂ F and
partial functions f : C → {0, 1}, the quantum black-box query complexity of f can
be exponentially smaller than the classical black-box query complexity.

Our Theorem 12 provides a sort of dual to the results of Beals et al.: their bound
on query complexity holds only for the fixed concept class F but for any function
f : F → {0, 1}, while our bound holds for any concept class C ⊆ F but only for
the fixed problem of exact learning. In general, the problem of computing a function
f : C → {0, 1} from black-box queries can be viewed as an easier version of the
corresponding exact learning problem: instead of having to figure out only one bit of
information about the unknown concept c (the value of f), for the learning problem
the algorithm must identify c exactly. Theorem 1 shows that for this more demanding
problem, unlike the results in [7, 11, 17, 40], there is no way of restricting the concept
class C so that learning becomes substantially easier in the quantum setting than in
the classical setting.

4. PAC learning from a quantum example oracle.

4.1. The quantum example oracle. Bshouty and Jackson [13] have intro-
duced a natural quantum generalization of the standard PAC-model example oracle.
While a standard PAC example oracle EX(c,D) generates each example 〈x, c(x)〉
with probability D(x), where D is a distribution over {0, 1}n, a quantum PAC exam-
ple oracle QEX(c,D) generates a superposition of all labeled examples, where each
labeled example 〈x, c(x)〉 appears in the superposition with amplitude proportional to
the square root of D(x). More formally, a QEX(c,D) gate maps the initial basis state
|0n, 0〉 to the state

∑
x∈{0,1}n

√
D(x)|x, c(x)〉. (We leave the action of a QEX(c,D)

gate undefined on other basis states, and stipulate that any quantum network which
includes T QEX(c,D) gates must have all T gates at the “bottom of the circuit,”
i.e., no gate may occur on any wire between the inputs and any QEX(c,D) gate.) A
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quantum network with T QEX(c,D) gates is said to be a QEX network with query
complexity T.

A quantum PAC learning algorithm for C is a family {N(n,ε,δ) : n ≥ 1, 0 < ε, δ <
1} of QEX networks with the following property: for all n ≥ 1 and 0 < ε, δ < 1,
for all c ∈ Cn, for all distributions D over {0, 1}n, if the network N(n,ε,δ) has all its
oracle gates instantiated as QEX(c,D) gates, then with probability at least 1− δ the
network N(n,ε,δ) outputs a representation of a circuit h, which is an ε-approximator
to c under D. The quantum sample complexity T (n, ε, δ) of a quantum PAC algorithm
is the query complexity of N(n,ε,δ).

4.2. Lower bounds on classical and quantum PAC learning. Throughout
this section for ease of notation we omit the subscript n and write C for Cn. We
view each concept c ∈ C as a subset of {0, 1}n. For S ⊆ {0, 1}n, we write ΠC(S) to
denote {c∩S : c ∈ C}, so |ΠC(S)| is the number of different “dichotomies” which the
concepts in C induce on the points in S. A subset S ⊆ {0, 1}n is said to be shattered
by C if |ΠC(S)| = 2|S|, i.e., if C induces every possible dichotomy on the points in
S. The Vapnik–Chervonenkis dimension of C, VC-DIM(C), is the size of the largest
subset S ⊆ {0, 1}n which is shattered by C (see [43]).

Well-known results in computational learning theory show that the
Vapnik–Chervonenkis dimension of a concept class C characterizes the number of
calls to EX(c,D), which are information-theoretically necessary and sufficient to PAC
learn C. For the lower bound, the following theorem is a slight simplification of a result
due to Blumer et al. [8, Theorem 2.1.ii.b].

Theorem 13. Let C be any concept class and d = VC-DIM(C). Then any
(classical) PAC learning algorithm for C must have sample complexity Ω(d).

Proof sketch. The idea behind Theorem 13 is to consider the distribution D which
is uniform over some shattered set S of size d and assigns zero weight to points outside
of S. Any learning algorithm which makes only d/2 calls to EX(c,D) will have no
information about the value of c on at least d/2 points in S; moreover, since the set
S is shattered by C, any labeling is possible for these unseen points. Since the error
of any hypothesis h under D is the fraction of points in S at which h and the target
concept disagree, a simple analysis shows that no learning algorithm which performs
only d/2 calls to EX(c,D) can have a high probability (e.g., 1−δ = 2/3) of generating
a low-error hypothesis (e.g., ε = 1/10).

We now give a quantum analogue of the classical lower bound given by Theorem
13.

Theorem 14. Let C be any concept class and d = VC-DIM(C). Then any quan-
tum PAC learning algorithm for C must have quantum sample complexity Ω( d

n ).
Proof. Let S = {x1, . . . , xd} be a set which is shattered by C, and let D be the

distribution which is uniform on S and assigns zero weight to points outside S. If
h : {0, 1}n → {0, 1} is a Boolean function on {0, 1}n, we say that the relative distance
of h and c on S is the fraction of points in S at which h and c disagree. We will prove
the following result, which is stronger than Theorem 14: let N be a quantum network
with QMQ gates such that for all c ∈ C, if N ’s oracle gates are QMQc gates, then
with probability at least 2/3 the output of N is a hypothesis h such that the relative
distance of h and c on S is at most 1/10. We will show that such a network N must
have query complexity at least d/12n. Since any QEX network with query complexity
T can be simulated by a QMQ network with query complexity T, taking ε = 1/10
and δ = 1/3 will prove Theorem 14.

The argument is a modification of the proof of Theorem 10 using ideas from
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error correcting codes. Let N be a quantum network with query complexity T which
satisfies the following condition: for all c ∈ C, if N ’s oracle gates are QMQc gates,
then with probability at least 2/3 the output of N is a representation of a Boolean
circuit h such that the relative distance of h and c on S is at most 1/10. By the
well-known Gilbert–Varshamov bound from coding theory (see, e.g., Theorem 5.1.7
of [42]), there exists a set s1, . . . , sA of d-bit strings such that for all i �= j the strings
si and sj differ in at least d/4 bit positions, where

A ≥ 2d∑d/4−1
i=0

(
d
i

) ≥ 2d∑d/4
i=0

(
d
i

) ≥ 2d(1−H(1/4)) > 2d/6.

(Here H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.) For each
i = 1, . . . , A let ci ∈ C be a concept such that the d-bit string ci(x

1) · · · ci(xd) is si

(such a concept ci must exist since the set S is shattered by C).
For i = 1, . . . , A let Bi ⊆ {0, 1}m be the collection of those basis states which are

such that if the final observation performed by N yields a state from Bi, then the
output of N is a hypothesis h such that h and ci have relative distance at most 1/10
on S. Since each pair of concepts ci, cj has relative distance at least 1/4 on S, the sets
Bi and Bj are disjoint for all i �= j.

As in section 3.2, let N = 2n and let Xj = (Xj
0 , . . . , X

j
N−1) ∈ {0, 1}n, where Xj

is the N -tuple representation of the concept cj . By Lemma 9, for each i = 1, . . . , A
there is a real-valued multilinear polynomial Pi of degree at most 2T such that for all
j = 1, . . . , A the value of Pi(X

j) is precisely the probability that the final observation
on N yields a state fromBi, provided that the oracle gates areQMQcj gates. Since, by
assumption, if ci is the target concept, then with probability at least 2/3, N generates
a hypothesis that has relative distance at most 1/10 from ci on S, the polynomials Pi

have the following properties:
1. Pi(X

i) ≥ 2/3 for all i = 1, . . . , A;
2. for any j = 1, . . . , A we have that

∑
i 	=j Pi(X

j) ≤ 1/3 (since the Bi’s are
disjoint and the total probability across all observations is 1).

Let N0 and X̃ be defined as in the proof of Theorem 10. For i = 1, . . . , A let
Vi ∈ �N0 be the column vector which corresponds to the coefficients of the polynomial
Pi, so that V t

i X̃ = Pi(X). Let M be the A×N0 matrix whose ith row is the vector V t
i ,

so that multiplication by M is a linear transformation from �N0 to �A. The product
MX̃j is a column vector in �A which has Pi(X) as its ith coordinate.

Now let L be the A × A matrix whose jth column is the vector MX̃j . As in
Theorem 10, we have that the transpose of L is diagonally dominant, and thus L is

of full rank and hence N0 ≥ A. Since A ≥ 2d/6, we thus have that T ≥ d/6
2 log2 N = d

12n ,

and the theorem is proved.
Since the class of parity functions over {0, 1}n has VC-dimension n, as in Theorem

10 the n in the denominator of Theorem 14 cannot be replaced by any function
g(n) = o(n).

4.3. Quantum and classical PAC learning are equivalent. A well-known
theorem due to Blumer et al. (Theorem 3.2.1.ii.a of [8]) shows that VC-DIM(C) also
upper-bounds the number of EX(c,D) calls required for (classical) PAC learning.

Theorem 15. Let C be any concept class and d = VC-DIM(C). There is a clas-
sical PAC learning algorithm for C which has sample complexity O( 1

ε log 1
δ + d

ε log 1
ε ).

The proof of Theorem 15 is quite complex, and thus we do not attempt to sketch
it. As in section 3.3, this upper bound along with our lower bound from Theorem 14
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together yield the following.

Theorem 16. Let C be any concept class over {0, 1}n, and let D and Q be such
that C is PAC learnable from D classical examples or from Q quantum examples.
Then D = O(nQ).

We note that a QEX(c,D) oracle can be used to simulate the corresponding
EX(c,D) oracle by immediately performing an observation on the QEX gate’s out-
puts3 (such an observation yields each example 〈x, c(x)〉 with probability D(x)), and
thus Q ≤ D.

5. Quantum versus classical efficient learnability. We have shown that,
from an information-theoretic perspective, up to polynomial factors quantum learn-
ing is no more powerful than classical learning. However, we now observe that the
apparent computational advantages of the quantum model yield efficient quantum
learning algorithms which seem to have no efficient classical counterparts.

A Blum integer is an integer N = pq, where p �= q are �-bit primes each con-
gruent to 3 modulo 4. It is widely believed that there is no polynomial-time clas-
sical algorithm which can successfully factor a randomly selected Blum integer with
nonnegligible success probability.

Kearns and Valiant [28] have constructed a concept class C whose PAC learnability
is closely related to the problem of factoring Blum integers. In their construction each
concept c ∈ C is uniquely defined by some Blum integer N. Furthermore, c has the
property that if c(x) = 1, then the prefix of x is the binary representation of N.
Kearns and Valiant prove that if there is a polynomial-time PAC learning algorithm
for C, then there is a polynomial-time algorithm which factors Blum integers. Thus,
assuming that factoring Blum integers is a computationally hard problem for classical
computation, the Kearns–Valiant concept class C is not efficiently PAC learnable.

On the other hand, in a celebrated result, Shor [39] has exhibited a poly(n) size
quantum network that can factor any n-bit integer with high success probability. Since
each positive example of a concept c ∈ C reveals the Blum integer N which defines
c, using Shor’s algorithm it is easy to obtain an efficient quantum PAC learning
algorithm for the Kearns–Valiant concept class. We thus have the following.

Observation 2. If there is no polynomial-time classical algorithm for factoring
Blum integers, then there is a concept class C that is efficiently quantum PAC learnable
but not efficiently classically PAC learnable.

The hardness results of Kearns and Valiant were later extended by Angluin and
Kharitonov [3]. Using a public-key encryption system which is secure against chosen-
cyphertext attack (based on the assumption that factoring Blum integers is com-
putationally hard for polynomial-time algorithms), they constructed a concept class
C which cannot be learned by any polynomial-time learning algorithm that makes
membership queries. As with the Kearns–Valiant concept class, though, using Shor’s
quantum factoring algorithm it is possible to construct an efficient quantum exact
learning algorithm for this concept class. Thus, for the exact learning model as well,
we have the following.

Observation 3. If there is no polynomial-time classical algorithm for factoring
Blum integers, then there is a concept class C which is efficiently quantum exact
learnable from membership queries but not efficiently classically exact learnable from
membership queries.

3As noted in section 2.3, intermediate observations during a computation can always be simulated
by a single observation at the end of the computation.
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In the next sections we prove Theorem 3, which establishes a stronger computa-
tional separation between the quantum and classical models of exact learning from
membership queries than is implied by Observation 3. The proof involves Simon’s
quantum oracle algorithm, which we briefly describe in the next section.

6. Simon’s algorithm. Let f : {0, 1}n → {0, 1}n be a function, and let 0n �= s ∈
{0, 1}n.We say that f is two-to-one with XOR mask s if for all y �= x, f(x) = f(y) ⇐⇒
y = x⊕s. More generally, f is invariant under XOR mask with s if f(x) = f(x⊕s) for
all x ∈ {0, 1}n (note that such a function need not be two-to-one).

Simon [40] has given a simple quantum algorithm which takes oracle access to a
function f : {0, 1}n → {0, 1}n, runs in poly(n) time, and behaves as follows:

1. If f is a permutation on {0, 1}n, the algorithm outputs an n-bit string y which
is uniformly distributed over {0, 1}n.

2. If f is two-to-one with XOR mask s, the algorithm outputs an n-bit string y
which is uniformly distributed over the 2n−1 strings such that y · s = 0.

3. If f is invariant under XOR mask with s, the algorithm outputs some n-bit
string y which satisfies y · s = 0.

Simon showed that by running this procedure O(n) times, a quantum algorithm
can distinguish between case 1 (f is a permutation) and case 3 (f is invariant under
some XOR mask) with high probability. In case 1, after O(n) repetitions the strings
obtained will with probability 1 − 2−O(n) contain a basis for the vector space (Z2)

n

(here we are viewing n-bit strings as vectors over Z2), while in case 3 the strings
obtained cannot contain such a basis since each string must lie in the subspace {y :
y · s = 0}. Simon also observed that in case 2 (f is two-to-one with XOR mask s) the
algorithm can be used to efficiently identify s with high probability. This is because
after O(n) repetitions, with high probability s will be the unique nonzero vector whose
dot product with each y is 0; this vector can be found by solving the linear system
defined by the y’s.

Simon also analyzed the success probability of classical oracle algorithms for this
problem. His analysis establishes the following theorem.

Theorem 17. Let 0n �= s ∈ {0, 1}n be chosen uniformly and let f : {0, 1}n →
{0, 1}n be an oracle chosen uniformly from the set of all functions which are two-to-one
with XOR mask s. Then (i) there is a polynomial-time quantum oracle algorithm which
identifies s with high probability; (ii) any p.p.t. classical oracle algorithm identifies s
with probability 1/2Ω(n).

This surprising ability of quantum oracle algorithms to efficiently find s is highly
suggestive in the context of our search for a learning problem which separates efficient
classical and quantum computation. Indeed, Simon’s algorithm will play a crucial role
in establishing that the concept class which we construct in section 8 is learnable in
poly(n) time by a quantum algorithm. Recall that in our learning scenario, though,
the goal is to exactly identify the unknown target function, not just to identify the
string s. Since 2Ω(n) bits are required to specify a randomly chosen function f which
is two-to-one with XOR mask s, no algorithm (classical or quantum) can output a
description of f in poly(n) time, much less learn f in poly(n) time. Thus it will not do
to use truly random functions for our learning problem; instead we use pseudorandom
functions as described in the next section.

7. Pseudorandomness. A pseudorandom function family [23] is a collection of
functions {fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ with the following two properties:

• (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);
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• (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms M, and
all sufficiently large n, we have that∣∣∣∣ Pr

F∈Fn

[MF outputs 1] − Pr
s∈{0,1}n

[Mfs outputs 1]

∣∣∣∣ < 1

Q(n)
.

Intuitively, the pseudorandomess property ensures that in any p.p.t. computation that
uses a truly random function, a randomly chosen pseudorandom function may be used
instead without affecting the outcome in a noticeable way. Well-known results [23, 25]
imply that pseudorandom function families exist iff any one-way function exists.

A pseudorandom permutation family is a pseudorandom function family with the
added property that each function fs : {0, 1}|s| → {0, 1}|s| is a permutation. Luby
and Rackoff [30] gave the first construction of a pseudorandom permutation family
from any pseudorandom function family. In their construction each permutation
fs : {0, 1}n → {0, 1}n has a seed s of length |s| = 3n/2 rather than n as in our
definition above. Subsequent constructions [33, 34, 35] of pseudorandom permutation
families {fs : {0, 1}n → {0, 1}n} use n-bit seeds and hence match our definition
exactly. (Our definition of pseudorandomness could easily be extended to allow seed
lengths other than n. For our construction in section 8 it will be convenient to have
n-bit seeds.)

7.1. Pseudorandom functions invariant under XOR mask. Our main
cryptographic result, stated below, is proved in the appendix.

Theorem 18. If any one-way function exists, then there is a pseudorandom
function family {gs : {0, 1}|s| → {0, 1}|s|} such that gs(x) = gs(x⊕s) for all |x| = |s|.

A first approach to constructing such a family is as follows: given any pseudoran-
dom function family {fs}, let {gs} be defined by

gs(x)
def
= fs(x)⊕fs(x⊕s).(1)

This simple construction ensures that each function gs is invariant under XOR mask
with s, but the family {gs} need not be pseudorandom just because {fs} is pseudo-

random. Indeed, if {hs} is similarly defined by hs(x)
def
= gs(x)⊕gs(x⊕s), then {hs} is

not pseudorandom since

hs(x) = (fs(x)⊕fs(x⊕s))⊕(fs(x⊕s)⊕fs(x⊕s⊕s)) = 0n.

While this example shows that (1) does not always preserve pseudorandomness,
it leaves open the possibility that (1) may preserve pseudorandomness for certain
function families {fs}. In the appendix we show that if {fs} is a pseudorandom
function family which is constructed from any one-way function in a particular way,
then the family {gs} defined by (1) is indeed pseudorandom.

It may at first appear that the pseudorandom function family {gs} given by
Theorem 18 immediately yields a concept class which separates efficient quantum
learning from efficient classical learning. The pseudorandomness of {gs} ensures that
no p.p.t. algorithm can learn successfully; on the other hand, if Simon’s quantum
algorithm is given oracle access to a function which is two-to-one with XOR mask s,
then it can efficiently find s with high probability. Hence it may seem that, given
access to gs, Simon’s quantum algorithm can efficiently identify the seed s and thus
learn the target concept.
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The flaw in this argument is that each function gs from Theorem 18, while
invariant under XOR mask with s, need not be two-to-one. Indeed gs could con-
ceivably be invariant under XOR mask with, say,

√
n linearly independent strings

s = s1, s2, . . . , s
√
n. Such a set of strings spans a 2

√
n-element subspace of {0, 1}n;

even if Simon’s algorithm could identify this subspace, it would not indicate which
element of the subspace is the true seed s. Hence a more sophisticated construction
is required.

8. Proof of Theorem 3.

8.1. The concept class C. We describe concepts over {0, 1}m, where m =
n + 2 log n + 1. Each concept in Cm is defined by an (n + 1)-tuple (y, s1, . . . , sn),
where y = y1 · · · yn ∈ {0, 1}n and each si ∈ {0, 1}n \{0n}, so Cm contains 2n(2n−1)n

distinct concepts. For brevity we write s̃ to stand for s1, . . . , sn below.
Roughly speaking, each concept in Cm comprises n pseudorandom functions; as

explained below, the string y acts as a “password” and the strings s1, . . . , sn are
the seeds to the pseudorandom functions. Each concept c ∈ Cm takes m-bit strings
as inputs; we view such an m-bit input as a 4-tuple (b, x, i, j), where b ∈ {0, 1},
x ∈ {0, 1}n, and i, j ∈ {0, 1}logn each represent a number in the range {1, 2, . . . , n}.

Let {h0
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be a pseudorandom permutation family

and let {h1
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be the pseudorandom function family from

Theorem 18, so that h1
s(x) = h1

s(x⊕s). The concept cy,s̃ is defined as follows on input
(b, x, i, j) :

• If b = 0: A query (0, x, i, j) is called a function query. The value of
cy,s̃(0, x, i, j) is hyi

si (x)j , i.e., the jth bit of the n-bit string hyi

si (x). Thus the bit
yi determines whether the ith pseudorandom function used is a permutation
or is invariant under XOR mask with si.

• If b = 1: A query (1, x, i, j) is called a seed query. The value of cy,s̃(1, x, i, j)
is 0 if x �= y and is sij (the jth bit of the ith seed si) if x = y.

The intuition behind our construction is simple: in order to learn the target con-
cept successfully a learning algorithm must identify each seed string s1, . . . , sn. These
strings can be identified by making seed queries (1, y, i, j), but in order to make the
correct seed queries the learning algorithm must know y. Since each bit yi corresponds
to whether an oracle is a permutation or is XOR-mask invariant, a quantum algorithm
can determine each yi and thus can learn successfully. However, no p.p.t. algorithm
can distinguish between these two types of oracles (since in either case the oracle is
pseudorandom and hence is indistinguishable from a truly random function), and thus
no p.p.t. algorithm can learn y.

8.2. A quantum algorithm which learns C in polynomial time. The main
result of this section is the following.

Theorem 19. The concept class C described above is polynomial-time learnable
from quantum membership queries.

Proof. Let cy,s̃ ∈ Cm be the target concept. Each function hyi

si is a permutation
iff yi = 0, and is XOR-mask invariant iff yi = 1. (This is why we do not allow
si = 0n in the definition of the concept class.) Using quantum membership queries,
a poly(n)-time quantum algorithm can run Simon’s procedure n times, once for each
function hyi

si , and thus determine each bit yi with high probability. (One detail which
arises here is that Simon’s algorithm uses an oracle {0, 1}n → {0, 1}n, whereas in our
learning setting the oracle outputs one bit at a time. This is not a problem since
it is possible to simulate any call to Simon’s oracle by making n sequential calls,
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bit by bit, to our oracle.) Given the string y = y1 · · · yn, the algorithm can then
make n2 queries on inputs (1, y, i, j) for 1 ≤ i, j ≤ n to learn each of the n strings
s1, . . . , sn.Once y and s1, . . . , sn are known, it is straightforward to output a circuit for
cy,s̃.

8.3. No classical algorithm learns C in polynomial time. The main result
of this section is the following.

Theorem 20. C is not polynomial-time learnable from classical membership
queries.

Let C ′
m ⊃ Cm, |C ′

m| = 2n
2+n, be the concept class C ′

m = {cy,s̃ : y, s1, . . . , sn ∈
{0, 1}n}; thus C ′

m includes concepts in which si may be 0n. The following lemma
states that it is hard to learn a target concept chosen uniformly from C ′

m.

Lemma 21. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs a hypothesis h ≡ cy,s̃] <
1

Q(n)
.

To see that Lemma 21 implies Theorem 20, we note that the uniform distribution
over C ′

m and the uniform distribution over Cm are nearly identical (the two distri-
butions have total variation distance O(n/2n)). Lemma 21 thus has the following
analogue for Cm, which clearly implies Theorem 20.

Lemma 22. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈Cm

[Acy,s̃ outputs a hypothesis h ≡ cy,s̃] <
1

Q(n)
.

The proof of Lemma 21 proceeds as follows: we say that a learning algorithm A
hits y if at some point during its execution A makes a seed query (1, y, i, j), and we
say that A misses y if A does not hit y. We have that

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃] = Pr[Acy,s̃ outputs h ≡ cy,s̃ & Acy,s̃ hits y]

+ Pr[Acy,s̃ outputs h ≡ cy,s̃ & Acy,s̃ misses y]

≤ Pr[Acy,s̃ hits y]

+ Pr[Acy,s̃ outputs h ≡ cy,s̃ | Acy,s̃ misses y].

Lemma 21 thus follows from the following two lemmas.

Lemma 23. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ hits y] <
1

Q(n)
.

Lemma 24. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃ | Acy,s̃ misses y] <
1

Q(n)
.
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8.3.1. Proof of Lemma 23. The idea of the proof is as follows: before hitting
y for the first time, algorithm A gets 0 as the answer to each seed query, so A might
as well be querying a modified oracle which answers 0 to every seed query. We show
that no p.p.t. algorithm which has access to such an oracle can output y with inverse
polynomial success probability (intuitively this is because such an oracle consists
entirely of pseudorandom functions and hence can provide no information to any
p.p.t. algorithm), and thus A’s probability of hitting y must be less than 1/poly(n)
as well.

More formally, let A be any p.p.t. learning algorithm. Without loss of generality
we may suppose that A always makes exactly q(n) seed queries during its execution
for some polynomial q. Let X1, . . . , Xq(n) be the sequence of strings in {0, 1}n on
which Acy,s̃ makes its seed queries; i.e., Acy,s̃ uses (1, Xt, it, jt) as its tth seed query.
Each Xt is a random variable over the probability space defined by the uniform choice
of cy,s̃ ∈ C ′

m and any internal randomness of algorithm A.

For each cy,s̃ ∈ C ′
m let c̃y,s̃ : {0, 1}m → {0, 1} be a modified version of cy,s̃ which

answers 0 to all seed queries; i.e., c̃y,s̃(b, x, i, j) is cy,s̃(b, x, i, j) if b = 0 and is 0 if
b = 1. Consider the following algorithm B which takes access to an oracle for c̃y,s̃ and
outputs an n-bit string. B executes algorithm Ac̃y,s̃ (note that the oracle used is c̃y,s̃
rather than cy,s̃), then chooses a uniform random value 1 ≤ t ≤ q(n), and outputs

X̃t, the string on which Ac̃y,s̃ made its tth seed query. Like the Xt’s, each X̃t is a
random variable over the probability space defined by a uniform choice of cy,s̃ ∈ C ′

m

and any internal randomness of A.

The following two lemmas together imply Lemma 23.

Lemma 25. 2q(n)2 · Prcy,s̃∈C′
m

[Bc̃y,s̃ outputs y] ≥ Prcy,s̃∈C′
m

[Acy,s̃ hits y].

Lemma 26. For all polynomials Q and all sufficiently large n, we have∣∣∣∣ Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] − 1

2n

∣∣∣∣ < 1

Q(n)
.

Proof of Lemma 25. We have that

q(n)∑
t=1

Pr[Xt = y and Xτ �= y for τ < t] ≤
q(n)∑
t=1

Pr[Xt = y | Xτ �= y for τ < t].

Since the left-hand side of this inequality is exactly Prcy,s̃∈C′
m

[Acy,s̃ hits y], for some
value 1 ≤ t0 ≤ q(n) we have

Pr[Xt0 = y | Xτ �= y for τ < t0] ≥ Pr[Acy,s̃ hits y]/q(n).(2)

Since the distribution of responses to function queries that A makes prior to its
first seed query is the same regardless of whether the oracle is cy,s̃ or c̃y,s̃, it is clear that

the random variables X1 and X̃1 are identically distributed. An inductive argument
shows that for all t ≥ 1, the conditional random variables Xt | (Xτ �= y for τ < t) and
X̃t | (X̃τ �= y for τ < t) are identically distributed. (In each case the conditioning
ensures that the distribution of responses to seed queries that A makes prior to its
tth seed query is the same, i.e., all 0.)
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We consider two possible cases. If Prcy,s̃∈C′
m

[X̃τ �= y for τ < t0] > 1/2, then

Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] ≥ Pr[Bc̃y,s̃ chooses t0] · Pr[X̃t0= y & X̃τ �= y for τ < t0]

=
Pr[X̃t0= y | X̃τ �= y for τ < t0] · Pr[X̃τ �= y for τ < t0]

q(n)

>
Pr[X̃t0= y | X̃τ �= y for τ < t0]

2q(n)

=
Pr[Xt0= y | Xτ �= y for τ < t0]

2q(n)

≥ Pr[Acy,s̃ hits y]

2q(n)2
. (by (2))

Otherwise if Prcy,s̃∈C′
m

[X̃τ �= y for τ < t0] ≤ 1/2, then
∑t0−1

t=1 Pr[X̃t = y] ≥ 1/2 and
hence Prcy,s̃∈C′

m
[Bc̃y,s̃ outputs y] is at least

t0−1∑
t=1

Pr[Bc̃y,s̃ chooses t] · Pr[X̃t = y] ≥ 1

2q(n)
≥ Pr[Acy,s̃ hits y]

2q(n)2
.

Proof of Lemma 26. For z, ζ ∈ {0, 1}n let

pzζ = Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs z | y = ζ].

For � ∈ {1, . . . , n} let ζ||� denote ζ with the �th bit flipped. Similarly, for S ⊆
{1, . . . , n} let ζ||S denote ζ with bits flipped in all positions corresponding to S.

Fix z, ζ ∈ {0, 1}n and � ∈ {1, . . . , n} and consider the following algorithm Dz,ζ,�,
which takes access to an oracle f : {0, 1}n → {0, 1}n and outputs a single bit. For
all i �= �, algorithm Dz,ζ,� first chooses a random n-bit string si. Dz,ζ,� then runs
algorithm B, simulating the oracle for B as follows:

• queries (0, x, �, j) are answered with the bit f(x)j ,

• for i �= � queries (0, x, i, j) are answered with the bit hζisi(x)j ,
• all queries (1, x, i, j) are answered with the bit 0.

Finally algorithm Dz,ζ,� outputs 1 if B’s output is z and outputs 0 otherwise.
It is easy to verify that for all z, ζ, � we have

pzζ = Pr
s∈{0,1}n

[Dh
ζ�
s

z,ζ,� outputs 1]

and

pzζ||� = Pr
s∈{0,1}n

[Dh
1−ζ�
s

z,ζ,� outputs 1].

From the definition of pseudorandomness and the triangle inequality it follows that
|pzζ − pzζ||�| < 1

nQ(n) . Making |S| ≤ n applications of this inequality and using the

triangle inequality, we find that

|pzζ − pzζ||S | <
1

Q(n)
.
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We thus have that |pzζ − pzz| < 1
Q(n) for all z, ζ ∈ {0, 1}n. Since

∑
z∈{0,1}n pzζ = 1, we

have that ∣∣∣∣ Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] − 1

2n

∣∣∣∣ =
∣∣∣∣∣∣ 1

2n

⎛⎝ ∑
z∈{0,1}n

pzz

⎞⎠− 1

2n

∣∣∣∣∣∣
=

1

2n

∣∣∣∣∣∣
∑

z∈{0,1}n

(pzz − pzζ)

∣∣∣∣∣∣
<

1

Q(n)
.

8.3.2. Proof of Lemma 24. The idea here is that conditioning on the event
that A misses y ensures that the only information which A has about y and s̃ comes
from querying oracles for the pseudorandom functions hyi

si . Since these pseudorandom
functions are indistinguishable from truly random functions, no p.p.t. algorithm can
learn successfully.

Formally, let A be any p.p.t. learning algorithm. Consider the following algorithm
B which takes access to an oracle hyn

sn : {0, 1}n → {0, 1}n and outputs a representation
of a function g : {0, 1}n → {0, 1}n. Algorithm B first chooses ŷ = y1 · · · yn−1 uniformly
from {0, 1}n−1 and chooses n − 1 strings s1, . . . , sn−1 each uniformly from {0, 1}n.
B then runs algorithm Ac̃y,s̃ (observe that B can simulate the oracle c̃y,s̃ since it
has access to an oracle for hyn

sn and knows yi, s
i for i �= n), which generates some

hypothesis h. Finally B outputs the function g : {0, 1}n → {0, 1}n defined by g(x)
def
=

h(0, x, n, 1)h(0, x, n, 2) · · ·h(0, x, n, n).
The following two lemmas together imply Lemma 24.
Lemma 27. For all sufficiently large n,

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ]

>
Prcy,s̃∈C′

m
[Acy,s̃ outputs h ≡ cy,s̃ |Acy,s̃ misses y]

2
.

Lemma 28. For all polynomials Q and all sufficiently large n, we have

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ] <
1

Q(n)
.

Proof of Lemma 27. It is easy to see that if Ac̃y,s̃ outputs a hypothesis which is
equivalent to cy,s̃, then g will be equivalent to hyn

sn . For sufficiently large n we thus

have that Pryn∈{0,1},sn∈{0,1}n [Bhyn
sn outputs g ≡ hyn

sn ] is at least

Pr
cy,s̃∈C′

m

[Ac̃y,s̃ outputs h ≡ cy,s̃] ≥ Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ and Ac̃y,s̃ misses y]

= Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ | Ac̃y,s̃ misses y]

·Pr[Ac̃y,s̃ misses y]

>
Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ | Ac̃y,s̃ misses y]

2
,

where the last inequality follows from Lemma 23.
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Let TRANS(Acy,s̃) (TRANS(Ac̃y,s̃), respectively) denote a complete transcript
of algorithm A’s execution on oracle cy,s̃ (c̃y,s̃, respectively). TRANS(Acy,s̃) and
TRANS(Ac̃y,s̃) are each random variables over the probability space defined by a uni-
form choice of cy,s̃ ∈ C ′

m and any internal randomness of algorithm A. An easy induc-
tion shows that the two conditional random variables TRANS(Ac̃y,s̃) | (Ac̃y,s̃ misses y)
and TRANS(Acy,s̃) | (Acy,s̃ misses y) are identically distributed. This implies that

Pr
cy,s̃∈C′

m

[Ac̃y,s̃ outputs h ≡ cy,s̃|Ac̃y,s̃ misses y]

= Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃|Acy,s̃ misses y],

which combined with the inequality above proves the lemma.
Proof of Lemma 28. The following fact, which follows easily from the pseudoran-

domness of {h0} and {h1}, states that {hbs}b∈{0,1},s∈{0,1}n is a pseudorandom function
family.

Fact 4. For all polynomials Q, p.p.t. oracle algorithms A, and sufficiently large
n, we have ∣∣∣∣ Pr

b∈{0,1},s∈{0,1}n
[Ahb

s outputs 1] − Pr
F∈Fn

[AF outputs 1]

∣∣∣∣ < 1

Q(n)
.

Intuitively the pseudorandomness of {hbs} should make it hard for Bhyn
sn to output

hyn
sn since clearly no p.p.t. algorithm, given oracle access to a truly random function
F, could output a function equivalent to F. Formally, we consider an algorithm D
which takes oracle access to a function f : {0, 1}n → {0, 1}n and outputs a single bit.
D runs Bf to obtain a function g and then selects a string z ∈ {0, 1}n which was not
used as an oracle query in the computation of Bf . D calls the oracle to obtain f(z),
evaluates g to obtain g(z), and outputs 1 if the two values are equal and 0 otherwise.

Clearly Pr[Df outputs 1] ≥ Pr[Bf outputs g ≡ f ]. Since PrF∈Fn
[DF outputs 1] =

1/2n, using Fact 4, we find that∣∣∣∣ Pr
yn∈{0,1},sn∈{0,1}n

[Dhyn
sn outputs 1] − 1

2n

∣∣∣∣ < 1

2Q(n)

and hence

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ] <
1

Q(n)
.

9. Breaking classical cryptography in a quantum setting. Our construc-
tions highlight some interesting issues concerning the relation between quantum oracle
computation and classical cryptography. It is clear that a quantum algorithm, given
access to a quantum black-box oracle for an unknown function, can efficiently distin-
guish between truly random functions and pseudorandom functions drawn from the
family {gs} of Theorem 18. Our construction of {gs} thus shows that cryptographic
constructions which are provably secure in the classical model can fail in a quantum
setting. We emphasize that this failure does not depend on the ability of polynomial-
time quantum algorithms to invert particular one-way functions such as factoring;
even if no quantum algorithm can efficiently invert the one-way function used to con-
struct {gs}, our results show that a polynomial-time quantum algorithm can be a
successful distinguisher. It would be interesting to obtain stronger constructions of
pseudorandom functions which are provably secure in the quantum oracle framework.
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10. Conclusion and future directions. While we have shown that quantum
and classical learning are information-theoretically equivalent up to polynomial fac-
tors, we have not attempted to obtain the tightest possible bounds relating the two
query complexities. In another direction, while we have shown the existence of con-
cept classes which separate efficient quantum and classical learning, many questions
remain about the relationship between efficient quantum and classical learnability
for natural concept classes studied in learning theory. It would be interesting to de-
velop efficient quantum learning algorithms for natural concept classes, such as the
polynomial-time quantum algorithm of Bshouty and Jackson [13] for learning DNF
formulae from uniform quantum examples.

Appendix: Proof of Theorem 18. We say that a polynomial-time determinis-
tic algorithm G : {0, 1}n → {0, 1}2n is a pseudorandom generator if for all polynomials
Q, all p.p.t. algorithms A, and all sufficiently large n,∣∣∣∣ Pr

z∈{0,1}n
[A(G(z)) outputs 1] − Pr

z∈{0,1}2n
[A(z) outputs 1]

∣∣∣∣ < 1

Q(n)
.

Thus a pseudorandom generator is an efficient algorithm which converts an n-bit
random string into a 2n-bit string which “looks random” to any polynomial-time
algorithm. H̊astad et al. [25] have shown that pseudorandom generators exist if any
one-way function exists.

For G a pseudorandom generator and s ∈ {0, 1}n we write G0(s) to denote the
first n bits of G(s), and G1(s) to denote the last n bits of G(s). For x, s ∈ {0, 1}n let
fs : {0, 1}n → {0, 1}n be defined as

fs(x)
def
= Gxn

(Gxn−1
(· · · (Gx2

(Gx1
(s))) · · ·)).

In [23] it is shown that {fs} is a pseudorandom function family. We now show that

the family {gs} defined by gs(x)
def
= fs(x)⊕fs(x⊕s) is pseudorandom.

Let F ′
n be the following probability distribution over functions from {0, 1}n to

{0, 1}n: a function F ′ is drawn from F ′
n by drawing a random function F from

Fn, drawing a random string s ∈ {0, 1}n, and letting F ′ be the function defined as
F ′(x) = F (x)⊕F (x⊕s). Theorem 18 follows from the following two lemmas.

Lemma 29. For all polynomials Q, all p.p.t. oracle algorithms M, and all suffi-
ciently large n,∣∣∣∣ Pr

F∈Fn

[MF outputs 1] − Pr
F ′∈F ′

n

[MF ′
outputs 1]

∣∣∣∣ < 1

Q(n)
.

Proof. Consider an execution of M with an oracle F ′ ∈ F ′
n defined by F ′(x) =

F (x)⊕F (x⊕s). Let S = {x1, . . . , xt} ⊂ {0, 1}n be the set of strings which M uses as
queries to F ′. We say that M finds s if xi = xj⊕s for some xi, xj ∈ S. If M does not
find s, then the distribution of answers which M receives from F ′ is identical to the
distribution which M would receive if it were querying a random function F ∈ Fn,
since in both cases each distinct query is answered with a uniformly distributed n-
bit string. Thus the left side of the inequality above is at most Pr[M finds s]. A
simple inductive argument given in the proof of Theorem 3.3 of [40] shows that this
probability is at most

∑t
k=1(k/(2

n − (k− 2)(k− 1)/2)). Since M is polynomial-time,
t is at most poly(n), and the lemma follows.
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Lemma 30. For all polynomials Q, all p.p.t. oracle algorithms A, and all suffi-
ciently large n,∣∣∣∣ Pr

F ′∈F ′
n

[MF ′
outputs 1] − Pr

s∈{0,1}n
[Mgs outputs 1]

∣∣∣∣ < 1

Q(n)
.

Proof. We require the following fact which is due to Yao [44].
Fact 5. Let G be a pseudorandom generator, let q(n) and Q(n) be polynomials,

and let M∗ be a p.p.t. algorithm which takes as input q(n) strings each of length 2n
bits. Then for all sufficiently large n we have

|pGn − pUn | <
1

Q(n)
,

where pUn is the probability that M∗ outputs 1 on input q(n) random strings in {0, 1}2n

and pGn is the probability that M∗ outputs 1 on input q(n) strings each of which is
obtained by applying G to a random string from {0, 1}n.

We prove Lemma 30 by contradiction; suppose that there exists a p.p.t. oracle
algorithm M and a polynomial Q such that for infinitely many values of n,∣∣∣∣ Pr

F ′∈F ′
n

[MF ′
outputs 1] − Pr

s∈{0,1}n
[Mgs outputs 1]

∣∣∣∣ ≥ 1

Q(n)
.(3)

We will show that there is a p.p.t. algorithm M∗ which contradicts Fact 5.
As in the proof in [23] that {fs} is a pseudorandom function family, we use a so-

called “hybrid” argument. Consider the following algorithms Ai (i = 0, 1, . . . , n), each
of which defines a mapping from {0, 1}n to {0, 1}n and hence could conceivably be
used as an oracle to answer M ’s queries. Conceptually, each algorithm Ai contains a
full binary tree of depth n in which the root (at depth 0) is labeled with a random n-bit
string s; if i > 0, then each node at depth i is also labeled with an independently chosen
random n-bit string. Each node at depth j > i also has an n-bit label determined as
follows: if node v has label z, then the left child of v has label G0(z), and the right
child of v has label G1(z). Each node in the tree has an address which is a binary
string: the root’s address is the empty string, and if a node has address α ∈ {0, 1}∗,
then its left child has address α0 and its right child has address α1 (so each leaf
has a different n-bit string as its address). Let L(x) denote the label of the node
whose address is x. Algorithm Ai answers a query x ∈ {0, 1}n with the n-bit string
L(x)⊕L(x⊕s).

(Note that algorithm Ai need not precompute any leaf labels. Instead, Ai can
run in poly(n) time at each invocation by randomly choosing s once-and-for-all the
first time it is invoked and labeling the necessary portion of the tree “on the fly” at
each invocation by choosing random strings for the depth-i nodes as required and
computing descendants’ labels as described above. Ai must store the random strings
which it uses to label depth-i nodes so as to maintain consistency over successive
invocations.)

For i = 0, 1, . . . , n let pin denote Pr[MAi outputs 1], i.e., the probability that
M outputs 1 if its oracle queries are answered by algorithm Ai. Let pgn denote
Prs∈{0,1}n [Mgs outputs 1] and pF

′
n denote PrF ′∈F ′

n
[MF ′

outputs 1]. We have that
p0
n = pgn since algorithm A0 behaves exactly like an oracle for gs, where s is a random
n-bit string. We also have that pnn = pF

′
n since algorithm An behaves exactly like an

oracle for F ′ ∈ F ′
n. Inequality (3) thus implies that |p0

n − pnn| ≥ 1/Q(n) for infinitely
many values of n.
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Now we describe the algorithm M∗, which distinguishes between sets of strings.
Let q(n) be a polynomial which bounds the running time of M on inputs of length
n (so M makes at most q(n) oracle queries, given access to an oracle from {0, 1}n
to {0, 1}n). The algorithm M∗ takes as input a set Un of 2q(n) strings of length 2n.
M∗ works by first selecting a uniform random value 0 ≤ i ≤ n − 1 and a uniform
random string s ∈ {0, 1}n. M∗ then runs algorithm M, answering M ’s oracle queries
as follows. There are two cases, depending on whether or not the prefix s1 . . . si is 0i:

• Case 1. s1 . . . si �= 0i. Let x = x1 . . . xn be the query string. If no earlier query
string had prefix x1 . . . xi or (x1⊕s1) . . . (xi⊕si), then M∗ takes the next two
2n-bit strings from Un; call these strings u1 = u1

0u
1
1 and u2 = u2

0u
2
1, where

|uij | = n. Now M∗ stores the four pairs

(x1 . . . xi0, u
1
0), (x1 . . . xi1, u

1
1), ((x1⊕s1) . . . (xi⊕si)0, u2

0), and

((x1⊕s1) . . . (xi⊕si)1, u2
1)

and answers with the string

(∗) Gxn
(Gxn−1(. . . Gxi+2

(u1
xi+1

) . . .))

⊕Gxn⊕sn(Gxn−1⊕sn−1(. . . Gxi+2⊕si+2(u
2
xi+1⊕si+1

) . . .)).

Otherwise, if an earlier query string had prefix x1 . . . xi or (x1⊕s1) . . . (xi⊕si),
then instead M∗ retrieves the two previously stored pairs

(x1 . . . xixi+1, u
1
xi+1

) and ((x1⊕s1) . . . (xi⊕si)(xi+1⊕si+1), u
2
xi+1⊕si+1

)

and answers with (∗) as above.
• Case 2. s1 . . . si = 0i. Let x = x1 . . . xn be the query string. If no earlier

query string had prefix x1 . . . xi, then M∗ takes the next 2n-bit string from
Un; call this string u = u0u1, where |u0| = |u1| = n. Now M∗ stores the two
pairs

(x1 . . . xi0, u0), (x1 . . . xi1, u1)

and answers with

(∗∗) Gxn
(Gxn−1

(. . . Gxi+2
(uxi+1

) . . .))

⊕Gxn⊕sn(Gxn−1⊕sn−1(. . . Gxi+2⊕si+2(uxi+1⊕si+1) . . .)).

Otherwise, if an earlier query string had prefix x1 . . . xi, then M∗ retrieves
the two pairs

(x1 . . . xixi+1, uxi+1) and (x1 . . . xi(xi+1⊕si+1), uxi+1⊕si+1)

(these two pairs are the same if si+1 = 0) and answers with (∗∗) as above.
The crucial properties of algorithm M∗, which are straightforwardly verified, are

the following: if each string in Un is generated by applying G to a random n-bit string
(scenario 1), then M∗ simulates a computation of M with oracle Ai. On the other
hand, if each string in Un is chosen uniformly from {0, 1}2n (scenario 2), then M∗
simulates a computation of M with oracle Ai+1.

It is easy to see now that in scenario 1 we have Pr[M∗ outputs 1] =
∑n−1

i=0 p
i
n/n,

while in scenario 2 we have Pr[M∗ outputs 1] =
∑n

i=1 p
i+1
n /n. These two probabilities

differ by (1/n) · |p0
n − pnn|, which is at least 1/nQ(n) for infinitely many values of n.

Now by Fact 5, the existence of M∗ contradicts the fact that G is a pseudorandom
generator, and the lemma is proved.
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1. Introduction. The graph isomorphism problem (GI) consists in determining
whether two given graphs are isomorphic—in other words, whether there is a bijec-
tion between the nodes of the graphs preserving the edges. This problem has been
intensively studied, in part because of its many applications, and in part because it is
one of the few problems in NP that has resisted all attempts to be classified as NP-
complete, or within P. The best existing upper bound for the problem given by Luks
and Zemlyachenko is exp

√
cn log n (cf. [7]), but there is no evidence of this bound

being optimal, and for many restricted graph classes, polynomial time algorithms
are known. This is, for example, the case for planar graphs [19], graphs of bounded
degree [29], or graphs with bounded eigenvalue multiplicity [6]. In some cases, like
trees [28, 11] or graphs with colored vertices and bounded color classes [30], even NC
algorithms for isomorphism are known.

Concerning the hardness of GI, there is evidence indicating that the problem is not
NP-complete. On the one hand, the counting version of GI is known to be reducible
to its decisional version [31], while for all known NP-complete problems the counting
version seems to be much harder. On the other hand it has been shown that if GI
were NP-complete, then the polynomial time hierarchy would collapse to its second
level [9, 36]. Because of these facts, there is a common belief that GI does not contain
enough structure or redundancy to be hard for NP. The question of whether GI is
P-hard is also open, and, moreover, the known lower bounds in terms of hardness
results for GI are surprisingly weak. It is only known that isomorphism for trees is
hard for NC1 and for L (logarithmic space) depending on the encoding of the input
[23].

In this paper we improve the existing hardness results by showing that GI is hard
for all complexity classes defined in terms of the number of accepting computations
of a nondeterministic logarithmic space Turing machine.

The key ingredient in the proof of our results is a graph gadget showing that GI
has enough structure to encode a modular addition gate. Using this fact, we are able
to give for any k ∈ N an AC0 many-one reduction from the circuit value problem for
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addition mod k gates, which is complete for ModkL, to GI. ModkL is the complexity
class corresponding to sets recognized by nondeterministic logarithmic space machines
in which the number of accepting computations satisfies a congruence modulo k [10],
and it lies within NC2. We show that a circuit with modular gates can be directly
transformed into a graph in which any automorphism of a certain kind maps a special
vertex encoding the output gate to a vertex encoding the output of the circuit. The
graphs used in the reduction have degree 3 and its vertices can be partitioned into
color classes of size k2. Luks [30] has given an NC upper bound for the complexity
of the isomorphism problem restricted to graphs with bounded color classes. For
isomorphism in this class of graphs, the gap between our hardness results and the
upper bound given by Luks is therefore small. In fact, in [27] we have recently shown
that for graphs of bounded color classes of sizes 2 and 3, GI is complete for symmetric
logarithmic space.

By a simple use of the Chinese remainder theorem, the hardness results for the
modular classes can be transformed into hardness results for NL. It is interesting to
observe that the graphs obtained in this reduction have automorphism groups in which
the sizes of the orbits of some of the nodes depend on the input size, and therefore
these graphs do not have classes of colored vertices of constant size, as in the modular
case.

Using the recent result that division can be performed in TC0 [15, 17, 18], and
the fact that an NC1 circuit can be encoded in an isomorphism problem [23], we can,
moreover, prove that any logarithmic space counting function can be reduced to GI.
In particular this implies that GI is many-one hard for C=L and for probabilistic
logarithmic space, PL. The hardness results culminate in Theorem 4.9, where it is
shown that GI is hard for DET, defined by Cook [13] as the class of problems NC1

Turing reducible to the determinant.

The perfect matching problem is (as GI) another problem of the short list that
has resisted classification in terms of completeness. It was shown in [5] that perfect
matching is randomly (or nonuniformly) reducible to ModkL for every k. From our
results this implies a (random or nonuniform) reduction from matching to GI, which
provides the first reduction between the two well-studied problems. Moreover, as a
consequence of derandomization results from [21, 3, 25], under the natural hypothesis
that there is a set in DSPACE(n) with circuits of size 2Ω(n), our reduction implies a
many-one AC0 (deterministic) reduction from perfect matching to GI.

The graph automorphism problem (GA), determining whether a given graph has
a nontrivial automorphism, is known to be many-one reducible to GI and seems to be
a slightly easier problem. We show in section 5 that the hardness results for GI hold
also for GA.

2. Preliminaries. We assume familiarity with basic notions of complexity the-
ory such as can be found in standard textbooks in the area. We will prove hardness
results for several logarithmic space complexity classes: NL is the class of languages
accepted by nondeterministic Turing machines using logarithmic space. The graph
accessibility problem (GAP; given a directed graph with two designated nodes s and
t, determine whether there is a path from s to t) is known to be complete for NL,
even in the case of acyclic graphs with in-degree at most 2.

#L, defined in [4] analogously to Valiant’s class #P, is the class of functions
f : Σ∗ → N that count the number of accepting paths of a nondeterministic Turing
machine M on input x. The computation of a #L function on an input x can be
reduced to the problem computing the number paths from node s to node t in a
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directed graph Gx. The complexity classes PL (probabilistic logarithmic space), C=L
(exact threshold in logarithmic space), and ModkL (modular counting in logarithmic
space, k ≥ 2) can be defined in terms of #L functions:

PL = {A : ∃p ∈ Poly, f ∈ #L, x ∈ A⇔ f(x) ≥ 2p(|x|)} [16, 35].

C=L = {A : ∃p ∈ Poly, f ∈ #L, x ∈ A⇔ f(x) = 2p(|x|)} [2].

ModkL = {A : ∃f ∈ #L, x ∈ A⇔ f(x) = 1 mod k} [10].

Modk circuits (k ≥ 2) are circuits where the input variables (and the wires) can
take values in Zk, and the gates compute addition in Zk. The evaluation problem for
such circuits (given fixed values for the inputs, determine if the output value is, for
example, 1) is complete for ModkL under AC0 many-one reductions. This is because
a directed acyclic graph with in-degree at most 2, and two designated nodes, s, t, can
be easily transformed into a modk circuit computing the residue of the number of
paths from s to t in G, modulo k.

In some of the proofs we will make use of NC1 circuits. These are families of
logarithmic depth, polynomial size Boolean circuits of bounded fan-in over the basis
{∧,∨,¬}. DET [13] is the class of problems NC1 Turing reducible to the determinant,
or, in other words, the class of problems that can be solved by NC1 circuits with
additional oracle gates that can compute the determinant of integer matrices.

The known relationships among the considered classes are as follows:

ModkL ⊆ DET,

NL ⊆ C=L ⊆ PL ⊆ DET.

Looking at the known inclusions, the hardness of GI for DET implies hardness with
respect to the other classes. We prove, however, the result for all the classes separately,
showing how the graphs produced by the reductions increase in complexity.

2.1. Reducibilities. We prove our hardness results for the DLOGTIME uni-
form AC0 many-one reducibility (in short AC0 reducibility). A set A is AC0 reducible
to another set B if there is family of circuits {Cn | n ∈ N} where each circuit Cn con-
tains only AND, OR, and NOT gates, has size nO(1) and depth O(1), and for each x
of length n, x ∈ A ⇔ Cn(x) ∈ B. Moreover, the uniformity condition requires that
there be a DLOGTIME Turing machine with direct access to its input defining the
circuit in the sense that the machine can recognize the direct connection language
of Cn [34, 8]. This language consists of the set of tuples 〈t, a, b, y〉, where a and b
are numbers of nodes in Cn, t is the type of a, b is a child of a, and y is a string of
length n.

2.2. Graph isomorphism, automorphism, and promise isomorphism.
An automorphism in an undirected graph G = (V,E) is a permutation ϕ of the nodes
that preserves adjacency. That is, for every u, v ∈ V, (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E.
An isomorphism between two graphs G,H is a bijection between their sets of vertices
which preserves the edges. G � H denotes that G and H are isomorphic. GI is the
problem

GI = {(G,H) | G and H are isomorphic graphs},
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and GA is defined as

GA = {G| G has an automorphism different from the identity}.

A graph G in GA is called rigid. For technical reasons we will consider the set of graph
pairs ((G,H), (I, J)) with exactly one of the pairs consisting of isomorphic graphs:

PGI = {((G,H), (I, J))| G � H if and only if I � J}.

For a tuple in PGI we are given the promise of G being isomorphic to H or I being
isomorphic to J , and the problem is to determine which one is the isomorphic pair.

Sometimes we will deal with graphs with colored vertices. A coloring with k colors
is a function f : V → {1, . . . , k}. In an isomorphism between colored graphs, the colors
have to be preserved. The isomorphism problem for colored graphs can be easily
reduced (by AC0 reductions) to graph isomorphism without colors (see, e.g., [26]).

In some cases we will consider the following restricted automorphism problem:
Given a graph G = (V,E) and two lists of nodes (x1, . . . , xk), (y1, . . . , yk), is there
an automorphism in G mapping xi to yi for 1 ≤ i ≤ k? This problem is also easily
reducible to GI. In order to check whether there is an automorphism with the desired
properties one can make two copies of G, G′ and G′′. In G′ each of the nodes xi
has color i and in G′′ node yi receives this color. All the other nodes are colored
with a new color 0, for example. G′ and G′′ are isomorphic if and only if G has an
automorphism with the mentioned properties.

3. Hardness for the modular counting classes. We show now that GI is
hard for all the logarithmic space modular counting classes ModkL (k ≥ 2). The idea
for this proof is to simulate a modular gate with a graph gadget and then combine
the gadgets for the different gates into a graph, whose automorphisms simulate the
behavior of the modular circuit.

The gadgets are defined by the following graphs (shown in Figure 3.1 for the case
k = 2).

Definition 3.1. Let k ≥ 2, and denote by ⊕ the addition in Zk. We define the
undirected graph Gk = (V,E), given by the set of k2 + 3k nodes

V = {xa, ya, za | a ∈ {0, . . . , k − 1}
∪ {ua,b | a, b ∈ {0, . . . , k − 1, }}

and edges

E = {(xa, ua,b) | a, b ∈ {0, . . . , k − 1}}
∪ {(yb, ua,b) | a, b ∈ {0, . . . , k − 1}}
∪ {(ua,b, za⊕b) | a, b ∈ {0, . . . , k − 1}}.

The graph gadget for a modular gate has nodes encoding the inputs and outputs
of the gate. Any automorphism in the graph mapping the input nodes in a certain
way must map the output nodes according to the value of the modular gate being
simulated.

Lemma 3.2. Fix k ≥ 2; for any a, b ∈ {0, . . . , k − 1},
(1) there is a unique automorphism ϕ in Gk mapping xi to xa⊕i and yi to yb⊕i

for i = 0, . . . , k − 1; and
(2) this automorphism maps zi to za⊕b⊕i.
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Fig. 3.1. The graph G2 simulating a parity gate.

Proof. Let a, b ∈ {0, . . . , k− 1}, and denote by ⊕ the addition in Zk. We consider
the following function ϕ : V → V defined as

ϕ(xi) = xa⊕i for i ∈ 0, . . . , k − 1,

ϕ(yi) = yb⊕i for i ∈ 0, . . . , k − 1,

ϕ(ui,j) = ua⊕i,b⊕j for i, j ∈ 0, . . . , k − 1,

ϕ(zi) = za⊕b⊕i for i ∈ 0, . . . , k − 1.

We prove first that ϕ is an automorphism. For this we have to show that for every
pair of nodes v, w, (v, w) ∈ E if and only if (ϕ(v), ϕ(w)) ∈ E. The nodes in graph Gk

can be partitioned in three layers, the x and y nodes (input layer), the u nodes, and
the z nodes (output layer). Edges exist only between nodes from the first and second
layers, or between nodes from the second and third layers. We consider first an edge
between the first two layers. Let v = xi and w = ul,m with i, l,m ∈ {0, . . . , k − 1}.
Then ϕ(v) = xa⊕i and ϕ(w) = ua⊕l,b⊕m. By the definition of Gk,

(xi, ul,m) ∈ E ⇔ i = l

⇔ a⊕ i = a⊕ l

⇔ (xa⊕i, ua⊕l,b⊕m) ∈ E

⇔ (ϕ(xi), ϕ(ul,m)) ∈ E.

In the case v = yj the proof is analogous. For an edge (v, w) between the second and
third layers, let (v, w) = (ui,j , zl) with i, j, l ∈ {0, . . . , k − 1}. Then ϕ(v) = ua⊕i,b⊕j
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and ϕ(w) = za⊕b⊕l. By the definition of Gk,

(ui,j , zl) ∈ E ⇔ i⊕ j = l

⇔ a⊕ b⊕ i⊕ j = a⊕ b⊕ l

⇔ a⊕ i⊕ b⊕ j = a⊕ b⊕ l

⇔ (ua⊕i,b⊕j , za⊕b⊕l) ∈ E

⇔ (ϕ(ui,j), ϕ(zl)) ∈ E.

In any automorphism φ with the restrictions φ(xi) = xa⊕i and φ(yi) = yb⊕i,
the node φ(ui,j) must have edges to xa⊕i and yb⊕j , but the only node with such
connections is ua⊕i,b⊕j = ϕ(ui,j).

Analogously φ(zi) must be connected to φ(u0,i) = ua,b⊕i, and this implies φ(zi) =
za⊕b⊕i = ϕ(zi). This means that ϕ is the unique automorphism in Gk mapping xi to
xa⊕i and yi to yb⊕i.

We observe that the gadget in Lemma 3.2 for the case k = 2 has already been
used for a different application in [12]. It is not hard to see that a gadget like the
one defined in Lemma 3.2 for (Zk,⊕) can be constructed for any finite Abelian group
G = (A, ◦). We mean by this that for any such group a graph whose automorphism
group simulates the group operation ◦ in the sense of the lemma can be defined.

Theorem 3.3. For any k ≥ 2, GI is hard for ModkL under AC0 many-one
reductions.

Proof. Let k ≥ 2. We reduce the modk circuit value problem to GI. We transform
an instance C of the circuit value problem for modk circuits into a graph GC by
constructing for every modular gate gj of C a subgraph like the one described in
Lemma 3.2. Moreover, we color the x, y, u, and z nodes of the jth gadget, respectively,
with one of the colors (x, j), (y, j), (u, j), and (z, j). Connections between gates are
translated in the following way: If the output z of a gate in the circuit is connected to
one of the inputs x of another gate, the reduction puts k additional edges connecting
(for i ∈ {0, . . . , k − 1}) node zi from the first gate to node xi from the second gate.
For an input variable vj , k nodes vj0, . . . , v

j
k−1 are considered in the reduction. The

coloring implies that in any automorphism the nodes corresponding to a gate are
mapped to nodes from the same gate. Suppose the input variables of the circuit,
v1, . . . , vn, take values a1, . . . , an. It follows from Lemma 3.2, by induction on the
circuit depth, that the output gate z takes value b ∈ {0, . . . , k−1} if and only if there
is an automorphism in GC mapping vji to vji⊕ai

for all i = 0, . . . , k−1 and j = 1, . . . , n,
and mapping zi to zi⊕b.

All the steps in the reduction can be done locally by an AC0 circuit. The question
of whether the output of the circuit equals b ∈ {0, . . . , k − 1} can be easily reduced
to whether two graphs Gb, G

′
b are isomorphic, as explained in the preliminaries. In

fact this question can be reduced to two graphs pairs ((G,H), (I, J)) ∈ PGI, with G
being isomorphic to H if the value of the circuit is b, and I being isomorphic to J
otherwise. For this it suffices to define G as Gb, H as G′

b, and I and J as the standard
OR-function for GI of

⋃
i �=b(Gi, G

′
i).

Observe that the graphs obtained in the reduction have at most k2 nodes with
the same color (the nodes ui,j in any of the gate gadgets). The maximum degree can
be reduced to 3. In the above description this does not necessarily hold because of the
connection between gates. However, the reduction can be easily modified to achieve
degree 3 by adding some extra nodes and arranging the fan-out connections of the
gates in a tree-like fashion.
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4. Hardness for other complexity classes. In this section we show the hard-
ness of GI for nondeterministic logarithmic space, for C=L, for probabilistic logarith-
mic space, and for the class DET of problems NC1 reducible to the determinant. The
proofs follow by the modular results, using the Chinese remainder theorem (CRT).

A Chinese remainder representation base is a set m1, . . . ,mn of pairwise coprime
integers. Let M =

∏n
i=1mn. By the CRT, every integer 0 ≤ x < M is uniquely

represented by its Chinese remainder representation (x1, . . . , xn), where 0 ≤ xi < mi

and xi = x mod mi. We will consider the base Bn formed by the first n prime
numbers.

Theorem 4.1. GI is hard for NL under AC0 many-one reductions.
Proof. The graph accessibility problem for directed acyclic graphs with fan-in

at most 2 is complete for the class NL. We reduce the complement of this set (non-
reachability) to GI. The result follows by the closure of NL under complementation
[20, 37]. Let G = (V,E) be such a graph, with |V | = n and with two designated nodes
s and t. Let P denote the number of paths from s to t in G. Clearly P ≤ 2n and
P = 0 if and only if for every i between 1 and n it holds that P mod i = 0.

In the reduction, on input G, an AC0 circuit, for each i between 1 and n, trans-
forms G into a circuit Ci with addition modulo i gates. The circuits have the property
that their outputs coincide with P mod i (see the preliminaries). In a second step the
reduction transforms the sequence of Ci circuits into a sequence of graphs GCi

(as
in the proof of Theorem 3.3) in which there is an automorphism mapping the input
nodes according to the inputs of Ci and mapping zi0 (the node corresponding to the
output gate of GCi

) to zij if and only if P = j mod i. The number of paths from s to
t in G is then 0 if and only if for all i ≤ n there is an automorphism in GCi mapping
the input nodes GCi

according to the inputs of Ci and mapping zi0 to itself. This can
be easily reduced to GI, as explained in the preliminaries.

Observe that in the graphs obtained in this reduction, the sizes of the classes of
the nodes with the same color are not bounded by a constant, as before, but by n2.

In fact, we can reduce any logarithmic space counting function to GI. We under-
stand by this that for any function f ∈ #L the set

Af = {〈x, 0i〉 | the ith bit of f(x) is 1}

is many-one reducible to GI.
For proving this reduction, we need two known results. On the one hand we need

the surprising fact that division can be computed by uniform TC0 circuits1 [17, 18].
More precisely we need the following part of the mentioned result.

Theorem 4.2 (see [17, 18]). There is a DLOGTIME uniform family of TC0

circuits that, on inputting the Chinese remainder representation (x1, . . . , xn) in base
Bn of a number x, outputs the binary representation of x.

We also need the fact that the result of an NC1 circuit with fixed values in the
input nodes can be encoded as a graph isomorphism question. This follows from an
adaptation of the proof of Theorem 3.1 in [22], stating that GI is hard for NC1 under
DLOGTIME uniform AC0 many-one reductions. For completeness we give a sketch of
the proof. The reader is referred to [22] for the details. For technical reasons needed
in the proof of Theorem 4.9, we encode the values of the circuit as tuples of graphs
((G,H), (I, J)) in PGI, with G � H and I � J for the encoding of a 1 and with

1In fact for our purposes the weaker result—stating that division is in alternating time O(logn),
which was proved in [14]—suffices.
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G � H and I � J for the encoding of a 0. Recall that PGI was the set of graph tuples
((G,H), (I, J)) with exactly one of the graphs pairs being isomorphic.

Theorem 4.3. Given a uniform family of circuits Cn with logarithmic depth and
polynomial size and given n tuples of graphs ((Gi, Hi), (Ii, Ji)) ∈ PGI, there is an AC0

reduction constructing a tuple ((G,H), (I, J)) ∈ PGI with the property that G � H if
and only if Cn outputs 1 and I � J if and only if Cn outputs 0, where the ith input
to Cn consists of the bit of the Boolean value of the statement Gi � Hi.

Proof. (Sketch.) An NC1 circuit can be simulated by a balanced DLOGTIME
uniform family of circuits with fan-out 1, logarithmic depth, polynomial size, and
alternating layers of ANDs and ORs [8]. We show how to transform these expressions
to graph tuples. The idea is to construct graph gadgets to simulate the AND and OR
connectives in the circuit. Given two tuples ((G1, H1), (I1, J1)) and ((G2, H2), (I2, J2))
in PGI, consider the graphs G∧, H∧, I∧, and J∧ in Figure 4.1, where an edge between
two graphs represents that each node of the first graph is connected to each node
of the second graph. These graphs have the property that G∧ � H∧ if and only if
G1 � H1 and G2 � H2. Also I∧ � J∧ if and only if G1 � H1 or G2 � H2 (in this
case I1 � J1 or I2 � J2).

Fig. 4.1. Tuple (G∧, H∧, I∧, J∧) simulating AND.

Similarly, the graphs G∨, H∨, I∨, and J∨ from Figure 4.2 have the property that
G∨ � H∨ if and only if G1 � H1 or G2 � H2, and I∨ � J∨ if and only if G1 � H1

and G2 � H2. Observe that ((G∧, H∧), (I∧, J∧)) and ((G∨, H∨), (I∨, J∨)) belong to
PGI.

Fig. 4.2. Tuple ((G∨, H∨), (I∨, J∨)) simulating OR.

The constructions double the number of nodes of the initial tuples. Notice also
that it is easy to simulate a NOT by transforming ((G,H), (I, J)) to ((I, J), (G,H)).

A 1 in the circuit is represented by a tuple ((G,H), (I, J)) with G � H, and a 0
by a tuple with I � J . Starting from the input nodes the reduction transforms the
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nodes of the circuit into graph tuples encoding the values of the circuit gates. Since
the circuit has logarithmic depth, the tuples corresponding to the output gate have a
polynomial number of nodes.

We can now show the hardness of GI with respect to #L.

Theorem 4.4. Every #L function2 is AC0 many-one reducible to GI.

Proof. Let f ∈ #L. For some polynomial q, it is possible to construct in AC0

for x ∈ Σ∗ a graph Gx with at most q(|x|) nodes so that f(x) is the number of s− t
paths in Gx. Let i be the bit of f(x) we want to reduce to GI, and let m = q(|x|). By
Theorem 4.2, in order to compute f(x), it suffices to compute its Chinese remainder
representation (f(x)1, . . . , f(x)m) in Bm. Once this is done, f(x) can be computed
by an NC1 circuit.

The Chinese remainder representation can be obtained by computing prime num-
ber pi for every 1 ≤ i ≤ m (this can be done by an NC1 circuit) and reducing Gx

to a circuit with addition gates in Zpi , as in the proof of Theorem 4.1. The circuits
are transformed into pi graph tuples ((Gj , Hj), (Ij , Jj)) with the property that in the
jth tuple the first two graphs are isomorphic if and only if f(x) = j − 1 mod pi.
These form a list of

∑m
i=1 pi graph tuples and can be considered as an encoding of the

Chinese reminder representation of f(x) (f(x)1, . . . , f(x)m) of the form (w1, . . . , wm),
where each wi ∈ {0, 1}pi is formed by 0’s with a 1 in position f(x)i + 1. The 0’s and
1’s in the wi’s are encoded by tuples in PGI.

By Theorem 4.2 it is possible to construct in DLOGTIME a TC0 (and therefore
also an NC1) circuit that, having as inputs the Chinese reminder representation of
f(x), outputs the ith bit of f(x). We can consider the list of graph tuples as the
inputs of this circuit.

So far we have shown that there is a uniform AC0 reduction that on input x com-
putes an NC1 circuit that outputs the ith bit of f(x) and has its input values encoded
as graph tuples in PGI. As done in the proof of Theorem 4.3, an AC0 reduction can
also transform the whole circuit into a single tuple of graphs ((G,H), (I, J)). G is
isomorphic to H or I is isomorphic to J depending on the output of the NC1 circuit,
which coincides with the ith bit of f(x).

Basically the same proof as the one for the hardness for NL holds for proving
hardness for the class C=L. Here instead of checking that the number of paths from
s to t is 0, we have to check that this number coincides with some exact threshold
f(G) ≤ 2n. For this the reduction machine has to compute for each small prime
pi the residue ri = f(G) mod pi (this can be done in NC1 [32] and in fact in TC0

by the mentioned result on division in [18]), and then check whether there is an
automorphism that for all i maps zi0 to ziri .

Corollary 4.5. GI is hard for C=L under AC0 many-one reductions.

As mentioned in the preliminaries, for a set L ∈ PL, there is a function f ∈ #L
and a polynomial p such that for any input x, x ∈ L if and only if f(x) ≥ 2p(|x|). The
next result follows then directly from Theorem 4.4 since an input x belongs to L if
and only if at least one of the bits corresponding to positions ≥ p(|x|) (starting from
the right) in the binary representation of f(x) is a 1.

Corollary 4.6. GI is hard for the class PL under AC0 many-one reductions.

The class DET of problems NC1 Turing reducible to the determinant coincides
with NC1(#L) (see, e.g., [2]). Combining Theorems 4.3 and 4.4, we can prove the
hardness of GI for DET, which is the strongest known hardness result for GI.

2In fact this result also holds for the more powerful class of GapL functions defined in [2].
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The proof of this result is based on a simulation of the NC1 circuit as done in
Theorem 4.3, replacing each of the oracle queries to f by a small circuit as in the
proof of Theorem 4.4. The main problem here is that while in Theorem 4.4 the input
for the #L function to be computed is a binary string x, in the simulation of the NC1

circuit the input to the oracle calls is not given as a sequence of bits but as a sequence
of graph tuples encoding these bits. To deal with this problem we need the following
lemma, stating that Theorem 4.4 is also true when the input is encoded as a sequence
of tuples.

Lemma 4.7. For each function f ∈ #L there is a DLOGTIME uniform family
{Cn} of AC0 circuits such that, on inputting a sequence of graph tuples ((Gi, Hi), (Ii, Ji))
in PGI, 1 ≤ i ≤ n, of size polynomial in n encoding a binary string x ∈ Σn, Cn con-
structs a sequence of tuples ((G′

i, H
′
i), (I

′
i, J

′
i)) in PGI, 1 ≤ i ≤ q(n), encoding the bits

of f(x).

Proof. Let f ∈ #L and n, k,m ∈ N. From the description of the nondeterministic
logarithmic space machine M computing f , the reduction constructs first in AC0 a
graph Gn

f of polynomial size in n related to the configuration graph of M . We can
consider that M has a read-only tape for the input and a work tape of logarithmic
size. The set of nodes of Gn

f consists of the set of tuples (s, c, p1, p2, b), where s is a
state of M , c is a possible content of the work tape, p1 and p2 are the positions of the
tape heads on the input and work tape, respectively, and b is one bit that will be used
to encode the content at position p1 on the input tape. For a concrete input some
of these descriptions are not consistent with the input information since b might not
be the correct bit at position p1. Nevertheless we consider the set of all such possible
descriptions at this point. This set has polynomial size in n. The set of edges in Gn

f

is given by the transition function of M . If the machine can reach from a description
d = (s, c, p1, p2, b) the configuration (s′, c′, p′1, p

′
2) in one step, then there is a directed

edge in Gn
f from d to (s′, c′, p′1, p

′
2, 0) and another one from d to (s′, c′, p′1, p

′
2, 1).

Let x be the input for f encoded by a sequence of graph triplets in PGI. In order
to compute whether f(x) mod k is congruent with m we will consider that the nodes
of Gn

f are addition gates in Zk in a polynomial size circuit C. If all the nodes of
C would correspond to descriptions consistent with the input, then the output of
this circuit would be f(x) mod k. However, half of the gates in C correspond to
inconsistent descriptions and corrupt the final sum. To avoid this problem we use a
method that guarantees that the wires coming out of the inconsistent gates always
have value 0 and therefore do not contribute to the final sum. This will be done
with a new graph gadget. Using first the graph gadgets in section 2.1, circuit C can
be transformed into a graph GC , where each of the mod k gates corresponding to
a machine description d = (s, c, p, p′, b) is transformed into a subgraph with input
nodes x0, . . . , xk−1 and y0, . . . , yk−1 and output nodes z0, . . . , zk−1 in such a way that
if there is an automorphism mapping xl to xl⊕i and yl to yl⊕j in this subgraph,
then the automorphism maps zl to zl⊕i⊕j for i, j, l ∈ {0, . . . , k − 1} (Lemma 3.2).
The output nodes zl are then connected with an edge to the input nodes of other
gates, nodes w0, . . . , wk−1 (the nodes of z are connected to as many nodes as the
fan-out of the corresponding gate; for simplicity we consider it is just one). Let us
suppose that the bit b in description d is 1 (the 0 case is completely analogous) and
let ((Gp, Hp), (Ip, Jp)) be the input tuple in PGI encoding the correct value for the
position p in the input x. The gate corresponding to d is a consistent gate if and only
if b equals the Boolean value of Gp � Hp. To force the inconsistent gates always to
propagate a 0 (an automorphism mapping z0 to itself) the reduction includes between
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Fig. 4.3. The graph Gad2.

the z and w nodes the following gadget Gadk, which can be seen in Figure 4.3 for
the case k = 2. Connections between a node v and a graph in the figure and in the
following description of Gadk mean that there is an edge between v and each of the
nodes in the graph.

Subgraph Gadk can be represented in four levels. Levels 1 and 4 contain the
nodes zi, and wi, respectively, for i ∈ {0, . . . , k − 1}. Level 2 contains for each i a
copy Iip of Ip and k − 1 copies of Jp, J

i,j
p , j ∈ {0, . . . , k − 1}, j = i. Level 3 contains

a copy of Gp and for each i in {1, . . . , k− 1} a copy Hi
p of Hp. The edges are defined

as follows:

• Each node zi is connected to the graphs Iip and to the k − 1 graphs J l,i
p for

l = i in the second level.
• Graph Gp in the third level is connected to I0

p and to each of the graphs J0,j
p

j = 0, all of them in the second level.
• The graphs Hi

p, i = 0, in the third level are connected to Iip and to J i,j
p , j = i.

• Finally, in the fourth level, node w0 is connected to Gp and each wi for i = 0
is connected to Hi

p.

Gadk has very nice properties, as can be seen in the next lemma.

Lemma 4.8. Subgraph Gadk has the following properties:

(1) If the gate is consistent with the input, that is, if Gp � Hp, then for any
c ∈ {0, . . . , k − 1} there is an automorphism in Gadk mapping zi to zi⊕c for
each i. Such automorphism also maps wi to wi⊕c.

(2) If the gate is inconsistent with the input, that is, if Ip � Jp, then for any
c ∈ {0, . . . , k − 1} there is an automorphism in Gadk mapping zi to zi⊕c for
each i. Such automorphism also maps wi to wi.

Proof. In order to see item 1 of Lemma 4.8, observe that if the automorphism
maps zi to zi⊕c, then the graph Iip connected to zi has to be mapped to one of the

graphs connected to zi⊕c, J
j,i⊕c
p , or Ii⊕c

p . But Ip cannot be mapped to Jp since these
graphs are not isomorphic. This implies that in any automorphism all the graphs
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Ip in the second level have to be mapped to graphs of type Ip. In particular Iip has

to be mapped to Ii⊕c
p . This means that the graph Gp at the third level has to be

mapped to the Hp graph over wc (this can happen since Gp � Hp), and this implies
that for all i, wi has to be mapped to wi⊕c. An automorphism satisfying all these
conditions can be defined by mapping for all i, j with i = j J i,j

p to J i⊕c,j⊕c
p at the

second level. Observe that in the case that Gp, Hp, Ip, and Jp are rigid graphs, the
described automorphism is the only one mapping zi to zi⊕c for each i.

For the proof of item 2 above, observe that in the case that the gate is inconsistent
with the input, then the graph Gp at the third level has to be mapped to itself, and
therefore the w nodes also have to be mapped to themselves. We have to prove that
there is an automorphism with these properties mapping zi to zi⊕c for each i. This
is clear for c = 0. For c = 0 this automorphism maps in the second level graph Iip to

J i,i⊕c
p (this is possible since Ip � Jp) and maps Gi,j

p to Gi,j⊕c
p if i = j ⊕ c or to Iip in

the case that i = j⊕c. The automorphism fixes the third and fourth levels, and again,
in the case that G,H, I, and J are rigid graphs, it is the only one mapping zi to zi⊕c

for each i.

We continue with the proof of Lemma 4.7. Let G′
C be the graph corresponding

to circuit C with the new gadgets on the edges coming out of the gates in C. The
above lemma guarantees that inconsistent gates always produce value 0, and therefore
the circuit produces the correct value for f(x) mod k. Let z0, . . . , zk−1 be the output
nodes in G′

C corresponding to the output gate of the circuit. By the results in section
2.1, there is an automorphism in G′

C mapping for each i zi to zi⊕m if and only if
f(x) ≡ m mod k. This property can be encoded by the reduction, using standard
methods, into a graph tuple in PGI ((G,H), (I, J)) satisfying that G � H if f(x) ≡ m
mod k, and G � I otherwise. Observe that if the graphs in the tuples have size
at most s, then the sizes of the output graphs are at most p(n)s for a polynomial
p depending on the machine M . The rest of the proof is exactly as in Theorem
4.4.

We can now prove the hardness of GI for DET. This result answers positively a
question posed by Allender in [1]. Recall that DET can be characterized as NC1(#L),
the class of problems computed by an AC0 uniform family of polynomial size and
logarithmic depth circuits with oracle gates to a function f in #L. By convention, an
oracle gate querying a string x contributes with log(|x| + |f(x)|) to the total circuit
depth.

Theorem 4.9. GI is hard for the class DET under AC0 many-one reductions.

Proof. Let L be a set in NC1(#L) and let {Cn} be the family of NC1 circuits
computing L with functional oracle queries to a function f in #L.

We want to compute Cn(x) for a string x of length n. The reduction can first
transform each oracle gate g into a circuit Dg, as done in Theorem 4.4. Observe that
the structure of the circuit computing gate g does not depend on the input bits of g,
but just on the number of such bits. Dg computes the query using modular gates as
well as AND and OR gates. Dg has polynomial size (in the size of its input) and its
depth is not necessarily logarithmic, but the number of levels with AND or OR gates
in this circuit is logarithmic in the input size of g. If we count only the depth of the
AND and OR gates (the maximum number of such gates in a path from an input to
the output gate), Cn with the expanded oracles gates still has logarithmic depth in n
since we are dealing with an NC1 reduction.

Each gate in the circuit Cn with expanded oracle queries can be transformed by
the AC0 reduction into a tuple of four graphs ((G,H), (I, J)) encoding the value of the
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gate as explained before. Using Theorems 4.3 and 4.9, the reduction can construct
these tuples for all the levels of the circuit. The graph tuple corresponding to the
output gate encodes the result of the circuit computation.

It is only left to show that the size of the graph tuples corresponding to the
circuit gates remain of polynomial size in n. The gadgets corresponding to the AND
and OR gates increase the size of the graph tuples at most by a factor of 2 in each
level, and the number of circuit levels with AND or OR gates is logarithmic in n.
The gadgets attached to the modular computations in the query gates increase the
sizes of the tuples by a factor of p(m), where m is the size of the query and p is a
polynomial. Because Cn computes an NC1 reduction, in a circuit path with oracle
queries with sizes m1, . . . ,ml, it must hold that the sum of the logarithms of all the
query sizes is at most c log(n) for some constant c. From this it follows that the
product of the increasing factors p(mi) corresponding to all the oracle queries in the
path is bounded by a polynomial in n. These facts imply that the sizes of the graph
tuples corresponding to every gate in Cn are polynomial in n.

4.1. Matching is reducible to GI. We mention an interesting connection be-
tween the perfect matching problem and GI. The perfect matching problem consists
in determining whether a given undirected graph has a perfect matching, that is, a
set of edges that contain all the vertices, and such that no two of these edges share
a vertex. This problem has been intensively studied, but like GI, it has resisted all
classification attempts in terms of completeness in a class. The problem has polyno-
mial time algorithms, and it is known to be in random NC [24, 33]. In [5] it has been
proved that for any k ≥ 2, the perfect matching problem is randomly reducible to a
set in ModkL. Together with Theorem 3.3 this implies the following corollary.

Corollary 4.10. The perfect matching problem is reducible to GI under ran-
domized reductions.

Since the reduction works correctly with probability exponentially close to 1, for
each input size n there is a sequence of random choices that can be taken as correct
advice in the reduction of all instances of size n. This implies a nonuniform reduction
from the perfect matching problem to GI. Moreover, as noted in [3], under a natural
hardness hypothesis, the reduction from the perfect matching problem to ModkL can
be derandomized using techniques from [21, 25]. This yields the following corollary.

Corollary 4.11. If there is a set A in DSPACE(n) and δ > 0 with the property
that, for all large n, no circuit of size less than 2δn accepts exactly the strings of
length n in A, then perfect matching is included in ModkL for any k ≥ 2, and thus
the problem is reducible to GI under AC0 many-one reductions.

5. Hardness results for graph automorphism. The graph automorphism
problem (GA)—determining whether a given graph has a nontrivial automorphism—
is many-one reducible to GI, and it seems to be a slightly easier problem. In this
section we show that the proven hardness results for GI hold also for GA. We show
first that the hardness for the modular classes can be easily translated to GA.

Theorem 5.1. For any k ≥ 2, GA is hard for ModkL under AC0 many-one
reductions.

Proof. In Theorem 3.3 we transformed a circuit with addition gates in Zk and
values for the input gates into a graph G having a unique automorphism with certain
restrictions (some nodes encoding the input and output values of the circuits had to
be mapped in a certain way) if and only if the output value of the circuit is 1. The
question of whether G has an automorphism with the desired properties can in turn
be transformed into a GI problem by making two copies of G, G1 and G2. These
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graphs have to include some coloring in the nodes representing the input and output
values of the circuit in order to encode the restrictions in the automorphism. Observe
that there is at most one isomorphism between G1 and G2. From this follows that
there is a nontrivial automorphism in G1 ∪G2 if and only if the output of the original
circuit is 1.

Based on this theorem the proof of Theorem 4.1 can be modified to show hardness
of GA for NL.

Corollary 5.2. GA is hard for NL under AC0 many-one reductions.
The additional ingredient that is needed to prove the stronger hardness results is

the fact that an NC1 computation can be encoded as a GA question, that is, a version
of Theorem 4.3 for GA. A direct translation of this result does not work since GA
is not known to have AND-functions. An AND-function for GA is a function that
is easy to compute and transforms pairs of graphs into single graphs in such a way
that both of the original graphs have nontrivial automorphisms if and only if the final
graph has such an automorphism. Dieter van Melkebeek has found a way to avoid
this problem.

Theorem 5.3 (van Melkebeek). Given a uniform family of circuits Cn with loga-
rithmic depth and polynomial size and given n tuples of rigid graphs ((G,H), (I, J)) ∈
PGI, there is an AC0 reduction constructing a tuple of rigid graphs ((G,H), (I, J)) ∈
PGI with the property that G � H if and only if Cn outputs 1, and I � J if and only
if Cn outputs 0, where the ith input to Cn consists of the bit of the Boolean value of
the statement Gi � Hi.

Proof. The proof is like that for Theorem 4.3 simulating the alternating layers of
ANDs and ORs of an NC1 circuit by graph gadgets for the tuples. The main difficulty
is preserving the rigidity of the tuple components.

In order to simulate the AND, given two tuples of rigid graphs ((G1, H1), (I1, J1))
and ((G2, H2), (I2, J2)) in PGI consider the graphs G∧, H∧, I∧, and J∧ in Figure 5.1.
G∧ and H∧ are defined as the standard AND-function for GI of the G and H graphs,
while I∧ and J∧ are constructed as the OR of (I1, J1) and (I2 AND G1, J2 AND H1).

These graphs have the property that G∧ � H∧ if and only if G1 � H1 and
G2 � H2. Also I∧ � J∧ if and only if I1 � J1 (and therefore G1 � H1) or I2 � J2 (in
this case G2 � H2 and either G1 � H1 or I1 � J1). Observe that if all the graphs in
the input tuples are rigid, then G∧, H∧, I∧, and J∧ are also rigid.

Fig. 5.1. Tuple (G∧, H∧, I∧, J∧) simulating AND.

Similarly, the graphs G∨, H∨, I∨, and J∨ from Figure 5.2 have the property that
G∨ � H∨ if and only if G1 � H1 or G2 � H2 and I∨ � J∨ if and only if G1 � H1

and G2 � H2. These gadgets simulate, therefore, an OR gate. Moreover, if the all
the graphs Gi, Hi, Ii, and Ji are rigid for i ∈ {1, 2}, then the constructed graphs G∨,
H∨, I∨, and J∨ are also rigid.

Observe that the size of the constructed gadgets is at most 3n, n being the sum of



ON THE HARDNESS OF GRAPH ISOMORPHISM 1107

Fig. 5.2. Tuple (G∨, H∨, I∨, J∨) simulating OR.

all the nodes in the input tuples. Because of this fact, for a logarithmic depth circuit
C with alternating layers of AND and OR fan-out 1 gates, a tuple of polynomial size
rigid graphs ((G,H)(I, J)) can be constructed such that C has value 1 if and only if
G � H. Since G and H are rigid, this is equivalent to G ∪H ∈ GA.

An immediate consequence of this result is that GA is hard for NC1. Using this
fact and Theorem 5.1, it is now possible to prove the hardness of GA for the class DET.
The proof of this result follows exactly the same lines as that for Theorem 4.9, taking
into consideration that the graph pairs produced in the reduction from Theorem 3.3
are rigid, and that the gadgets in the proof of Theorem 4.9 also preserve rigidity.

Corollary 5.4. GA is hard for the class DET under AC0 many-one reductions.

One final observation is that from Theorem 5.1 it follows also that the perfect
matching problem is randomly reducible to GA.
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[4] C. Àlvarez and B. Jenner, A very hard logspace counting class, Theoret. Comput. Sci., 107
(1993), pp. 3–30.

[5] L. Babai, A. Gál, and A. Widgerson, Superpolynomial lower bounds for monotone span
programs, Combinatorica, 19 (1999), pp. 301–319.

[6] L. Babai, D. Grigoryev, and D. Mount, Isomorphism of graphs with bounded eigenvalue
multiplicity, in Proceedings of the 14th Annual ACM Symposium on Theory of Computing,
1982, pp. 310–324.

[7] L. Babai and E. Luks, Canonical labeling of graphs, in Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, 1983, pp. 171–183.

[8] D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1, J.
Comput. System Sci., 41 (1990), pp. 274–306.

[9] R. Boppana, J. Hastad, and S. Zachos, Does co-NP have short interactive proofs?, Inform.
Process. Lett., 25 (1987), pp. 27–32.

[10] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, Structure and importance of
logspace-MOD-classes, Math. System Theory, 25 (1992), pp. 223–237.



1108 JACOBO TORÁN
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Abstract. The classical lambda calculus may be regarded both as a programming language and
as a formal algebraic system for reasoning about computation. It provides a computational model
equivalent to the Turing machine and continues to be of enormous benefit in the classical theory of
computation. We propose that quantum computation, like its classical counterpart, may benefit from
a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In
this paper we develop a quantum lambda calculus as an alternative model of quantum computation,
which combines some of the benefits of both the quantum Turing machine and the quantum circuit
models. The calculus turns out to be closely related to the linear lambda calculi used in the study
of linear logic. We set up a computational model and an equational proof system for this calculus,
and we argue that it is equivalent to the quantum Turing machine.
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1. Introduction. There are two main approaches to the theory of quantum
computation: the quantum Turing machine, introduced by Benioff [1] and Deutsch
[2], and the quantum circuit model, introduced by Deutsch [3]. These two approaches
were shown to be essentially equivalent by Yao [4].

The quantum Turing machine provides a fundamental model of quantum compu-
tation that may be regarded as a baseline for defining universality. However, reason-
ing about Turing machines can be a cumbersome process, requiring word-at-a-time
thinking while keeping track of complicated machine and tape states. Turing machine
programs do not satisfy a simple algebra.

For this reason, the quantum circuit model is more popular in the practical in-
vestigation of quantum algorithms. Quantum circuits are visual and compositional
and may be manipulated algebraically. However, no single finite quantum circuit is
universal. Indeed, Yao’s proof of Turing equivalence relies on the concept of uniform
circuit families generated by classical computation [4, 5]. To define what we mean by
such a circuit family, we need to rely on a separate model of classical computation
not described by any finite quantum circuit.

In classical computation, the lambda calculus provides an alternative computa-
tional model, equivalent to the Turing machine, which continues to be of enormous
utility in the theory of computation, in mathematical logic, and in the study of com-
puter languages and their semantics [6, 7, 8, 9, 10]. Due to its simplicity and expressive
power, the lambda calculus has been used as the basis of several powerful computer
languages, including Lisp, Scheme, ML, and Haskell [11, 12, 13, 14].

In this article, we propose that quantum computing, like its classical counterpart,
may benefit from an alternative computational model based on a version of the lambda
calculus suitable for expressing and reasoning about quantum algorithms. We develop
such a calculus, which turns out to be closely related to the linear lambda calculi used
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t ::= terms:

x variable

(λx . t) abstraction

(t t) application

Fig. 1. Syntax of the lambda calculus λ.

in the study of linear logic. We set up its computational model and equational proof
system and argue that the computational model is equivalent to the quantum Turing
machine.

The quantum lambda calculus combines some of the benefits of both quantum
circuits and the quantum Turing machine. The quantum lambda calculus describes
functions that may be composed and manipulated algebraically, like quantum circuits.
Programs can be algebraically transformed into equivalent programs, and one can
solve equations whose unknowns are programs, in much the same way as one solves
equations in high school algebra [15]. Unlike quantum circuits, the quantum lambda
calculus provides a unified framework that is universal for quantum computation
without the need to rely on a separate model of classical computation.

In a practical vein, we show how various known quantum algorithms may be ex-
pressed as simple programs in the lambda calculus. Indeed, the calculi described in
this paper may be used as a programming language for prototyping quantum algo-
rithms. In fact, the algorithms exhibited in this article were transcribed into Scheme
for testing. The simulator, which was also written in Scheme, is available on request
from the author.

Since the first version of this paper was written, some progress has been made by
the author in devising a typed version, with accompanying denotational semantics, of
a fragment of the quantum calculus described here [16].

2. The classical lambda calculus. We begin by providing a reasonably self-
contained introduction to concepts and constructions in the classical lambda calculus
that will be used in the rest of the paper. The intended audience for this section
includes physicists and general computer scientists. The expert may skip this section
and refer back as needed.

The classical lambda calculus may be regarded both as a programming language
and as a formal algebraic system for reasoning about computation. It was originally
introduced by Church in the study of the foundations of mathematics [17, 18]. Church
postulated that it provides a universal model of computation, which was later shown
by Turing to be equivalent to the Turing machine [19].

As a formal system, the lambda calculus has axioms and rules of inference, and
it lends itself to analysis using the language and tools of mathematical logic. Com-
putation may be regarded as guided deduction in this formal system. This provides
a directed form of equational reasoning that corresponds to symbolic evaluation of
programs via a sequence of algebraic simplifications called reductions [6, 7, 8, 9, 10].

The syntax of the classical untyped lambda calculus λ is as follows. Expressions
(also called terms) are constructed recursively from variables x, y, z, . . . , parentheses,
spaces, the period, and the symbol λ, according to the grammar of Figure 1.

A term of the form (λx. t) is called a functional abstraction. It represents the
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function x �→ t . For example, the identity function x �→ x is written as

(λx. x)

The dummy variable x here is called a bound variable and conforms to the usual
rules governing bound variables in mathematical formulas. For example, we identify
expressions that differ only in the renaming of bound variables.

A term of the form (t t) represents a function application. The sole means of
computation in the lambda calculus is the operation of applying a function to its
argument consistent with the following axiom:

((λx. t) v) = t [v/x] (β)

Here v denotes a value, to be defined shortly. Reading this axiom from left to right
defines an algebraic rewrite rule for transforming terms, substituting the argument v
in place of the variable x into the function body. This transformation is called beta
reduction. We will use the arrow −→ to indicate one (and sometimes more than one)
beta reduction step. A reducible term is called a redex.

Unabridged lambda terms can be painful to read. For this reason, we will often
introduce abbreviations using the symbol ≡. In addition, we will often omit paren-
theses according to the convention that nested lambda abstractions associate to the
right and applications associate to the left.

Consider the simple program ((λx. x) apple), where apple stands for some term in
our language. With the abbreviation id ≡ (λx. x), this may be written more legibly
as (id apple), which should evaluate to apple. Indeed, beta reduction gives

((λx. x) apple) −→ apple

in a single step.
In general, a computation consists of a sequence of beta reductions executed

according to some deterministic strategy until the resulting term cannot be reduced
any further, at which point the computation terminates.

A slightly more complicated example, which serves to show how multiple-argument
functions can be represented in terms of nested single-argument functions (a technique
known as currying), is given by

apply ≡ λf. λx. (f x)

≡ λf. (λx. (f x)),

which represents a function that applies its first argument f , which should be a
function, to its second argument x. Applying the identity function to banana should
give banana. To see this, the program (apply id banana), which is shorthand for
((apply id) banana), is now executed by the following sequence of beta reductions
(underlining redexes):

((apply id) banana) ≡ (((λf. (λx. (f x))) id) banana)

−→ ((λx. (id x)) banana)

−→ (id banana)

−→ banana.
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v ::= values:

x variable

(λx. t) abstraction value

Fig. 2. Values in the call-by-value calculus λv.

t1 −→ t′1
(t1 t2) −→ (t′1 t2)

(app1)

t2 −→ t′2
(v1 t2) −→ (v1 t′2)

(app2)

(λx. t) v −→ t [v/x] (β)

Fig. 3. Reduction rules for the call-by-value calculus λv.

Often there is more than one reducible subterm at any given step and a strategy
is required to make the process unambiguous. For definiteness, we will use a call by
value strategy. This works as follows. Abstractions (terms of the form (λx. t)) are
considered values and may not be reduced any further. A function application (t t)
may be reduced only if both the operator and the operand are values. Otherwise the
operator and operand must be reduced first. We will call the resulting calculus the
call-by-value lambda calculus λv. Formally, we state the syntax for values [20, 21] in
Figure 2. The reduction rules are listed in Figure 3.

We will denote by 〈〈t〉〉 the term, when it exists, obtained by fully reducing t to a
value.

We will often use a less cumbersome informal notation when defining functions.
For example, the apply function above satisfies the property

apply f x −→ (f x)

under beta reduction. Given this specification, the translation into a lambda term is
straightforward.

How do we represent data in the lambda calculus? Since all we have at our
disposal are lambda terms, we need a way of encoding data as lambda abstractions
with specified properties. There is a technique that can be used for any kind of data
structure, which we will illustrate with two examples: natural numbers and lists.

Let us first consider how the natural numbers may be represented. As with any
kind of data, we need a way to construct natural numbers and a way to deconstruct
them, extracting their constituents.

One possible encoding is as the sequence

0, 1 ≡ 〈〈succ 0〉〉, 2 ≡ 〈〈succ 1〉〉, . . . ,

where

0 ≡ λx. λy. (x id),

succ ≡ λn. λx. λy. (y n)
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are the constructors.1 The above definitions were motivated by the need to be able
to define a case expression (deconstructor),

case t1 of (0 → t2, succ m→ t3),

which may now be taken as an abbreviation for

t1 (λz. t2) (λm. t3).

Here z denotes a variable that does not appear free in t2. This expression allows
us to deconstruct a natural number, extracting the ingredients that went into its
construction, i.e., either 0 or its predecessor m. Indeed, it is not difficult to verify the
following behavior under beta reduction:

case 0 of (0 → t2, succ m→ t3) −→ t2,

case 〈〈succ t0〉〉 of (0 → t2, succ m→ t3) −→ t3 [〈〈t0〉〉/m].

As an example, it is now trivial to define the predecessor function (with the convention
that pred 0 = 0),

pred ≡ λn. case n of

{
0 → 0

succ m→ m.

To program arbitrary computations, we need to verify that the lambda calculus is
sufficiently powerful to represent recursive functions. Indeed, recursion can be used
to represent any kind of iterative or looping computation.

For example, to define addition, we need an expression add which behaves as
follows under beta reduction:

add m n −→ case m of

{
0 → n

succ k → add k (succ n),

where the subterm denoted by add on the left has copied itself into the body of the
term on the right-hand side. One of the simplest ways to achieve this is to define [22]

add ≡ (t t),(1)

where

t ≡ λf.

(
λm. λn. case m of

{
0 → n

succ k → (f f) k (succ n)

)
.(2)

In other words, t is an abstraction consisting of the body of the addition function with
the combination (f f) in the position where add should insert itself after reduction.

1Explicitly,

0 ≡ λx. λy. (x (λw.w)),

1 ≡ λx. λy. (y λx. λy. (x (λw.w))),

2 ≡ λx. λy. (y λx. λy. (y λx. λy. (x (λw.w))))

...
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It is a simple exercise to show that add indeed has the specified behavior under beta
reduction. This method can be applied to any recursive function.

The computation of the program (add 2 2) then proceeds via the following se-
quence of beta reductions:

add 2 2 ≡ add 〈〈succ 1〉〉 2

−→ case 〈〈succ 1〉〉 of (0 → 2, succ k → add k (succ 2))

−→ add 1 〈〈succ 2〉〉 ≡ add 〈〈succ 0〉〉 3

−→ case 〈〈succ 0〉〉 of (0 → 3, succ k → add k (succ 3))

−→ add 0 〈〈succ 3〉〉 ≡ add 0 4

−→ case 0 of (0 → 4, succ k → add k (succ 4))

−→ 4.

The above technique can be generalized to arbitrary data structures. For example,
lists can be represented by the following constructors, which are entirely analogous to
those of the natural numbers:

() ≡ λx. λy. (x id),

cons ≡ λh. λt. λx. λy. ((y h) t),

where () denotes the empty list and cons constructs a list consisting of a first (head)
element h followed by a list t (the tail) containing the rest of the elements. Again,
the above definitions were motivated by the need to be able to define a deconstructor

case t1 of (() → t2, cons h t→ t3),

which may now be taken as an abbreviation for

t1 (λz. t2) (λh. λt. t3).

We will often abbreviate h : t ≡ (cons h t). We can define tuples in terms of lists as
(x1, . . . , xn) ≡ x1 : x2 : · · · : xn : (). Under beta reduction, we have the behavior

case () of (() → t2, h : t→ t3) −→ t2,

case 〈〈t0 : t1〉〉 of (() → t2, h : t→ t3) −→ t3 [〈〈t0〉〉/h, 〈〈t1〉〉/t],

showing how the case expression may be used to deconstruct the list, extracting its
head and tail. To see how these abstractions are used, consider the recursive function

map f list −→ case list of

{
() → ()

h : t→ (f h) : (map f t),

which takes as input a function and a list and applies the function to each element of
the list. The reader may verify that, for example,

map double (4, 7, 2) −→ (8, 14, 4), double ≡ λx. (add x x).

Finally, we introduce some convenient notation. Since we can represent tuples as lists,
we can define functions on tuples using notation such as

λ(x, y). t ≡ λu. case u of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
() → ()

x : t′ → case t′ of

⎧⎨⎩
() → ()

y : t′′ → t .
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For example, (λ(x, y). (add x y)) (7, 7) evaluates to 14. It is also useful to have a
notation for representing intermediate results. The let notation

let (x1, . . . , xn) = (t1, . . . , tn) in t

≡ (λ(x1, . . . , xn). t) (t1, . . . , tn)

allows us to write terms such as

let x = 1 in

let (y, z) = (2, 3) in

add x (add y z)

which evaluates to 6.

3. A quantum computational model. In this section we will construct a
computational model, based on the lambda calculus, suitable for describing quantum
computations. The language used will be an adaptation of the classical lambda cal-
culus, extended with a set of quantum primitives. We will denote it by λi, where the
subscript stands for intermediate. For reasons to be discussed in the next section, this
language is not suitable as a formal system. In particular, reduction in λi does not
correspond to a simple system for equational reasoning. In section 5 we will correct
these deficiencies to obtain the full quantum lambda calculus λq.

In the classical lambda calculus, beta reduction consumes the program to give the
result. At each step, information is discarded, which makes the process irreversible.
For quantum computing, we need reduction rules that take computational states to
superpositions of states in a way that is unitary and reversible.

Bennett [23] showed that any classical computation can be transformed into a
reversible computation. The construction, adapted to our situation, is as follows.
Let x denote the term being computed, and let β : x �→ β(x) denote a single beta
reduction step. Instead of the noninvertible function β, one considers the function
x �→ (x, β(x)), which is invertible on its range. In its simplest version, the computation
proceeds as

x �→ (x, β(x)) �→ (x, β(x), β2(x)) �→ (x, β(x), β2(x), β3(x)) �→ · · · .

More complicated schemes exist that reversibly erase the intermediate steps, saving
space at the expense of running time. Although this process does not end by itself,
we may observe it and regard the computation as having terminated when βn+1(x) =
βn(x), at which time we may stop the machine by external intervention.

Although this scheme can be used to reversibly implement computations in the
classical lambda calculus, we will soon see that it does not work unmodified in the
quantum case.

To represent computations involving qubits, we will add a few constant symbols
as additional primitives to our language, as in Figure 4.

The symbols 0 and 1 here are primitives and should not be confused with the
abbreviations 0 and 1 of the previous section. Additional constants H, S, . . . , will
denote elementary gate operations on qubits. These should include symbols for a
universal set of elementary quantum gates [3, 24, 25]. For example, the set consisting
of the Hadamard gate H, the phase gate S, the π/8 gate R3, and the controlled-not
gate cnot is universal [25, 5]. Additional primitives, such as the Pauli gates X, Y ,
and Z, may be added for convenience.
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t ::= terms:

x variable

(λx . t) abstraction

(t t) application

c constant

c ::= constants:

0 | 1 | H | S | R3 | cnot | X | Y | Z | . . .

Fig. 4. Syntax of the intermediate language λi.

We now allow the state of a computation to be a quantum superposition of terms
in this language. As a model, one may imagine lambda terms encoded as strings of
symbols on the tape of a quantum Turing machine.

As a first example, consider an initial state written in ket notation as

|(H 0)〉 .

We would like to choose the transition rules of the quantum computer in such a way
that this string will evaluate to the Hadamard operator applied to |0〉, which should
give the superposition 1√

2
(|0〉 + |1〉) of the states |0〉 and |1〉 containing unit-length

strings. The candidate reduction rule

|(H 0)〉 −→ 1√
2

(|0〉 + |1〉) ,

|(H 1)〉 −→ 1√
2

(|0〉 − |1〉)

is not reversible. To make it reversible, we first try the same trick as in the classical
case,

|(H 0)〉 −→ 1√
2

(|(H 0); 0〉 + |(H 0); 1〉)

= |(H 0)〉 ⊗ 1√
2

(|0〉 + |1〉) ,

where we have factored out the common substring. The semicolon denotes string
concatenation. In this simple example, the answer indeed factors out on the right.
However, notice what happens if we apply this method to the term

|(H (H 0))〉 −→ 1√
2

(|(H (H 0)); (H 0)〉 + |(H (H 0)); (H 1)〉)

−→ 1

2
|(H (H 0))〉 ⊗

⊗
(
|(H 0); 0〉 + |(H 0); 1〉 + |(H 1); 0〉 − |(H 1); 1〉

)
.

Here the answer does not factor out. The fully reduced rightmost term is entangled
with the intermediate term in the history.
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v ::= values:

x variable

c constant

(λx. t) abstraction value

Fig. 5. Values in the intermediate language λi.

Note, however, that this scheme keeps more information than necessary. For
reversibility, it is sufficient to record at each step only which subterm has been reduced
and the operation that has been applied to it. We may encode this in our example as
follows (to be formalized below):

|(H (H 0))〉 −→ 1√
2

(|( (H )); (H 0)〉 + |( (H )); (H 1)〉)

−→1

2
|( (H ))〉 ⊗

⊗
(
|(H ); 0〉 + |(H ); 1〉 + |(H ); 0〉 − |(H ); 1〉

)
= |( (H )); (H )〉 ⊗ |0〉 .

Here, at each step we have replaced subterms that do not need to be recorded by the
constant placeholder symbol . Now the answer does indeed factor out on the right
as required, consistent with H2 |0〉 = |0〉. It is also clear that at each step we have
kept enough information to reconstruct the previous step, thus ensuring reversibility.

The computational model may now be formalized with the following rules: First,
we extend our definition of values to include constants as in Figure 5. The computa-
tional state is taken to be a quantum superposition of sequences of the form

h1; . . . ; hn; t,

where h1; . . . ; hn will be called the history track and t will be called the computational
register. The classical subset of the transition rules is shown in Figure 6.

In these rules H denotes the (possibly empty) history track, and tx is obtained
from t by recursively replacing all subterms that do not contain x with the placeholder
symbol and keeping x. More formally,

tx ≡ if x not free in t,

(λy. t)x ≡ ( . tx),

(t t ′)x ≡ (tx t ′x),

xx ≡ x.

(3)

These rules are sufficient to make classical computations reversible, provided that
lambda terms that differ only by renaming of bound variables have been identified.
In this regard, we note here that in a quantum Turing machine model, it is possible
to represent terms on the tape of the quantum Turing machine in an unambiguous
way (e.g., using De Bruijn indices instead of bound variables) [7, 8].
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t1 −→ h1; t
′
1

H; (t1 t2) −→ H; (h1 ); (t′1 t2)
(app1)

t2 −→ h2; t
′
2

H; (v1 t2) −→ H; ( h2); (v1 t′2)
(app2)

H; ((λx. t) v) −→ H; ((λx. tx) ); t [v/x] (β1) if x appears free in t

H; ((λx. t) v) −→ H; ((λx. ) v); t (β2) if x not free in t

H; t −→ H; ; t (Id) otherwise

Fig. 6. Operational model for the classical subset of λi.

|H; (H 0)〉 −→ |H; (H )〉 ⊗ 1√
2

(|0〉 + |1〉)

|H; (H 1)〉 −→ |H; (H )〉 ⊗ 1√
2

(|0〉 − |1〉)

Fig. 7. Operational model for H.

Here is an example computation:

|((apply id) banana)〉 ≡ (((λf. (λx. (f x))) (λz. z)) banana)

−→ |(((λf. ( . (f ))) ) ); ((λx. ((λz. z) x)) banana)〉
−→ |(((λf. ( . (f ))) ) ); ((λx. ( x)) ); ((λz. z) banana)〉
−→ |(((λf. ( . (f ))) ) ); ((λx. ( x)) ); ((λz. z) ); banana〉
−→ |(((λf. ( . (f ))) ) ); ((λx. ( x)) ); ((λz. z) ); ; banana〉
−→ |(((λf. ( . (f ))) ) ); ((λx. ( x)) ); ((λz. z) ); ; ; banana〉
−→ · · · .

At each step, just enough information is kept to reconstruct the previous step. Al-
though in this particular example termination can be tested by observing and compar-
ing the last expression in the history with , in general we do not have a well-defined
criterion for termination in the calculus λi, because the state may involve a superpo-
sition of several computational histories, some of which have terminated and others
not. Thus, to observe termination would potentially disturb the state. This problem
will be solved in the quantum calculus λq of section 5.

In addition, we have some extra reduction rules involving the quantum gate sym-
bols such as those provided in Figure 7.

The rules for quantum primitives are summarized in Figure 8.
Here cU denotes any one of the quantum primitive symbols and U the corre-

sponding unitary transformation, while φ stands for 0 or 1 in the case of single-bit
operators, or one of (0, 0), (0, 1), (1, 0) or (1, 1) in the case of two-bit operators. For
example,

|(cnot (1, 0))〉 −→ |(cnot ); (1, 1)〉 .
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|H; (cU φ)〉 −→ |H; (cU )〉 ⊗ U |φ〉 (U)

Fig. 8. Operational model for the quantum primitives of λi.

4. Toward an equational theory. While the language λi constructed in the
previous section can be used to describe quantum computations, reduction in λi does
not correspond to a simple system for equational reasoning. This makes λi unsuitable
as a formal proof system for quantum computation. We will discuss the problem in
this section and resolve it in the next with the introduction of the quantum lambda
calculus λq.

In the classical lambda calculus, program evaluation through beta reduction can
be regarded as a directed form of equational reasoning consistent with the axiom

(λx. t) v = t [v/x] (β).

Indeed, the classical lambda calculus provides both a model of computation and a
formal system for reasoning about functions, a property we would like to keep in the
quantum case.

To understand the difficulty, notice what happens when a function application
discards its argument (in other words, the argument does not appear in the function
body). For example,

|((λx. apple) banana)〉 −→ |((λx. ) banana); apple〉 .

We see that to maintain reversibility, a record of the argument banana is kept in
the history. Restricting our attention to the computational register, we see that its
evolution is consistent with replacing the original expression with an equal expression
according to the axiom (β). In other words, in this example reduction is consistent
with equational reasoning.

However, we run into problems when the discarded subterm is in a quantum
superposition with respect to the computational basis. For example, consider the
reduction of

|(λx. 0) (H 0)〉 −→ |( (H )〉 ⊗ 1√
2

(
|(λx. 0) 0〉 + |(λx. 0) 1〉

)
−→ |( (H )〉 ⊗ 1√

2

(
|(λx. ) 0〉 + |(λx. ) 1〉

)
⊗ |0〉 .

In the second step, a discarded subterm in a superposition is saved in the history and
the computational register becomes |0〉. However, if we were to apply the axiom (β)
to the contents of the computational register, we would get the equation

1√
2

(
|(λx. 0) 0〉 + |(λx. 0) 1〉

)
=

√
2 |0〉 ,

which is invalid since the right-hand side is not a legal normalized state.

As a second example, consider the following computation, where the inner func-
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tion discards its argument x:

|((λy. ((λx. y) y)) (H 0))〉

−→ 1√
2
|( (H ))〉 ⊗

(
|((λy. ((λx. y) y)) 0)〉 + |((λy. ((λx. y) y)) 1)〉

)
−→ 1√

2
|( (H )); ((λy. (( . y) y)) )〉 ⊗

⊗
(
|((λx. 0) 0)〉 + |((λx. 1) 1)〉

)
−→ 1√

2
|( (H )); ((λy. (( . y) y)) )〉 ⊗

⊗
(
|((λx. ) 0); 0〉 + |((λx. ) 1); 1〉

)
.

Now the computational register is entangled with the last expression in the history.
Ignoring the history, the computational register would be in a mixed state with density
matrix (

1
2 0
0 1

2

)
.

However, an attempt to apply the equational axiom (β) to the contents of the com-
putational register would give

1√
2

(
|((λx. 0) 0)〉 + |((λx. 1) 1)〉

)
=

1√
2

(|0〉 + |1〉) ,

which is clearly inconsistent.

5. A quantum lambda calculus. We will resolve the shortcomings of the
language λi by developing a quantum lambda calculus λq which has a consistent
equational theory. This section will be somewhat heavier on the formalities, and the
reader who wishes to see some concrete examples may skip ahead to section 7 after
reading the introductory paragraphs.

The previous discussion suggests that the problems with equational reasoning in
the presence of quantum operations can be avoided by preventing functions from dis-
carding arguments that may be in a superposition with respect to the computational
basis.

Let us call a subexpression definite with respect to the computational basis if it
is textually the same in all branches of the superposition. For example, in the state

1√
2

(
|(λx. 0) 0〉 + |(λx. 0) 1〉

)
,

the subexpression (λx. 0) is definite, whereas the argument 1
2 (|0〉 + |1〉) is nondefinite.

Definite subexpressions may be thought of as a classical resource. They can be ob-
served without affecting the state of the computation. On the other hand, nondefinite
subexpressions represent purely quantum resources.

To avoid the problems pointed out in the previous section, we seek a calculus that
will keep track of whether an argument is definite or nondefinite and that will make
it impossible to write a function that discards a nondefinite resource. Calculi that are
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t ::= terms:

x variable

(λx . t) abstraction

(t t) application

c constant

!t nonlinear term

(λ!x . t) nonlinear abstraction

c ::= constants:

0 | 1 | H | S | R3 | cnot | X | Y | Z | . . .

Fig. 9. Syntax of the quantum calculus λq.

resource sensitive, known as linear lambda calculi, have been studied intensively in
recent years [26, 27, 28, 29]. So-called typed linear lambda calculi are very closely re-
lated to the field of linear logic [30, 31]. Linear logic is a resource-sensitive logic where,
for example, certain assumptions may be used only once in the course of a derivation.

For our purposes it will be sufficient to study a simple untyped linear calculus. The
syntax is a fragment of the one introduced in [27], extended with quantum operations
as in Figure 9.

Here terms of the form !t are called nonlinear. Nonlinear terms will be guaranteed
to be definite with respect to the computational basis and may be thought of physically
as classical strings of symbols that may be discarded and duplicated at will. On the
other hand, linear terms may be nondefinite, possibly containing embedded qubits
in superpositions with respect to the computational basis. Abstractions of the form
(λ!x . t) denote functions of nonlinear arguments. In an abstraction of the form (λx . t),
the argument is called linear.

A functional abstraction may use a nonlinear argument any number of times in
its body, or not at all. On the other hand, a linear argument must appear exactly
once in the function body (hence the name linear).

To enforce these rules, we require terms to be well formed. This corresponds to
the constraint that linear arguments appear linearly in a function body and that all
free variables appearing in a term !t refer to nonlinear variables [28]. In the following
examples, the terms in the left column are well formed while those in the right column
are ill formed:2

(λ!x. 0) (λx. 0)

(λx. x) (λx. !x)

(λ!x. (x x)) (λx. (x x))

(λy. (λ!x. y)) (λy. (λx. y))

(λ!y. !(λ!x. y))(λy. !(λ!x. y)).

2Notice that while well-formedness guarantees that linear resources will be used appropriately, it
does not guarantee that terms are meaningful. For example, the term (λy. (λ !z.0) y) is well formed,
but it may or may not get stuck at run time, according to the operational model of Figure 12, when
applied to a linear or nonlinear argument, respectively. A typed calculus would be needed to specify
which terms can be legally substituted for y. For recent progress in this direction, see [16].
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� c Const

x � x Id

!x1, . . . , !xn � t
!x1, . . . , !xn �!t

Pomotion

Γ, x � t
Γ, !x � t Dereliction

Γ, !x, !y � t
Γ, !z � t [z/x, z/y] Contraction

Γ � t
Γ, !x � t Weakening

Γ, x � t
Γ � (λx. t)

�-I

Γ, !x � t
Γ � (λ!x. t)

→-I

Γ � t1 ∆ � t2
Γ,∆ � (t1 t2)

�-E

Fig. 10. Rules for well-formed terms in the quantum calculus λq.

Well-formedness is a property that can be checked syntactically. For completeness,
we formally state the rules for well-formedness [28], which the reader satisfied with
the above informal characterization may skip, in Figure 10.

These rules may be related to the typed linear calculi described in [28, 27] by
erasing the type annotations from the typing rules of the latter. Here Γ and ∆ denote
contexts, which are sets containing linearity assumptions of the form x and !x, where
each variable x is distinct. If Γ and ∆ are contexts with no variables in common,
then Γ,∆ denotes their union. For example, the rule �-E implicitly assumes that
Γ ∩ ∆ = ∅. Rules may be read as follows. For example, the promotion rule says that
if t is a well-formed term under the assumption that x1 to xn are nonlinear, then
!t is a well-formed term under the same assumption. The condition Γ ∩ ∆ = ∅ in
(�-E) ensures that a linear variable can appear only once in the body of a formula.
The weakening and (→-I) rules allow a function to discard a nonlinear argument,
whereas the contraction and (�-E) rules allow us to duplicate a nonlinear argument
any number of times in the body of a function.

The well-formedness constraint prevents us from writing a function that discards
a linear argument. However, this is not sufficient to prevent unsafe computations
without further specification of the substitution order. To see this, consider the
expression ((λ!x. 0) !(H 0)), which is well formed. The problem is that we are allowed
to use ! to promote the expression (H 0) to a nonlinear value, which can then be
discarded. If we were allowed to reduce the subterm (H 0) first, equational reasoning
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v ::= values:

x variable

c constant

(λx. t) linear abstraction

(λ!x. t) nonlinear abstraction

!t !-suspension

Fig. 11. Values in the quantum calculus λq.

t1 −→ h1; t
′
1

H; (t1 t2) −→ H; (h1 ); (t′1 t2)
(app1)

t2 −→ h2; t
′
2

H; (v1 t2) −→ H; ( h2); (v1 t′2)
(app2)

H; ((λx. t) v) −→ H; ((λx. tx) ); t [v/x] (β)

H; ((λ!x. t) !t′) −→ H; ((λ!x. tx) ); t [t′/x] (!β1) if x appears free in t

H; ((λ!x. t) !t′) −→ H; ((λ!x. ) !t′); t (!β2) if x not free in t

|H; (cU φ)〉 −→ |H; (cU )〉 ⊗ U |φ〉 (U)

H; t −→ H; ; t (Id) otherwise

Fig. 12. Operational model for the quantum lambda calculus λq.

would give

|((λ!x. 0) !(H 0))〉 =
1√
2

(
|((λ!x. 0) !0)〉 + |((λ!x. 0) !1)〉

)
=

√
2 |0〉 ,

which is an invalid equation since the last line is not a valid normalized state. On the
other hand, if we consider !(H 0) as an irreducible value, we may use beta reduction
immediately to obtain

|((λ!x. 0) !(H 0))〉 = |0〉 ,

which is a valid result, since we are discarding the unevaluated expression !(H 0),
which is definite.

To prevent terms of the form !t from being evaluated, we follow Abramsky [26]
and extend our definition of values as in Figure 11.
The computational model is described in Figure 12,3 where t is defined as in (3).

According to these rules, quantum superpositions can be created only by evaluat-
ing terms containing quantum primitives. The result of applying a quantum gate is a

3See [26, 32, 33] for related operational interpretations of linear lambda calculi. Our evaluation
model recomputes !-closures (see [32]).
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linear value, not preceded by a !. As we prove below, there is no way to include such
a linear value in a nonlinear subterm. It follows that subterms that may be quantum
nondefinite will never be discarded since, by (!β1) and (!β2), nonlinear functions can
be applied only to nonlinear terms.

Note that when a nonlinear function encounters a linear argument, it simply gets
stuck. More precisely, the rule (Id) applies.

The above reduction rules may create superpositions. However, such superposi-
tions are not arbitrary. Indeed, terms in a superposition will differ only in positions
containing the constants 0 and 1. Otherwise they will have the same shape. We
may formalize this by defining two terms to be congruent if they coincide symbol by
symbol except possibly in positions containing 0 or 1. Lemma 5.1 then follows.

Lemma 5.1. All terms in a superposition obtained via a reduction sequence from
a definite initial term are congruent.

Proof. The proof is by a simple induction on the length of the reduction sequence,
analyzing the reduction rules case by case.

Another case-by-case induction argument may be used to prove that reduction
preserves well-formedness.

Lemma 5.2. If t is well formed and |H; t〉 −→
∑

i ci |H′
i; t

′
i〉, then all terms t′i

appearing in the resulting superposition are well formed.4

Because terms appearing in a superposition have the same shape, it makes sense
to talk about specific subterms of the expression in the computational register. We
can therefore formulate the following lemma.

Lemma 5.3. Starting from a definite initial term, any !-suspension subterm oc-
curring during reduction is definite with respect to the computational basis.

Proof. This follows by induction on the length of the reduction sequence. The
initial term is definite by assumption. Assume that the lemma holds after n steps.
We have argued that all terms in a superposition obtained from a definite initial term
are congruent. They therefore have the same structure of subterms, and the same
reduction rule applies to them all. Since we have argued that these terms are well
formed, there are then three ways in which we may obtain a !-suspension subterm
after n + 1 steps. First, the suspension may not be part of the redex, in which case
it is included unmodified in the resulting expression. Second, it may be the result of
beta reduction of an application of the form

(λx. (· · ·x · · · )) (· · · !t · · · ),

where !t is definite by the induction assumption. The result is (· · · (· · · !t · · · ) · · · ),
where !t has been copied without modification. Third, it may be the result of beta
reduction of an application of the form

(λ!x. · · · !(· · ·x · · · ) · · · ) !t,

where !t and !(· · ·x · · · ) are definite by the induction assumption. This creates a
suspension !(· · · t · · · ), which is definite because all its subterms are definite. This
completes the proof.

It is worth pointing out that we cannot create possibly nondefinite suspensions
by reducing terms like

(λx. · · · !(· · ·x · · · ) · · · ) (H 0)

because x is linear, which implies that !(· · ·x · · · ) is not a well-formed subterm.

4Thanks to one of the referees for suggesting improvements in the exposition of this section.
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t1 −→ t′1
(t1 t2) −→ (t′1 t2)

(app1)

t2 −→ t′2
(v1 t2) −→ (v1 t′2)

(app2)

(λx. t) v −→ t [v/x] (β)

(λ!x. t) !t′ −→ t [t′/x] (!β)

|cU φ〉 −→ U |φ〉 (U)

Fig. 13. Reduction rules for the quantum calculus λq.

Lemma 5.4. Given a definite initial term, the contents of the history track re-
mains definite throughout reduction.

Proof. We have argued that all terms in a superposition obtained from a definite
initial term are congruent. They therefore have the same structure of subterms,
and the same reduction rule applies to them all. Since our reduction rules allow
only !-suspensions to be discarded (which saves a copy in the history), and since !-
suspensions are always definite by the previous lemma, the result follows by induction
on the length of the reduction sequence.

Since both the history and the shape of the term in the computational register
remain definite throughout reduction, we can state the following conclusion.

Corollary 5.5. Termination can be tested without disturbing the computation
by observing the last term in the history. When this term becomes equal to the place-
holder , the result can be read off from the computational register.

Not only is termination a “classical” property, but so is the entire shape of the
term itself, i.e., term shapes can be implemented in classical memory, and only their
data slots need to point to qubits on a quantum device.5

The fact that the history remains definite in λq eliminates the specific impedi-
ments to setting up an equational theory that were pointed out in the previous section.
Indeed, since the state of the computation is now always guaranteed to be a direct
product |H〉 ⊗ |c〉 of the history |H〉 and the computational register |c〉, reduction
can never lead to a computational register |c〉 that is in a mixed state. In addition,
since |H〉 remains definite, the restriction of the reduction rules to the computational
register will preserve the normalization. We are therefore led to the following theorem.

Theorem 5.6. In the quantum calculus λq, the evolution of the computational
register is governed by the reduction rules of Figure 13.

Proof. This easily follows from a case-by-case analysis of the computational rules
of Figure 12.

For example, consider the rule (!β2) applied to a state of the form |H〉⊗|c〉 , where
|c〉 is a normalized superposition of the form∑

i

ci |(· · ·i ((λ!x. ti) !t′) · · ·i)〉 ,

in which, by Lemma 5.1, all terms have the same structure and, by Lemma 5.3, the

5I would like to thank one of the referees for suggesting this improved formulation.
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subterm !t′ does not depend on i. This then reduces to

|H〉 ⊗
∑
i

ci |( ((λ!x. ) !t′) ); (· · ·i ti [t
′/x] · · ·i)〉

= |H; ( ((λ!x. ) !t′) )〉 ⊗
∑
i

ci |(· · ·i ti [t
′/x] · · ·i)〉 ,

where the computational register is in the normalized state
∑

i ci |(· · ·i ti [t
′/x] · · ·i)〉,

consistent with applying the reduction rule (λ!x. ti) !t′ −→ ti [t
′/x] to its

contents.

The big win is that we now have a simple set of reduction rules that can be used
to reason about the computation without having to keep track of the history.

To define an equational theory for this calculus, we will simply define a notion of
equality that is compatible with the reduction rules of Figure 13. Intuitively, reduction
should be understood as a simple algebraic operation of replacing subterms with equal
subterms. However, we need to take into account that reduction may not take place
inside !-suspensions.

We therefore need to introduce algebraic rules governing just when we can replace
subterms in an expression with equal subterms [20, 21]. One way to do that is to
introduce the notion of a term context, which are expressions with a hole [ ] in place
of a subexpression,

C, Ci ::= [ ] | (t C) | (C t) | (λx.C) | (λ!x.C) |
∑
i

ci Ci,

where the last term denotes a superposition of shape-congruent contexts. It is impor-
tant to note that there are no contexts of the form !(· · · [ ] · · · ). As a result, subterms
preceded by ! will be opaque in the sense that we will not be able to perform substi-
tutions under the ! sign.

Definition 5.7. The equational theory of λq is the least equivalence relation
= containing the reduction relation (−→) of Figure 13 and which is closed under
substitution in term contexts [20, 21]. In other words,

t1 = t2
C[t1] = C[t2]

(subst),

where C is an arbitrary term context and C[t] denotes the textual replacement of the
hole in C by the term t, extended by linearity to superpositions of congruent terms
and congruent contexts, i.e., for t =

∑
i ci ti, we define C[t] =

∑
i ci C[ti] and for

C =
∑

i ci Ci, we define C[t] =
∑

i ci Ci[t].

An alternative way to present the equational theory is by listing a set of axioms
and rules of inference as in Figure 14.

These rules should again be understood as extending via linearity to congruent
superpositions of terms. In this formulation, the rules (app), (λ1), and (λ2) are
together equivalent to the term context substitution rule (subst) above. Again, there
is no rule that permits substitutions inside !-suspensions.

Theorem 5.8. In the quantum lambda calculus, the evolution of the computa-
tional register proceeds by replacing terms by equal terms according to the equational
theory of Definition 5.7.

Proof. This is true by construction.
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t = t (refl)

t1 = t2
t2 = t1

(sym)

t1 = t2 t2 = t3
t1 = t3

(trans)

t1 = t2 t3 = t4
(t1 t3) = (t2 t4)

(app)

t1 = t2
λx. t1 = λx. t2

(λ1)

t1 = t2
λ!x. t1 = λ!x. t2

(λ2)

(λx. t) v = t [v/x] (β)

(λ!x. t) !t′ = t [t′/x] (!β)

|(cU φ)〉 = U |φ〉 (U)

Fig. 14. Equational proof system for the quantum calculus λq.

6. Recursion and a fixed-point operator. Recursive functions may be de-
fined in the calculus λq in a way analogous to that described in section 2. We simply
replace (t t) in (1) with (t !t), where now t ≡ λ!f. ( · · · (f !f) · · · ).

Here we describe a related approach based on so-called fixed-point combinators.
A fixed-point operator suitable for the linear lambda calculus is given by the following
adaptation of the classical Turing combinator:

fix ≡ ( (λ!u. λ!f. (f !((u !u) !f)))

!(λ!u. λ!f. (f !((u !u) !f)))).

It is easy to check that under reduction

fix !t −→ t !(fix !t),

where the !-suspension prevents further reduction of the term in brackets. Recursive
functions can be defined as follows. If

t ≡ λ!f. u,

then it easily follows that

fix !t −→ u [(fix !t)/f ].

In other words, fix !t copies itself into the body u of t under reduction, as required for
recursion.

7. Examples of algorithms. We are now ready to formulate some algorithms
in the quantum lambda calculus. First, we reproduce some classical constructions,
now decorated with the proper nonlinearity annotations.
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|1〉

|0〉

H

H

Uf

H

Fig. 15. Deutsch’s algorithm.

First, we introduce list constructors that will enable us to build lists of linear
values (qubits or structures containing qubits),

() ≡ λ!x. λ!y. (x id),

cons ≡ λh. λt. λ!x. λ!y. ((y h) t),

with abbreviations h : t ≡ (cons h t) and (x1, . . . , xn) ≡ x1 : x2 : · · · : xn : () as
before. Since the arguments !x and !y above are nonlinear, we need to redefine our
case abbreviation as follows:

case t1 of (() → t2, h : t→ t3)

now stands for

t1 !(λ!z. t2) !(λh. λt. t3).

Deutsch’s algorithm [1, 5] can be very simply expressed as follows:

deutsch Uf −→ let (x, y) = Uf ((H 0), (H 1)) in

((H x), y)

(see Figure 15). Here the argument Uf is assumed to be a function that takes (x, y)
to (x, y ⊕ f(x)), where f is some (unknown) function of one bit. For example, if f
is the identity function, then we should take Uf to be cnot . Indeed, the reader may
check that

|deutsch cnot 〉 −→ |1〉 ⊗ 1

2

(
|0〉 − |1〉

)
,

where the first bit 1 = f(0)⊕f(1) indicates that the function is balanced, as required.
Let us write a simple expression that creates an EPR pair:

epr ≡ cnot ((H 0), 0).

The quantum teleportation gate array with deferred measurement (see Figure 16)
[34, 5] can easily be translated into the following code. We create an EPR pair and
pass the first EPR qubit, along with the unknown qubit x to be teleported, to Alice.
The outcome (x′, y′) of Alice’s computation then gets sent to Bob, who has access to
the second EPR qubit e2,

teleport x −→ let (e1, e2) = epr in

let (x′, y′) = alice (x, e1) in

bob (x′, y′, e2).
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|0〉

|0〉

x

H

�

� �

� H

X Z

�

�

Fig. 16. Quantum teleportation.

Here

alice (x, e1) −→ let (x′, y′) = cnot (x, e1) in ((H x′), y′)

and

bob (x′, y′, e2) −→ let (y′′, e′2) = cX (y′, e2) in
let (x′′, e′′2) = cZ (x′, e′2) in

(x′′, y′′, e′′2).

The outcome of the computation consists of the list of three qubits (x′′, y′′, e′′2). The
teleported qubit is e′′2 , but notice how linearity requires us to keep the other two
qubits in the answer. The reader may check that throughout the computation, linear
arguments are used exactly once. Implementing the conditional operations cX and
cZ in terms of the primitive constants is left as an easy exercise.

Given recursion and lists, the map function, which applies a given function f to
each element of a list, may be defined as

map !f list −→ case list of

{
() → ()
h : t→ (f h) : (map !f t)

.

The arguments list , h, and t may refer to qubits or data structures containing qubits
and are therefore chosen linear. The expression is well formed because list , h, and t
are each used exactly once.

It is now trivial to define a program that computes a uniform superposition of a
list of qubits by applying the Hadamard gate to each qubit in the list:

H⊗n list −→ map !H list .

For example, we may evaluate∣∣H⊗n (0, 0)
〉
−→ 1

2

(
|(0, 0)〉 + |(0, 1)〉 + |(1, 0)〉 + |(1, 1)〉

)
.

Note that the well-formedness conditions may be somewhat subtle, as the following
example illustrates. A naive attempt at defining an append function that concatenates
two linear lists,

append x y −→ case x of

{
() → y
h : t→ h : (append t y),
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H R2 R3 · · · · · Rn

�

�

�

H R2 · · · · · Rn−1

�

�

H · · · · · Rn−2

�

··
··
··

· · · · · H

Fig. 17. The quantum Fourier transform (without reversal).

fails to be well formed. The problem can be seen by expanding the case abbreviation

x !(λz. y) !(λh. λt. (h : (append t y))).

Since y is a linear variable, we may not promote the λ subterms to nonlinear values
with the prepended !. An alternative definition that does work is

append x y −→
(
case x of

{
() → (λu. u)
h : t→ λu. (h : (append t u))

)
y.

Next we define a reverse function

reverse list −→ case list of

{
() → ()
h : t→ append (reverse t) (h).

The quantum Fourier transform [35, 36, 37, 38] can now be defined as a direct trans-
lation of the corresponding quantum circuit [5] as follows:

fourier list −→ reverse fourier′ list,

where

fourier′ list −→ case list of

⎧⎨⎩
() → ()
h : t→ let h′ : t′ = phases (H h) t !2 in

h′ : (fourier′ t′)

recursively applies the appropriate conditional phase operations to the first qubit in
the list, using the helper function

phases target controls !n

−→ case controls of

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

() → (target)
control : t→ let (control ′, target ′)

= (cR !n) (control , target ) in
let target ′′ : t′

= phases target ′ t !(succ n) in
target ′′ : control ′ : t′.



A LAMBDA CALCULUS FOR QUANTUM COMPUTATION 1131

Here (cR !n) composes an appropriate combination of elementary gates to implement
a conditional phase operation with phase 2πi/2n. Since this is essentially a classical
computation and depends on the particular set of primitive constants chosen, we will
not write it out here.

Note that we have assumed that the classical construction of the natural numbers
may be adapted to the quantum lambda calculus. That this is possible for all classical
constructions follows from the fact that there is an embedding of the classical lambda
calculus into the linear lambda calculus, as shown in formula (4).

8. Relating λq to quantum Turing machines. In this section we will sketch
a proof of the following theorem, leaving a more rigorous analysis to future work.

Theorem 8.1. The computational model provided by the quantum lambda calcu-
lus λq is equivalent to the quantum Turing machine.

Proof. First, we argue that the quantum lambda calculus λq may be efficiently
simulated on a quantum Turing machine.

In λq the current state of the computation consists of a superposition of term
sequences of the form H; t, which may be encoded as strings of symbols on the tape
of the quantum Turing machine. By Lemma 5.1, term sequences in different branches
of the superposition are congruent, and the same reduction rule will apply for all
branches at each time step. The subset of λq not involving quantum operations
consists of a set of reversible classical rewritings, which can be unitarily and efficiently
implemented on a quantum Turing machine by [2, 39, 40]. The fragment involving
quantum operators again involves simple classical rewritings followed by a unitary
transformation involving one or two symbols on the tape. Once again, the methods
of [2, 39, 40] may be used to construct a quantum Turing machine that can execute
these transformations. This completes the proof of the first half of the equivalence.

Next we argue that a quantum Turing machine can be efficiently simulated by
the calculus λq.

Yao shows in [4] that for any quantum Turing machine T , there is quantum circuit
Cn,t that efficiently simulates T on inputs of size n after t steps. The circuit family
Cn,t may be efficiently constructed via a classical computation. But λq is universal
for classical computation. This follows from the fact that the classical call-by-value
lambda calculus may be embedded in λq via the following translation, adapted from
[28]:

(t1 t2)
∗ = ((λ!z. z) t∗1) t

∗
2,

x∗ = !x,
(λx. t)∗ = !(λ!x. t∗).

(4)

So, given the specification of a quantum Turing machine and an input of length
n, a classical computation in λq first constructs a representation of the appropriate
quantum circuit family Cn,t. It then follows the circuit diagram and applies the
appropriate quantum operations one by one to the input. Since λq has primitive
quantum operations available corresponding to a universal set of quantum gates, this
proves the second half of the equivalence.

9. Related work. In a series of papers, H. Baker [41, 42, 43] develops an un-
typed linear language based on Lisp. His language is similar to the classical fragment
of the lambda calculus developed in the current article. It served as the initial inspi-
ration for the linear approach followed here.

Ideas stemming from linear logic have been used previously by Abramsky in the
study of classical reversible computation [44].
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One of the earlier attempts at formulating a language for quantum computation
was G. Baker’s Qgol [45]. Its implementation (which remained incomplete) used so-
called uniqueness types (similar but not identical to our linear variables) for quantum
objects [46]. The language is not universal for quantum computation.

The language QCL, developed by Ömer, is described in [47, 48]. QCL is an
imperative language with classical control structures combined with special operations
on quantum registers. It provides facilities for inverting quantum functions and for
scratch space management. No formal program calculus is provided. A simulator is
publicly available.

Another imperative language, based on C++, is the Q language developed by
Bettelli, Calarco, and Serafini [49]. As in the case of QCL, no formal calculus is
provided. A simulator is also available.

A more theoretical approach is taken by Selinger in his description of the func-
tional language QPL [50]. This language has both a graphical and a textual repre-
sentation. A formal semantics is provided.

The imperative language qGCL, developed by Sanders and Zuliani [51], is based
on Dijkstra’s guarded command language. It has a formal semantics and proof system.

A previous attempt to construct a lambda calculus for quantum computation is
described by Maymin in [52]. However, his calculus appears to be strictly stronger
than the quantum Turing machine [53]. It seems to go beyond quantum mechanics in
that it does not appear to have a unitary and reversible operational model, instead
relying on a more general class of transformations. It is an open question whether the
calculus is physically realizable.

A seminar by Wehr [54] suggests that linear logic may be useful in constructing a
calculus for quantum computation within the mathematical framework of Chu spaces.
However, the author stops short of developing such a calculus.

Abramsky and Coecke describe a realization of a model of multiplicative linear
logic via the quantum processes of entangling and deentangling by means of typed
projectors. They briefly discuss how these processes can be represented as terms of
an affine lambda calculus [55].

10. Conclusion. In this article we developed a lambda calculus λq suitable for
expressing and reasoning about quantum algorithms. We discussed both its computa-
tional model and its equational proof system. We argued that the resulting calculus
provides a computational model equivalent to the quantum Turing machine and is
therefore universal for quantum computation.

There are many possible directions for future work. The proof of Turing equiva-
lence should be fleshed out. Formal issues relating to consistency and semantics need
to be addressed further. While our computational model provides an operational se-
mantics, the problem of providing a denotational semantics is open. The formalism
of [56] may be useful in this regard.

In this article, the introduction of a linear calculus was motivated by requiring
consistency of its operational model with equational reasoning. The fact that linear
arguments, denoting quantum resources, may not be duplicated suggests a separate
motivation for linearity, not addressed here, based on the no-cloning theorem [57, 58].

While our calculus is untyped, it would be interesting to investigate typed lin-
ear calculi with quantum primitives and, via the Curry–Howard correspondence, the
corresponding generalizations of linear logic [59, 60]. We might mention that there
have been prior attempts to relate linear logic to quantum mechanics, starting with
a suggestion by Girard [30, 61, 62].
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On the practical side, the calculi described in this paper may be used as a program-
ming language for prototyping quantum algorithms. Indeed, the algorithms exhibited
in this article were transcribed into Scheme for testing. The simulator, which was
also written in Scheme, is available on request from the author.

It is our hope that the field of quantum computation, like its classical counter-
part, may benefit from the insights provided by the alternative computational model
provided by the quantum lambda calculus.

Note. Since the first version of this paper was written, some progress has been
made by the author in devising a typed version, with accompanying denotational
semantics, of a fragment of the quantum calculus described here [16].
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Abstract. Karger, Motwani, and Ramkumar [Algorithmica, 18 (1997), pp. 82–98] have shown
that there is no constant approximation algorithm to find a longest cycle in a Hamiltonian graph,
and they conjectured that this is the case even for graphs with bounded degree. On the other hand,
Feder, Motwani, and Subi [SIAM J. Comput., 31 (2002), pp. 1596–1607] have shown that there is a
polynomial time algorithm for finding a cycle of length nlog3 2 in a 3-connected cubic n-vertex graph.
In this paper, we show that if G is a 3-connected n-vertex graph with maximum degree at most d,
then one can find, in O(n3) time, a cycle in G of length at least Ω(nlogb 2), where b = 2(d− 1)2 + 1.
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1. Introduction and notation. The circumference of a graph is the length
of a longest cycle in that graph. The problem of approximating the circumference
of a graph is NP-hard [15]. For many canonical NP-hard problems, either good
approximation algorithms have been devised, or strong negative results have been
established, leading to better understanding of the approximability of these problems.
However, not much is known for finding longest paths and cycles, positive or negative.
For example, there is no known algorithm which guarantees an approximation ratio
better than n/polylog(n), where n denotes the number of vertices. This is true even
for graphs which are Hamiltonian or have bounded degree. Karger, Motwani, and
Ramkumar [15] showed that unless P = NP, it is impossible to find, in polynomial
time, a path of length n− nε in an n-vertex Hamiltonian graph for any ε < 1. They
conjectured that it is just as hard for graphs with bounded degree.

On the positive side, if a graph has a path of length L, then one can find a
path of length Ω((logL/ log logL)2) [1] (also see [20]). Feder, Motwani, and Subi [6]
showed that there is a polynomial time algorithm for finding a cycle of length at least
nlog3 2 in a 3-connected cubic n-vertex graph. They also showed that if a graph has
maximum degree at most three and has a path or cycle of length L, then one can
find a path or cycle of length at least L(log2

3)/2. Therefore, an intermediate problem is
to find long paths or cycles in graphs of bounded degree that have a Hamilton cycle.
Specifically, Feder, Motwani, and Subi (see [6], p. 1605) asked (1) whether there exists
some constant 0 < c < 1 such that if G is a 3-connected planar n-vertex graph, then
the circumference of G is at least Ω(nc), and (2) whether there exists some constant
0 < c < 1 such that if G is a 3-connected n-vertex graph with bounded degree, then
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the circumference of G is at least Ω(nc). There are known results showing that such
a constant c exists in both cases ([3], [14]); however, none addresses the algorithmic
issue. The main goal of this paper is to establish a cubic algorithm that produces a
long cycle in a 3-connected graph with bounded degree.

The work on circumferences of planar graphs dates back to 1931, when Whitney
[21] proved that every 4-connected planar triangulation contains a Hamilton cycle
(and, hence, its faces are 4-colorable). This result is generalized to all 4-connected
planar graphs in [18]. A linear time algorithm is given in [4] for finding a Hamilton
cycle in a 4-connected planar graph. There are many 3-connected planar graphs
which do not contain Hamilton cycles (see [9]). On the other hand, the following
conjecture of Barnette (see [16]) remains open: every bipartite, cubic, 3-connected,
planar graph contains a Hamilton cycle. When studying paths in polytopes, Moon and
Moser [17] implicitly conjectured that if G is a 3-connected planar n-vertex graph then
G contains a cycle of length at least Ω(nlog3 2). (Grünbaum and Walther [8] made
the same conjecture for a class of 3-connected cubic planar graphs.) Jackson and
Wormald [13] gave the first polynomial lower bound Ω(nc), where c is approximately
0.2, which was improved to Ω(n0.4) by Gao and Yu [7]. Chung [5] further improved
this lower bound to Ω(n0.5). Recently, Chen and Yu [3] fully established the Moon–
Moser conjecture; their proof implies a quadratic algorithm for finding a cycle of
length at least Ω(nlog3 2) in a 3-connected planar n-vertex graph. We conjecture that
such a cycle may be found in linear time.

The work on circumferences of 3-connected graphs with bounded degree dates
back to 1980, when Bondy and Simonovits [2] conjectured that there exists a constant
0 < c < 1 such that the circumference of any 3-connected cubic n-vertex graph
is at least Ω(nc). This conjecture was verified by Jackson [12]. In 1993, Jackson
and Wormald [14] proved that if G is a 3-connected n-vertex graph with maximum
degree at most d, then the circumference of G is at least 1

2n
logb 2 + 1, where b = 6d2.

The argument in [14] is technical, and Jackson and Wormald did not address the
algorithmic issue.

In this paper, we improve the lower bound of Jackson and Wormald, for both
the exponent and the constant coefficient. Our argument makes efficient use of two
results: a convexity result of a function and a decomposition result of 2-connected
graphs. Our proof gives rise to a cubic algorithm for finding a long cycle in 3-connected
graphs with bounded degree. More precisely, we prove the following result.

Theorem 1.1. Let n ≥ 4 and d ≥ 3 be integers. Let G be a 3-connected graph
on n vertices such that the maximum degree of G is at most d. Then G contains a
cycle of length at least nlogb 2 + 2, where b = 2(d − 1)2 + 1. Moreover, such a cycle
can be found in O(n3) time.

It is conjectured in [14] that, for d ≥ 4, the lower bound in Theorem 1.1 may be
replaced by Ω(nlogd−1 2). We are hopeful that our approach will eventually lead to a
resolution of this conjecture.

To prove Theorem 1.1, we will need to deal with graphs which result from a
3-connected graph by deleting one vertex. Such graphs are 2-connected but not nec-
essarily 3-connected. Our technique is to decompose such a graph into “3-connected
components.” This can be done in linear time by a result of Hopcroft and Tarjan [10].
(A similar idea is used in [14], but our decomposition is done once for each graph in
a single iteration of the algorithm, and we make more efficient use of such a decom-
position.) In most situations, we will not use all 3-connected components of a graph.
Instead, we will pick some large 3-connected components and find long cycles in such
components. We will then use a convexity property of the function f(x) = xlogb 2 to
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account for the unused components. These two ideas will be made more precise in
the next two sections.

This paper is organized as follows. In section 2, we will state a technical result,
consisting of three statements about (a) the existence of a long cycle through a given
edge and avoiding a given vertex, (b) the existence of a long cycle through two given
edges, and (c) the existence of a long cycle through a given edge. (We will see that
(c) implies Theorem 1.1.) We will also describe the decomposition of a 2-connected
graph into 3-connected components. In section 3, we will prove useful properties of
the convex function f(x) = xlogb 2, for b = 3 and b ≥ 4. We will also prove several
lemmas to be used in the proof of our main result. In sections 4–6, we will show
that each of (a), (b), and (c) can be reduced in linear time to (a), (b), and/or (c) for
smaller graphs. In section 7, we will complete the proof of our main result and give a
cubic algorithm that finds a long cycle in a 3-connected graph with bounded degree.

We end this section with notation and terminology to be used throughout this
paper. Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge
set of G, respectively, and we write G = (V (G), E(G)). For convenience, we write |G|
instead of |V (G)|. If e ∈ E(G) and x, y are the vertices of G incident with e, then we
write e = xy. For any S ⊆ V (G) ∪ E(G), G− S denotes the graph obtained from G
by deleting S and all edges of G with an incident vertex in S. If S = {x}, then we
simply write G− x instead of G− S.

Let G and H be two graphs. By H ⊆ G we mean that H is a subgraph of G. We
useG∪H andG∩H to denote the union and intersection, respectively, ofG andH. For
any S ⊆ V (G)∪E(G) and for anyH ⊆ G, we useH+S to denote the graph with vertex
set V (H)∪ (S ∩ V (G)) and edge set E(H)∪ {uv ∈ S : {u, v} ⊆ V (H)∪ (S ∩ V (G))}.

We say that a graph G is k-connected if |G| ≥ k+ 1 and, for any S ⊆ V (G) with
|S| ≤ k − 1, G− S is connected. Let G be a graph. If S ⊆ V (G) for which G− S is
not connected, then S is a cut of G, and if, in addition, |S| = k, then S is a k-cut.
If x ∈ V (G) for which G − x is not connected, then x is called a cut vertex of G. If
e ∈ E(G) for which G− e is not connected, then e is called a cut edge of G.

2. 3-connected components. We begin this section by stating a technical re-
sult which implies Theorem 1.1. To motivate that statement, let G be a 3-connected
graph. In order to find a long cycle in G, we will try to find a cycle through a specific
edge e = xy (for induction purposes). To reduce the problem to smaller graphs, we
consider G− y. Clearly G− y is 2-connected but not necessarily 3-connected. In the
case when G−y is not 3-connected, y is contained in a 3-cut T of G. Let T := {y, a, b},
and let G1, G2 be subgraphs of G such that E(G1)∩E(G2) = ∅, V (G1)∩V (G2) = T ,
and G1 ∪G2 = G. See Figure 1 for an illustration. Assume x ∈ V (G1)−T . We could
find a long cycle C1 through both e and ab in G1 + ab and a long cycle C2 through ab
in (G2 + ab)− y, and then C := (C1 − ab) ∪ (C2 − ab) would give a long cycle in G.
Note that C1 is a cycle through two given edges, C2 is a cycle through one given edge
and avoiding a given vertex, and C is a cycle through one given edge. This suggests
that we prove three statements simultaneously. Indeed, we will prove the following.

Theorem 2.1. Let n ≥ 5 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and let G
be a 3-connected graph on n vertices. Then the following statements hold:

(a) Let xy ∈ E(G) and z ∈ V (G)−{x, y}, and let t denote the number of neighbors
of z distinct from x and y. Assume that the maximum degree of G is at most
d + 1, and every vertex of degree d + 1 (if any) is incident with the edge zx
or zy. Then there is a cycle C through xy in G− z such that |C| ≥ ( n

2t )
r +2.

(b) Suppose the maximum degree of G is at most d. Then, for any distinct e, f ∈
E(G), there is a cycle C through e and f in G such that |C| ≥ ( n

2(d−1) )
r + 3.
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x
y

a

bG1

G2

C1

C2

Fig. 1. An illustration.

(c) Suppose that the maximum degree of G is at most d. Then, for any e ∈ E(G),
there is a cycle C through e in G such that |C| ≥ nr + 3.

Clearly, Theorem 2.1(c) implies Theorem 1.1 when n ≥ 5, and Theorem 1.1 is
obvious when n = 4. Note the condition in (a) about the maximum degree; it is due
to the addition of edges in order to maintain 3-connectivity.

To prove Theorem 2.1, we need to decompose a 2-connected graph (such as G− z
in (a) above) into 3-connected components. This is similar to the decomposition of a
connected graph into 2-connected components. Let G be a connected graph. A block
of G is a subgraph of G which is either a maximal 2-connected subgraph of G or a
subgraph of G induced by a cut edge of G. A block of G is also called a 2-connected
component of G. It is easy to see that the intersection of any two blocks of G either is
empty or consists of only one vertex (which is a cut vertex). Also any noncut vertex
of G occurs in exactly one block of G. This implies that the blocks and cut vertices
of G form a tree structure.

Now let G be a 2-connected graph. We describe the 3-connected components of
G, following Hopcroft and Tarjan [10]. For this purpose, we allow multiple edges (and
hence E(G) is a multiset). We say that {a, b} ⊆ V (G) is a separation pair in G if
there are subgraphs G1, G2 of G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = {a, b},
E(G1) ∩ E(G2) = ∅, and |E(Gi)| ≥ 2 for i = 1, 2. Let G′

i := (V (Gi), E(Gi) ∪ {ab})
for i = 1, 2. See Figure 2 for an example. Then G′

1 and G′
2 are called split graphs

of G with respect to the separation pair {a, b}, and the new edge ab added to Gi is
called a virtual edge. Virtual edges are illustrated with dashed edges in Figures 2–4.
It is easy to see that since G is 2-connected, G′

i is 2-connected or G′
i consists of two

vertices and at least three multiple edges between them.

a

a a a

aa

b b b

bb b

G

G

G1 G2

G′
1 G′

2

split

merge

Fig. 2. Split and merge.
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Suppose that a multigraph is split, and the split graphs are split, and so on, until
no more splits are possible. Then each remaining graph is called a split component.
See Figure 3 for a graph G and its split components. No split component contains
a separation pair, and therefore each split component must be one of the following:
a triangle, a triple bond (two vertices with three multiple edges between), or a 3-
connected graph.

G

Fig. 3. Split components of G.

It is not hard to see that if a split component of a 2-connected graph is 3-
connected, then it is unique. It is also easy to see that, for any two split compo-
nents G1, G2 of a 2-connected graph, we have |V (G1) ∩ V (G2)| = 0 or 2, and if
|V (G1) ∩ V (G2)| = 2, then either G1 and G2 share a virtual edge between vertices
in V (G1) ∩ V (G2) or there is a sequence of triple bonds such that the first shares a
virtual edge with G1, any two consecutive triple bonds in the sequence share a virtual
edge, and the last triple bond shares a virtual edge with G2.

In order to get unique 3-connected components, we need to merge some triple
bonds and to merge some triangles. Let G′

i = (V ′
i , E

′
i), i = 1, 2, be two split compo-

nents, both containing a virtual edge ab. Let G′ = (V ′
1∪V ′

2 , (E
′
1−{ab})∪(E′

2−{ab})).
Then the graph G′ is called the merge graph of G1 and G2. See Figure 2 for an exam-
ple of a merge graph. Clearly, a merge of triple bonds gives a graph consisting of two
vertices and multiple edges, which is called a bond. Also a merge of triangles gives a
cycle, and a merge of cycles also gives a cycle.

Let D denote the set of 3-connected split components of a 2-connected graph G.
We merge the other split components of G as follows: the triple bonds are merged
as much as possible to give a set of bonds B, and the triangles are merged as much
as possible to give a set of cycles C. Then B ∪ C ∪ D is the set of the 3-connected
components of G. Figure 4 gives the 3-connected components of the graph in Figure
3. Note that any two 3-connected components either are edge disjoint or share exactly
one virtual edge.

C1 C2H1
H3

Fig. 4. 3-connected components of the graph G in Figure 3.

Tutte [19] proved that the above decomposition of a 2-connected graph into 3-
connected components is unique. Hopcroft and Tarjan [10] gave a linear time algo-
rithm for finding the 3-connected components of a graph.
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Theorem 2.2. For any 2-connected graph, the 3-connected components are
unique and can be found in O(|E|) time. Moreover, the total number of edges in
the 3-connected components is at most 3|E| − 6.

We define a graph whose vertices are the 3-connected components of G, and two
vertices are adjacent if the corresponding 3-connected components share a virtual
edge. Then it is easy to see that such a graph is a tree, and we call it the block-bond
tree of G.

For convenience, 3-connected components that are not bonds are called 3-blocks.
An extreme 3-block is a 3-block that contains at most one virtual edge. That is, either
it is the only 3-connected component, or it corresponds to a degree one vertex in the
block-bond tree.

We will make use of cycle chains. Intuitively, a cycle chain in a 2-connected graph
G is a sequence C1C2 . . . Ck of 3-blocks of G for which each Ci is a cycle and there
exist bonds B1, B2, . . ., Bk−1 of G such that C1B1C2B2 . . . Bk−1Ck is a path in the
block-bond tree of G. More precisely, we have the following.

Definition 2.3. Let G be a 2-connected graph. By a cycle chain in G we mean
a sequence C1 . . . Ck with the following properties:

(i) for each 1 ≤ i ≤ k, Ci is a 3-block of G and Ci is a cycle;
(ii) |V (Ci) ∩ V (Ci+1)| = 2, and Ci and Ci+1 each contain a virtual edge between

the vertices in V (Ci) ∩ V (Ci+1); and
(iii) |V (Ci) ∩ V (Cj)| ≤ 1 when j ≥ i + 2, and if i < j and |V (Ci) ∩ V (Cj)| = 1,

then, for all i ≤ t ≤ j, V (Ci) ∩ V (Cj) ⊆ V (Ct) ∩ V (Cj).

For convenience, we sometimes write H := C1 . . . Ck and view H as the graph
⋃k

i=1 Ci.

Hence V (H) :=
⋃k

i=1 V (Ci). Note that H is a multigraph, with two virtual edges
between the vertices in V (Ci) ∩ V (Ci+1), 1 ≤ i ≤ k − 1.

As an example, take the graph G in Figure 3 and its 3-connected components in
Figure 4; we see that C1C2 is a cycle chain.

Remark. We choose not to include bonds in our definition of cycle chains because
those bonds do not contribute to the vertex count in our arguments.

It is easy to see that if C1 . . . Ck is a cycle chain, then deleting all virtual edges
with both ends in V (Ci) ∩ V (Ci+1), 1 ≤ i ≤ k − 1, results in a cycle. We state it as
follows.

Proposition 2.4. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, and let xy ∈ E(Ck)

with {x, y} �= V (Ck−1)∩V (Ck) when k �= 1. Then
⋃k

i=1 Ci contains a Hamilton cycle

through uv and xy. Moreover, such a cycle can be found in O(|⋃k
i=1 V (Ci)|) time.

For later applications, we need several facts about paths in cycle chains. We say
that a path P in a graph G is from a vertex x ∈ V (G) to a set S ⊆ V (G)−{x} if one
end of P is x, the other end of P is in S, and P is otherwise disjoint from S.

Proposition 2.5. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain in
G, let uv ∈ E(C1) with {u, v} �= V (C1)∩V (C2) when k �= 1, and let xy ∈ E(Ck) with

{x, y} �= V (Ck−1) ∩ V (Ck) when k �= 1. Then there is a path in (
⋃k

i=1 Ci)− {uv, xy}
which is from u to {x, y} and contains (

⋃k−1
i=1 (V (Ci) ∩ V (Ci+1)))− ({x, y} ∪ {u, v}).

Moreover, such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

Proof. If k = 1, this is obvious. So assume that k ≥ 2. Let x′y′ denote the virtual
edge in Ck−1 such that {x′, y′} = V (Ck−1) ∩ V (Ck). By induction, (

⋃k−1
i=1 Ci) −

{uv, x′y′} contains a path P ′ that is from u to {x′, y′} and contains (
⋃k−2

i=1 (V (Ci) ∩
V (Ci+1))) − ({x′, y′} ∪ {u, v}). By symmetry, we may assume that P ′ ends at x′.
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If y′ ∈ V (P ′), then let Q′ denote the path in Ck − {xy, y′} from x′ to {x, y}. If
y′ /∈ V (P ′), then let Q′ denote the path in Ck − xy that is from x′ to {x, y} and
through the virtual edge x′y′. Clearly, P := P ′ ∪Q′ gives the desired path.

It is easy to see that such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

By a similar argument, we can prove the following.
Proposition 2.6. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain

in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, and let x ∈ V (Ck)

with x /∈ V (Ck−1) when k �= 1. Then there is a path in (
⋃k

i=1 Ci)− uv which is from

u to x and contains (
⋃k−1

i=1 (V (Ci)∩ V (Ci+1)))−{u, v, x}. Moreover, such a path can

be found in O(|⋃k
i=1 V (Ci)|) time.

The next two facts about cycle chains are slightly more complicated. We only
prove the first; the other can be proved similarly.

Proposition 2.7. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, ab ∈ E(Ck) with

{a, b} �= V (Ck−1)∩V (Ck) when k �= 1, and cd ∈ E(
⋃k

i=1 Ci)−{ab}. Suppose ab �= uv

when k = 1. Then there is a path P in (
⋃k

i=1 Ci) − ab from {a, b} to {c, d} such

that uv ∈ E(P ), cd /∈ E(P ) unless cd = uv, and (
⋃k−1

i=1 (V (Ci) ∩ V (Ci+1))) ⊆ V (P ).

Moreover, such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

Proof. We apply induction on k. If k = 1, then since ab �= uv, the result is
obvious. So assume that k ≥ 2.

First, assume that cd ∈ E(Ck) and {c, d} �= V (Ck−1) ∩ V (Ck). Let a′b′ denote
the virtual edge in Ck with {a′, b′} = V (Ck−1) ∩ V (Ck). In Ck − {ab, cd}, we find a

path P ′ from {a, b} to {c, d} through a′b′. In
⋃k−1

i=1 Ci, we apply Proposition 2.4 to
find a Hamilton cycle C through uv and a′b′. Now P := (P ′ − a′b′)∪ (C − a′b′) gives
the desired path.

Thus we may assume that there is some 1 ≤ t < k such that cd ∈ E(Ct). We
may choose t so that {c, d} �= V (Ct−1) ∩ V (Ct) when t �= 1.

Suppose {c, d} = V (Ct)∩V (Ct+1). By applying Proposition 2.4, we find a Hamil-
ton cycle C in

⋃t
i=1 Ci such that uv, cd ∈ E(C). Now P ′ := C−cd is a path in

⋃t
i=1 Ci

from c to d through uv. By Proposition 2.5, we find a path P ′′ in (
⋃k

i=t+1 Ci)−{ab, cd}
that is from d to {a, b} and contains (

⋃k−1
i=t+1(V (Ci) ∩ V (Ci+1))) − ({a, b} ∪ {c, d}).

Now P := P ′ ∪ P ′′ gives the desired path.
So assume that {c, d} �= V (Ct)∩V (Ct+1). By applying induction, there is a path

P ′ from V (Ct)∩V (Ct+1) to {c, d} in
⋃t

i=1 Ci such that uv ∈ E(P ′), cd /∈ E(P ′) unless

cd = uv, and (
⋃t−1

i=1(V (Ci) ∩ V (Ci+1))) ⊆ V (P ′). Let e′ denote the virtual edge of
Ct+1 between the vertices in V (Ct)∩V (Ct+1), and let u ∈ V (Ct)∩V (Ct+1) be an end
of P ′. Now apply Proposition 2.5 to Ct+1 . . . Ck, we find a path P ′′ from u to {a, b}
in (
⋃k

i=t+1 Ci)− {e′, ab} such that (
⋃k−1

i=t (V (Ci) ∩ V (Ci+1)))− (V (Ct) ∩ V (Ct+1)) ⊆
V (P ′′). Clearly, P := P ′ ∪ P ′′ gives the desired path.

Since finding P ′ and P ′′ takes O(|⋃k
i=1 V (Ci)|) time, P can also be found in

O(|⋃k
i=1 V (Ci)|) time.

By a similar argument, we can prove the following.
Proposition 2.8. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain

in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, x ∈ V (Ck) with x /∈
V (Ck−1) when k �= 1, and cd ∈ E(

⋃k
i=1 Ci). Then there is a path P in (

⋃k
i=1 Ci)−uv

from x to {c, d} such that uv ∈ E(P ), cd /∈ E(P ) unless cd = uv, and (
⋃k−1

i=1 (V (Ci)∩
V (Ci+1))) ⊆ V (P ). Moreover, such a path can be found in O(|⋃k

i=1 V (Ci)|) time.
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We conclude this section by generalizing the concept of a cycle chain to a block
chain. Intuitively, a block chain in a 2-connected graph G is a sequence H1 . . . Hk for
which (1) each Hi is either a 3-connected 3-block of G or a cycle chain in G and (2)
there exist bonds B1, . . . , Bh−1 of G such that H1B1H2B2 . . . Bh−1Hh form a path in
the block-bond tree of G (by also patching the tree paths corresponding to Hi when
Hi is a cycle chain). More precisely, we have the following.

Definition 2.9. Let G be a 2-connected graph. By a block chain in G we mean
a sequence H1 . . . Hh with the following properties:

(i) For each 1 ≤ i ≤ h, either Hi is a 3-connected component of G or Hi is a
cycle chain in G, and for 1 ≤ i ≤ h − 1, Hi and Hi+1 cannot both be cycle
chains.

(ii) For each 1 ≤ i ≤ h−1, |V (Hi)∩V (Hi+1)| = 2 and both Hi and Hi+1 contain
a virtual edge between the vertices in V (Hi) ∩ V (Hi+1).

(iii) |V (Hi) ∩ V (Hj)| ≤ 1 if 3 ≤ i + 2 ≤ j ≤ h, and if 1 ≤ i < j ≤ h and
|V (Hi)∩V (Hj)| = 1, then, for all i ≤ t ≤ j, V (Hi)∩V (Hj) ⊆ V (Ht)∩V (Hj).

(iv) Suppose Hi = C1C2 . . . Ck is a cycle chain. If i < h, then V (Hi+1)∩V (Hi) ⊆
V (Ck) and V (Hi+1)∩V (Hi) �= V (Ck−1)∩V (Ck), and if i > 1, then V (Hi−1)∩
V (Hi) ⊆ V (C1) and V (Hi−1) ∩ V (Hi) �= V (C1) ∩ V (C2).

For convenience, we denote H = H1 . . . Hh and view H as the graph
⋃h

i=1Hi. Thus

V (H) :=
⋃h

i=1 V (Hi). Note that H is a multigraph, with two virtual edges between
vertices in V (Hi) ∩ V (Hi+1), 1 ≤ i ≤ h− 1.

In Figure 4, H = H1H2H3 is a block chain in G, where H2 is the cycle chain
C1C2. In a block chain, we do not include bonds, because bonds do not contribute to
the vertex count in our arguments.

3. Technical lemmas. In this section we prove several lemmas to be used in
the proof of Theorem 2.1. Notice G = G1 ∪ G2 in the illustration of Figure 1. If,
instead, for some k ≥ 3, G =

⋃k
i=1Gi, E(Gi) ∩ E(Gj) = ∅, and |V (Gi) ∩ V (Gj)| = 3

for 1 ≤ i < j ≤ k, then the following lemma will enable us to conclude that if |G1|
and |G2| are the largest among all |Gi|’s, then the cycle C produced by finding long
cycles Ci in Gi (as in the first paragraph in section 2), i = 1, 2, will be long as well.

Lemma 3.1. Let b = 3 or b ≥ 4 be an integer, and let m,n be positive integers
with m ≥ n. Then mlogb 2 + nlogb 2 ≥ (m+ (b− 1)n)logb 2.

Proof. By dividing both sides of the above inequality by mlogb 2, it suffices to
show that, for any s with 0 ≤ s ≤ 1,

1 + slogb 2 ≥ (1 + (b− 1)s)logb 2.

Let f(s) = 1 + slogb 2 − (1 + (b − 1)s)logb 2. Clearly, f(0) = f(1) = 0. Taking the
derivative about s, we have

f ′(s) = (logb 2)(s(logb 2)−1 − (b− 1)(1 + (b− 1)s)(logb 2)−1).

A simple calculation shows that f ′(s) = 0 has a unique solution. Therefore, since
f(0) = f(1) = 0, either 0 is the absolute maximum of f(s) over [0, 1] or 0 is the
absolute minimum of f(s) over [0, 1]. That is, either f(s) ≥ 0 for all s ∈ [0, 1] or
f(s) ≤ 0 for all s ∈ [0, 1]. Note that 0 < 1

b < 1 (since b ≥ 3) and

f

(
1

b

)
=

(
1 +

1

2

)
−
(

1 +
b− 1

b

)logb 2

=
3

2
− (2b− 1)logb 2

2
.
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We claim that f( 1
b ) > 0. If b = 3, then f( 1

b ) = 1
2 (3 − 5log3 2) > 0. So assume

b ≥ 4. Then f( 1
b ) >

3
2 − (2b)logb 2

2 = 3
2 − 2logb 2. Since b ≥ 4, 2logb 2 ≤ 2log4 2 =

√
2 < 3

2 .
Thus f( 1

b ) > 0 for b ≥ 4.
Therefore, we have f(s) ≥ 0 for all s ∈ [0, 1].
We remark that Lemma 3.1 holds for b ≥ 3. We choose to state it for b = 3 and

b ≥ 4 for simplicity in calculations.
The observations in the following lemma will be convenient in the proof of The-

orem 2.1.
Lemma 3.2. Let m be an integer, b ≥ 4, and d ≥ 3. If m ≥ 4, then m ≥

mlogb 2+2. If m ≥ 3, then m > ( m
2(d−1) )

logb 2+2. If m ≥ 2, then m > ( m
2(d−1) )

logb 2+1.

Proof. Let f(x) = x − xlogb 2. We can show that f ′(x) > 0 for x ≥ 4. Hence
f(x) is an increasing function when x ≥ 4. Thus, f(x) ≥ f(4) = 4− 4logb 2 ≥ 2 (since
b ≥ 4). Thus when m ≥ 4, we have m ≥ mlogb 2 + 2.

Next, let f(x) = x − ( x
2(d−1) )

logb 2. We can show that f(x) is an increasing

function when x ≥ 2. The second inequality follows from f(x) ≥ f(3) > 2, and the
third inequality follows from f(x) ≥ f(2) > 1.

After we decompose a 2-connected graph into 3-connected components, we need to
find long cycles in certain 3-connected components. This will be done by inductively
applying (a), (b), or (c) of Theorem 2.1 to 3-connected components or to graphs
obtained from 3-connected components by an “H-transform” or “T-transform.”

Let G be a graph and let e, f be distinct edges of G. An H-transform of G at
{e, f} is an operation that subdivides e and f by vertices x and y, respectively, and
then adds the edge xy. See Figure 5. Let G be a graph, let e ∈ E(G), and let
x ∈ V (G), which is not incident with e. A T-transform of G at {x, e} is an operation
that subdivides e with a vertex y and then adds the edge xy. If there is no need to
specify e, f, x, we will simply speak of an H-transform or a T-transform. The following
result is easy to prove.

x x

x y

ye

e f

H-transform

T-transform

Fig. 5. H-transform and T-transform.

Lemma 3.3. Let d ≥ 3 be an integer, and let G be a 3-connected graph with
maximum degree at most d. Let G′ be a graph obtained from G by an H-transform
or a T-transform. Then G′ is 3-connected graph, the vertex of G involved in the T-
transform has degree at most d + 1, and all other vertices of G′ have degree at most
d.

Next, we state two results from [11]. The first says that any k-connected graph
contains a sparse k-connected spanning subgraph.

Lemma 3.4. Let G be a k-connected graph, where k is a positive integer. Then
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G contains a k-connected spanning subgraph with O(|G|) edges, and such a subgraph
can be found in O(|E(G)|) time.

The next result is an easy consequence of a result in [11], which states that, in
a 2-connected graph G, one can find, in O(|G|) time, two disjoint paths between two
given vertices.

Lemma 3.5. Let G be a 2-connected graph and let e, f ∈ E(G). Then there is a
cycle through e and f in G, and such a cycle can be found in O(|G|) time.

The final two results of this section deal with the existence of certain paths in a
3-connected graph. Since such paths need to be produced (when finding a long cycle),
we also show that they can be found in linear time. The proofs of these two results
are almost identical, so we omit the details of the second proof.

Lemma 3.6. Let G be a 3-connected graph, let f ∈ E(G), let ab, cd, vw ∈ E(G)−
{f}, and assume that {c, d} �= {v, w}. Then there exists a path P from {a, b} to some
z ∈ {c, d} ∪ {v, w} in G such that

(i) f ∈ E(P ),
(ii) cd ∈ E(P ) or vw ∈ E(P ), and
(iii) if cd ∈ E(P ), then z ∈ {v, w} and vw /∈ E(P ), and if vw ∈ E(P ), then

z ∈ {c, d} and cd /∈ E(P ).
Moreover, such a path can be found in O(|G|) time.

Note that in (iii) above when vw /∈ E(P ), it is possible that v ∈ V (P ) and/or
w ∈ V (P ).

Proof. First, we find a cycle C through both ab and f . This can be done in
O(|G|) time using Lemma 3.5. Next we distinguish three cases. Note that checking
these cases can be done in O(|G|) time.

Case 1. cd, vw ∈ E(C). In this case one of the following holds: f and vw are
contained in a component P of C−{ab, cd}, or f and cd are contained in a component
P of C−{ab, vw}. In either case, P gives the desired path and can be found in O(|G|)
time.

Case 2. cd /∈ E(C) and vw ∈ E(C), or cd ∈ E(C) and vw /∈ E(C). By symmetry,
assume that cd /∈ E(C) and vw ∈ E(C). Let Q1 and Q2 denote the components of
C − {ab, f}, and assume that vw ∈ E(Q1). By Lemma 3.5, we can find, in O(|G|)
time, disjoint paths P1 and P2 from c, d to some vertices c′, d′, respectively, of C which
are also disjoint from C − {c′, d′}.

If c′ ∈ V (Q2) or d′ ∈ V (Q2), then (C ∪P1∪P2)−{ab, cd} contains a path P from
{a, b} to {c, d} through f and vw. So assume that c′, d′ ∈ V (Q1).

If vw is contained in the subpath of Q1 between c′ and d′, then (C ∪ P1 ∪ P2)−
{ab, vw} contains a path P from {a, b} to {v, w} through f and cd.

If {c′, d′} is contained in the subpath of Q1 between vw and ab, then (C ∪ P1 ∪
P2)− {ab, cd} contains a path P from {a, b} to {c, d} through f and vw.

Assume that {c′, d′} is contained in the subpath of Q1 between vw and f . Then
(C ∪ P1 ∪ P2)− {ab, vw} contains a path P from {a, b} to {v, w} through f and cd.

Note that the above cases can be checked in constant time, and in each case, P
can be found in O(|G|) time.

Case 3. cd /∈ E(C) and vw /∈ E(C). Let Q1 and Q2 denote the components
of C − {ab, f}. By Lemma 3.5, there are disjoint paths P1 and P2 in G from c, d
to c′, d′ ∈ V (C), respectively, which are also disjoint from C − {c′, d′} (and can be
found in O(|G|) time). We may assume that {c′, d′} �⊆ V (Qi) for i = 1, 2; otherwise,
C ∪ P1 ∪ P2 contains a cycle through ab, cd, f and, as in Cases 1 and 2, we can find
the desired path in O(|G|) time. Thus, by symmetry, we may assume that c′ ∈ V (Q1)
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and d′ ∈ V (Q2).
If vw ∈ E(P1 ∪ P2), then (C ∪ P1 ∪ P2)− {ab, vw} contains a path P from {a, b}

to {v, w} through f and cd, which can be found in O(|G|) time. So assume that
vw /∈ E(P1 ∪ P2). Therefore, by Lemma 3.5, we can find, in O(|G|) time, disjoint
paths R1, R2 from v, w to v′, w′ ∈ V (C ∪P1∪P2), respectively, which are also disjoint
from (C ∪ P1 ∪ P2)− {v′, w′}.

By similar arguments, we may assume that {v′, w′} �⊆ V (Qi) (or we go back to
Case 1 or Case 2) and {v′, w′} �⊆ V (Pi) for any i ∈ {1, 2} (or we could have chosen
P1, P2 to include vw and have gone back to the case in the previous paragraph).

Subcase 3.1. {v′, w′} �= {c′, d′}. First assume {v′, w′} ⊆ V (P1 ∪ P2). Then cd
belongs to the subpath of (P1 ∪ P2) + cd between v′ and w′. We see that there is a
path P in ((C − ab) ∪ P1 ∪ P2 ∪ R1 ∪ R2) + cd ⊆ G− {ab, vw} from {a, b} to {v, w}
through both f and cd.

Now assume {v′, w′} ⊆ V (Q1 ∪ Q2). Then by symmetry, we may assume that
v′ ∈ V (Q1), w

′ ∈ V (Q2), and w′ �= d′. If f, w′, d′, ab occur on C in cyclic order, then
there is a path P from {a, b} to {v, w} through f and cd in ((C−ab)∪P1 ∪P2 ∪R1 ∪
R2)+cd ⊆ G−{ab, vw}. If f, d′, w′, ab occur on C in cyclic order, then there is a path
P from {a, b} to {c, d} through both f and vw in ((C−ab)∪P1∪P2∪R1∪R2)+vw ⊆
G− {ab, cd}.

Thus we may assume by symmetry that v′ ∈ (V (P1) ∪ V (P2)) − {c′, d′} and
w′ ∈ (V (Q1)∪V (Q2))−{c′, d′}. It is easy to see that ((C−ab)∪P1∪P2∪R1∪R2)+vw ⊆
G− {ab, cd} contains a path P from {a, b} to {c, d} through both f and vw.

The above three cases can be checked in O(|G|) time, and in all cases, P can be
found in O(|G|) time.

Subcase 3.2. {v′, w′} = {c′, d′}. Let S1 and S2 denote the paths between c′ and
d′ in C containing f and ab, respectively. Since G is 3-connected, there is a path S
from some s ∈ V (R1 ∪ R2 ∪ S2) − {c′, d′} to s′ ∈ V (P1 ∪ P2 ∪ S1) − {c′, d′}, which
is also disjoint from (C ∪ P1 ∪ P2 ∪ R1 ∪ R2) − {s, s′}. Note that S can be found in
O(|G|) time.

If s ∈ V (S2), then ((C − ab) ∪ P1 ∪ P2 ∪ R1 ∪ R2 ∪ S) + cd ⊆ G − {ab, vw}
contains a path P from {a, b} to {v, w} through both f and cd. If s′ ∈ V (S1), then
((C−ab)∪P1∪P2∪R1∪R2∪S)+vw ⊆ G−{ab, cd} contains a path P from {a, b} to
{c, d} through both f and vw, or ((C−ab)∪P1∪P2∪R1∪R2∪S)+cd ⊆ G−{ab, vw}
contains a path P from {a, b} to {v, w} through both f and cd.

Therefore, we may assume that s ∈ V (R1 ∪R2)− {c′, d′} and s′ ∈ V (P1 ∪ P2)−
{v′, w′}. Then ((C−ab)∪P1 ∪P2 ∪R1 ∪R2 ∪S)+ vw ⊆ G−{ab, cd} contains a path
P from {a, b} to {c, d} through both f and vw.

The above three cases can be checked in constant time, and in all cases, P can
be found in O(|G|) time.

Lemma 3.7. Let G be a 3-connected graph, let f ∈ E(G), let x ∈ V (G) which is
not incident with f , let cd, vw ∈ E(G)− {f}, and assume that {c, d} �= {v, w}. Then
there exists a path P in G from x to some z ∈ {c, d} ∪ {v, w} such that

(i) f ∈ E(P ),
(ii) cd ∈ E(P ) or vw ∈ E(P ), and
(iii) if cd ∈ E(P ) then z ∈ {v, w} and vw /∈ E(P ), and if vw ∈ E(P ), then

z ∈ {c, d} and cd /∈ E(P ).
Moreover, such a path can be found in O(|G|) time.

Proof. The proof is the same as for Lemma 3.6, with ab replaced by x, and when
finding paths Pi, Ri, we apply Lemma 3.5 to G− x (which is 2-connected).
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4. Cycles avoiding a vertex. In this section, we show how to reduce Theorem
2.1(a) to (b) and/or (c) of the same theorem in linear time. First, we state the
reduction as a lemma.

Lemma 4.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n− 1 vertices. Let G be a 3-connected
graph with n vertices, let xy ∈ E(G) and z ∈ V (G) − {x, y}, and let t denote the
number of neighbors of z distinct from x and y. Assume that the maximum degree of
G is at most d+ 1, and every vertex of degree d+ 1 in G (if any) is incident with the
edge zx or zy. Then there is a cycle C through xy in G−z such that |C| ≥ ( n

2t )
r +2.

Proof. We consider G − z. Since the vertices of G with degree d + 1 must be
incident with the edge yz or xz, the maximum degree of G− z is at most d.

First, assume that G − z is 3-connected. Since n ≥ 6, |G − z| ≥ 5, and hence
Theorem 2.1 holds for G− z. By Theorem 2.1(c), G− z contains a cycle C through
xy such that

|C| ≥ (n− 1)r + 3

= ((n− 1)r + 1) + 2

≥ ((n− 1) + 1)r + 2 (by Lemma 3.1)

>
( n

2t

)r
+ 2.

Therefore, we may assume that G − z is not 3-connected. By Theorem 2.2, we
can decompose G − z into 3-connected components. Let H = H1 . . . Hh be a block
chain in G− z such that

(i) {x, y} ⊆ V (H1), and {x, y} �= V (H1) ∩ V (H2) when k �= 1,
(ii) Hh contains an extreme 3-block of G− z, and
(iii) subject to (i) and (ii), |V (H)| is maximum.

Note that H1 . . . Hk can be found in O(|G|) time.
We claim that |V (H)| ≥ n−1

t . Since G is 3-connected, each extreme 3-block of
G−z distinct fromH1 contains a neighbor of z that is not incident with xy. Therefore,
there are at most t extreme 3-blocks of G − z different from H1. Thus there are at
most t different block chains in G−z starting with a 3-block or cycle chain containing
{x, y} and ending with an extreme 3-block of G−z or a cycle chain in G−z containing
an extreme 3-block. Since all such chains cover the whole graph G−z, it follows from
(iii) that |V (H)| − 2 ≥ n−3

t , and thus |V (H)| ≥ n−1
t .

Let V (Hi) ∩ V (Hi+1) = {xi, yi}, 1 ≤ i ≤ h− 1, and assume that the notation is
chosen so that Hi contains disjoint paths from xi−1, yi−1 to xi, yi, respectively, where
x0 = x and y0 = y. See Figure 6. Next, we show how to find the desired cycle in
G− z.

H1
H2 Hh

x = x0 x1 x2 xh−1

y = y0
y1 y2 yh−1

Fig. 6. Block chain H = H1 . . . Hh.

Case 1. There exists some 1 ≤ i ≤ h such that |Hi| ≥ n
2t . We choose Hi so that

|Hi| ≥ |Hj | for all 1 ≤ j ≤ h. Then |Hi| ≥ n
2t .

First, assume that |Hi| = 3. Then 3 ≥ n
2t . By the choice of Hi, |Hj | = 3 for all
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1 ≤ j ≤ h. Since H does not contain two consecutive cycle chains, we have h = 1.
Hence G − z is a union of triangles which share the edge xy. Therefore, there are
exactly t triangles. Because n ≥ 6, we have t ≥ 3, and thus n = t + 3 ≤ 2t. Hence
C := Hi is a cycle through xy in G− z, and |C| = 3 ≥ ( n

2t )
r + 2.

We may assume that |Hi| ≥ 4. If Hi = K4 or Hi is a cycle chain in G− z, then,
by Proposition 2.4, let Ci denote a Hamilton cycle through xi−1yi−1, xiyi in Hi. By
Lemma 3.2, |Ci| = |Hi| ≥ (|Hi|)r + 2 ≥ ( n

2t )
r + 2.

Thus assume that Hi is 3-connected and |Hi| ≥ 5. Since |Hi| < |G| and the
maximum degree of Hi is at most d, Theorem 2.1 holds for Hi. By Theorem 2.1 (c),
there is a cycle Ci through ei := xi−1yi−1 in Hi such that |Ci| ≥ |Hi|r +3 ≥ ( n

2t )
r +2.

We can obtain a cycle C in G by replacing virtual edges contained in Ci with
paths in G (in particular, replacing xi−1yi−1 by a path through xy in G). Therefore,
C is a cycle through xy in G, and |C| ≥ |Ci| ≥ ( n

2t )
r + 2.

Case 2. For each 1 ≤ i ≤ h, |Hi| < n
2t . Since |V (H)| ≥ n−1

t > n
2t , we have

h ≥ 2. We will find a cycle Ci through xi−1yi−1 and xiyi in each Hi, where xhyh is
an arbitrary edge of Hh.

If Hi = K4 or Hi is a cycle chain in G− z, then, by Proposition 2.4, let Ci be a
Hamilton cycle through both xi−1yi−1 and xiyi in Hi. By Lemma 3.2, |Ci| = |Hi| ≥
( |Hi|
2(d−1) )

r + 2.

Assume that Hi �= K4 and Hi is not a cycle chain in G−z. Then |Hi| ≥ 5 and Hi

is a 3-connected graph with maximum degree d. Since |Hi| < n, Theorem 2.1 holds
for Hi. By Theorem 2.1 (b), there is a cycle Ci through xi−1yi−1 and xiyi in Hi such

that |Ci| ≥ ( |Hi|
2(d−1) )

r + 3.

Note that C1 − x1y1, Ch − xh−1yh−1, and Ci − {xi−1yi−1, xiyi}, 2 ≤ i ≤ h − 1,
are edge disjoint, and their union is a cycle C ′ through xy in H. By replacing the
virtual edges in C ′ with paths in G, we can produce a cycle C through xy in G − z
such that |C| ≥ |C ′|. Hence |C| ≥ ( |H1|

2(d−1) )
r + · · ·+ ( |Hh|

2(d−1) )
r + 2.

Note that h ≥ 2 and the vertices in V (H1)∩V (H2) are counted twice in |H1|+· · ·+
|Hh|. Hence |H1|+ · · ·+ |Hh| > n−1

t + 1 ≥ n
t . Consider the function f(x1, . . . , xh) =

xr1 + · · · + xrh + 2, with x1 + · · · + xh ≥ n
2(d−1)t and 0 ≤ xi ≤ n

4(d−1)t . By the

convexity of f(x1, . . . , xh), the minimum of f(x1, · · · , xh) is achieved on the boundary
of its domain. In particular, the minimum is achieved when x1 = x2 = n

4(d−1)t and

x3 = · · · = xh = 0. Hence

f(x1, . . . , xh) ≥ f
(

n

4(d− 1)t
,

n

4(d− 1)t
, 0, . . . , 0

)
= 2

(
n

4(d− 1)t

)r

+ 2

>
( n

2t

)r
+ 2.

The final inequality follows from the fact that r = log2(d−1)2+1 2 and 2 = (2(d− 1)2 +
1)r. Therefore, |C| ≥ ( n

2t )
r + 2.

As we can see from the above proof, the desired cycle through xy in G − z can
be found either (1) directly, (2) by finding a long cycle through ei in some Hi with
|Hi| ≥ n

2t , or (3) by finding long cycles through xj−1yj−1 and xjyj in Hj , 1 ≤ j ≤ h.
Next we show that the proof of Lemma 4.1 implies that this process can be done in
O(|E(G)|) time.

Algorithm Avoidvertex. Let G be a 3-connected graph, e = xy ∈ E(G), and



CIRCUMFERENCE OF GRAPHS WITH BOUNDED DEGREE 1149

z ∈ V (G) − {x, y}, satisfying the conditions of Lemma 4.1. The algorithm performs
the following steps.

1. Preprocessing. Replace G by a 3-connected spanning graph of G with O(|G|)
edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. Decompose G− z into 3-connected components. (This can be done in O(|G|)
time using Lemma 2.2.)

3. If there is only one 3-block of G−z, then G−z is 3-connected and we proceed
to find a cycle D through e = xy in G−z such that |D| ≥ (|G|−1)r +3. That
is, we reduce (a) for G, xy, z to (c) for G− z, xy. (Clearly, this reduction can
be done in constant time.)

4. If there are at least two 3-blocks of G − z, then G − z is not 3-connected.
We find a block chain H = H1 . . . Hk in G − z such that {x, y} ⊆ V (H1),
{x, y} �= V (H1)∩V (H2), and |H| ≥ n−1

t . Let V (Hi)∩V (Hi+1) = {xi, yi} for
1 ≤ i ≤ h−1. (Note that H can be found in O(|G|) time by a simple search.)

5. Either find some Hi with |Hi| ≥ n
2t , or certify that |Hi| < n

2t for all 1 ≤ i ≤ h.
(This can be done in O(|G|) time by a simple search.)

6. Suppose there exists some 1 ≤ i ≤ h for which |Hi| ≥ n
2t .• If Hi = K4 or Hi is a cycle chain, then let Ci denote a Hamilton cycle

in Hi through the edge xi−1yi−1. Let C be a cycle in G obtained from
Ci by replacing virtual edges with paths in G, and make sure e ∈ E(C).
(Note that Ci can be found in O(|Hi|) time using Proposition 2.4, and
so C can be found in O(|G|) time.)
• If Hi is 3-connected and Hi �= K4, then to find the desired cycle in G−z

through e it suffices to find a cycle D in Hi through xi−1yi−1 such that
|D| ≥ |Hi|r + 3. Hence, we reduce (a) for G, e, z to (c) for Hi, xi−1yi−1.
(This can be done in constant time.)

7. Now assume that, for all 1 ≤ j ≤ h, |Hj | < n
2t . Then h ≥ 2. For each

1 ≤ j ≤ h, we perform the following:
• If Hj = K4 or Hj is a cycle chain in G − z, let Cj denote a Hamilton

cycle through both xj−1yj−1 and xjyj in Hj . (Note that Cj can be
found in O(|Hj |) time using Proposition 2.4.)

• If Hj is 3-connected and Hj �= K4, then it suffices to find a cycle D in

Hj through xj−1yj−1 and xjyj such that |D| ≥ (
|Hj |

2(d−1) )
r +3. Hence, we

reduce (a) for G, xy, z to (b) for Hj , xj−1yj−1, xjyj , for all Hj which are
not cycle chains and are not isomorphic to K4. (Clearly, this can done
in O(|G|) time. Moreover, any such Hj contains a vertex that does not
belong to any other Hk—this is why we want Hj �= K4, and it will be
used in the final complexity analysis.)

The correctness of the algorithm follows from the proof of Lemma 4.1. To sum-
marize, we have the following result.

Proposition 4.2. Let G, e = xy, z, t, d, r be as in Theorem 2.1(a). Then, in
O(|E(G)|) time, we can either

(1) find a cycle C through e in G− z with |C| ≥ ( |G|
2t )r + 2,

(2) reduce (a) of Theorem 2.1 for G, xy, z to (c) of Theorem 2.1 for some 3-block

Hi of G− z that is 3-connected and |Hi| ≥ max{5, |G|
2t }, or

(3) reduce (a) of Theorem 2.1 for G, xy, z to (b) of Theorem 2.1 for Hj , xj−1yj−1,
xjyj for some 3-connected 3-blocks Hj �= K4.

Moreover, in (3), each Hj contains a vertex that does not belong to any other Hk,
k �= j.
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5. Cycles through two edges. In this section, we show how to reduce (b) of
Theorem 2.1 to (a) or (b) of the same theorem for smaller graphs. We will show that
such a reduction can be performed in linear time.

Lemma 5.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n − 1 vertices. Suppose G is a 3-
connected graph on n vertices and that the maximum degree of G is at most d. Then for
any {e, f} ⊆ E(G) there is a cycle C through e, f in G such that |C| ≥ ( n

2(d−1) )
r +3.

Proof. First, assume that e is incident with f . Let e = xz and f = yz, and let
G′ := G+ xy. Then G′ is a 3-connected graph with maximum degree at most d+ 1,
and the possible vertices of degree d + 1 in G′ are x and y, which are incident with
the edge zx or zy. By applying Lemma 4.1 to G′, xy, z, there is a cycle C ′ through
xy in G′ − z such that |C ′| ≥ ( n

2t )
r + 2, where t is the number of neighbors of z in G′

distinct from x and y. Since zx, zy ∈ E(G), t ≤ d− 1. Now let C := C ′−xy+ {e, f}.
Then |C| ≥ ( n

2t )
r + 3 ≥ ( n

2(d−1) )
r + 3, and C gives the desired cycle.

Therefore, we may assume that e and f are not incident. Let e = xy, and consider
G − y. Since y is not incident with f , f ∈ E(G − y). Since G is 3-connected, G − y
is 2-connected.

Suppose that G − y is 3-connected. Let y′ �= x be a neighbor of y. Then G′ :=
(G−y)+xy′ is a 3-connected graph with maximum degree at most d, and 5 ≤ |G′| < n.
Hence Theorem 2.1 holds for G′. By Theorem 2.1(b), there is a cycle C ′ through xy′

and f in G′ such that |C ′| ≥ ( n−1
2(d−1) )

r + 3. Let C := (C ′ − xy′) + {y, xy, yy′}. Then

|C| = |C ′|+ 1

≥
(

n− 1

2(d− 1)

)r

+ 3 + 1

≥
(

n− 1

2(d− 1)
+ 1

)r

+ 3 (by Lemma 3.1)

>

(
n

2(d− 1)

)r

+ 3.

Assume that G−y is not 3-connected. By Theorem 2.2, we can decompose G−y
into 3-connected components. Let H := H1 . . . Hh be a block chain in G − y such
that x ∈ V (Hh), x /∈ V (Hh−1) when h ≥ 2, f ∈ E(H1), and f is not incident with
both vertices in V (H1) ∩ V (H2). See Figure 7. Define V (Hs) ∩ V (Hs+1) = {as, bs}
for 1 ≤ s ≤ h− 1.

For each 1 ≤ s ≤ h we define As, which consists of vertices of Hs to be counted
when applying induction. If Hs is 3-connected, then let As := V (Hs). If h = 1 and
Hs = C1 . . . Ck is a cycle chain in G − y, then let As consist of the vertices incident
with f and the vertices in

⋃k−1
i=1 V (Ci ∩Ci+1). If h > 1 and H1 = C1 . . . Ck is a cycle

chain in G−y, then let A1 consist of those vertices of H1−{a1, b1} which are incident

with f or contained in
⋃k−1

i=1 V (Ci ∩Ci+1). If 1 < s < h and Hs = C1 . . . Ck is a cycle

chain, then let As := (
⋃k−1

i=1 V (Ci∩Ci+1))−({as−1, bs−1}∪{as, bs}). If 1 < s = h and

Hs = C1 . . . Ck is a cycle chain, then let As := (
⋃k−1

i=1 V (Ci ∩ Ci+1))− {as−1, bs−1}.
Note that when Hh is a cycle chain, we may choose Hh so that x /∈ Ah. Define

σ(H) := |⋃h
s=1As|. Intuitively, σ(H) consists of the vertices incident with f , and

those vertices which are of degree at least three in H (when viewed as a graph).
We wish to route our cycle through two large “parts” of G− y. For this purpose,

we consider chains I and J in G− y defined below.
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H1
Ht Hu Hh

x

y

f

a1 at−1 at auau−1 ah−1

b1 bt−1 bt bubu−1 bh−1

p q v w

G1
G2

Fig. 7. Block chains H, I, and J .

Let I := I1 . . . Ii be a block chain in G− y such that (i) |V (I1) ∩ V (H)| = 2, (ii)
V (I)∩V (H) = V (I1)∩V (H), (iii) Ii is an extreme 3-block of G− y, and (iv) subject
to (i), (ii), and (iii), |V (I)| is maximum. We may choose the notation of e and f so
that I is nonempty, and hence, G1 is defined. Let V (I1) ∩ V (H) = {p, q}. In this
case, {p, q, y} is a 3-cut of G, and we let G1 denote the subgraph of G by deleting
those components of G − {p, q, y} that contain an element of V (H). (Note that G1

can be defined in a more direct way; however, defining it from I is more natural for
our algorithm because we have all 3-blocks.) See Figure 7.

Since all degree two vertices in H are contained in some other 3-blocks of G−y or
are neighbors of y, G−y can be covered by at most d−1 block chains starting from a
3-block containing f and ending with an extreme 3-block (or a cycle chain containing
an extreme 3-block). Hence, we have the following.

Observation 1. |G1| ≥ n−σ(H)
d−1 .

Let J := J1 . . . Jj be a block chain in G − y such that (i) |V (J1) ∩ (V (H) ∪
V (G1))| = 2, (ii) V (J ) ∩ (V (H) ∪ V (G1)) = V (J1) ∩ (V (H) ∪ V (G1)), (iii) Jj is an
extreme 3-block of G− y, and (iv) subject to (i), (ii), and (iii), |V (J )| is maximum.
When J is nonempty, let V (J ) ∩ (V (H) ∪ V (G1)) = {v, w}. By the choice of G1,
{v, w} �= {p, q} and {v, w} ⊆ V (H). In this case, {v, w, y} is a 3-cut of G, and we
let G2 denote the subgraph of G by deleting those components of G− {v, w, y} that
contain an element of V (G1)∪V (H). Note that V (G1)∩V (G2) ⊆ {p, q, y}∩{v, w, y}
and |V (G1) ∩ V (G2)| ≤ 2 (because {v, w} �= {p, q}). See Figure 7.

By the same reasoning as for Observation 1, we have the following two observa-
tions.

Observation 2. If G2 is defined, then |G2| ≥ n−σ(H)−(|G1|−1)
d−2 .

Observation 3. If σ(H) ≥ |G2|, then σ(H) ≥ n−|G1|+1
d−1 .

Next we distinguish two cases by comparing σ(H) and |G2|.
Case 1. σ(H) ≥ |G2|. In this case, it suffices to consider H and G1. Clearly, there

is some 1 ≤ t ≤ h such that {p, q} ⊆ V (Ht), and {p, q} �= {at−1, bt−1} when t �= 1.
Let a0, b0 be the vertices incident with f . We will find paths in Hs, 1 ≤ s ≤ h, and a
path in G1 to form the desired cycle.

(1) If s = 1 < t, then there is a path P1 from a1 to b1 in H1 such that f ∈ E(P1)

and |E(P1)| ≥ ( |As|
2(d−1) )

r + 1. If 1 < s < t, then there exists Ps ⊆ Hs, consisting of
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disjoint paths from {as−1, bs−1} to {as, bs}, such that |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1.

Suppose Hs = K4 or Hs is a cycle chain. By Proposition 2.4, let Cs denote a
Hamilton cycle through as−1bs−1 and asbs in Hs. Since |Hs| ≥ 3 and by Lemma 3.2,

|Cs| = |Hs| ≥
( |Hs|

2(d− 1)

)r

+ 2 ≥
( |As|

2(d− 1)

)r

+ 2.

If s = 1, then P1 := C1−a1b1 gives the desired path for (1). Now assume 1 < s < t. If

|Hs| ≥ 4, then |Cs| = |Hs| ≥ ( |Hs|
2(d−1) )

r + 3, and if |Hs| = 3, then |As| = 0, and hence

|Cs| = |Hs| = ( |As|
2(d−1) )

r +3. Hence Ps := Cs−{as−1bs−1, asbs} gives the desired path

for (1).
Now suppose Hs is 3-connected and Hs �= K4. Then 5 ≤ |Hs| < n, and hence

Theorem 2.1 holds for Hs. By Theorem 2.1(b), there is a cycle Cs through as−1bs−1

and asbs in Hs such that |Cs| = ( |Hs|
2(d−1) )

r + 3 ≥ ( |As|
2(d−1) )

r + 3.

When s �= 1, then Ps := Cs − {as−1bs−1, asbs} is as desired, and when s = 1,
then Ps := Cs − asbs gives the desired path for (1).

(2) Next we find Pt ⊆ Ht, and to do so, we consider three subcases.

(2a) First, assume that 1 = t = h. We will find a path Pt from x to {p, q} such

that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and |E(Pt)| ≥ ( σ(H)
2(d−1) )

r + 1.

If Ht is a cycle chain, then by Proposition 2.8, let Pt denote a path from x to
{p, q} in Ht such that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and At ⊆ V (Pt). When

Ht consists of only one 3-block of G − y, then |E(Pt)| ≥ 2 = |At| > ( |At|
2(d−1) )

r + 1 =

( σ(H)
2(d−1) )

r + 1 (by Lemma 3.2). When Ht has at least two 3-blocks of G − y, then

|At| ≥ 3 and |E(Pt)| ≥ |At| − 1 ≥ ( |At|
2(d−1) )

r + 1 = ( σ(H)
2(d−1) )

r + 1 (by Lemma 3.2). So

Pt gives the desired path for (2a).
If Ht = K4, then σ(H) = 4. Let Pt denote a Hamilton path from x to {p, q} in Ht

such that f ∈ E(Pt), and pq /∈ E(Pt) unless pq = f . Then |E(Pt)| = 3 ≥ ( σ(H)
2(d−1) )

r+2.

Hence, Pt gives the desired path for (2a).
Now assume that Ht is not a cycle chain and Ht �= K4.
If x ∈ {p, q}, then f �= pq since x is not incident with f . Since 5 ≤ |Ht| < n,

Theorem 2.1 holds for Ht. By Theorem 2.1(b), there exists a cycle Ct in Ht such that

pq, f ∈ E(Pt) and |Ct| ≥ ( |Ht|
2(d−1) )

r + 3 = ( σ(H)
2(d−1) )

r + 3. Hence Pt := Ct− pq gives the

desired path.
Assume x /∈ {p, q}.
Suppose f �= pq. Let H ′

t be obtained from Ht by a T-transform at {x, pq}, and
let x′ denote the new vertex. By Lemma 3.3 and since x has degree at most d − 1
in Ht, H

′
t is a 3-connected graph with maximum degree at most d. Since G − y is

not 3-connected, |Ht| < n − 1. Hence 5 ≤ |H ′
t| < n, and Theorem 2.1 holds for

H ′
t. By Theorem 2.1(b), there exists a cycle Ct in H ′

t such that f, xx′ ∈ E(Ct) and

|Ct| ≥ ( |Ht|
2(d−1) )

r + 3 = ( σ(H)
2(d−1) )

r + 3. Hence Pt := Ct − x′ gives the desired path for

(2a).
Finally, assume that f = pq. Let H ′

t := Ht + {px, qx}. Then H ′
t is a 3-connected

graph with maximum degree at most d + 1, and all vertices of degree d + 1 must be
incident with px or pq. By Theorem 2.1(a), we can find a cycle Ct in H ′

t − p through

xq such that |Ct| ≥ ( |Ht|
2t )r + 2 = (σ(H)

2t )r + 2, where t ≤ d − 1 is the number of
neighbors of p distinct from x and q. Hence Pt := (Ct−qx)+{p, pq} gives the desired
path for (2a).
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(2b) Now assume that 1 ≤ t < h. If t = 1, we will find a path Pt from {at, bt} to

{p, q} in Ht such that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and |E(Pt)| ≥ ( |At|
2(d−1) )

r.

If t �= 1, we will find Pt ⊆ Ht, consisting of disjoint paths from {p, q} and {at, bt} to

{at−1, bt−1} such that |E(Pt)| ≥ ( |At|+2
2(d−1) )

r − 1.

Suppose Ht is a cycle chain. If {at, bt} = {p, q}, then by Proposition 2.4 let Ct

denote a Hamilton path in Ht from at to bt through at−1bt−1. If {at, bt} �= {p, q},
then by Proposition 2.7, let Ct denote a path in Ht− atbt from {at, bt} to {p, q} such
that at−1bt−1 ∈ E(Ct), pq /∈ E(Ct), and At ⊆ V (Ct). From the definition of At and
since t < h, at /∈ At and bt /∈ At. Also note that if t �= 1, then at−1 /∈ At or bt−1 /∈ At.
So if t = 1, then |E(Ct)| ≥ |At|, and if t �= 1, then |E(Ct)| ≥ |At|+ 1. Let Pt := Ct if
t = 1, and let Pt := Ct − at−1bt−1 if t �= 1. Then Pt is as desired for (2b).

If Ht = K4, then let Ct denote a Hamilton path in Ht−{pq, atbt} from {at, bt} to

{p, q} through at−1bt−1. Then |E(Ct)| = 3 > ( |At|
2(d−1) )

r+1, and so Pt := Ct−at−1bt−1

is as desired for (2b).
Now assume that Ht is not a cycle chain and Ht �= K4.
Suppose {at, bt} = {p, q}. Since 5 ≤ |Ht| < n, Theorem 2.1 holds for Ht. By

Theorem 2.1(b), there is a cycle Ct through at−1bt−1 and atbt in Ht such that |Ct| ≥
( |Ht|
2(d−1) )

r + 3 = ( |At|
2(d−1) )

r + 3. If t = 1 then Pt := Ct − atbt gives the desired path,

and if t �= 1 then Pt := Ct − {at−1bt−1, atbt} is as desired for (2b).
Now assume that {at, bt} �= {p, q}. LetH ′

t be obtained fromHt by an H-transform
at {atbt, pq}, and let a′, b′ denote the new vertices. By Lemma 3.3, H ′

t is a 3-connected
graph with maximum degree at most d. Since G − y is not 3-connected and since I
is nonempty (when {p, q} is defined), we have |Ht| ≤ n − 3. Hence 5 ≤ |H ′

t| < n.
Hence Theorem 2.1 holds for H ′

t. By Theorem 2.1(b), there is a cycle Ct through a′b′

and at−1bt−1 in H ′
t such that |Ct| ≥ (

|H′
t|

2(d−1) )
r + 3 = ( |At|+2

2(d−1) )
r + 3. If t = 1, then

Pt := Ct−{a, a′} gives the desired path, and if t �= 1 then Pt := Ct−{a, a′, at−1bt−1}
is as desired for (2b).

(2c) Finally, assume 1 < t = h. We will find Pt ⊆ Ht, consisting of disjoint paths

from x and {p, q} to {at−1, bt−1}, such that |E(Pt)| ≥ ( |At|
2(d−1) )

r.

If Ht is a cycle chain, then by Proposition 2.8, let Ct denote a path in Ht from x to
{p, q} such that at−1bt−1 ∈ E(Ct), pq /∈ E(Pt), and At ⊆ V (Pt). Since x, at−1, bt−1 /∈
At, |E(Ct)| ≥ |At| + 1 > ( |At|

2(d−1) )
r + 1. Hence Pt := Ct − at−1bt−1 is as desired for

(2c).
IfHt = K4, then let Ct denote a Hamilton path inHt−pq from x to {p, q} through

at−1bt−1. Then |E(Ct)| = 3 ≥ ( |Ht|
2(d−1) )

r+2 = ( |At|
2(d−1) )

r+2. Hence Pt := Ct−at−1bt−1

is as desired for (2c).
Now assume that Ht is not a cycle chain and Ht �= K4.
Suppose x ∈ {p, q}. Since 5 ≤ |Ht| < n, Theorem 2.1 holds for Ht. By Theorem

2.1(b), there is a cycle Ct through at−1bt−1 and pq in Ht such that |Ct| ≥ ( |Ht|
2(d−1) )

r +

3 = ( |At|
2(d−1) )

r + 3. Then Pt := Ct − {pq, at−1bt−1} is as desired.

Now assume that x /∈ {p, q}. Recall that {p, q} �= {at−1, bt−1}. LetH ′
t be obtained

from Ht by a T-transform at {x, pq} and let c′ denote the new vertex. By Lemma
3.3, H ′

t is a 3-connected graph with maximum degree at most d (because the degree
of x in Ht is at most d − 1). Since G − y is not 3-connected, |Ht| ≤ n − 2, and so,
5 ≤ |H ′

t| < n. Hence Theorem 2.1 holds for H ′
t. By Theorem 2.1(b), there is a cycle

Ct through xc′ and at−1bt−1 in H ′
t such that |Ct| ≥ (

|H′
t|

2(d−1) )
r + 3 > ( |At|

2(d−1) )
r + 3.
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Hence Pt := Ct − {c′, at−1bt−1} is as desired for (2c).
(3) For each t + 1 ≤ s ≤ h, we will find a path Ps ⊆ Hs such that |E(Ps)| ≥

( |As|
2(d−1) )

r when s �= h, |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1 when s = h, and
⋃h

s=t+1 Ps is a path

from x to the end of Pt contained in {at, bt} and is otherwise disjoint from Pt.
We find Ps in the order s = t+ 1, . . . , h.
Suppose Ps−1 is found, and the notation of {as−1, bs−1} is chosen so that as−1

is an end of Ps−1, and assume that the notation of {as, bs} is chosen so that as /∈
{as−1, bs−1}.

First, assume that Hs is a cycle chain. If s �= h, then by Proposition 2.5, let Ps

denote a path in Hs − {as−1bs−1, asbs} from as−1 to {as, bs} such that As ⊆ V (Ps).

Since as−1, bs−1, as, bs /∈ As, we have that |E(Ps)| ≥ |As|+1 ≥ ( |As|
2(d−1) )

r+1. If s = h,

then by Proposition 2.6 let Ps be a path from x to as−1 in Hs − as−1bs−1 such that

As ⊆ V (Ps). Since x, as−1, bs−1 /∈ As, we have that |E(Ps)| ≥ |As|+1 > ( |As|
2(d−1) )

r+1.

Now assumeHs = K4. If s �= h, then let Ps denote a path inHs−{as−1bs−1, asbs}
from as−1 to as with |E(Ps)| ≥ 1 ≥ ( |As|

2(d−1) )
r. If s = h, then let Ps be a path in

Hs − as−1bs−1 from as−1 to x with |E(Ps)| ≥ 2 > ( |As|
2(d−1) )

r + 1.

Therefore, we may assume that Hs is not a cycle chain and Hs �= K4.
Suppose s �= h. If bs−1 = bs, then let H ′

s := Hs + as−1as. Clearly, H ′
s is 3-

connected with maximum degree at most d+ 1, and the vertices of degree d+ 1 must
be incident with as−1bs−1 or asbs−1. Thus by Theorem 2.1(a), there is a cycle Cs in

H ′
s− bs−1 such that as−1as ∈ E(Cs) and |Cs| ≥ (

|H′
s|

2(d−1) )
r +2. Let Ps := Cs−as−1as.

Then |E(Ps)| ≥ ( |As|
2(d−1) )

r+1. So assume bs−1 �= bs. Let H ′′
s be obtained from Hs by a

T-transform at {bs−1, asbs}, and let a′ denote the new vertex. Let H ′
s := H ′′

s +as−1a
′.

Since G − y is not 3-connected, |H ′′
s | ≤ n − 2, and so 5 ≤ |H ′

s| < n. By Lemma 3.3,
H ′′

s is a 3-connected graph with maximum degree at most d + 1, and the vertices
of degree d + 1 must be incident with bs−1a

′ or bs−1as−1. Thus H ′
s, as−1a

′, bs−1

satisfy the conditions of Theorem 2.1(a). By Theorem 2.1(a), there is a cycle Cs

through as−1a
′ in H ′

s − bs−1 such that |Cs| ≥ (
|H′

s|
2(d−1) )

r + 2. Let Ps := Cs − a′. Then

|E(Ps)| ≥ ( |As|
2(d−1) )

r.

Now assume s = h. Let H ′
s := Hs + {xbs−1, xas−1}. Then H ′

s is a 3-connected
graph, the vertices x, as−1, bs−1 have degree at most d + 1, and all other vertices of
H ′

s have degree at most d. Thus H ′
s, as−1x, bs−1 satisfy the conditions of Theorem

2.1(a). By Theorem 2.1(a), there is a cycle C ′
s through as−1x in H ′

s − bs−1 such that

|C ′
s| ≥ (

|H′
s|

2(d−1) )
r + 2. Let Ps := C ′

s − as−1x. Then Ps is a path from as−1 to x and

|E(Ps)| ≥ (
|H′

s|
2(d−1) )

r + 1 ≥ ( |As|
2(d−1) )

r + 1.

It is easy to see that
⋃h

s=t+1 Ps is a path from x to the end of Pt in {at, bt} and
is otherwise disjoint from Pt.

(4) Let P :=
⋃h

s=1 Ps. We claim that P is a path from x to {p, q}, f ∈ E(P ),

pq /∈ E(P ) unless pq = f , and |E(P )| ≥ ( σ(H)
2(d−1) )

r + 1.

This is obvious if h = 1 (by (2a)). So assume that h ≥ 2.

Suppose t �= 1. Then |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1 for 1 ≤ s ≤ t − 1 (by (1)),

|E(Pt)| ≥ ( |At|+2
2(d−1) )

r − 1 when t �= h (by (2b)), |E(Pt)| ≥ ( |At|
2(d−1) )

r when t = h (by

(2c)), |E(Ps)| ≥ ( |As|
2(d−1) )

r when t+ 1 ≤ s < h (by (3)), and |E(Ph)| ≥ ( |Ah|
2(d−1) )

r) + 1

when t < h (by (3)). Hence we have the following:
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|E(P )| =
h∑

s=1

|E(Ps)|

≥
(

h∑
s=1

( |As|
2(d− 1)

)r
)

+ 1

≥
(∑h

s=1 |As|
2(d− 1)

)r

+ 1 (by Lemma 3.1)

≥
(

σ(H)

2(d− 1)

)r

+ 1.

Now suppose t = 1. Then |E(Pt)| ≥ ( |At|
2(d−1) )

r (by (2b)), |E(Ps)| ≥ ( |As|
2(d−1) )

r for

2 ≤ s ≤ h − 1 (by (3)), and |E(Ph)| ≥ ( |Ah|
2(d−1) )

r + 1 (by (3)). Hence by the same

argument as in the above paragraph, we have |E(P )| ≥ ( σ(H)
2(d−1) )

r + 1. Thus, we have

(4).

By (4), we may assume that the notation of {p, q} is chosen so that P is from x
to p.

(5) We claim that there is a path Q in G1 − q from p to y such that |E(Q)| ≥
( |G1|
2(d−1) )

r + 1.

Note that G′
1 := G1 + {yp, yq, pq} is a 3-connected graph.

If G′
1 = K4, then we can find a path Q in G′

1 − q from p to y such that |E(Q)| =
2 ≥ ( |G1|

2(d−1) )
r + 1.

Now assume that G′
1 �= K4. Then Theorem 2.1 holds for G′

1. Note that all
vertices of G′

1 have degree at most d, except possibly y, p, q, which have degree at
most d + 1. By Theorem 2.1(a), there is a cycle C1 through py in G′

1 − q such that

|C1| ≥ ( |G1|
2(d−1) )

r + 2. Let Q := C1 − py. Then Q gives the desired path.

(6) Finally, let C := (P ∪Q) + xy. Then C is a cycle through e and f in G and,

by (4) and (5), |C| ≥ (( σ(H)
2(d−1) )

r + 1) + (( |G1|
2(d−1) )

r + 1) + 1 = ( σ(H)
2(d−1) )

r + ( |G1|
2(d−1) )

r + 3.

Recall that σ(H) ≥ |G2| and |G1| ≥ |G2|.
If σ(H) < |G1|, then

|C| ≥
(

σ(H)

2(d− 1)

)r

+

( |G1|
2(d− 1)

)r

+ 3

≥
(

(d− 1)σ (H) +
|G1|

2(d− 1)

)r

+ 3 (by Lemma 3.1 and since σ(H) < |G1|)

≥
(

n

2(d− 1)

)r

+ 3 (by Observation 3).

Otherwise, σ(H) ≥ |G1|. Hence,

|C| ≥
(

σ(H)

2(d− 1)

)r

+

( |G1|
2(d− 1)

)r

+ 3

≥
(

σ(H)

2(d− 1)
+ (d− 1)|G1|

)r

+ 3 (by Lemma 3.1 and since σ(H) ≥ |G1|)

>

(
n

2(d− 1)

)r

+ 3 (by Observation 1).
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Case 2. σ(H) ≤ |G2|. In this case G2 is defined. We will use G1 and G2 to find
the desired cycle. Let V (G2) ∩ V (H) = {v, w}. Then there exists some 1 ≤ u ≤ h
such that {v, w} ⊆ V (Hu), and {v, w} �= {au−1, bu−1} when u �= 1. Also there exists
some 1 ≤ t ≤ h such that {p, q} ⊆ V (Ht), and {p, q} �= {at−1, bt−1} when t �= 1.

(1) We claim that we can find, in O(|V (H)|) time, a path P from x to some

z ∈ {p, q} ∪ {v, w} in
⋃h

s=1Hs for which
(i) f ∈ E(P ),
(ii) pq ∈ E(P ) or vw ∈ E(P ), and
(iii) if pq ∈ E(P ), then z ∈ {v, w}, and vw /∈ E(P ) unless vw = f , and if

vw ∈ E(P ), then z ∈ {p, q}, and pq /∈ E(P ) unless pq = f .
To prove (1), let us assume that t ≤ u; the case t ≥ u can be taken care of in

exactly the same way.
When t �= 1, we use Lemma 3.5 to find a cycle Q′ in

⋃t−1
s=1Hs through at−1bt−1

and f . Let Q := Q′ − at−1bt−1, which is a path from at−1 to bt−1 through f . Let
Q = ∅ when t = 1. We distinguish two cases.

Subcase (1a). t < u. By choosing the notation of {at, bt}, we may assume that

(
⋃h

s=t+1Hs)− bt contains a path X from at to x through vw.
If bt ∈ {p, q}, then we use Lemma 3.5 to find a cycle Ct through at−1bt−1 and

atbt in Ht. If pq /∈ E(Ct) or bt ∈ {at−1, bt−1}, let Pt := Ct − {at−1bt−1, atbt} when
t �= 1, and let Pt := Ct − atbt when t = 1. Then P := Q ∪X ∪ Pt gives the desired
path for (1) (with z = bt). So assume pq ∈ E(Ct) and bt /∈ {at−1, bt−1}. Then let
Pt := Ct − {at−1bt−1, bt} when t �= 1, and let Pt := Ct − bt when t = 1. Then
P := Q ∪X ∪ Pt gives the desired path for (1) (with z ∈ {p, q} − {bt}).

We may therefore assume that bt /∈ {p, q}.
Suppose Ht is not a cycle chain. Then Ht is 3-connected. Let H ′

t be obtained
from Ht by subdividing pq with a vertex a′ and adding an edge a′at (if not already
present). Then H ′

t − bt is 2-connected. By Lemma 3.5, we find a cycle C ′
t through

at−1bt−1 and a′at in H ′
t − bt. If t = 1, then let Pt := C ′

t − a′, and if t �= 1, then let
Pt := C ′

t − {a′, at−1bt−1}. Then P := Q ∪ Pt ∪X gives the desired path for (1).
Now assume that Ht is a cycle chain. By the structure of a cycle chain, we can,

in O(|Ht|) time, either find a path Ct in Ht−atbt from at to {p, q} through at−1bt−1,
or find a path C ′

t in Ht from at to bt through at−1bt−1 and pq.
If we find Ct, then let Pt := Ct − at−1bt−1 when t �= 1 and Pt := Ct when t = 1.

In this case, P := Q ∪ Pt ∪X gives the desired path for (1).
Assume that we find C ′

t. In this case, we cannot use X. Let Pt := C ′
t if t = 1,

and otherwise let Pt := C ′
t − at−1bt−1. Let H :=

⋃h
s=t+1Hs. If x ∈ {v, w}, then

find a cycle C ′ in H through atbt and vw, and so P := Q ∪ Pt ∪ (C ′ − {atbt, vw})
gives the desired path for (1). So assume that x /∈ {v, w}. Let H ′ be obtained from
H by a T-transform at {x, vw}, and let x′ denote the new vertex. Then H ′ is a
2-connected graph. By Lemma 3.5, we find a cycle C ′ through atbt and xx′. Now
P := Q ∪ Pt ∪ (C ′ − {x′, atbt}) gives the desired path for (1).

Subcase (1b). t = u. Recall that {p, q} �= {v, w}.
First, assume that t �= h. We claim that there is a path Qt in Ht from {at, bt}

to some z ∈ {p, q} ∪ {v, w} such that (i) at−1bt−1 ∈ E(Qt), (ii) pq ∈ E(Qt) or
vw ∈ E(Qt), and (iii) if pq ∈ E(Qt), then z ∈ {v, w}, and vw /∈ E(Qt) unless vw =
at−1bt−1, and if vw ∈ E(Qt), then z ∈ {p, q}, and pq /∈ E(Qt) unless pq = at−1bt−1.
This is easy to see if Ht is a cycle chain, and otherwise, it follows from Lemma 3.6.
Assume without loss of generality that at ∈ V (Qt). In (

⋃h
s=t+1Hs) − bt, we find a

path R from at to x. Now P := Q ∪Qt ∪R gives the desired path for (1).
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Now assume that t = h. We note that there is a path Qt in Ht from x to
z ∈ {p, q} ∪ {v, w} such that (i) at−1bt−1 ∈ E(Qt), (ii) pq ∈ E(Qt) or vw ∈ E(Qt),
and (iii) if pq ∈ E(Qt), then z ∈ {v, w}, and vw /∈ E(Qt) unless vw = at−1bt−1, and
if vw ∈ E(Qt), then z ∈ {p, q}, and pq /∈ E(Qt) unless pq = at−1bt−1. This is easy to
see if Ht is a cycle chain, and otherwise, it follows from Lemma 3.7. Now P := Q∪Qt

gives the desired path for (1).
Assume that vw ∈ E(P ) in (1) (the case pq ∈ E(P ) is similar), and assume p is

an end of P .
(2) Note that G′

1 := G1 + {yp, yq, pq} is a 3-connected graph, vertices y, p, q have
degree at most d + 1 in G′

1, and all other vertices of G′
1 have degree at most d. If

G′
1 = K4, then we can find a path P1 from p to y in G′

1 − q such that |E(P1)| = 2 ≥
( |G1|
2(d−1) )

r + 1. If G′
1 �= K4, then Theorem 2.1 holds for G′

1. By Theorem 2.1(a), there

is a cycle C1 through py in G′
1−q such that |C1| ≥ ( |G1|

2t1
)r +2, where t1 is the number

of neighbors of q in G′
1 distinct from p and y. Let P1 := C1 − py. Then P1 is a path

from p to y in G′
1 − q. Since t1 ≤ d− 1, we have |E(P1)| ≥ ( |G1|

2(d−1) )
r + 1.

(3) Note that G′
2 := G2 + {yv, yw, vw} is a 3-connected graph, vertices y, v, w

have degree at most d+ 1 in G′
2, and all other vertices of G′

2 have degree at most d.
If G′

2 = K4, then we can find a path P2 from v to w in G′
2 − y such that |E(P2)| =

2 ≥ ( |G2|
2(d−1) )

r + 1. If G′
2 �= K4, then Theorem 2.1 holds for G′

2. By Theorem 2.1(a),

there is a cycle C2 through vw in G′
2 − y such that |C2| ≥ (

|G′
2|

2t2
)r + 2, where t2 is the

number of neighbors of y in G′
2 distinct from v and w. Let P2 := C2 − vw. Then P2

is a path from v to w in G′
2 − y. Since t2 ≤ d− 1, we have |E(P2)| ≥ ( |G2|

2(d−1) )
r + 1.

Let C := ((P − vw) ∪ P1 ∪ P2) + e. Then C is a cycle through e and f in G and

|C| = |E(P )|+ |E(P1)|+ |E(P2)|+ 1

≥
( |G1|

2(d− 1)

)r

+

( |G2|
2(d− 1)

)r

+ 3 (by (2) and (3))

≥
( |G1|

2(d− 1)
+ (d− 1)|G2|

)r

+ 3 (by Lemma 3.1 and since |G1| ≥ |G2|)

≥
(

n

2(d− 1)

)r

+ 3,

where the final inequality holds because of Observation 2 and since |G2| ≥ σ(H).
Next we show that the above proof gives an O(|E(G)|) algorithm which reduces

Theorem 2.1(b) to (a) and (b) of the same theorem (for smaller graphs).
Algorithm Twoedge. Let n, d, r,G, e, f be as in Lemma 5.1.
1. Preprocessing. Replace G with a 3-connected spanning subgraph of G with
O(|G|) edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. If e is adjacent to f , then let e = xz and f = yz. It suffices to find a

cycle C ′ through xy in G′ := (G + xy) − z such that |C ′| ≥ ( |G
′|

2t )r + 2,
where t is the number of neighbors of z in G′ distinct from x and y. That
is, we reduce Theorem 2.1(b) for G, e, f to Theorem 2.1(a) for G′, xy, z. We
apply Algorithm Avoidvertex to G′, xy, z. (By Proposition 4.2, we can, in
O(|E(G)|) time, either find the desired cycle C ′ or reduce it to (a) or (c) for
smaller graphs. Moreover, each smaller graph contains a vertex that does not
belong to any other smaller graph.)

3. Now assume that e is not adjacent to f , and let e = xy. Decompose G−y into
3-connected components. (This can be done in O(|G|) time using Theorem
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2.2.)
4. Suppose there is only one 3-connected component of G − y. Then G − y is

3-connected, and let y′ denote a neighbor of y distinct from x. Let G′ :=
(G− y)+xy′ and e′ = xy′. To find the desired cycle through e and f in G, it

suffices to find a cycle C ′ through e′ and f in G′ such that |C ′| ≥ ( |G′|
2(d−1) )

r+3.

Thus we reduce Theorem 2.1(b) for G, e, f to Theorem 2.1(b) for G′, e′, f ,
with |G′| < |G|. (This reduction can be done in constant time.)

5. Now assume that G − y has at least two 3-connected components. Find the
block chain H = H1 . . . Hh such that f ∈ E(H1), x ∈ V (Hh)−V (Hh−1), and
f is not incident with both vertices in V (H1) ∩ V (H2). Find G1 and G2 as
in the proof of Lemma 5.1. (This can be done in O(|G|) time.)

6. Suppose σ(H) > |G2|.
• Assume 1 ≤ s ≤ t − 1. We need to find Ps as in (1) of Case 1 in

the proof of Lemma 5.1. If Hs = K4 or Hs is a cycle chain then we
find Ps, and otherwise, we need to find a cycle Cs through as−1bs−1

and asbs in Hs such that |Cs| ≥ ( |Hs|
2(d−1) )

r + 3. So either we find Ps in

O(|Hs|) time or we reduce the problem of finding Ps to Theorem 2.1(b)
for Hs, as−1bs−1, asbs in constant time.

• We need to find Pt ⊆ Ht as in (2) of Case 1 in the proof of Lemma 5.1.
If Ht is a cycle chain or Ht = K4 then we find Pt ⊆ Ht as in (2) of
Case 1 in the proof of Lemma 5.1. (This can be done in O(|Ht|) time.)
If Ht is not a cycle chain and Ht �= K4, then we reduce the problem of
finding Pt to the following: Theorem 2.1(b) for Ht, f, pq or H ′

t, f, xx
′;

Theorem 2.1(a) for H ′
t, px, q (as in (2a) of Case 1); Theorem 2.1(b) for

Ht, at−1bt−1, atbt or H ′
t, at−1bt−1, a

′b′ (as in (2b) of Case 1); Theorem
2.1(b) for Ht, at−1bt−1, pq or H ′

t, at−1bt−1, xc
′ (as in (2c) of Case 1).

(This reduction can be done in constant time.)
• Suppose t + 1 ≤ s ≤ h. We need to find Ps as in (3) of Case 1 in

the proof of Lemma 5.1. If Hs = K4 or Hs is a cycle chain, we find
a path Ps. (This can be done in O(|Hs|) time.) If Hs �= K4 and Hs

is not a cycle chain, then we reduce the problem of finding Ps to the
following: Theorem 2.1(a) for H ′

s, as−1as, bs−1, or H ′
s, as−1a

′, bs−1, or
H ′

s, as−1x, bs−1. (This reduction can be done in constant time.)
• Let G′

1 := G1 + {yp, yq, pq}. We need to find a path Q in G′
1 as in (5)

of Case 1 in the proof of Lemma 5.1. If G′
1 = K4, we find a path Q

in O(|G1|) time, and otherwise, we reduce the problem of finding Q to
Theorem 2.1(a) for G′

1, py, q, in constant time.
(The operations in step 6 can be done in O(|G|) time. Also each 3-connected
graph reduced from Hs’s or G1 contains a vertex which does not belong to
any other 3-connected graphs reduced from Hs’s or G1.)

7. Now assume σ(H) ≤ |G2|.
• First, we find Ht and Hu such that {p, q} ⊆ V (Ht), {p, q} �= {at−1, bt−1}

when t �= 1, {v, w} ⊆ V (Hu), and {v, w} �= {au−1, bu−1} when u �= 1.
(This can be done in O(|G|) time by searching the 3-connected compo-
nents of G− y.)
• Assume that t ≤ u (u ≥ t can be treated similarly). Find a path P in⋃t

s=1Hs from x to {p, q} (or {v, w}) through f and vw (or pq). (This
can be done in O(|G|) time as in (1) of Case 2 in the proof of Lemma
5.1.)
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• Assume P is from x to p and through f and vw. If G′
1 = K4, then we

find a path P1 in G′
1 − q from p to y of length 2. If G′

1 �= K4, then we
need to apply Theorem 2.1(a) to G′

1, yp, q. (This reduction can be done
in constant time, as in (2) of Case 2 in the proof of Lemma 5.1.)
• If G′

2 = K4, then find a path P2 in G′
2 − y from v to w of length 2. If

G′
2 �= K4, then we need to apply Theorem 2.1(a) to G′

2, vw, y. (Again,
this can be done in constant time, as in (3) of Case 2 in the proof of
Lemma 5.1.)

To summarize, we have the following.
Proposition 5.2. Given G, e, f, n, d, r as in Lemma 5.1, we can, in O(|E(G)|)

time, either

(1) find a cycle C through e and f in G such that |C| ≥ ( |G|
2(d−1) )

r + 3, or

(2) reduce Theorem 2.1(b) for G, e, f to (a) or (b) of the same theorem for smaller
3-connected graphs.

Moreover, any smaller graph in (2) comes from a 3-connected 3-block of G − y that
is not K4. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

6. Cycles through one edge. In this section, we show how to reduce Theorem
2.1(c), in linear time, to (a), (b), or (c) of the same theorem for smaller graphs. As
in the previous two sections, we state the reduction as a lemma.

Lemma 6.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n− 1 vertices. Let G be a 3-connected
graph on n vertices, and assume that the maximum degree of G is at most d. Then
for any e ∈ E(G) there is a cycle C through e in G such that |C| ≥ nr + 3.

Proof. Let e = xy ∈ E(G), and consider G− y.
If G − y is 3-connected, then let y′ be a neighbor of y other than x. Clearly,

G′ := (G − y) + xy′ is a 3-connected graph with maximum degree at most d. Since
5 ≤ |G′| < n, Theorem 2.1 holds for G′. By Theorem 2.1(c), there is a cycle C ′

through xy′ in G′ such that |C ′| ≥ (n−1)r +3. Now let C := (C ′−xy′)+{y, xy, yy′}.
Then C is a cycle through xy in G and

|C| = |C ′|+ 1

≥ (n− 1)r + 1 + 3

≥ nr + 3 (by Lemma 3.1).

Therefore, we may assume that G− y is not 3-connected. Since G is 3-connected,
G − y is 2-connected. By Theorem 2.2, we can decompose G − y into 3-connected
components.

First, let us consider the case where all 3-blocks of G − y are cycles. Let I =
I1 . . . Ii be a block chain in G − y such that (i) x ∈ V (I1) − V (I2), (ii) Ii is an
extreme 3-block of G − y, and (iii) subject to (i) and (ii), |V (I)| is maximum. For

convenience, let B := I1. Then |V (I)| ≥ (n−1)−|B|
t−1 + |B| = n+(t−2)|B|−1

t−1 , where t
is the number of extreme 3-blocks of G − y distinct from I1. So n ≥ t + 4 (since
|B| ≥ 3) and t ≤ d− 1. It is easy to see that there is some y′ ∈ V (I)− {x} such that⋃i

s=1 Is contains a Hamilton path P from x to y′ and G has a path Q from y′ to y
disjoint from V (I) − {y}. (Note that P and y′ can be found in O(|G|) time.) Let

C := (P ∪Q)+ {y, xy, yy′}. Then |C| ≥ |V (I)|+1 ≥ n+(t−2)|B|−1
t−1 +1. Next we show

that |C| − 3 ≥ nr. Note that |C| − 3 ≥ n+(t−2)|B|−1
t−1 − 2 ≥ n+t−5

t−1 (since |B| ≥ 3).
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L1 Lt Li

c1 ct−1 ct c�−1

x

d1 dt−1
dt d�−1

a0

a1

ah−1

y′

b0

b1

bh−1

H1

Hh

Fig. 8. Block chains L and H.

One can prove that x+t−5
t−1 − xr is an increasing function when x ≥ 2(d − 1)2 + 1.

Hence when n ≥ 2(d − 1)2 + 1, n+t−5
t−1 ≥ nr. Now if t + 4 ≤ n ≤ 2(d − 1)2, then

n+t−5
t−1 > 2 > nr. Therefore, |C| − 3 ≥ nr, and so |C| ≥ nr + 3.

Hence, we may assume that some 3-block of G− y is 3-connected. Let L denote
a 3-connected 3-block of G− y with |L| maximum. Then |L| ≥ 4. Let L := L1 . . . L�

denote a block chain in G − y such that L1 = L and x ∈ V (L�) − V (L�−1), where
� ≥ 1. See Figure 8.

Let V (Li)∩V (Li+1) = {ci, di} for 1 ≤ i ≤ �− 1. For each 1 ≤ i ≤ �, we define Bi

as follows: if Li is 3-connected, then Bi := V (Li); if i < � and Li = C1 . . . Ck is a cycle

chain, then Bi = (
⋃k−1

i=1 V (Ci ∩ Ci+1)) − ({ci−1, di−1} ∪ {ci, di}); if L� = C1 . . . Ck

is a cycle chain, then B� consists of x and the vertices in (
⋃k−1

i=1 V (Ci ∩ Ci+1)) −
{c�−1, d�−1}. Define σ(L) := |⋃�

s=1Bs|.
If V (L) = V (G) − {y}, then let H = ∅. Otherwise, let H := H1 . . . Hh denote a

block chain in G − y such that (i) |V (H) ∩ V (L)| = 2, (ii) V (H) ∩ V (L) = V (H1) ∩
V (L) �= V (H1) ∩ V (H2), (iii) Hh is an extreme 3-block of G − y. See Figure 8.
Let V (Hi) ∩ V (Hi+1) = {ai, bi}, 1 ≤ i ≤ h − 1. Let a0, b0 denote the vertices in
V (H) ∩ V (L). If H = ∅, then let y′ denote a neighbor of y distinct from x and let
a0 = b0 = y′. IfH �= ∅, then let y′ be a neighbor of y in V (Hh)−{ah−1, bh−1}. For each
1 ≤ s ≤ h, we define As as follows: if Hs is 3-connected, then As := V (Hs); if h = 1

and H1 = C1 . . . Ck is a cycle chain, then A1 := (
⋃k−1

i=1 V (Ci∩Ci+1))∪ ({a0, b0}−Bt);
if h > 1 and H1 = C1 . . . Ck is a cycle chain, then A1 is the union of {a0, b0}−Bt and

(
⋃k−1

i=1 V (Ci ∩Ci+1))−{a1, b1}; if 1 < s < h and Hs = C1 . . . Ck is a cycle chain, then

As = (
⋃k−1

i=1 V (Ci∩Ci+1))−{as−1, bs−1, as, bs}; if h > 1 and Hh = C1 . . . Ck is a cycle

chain, then Ah consists of y′ and those vertices in (
⋃k−1

i=1 V (Ci∩Ci+1))−{ah−1, bh−1}.
Define σ(H) := |⋃h

s=1As|.
We choose H = H1 . . . Hh so that, subject to (i)–(iii), σ(H) is maximum. Without

loss of generality, we may assume that, for some 1 ≤ t ≤ �, a0, b0 ∈ V (Lt) and
{a0, b0} �= {ct−1, dt−1} (or y′ /∈ {ct−1, dt−1} if a0 = b0 = y′) when t ≥ 2.

Note that each vertex in (
⋃�

i=1(V (Li)−Bi))∪(
⋃h

s=1(V (Hs)−As)) either appears
in some other block chain in G − y or is adjacent to y. By the choice of H and
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since there are at most d − 1 extreme blocks of G − y not containing x, we have

σ(H) ≥ (n−1)−σ(L)
d−1 . Hence we have the following.

Observation. σ(L) + (d− 1)σ(H) ≥ n− 1.
We consider three cases.
Case 1. � = 1. In this case, σ(L) = |L1| (because L1 is not a cycle chain). Since

G− y is not 3-connected, H �= ∅.
(1) First, we find a path P in L − a0b0 from x to {a0, b0} such that |E(P )| ≥

(σ(L) + 1)r + 1.
If L1 = K4, then we can find a Hamilton path P from x to {a0, b0} in L1 − a0b0.

Hence by Lemma 3.2, |E(P )| = 3 ≥ |L1|r + 2 ≥ (σ(L) + 1)r + 1. So assume that
L1 �= K4.

If x ∈ {a0, b0}, then by Theorem 2.1(c), there is a cycle C1 through a0b0 in L1

such that |C1| ≥ |L1|r + 3. Now P := C1 − a0b0 is a path from x to {a0, b0} in
L1 − a0b0 and |E(P )| ≥ (σ(L)r + 2(σ(L) + 1)r + 1 (by Lemma 3.1).

Assume x /∈ {a0, b0}. Let L′
1 denote the graph obtained from L1 by a T-transform

at {x, a0b0}, and let x′ denote the new vertex. By Lemma 3.3 and because x has degree
at most d−1 in L1, L

′
1 is a 3-connected graph with maximum degree at most d. Note

that 5 ≤ |L′
1| < n. Thus Theorem 2.1 holds for L′

1. By Theorem 2.1(c), there is
a cycle C1 through xx′ in L′

1 such that |C ′
1| ≥ |L′

1|r + 3 = (|L1| + 1)r + 3. Now
P := C1 − x′ gives the desired path.

Without loss of generality, we may assume that the path P found in (1) is from
x to a0.

(2) For i = 1, . . . , h−1, we find paths Qi from {ai−1, bi−1} to {ai, bi}−{ai−1, bi−1}
in Hi such that

(i)
⋃h−1

i=1 Qi is a path from a0 to {ah−1, bh−1},
(ii) if Hi is 3-connected, then |E(Qi)| ≥ ( |Ai|

2(d−1) )
r,

(iii) if Hi is a cycle chain, then |E(Qi)| ≥ |Ai|+ 1.
Suppose that, for some 1 ≤ i ≤ h−1, we have found paths Qj , 1 ≤ j ≤ i−1, from

{aj−1, bj−1} to {aj , bj} in Hj such that
⋃i−1

j=1Qj is a path from a0 to {ai−1, bi−1} and
(ii)–(iii) above are satisfied for Hj , Qj , Aj . For ease of presentation, we may assume

that ai−1 is an end of
⋃i−1

j=1Qj .
If Hi = K4, then we find a path Qi in Hi − bi−1 from ai−1 to {ai, bi} such that

|E(Qi)| ≥ 2. Clearly, |E(Qi)| ≥ 2 ≥ ( |Ai|
2(d−1) )

r.

IfHi is a cycle chain, then by Proposition 2.5 letQi be a path inHi−{ai−1bi−1, aibi}
from ai−1 to {ai, bi} such that Ai ⊆ V (Qi). Since ({ai−1, bi−1} ∪ {ai, bi}) ∩ Ai = ∅,
we have |E(Qi)| ≥ |Ai|+ 1.

Now assume that Hi is not a cycle chain and Hi �= K4.
If bi−1 ∈ {ai, bi}, then assume bi−1 = bi (by choosing the notation of {ai, bi}),

and let H ′
i := Hi + ai−1ai. Clearly, H ′

i is 3-connected with maximum degree at
most d + 1, and the possible vertices of degree d + 1 are incident with ai−1bi−1 or
aibi−1. By Theorem 2.1(a), there is a cycle Di through ai−1ai in H ′

i − bi−1 such that

|E(Di)| ≥ ( |Ai|
2ti

)r + 2, where ti is the number of neighbors of bi−1 in H ′
i distinct from

ai−1 and ai. So ti ≤ d− 1. Let Qi := Di − ai−1ai. Then |E(Qi)| ≥ ( |Ai|
2(d−1) )

r + 1.

Hence, assume bi−1 /∈ {ai, bi}. Let H ′′
i be obtained from Hi by a T-transform at

{bi−1, aibi}, and let a denote the new vertex. By Lemma 3.3, H ′′
i is a 3-connected

graph. Let H ′
i := H ′′

i + ai−1a. Then 5 ≤ |H ′
i| < n. Also ai−1, bi−1, a have degrees at

most d+1 in H ′
i, and all other vertices have degree at most d in H ′

i. Thus by Theorem

2.1(a), there is a cycle Di through ai−1a in H ′
i − bi−1 such that |Di| ≥ (

|H′
i|

2ti
)r + 2,
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where ti is the number of neighbors of bi−1 in H ′
i distinct from a and ai−1. Thus

ti ≤ d−1. Let Qi := Di−a. Then Qi is a path in Hi−bi−1 between ai−1 and {ai, bi}
and |E(Qi)| ≥ ( |Hi|

2(d−1) )
r.

(3) We find a path Qh in Hh from {ah−1, bh−1} to y′ such that

(i)
⋃h

i=1Qi is a path from a0 to y′,
(ii) if Hh is 3-connected, then |E(Qh)| ≥ ( |Ah|

2(d−1) )
r + 1,

(iii) if Hh is a cycle chain, then |E(Qh)| ≥ |Ah|+ 1.

For ease of presentation, let us assume that
⋃h−1

i=1 Qi is from a0 to ah−1.
If Hh is a cycle chain, then by Proposition 2.6, let Qh denote a path from ah−1

to y′ in Hh − bh−1 such that Ah ⊆ V (Qh). Since ah−1, bh−1, and y′ /∈ Ah, we have
(iii).

If Hh = K4, then let Qh be a Hamilton path from ah−1 to y′ in Hh− bh−1. Then

|E(Qh)| = 2 ≥ ( |Hh|
2(d−1) )

r + 1 = ( |Ah|
2(d−1) )

r + 1, and (ii) holds.

Now assume that Hh is not a cycle chain and Hh �= K4. Let H ′
h := Hh +

{ah−1y
′, bh−1y

′}. Then H ′
h is 3-connected, the vertices ah−1, bh−1, y

′ have degree at
most d + 1 in H ′

h, and all other vertices have degree at most d in H ′
h. By Theorem

2.1(a), there is a cycle Dh through ah−1y
′ in H ′

h−bh−1 such that |Dh| ≥ ( |Hh|
2(d−1) )

r+2.

Let Qh := Dh − ah−1y
′. Then |E(Qh)| ≥ ( |Ah|

2(d−1) )
r + 1, and we have (ii).

(4) Let C := (P ∪ (
⋃h

i=1Qi)) + {y, xy, yy′}. Now C is a cycle in G through xy
and, by (1)–(3), we have

|C| ≥ (σ(L) + 1)r + 1 +
(∑

|Ai|
)

+

(∑( |Ai|
2(d− 1)

)r)
+ 2,

where the first summation is over all cycle chains Hi and the second summation is
over all 3-connected Hi. Note that each |Ai| in the first summation can be written
as 1r + · · ·+ 1r (|Ai| times), and this allows us to apply Lemma 3.1 in the following
inequalities. Hence

|C| ≥
(
σ(L) + 1 + (d− 1)

h∑
i=1

|Ai|
)r

+ 3 (by Lemma 3.1)

= (σ(L) + 1 + (d− 1)σ(H))r + 3

≥ nr + 3 (by the observation preceding Case 1).

Case 2. 1 = t < �. Recall that if H = ∅, then a0 = b0 = y′, and {a0, b0} = {y′}.
(1) We find a path P1 from {a0, b0} to {c1, d1} in L1 − {a0b0, c1d1} such that

|E(P1)| ≥ (|B1|+ 2)r. (Note that |B1| = |L1| by definition.)
If L1 = K4, then we can find a Hamilton path P1 from {a0, b0} to {c1, d1} in

L1 − {a0b0, c1d1} (or in L1 − c1d1 when H = ∅). Thus, |E(P1)| = 3 ≥ |L1|r + 1 =
|B1|r + 1 > (|B1|+ 2)r (by Lemma 3.1).

Now assume that L1 �= K4. If {a0, b0} ⊆ {c1, d1}, then by Theorem 2.1(c) there is
a cycle C1 through c1d1 in L1 such that |C1| ≥ |L1|r +3. Let P1 := C1−c1d1; then P1

is a path between c1 and d1 ∈ {a0, b0}, and |E(P1)| ≥ |L1|r+2 = |B1|r+2 > (|B1|+2)r

(by Lemma 3.1).
Assume that {a0, b0} �⊆ {c1, d1}. If H = ∅, then let L′

1 be obtained from L1 by a
T-transform at {y′, c1d1}, let a = y′, and let c denote the new vertex. If H �= ∅, then
let L′

1 be obtained from L1 by an H-transform at {a0b0, c1d1}, and let a, c denote the
new vertices with a adjacent to a0 and b0 and c adjacent to c1 and d1. By Lemma



CIRCUMFERENCE OF GRAPHS WITH BOUNDED DEGREE 1163

3.3, L′
1 is a 3-connected graph with maximum degree at most d. Since 5 ≤ |L′

1| < n,
Theorem 2.1 holds for L′

1. By Theorem 2.1(c), there is a cycle C1 in L′
1 through ac

such that |C1| ≥ |L′
1|r + 3. If H = ∅, let P1 := C1− c; then P1 is a path from {a0, b0}

to {c1, d1} in L1 and |E(P1)| ≥ |L′
1|r + 1 = (|L1|+ 1)r + 1 ≥ (|L1|+ 2)r = (|B1|+ 2)r

(by Lemma 3.1). If H �= ∅ let P1 := C1 − {a, c}; then P1 is a path from {a0, b0} to
{c1, d1} in L1 and |E(P1)| ≥ |L′

1|r = (|L1|+ 2)r = (|B1|+ 2)r.
Without loss of generality, assume that the notation of {a0, b0} and {c1, d1} is

chosen so that P1 is between c1 and a0.
(2) For i = 2, . . . , �− 1, we find paths Pi from {ci−1, di−1} to {ci, di} in Li such

that
(i)
⋃�−1

i=2 Pi is a path from c1 to {c�−1, d�−1},
(ii) if Li is 3-connected, then |E(Pi)| ≥ ( |Bi|

2(d−1) )
r, and

(iii) if Li is a cycle chain, then |E(Pi)| ≥ |Bi|+ 1.
Assume that, for some 2 ≤ i ≤ �− 1, we have found paths Pj , 1 ≤ j ≤ i− 1, from

{cj−1, dj−1} to {cj , dj} in Lj such that
⋃i−1

j=2 Pj is a path from c1 to {ci−1, di−1} and
(ii) and (iii) are satisfied for Lj , Bj , Pj . Without loss of generality, assume that ci−1

is the end of
⋃i−1

j=2 Pj other than c1.
If Li is a cycle chain, then by Proposition 2.5 let Pi be a path from ci−1 to {ci, di}

in Li − {ci−1di−1, cidi} such that Bi ⊆ V (Pi). Then, since ci−1, di−1, ci, di /∈ Bi, we
see that |E(Pi)| ≥ |Bi|+ 1, and we have (iii).

Now assume that Li is not a cycle chain.
If ci−1 ∈ {ci, di}, then, by choosing the notation of {ci, di}, we may assume

ci /∈ {ci−1, di−1}. If Li = K4, then let Pi be a path from ci−1 to ci in Li − di−1 such

that |E(Pi)| = 2 ≥ ( |Bi|
2(d−1) )

r. If Li �= K4, then let L′
i := Li + cidi−1. By Theorem

2.1(a), there is a cycle Ci through ci−1ci in L′
i−di−1 such that |Ci| ≥ (

|L′
i|

2(d−1) )
r +2 =

( |Bi|
2(d−1) )

r + 2. Let Pi := Ci − cici−1; then Pi is a path from ci−1 to ci in Li − di−1,

|E(Pi)| ≥ ( |Bi|
2(d−1) )

r + 1, and we have (ii).

Assume that ci−1 /∈ {ci, di}. Let L′′
i be obtained from Li by a T-transform at

{ci−1, cidi}, and let c denote the new vertex. Let L′
i := L′′

i + di−1c. By Lemma 3.3,
L′
i is 3-connected. Note that c, ci, di−1 have degree at most d+ 1 in L′

i, and all other
vertices have degree at most d in L′

i. By Theorem 2.1(a), there is a cycle Ci through

ci−1c in L′
i − di−1 such that |Ci| ≥ (

|L′
i|

2(d−1) )
r + 2. Let Pi := Ci − c′i−1. Then Pi is a

path from ci−1 to {ci, di} in Li − di−1 and |E(Pi)| ≥ ( |Bi|
2(d−1) )

r, and we have (iii).

(3) We find a path P� from {c�−1, d�−1} to x in L� such that

(i)
⋃�

i=2 Pi is a path from c1 to x,

(ii) if L� is 3-connected, then |E(P�)| ≥ ( |B�|
2(d−1) )

r + 1, and

(iii) if L� is a cycle chain, then |B�| ≥ 1 and |E(P�)| ≥ |B�|.
By choosing the notation of {c�−1, d�−1}, we may assume that

⋃�−1
i=2 Pi is between

c1 and c�−1.
If L� is a cycle chain, then by Proposition 2.6 let P� be a path from x to c�−1 in

L� such that B� ⊆ V (P�). Since c�−1, d�−1 /∈ B�, we have |E(P�)| ≥ |B�|. Note that
|B�| = 1 only if L� is a cycle and B� = {x}.

If L� = K4, then we can find a path P� from x to c�−1 in L�−d�−1 with |E(P�)| =
2 ≥ ( |L�|

2(d−1) )
r + 1 = ( |B�|

2(d−1) )
r + 1.

Now assume that L� is not a cycle chain and that L� �= K4. Let L′
� := L� +

{xc�−1, xd�−1}. Then L′
� is a 3-connected graph, the vertices x, c�−1, d�−1 have degree
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at most d+1 in L′
�, and all other vertices of L′

� have degree at most d. So by Theorem

2.1(a), there is a cycle C� through xc�−1 in L′
� − d�−1 such that |C�| ≥ ( |L�|

2(d−1) )
r + 2.

Now P� := C� − xc�−1 gives the desired path for (ii).

(4) Let P :=
⋃�

i=1 Pi. Clearly P is a path in
⋃�

i=1 Li from x to a0. We claim that
|E(P )| ≥ (σ(L) + 1)r + 1.

By (2), we have

|E(P )| ≥ |E(P1)|+
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ |E(P�)|,

where the first summation is over all cycle chains Li and the second is over all 3-
connected Li. Note that each Bi in the first summation can be written as 1r + · · ·+1r

(|Bi| times), and this allows the application of Lemma 3.1 in the following argument.
If L� is 3-connected, then by (1) and (3),

|E(P )| ≥ (|B1|+ 2)r +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+

(( |B�|
2(d− 1)

)r

+ 1

)

≥
(

2 +

�∑
i=1

|Bi|
)r

+ 1 (by Lemma 3.1)

> (σ(L) + 1)r + 1.

If L� is a cycle chain, then by (1) and (3),

|E(P )| ≥ (|B1|+ 2)r +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ (|B�| − 1) + 1

≥
(

1 +

�∑
i=1

|Bi|
)r

+ 1 (by Lemma 3.1)

= (σ(L) + 1)r + 1.

(5) For i = 1, . . . , h − 1, we find paths Qi from {ai−1, bi−1} to {ai, bi} in Hi, as
in (2) of Case 1.

(6) We find a path Qh in Hh as in (3) of Case 1.

(7) Let C := (P ∪ (
⋃h

i=1Qi)) + {y, xy, yy′}. Now C is a cycle in G through xy
and

|C| ≥ ((σ(L) + 1)r + 1) +
(∑

|Ai|
)

+

(∑( |Ai|
2(d− 1)

)r)
+ 2,

where the first summation is over all cycle chains Hi and the second is over all 3-
connected Hi. Again, when we apply Lemma 3.1 in the following argument, each |Ai|
in the first summation may be written as 1r + · · ·+ 1r. Since σ(L) ≥ |L1| ≥ |Ai| for
all 3-connected Hi, we have

|C| ≥
(
σ(L) + 1 + (d− 1)

h∑
i=1

|Ai|
)r

+ 3 (by Lemma 3.1)

= (σ(L) + 1 + (d− 1)σ(H))r + 3

≥ nr + 3 (by the observation preceding Case 1).
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Case 3. 1 < t ≤ �. Note that in this case there exist y′′ ∈ V (L1)− {c1, d1} and a
path Y in G from y to y′′ disjoint from (V (L)− {y′′}) ∪ V (H). For convenience, let
S := (

⋃t
i=2Bi)− (B1 ∪Bt+1). We consider two subcases by comparing σ(H) and |S|.

Subcase 3.1. |S| < σ(H). Then H �= ∅ and a0 �= b0. Since
∑h

i=1 |Ai| ≥ σ(H) and
there are at most d − 2 extreme 3-blocks of G − y containing neither x nor y′′, we
have the following inequality:

σ(L)− |S|+ (d− 1)
h∑

i=1

|Ai| ≥ n− 1.

(1) First, we find a path P1 from c1 to d1 in L1 such that |E(P1)| ≥ (|B1|+1)r+1.
If L1 = K4, then let P1 be a Hamilton path from c1 to d1 in L1. Hence |E(P1)| =

3 ≥ (|L1| + 1)r + 1 = (|B1| + 1)r + 1. If L1 �= K4 then 5 ≤ |L1| < n. By Theorem
2.1(c), there is a cycle C1 through c1d1 in L1 such that |C1| ≥ |L1|r +3 = |B1|r +3 >
(|B1|+ 1)r + 2. Then P1 := C1 − c1d1 gives the desired path.

(2) Next, we find Q ⊆ (
⋃t

i=2 Li)−{a0b0, ctdt} such that (1) P1∪Q is a path from
{a0, b0} to {ct, dt} when t �= �, and (2) P1∪Q is a path from {a0, b0} to x when t = �.

Let K :=
⋃t

i=2 Li. First, assume that t �= �. If {a0, b0} = {ct, dt}, then by Lemma
3.5 we find a cycle D through a0b0 and c1d1 in K, and Q := D − {a0b0, c1d1} is as
desired. If {a0, b0} �= {ct, dt}, then let K ′ be obtained from K by an H-transform at
{a0b0, ctdt}, and let a, c denote the new vertices. By Lemma 3.5, we find a cycle D′

through ac and c1d1, and Q := D′ − {a, c, c1d1} is as desired.
Now assume that t = �. If x ∈ {a0, b0}, then by Lemma 3.5 there is a cycle D in

K through a0b0 and c1d1, and Q := D − {a0b0, c1d1} is as desired. So assume that
x /∈ {a0, b0}. Let K ′ be obtained from K by a T-transform at {x, a0b0}, and let a
denote the new vertex. By Lemma 3.5, there is a cycle D in K ′ through xa and c1d1.
Now Q := D − {a, c1d1} is as desired.

We choose the notation of {a0, b0} and {ct, dt} so that P1 ∪Q is from a0 to ct.
(3) For each t+1 ≤ i ≤ �−1, we find a path Pi in Li from {ci−1, di−1} to {ci, di}

exactly as in (2) of Case 2 such that (i) (
⋃�−1

i=t+1 Pi)∪P1∪Q is a path from {c�−1, d�−1}
to {a0, b0}, (ii) |E(Pi)| ≥ ( |Bi|

2(d−1) )
r when Li is 3-connected, and (iii) |E(Pi)| ≥ |Bi|+1

when Li is a cycle chain.
(4) If t �= �, we find a path P� between {c�−1, d�−1} and x exactly as in (3) of Case 2

such that (i) (
⋃�

i=t+1 Pi)∪P1∪Q is a path from {a0, b0} to x, (ii) |E(P�)| ≥ ( |B�|
2(d−1) )

r+1

when L� is 3-connected, and (iii) |E(P�)| ≥ |B�| when L� is a cycle chain.
(5) For i = 1, . . . , h−1, we find paths Qi from {ai−1, bi−1} to {ai, bi} in Hi−bi−1,

as in (2) of Case 1, such that (i)
⋃h−1

i=1 Qi is a path from a0 to {ah−1, bh−1}, (ii)

|E(Qi)| ≥ ( |Ai|
2(d−1) )

r when Hi is 3-connected, and (iii) |E(Qi)| ≥ |Ai| when Hi is a

cycle chain.
(6) We find a path Qh exactly as in (3) of Case 1 such that (i)

⋃h
i=1Qi is a

path from a0 to y′, (ii) |E(Qh)| ≥ ( |Ah|
2(d−1) )

r + 1 when Hh is 3-connected, and (iii)

|E(Qh)| ≥ |Ah| when Hh is a cycle chain.

(7) Let C := (P1 ∪Q∪ (
⋃�

i=t+1 Pi)∪ (
⋃h

i=1Qi)) + {y, xy, yy′}. Then C is a cycle
in G through xy and, by (1)–(6), we have

|C| ≥ (|L|+1)r+
(∑

|Bi|
)
+

(∑( |Bi|
2(d− 1)

)r)
+
(∑

|Ai|
)
+

(∑( |Ai|
2(d− 1)

)r)
+3,

where the first sum is taken over all cycle chains Li for t + 1 ≤ i ≤ �, the second is
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over all 3-connected Li for t + 1 ≤ i ≤ �, the third is over all cycle chains Hi, and
the fourth is over all 3-connected Hi. Because |L| ≥ |Ai| for all 3-connected Hi, and
|L| ≥ |Bj | for all 3-connected Lj , we have

|C| ≥
(
σ(L) + 1− |S|+ (d− 1)

h∑
i=1

|Ai|
)r

+ 3 (by Lemma 3.1)

≥ nr + 3.

The second inequality follows from the inequality in the first paragraph of this subcase.
Subcase 3.2. |S| ≥ σ(H). As in the previous subcase, we deduce the following

inequality:

|B1|+ (d− 1)

�∑
i=2

|Bi| ≥ n− 1.

(1) First, we find a path P1 from y′′ to {c1, d1} in L1 − c1d1 such that |E(P1)| ≥
(|B1|+ 1)r + 1.

Let L′
1 denote the graph obtained from L1 by a T-transform at {y′′, c1d1}, and

let y∗ denote the new vertex. By Lemma 3.3 and since y′′ has degree at most d− 1 in
L1, L

′
1 is a 3-connected graph with maximum degree at most d. Since 5 ≤ |L′

1| < n,
Theorem 2.1 holds for L′

1. By Theorem 2.1(c), L′
1 has a cycle C1 through y∗y′′ such

that |C1| ≥ |L′
1|r + 3 = (|B1|+ 1)r + 3. Then P1 := C1− y∗ gives the desired path for

(1).
We may choose the notation of {c1, d1} so that P1 is between y′′ and c1.
(2) For each 2 ≤ i ≤ � − 1, we find a path Pi in Li as in (2) of Case 2 such

that (i)
⋃�−1

i=2 Pi is a path from c1 to {a�−1, b�−1}, (ii) |E(Pi)| ≥ ( |Bi|
2(d−1) )

r when Li is

3-connected, and (iii) |E(Pi)| ≥ |Bi|+ 1 when Li is a cycle chain.

(3) We find a path P� as in (3) of Case 2 such that (i)
⋃�

i=2 Pi is a path from

c1 to x, (ii) |E(P�)| ≥ ( |B�|
2(d−1) )

r + 1 when L� is 3-connected, and (iii) |E(P�)| ≥ |B�|
when L� is a cycle chain.

(4) Let C := (Y ∪ (
⋃�

i=1 Pi)) + xy. Then C is a cycle in G through xy and

|C| ≥ (|B1|r + 1) +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ 2,

where the first sum is over all Li which are cycle chains and the second is over all
3-connected Li. Again, we may view |Bi| in the first summation as 1r + · · · 1r (|Bi|
times). Since |B1| ≥ |Bi| for all 3-connected Li, we have

|C| ≥
(
|B1|+ 1 + (d− 1)

�∑
i=2

|Bi|
)r

+ 3 (by Lemma 3.1)

≥ nr + 3.

The second inequality follows from the inequality in the first paragraph of this
case.

Next we show that the above proof gives rise to an O(|E(G)|) algorithm which
reduces Theorem 2.1(c) to (a), (b), and (c) of the same theorem for smaller graphs.

Algorithm Oneedge. Let n, d, r,G, e, be as in Lemma 6.1.
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1. Preprocessing. Replace G by a 3-connected spanning subgraph of G with
O(|G|) edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. Let e = xy. Decompose G − y into 3-connected components. (This can be
done in O(|G|) time using Theorem 2.2.)

3. If there is only one 3-connected component of G−y, then G−y is 3-connected.
Let y′ denote a neighbor of y other than x, and let G′ := (G− y) + xy′ and
e′ = xy′. It suffices to find a cycle C ′ through e′ in G′ such that |C ′| ≥
|G′|r + 3. So reduce Theorem 2.1(c) for G, e to Theorem 2.1(c) for G′, e′,
with |G′| < |G|. (Note that this reduction takes constant time.)

4. Now assume that G − y has at least two 3-connected components. If all
3-blocks of G − y are cycles, find a cycle chain I = I1 . . . Ii such that (i)
x ∈ V (I1) − V (I2), (ii) Ii is an extreme 3-block of G − y, and (iii) subject
to (i) and (ii), |V (I)| is maximum. (This can be done in O(|G|) time by a
simple search.) Then, find a neighbor y′ ∈ V (I)−{x} of y, a Hamilton path
P in I from x to y′, and a path Q from y to y′ disjoint from V (I) − {y′},
so that (P ∪ Q) + {y, xy, yy′} gives the desired cycle. (These paths can be
computed in O(|G|) time as in the proof of Lemma 6.1.)

5. Now assume that G − y has at least two 3-blocks, and at least one is 3-
connected. We choose a 3-connected 3-block L of G − y such that |L| is
maximum. Find the block chain L = L1 . . . L� such that L1 = L and x ∈
V (L�)− V (L�−1). Find a block chain H = H1 . . . Hh in G− y with y′ ∈ Hh,
and define ai, bi, Ai, cj , dj , Bj for i = 1, . . . h and j = 1, . . . , � as in the
proof of Lemma 6.1. (All these can be done in O(|G|) time by searching the
3-blocks of G− y.)

6. Suppose � = 1.
• First, we need to find a path P in L from x to {a0, b0} as in (1) of Case

1. We either find the desired P or reduce the problem of finding P to
Theorem 2.1(c) for L1, a0b0 or L′

1, xx
′, both are smaller graphs. (From

(1) of Case 1 in the proof of Lemma 6.1, this can be done in constant
time.)
• For each 1 ≤ i ≤ h− 1, we want to find a path Qi from {ai−1, bi−1} to
{ai, bi} in Hi as in (2) of Case 1 in the proof of Lemma 6.1. We either
find the desired Qi or reduce the problem of finding Qi to Theorem
2.1(a) for H ′

i, ai−1ai, bi−1 or H ′
i, ai−1a, bi−1. (From (2) of Case 1 in the

proof of Lemma 6.1, this can be done in O(|Hi|) time.)
• We need to find a path Qh in Hh from ah−1 to y′ as in (3) of Case 1.

We either find the desired Qh or reduce the problem of finding Qh to
Theorem 2.1(a) for H ′

h, ah−1y
′, bh−1. (From (3) of Case 1 in the proof

of Lemma 6.1, this can be done in O(|Hh|) time.)

• Since
∑h

i=1(|Hi| − 2) = |V (H)| − 2, we see that this step takes O(|G|)
time.

7. Suppose 1 = t < �.
• First, we need to find a path P1 from {a0, b0} to {c1, d1} in L1, as in (1)

of Case 2 in the proof of Lemma 6.1. We either find the desired P1 or
reduce the problem of finding P1 to Theorem 2.1(c) for either L1, c1d1

or L′
1, ac. (From (1) of Case 2 in the proof of Lemma 6.1, this can be

done in constant time.)
Assume that the notation is chosen so that P1 is a path from a0 to c1.
• For each 2 ≤ i ≤ � − 1, we need to find a path Pi from {ci−1, di−1} to
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{ci, di} in Li as in (2) of Case 2 in the proof of Lemma 6.1. We either
find the desired Pi or reduce the problem of finding Pi to Theorem 2.1(a)
for either L′

i, ci−1ci, di−1 or L′
i, ci−1c, di−1. (From (2) of Case 2 in the

proof of Lemma 6.1, this can be done in O(|Li|) time.)
• We need to find a path P� from {c�−1, d�−1} to x in L�, as in (3) of

Case 2 in the proof of Lemma 6.1. We either find the desired path P� or
reduce the problem of finding P� to Theorem 2.1(a) for L′

�, xc�−1, d�−1.
(From (3) of Case 2 in the proof of Lemma 6.1, this can be done in
O(|L�|) time.)

• Next we need to find paths Qi, 1 ≤ i ≤ h. This is taken care of exactly
as in step 6 above.
(Since

∑h
i=1(|Hi| − 2) = |V (H)| − 2 and

∑�
i=1(|Li| − 2) = |V (L)| − 2,

we see that all operations in this step can be done in O(|G|) time.)
8. Suppose 1 < t ≤ �. First, find a path Y from y to y′′ ∈ V (L1)− V (L2) such

that Y −y′′ is disjoint from V (L)∪V (H). Define S := (
⋃t

i=2Bi)−(B1∪Bt+1).
(Note that Y and all Bi’s can be found in O(|G|) time, as in Case 3 in the
proof of Lemma 6.1.)

9. Suppose |S| < σ(H).
• We need to find a path P1 from c1 to d1 in L1, as in (1) of Subcase

3.1 in the proof of Lemma 6.1. We either find the desired P1 or reduce
the problem of finding P1 to Theorem 2.1(c) for L1, c1d1. (From (1)
of Subcase 3.1 in the proof of Lemma 6.1, this can be done in O(|L1|)
time.)
• Find Q ⊆ (

⋃t
i=2 Li) − {a0b0, ctdt} as in (2) of Subcase 3.1 in the proof

of Lemma 6.1. (From (2) of Subcase 3.1 in the proof of Lemma 6.1, this
can be done in O(|G|) time.)
• For each t + 1 ≤ i ≤ � − 1, we need to find a path Pi from {ci−1, di−1}

to {ci, di}, as in (3) of Subcase 3.1 in the proof of Lemma 6.1. (This can
be done as in step 7 above, and hence in O(|G|) time.)
• Next, we need to find a path P� from {c�−1, d�−1} to x in L� as in (4)

of Subcase 3.1 in the proof of Lemma 6.1. (This can be done as in step
7 above, and hence in O(|L�|) time.)
• For each 1 ≤ i ≤ h − 1, we want to find a path Qi as in (5) of Subcase

3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|Hi|) time.)

• Finally, we find a Qh in Hh from {ah−1, bh−1} to y′ as in (6) of Subcase
3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|Hh|) time.)

(Since
∑h

i=1(|Hi| − 2) = |V (H)| − 2 and
∑�

i=1(|Li| − 2) = |V (L)| − 2,
we see that all operations in this step can be done in O(|G|) time.)

10. Suppose |S| ≥ σ(H).
• First, we need to find a path P1 from y′′ to {c1, d1} in L1, as in (1) of

Subcase 3.2 in the proof of Lemma 6.1. We either find the desired P1 or
reduce the problem of finding P1 to Theorem 2.1(c) for L′

1, y
∗y′′. (From

(1) of Subcase 3.2 in the proof of Lemma 6.1, this can be done in O(|L1|)
time.)
• For each 2 ≤ i ≤ �− 1, we need to find a Pi as in (2) of Subcase 3.2 in

the proof of Lemma 6.1. (This can be done as in step 7 above for each
i, and hence, in O(|Li|) time.)
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• Next, we want to find a path P� from {c�−1, d�−1} to x in L� as in (3)
of Subcase 3.2 in the proof of Lemma 6.1. (This can be done as in step
7 above, and hence, in O(|L�|) time.)

(All operations in this step can be done in O(|G|) time since
∑�

i=1(|Li|−
2) = |V (L)| − 2.)

We summarize the above procedure as follows.
Proposition 6.2. Given G, e, n, d, r as in Lemma 6.1, we can, in O(|E(G)|)

time, either
(1) find a cycle C through e in G such that |C| ≥ |G|r + 3, or
(2) reduce Theorem 2.1(c) for G, e to (a), (b), or (c) of the same theorem for

smaller 3-connected graphs.
Moreover, any smaller graph in (2) results from a 3-connected 3-block of G− y which
is not K4. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

7. Conclusions. We now complete the proof of Theorem 2.1. Let n, d, r,G be
given as in the theorem. We will prove the conclusions by applying induction on n.
When n = 5, then G is isomorphic to one of the following three graphs: K5, K5 minus
an edge, or the wheel on five vertices. In each case, we can verify that Theorem 2.1
holds. So assume that n ≥ 6 and that Theorem 2.1 holds for all 3-connected graphs
with at most n− 1 vertices. Then (a) holds by Lemma 4.1, (b) holds by Lemma 5.1,
and (c) holds by Lemma 6.1. This completes the proof of Theorem 2.1.

Algorithm Cycle. Let G be a 3-connected graph with maximum degree at
most d, let e = xy ∈ E(G), and assume |G| ≥ 5. The following procedure finds a
cycle C through e in G with |C| ≥ |G|r + 3.

1. Preprocessing. Replace G with a 3-connected spanning subgraph of G with
O(|G|) edges.

2. Apply Algorithm Oneedge to G, e. We either find the desired cycle C or
we reduce the problem to Theorem 2.1(a), (b), or (c) for some 3-connected
graphs Gi, for which |Gi| < |G| and each Gi contains a vertex which does not
belong to any other Gi.

3. Replace each Gi with a 3-connected spanning subgraph of Gi with O(|Gi|)
edges.

4. Apply Algorithm Avoidvertex to those Gi for which Theorem 2.1(a) needs
to be applied. Apply Algorithm Twoedge to those Gi for which Theorem
2.1(b) needs to be applied. Apply Algorithm Oneedge to those Gi for which
Theorem 2.1(c) needs to be applied.

5. Repeat steps 3 and 4 for new 3-connected graphs.
6. In the final output, replace all virtual edges by paths in G to complete the

desired cycle C.
Note that step 1 takes O(|E(G)|) time by Lemma 3.4 and step 2 takes O(|E(G)|)

time by Proposition 4.2.
By Lemma 3.4, step 3 spends O(|E(Gi)|) time for each Gi from step 2. Note that

eachGi in step 2 contains a vertex which does not belong to any otherGi. By Theorem
2.2 and since each Gi contributes at most three additional edges due to T-transform
or H-transform, the total number of edges in step 2 is at most 3|E(G)| − 6 + 3|V (G)|.
Hence step 3 takes O(|E(G)|) time.

From Propositions 4.2, 5.2, and 6.2, we see that step 4 spends O(|E(Gi)|) time
for each Gi from step 2. By Theorem 2.2 and since each Gi contributes at most three
additional edges due to T-transform or H-transform, the total number of edges in step
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4 is at most
∑

i(3|E(Gi)| − 6 + 3|V (Gi)|). Since each Gi in step 2 contains a vertex
which does not belong to any other Gi, step 4 takes O(|G|2) time.

Since there are at most |G| iterations, we see that Algorithm Cycle takes O(|G|3)
time.
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Abstract. We prove a new switching lemma that works for restrictions that set only a small
fraction of the variables and is applicable to formulas in disjunctive normal form (DNFs) with small
terms. We use this to prove lower bounds for the Res(k) propositional proof system, an extension
of resolution which works with k-DNFs instead of clauses. We also obtain an exponential separation
between depth d circuits of bottom fan-in k and depth d circuits of bottom fan-in k + 1.

Our results for Res(k) are as follows:
1. The 2n to n weak pigeonhole principle requires exponential size to refute in Res(k) for

k ≤
√

logn/ log logn.
2. For each constant k, there exists a constant w > k so that random w-CNFs require expo-

nential size to refute in Res(k).
3. For each constant k, there are sets of clauses which have polynomial size Res(k + 1) refu-

tations but which require exponential size Res(k) refutations.

Key words. propositional proof complexity, Boolean circuit complexity, switching lemmas,
lower bounds, k-DNFs, resolution, Res(k), circuit bottom fan-in, random restriction, Sipser functions,
weak pigeonhole principles, random CNFs
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1. Introduction. This paper studies the complexity of Res(k), a propositional
refutation system that extends resolution by allowing k-DNFs instead of clauses [24].
The complexity of propositional proof systems has close connections to open prob-
lems in computational and circuit complexity [14, 23, 29, 6], as well as implications
for the run times of satisfiability algorithms and automated theorem provers. Res-
olution is one of the most studied proof systems and is used as the basis for many
satisfiability algorithms. Backtracking algorithms for satisfiability, such as the pop-
ular Davis–Putnam–Logeman–Loveland procedure (DPLL), that branch on a single
variable provide tree-like resolution refutations on unsatisfiable formulas. General
resolution proofs correspond to adding a limited form of memoization (previously re-
futed subproblems are saved for reuse rather than refuted again) to DPLL. Res(k)
corresponds to algorithms that branch on more general conditions: the value of any
function of up to k variables.

The Res(k) systems are also interesting as intermediates between previously stud-
ied proof systems. Resolution can be thought of as Res(1), and depth two Frege can
be thought of as Res(n) (where n is the number of variables). The Res(k) systems pro-
vide a transition between these systems. Moreover, statements provable in the theory
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T 2
2 (α) (a fragment of Peano’s arithmetic that allows induction only on Σb

2 predicates)
correspond to propositional statements with quasi-polynomial size Res(polylog(n))
refutations [24]. T 2

2 is the weakest fragment of Peano’s arithmetic known to be able
to use counting arguments such as the weak pigeonhole principle [25]. On the other
hand, these counting tautologies are known to require exponential-size resolution refu-
tations. Thus, there must be a critical range for k between 1 and polylog(n) where
these arguments become possible in subexponential size. More generally, we can ask,
When does increasing k give the Res(k) system more power? Is there a reason to
want to branch on more complex functions in satisfiability algorithms? Does such
branching give algorithms better performance in the average case?

We give partial answers to all of these questions. In particular we prove the
following:

1. The 2n to n weak pigeonhole principle requires size 2Ω(nε) to refute in Res(k)
for all k ≤ √log n/ log log n. So having large bottom fan-in is necessary for
counting arguments.

2. For each k, there exists a constant w > k so that random w-CNFs require size
2Ω(nε) to refute in Res(k). Therefore, extending DPLL algorithms to branch
on multiple (but a constant number of) variables will not make run times
subexponential on average.

3. Res(k + 1) is exponentially more powerful than Res(k). We demonstrate sets
of clauses that have polynomial size Res(k + 1) refutations but require size
2Ω(nε) to refute in Res(k). Therefore, increasing the complexity of branching
conditions can make proofs exponentially smaller.

Our lower bounds are proved using a new kind of switching lemma. A switching
lemma provides conditions under which an OR of small ANDs can be rewritten as
an AND of small ORs after the application of a random restriction [1, 18, 21, 4].
Our switching lemma differs from previous switching lemmas in that the random
restriction is allowed to set a small number of the variables, even as few as n1−ε out
of n. The trade-off is that ORs of extremely small ANDs are transformed into ANDs
of modestly small ORs. Therefore, our switching lemma cannot be iterated to prove
lower bounds for proof systems of depth more than two. However, one application
of our switching lemma suffices to prove lower bounds for the Res(k) proof systems,
because each line in such a proof is of depth two with small bottom fan-in.

Our switching lemma also gives an exponential separation between depth d cir-
cuits with bottom fan-in k from depth d circuits with bottom fan-in k+1. This refines
a previous result of H̊astad [21], which states that for all d there exist ε > δ > 0 so
that there are functions on n variables, computable with polynomial size, depth d
circuits of bottom fan-in nε but which require exponential size to compute with depth
d circuits of bottom fan-in nδ. Our result also refines results of Cai, Chen, and H̊astad
[12]. They showed that for each constant d, there exist functions computable with
polynomial-size, depth d+ 1, bottom fan-in 2 circuits that require exponential size to
compute with depth d circuits, and that for each constant k, there exists a function
of n variables computable by depth d circuits of polynomial-size and bottom fan-in
O(log n) that requires exponential size to compute with depth d circuits of bottom
fan-in k.

Because resolution may be viewed as Res(1), our results for Res(k) generalize
known results for resolution. The weak pigeonhole principle (for any number of pi-
geons) is known to require an exponential number of steps to refute in resolution
[35, 20, 36, 11, 5, 15, 28, 30, 31], and we generalize these lower bounds for the case
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of the cn to n pigeonhole principle. Resolution refutations of randomly chosen sets of
clauses are also known to require exponential size [13, 5, 8]. We extend these results
to general Res(k) systems, although as k increases, so does the width of the random
CNFs for which our lower bounds apply.

Our work also extends previous research on the Res(k) system. The complexity
of Res(k) refutations was first studied by Kraj́ıček [24], who was motivated by the
connection between Res(polylog(n)) and the provability of combinatorial statements
in the arithmetic theory T 2

2 (α). Atserias, Bonet, and Esteban [3] gave exponential
lower bounds for Res(2) refutations of the 2n to n weak pigeonhole principle and of
random 3-CNFs. They also proved a quasi-polynomial separation between Res(2)
and resolution; this separation was later strengthened to almost-exponential by At-
serias and Bonet [2]. Esteban, Galesi, and Messner [17] showed that that there is
an exponential separation between tree-like Res(k) and tree-like Res(k + 1), and that
general (DAG-like) Res(k) requires high space to refute random CNFs and the weak
pigeonhole principle.

The lower bounds for Res(k) refutations of the weak pigeonhole principle given by
Atserias, Bonet, and Esteban [3] apply only for k = 2; our lower bound works for non-
constant k up to

√
log n/ log log n. On the other hand, Maciel, Pitassi, and Woods

[25] gave quasi-polynomial-size refutations in Res(polylog(n)). Our results show that
superconstant bottom fan-in is necessary for subexponential-size proofs of the weak
pigeonhole principle. Indeed, after the preliminary version of this paper appeared
[33], our techniques were extended by Alexander Razborov to prove that the weak
pigeonhole principle requires exponential size to refute in Res(ε log n/ log log n) [32].

Our lower bounds for Res(k) refutations of random w-CNFs are the first such
lower bounds for Res(k) with k ≥ 3. Atserias, Bonet, and Esteban [3] gave exponential
lower bounds for random 3-CNFs in Res(2). We extend these results to Res(k),
although the width w increases with k (it is 4k2 + 2). At present, the Res(k) systems
are the strongest fragments of bounded-depth Frege systems for which we know there
are superpolynomial-size lower bounds for refutations of random sets of clauses.

The separation between Res(k + 1) from Res(k) is the first for k ≥ 2. The earlier

work of Atserias and Bonet [2] gave a 2Ω(2logε n) separation of Res(2) from Res(1), and
our result improves this to 2Ω(nε).

In the time since the preliminary version of this paper appeared [33], we have
extended one of our results. The original separation of Res(k + 1) from Res(k) was
based on clauses of widthO(log n), whereas the new separation uses clauses of constant
width. We include proofs for both results.

1.1. Outline of the paper. Background material, including the basics of the
Res(k) proof system, is given in section 2. In section 3 we prove the switching lemma.
Section 4 applies the switching lemma to prove a separation between constant-depth
circuits of bottom fan-in k + 1 and constant-depth circuits of bottom fan-in k. In
section 5 we prove that Res(k) refutations of sets of clauses whose lines are represented
by short decision trees can be transformed into narrow resolution refutations. This
conversion is used in combination with the switching lemma to prove lower bounds
for Res(k) refutations. Lower bounds for Res(k) refutations of the weak pigeonhole
principle are proved in section 6 and lower bounds for Res(k) refutations of random
CNFs are proved in section 7. The separations between Res(k + 1) and Res(k) are
proved in sections 8 and 9.
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2. Background. A literal is a variable or its negation. A term is a constant 0
or 1 or a conjunction of literals. Our convention is that a term is specified as a set of
literals, with 1 corresponding to the empty set and 0 to any literal and its negation.
We say that a term T contains a literal l if l ∈ T , and that a term T contains a
variable x if either x ∈ T or ¬x ∈ T . We will often identify literals with terms of size
one, and will write l instead of {l}. A DNF is a disjunction of terms, specified as a
set of terms. A k-DNF is a DNF whose terms are each of size at most k. A clause
is a 1-DNF, i.e., a disjunction of literals. The width of a clause C, written w(C), is
the number of literals appearing in C. The width of a set of clauses is the maximum
width of any clause in the set. A CNF is a conjunction of clauses, specified as a set
of clauses. A k-CNF is a CNF whose clauses are each of width at most k. Two terms
t and t′ are consistent if there is no literal l with l ∈ t and ¬l ∈ t′.

A restriction ρ is a map from a set of variables to {0, 1, ∗}. For a formula F , the
restriction of F by ρ, F �ρ is defined as usual, simplifying only when a subexpression
has become explicitly constant. For any restriction ρ, let dom(ρ) denote the set of
variables to which ρ assigns the value 0 or 1.

Resolution is a refutation system for propositional logic. The input to a resolution
refutation is a set of clauses C; a resolution refutation consists of a derivation of the
empty clause from the clauses in C using only the resolution inference: A∨x ¬x∨B

A∨B .
Notice that every line in a resolution refutation is a clause. wR(C) denotes the mini-
mum width of a resolution refutation of C; if C is satisfiable, then there is no refutation
and we use the convention that wR(C) is ∞.

The Res(k) refutation system is a generalization of resolution that can reason
using k-DNFs.

Definition 2.1. Res(k) is the refutation system whose lines are k-DNFs and
whose inference rules are given below (A, B are k-DNF’s, 1 ≤ j ≤ k, and l, l1, . . . , lj
are literals):

Subsumption:
A

A ∨ l AND-introduction:
A ∨ l1 · · · A ∨ lj
A ∨∧j

i=1 li

Cut:
A ∨∧j

i=1 li B ∨∨j
i=1 ¬li

A ∨B AND-elimination:
A ∨∧j

i=1 li
A ∨ li

Let C be a set of k-DNFs. A Res(k) derivation from C is a sequence of k-DNFs
F1, . . . , Fm so that each Fi either belongs to C or follows from the preceding lines
by an application of one of the inference rules. For a set of k-DNFs C, a Res(k)
refutation of C is a derivation from C whose final line is the empty clause. The size
of a Res(k) refutation is the number of lines it contains. Sk(C) denotes the minimum
size of a Res(k) refutation of C. If C is satisfiable, then C has no refutation and we
use the convention that Sk(C) is ∞.

We do not use the exact definition of the Res(k) system in our arguments; the main
property we use is strong soundness: if F is inferred from F1, . . . , Fj , and t1, . . . , tj
are mutually consistent terms of F1, . . . , Fj , respectively, then there is a term t of

F implied by
∧j

i=1 ti. In other words, any reason why F1, . . . , Fk are true implies a
reason why F is true. This is stronger than mere soundness.

Lemma 2.2. Res(k) is strongly sound.
We also use the following well-known interpolation property for resolution.
Lemma 2.3. Let C1 and C2 be unsatisfiable sets of clauses on disjoint sets of

variables. If there is a resolution refutation Γ of C1 ∪ C2, then there is a refutation Γ′
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of either C1 or C2. Moreover, w(Γ′) ≤ w(Γ).

2.1. The Chernoff bounds. Throughout this paper we will repeatedly make
use of a simplified form of the Chernoff bounds. These formulations come from stan-
dard references on applying such bounds in algorithmics; cf. [26, 37].

Lemma 2.4. Let X1, . . . , Xn be independent random indicator variables. Let
µ = E [

∑n
i=1Xi].

Pr
[∑n

i=1Xi <
µ
2

] ≤ e−µ/8 and Pr [
∑n

i=1Xi > 2µ] ≤ e−µ/4.

2.2. Miscellaneous notation. We will use the notation [k] = {i | 1 ≤ i ≤ k}.
For graphs G = (V,E) and S ⊆ V we will write G−S to denote the induced subgraph
on V \ S.

3. The switching lemma. A switching lemma is a guarantee that after the
application of a randomly chosen restriction, a disjunction of small ANDs can be
represented by a conjunction of small ORs, thus “switching” an OR into an AND.
We use a slightly stronger variation: after the application of a random restriction, a
k-DNF can be represented by a short decision tree.

Definition 3.1. A decision tree is a rooted binary tree in which every internal
node is labeled with a variable, the edges leaving a node correspond to whether the
variable is set to 0 or 1, and the leaves are labeled with either 0 or 1. Every path from
the root to a leaf may be viewed as a partial assignment. For a decision tree T and
v ∈ {0, 1}, we write the set of paths (partial assignments) that lead from the root to a
leaf labeled v as Brv(T ). For a partial assignment ρ, T �ρ is the decision tree obtained
by deleting from T every edge whose label conflicts with ρ and contracting along each
edge whose label belongs to ρ. We say that a decision tree T strongly represents a
DNF F if for every π ∈ Br0(T ), for all t ∈ F , t �π= 0 and for every π ∈ Br1(T ),
there exists t ∈ F , t �π= 1. The representation height of F , h(F ), is the minimum
height of a decision tree strongly representing F .

Notice that the function computed by a decision tree of height h can be computed
both by an h-CNF and by an h-DNF.

Our switching lemma will exploit a trade-off based on the minimum size of a set
of variables that meets each term of a k-DNF. When this quantity is small, we can
build a decision tree by querying these variables and recursing on the (k − 1)-DNFs
created. When this quantity is large, the DNF has many disjoint terms and is likely
to be satisfied by a random restriction.

Definition 3.2. Let F be a DNF, and let S be a set of variables. If every term
of F contains a variable from S, then we say that S is a cover of F . The covering
number of F , c(F ), is the minimum cardinality of a cover of F .

For example, the 3-DNF xyz ∨ ¬x ∨ yw has covering number two.

The switching lemma is shown to hold for all distributions which satisfy certain
properties. When we apply the switching lemma, we will show that the random
restrictions used satisfy these properties.

Theorem 3.3. Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . , pk be sequences of positive
numbers, and let D be a distribution on partial assignments so that for every i ≤ k and
every i-DNF G, if c(G) > si−1, then Prρ∈D [G �ρ 	= 1] ≤ pi. Then for every k-DNF
F ,

Prρ∈D

[
h(F �ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2

(∑k−1

j=i
sj
)
pi.
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Proof. We proceed by induction on k. First consider k = 1. If c(F ) ≤ s0, then
at most s0 variables appear in F . We can construct a height ≤ s0 decision tree that
strongly represents F �ρ by querying all of the variables of F �ρ. On the other hand, if
c(F ) > s0, then Prρ∈D [F �ρ 	= 1] ≤ p1. Therefore, h(F �ρ) is nonzero with probability

at most p12

∑k−1

j=1
sj = p1 (because k = 1).

For the induction step, assume that the theorem holds for all k-DNFs, let F be
a (k + 1)-DNF, and let s0, . . . , sk and p1, . . . , pk+1 be sequences of positive numbers
satisfying the hypotheses of the theorem. If c(F ) > sk, then by the conditions of the
lemma, Prρ∈D [F �ρ 	= 1] ≤ pk+1. Because

pk+1 ≤
k+1∑
i=1

2

∑k

j=i
sjpi,

we have that h(F �ρ) is nonzero with probability at most
∑k+1

i=1 2

∑k

j=i
sjpi.

Consider the case when c(F ) ≤ sk. Let S be a cover of F of size at most sk. Let
π be any assignment to the variables in S. Because each term of F contains at least
one variable from S, F �π is a k-DNF. By combining the induction hypothesis with
the union bound, we have that

Prρ∈D

[
∃π ∈ {0, 1}S h((F �ρ) �π) >

k−1∑
i=0

si

]
≤ 2sk

(
k∑

i=1

2

(∑k−1

j=i
sj
)
pi

)

<
k+1∑
i=1

2

(∑k

j=i
sj
)
pi.

In the event that for all π ∈ {0, 1}S , h((F �ρ) �π) ≤ ∑k−1
i=0 si, we construct a

decision tree for F �ρ as follows. First, query all variables in S unset by ρ, and
then underneath each branch, β, simulate a decision tree of minimum height strongly
representing (F �ρ) �β . For each such β, let π = (ρ ∪ β) �S , and note that h((F �ρ)
�β) = h((F �ρ) �π). Therefore the height of the resulting decision tree is at most

sk + maxπ∈{0,1}S h((F �ρ) �π) ≤∑k
i=0 si.

Now we show that the decision tree constructed above strongly represents F �ρ.
Let π be a branch of the tree. Notice that π = β ∪σ, where β is an assignment to the
variables in S \ dom(ρ) and σ is a branch of a tree that strongly represents (F �ρ) �β .
Consider the case that π leads to a leaf labeled 1. In this case, σ satisfies a term t′ of
(F �ρ) �β . We may choose a term t of F so that t′ = (t �ρ∪β), and π = β ∪ σ satisfies
the term t �ρ of F �ρ. Now consider the case that π leads to a leaf labeled 0. There
are two cases, (F �ρ) �β= 0 and (F �ρ) �β 	= 0. If (F �ρ) �β= 0, then for every term t
of F �ρ, t is inconsistent with β and hence with π. If (F �ρ) �β 	= 0, then because the
subtree underneath β strongly represents (F �ρ) �β , for every term t of (F �ρ) �β , t is
inconsistent with σ. Therefore, every term of F �ρ is inconsistent with either β or σ,
and thus with π = β ∪ σ.

We usually use this theorem in the following normal form for the parameters.
Corollary 3.4. Let k, s, and d be positive integers, let γ and δ be real numbers

from the range (0, 1], and let D be a distribution on partial assignments so that for
every k-DNF G, Prρ∈D [G �ρ 	= 1] ≤ d2−δ(c(G))γ . For every k-DNF F ,

Prρ∈D [h(F �ρ) > 2s] ≤ dk2−δ′sγ
′
,
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where δ′ = 2(δ/4)k and γ′ = γk.

Proof. Let si = (δ/4)i(sγ
i

) and pi = d2−4si . Note that si−1/4 ≥ (δ/4)si−1 =

(δ/4)(δ/4)
i−1

sγ
i−1 ≥ (δ/4)

i
sγ

i

= si. It follows that
∑k

j=i sj ≤
∑

j≥i si/4
j−i ≤ 2si.

Also, for any i-DNFG, with c(G) ≥ si−1, Prρ∈D [G �ρ 	= 1] ≤ d2−δ(c(G))γ ≤ d2−δsγ
i−1 =

2−δ(δ/4)i−1(sγ
i−1

)γ = d2−4si . Thus, we can apply Theorem 3.3 with parameters
p1, . . . , pk, s0, . . . , sk−1. For every k-DNF F ,

Prρ∈D [h(F �ρ) > 2s] ≤ Prρ∈D

[
h(F �ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2

(∑k−1

j=i
sj
)
pi

≤
k∑

i=1

22si(d2−4si) ≤ dk2−2sk = dk2−δ′sγ
′
.

3.1. Switching with small restrictions. In this subsection, we show that
small, uniform restrictions meet the conditions for the switching lemma. Using Corol-
lary 3.4, k-DNFs can then be converted into decision trees—using restrictions that
set only a polynomially small fraction of the bits. We include it here for comparison
with previous switching lemmas. Later, it will be used to prove the lower bound on
Res(k) refutations of random CNFs. More complicated distributions are used for our
other results.

Definition 3.5. Let n > 0 and p ∈ [0, 1]. Define Dp to be the family of random
restrictions which arises by assigning variables ∗ with probability 1− p, and 0, 1 each
with probability p

2 .
Lemma 3.6. Let i ≥ 1, let G be an i-DNF, and let ρ be chosen from Dp. Then

Pr[G �ρ 	= 1] ≤ e− c(G)pi

i2i .
Proof. Because every covering set of G has size at least c(G), there is a set of

variable-disjoint terms of size at least c(G)/i (such a set can be found by greedily
choosing a maximal set of disjoint terms). Each of these variable-disjoint terms is

satisfied with independent probability at least (p/2)
i
. Therefore,

Prρ∈Dp
[G �ρ 	= 1] ≤

(
1−

(p
2

)i) c(G)
i

≤ e−( p
2 )

i c(G)
i = e−

c(G)pi

i2i .

Combining this with the switching lemma shows that a k-DNF is strongly repre-
sented by a short decision tree when restricted.

Corollary 3.7. Let k ≥ 1 be given. There exists γ > 0 so that for any k-DNF

F , w > 0, p ≥ n−1/(2k2), Prρ∈Dp
[h(F �ρ) > w] ≤ k2−γwn−1/2

.

Proof. In the notation of Corollary 3.4, set p = n−1/2k2

, d = 1, γ = 1, s = w/2,

and δ = (log e) pk

k2k = (log e)n
−1/2k

k2k . Combining Lemma 3.6 with Corollary 3.4 shows
that for every k-DNF F ,

Prρ∈Dp [h(F �ρ) > w] ≤ k2−2(w/2)(δk/4k) = k2−w(log e)kn−1/2/4kkk2k2

.

Because k is fixed, we may take γ = (log e)k/4kkk2k
2

.

4. An application to circuit bottom fan-in. Our first application of the
switching lemma is an exponential-size separation between depth d circuits of bottom
fan-in k and depth d circuits of bottom fan-in k + 1.
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Our circuits are organized into alternating layers of AND and OR gates, with
connections appearing only between adjacent levels. NOT gates may have only vari-
ables as their inputs. The output gate is said to be at level one, the gates feeding
into the output gate are said to be at level two, and so forth. The depth of a circuit
is the maximum depth of an AND or OR gate in the circuit. The size of a circuit is
the number of AND and OR gates appearing in it. The bottom fan-in of a depth d
circuit is the maximum number of inputs of a gate at level d. For more detail on the
basics of constant depth circuits, consult the survey by Boppana and Sipser [10].

4.1. The functions.
Definition 4.1 (see [34, 10]). Let integers d and m1, . . . ,md be given, and let

there be variables xi1,...,id for 1 ≤ ij ≤ mj.

fm1,...,md

d =
∧

i1≤m1

∨
i2≤m2

· · ·
⊙

id≤md

xi1,...,id ,

where
⊙

=
∨

if d is even, and
⊙

=
∧

if d is odd.
The Sipser function fmd is fm1,...,md

d , with m1 =
√
m/logm, m2 = · · · = md−1 =

m, and md =
√
dm logm/2.

The modified Sipser function gm,k
d is fm1,...,md,k

d+1 , with m1 =
√
m/logm, m2 =

· · · = md−1 = m, and md = 4
√
dm logm/2.

Notice that the function fmd depends on md−1
√
d/2 many variables and can be

computed by a circuit of depth d and size linear in the number of variables. Further-
more, we will often identify these functions with the circuits defining them.

Our result builds upon the earlier result that it is impossible to decrease the
bottom fan-in of a circuit computing a Sipser function without increasing the size
or the depth. Moreover, an OR of depth d, small bottom fan-in circuits requires
exponential size to compute fmd .

Theorem 4.2 (see [21]). For all d ≥ 1, there exists εd > 0 so that if a depth d,
bottom fan-in k circuit with an AND gate at the output and at most S gates in levels
1 through d− 1 computes fmd , then either k ≥ mεd or S ≥ 2m

εd .
For all d ≥ 1, there exists βd > 0 so that if a depth d+ 1, bottom fan-in k circuit

with an OR gate at the output and at most S gates in levels 1 through d computes

fmd , then either S ≥ 2m
βd or k ≥ mβd .

We use the modified Sipser function gm,k+1
d to obtain the exponential separation

between depth d+ 1, bottom fan-in k + 1 and depth d+ 1, bottom fan-in k circuits.
For each i1, . . . , id, we say that the variables xi1,...,id,1, . . . , xi1,...,id,k come from block
(i1, . . . , id). Variables in the same block occur in the same bottom-level conjunction of

gm,k
d . Notice that the function gm,k

d has 4md−1
√
d/2 many blocks and 4kmd−1

√
d/2

many variables. Moreover, it can be computed by a circuit of depth d + 1, bottom
fan-in k and size linear in the number of variables.

4.2. The lower bounds. We will show that depth d + 1 circuits with bottom
fan-in k require exponential size to compute gm,k+1

d . In light of Theorem 4.2, it
suffices to consider only circuits with an AND gate at the output level. Furthermore,
we consider only the case when d is even. This ensures that all gates at depth d are
OR gates. The case for odd d is dual and we simply invert the random restriction
used. Each gate at depth d computes a k-DNF, and we will apply random restrictions
which almost certainly collapse all of the k-DNFs to narrow CNFs and thus collapse
the circuits to depth d circuits with small bottom fan-in. On the other hand, the
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random restrictions will probably leave gm,k+1
d containing fmd as a subfunction, and

thus we obtain a contradiction to Theorem 4.2.
Definition 4.3. Let m, d, and k be given. Set m1 =

√
m/logm, m2 = · · · =

md−1 = m, and md = 4
√
dm logm/2.

Let Bm,k+1
d,0 be the random distribution on partial assignments given by the fol-

lowing experiment: For each i1 ≤ m1, . . . , id ≤ md, with independent probability 1
2

either set xi1,...,id,j = ∗, for all j ∈ [k + 1], or uniformly choose a 0/1 assignment
to {xi1,...,id,j | j ∈ [k + 1]} which sets at least one of the variables to 0. The dual

distribution, Bm,k+1
d,1 , selects a restriction according to Bm,k+1

d,0 and then inverts the
0’s and 1’s.

Lemma 4.4. Let k ≥ 1 be given. There exists a constant γk > 0 so that for every
k-DNF F ,

Prρ∈Bm,k+1
d,0

[F �ρ 	= 1] ≤ 2−γkc(F ).

Proof. We say that two terms T and T ′ are block-disjoint if no variable of T shares
a block with a variable of T ′. More formally, whenever a variable xi1,...,id+1

appears
in T and a variable xj1,...,jd+1

appears in T ′, we have that (i1, . . . , id) 	= (j1, . . . , jd).
Because each term involves at most k variables, there must be a set of c(F )/k many
variable-disjoint terms, and hence a set of c(F )/(k(k+1)) many block-disjoint terms.

We now show that each term is satisfied with probability at least 1
6k . Because the

literals of a term come from at most k distinct blocks, the chance that every variable
in the term is set to 0 or 1 is at least 1

2k . Conditioned on this event, the probability of

satisfying the term is at least 1
3k . To see this, consider the chance of satisfying each

literal of the term in turn, conditioned on the event of satisfying the previous literals.
If a variable from that block has already been set to 0, then clearly the probability
of satisfying the current literal is 1

2 . If not, then suppose there are l variables in the
block of the current variable that have not yet been set to a value. The probability
of satisfying the current literal is at least (2l−1 − 1)/(2l − 1). Because there are k+ 1
variables and the term has size at most k, l ≥ 2, and thus the probability is at least 1

3 .
The events of satisfying block-disjoint terms are independent; therefore we have

Prρ∈Bm,k+1
d,0

[F �ρ 	= 1] ≤
(

1− 1

6k

)c(F )/(k(k+1))

.

Set γk = − log2(1− 1
6k )/(k(k + 1)).

Symmetrically, the dual result holds for k-CNFs when we apply a random restric-
tion from Bm,k+1

d,1 .
Lemma 4.5. Let k ≥ 1 be given. There exists a constant εk so that for all d, for

all w sufficiently large with respect to k, and for every depth d + 1, bottom fan-in k
circuit C of size S ≤ 2εkw, when ρ is chosen from Bm,k+1

d,0 (Bm,k+1
d,1 ), with probability

at least 3/4 , C �ρ is equivalent to a depth d, bottom fan-in w circuit with at most S
gates in levels 1 through d− 1.

Proof. We will solve for the particular values of εk and w after going through the
calculations.

We consider the case when d is even; the case when d is odd is handled by using
the restrictions Bm,k+1

d,1 instead of Bm,k+1
d,0 . Each gate at depth d is an OR gate and

its inputs are AND gates of fan-in at most k. For each gate g at depth d, we let Fg

denote the k-DNF computed by the subcircuit at g.
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Suppose that there is a partial assignment ρ ∈ Bm,k
d,0 so that for each depth d gate

g of C, h(Fg �ρ) < w. For each g at depth d, let Tg be the shortest decision tree
representing Fg �ρ. We can compute C �ρ with a depth d, bottom fan-in w circuit
with at most S gates in levels 1 through d−1 by starting with C, replacing each level
d gate g with the conjunction of the negated branches of Br0(Tg), and then merging
these conjuncts with the AND gate at depth d− 1 to which g sends its output.

We now show that for ρ chosen according to the distribution Bm,k
d,0 , with proba-

bility at least 3
4 , every depth d gate g of C has h(Fg �ρ) < w.

Let g be a depth d gate of the circuit. By combining Lemma 4.4 with Corollary
3.4, setting d = 1, γ = 1, s = w/2, and δ = γk shows that

Prρ∈Bm,k
d,0

[h(Fg) > w] ≤ k2−wγk
k/4

k

.

Because there are at most S = 2εkw many gates at depth d, by the union bound,

there exists a gate with h(Fg) > w with probability at most 2w(εk−γk
k/4

k)+log k. We
simply take εk sufficiently small so that this probability is less than 1/4.

Theorem 4.6. For all k ≥ 1, d ≥ 1, there exists εk, εd > 0 so that for every m
sufficiently large, every size S, depth d + 1, bottom fan-in k circuit for gm,k+1

d has
S ≥ 2εkm

εd .
Proof. We will have to take m sufficiently large to apply Theorem 4.2 and Lemma

4.5, and large enough for an application of the Chernoff bounds. Set w = mεd (with
εd from Theorem 4.2) and S = 2εkw (with εk from Lemma 4.5). Furthermore, we
consider the case when d is even; the case when d is odd is handled by using the
restrictions Bm,k+1

d,1 instead of Bm,k+1
d,0 .

Suppose, for the sake of contradiction, that C is a size S, depth d, bottom fan-in
k circuit computing gm,k+1

d .

Fix an OR gate at depth d in gm,k+1
d . When ρ is chosen from the distribution

Bm,k+1
d,0 , the expected number of blocks underneath this gate that are left unset is

2
√
dm logm/2. By the Chernoff bounds, with probability at most e−

√
dm logm/2/4

there are fewer than
√
dm logm/2 blocks left unset by ρ underneath this gate.

Because there are md−3/2/
√

logm many depth d gates in gm,k+1
d , by the union

bound, the probability that there exists a depth d gate underneath which there are

fewer than
√
dm logm/2 many blocks unset is at most (md−3/2/

√
logm)e−

√
dm logm/2/4.

This tends to 0 as m tends to infinity.
On the other hand, by Lemma 4.5, with probability at least 3/4 , C �ρ is equivalent

to a depth d, bottom fan-in w circuit with at most S gates in levels 1 through d− 1.
Therefore we may choose ρ ∈ Bm,k+1

0,d so that underneath each depth d gate of

gm,k+1
d there are at least

√
dm logm/2 many blocks unset by ρ, and C �ρ is equivalent

to a depth d, bottom fan-in w circuit with ≤ S gates in levels 1, . . . , d− 1.
Because C �ρ computes gm,k+1

d �ρ, a restriction of it computes fmd : set some
blocks to 0 and collapse the other blocks to a single variable. This gives a depth d
circuit with ≤ S gates in levels 1, . . . , d− 1, and bottom fan-in w that computes fmd ,
a contradiction to Theorem 4.2.

5. Decision trees and Res(k) refutations. All of our lower bounds for Res(k)
refutations use the fact that when the lines of a Res(k) refutation can be strongly
represented by short decision trees, the Res(k) refutation can be converted into a
narrow resolution refutation.
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Theorem 5.1. Let C be a set of clauses of width ≤ h. If C has a Res(k) refutation
so that for each line F of the refutation, h(F ) ≤ h, then wR(C) ≤ kh .

Proof. We will use the short decision trees to construct a narrow refutation of
C in resolution augmented with subsumption inferences: whenever A ⊆ B, infer B
from A. These new inferences simplify our proof, but they may be removed from the
resolution refutation without increasing the size or the width.

For a line F of the Res(k) refutation, let TF be a decision tree of minimum height
that strongly represents F . Notice that for each initial clause C ∈ C, TC is the tree
that queries the (at most h) variables in C, stopping with a 1 if the clause becomes
satisfied and stopping with a 0 if the clause becomes falsified.

For any partial assignment π let Cπ be the clause of width ≤ h that contains the
negation of every literal in π, i.e., the clause that says that branch π was not taken.
We construct a resolution refutation of width ≤ kh by deriving Cπ for each line F of
the refutation and each π ∈ Br0(TF ).

Notice that for π ∈ Br0(T∅), Cπ = ∅, and for each C ∈ C, for the unique π ∈
Br0(TC), Cπ = C.

Let F be a line of the refutation that is inferred from previously derived formulas
F1, . . . , Fj , j ≤ k. Assume we have derived all Cπ ∈ Br0(TFi

) for 1 ≤ i ≤ j. To guide
the derivation of {Cπ | π ∈ Br0(TF )}, we construct a decision tree that represents∧j

i=1 Fi. The tree (call it T ) begins by simulating TF1 and outputting 0 on any 0-
branch of TF1

. On any 1-branch, it then simulates TF2
, etc. If all j branches are 1, T

outputs 1; otherwise T outputs 0. The height of T is at most jh ≤ kh, so the width
of any such Cπ, with π ∈ Br(T ), is at most kh. The set of clauses {Cσ | σ ∈ Br0(T )}
can be derived from the previously derived clauses by subsumption inferences because
every σ ∈ Br0(T ) contains some π ∈ ⋃j

i=1 Br0(TFi).

We now show that for every σ ∈ Br1(T ), there exists a t ∈ F so that σ satisfies
t. Choose π1 ∈ Br1(TF1), . . . , πj ∈ Br1(TFj ) so that π1 ∪ · · · ∪ πj = σ. Because the
decision trees TF1

, . . . , TFj
strongly represent the k-DNFs F1, . . . , Fj , there exist terms

t1 ∈ F1, . . . , tj ∈ Fj so that
∧j

i=1 ti is satisfied by σ. By strong soundness of Res(k),
there exists t ∈ F so that σ satisfies t.

Let σ ∈ Br0(TF ) be given. Because TF strongly represents F , σ falsifies all terms
of F . By the preceding paragraph, for all π ∈ Br(T ), if π is consistent with σ, then
π ∈ Br0(T ) (otherwise, σ would not falsify the term of F satisfied by π). For each
node v in T , let πv be the path (viewed as a partial assignment) from the root to v.
Bottom-up, from the leaves to the root, we recursively derive Cπv

∨ Cσ for each v so
that πv is consistent with σ. When we reach the root, we will have derived Cσ. If
v is a leaf, then πv ∈ Br0(T ) so it has already been derived. If v is labeled with a
variable that appears in σ, call it x, then there is a child u of v with πu = πv ∪ {x}.
Therefore, Cπv

∨Cσ = Cπu
∨Cσ. By induction, the clause Cπu

∨Cσ has already been
derived. If v is labeled with a variable x that does not appear in σ, then for both
of the children of v, call them v1, v2, the paths πv1 and πv2 are consistent with σ.
Moreover, Cπv1

∨Cσ = x∨Cπv ∨Cσ and Cπv2
∨Cσ = ¬x∨Cπv ∨Cσ. Resolving these

two previously derived clauses gives us Cπv
∨ Cσ.

We will use this theorem after we apply a random restriction which simultaneously
collapses every line of a Res(k) refutation to a short decision tree. Hence, we can use
a width lower bound for resolution refutations of a restricted tautology to give a size
lower bound for Res(k) refutations of the original tautology.

Corollary 5.2. Let C be a set of clauses of width ≤ h, let Γ be a Res(k)
refutation of C, and let ρ be a partial assignment so that for every line F of Γ,
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h(F �ρ) ≤ h. Then wR(C �ρ) ≤ kh.
6. Lower bounds for the weak pigeonhole principle.
Definition 6.1. The m to n pigeonhole principle, PHPm

n , is the following set
of clauses:

1. For each i ∈ [m],
∨

j∈[n] xi,j.

2. For each i, i′ ∈ [m] with i 	= i′, ¬xi,j ∨ ¬xi′,j.
Theorem 6.2. For every c > 1, there exists ε > 0 so that for all n sufficiently

large, if k ≤ √log n/ log log n, then every Res(k) refutation of PHP cn
n has size at

least 2n
ε

.
The idea of the proof for Theorem 6.2 is as follows: Suppose there is a small Res(k)

refutation of the weak pigeonhole principle. Then by applying a random restriction
we obtain a low-width resolution refutation of the restricted pigeonhole principle. By
the well-known lower bounds on the width of resolution refutations of the pigeonhole
principle, this is impossible.

In order to make the random restriction method work, we prove lower bounds for
the pigeonhole principle restricted to a low degree graph. Because these principles
reduce to the pigeonhole principle by setting some variables to 0, this suffices to
prove lower bounds for the pigeonhole principle. The difficulty with applying random
restrictions directly to the clauses of the pigeonhole principle is that there are clauses
of high width which are not satisfied with very high probability. If we were to choose
a random subset of the holes and place into each hole a randomly chosen pigeon, then
a clause of the form

∨m
i=1 xi,j would be satisfied with probability no better than the

chance that hole j is in the random subset (this will be no better than a constant in
our proof). At the heart of this problem is that each hole j appears in cn distinct
variables, x1,j , . . . , xcn,j , and restricting the principle to low-degree graphs solves this.

Definition 6.3. Let G = (U ∪ V,E) be a bipartite graph. The pigeonhole
principle of G, PHP(G), is the following set of clauses:

1. For each u ∈ U ∨
v∈V

{u,v}∈E

xu,v.

2. For each u, u′ ∈ [m], with u 	= u′, and each v ∈ V with {u, v} ∈ E and
{u′, v} ∈ E,

¬xu,v ∨ ¬xu′,v.

Definition 6.4. Let G = (U ∪V,E) be a bipartite graph. The maximum degree
of G, ∆(G), is defined to be maxv∈V deg v.

Furthermore, we assume that all Res(k) refutations have been put into a normal
form in which no term of any DNF asks that two pigeons be mapped to the same
hole. See, for example, [3].

Definition 6.5. Let G = (U ∪ V,E) be a bipartite graph. A term is said to be
in pigeon-normal-form if it does not contain two literals xu,v and xu′,v with u 	= u′.
A DNF is said to be in pigeon-normal-form if all of its terms are in pigeon-normal-
form and a Res(k) refutation is said to be in pigeon-normal-form if every line is in
pigeon-normal-form.

Every Res(k) refutation of PHP (G) can be transformed into a refutation in
pigeon-normal-form which at most doubles the number of lines in the proof. When
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there is an AND-introduction inference that creates a line not in pigeon-normal-form,
say

(A ∨ xu,v) (A ∨ xu′,v) · · · (A ∨ lj)
A ∨

(
xu,v ∧ xu′,v ∧

∧j
i=3 li

) ,

replace the inference by a derivation that cuts A∨xu′,v with ¬xu,v ∨¬xu′,v to obtain
A ∨ ¬xu,v. Cut this with A ∨ xu,v to obtain A. We may proceed through the rest of

the proof with A because it subsumes A ∨ xu,v ∧ xu′,v ∧
∧j

i=3 li.

6.1. Random restrictions.
Definition 6.6. For a bipartite graph G = (U ∪ V,E) and a real number p ∈

[0, 1], letMp(G) denote the distribution on partial assignments which arises from the
following experiment:

Independently, for each v ∈ V , with probability 1− p choose to match v, and with
probability p leave v unmatched. If v is matched, uniformly select a neighbor u of v,
set xu,v to 1, and for every w 	= u that is a neighbor of v, set xw,v to 0. Moreover,
for each v′ 	= v, set xu,v′ = 0.

Let Vρ be the set of vertices of V matched by ρ, let Uρ be the set of vertices of U
matched by ρ, and let Sρ = Uρ ∪ Vρ.

These restrictions randomly associate pigeons with holes in an injective way.
While some pigeons can be associated with multiple holes, no two pigeons can be
associated with the same hole. It is easy to check that for any ρ ∈ Mp(G), we have
that PHP (G) �ρ= PHP (G− Sρ).

Lemma 6.7. Let p ∈ [0, 1], i ∈ [k] be given. Let G = (U ∪ V,E) be a bipartite
graph with ∆ = ∆(G). Let F be an i-DNF in pigeon-normal-form.

Prρ∈Mp(G) [F �ρ 	= 1] ≤ 2−
(log e)(1−p)ic(F )

i∆i+1 .

Proof. For a term T , define the holes of T as Holes(T ) = {v | xu,v ∈ T or ¬xu,v ∈
T}. We say that two terms T and T ′ are hole-disjoint if Holes(T ) ∩Holes(T ′) = ∅.

Because F contains at least c(F )/i many variable-disjoint terms, and each hole
v ∈ V appears in at most ∆ many variables, F must contain at least c(F )/i∆ many
hole-disjoint terms.

The events of satisfying hole-disjoint terms are independent, and for a given term,
T , the probability that T �ρ= 1 is at least (1−p)i/∆i. This is because with probability
(1− p)i, every hole of T is matched, and with probability at least 1/∆i the holes are
matched in a way that satisfies T (here we use the fact that F is in pigeon-normal-
form). Therefore, we have the following inequalities:

Prρ [F �ρ 	= 1] ≤ (1− (1− p)i/∆i
) c(F )

i∆ ≤
(
e−(1−p)i/∆i

) c(F )
i∆

= 2−
(log e)(1−p)ic(F )

i∆i+1 .

6.2. Width lower bounds for resolution. For the lower bound proof to work,
we need a graph G so that after the application of a random restriction ρ, with high
probability, PHP (G) �ρ requires high width to refute in resolution. We call such
graphs robust, and in this subsection we probabilistically demonstrate robust, low-
degree graphs.

Definition 6.8. A bipartite graph G is said to be (p, w)-robust if, when ρ is
selected from Mp(G), with probability at least 1

2 , wR(PHP (G) �ρ) ≥ w.
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All we need for the size lower bound is the following lemma, which is proven
probabilistically in section 6.2.1. Readers who believe that random graphs should be
robust can skip to the proof of the lower bound.

Lemma 6.9. For all c > 1, there exists d > 0, so that for n sufficiently large,
there exists a (3/4, n/24)-robust graph with ∆(G) ≤ d log n on the vertex sets [cn] and
[n].

6.2.1. Existence of robust graphs. As a starting point, we use a now standard
lower bound of wR(PHP (G)) in terms of the expansion of G.

Definition 6.10. For a vertex u ∈ U , let N(u) be its set of neighbors. For a
subset V ′ ⊆ V , let its boundary be

∂V ′ = {u ∈ U | |N(u) ∩ V ′| = 1}.
A bipartite graph G is an (m,n, r, f)-expander if |V | = m, |U | = n, and for all

V ′ ⊆ V , |V ′| ≤ r, |∂V ′| ≥ f |V ′|.
Theorem 6.11 (see [8]). If G is a bipartite graph that is an (m,n, r, f)-expander,

then wR(PHP (G)) ≥ rf/2.
Definition 6.12. Let Gm,n,p be the distribution on bipartite graphs with vertex

sets [m] and [n] in which every edge is included with independent probability p.
The following lemma was proven by Atserias, Bonet and Esteban [3].
Lemma 6.13 (see [3]). Let m = cn, q = 48c lnm

m , α = 1
mq , and f = nq

6 . Let G be
selected according to the distribution Gm,n,q.

PrG [G is an (m,n, αm, f)-expander ] ≥ 2

3
.

Lemma 6.14. Let m = cn, let q ≥ 48c lnm
m , and let G be selected according to the

distribution Gm,n,q.

PrG [wR(PHP (G)) ≥ n/12] ≥ 2

3
.

Proof. Let α = 1
mq and f = nq

6 . Because αmf/2 = (1/mq)m(nq/6)/2 = n/12, an
application of Theorem 6.11 shows that when G is selected according to Gm,n, 48c ln m

m
,

with probability at least 2
3 , wR(PHP (G)) ≥ n/12.

Now considerG selected according toGm,n,q, with q ≥ 48c lnm
m . WheneverG0 is an

edge-induced subgraph of G1, wR(PHP (G1)) ≥ wR(PHP (G0)) because a refutation
of PHP (G1) can always be transformed into a refutation of PHP (G0) by setting
some variables to 0. Therefore, by increasing the probability of including an edge, the
probability of having no small resolution refutation for PHP (G) only increases.

We now prove Lemma 6.9.
Proof. Set m = cn, p = 3

4 , and q = 192c lnm
m . Consider the joint distribution

that arises by selecting G according to Gm,n,q and ρ according to M3/4(G). We will
bound the probability that the degree is too large, that too many holes are matched,
and that the restricted graph is expanding.

By the Chernoff bounds, for each v ∈ [n] the probability that v has degree in
excess of 2mq is at most e−mq/4. By the union bound, the probability that there
exists some v ∈ [n] of degree in excess of 2mq is at most ne−mq/4. Similarly, the
probability that there exists some v ∈ [m] of degree in excess of 2mq is at most
me−nq/4. Therefore, the probability that the maximum degree of G exceeds 2mq is
bounded as follows:

ne−mq/4 +me−nq/4 = ne−m192c lnm/m +me−n192c lnm/m = O(n−191).
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Remember that Vρ is the set of holes matched by the restriction ρ. By the Chernoff

bounds, the probability that |Vρ| ≥ 2n(1− p) = n/2 is at most e−
n(1−p)

4 = e−n/16.
We now bound the probability that G−Sρ is an expander. First, up to renaming

vertices, G − Sρ is distributed as Gmρ,nρ,q, with nρ = n − |Vρ| and mρ = m − |Uρ|.
This is because for fixed sets of vertices V0 ⊆ V and U0 ⊆ U , when we condition
on the event that Vρ = V0 and Uρ = U0, the edges {u, v} with u ∈ U \ U0 and
v ∈ V \ V0 are included in G − Sρ with independent probability q. Now, condition
on the event that |Vρ| ≤ n/2. We have that mρ = m − |Uρ| ≥ m − n/2 ≥ m/2 and
thus q = 192c lnm/m ≥ 192c lnmρ/m ≥ 192c lnmρ/2mρ = 48 · 2c lnmρ/mρ. Because
mρ

nρ
≤ cn

n/2 = 2c, we can apply Lemma 6.14 and deduce that wR(PHP (G − Sρ)) ≥
nρ/12 with probability at least 2

3 . Because nρ ≥ n/2, with the same probability,
wR(G− Sρ) ≥ n/24.

Combining the three inequalities from the preceding paragraphs shows that the
probability that G contains a vertex of degree in excess of 192c lnm, that Vρ contains
more than n/2 vertices, or that wR(PHP (G− Sρ)) < n/24 is at most

1

3
+O(n−191) + e−n/16.

For sufficiently large n, this probability is bounded above by 1
2 . By averaging

over the choices of the edges, there exists a bipartite graph G on vertex sets [cn]
and [n] with ∆(G) ≤ 2mq = 384c ln(cn), so that upon selection of ρ ∈ R3/4(G),

wR(G− Sρ) ≥ n/24 with probability at least 1
2 .

6.3. Size lower bounds for Res(k). To prove the size lower bounds for Res(k)
refutations of PHP cn

n we first prove size lower bounds for the weak pigeonhole prin-
ciple restricted to a robust graph, and then we reduce these principles to PHP cn

n .
Lemma 6.15. For any c > 1 and d > 0, there exists ε > 0 so that for all n

sufficiently large, if k ≤√log n/ log log n and G is a (3/4, n/24)-robust bipartite graph
with vertex sets of sizes cn and n and ∆(G) ≤ d log n, then Sk(PHP (G)) ≥ 2n

ε

.
Proof. By Lemma 6.7, for each i ∈ [k] and every i-DNF F ,

Prρ∈M3/4(G) [F �ρ 	= 1] ≤ 2
− (log e)(1−3/4)ic(F )

i(d log n)i+1 = 2
− (log e)c(F )

i·4i(d log n)i+1 .

In the interest of obtaining a better bound, we will not appeal to Corollary 3.4,
but directly apply Theorem 3.3. We define sequences s0, . . . , sk and p1, . . . , pk for use
in the switching lemma. Set s0 = 3

4k (n/24− 1). For each i ∈ [k], set

si =

(
log e

2i4i(d log n)
i+1

)
si−1.

For each i ∈ [k] set pi = 2−2si . For any i-DNF F so that c(F ) > si−1, we have
the following inequality:

Prρ∈M3/4(G) [F �ρ 	= 1] < 2
− (log e)si−1

i·4i(d log n)i+1 = 2
−2

(log e)si−1

2i4i(d log n)i+1 = 2−2si = pi.

It can be shown that there exists ε > 0 so that for sufficiently large n, sk ≥ nε. To
avoid distraction, we show this in Lemma 6.17 at the end of this subsection. Suppose
that Γ is a Res(k) refutation of PHP (G) of size less than 2n

ε

.
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By an application of Theorem 3.3 and the union bound, we have

Prρ∈M3/4(G)

[
∃F ∈ Γ, h(F �ρ) >

k−1∑
i=0

si

]
≤ 2n

ε
k∑

i=1

pi2

∑k−1

j=i
sj

≤ 2sk
k∑

i=1

pi2

∑k−1

j=i
sj =

k∑
i=1

pi2

∑k

j=i
sj .

We now bound pi2

∑k

j=i
sj for each i > 0. For each i, si+1 <

1
4si so

∑k−1
j=i sj ≤ 4

3si.
This gives us the following inequality:

pi2

∑k−1

j=i
sj = 2

∑k−1

j=i
sj−2si ≤ 2(4/3−2)si = 2−(2/3)si ≤ 2−(2/3)sk ≤ 2−(2/3)nε

.

Therefore,

Prρ∈M3/4(G) [∃F ∈ Γ, h(F �ρ) > (n/24− 1)/k]

≤ Prρ∈M3/4(G)

[
∃F ∈ Γ, h(F �ρ) >

k−1∑
i=0

si

]

≤
k∑

i=1

pi2

∑k−1

j=i
sj ≤

k∑
i=1

2−(2/3)nε ≤ k2−(2/3)nε

= 2log k−(2/3)nε

.

For n sufficiently large, this probability is strictly less than 1
2 . BecauseG is (3/4, n/24)-

robust, for ρ ∈M3/4(G), with probability at least 1
2 , wR(PHP (G) �ρ) ≥ n/24. Thus,

there is a ρ so that wR(PHP (G) �ρ) ≥ n/24 and for all F ∈ Γ, h(F �ρ) ≤ 1
k (n/24−1).

This is a contradiction, because by Corollary 5.2, there is a resolution refutation of
PHP (G) �ρ of width ≤ n/24− 1.

Theorem 6.16. For each c > 1, there exists ε > 0 so that for all n sufficiently
large, if k ≤ √log n/ log log n, then every Res(k) refutation of PHP cn

n has size at
least 2n

ε

.
Proof. Apply Lemma 6.9 and choose d so that for sufficiently large n, there exists

a (3/4, n/24)-robust graph G on vertex sets cn and n, with ∆(G) ≤ d log n. By
Lemma 6.15, there exists ε > 0 so that for k ≤√log n/ log log n, Sk(PHP (G)) ≥ 2n

ε

.
Because PHP (G) can be obtained by setting some of the variables of PHP cn

n to
0, every Res(k) refutation of PHP cn

n can be converted into a Res(k) refutation of
PHP (G) of the same or lesser size. Therefore, all Res(k) refutations of PHP cn

n must
have size at least 2n

ε

.
Now we prove the lower bound on the number sk that we used in Lemma 6.15.

The constants are not optimized.
Lemma 6.17. There exists ε > 0, so that for all n sufficiently large, with k ≤√

log n/ log log n and s0, . . . , sk defined as in the proof of Lemma 6.15, sk ≥ nε.
Proof. Unwinding the recursive definition of the si’s gives the following equality:

sk =
1

2k
(log e)

k 1

k!

(
1

4

)∑k

j=1
j(

1

d log n

)∑k+1

j=2
j

3

4k
(n/24− 1).

Because k ≤√log n/ log log n, we have that 1
2k (log e)

k 1
k!

(
1
4

)∑k

j=1
j 3

4k = n−o(1).

sk = n−o(1)(1/d log n)
(k+2)(k+1)/2

(n/24− 1)

= n−o(1)2−(log(d logn))(k2+3k+2)/2(n/24− 1).
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Because k ≤ √log n/ log log n and d is a constant, thus for n sufficiently large,
(log(d log n))(k2 + 3k + 2)/2 = (logn)(1 + o(1))/2. Therefore,

sk = n−o(1)2−(log n)(1+o(1))/2(n/24− 1),

and there exists ε > 0 so that for all n sufficiently large, sk ≥ nε.
7. Lower bounds for random CNFs. It is well known that, in some cases,

randomly generated sets of clauses require exponentially large resolution refutations;
see [13, 5, 8]. We extend these results by giving exponential lower bounds for the size
of Res(k) refutations of randomly chosen sets of width 4k2 + 2 clauses.

Definition 7.1. Let n, ∆, and w be given. The distribution Fn,∆
w is defined by

choosing ∆ ·n many clauses independently, with repetitions, from the set of all
(
n
w

)
2w

clauses of width w.
Our main result for this section is the following.
Theorem 7.2. For any ε ∈ [0, 1

6 ), there exists δ > 0, so that for n sufficiently
large and for ∆ = nε,

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2n

δ
]

= o(1).

The reason that our proof does not give lower bounds for refutations of random
3-CNFs in Res(k) is that, on one hand, we want our random restrictions to have
a good chance of satisfying a fixed k-term (so we can apply the switching lemma),
but on the other hand, the restrictions should have little probability of falsifying any
of the initial clauses (this would make the restricted set of clauses trivial to refute).
Because satisfying a k-term is equivalent to falsifying a k-clause, we can only work
with initial clauses of width larger than k.

A set of clauses that, with constant probability, requires high width to refute after
random restriction is called robust. Recall the distribution Dp from Definition 3.5.

Definition 7.3. Let F be a CNF in variables x1, . . . , xn. We say that F is (p, r)
robust if Prρ∈Dp [wR(F �ρ) ≥ r] ≥ 1/2.

It turns out that for sufficiently large w, a random w-CNF is almost surely robust.
We state the result below and prove it in the following subsection.

Lemma 7.4. There exists a constant c so that for any constants w and t, w ≥
2t+ 2, for every n sufficiently large, and for every ε ∈ [0, 1/2], if we set ∆ = nε, then
the following inequality holds:

PrF∈Fn,∆
w

[
F is not

(
n−1/t, cn

1−2ε
1+2ε

)
-robust

]
= o(1).

We now prove the size lower bound. We set bits with probability n−1/2k2

so we
can collapse k-DNFs but still have that most 4k2 + 2 CNFs are robust. For each
k ≥ 1, let γk be the constant of corollary 3.7.

Lemma 7.5. Let n, r, w, and k be given. For sufficiently large n, if F is an
(n−1/2k2

, r)-robust w-CNF, then Sk(F ) ≥ 1
4k2(γk(r−1)/k

√
n).

Proof. Suppose that Γ is a Res(k) refutation of F of size at most 1
4k2(γk(r−1)/k

√
n).

By Corollary 3.7, with p = n−1/2k2

and w = (r − 1)/k, we have that for every line
F of Γ, Prρ∈Dp [h(F �ρ) > (r − 1)/k] ≤ k2−γk(r−1)/k

√
n. By the union bound we have

that

Prρ∈Dp [∃F ∈ Γ h(F �ρ) > (r − 1)/k] ≤ |Γ| · k · 2−γk(r−1)/k
√
n
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≤ 1

4k
2(γk(r−1)/k

√
n) · k · 2−γk(r−1)/k

√
n =

1

4
.

Because F is (p, r)-robust, with probability at least 1
2 over choices of ρ, then

wR(F �ρ) ≥ r. Therefore, we may choose ρ ∈ Dp so that wR(F �ρ) ≥ r and for all
F ∈ Γ, h(F �ρ) ≤ (r − 1)/k. This is a contradiction because by Corollary 5.2 there
should be a width r − 1 resolution refutation of F �ρ.

Combining Lemmas 7.4 and 7.5 with t = 2k2, w = 4k2 + 2, and r = cn
1−2ε
1+2ε

shows that a random (4k2 + 2)-CNF almost surely requires exponential size to refute
in Res(k).

Corollary 7.6. There exists a constant c so that for every k, for every n
sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε, then the following inequality
holds:

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2γk(cn

1−2ε
1+2ε −1)/k

√
n

]
= o(1).

This gives an exponential lower bound only when 1−2ε
1+2ε >

1
2 . This holds exactly

for ε ∈ [0, 1
6 ).

Theorem 7.7. For any ε ∈ [0, 1
6 ), there exists δ > 0, so that for n sufficiently

large and for ∆ = nε,

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2n

δ
]

= o(1).

7.1. Robustness of random CNFs. In this section we show that for appro-
priate clause densities, a random w-CNF is almost surely robust.

We begin with a width bound for resolution refutations of random 3-CNFs given
by Ben-Sasson and Wigderson.

Theorem 7.8 (see [8]). There exists a constant c, so that for all n, and for all
ε ∈ [0, 1/2] with ∆ = nε, the following inequality holds:

PrF∈Fn,∆
3

[
wR(F ) ≤ cn 1−2ε

1+2ε

]
= o(1).

Lemma 7.9. There exists a constant c so that for any constants w and t with
w ≥ 2t + 2, for every n sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε and
p = n−1/t, then the following inequality holds:

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ cn

1−2ε
1+2ε

]
= o(1).

Proof. Let w, t, n, ε be given as above and set ∆ = nε and p = n−1/t.
Because the expected size of dom(ρ) is pn, the Chernoff bounds show that the

size of dom(ρ) exceeds 2pn = 2n1− 1
t with probability at most e−n1−1/t/4 = o(1) .

Let C be a fixed clause of width w that contains no opposite literals. When we
choose ρ ∈ Dp, the probability that the domain of ρ contains at least w − 2 variables
of C is at most

(
w
2

)
pw−2. Because w is a constant, this probability is O

(
n−(w−2)/t

)
.

Because w ≥ 2t + 2, this probability is O
(
n−2

)
. For any fixed w-CNF F on ∆n

many clauses, an application of the union bound shows that there is some clause with
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≥ w−2 of its variables in the restriction with probability O(∆n·n−2) = o(1). Because
this calculation holds for every w-CNF of ∆n many clauses, we have that

Pr
F∈Fn,∆

w
ρ∈Dp

[∃C ∈ F, |vars(C) \ dom(ρ)| ≤ 2] = o(1).

Fix a restriction ρ so that dom(ρ) ≤ 2n1− 1
t and let n′ = n−|dom(ρ)|. Conditioned

on the event that for all i ∈ [∆], |vars(Ci)\dom(ρ)| ≥ 3, F �ρ is subsumed by a random

3-CNF distributed as Fn′,∆
3 . (To see this, consider the distribution on 3-CNFs that

chooses three literals unset by ρ from each Ci.) Choose ε′ so that nε = (n′)ε
′
. Adding

up the conditional probabilities and applying Theorem 7.8 shows that

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ cn′

1−2ε′
1+2ε′

]
= o(1).

Because n′ ≥ n− 2n1−1/t, we may choose c′ so that

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ c′n

1−2ε
1+2ε

]
= o(1).

From Lemma 7.9, an averaging argument yields the following phrasing of Lemma
7.4.

Lemma 7.10. There exists a constant c so that for any constants w and t,
w ≥ 2t + 2, for every n sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε and
let p = n−1/t, then the following inequality holds:

PrF∈Fn,∆
w

[
Prρ∈Dp

[
wR(F �ρ) ≤ cn

1−2ε
1+2ε

]
≥ 1/2

]
= o(1).

8. Separation between Res(k) and Res(k+1). In this section we show that
for each constant k, there is an εk > 0 and a family of unsatisfiable CNFs which have
polynomial-size Res(k + 1) refutations but which require size 2n

εk to refute in Res(k).
The unsatisfiable clauses are a variation of the graph ordering tautologies [19, 9].

Definition 8.1. Let G be an undirected graph. For each vertex u of G, let N(u)
denote the set of neighbors of u in G. For each ordered pair of vertices (u, v) ∈ V (G)2,
with u 	= v, let there be a propositional variable Xu,v.

The graph ordering principle for G, GOP (G), is the following set of clauses:
(1) The relation X is transitive: for all u, v, w ∈ V (G), Xu,v ∧Xv,w → Xu,w.
(2) The relation X is antisymmetric: for all u, v ∈ V (G) with u 	= v, ¬Xu,v ∨
¬Xv,u.

(3) There is no locally X-minimal element: for every u ∈ V (G),
∨

v∈N(u)Xv,u.

The k-fold graph ordering principle of G, GOP k(G), is obtained by replacing each
variable Xu,v by a conjunction of k variables, X1

u,v, . . . , X
k
u,v, and then using the

distributive rule and DeMorgan’s law to express this as a set of clauses.
Notice that for a graph G on n vertices with maximum degree d, the principle

GOP (G) consists of O(n3) many clauses each of width at most max{3, d}. Therefore,
for any graph G on n vertices with maximum degree d, the principle GOP k(G) has
size O(n3kd).

It is readily shown that, for any graph G, the principle GOP (G) has polynomial-
size resolution refutations. Furthermore, these refutations can be transformed into
Res(k + 1) refutations of GOP k+1(G), as shown in Lemma 8.4. On the other hand,



1190 NATHAN SEGERLIND, SAM BUSS, AND RUSSELL IMPAGLIAZZO

we will also prove that Res(k) refutations of GOP k+1(G) require exponential size for
certain graphs.

Theorem 8.2. Let k be a positive integer. There exist constants c > 0, εk > 0
and a family of graphs G on n vertices (for n sufficiently large) with maximum degree
c log n so that Res(k) refutations of GOP k+1(G) require size at least 2Ω(nεk ).

8.1. The upper bounds. We build Res(k) refutations for GOP k(G) from res-
olution refutations of GOP (G).

The resolution refutation of GOP (G) is a slight variation of the resolution refu-
tation of GTn [19, 9].

Lemma 8.3. Let G be an n vertex graph. There is a resolution refutation of
GOP (G) of size O(n3).

Proof. To construct the resolution refutation of GOP (G), we iteratively derive
the formulas

∨
i∈[l,n]
i�=j

Xi,j for all i, j with 1 ≤ l ≤ j ≤ n. The clauses
∨

i∈[n]
i�=j

Xi,j are

derived by weakening the hypotheses. We proceed in stages as l ranges from 1 up to
n. At stage l, for j = l, we have

∨
i∈[l+l,n]Xi,l. For j 	= l, we resolve

∨
i∈[l+1,n]Xi,l

with the transitivity axioms ¬Xi,l ∨¬Xl,j ∨Xi,j to obtain ¬Xl,j ∨Xj,l

∨
i∈[l+1,n]

i�=j
Xi,j .

This clause is resolved with ¬Xl,j ∨ ¬Xj,l and
∨

i∈[l,n]
i�=j

Xi,j to obtain
∨n

i=l+1Xi,j . At

stage n, with j = n, we have derived the empty clause. This refutation clearly has
size O(n3).

Lemma 8.4. For each k, and for every G with n vertices and degree at most
d ≥ 3, GOP k(G) has a Res(k) refutation of size O(n3kd).

Proof. Let τ be the operation that replaces Xu,v by
∧k

i=1X
i
u,v and ¬Xu,v by∨k

i=1 ¬Xi
u,v.

Let Γ be the size O(n3) resolution refutation of GOP (G) given above, and remove
all of its weakening inferences. If we apply the transformation τ to the refutation, we
obtain a Res(k) refutation of τ(GOP (G)).

From the clauses of GOP k(G) we can derive the k-DNFs of τ(GOP (G)) by a
sequence of O(kd) many AND-introduction inferences per formula. Thus, we have a
Res(k) refutation of GOP k(G) of the claimed size.

8.2. Random restrictions. In this subsection we define a distribution on par-
tial assignments so that i-DNFs with high cover number are satisfied with high prob-
ability. The idea is to randomly color the graph with 4k many colors, and then,
between vertices u and v of distinct color classes, uniformly choose an assignment to
X1

u,v, . . . , X
k+1
u,v , X

1
v,u, . . . , X

k+1
v,u which makes both

∧k+1
i=1 X

i
u,v and

∧k+1
i=1 X

i
v,u false.

Definition 8.5. Let k ≥ 1 be given. Let G be a graph. The distribution Pk+1(G)
on partial assignments ρ to the variables of GOP k+1(G) is given by the following
experiment.

For each (u, v) ∈ V (G)2, let σu,v
ρ be chosen uniformly among 0, 1 assignments to

X1
u,v, . . . , X

k+1
u,v so that for at least one i ∈ [k + 1], σu,v

ρ (Xi
u,v) = 0.

Select a random coloring of V (G) by 4k many colors, cρ : V (G)→ [4k].

The partial assignment, ρ, is defined as

ρ =
⋃

(u,v)∈V (G)2

cρ(u)�=cρ(v)

σu,v
ρ .
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The auxiliary total assignment, σρ, is defined as

σρ =
⋃

(u,v)∈V (G)2

σu,v
ρ .

If we let Bρ be the set of edges which are bichromatic under the coloring cρ, then
GOP k+1(G) �ρ is GOP k+1(G \ Bρ). Moreover, we have the following lemma, which
the reader can easily check.

Lemma 8.6. Let G be a graph. Let ρ ∈ Pk+1(G) be given. Let Bρ be the set of
edges of G that are bichromatic under cρ. Let G1, . . . , Gm be the connected components
of G \Bρ.

GOP k+1(G) �ρ=
m⋃
j=1

GOP k+1(Gj).

Formulas with high cover number contain many variable-disjoint terms, but the
events of satisfying these terms with ρ ∈ Pk+1(G) are not necessarily independent.
To obtain independence, we look at the pairs of vertices involved with the literals of
the terms. Remember that in the definition of GOP (G), there are no variables Xu,u.

Definition 8.7. Let Xi
u,v be a variable of GOP k+1(G). The underlying pair of

Xi
u,v is the set {u, v}. The underlying ordered pair of Xi

u,v is (u, v). Let T be a term.
The set of vertex pairs of T , PT , is defined as

PT = {{u, v} | {u, v} is the underlying pair of a variable in T}.
The set of vertices of T , ST , is defined as ST =

⋃
PT .

We use combinatorial sunflowers to obtain independence between the events of
satisfying terms of an i-DNF with high cover number. To guarantee that such a
system exists, we apply the Erdös–Rado lemma.

Definition 8.8. A (p, l) sunflower is a collection of sets P1, . . . , Pp, each of size
≤ l, so that there exists a set C so that Pi ∩ Pj = C for all i, j ∈ [p], i 	= j. The set
C is called the core of the sunflower.

Theorem 8.9 (see [16, 22]). Let l be given. Let Z be a family of M distinct sets,

each with cardinality ≤ l. Z contains a (p, l) sunflower where p ≥ (Ml! ) 1
l .

Definition 8.10. Let T1, . . . , Tt be terms in the variables of GOP k+1(G). We
say that the terms are sufficiently independent if the following conditions hold:

1. For i, j ∈ [t], if i 	= j, then STi 	= STj .
2. The family {STi | 1 ≤ i ≤ t} forms a sunflower with core C.
3. For each i ∈ [t], each {u, v} ∈ PTi

, {u, v} 	⊆ C.
Lemma 8.11. Let T1, . . . , Tt be a sufficiently independent set of terms. The sets

PTi
, 1 ≤ i ≤ t, are disjoint.
Proof. Let i, j, 1 ≤ i < j ≤ t, be given and let C denote the core of the

sunflower. Suppose that {u, v} ∈ PTi ∩ PTj . We then have that {u, v} ⊆ STi ∩ STj ,
so {u, v} ⊆ C. Therefore, by the third property of sufficient independence, {u, v} 	∈
PTi

—a contradiction.
We begin the task of showing that a DNF with high cover number is likely to be

satisfied by a random restriction. The quality of our bounds is most affected by the use
of the sunflower lemma, and the particular constants we obtain at other points have
limited impact. Therefore, to conserve space and readability, we will not optimize
many of the probabilities involved.
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Lemma 8.12. Let k be given. There exist constants βk > 0 and ck > 0 so that for
every k-DNF F in the variables of GOP k+1(G), F contains a sufficiently independent

set of size at least βk(c(F ))
1
2k − ck.

Proof. F contains a set of s = c(F )/k many variable-disjoint terms, T1, . . . , Ts.
It is possible that STm = STl

for some m 	= l. However, because all terms have size at
most k, for each i, |STi

| ≤ 2k, and a set of ≤ 2k many vertices can be the underlying

set of fewer than
(
(k + 1)4k2

)k
many different variable-disjoint terms (since a variable

Xi
u,v is determined by an ordered pair (u, v) ∈ [ST ]2 and i ∈ [k+1]). Therefore, there

is a subcollection of s
((k+1)4k2)k

many variable-disjoint terms whose underlying sets of

vertices are distinct.
Because the underlying sets of vertices have size at most 2k, we can apply the

sunflower lemma to find s′ =
(

s
((k+1)4k2)k(2k)!

) 1
2k =

( c(F )

k((k+1)4k2)k(2k)!

) 1
2k

many terms

whose sets of underlying vertices form an (s′, 2k) sunflower. We rename these terms
T1, . . . , Ts′ .

Let C be the core of the sunflower ST1 , . . . , STs′ . Notice that |C| ≤ 2k. Call a
variable bad if both of its underlying vertices belong to C. There are fewer than 2k2

many unordered pairs of vertices contained in C, and each is the underlying pair of
exactly 2(k+1) many variables. Therefore, there are fewer than 2(k+1)·2k2 = 4k2(k+
1) many variables whose underlying vertices are both in C. The terms T1, . . . , Ts′ are
variable-disjoint, so each bad variable appears in at most one term, and when we
remove all terms containing a bad variable, we obtain a sufficiently independent set

of terms of size s′ − 4k2(k + 1) =
( c(F )

k(2k)!((k+1)4k2)k

) 1
2k − 4k2(k + 1).

Before we bound the probability of satisfying a DNF with high covering number,
we make a few observations.

Fact 1. Let T be a term, and let ρ ∈ Pk+1(G) be given. T �ρ= 1 if and only if the
following two events occur: (i) T �σρ

= 1, and (ii) for each {u, v} ∈ PT , cρ(u) 	= cρ(v).
For each term T in a Res(k) refutation of GOP k+1(G), because T contains at

most k literals, there is a nonzero chance that it will be satisfied by σρ when ρ is a
random restriction chosen according to Pk+1(G). This is made precise in the following

lemma. Recall that by construction,
∧k+1

i=1 X
i
u,v �σρ

= 0, so the lemma fails for terms
of size k + 1 (as it should, since we are separating Res(k + 1) from Res(k)). The
argument is similar to that in Lemma 4.4.

Lemma 8.13. Let T be a term of size at most k.

Prρ∈Pk+1(G)

[
T �σρ= 1

] ≥ 1

3k
.

Proof. Order the literals of T as l1, . . . , lk. For each j, 1 ≤ j ≤ k, if we condition
on the event that each l1, . . . , lj−1 is satisfied, then the probability of lj being satisfied

is at least 1
3 . This is because in the worst case, lj is a literal X

ij
u,v and the other literals

are Xi1
u,v, . . . , X

ij−1
u,v , and in this case, the probability that X

ij
u,v is satisfied by σρ is at

least 1
3 .

Lemma 8.14. Let G be a graph and let k be a positive integer. Let F be a
k-DNF which contains t sufficiently independent terms.

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
(

1− 1

3k22k

)t

.

Proof. Let T1, . . . , Tt be the sufficiently independent terms of F . Let C be the core
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of the sunflower ST1 , . . . , STt
. Fix a coloring of the vertices in the core, χ : C → [4k].

Condition on the event that cρ �C= χ.
We now lower-bound the probability that a given term T of the sufficiently inde-

pendent set is satisfied. First, we bound the probability that every underlying edge
of T is bichromatic. Note that by property (3) of sufficient independence, for all
{u, v} ∈ PT , {u, v} 	⊆ C, so it suffices to bound the probability that the vertices in
ST \ C receive distinct colors not in the range of χ. Therefore, the probability that
every pair in PT is bichromatic, conditioned on cρ �C= χ, is at least 1

22k . Because T

contains at most k literals, the probability that T �σρ
= 1 is at least 1

3k . These two

events are independent, so we have Prρ∈Pk+1(G) [T �ρ= 1 | cρ �C= χ] ≥ 1
22k

1
3k .

Now we show that (when we condition on the event that cρ �C= χ) the events
Ti �ρ= 1 are totally independent. Because the terms share no underlying pairs, the
events Ti �σρ

are independent of the satisfaction of other terms. The events “for each
{u, v} ∈ PTi , cρ(u) 	= cρ(v)” are independent of the satisfaction of other terms. This
is because once we condition on the event cρ �C= χ, the probability that every pair
of PTi

is bichromatic under cρ depends only on the values that cρ takes on STi
\ C

and, for all i 	= j, STi
∩ STj

= C.
Combining the results of the previous two paragraphs shows that

Prρ∈Pk+1(G) [F �ρ 	= 1 | cρ �C= χ] ≤ (1− 1/3k22k
)t
.

Because this holds for all colorings χ : C → [4k], we have that

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ (1− 1/3k22k
)t
.

We now have the lemma relating cover number to the probability that a restriction
satisfies a k-DNF.

Lemma 8.15. For each k there exist positive constants δ, γ, and d so that for
any k-DNF F ,

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ d2−δ(c(F ))γ .

Proof. By Lemma 8.12, F contains a sufficiently independent set of size at least
βk(c(F ))

1
2k − ck.

By Lemma 8.14,

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
(

1− 1

3k22k

)βk(c(F ))
1
2k −ck

.

Because k is fixed, this concludes the proof with δ = −βk log
(
1− 1

3k22k

)
, γ =

1/2k, and d =
(
1− 1

3k22k

)−ck .

8.3. Width lower bound for resolution. In this subsection we show that
for each n, if G is a graph on n vertices satisfying a certain expansion-like property,
then wR(GOP k+1(G)) = Ω(n). Combining this with a probabilistic calculation will
show that there exist graphs G so that for ρ ∈ Pk+1(G), with probability at least 1

2 ,
wR(GOP k+1(G) �ρ) = Ω(n).

The proof of the resolution width bound is similar to the one used by Bonet and
Galesi for the GTn principles [9]. They worked with complete graphs, but we do not
because the principles GOP 2(Kn) have sizes in excess of 2n. Fortunately, for the
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proof technique to work, G need not be complete but instead must have the following
property.

Definition 8.16. Let G be an undirected graph on n-vertices. We say that G
is ε-neighborly if, between every pair of disjoint sets of vertices, A,B ⊆ V (G) with
|A|, |B| ≥ εn, there exists an edge joining A and B.

We now show that resolution refutations of GOP (G) require large width when G
is a connected, neighborly graph.

Lemma 8.17. If G is a connected graph of n vertices that is ε-neighborly, then
every resolution refutation of GOP (G) contains a clause of width

(
1−3ε

6

)
n.

Proof. We begin by defining the “measure” of a clause. A critical truth assign-
ment, or cta, is an assignment to the variables of GOP (G) which forms a total order
on V (G). For each v ∈ V (G), let Cv :=

∨
u∈N(v)Xu,v, and for each I ⊆ V (G),

CI :=
∧

v∈I Cv. Let C be a clause. The measure of C, µ(C), is the minimum car-
dinality of a set I ⊆ V (G) so that for every cta α, if α satisfies CI , then α satisfies
C.

Notice that if a clause A∨B is the resolvent of A∨x and B∨¬x, then µ(A∨B) ≤
µ(A ∨ x) + µ(A ∨ ¬x). Because of this, we say that µ is subadditive with respect to
resolution. If A ⊆ B, then we have that µ(B) ≤ µ(A), so µ is decreasing with respect
to subsumption.

We now show that µ(∅) = n. Suppose otherwise, and let I be a subset of V (G)
with |I| ≤ n − 1. Choose one vertex v0 ∈ V (G) \ I and let α be a total order which
arises by taking a depth-first search of G starting with v0. Clearly α satisfies CI but
α does not satisfy ∅.

Because every clause of GOP (G) has measure either 0 or 1, the empty clause
has measure n, and the measure is both subadditive with respect to resolution and
decreasing with respect to subsumption, there must exist a clause C so that n

3 ≤
µ(C) ≤ 2n

3 . Suppose for the sake of contradiction that w(C) < n−3εn
6 .

Let I be a minimal subset of V (G) so that for every critical truth assignment α,
if α satisfies CI , then α satisfies C. Let J = V (G) \ I. Notice that |I|, |J | ≥ n

3 .
Let S be the set of vertices mentioned by variables of C. Clearly, |S| ≤ 2w(C) <

2
(
n−3εn

6

)
= n−3εn

3 . Therefore, |I \ S| ≥ n
3 − n−3εn

3 = εn. Similarly, |J \ S| ≥ εn.
Because G is ε-neighborly, we may choose u ∈ I \S and v ∈ J \S so that {u, v} is an
edge of G.

Let α be a cta so that α satisfies CI\{u}, but α does not satisfy Cu and α does
not satisfy C. Let β be the cta which arises by moving v to the front of the order
given by α. For w ∈ I, w 	= u, β satisfies Cw because every predecessor of w in α is
a predecessor of w in β. For u, β satisfies Cu because β satisfies Xv,u. However, β
does not satisfy C because α does not satisfy C and no variable mentioning u or v
appears in C. Therefore, β satisfies CI but β does not satisfy C—a contradiction to
the choice of I.

A resolution refutation of GOP k(G), k ≥ 1, can be transformed into a resolution
refutation of GOP (G) by setting the appropriate variables to 1. Applying a restric-
tion does not increase the width of a resolution refutation, so we have the following
corollary.

Corollary 8.18. If G is a connected graph of n vertices that is ε-neighborly,
then for all k ≥ 1, wR(GOP k(G)) ≥ ( 1−3ε

6

)
n.

8.4. Robust graphs.
Definition 8.19. We say that a graph G is r-robust if for ρ selected at random

by Pk+1(G), with probability at least 3
4 , wR(GOP (G) �ρ) ≥ r.
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To guarantee that the restricted principle will require high width to refute, it
suffices that the graph obtained by deleting the bichromatic edges should consist of
large, neighborly connected components. Random graphs of degree Θ(logn) have this
property with high probability. This is shown in the following subsection.

Lemma 8.20. There exists a constant c so that for sufficiently large n, there
exists an n

96k -robust graph G on n vertices with degree at most c log n.

The proof of this lemma is a standard probabilistic argument. The reader may
skip its proof in section 8.4.1, and move directly to the proof of the lower bound in
section 8.5.

8.4.1. Demonstration of robust graphs. An easy probabilistic argument
shows that with very high probability, a random graph of expected degree Θ((1/ε) log n)
is almost surely ε-neighborly.

Lemma 8.21. Let n and d be positive integers so that d ≤ n and let p = d/n. Let
Gn,p be the distribution on graphs on n vertices in which every edge is included with

independent probability p. With probability ≤ e2εn(1+ln(1/ε))−dε2n, a graph selected
according to Gn,p is not ε-neighborly.

Proof. There are fewer than
(
n
εn

)2 ≤ (
en
εn

)2εn
= e2εn(1+ln(1/ε)) many pairs of

disjoint sets of εn many vertices. Each such pair has a chance of at most (1− p)ε2n2

of being unconnected. However, (1− p)ε2n2

= (1− d
n )

ε2n2

≤ e−dε2n, so by the union

bound the probability is at most e2εn(1+ln(1/ε))e−dε2n = e2εn(1+ln(1/ε))−dε2n.

We now show that a random graph will probably have each component large and
neighborly if we randomly partition it into vertex-induced subgraphs.

Lemma 8.22. For all ε > 0 and all integers k ≥ 1, there exists a constant c so
that for sufficiently large n, there exists graph G with ∆(G) ≤ 2c log n so that upon
the random partition of G into 4k many vertex-induced subgraphs, with probability at
least 1

2 , each component has size at least n/8k and is ε-neighborly.

Proof. Let p = c logn
n . We will solve for the value of c at the end. Consider

the following experiment: Select a graph G according to the distribution Gn,p, and
independently color each vertex with one of 4k colors. Then remove all bichromatic
edges to form 4k vertex induced-subgraphs, G1, . . . , G4k.

Let P be the probability that G has a vertex of degree > 2c log n, or that one of
the induced subgraphs has size < n

8k , is disconnected, or is not ε-neighborly. We now
bound this probability.

Consider the probability that G has a vertex of degree ≥ 2c log n. By the Chernoff
bounds, the probability of any one vertex having degree in excess of 2p(n − 1) is no
more than e−p(n−1)/4 = e−c(log n)(n−1)/4n. Therefore, the probability of there existing
a vertex with degree in excess of 2p(n− 1) is no more than ne−c(log n)(n−1)/4n.

The Chernoff bounds also allow us to bound the probability that any of the Gi’s
contain too few vertices. The probability that a given color class of the partition
contains fewer than 1

2 · n
4k = n

8k vertices is bounded by e−
n

64k .

Once we condition upon all pieces of the partition containing at least n
8k vertices,

we can bound the probability that any induced subgraph is disconnected. Consider
a fixed set of s ≥ n

8k many vertices, and condition upon the event that those vertices
receive the same color in the partition. Each edge internal to the set is included with

probability c logn
n = (cs/n) log n

s ≥ (c/8k) log s
s . By a standard result on the connectivity

of random graphs (cf. [27]), each color class is disconnected with probability bounded
by O

(
1/n(c/8k)−1

)
.
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Finally, we consider the probability that each of the componentsGi is ε-neighborly.
For a fixed set of s ≥ n

8k vertices, if we condition on the event that set forms a compo-

nent after partition, each internal edge is included with probability c log n
n ≥ (c/8k) log s

s .
By Lemma 8.21, that means that the component is not ε-neighborly with probability
at most e2εs(1+ln(1/ε))−(c/8k)(log s)ε2s = e−Ω(n log n).

Therefore,

P ≤ ne−c(log n)(n−1)/4n + 4ke−
n

64k +O
(
4k/n(c/8k)−1

)
+ e−Ω(n log n).

For a sufficiently large constant c, dependent only on k and ε, this is below 1
4 .

Therefore, by an averaging argument on the edge choices, there exists a graph G
of maximum degree ≤ 2c log n so that upon random partition of its vertices into 4k
color classes, its induced subgraphs are each connected, of size ≥ n

8k , and ε-neighborly
with probability ≥ 3

4 .
We now prove Lemma 8.20.
Proof. Using Lemma 8.22, choose c so that for sufficiently large n, there exists

graph G so that upon the random partition of G into 4k many vertex-induced sub-
graphs, with probability at least 3

4 , each component has size at least n/8k and is
( 1
6 )-neighborly. Therefore we may choose ρ ∈ Pk+1(G) so that for each i ∈ [4k],

wR(GOP k+1(Gi)) ≥
(

n
8k

) ( 1−3 1
6

6

)
= n

96k (by Corollary 8.18).

Let Γ be a resolution refutation ofGOP k+1(G) �ρ. By Lemma 8.6, GOP k+1(G) �ρ
=
⋃4k

i=1GOP
k+1(Gi). However, for each i, j ∈ [4k], i 	= j, we have that GOP k+1(Gi)

and GOP k+1(Gj) are variable disjoint. Therefore, by Lemma 2.3, for some i ∈ [4k],
there exists a resolution refutation of GOP k+1(Gi) of width at most w(Γ). How-
ever, by the preceding paragraph, each GOP k+1(Gi) requires width n

96k to refute in
resolution. Therefore w(Γ) ≥ n

96k .

8.5. The lower bound.
Theorem 8.23. Let k be given. There exist constants c > 0, εk > 0 and a family

of graphs G on n vertices (for n sufficiently large) with maximum degree c log n so
that Res(k) refutations of GOP k+1(G) require size at least 2Ω(nεk ).

Proof. Let k be given. Apply Lemma 8.20 and choose c so that for sufficiently
large n, there exists a n

96k -robust graph G on n vertices with degree at most c log n.
By Lemma 8.15, there are positive constants d, δ, and γ so that for every k-DNF F
Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ d2−δ(c(F ))γ . By Corollary 3.4, with s = ( n

96k −1)/k, for every
k-DNF F ,

Prρ∈Pk+1(G) [h(F �ρ) > (n/96k − 1)/k] ≤ dk2−2δk((n/96k−1)/k)γ
k
/4k

.

Because d, γ, and δ depend only on k, there exists εk so that

Prρ∈D [h(F �ρ) > (n/96k − 1)/k] ≤ 1

2
2−nεk

.

Suppose for the sake of contradiction that Γ is a Res(k) refutation of GOPK+1(G)
of size less than 2n

εk . By the union bound, with probability at least 1
2 , every line

F of Γ has h(F �ρ) ≤ (n/96k − 1)/k. On the other hand, because G is (n/96k)-
robust, wR(GOP k+1(G) �ρ) ≥ n/96k with probability at least 3

4 . So we may choose
ρ ∈ Pk+1(G) so that wR(GOP k+1(G) �ρ) ≥ n/96k, and for all lines F of Γ, h(F �ρ
) ≤ (n/96k − 1)/k. By Corollary 5.2, GOP k+1(G) �ρ has a resolution refutation of
width at most n/96k − 1. This is a contradiction.
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9. Separating Res(k) and Res(k + 1) with constant width clauses. The
separation between Res(k + 1) and Res(k) given by Theorem 8.23 uses sets of clauses
whose maximum width is Θ(log n). In this section we present a similar result which
separates Res(k) and Res(k + 1) using constant width clauses.

Definition 9.1. Let X1, . . . , Xk be propositional variables. The formula Odd
(X1, . . . , Xk) is the k-DNF expressing that the number of satisfied variables of X1, . . . ,
Xk is odd. The formula Even (X1, . . . , Xk) is the k-DNF expressing that the number
of satisfied variables of X1, . . . , Xk is even.

The k-parity graph ordering principle of G, GOP⊕k(G), is obtained by replac-
ing each literal Xu,v by Odd (X1

u,v, . . . , X
k
u,v), replacing each literal ¬Xu,v by

Even (X1
u,v, . . . , X

k
u,v), and then using the distributive rule and DeMorgan’s law to

express this set of k-DNFs as a set of clauses.

Because every clause of GOP (G) contains at most max(d, 3) literals, every k-DNF
in GOP (G)[Xu,v ← Odd(X1

u,v, . . . , X
k
u,v),¬Xu,v ← Even(X1

u,v, . . . , X
k
u,v)] contains at

most dk variables. When such a DNF is expressed as a set of clauses using the
distributive rule, the set of clauses has size at most 2O(dk) and each clause has width
at most dk. Therefore, GOP⊕k(G) contains at most 2O(dk)n3 clauses, each of width
at most dk.

For any graph G, the polynomial-size refutations of GOP (G) can be transformed
into Res(k + 1) refutations of GOP⊕(k+1)(G). On the other hand, Res(k) refutations
of GOP⊕(k+1)(G) require exponential size for certain graphs.

Theorem 9.2. Let k be given. There exist constants d > 0, εk > 0 and a family
of graphs G on n vertices (for n sufficiently large) with maximum degree d so that
Res(k) refutations of GOP⊕(k+1)(G) require size at least 2Ω(εkn).

9.1. The upper bounds. We build Res(k) refutations for GOP⊕k(G) from
resolution refutations of GOP (G).

Definition 9.3. Let k be a positive integer and let X1, . . . , Xn be propositional
variables. Let X1

1 , . . . , X
k
1 , X

1
2 , . . . , X

k
n be new variables. Let σ be the mapping given by

σ(Xi) = Even(X1
i , . . . , X

k
i ) and σ(¬Xi) = Odd(X1

i , . . . , X
k
i ). For a clause C =

∨
i li,

let σ(C) =
∨

i σ(li).

Lemma 9.4. Let k be a constant. There exists a constant c (dependent only on
k) so that for all clauses A ∨Xi and B ∨ ¬Xi in the variables X1, . . . , Xn, there is a
derivation of σ(A) ∨ σ(B) from {σ(A) ∨ σ(Xi), σ(B) ∨ σ(¬Xi)} of size ≤ c.

Proof. By the completeness of Res(k), there is a Res(k) refutation of the pair of
k-DNFs {Even(X1, . . . , Xk),Odd(X1, . . . , Xk)}. Let c be the minimum size of such
a refutation. Because σ(Xi) = Odd(X1

i , . . . , X
k
i ) and σ(¬Xi) = Even(X1

i , . . . , X
k
i ),

there is a derivation of σ(A)∨σ(B) from {σ(A)∨σ(Xi), σ(B)∨σ(¬Xi)} of size greater
than or equal to c.

Lemma 9.5. For each k, there exists a constant c so that for every G with
n vertices and degree at most d ≥ 3, GOP⊕k(G) has a Res(k) refutation of size
2O(dk)n3.

Proof. With the repeated application of AND-introduction inferences, σ(GOP (G))
can be derived fromGOP⊕k(G) in 2O(dk)n3 many inferences. By Lemma 8.3, GOP (G)
has a refutation of size O(n3) so by Lemma 9.4, σ(GOP (G)) has a Res(k) refutation
of size O(cn3). Therefore, GOP⊕k(G) has a refutation of size 2O(dk)n3.

9.2. Random restrictions.

Definition 9.6. Let k ≥ 1 be given, and let G be a graph. The distribution
Pk+1(G) on partial assignments ρ to the variables of GOP⊕(k+1)(G) is given by the
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following experiment:
For each (u, v) ∈ V (G)2, choose i ∈ {1, . . . , k + 1} uniformly and independently.

For each j ∈ {1, . . . , k}, j 	= i, set Xj
u,v to 0 or 1, uniformly and independently.

Lemma 9.7. Let k be given; let F be a k-DNF in the variables of GOP⊕(k+1)(G).
There exist constants δ > 0, dependent only on k, so that Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
2−δ·c(F )

Proof. We will say that two terms T and T ′ are underlying-variable-disjoint if
whenever Xi

u,v ∈ T and Xi′
u′,v′ ∈ T ′, we have that (u, v) 	= (u′, v′). Because F is a

k-DNF, it contains at least c(F )/k(k + 1) many underlying-variable-disjoint terms.
Each of these terms is satisfied with independent probability at least 1/4k (consider
setting each variable of a term in turn, the probability that a variable is set to 0
or 1 is always greater than or equal to 1/(k + 1 − (k − 1)) = 1/2). Therefore,
Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ (1− 1/4k)c(F )/k(k+1).

When we apply a random restriction from Pk+1(G) to GOP⊕(k+1)(G), we do
not necessarily obtain an instance of GOP (G). It is possible that some of the edge
variables will become inverted. However, inverting some variables does not affect the
width required for a resolution refutation, and we may apply Lemma 8.17.

Corollary 9.8. If G is a connected graph that is ε-neighborly, then for all k ≥ 1
and for all ρ ∈ Pk+1(G), GOP⊕(k+1)(G) �ρ requires width

(
1−3ε

6

)
n.

9.3. The lower bound.
Theorem 9.9. Let k be given. There exist constants d > 0, εk > 0 and a family

of graphs G on n vertices (for n sufficiently large) with maximum degree c so that
Res(k) refutations of GOP⊕(k+1)(G) require size at least 2Ω(εkn).

Proof. Let k be given. Set p = 15 ln 6/n. Consider a random graph selected
according to Gn,p; by Lemma 8.21, G is almost certainly 1

6 -neighborly, and by the
Chernoff bounds, it has maximum degree ≤ 2pn = 26 ln 6. Let G be a graph that is
both 1

6 -neighborly and has maximum degree ≤ 26 ln 6.

By Lemma 9.7, we have that for every k-DNF F , Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ 2−δ·c(F ).
Now apply Corollary 3.4 with s = (n/12− 1)/k, d = 1. For every k-DNF F ,

Prρ∈Pk+1(G) [h(F �ρ) > (n/12− 1)/k] ≤ k2−2δk((n/12−1)/k)/4k

.

Because k is fixed and δ depends only on k, there exists εk so that

Prρ∈D [h(F �ρ) > (n/12− 1)/k] < 2−εkn.

Suppose for the sake of contradiction that Γ is a Res(k) refutation of GOP⊕(k+1)

(G) of size less than 2εkn. By the union bound, with probability greater than 0, every
line F of Γ has h(F �ρ) ≤ (n/12 − 1)/k. By Corollary 5.2, GOP k+1(G) �ρ has a
resolution refutation of width at most n/12− 1. On the other hand, because G is 1

6 -

neighborly, wR(GOP (G)) ≥ ( 1−3(1/6)
6

)
n = n/12, and therefore w1R(GOP⊕(k+1)(G)

�ρ) ≥ wR(GOP (G)) ≥ n/12− 1. This is a contradiction.

10. Conclusions and open problems. Switching with small restrictions seems
to be a promising technique for analyzing the power of bottom fan-in in proof and
circuit complexity. Our results could not have been obtained by switching with larger
restrictions. For example, the lower bounds for random w-CNFs could not be proved
using restrictions that set a constant fraction of the variables because some clause of
the hypothesis would be falsified with high probability. Also, this method is relatively
easy to apply because you do not have to re-prove the switching lemma for every lower
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bound, but only check that the restrictions in question are likely to satisfy k-DNFs
with high cover number.

However, switching with small restrictions still suffers from the limitations of
random restriction method. In particular, it seems ineffective against random 3-
CNFs and very weak pigeonhole principles. The only techniques for understanding
the refutation complexity of such CNFs seem specific to resolution [8, 7, 30, 31].
Understanding the refutation complexity of these principles in Res(k) is a necessary
step before understanding them in more powerful systems, and the Res(k) systems
might be simple enough for the development of new techniques.

With this in mind, we suggest the following open problems as particularly relevant:
(1) Do random 3-CNFs almost surely require exponential size refutations in Res(k)
for all k? (2) Does there exist a family of 3-CNFs that require exponential size
to refute in Res(k) but have (quasi-)polynomial-size proofs in Res(k + 1)? (3) Do
Res(2) refutations of PHPm

n require size exponential in n for all m? (4) Do there
exist polynomial-size depth two Frege refutations PHP 2n

n ? (5) Let 0 < ε ≤ 1/2.

Do there exist subexponential-size refutations for PHPn+n1−ε

n in Res(polylog(n))?
or even in depth two Frege? (6) Does there exist a family of CNFs that require
exponential-size refutations in Res(polylog(n)) but have (quasi-)polynomial-size depth
two Frege refutations? (7) For given ε < δ ≤ 1, does there exist a family of CNFs
that require exponential-size refutations in Res(nε) but have (quasi-)polynomial-size
Res(nδ) refutations?
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[23] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic and Complexity Theory, Cambridge

University Press, Cambridge, UK, 1995.
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Abstract. Local search algorithms for combinatorial optimization problems are generally of
pseudopolynomial running time, and polynomial-time algorithms are not often known for finding
locally optimal solutions for NP-hard optimization problems. We introduce the concept of ε-local
optimality and show that, for every ε > 0, an ε-local optimum can be identified in time polynomial
in the problem size and 1/ε whenever the corresponding neighborhood can be searched in polynomial
time. If the neighborhood can be searched in polynomial time for a δ-local optimum, a variation of
our main algorithm produces a (δ+ε)-local optimum in time polynomial in the problem size and 1/ε.
As a consequence, a combinatorial optimization problem has a fully polynomial-time approximation
scheme if and only if the problem of determining a better neighbor in an exact neighborhood has a
fully polynomial-time approximation scheme.
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1. Introduction. A combinatorial optimization problem Π consists of a collec-
tion of instances (F , c), where the set F of feasible solutions is a family of subsets of
a finite ground set E = {1, . . . , n}. The objective function c : E → Q+ assigns a non-
negative cost to every feasible solution S ∈ F through c(S) :=

∑
e∈S ce.

1 We assume
that Π is closed under componentwise scaling of objective function coefficients; i.e., if
(F , c) ∈ Π, then (F , c′) ∈ Π for all c′ ∈ Q+. For technical reasons, let us also assume
that c(S) �= 0 for S ∈ F . The goal is to find a globally optimal solution, i.e., a feasible
solution S∗ such that c(S∗) ≤ c(S) for all S ∈ F .2 The traveling salesperson problem
(TSP) or the minimum spanning tree problem are typical examples of combinatorial
optimization problems (see, e.g., Lawler (1976); Papadimitriou and Steiglitz (1982);
Lawler et al. (1985); Cook et al. (1998); Korte and Vygen (2002)).

Many combinatorial optimization problems are NP-hard, and one popular practi-
cal approach for attacking them is using local search strategies, which presupposes the

∗Received by the editors July 8, 2003; accepted for publication (in revised form) April 27, 2004;
published electronically July 20, 2004. The work of the first and third authors was partially supported
by ONR contract N00014-98-1-0317. An extended abstract of this paper appeared in the Proceedings
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2004, pp. 580–589.
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1Formally, we should point out that we focus on linear combinatorial optimization problems as
opposed to “general” combinatorial optimization problems, in which the cost of a feasible solution is
not necessarily the sum of the cost coefficients of its elements. In other words, the class of problems
we are looking at here is equivalent to that of 0/1-integer linear programming problems.

2Although we restrict the following discourse to minimization problems, all results extend in a
natural way to the case of maximization problems.
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concept of a neighborhood. A neighborhood function for an instance (F , c) of a com-
binatorial optimization problem Π is a mapping NF : F → 2F . Note that we assume
that NF does not depend on the objective function c. For convenience, we usually
drop the subscript and simply write N . For a feasible solution S, N(S) is called the
neighborhood of S. We assume that S ∈ N(S). A feasible solution S̄ is said to be
locally optimal with respect to N if c(S̄) ≤ c(S) for all S ∈ N(S̄). The local search
problem is that of finding a locally optimal solution. Classic neighborhood functions
include the k-opt neighborhood for the TSP (Lin (1965)), the flip neighborhood for
Max Cut and Max 2Sat (Schäffer and Yannakakis (1991)), and the swap neighbor-
hood for the graph partitioning problem (Kernighan and Lin (1970)). However, the
class of problems that we are considering here also includes neighborhoods of expo-
nential size, such as, for the TSP, the twisted sequences neighborhood, the pyramidal
tours neighborhood, the permutation tree neighborhood, neighborhoods based on par-
tial orders, and neighborhoods induced by polynomial-time solvable special cases. We
refer the reader to Deineko and Woeginger (2000), Ahuja et al. (2002), and Gutin,
Yeo, and Zverovitch (2002) for a detailed description of these neighborhood functions.

Roughly speaking, a local search algorithm sets out with an initial feasible solution
and then repeatedly searches neighborhoods to find better and better solutions until
it reaches a locally optimal solution. Figure 1.1 gives a generic description of the
standard local search algorithm, which is sometimes also called iterative improvement.

Step 1: Compute a feasible starting solution S̄;
Step 2: while S̄ is not locally optimal do

Choose S ∈ N(S̄) such that c(S) < c(S̄);
S̄ := S;

Step 3: Output S̄.

Fig. 1.1. Standard local search algorithm.

Computational studies of local search algorithms and their variations have been
extensively reported in the literature for various combinatorial optimization prob-
lems (see, e.g., Johnson et al. (1989) and Johnson and McGeoch (1997) for studies of
the graph partitioning problem and the TSP, respectively). Empirically, local search
heuristics appear to converge rather quickly, within low-order polynomial time. Com-
pared to this wealth of information on empirical analysis, relatively little is known
about theoretical properties of this class of algorithms. Of course, if one first mul-
tiplies all cost coefficients with their smallest common denominator to make them
integer, the standard local search algorithm terminates in a pseudopolynomial num-
ber of iterations since it improves the objective function value by an integral amount
in each iteration.3 However, polynomial-time algorithms for computing a local op-
timum are in general not known. This is especially true for the above-mentioned
combinatorial optimization problems and neighborhoods. On the other hand, Lawler
(1976) constructed instances of the metric TSP such that the standard local search al-
gorithm with the 2-opt neighborhood takes an exponential number of iterations under
a particular pivoting rule. Chandra, Karloff, and Tovey (1999) extended this result
to k-opt for all fixed k > 2.

3Note that the scaling of rational coefficients to integers does not cause a superpolynomial blowup.
We henceforth assume without loss of generality (w.l.o.g.) that all cost coefficients ce for e ∈ E are
integers. An algorithm is pseudopolynomial if it is polynomial in the input dimension n and in
cmax := maxe∈E ce.
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Input: Objective function c : E → N and feasible solution S ∈ F .

Output: “Yes” if S is locally optimal with respect to c and N .

“No” and S′ if there exists S′ ∈ N(S) with c(S′) < c(S).

Fig. 1.2. Specification of the subroutine (oracle) ImproveN .

This discontenting situation prompted Johnson, Papadimitriou, and Yannakakis
(1988) to introduce the complexity class PLS (for polynomial-time local search). A
combinatorial optimization problem Π together with a given neighborhood functionN
belongs to PLS if (a) instances are polynomial-time recognizable and a feasible solu-
tion is efficiently computable, (b) the feasibility of a proposed solution can be checked
in polynomial time, and (c) neighborhoods can be searched efficiently. That is, there
is a polynomial-time algorithm that decides whether a given feasible solution is locally
optimal and, if not, computes a better solution in its neighborhood; see Figure 1.2 for
a detailed description of the input and output of this algorithm. Note that all com-
mon local search problems are in PLS, in particular the problems mentioned earlier.
The class PLS has its own type of reduction, which gives rise to the identification of
complete problems in that class. For instance, Max Cut and Max 2Sat with the
flip neighborhood, graph partitioning with the swap neighborhood, and TSP with the
Lin–Kernighan neighborhood are PLS-complete (Krentel (1990); Schäffer and Yan-
nakakis (1991); Papadimitriou (1992)), and so is TSP with the k-opt neighborhood
for some constant k (Krentel (1989)). In particular, if a local optimum can be found
in polynomial time for one of these problems, then a local optimum can be computed
in polynomial time for all problems in PLS. Unfortunately, it is unknown whether it
is hard to find a local optimum for a PLS-complete problem (but Johnson, Papadim-
itriou, and Yannakakis (1988) pointed out that this would imply NP = co-NP) or
whether this can be done in polynomial time.4

In light of this somewhat elusive situation, it is interesting to explore the possi-
bility of identifying approximately locally optimal solutions in polynomial time. We
therefore introduce the notion of an ε-locally optimal solution, which is to some ex-
tent related to the worst-case relative performance guarantee of an approximation
algorithm. We say that a feasible solution Sε to an instance of a combinatorial opti-
mization problem Π with neighborhood function N is an ε-local optimum if

c(Sε)− c(S)

c(S)
≤ ε for all S ∈ N(Sε)

for some ε > 0. Hence, while Sε is not necessarily a local optimum, it “almost” is. A
family of algorithms (Aε)ε>0 for Π is an ε-local optimization scheme if Aε produces an
ε-local optimum. If the running time of algorithm Aε is polynomial in the input size
and 1/ε, it is called a fully polynomial-time ε-local optimization scheme. In this paper,
we show that every combinatorial optimization problem with an efficiently searchable
neighborhood has a fully polynomial-time ε-local optimization scheme. In particular,
an ε-locally optimal solution can be computed in polynomial time for every problem

4Note that the negative results for the TSP mentioned at the end of the previous paragraph apply
only to the standard local search algorithm, as described in Figure 1.1. Actually, there exist instances
for every PLS-complete problem for which the standard local search algorithm takes exponential time,
regardless of the tie-breaking and pivoting rules used (Yannakakis (1997), Theorem 13).
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in PLS, including the PLS-complete problems and the problems with exponentially
sized neighborhoods mentioned above.

Related work. Ausiello and Protasi (1995) introduced the class GLO (for guar-
anteed local optima) of optimization problems that have the property that the ob-
jective function value of each local optimum is guaranteed to be within a constant
factor of that of a global optimum. Khanna et al. (1998) extended this notion to
nonoblivious GLO problems, which allow for a modification of the objective function
used to compute a local optimum. In either class, the underlying neighborhoods con-
tain all solutions of bounded Hamming distance from the current solution; moreover,
it is assumed that the number of distinct objective function values over the set of fea-
sible solutions is polynomially bounded. Hence, the standard local search algorithm
yields a locally optimal solution in polynomial time. In contrast, we do not make any
assumption on the objective function values or neighborhoods considered; we show
that an ε-local optimum can always be computed with a polynomial number of calls
to the Improve subroutine. On the other hand, while an ε-local optimum has nearly
the properties of a local optimum, its objective function value is not guaranteed to be
close to that of a global optimum. However, this is in general true for local optima as
well. For instance, Papadimitriou and Steiglitz (1977) showed that no local optimum
of an efficiently searchable neighborhood for the TSP can be within a constant factor
of the optimal value unless P = NP. Yet, whenever a combinatorial optimization
problem has an efficiently searchable neighborhood such that the value of each local
optimum is within a constant factor α ≥ 1 of that of a global minimum, then we can
compute in polynomial time an ε-local optimum of cost not worse than α + ε times
that of a global optimum. In other words, we give an (α+ε)-approximation algorithm
for any ε > 0.

Klauck (1996) studied the complexity of finding a solution whose objective func-
tion value is approximately as good as that of the worst local optimum by using a
restricted form of PLS-reductions. Completeness under this reduction implies that an
approximation of a local optimum cannot be achieved efficiently unless P = PLS. For
instance, 0/1-programming with the k-flip neighborhood and the TSP with the k-opt
neighborhood for constant k are complete under this reduction.

A neighborhood function N of a combinatorial optimization problem Π is exact if
every locally optimal solution with respect to N is also globally optimal. In this case,
our fully polynomial-time ε-local optimization scheme actually is a fully polynomial-
time approximation scheme (FPTAS). This remains true even if Improve already
outputs “Yes” when the current feasible solution is a δ-local optimum (and does so
in time polynomial in the input size and 1/δ for any δ > 0). Grötschel and Lovász
(1995) and Schulz, Weismantel, and Ziegler (1995) showed that if a combinatorial op-
timization problem has an exact neighborhood that can be searched efficiently (and
exactly), one can actually find an exact optimal solution efficiently. Schulz and Weis-
mantel (1999, 2002) discussed extensions of this result from 0/1-integer linear pro-
gramming problems (i.e., combinatorial optimization problems) to arbitrary integer
programs. However, none of the employed techniques can be extended to compute a
local optimum in polynomial time unless the neighborhood is exact. In fact, otherwise
P = PLS.

Fischer (1995) examined a different question, which implies that our main result
is best possible if one considers the class of algorithms that iteratively move from one
feasible solution to a feasible solution in its neighborhood: Given a feasible solution S
to an instance (F , c) of a combinatorial optimization problem Π and a number k
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in unary, does there exist a local optimum within k neighborhood steps of S? She
showed that this question is NP-complete for Max Cut and Max 2Sat under the
flip neighborhood and for the TSP under the 2-opt neighborhood, among others.

Our results. Apart from our main result presented above and discussed in more
detail in section 2 below, we offer various evidence in section 3 to show that this result
is indeed the “best possible.”

First, the fully polynomial-time ε-local optimization scheme produces an ε-locally
optimal solution by proceeding from one feasible solution to a solution in its neighbor-
hood, and so forth. In this sense, it is a typical local search algorithm. Fischer’s result
shows that one cannot hope to find a local optimum in polynomial time by proceeding
in this manner. Yet, an ε-local optimum can be determined in polynomial time. The
key is to modify the original objective function so as to make sufficient progress in a
relatively small number of steps. It is worth mentioning that our algorithm follows a
path of feasible solutions that is not necessarily monotone with respect to the original
objective function. In particular, it differs from a standard local search algorithm,
which always replaces the current solution with a neighboring solution of lower cost.

Second, we point out that any algorithm for computing a local optimum that
treats the neighborhood search and the feasibility check of PLS problems as oracles
must be in the worst case exponential in the input dimension. In other words, if there
exists a polynomial-time algorithm to compute a local optimum for a PLS-complete
problem, it must use problem-specific knowledge. In contrast, our algorithmic scheme
works for any combinatorial optimization problem so long as a feasible solution can
be efficiently computed; in particular, it treats the subroutine Improve as a black
box.

Third, we show that the existence of a family (Aε)ε>0 of algorithms that find
ε-local optima in time polynomial in the input size and log 1/ε implies the existence
of a polynomial-time algorithm for computing a local optimum, and we just argued
why this is impossible in our framework. Hence, the dependence of the running time
on 1/ε cannot be significantly improved. Furthermore, we prove that replacing the
relative error in the definition of an ε-local optimum with the absolute error would also
yield the existence of a polynomial-time algorithm for computing a local optimum.

Finally, in section 4 we present various extensions and variations of the main re-
sult, including more general integer linear programming problems and the new char-
acterization for when a combinatorial optimization problem has an FPTAS, which we
already described in the context of related results for exact neighborhoods. Moreover,
we discuss neighborhoods of polynomial size and efficiently searchable neighborhoods
with local optima guaranteed to be near-optimal.

2. A fully polynomial-time ε-local optimization scheme. In this section
we develop a polynomial-time algorithm to compute an ε-local optimum for a given
instance (F , c) with ground set E of a combinatorial optimization problem Π with
neighborhood function N .5 The algorithm starts with a feasible solution S0. We
then alter the element costs ce for e ∈ E according to a prescribed scaling rule to
generate a modified instance. Using local search on this modified problem, we look
for a solution with an objective function value (with respect to the original cost) that
is half that of S0. If no such solution is found, we are at a local optimum for the

5The algorithm presented here works for neighborhoods of any size, in particular exponential-sized
neighborhoods. Section 4.3 features a somewhat simpler algorithm for neighborhoods of polynomial
size, which are given explicitly.
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Input: Objective function c : E → N; subroutine ImproveN ; initial feasible solu-
tion S0 ∈ F ; accuracy ε > 0.

Output: Solution Sε ∈ F that is an ε-local optimum with respect to N and c.

Step 1: Let i := 0;

Step 2: Let K := c(Si), q :=
Kε

2n(1 + ε)
, and c′e :=

⌈
ce
q

⌉
q for e ∈ E;

Step 3: Let k := 0 and Si,k := Si;

Step 4: repeat

Call ImproveN (Si,k, c′);

if the answer is “No,” then

Let Si,k+1 ∈ N(Si,k) such that c′(Si,k+1) < c′(Si,k); set k := k + 1;

else Sε := Si,k; stop.

until c(Si,k) ≤ K/2;

Step 5: Let Si+1 := Si,k, set i := i+ 1 and goto Step 2.

Fig. 2.1. ε-local search algorithm.

modified problem and output this solution. Otherwise we replace S0 by the solution
of cost less than half, we call the latter one S1, and the algorithm is repeated. A
formal description of the algorithm is given in Figure 2.1. Note that the modification
of the cost coefficients in Step 2 merely amounts to rounding them up to the closest
integer multiple of q. Let us establish correctness first.

Theorem 2.1. The ε-local search algorithm produces an ε-local optimum.
Proof. The ε-local search algorithm terminates, which follows from the running

time analysis following this proof. Let Sε be the solution produced by the algorithm,
and let S ∈ N(Sε) be an arbitrary solution in its neighborhood. Let K and q denote
the corresponding values from the last execution of Step 2 of the algorithm. Note
that

c(Sε) =
∑
e∈Sε

ce ≤
∑
e∈Sε

⌈
ce
q

⌉
q ≤

∑
e∈S

⌈
ce
q

⌉
q ≤

∑
e∈S

q

(
ce
q

+ 1

)
≤
∑
e∈S

ce + nq = c(S) + nq,

where n = |E|. Here, the second inequality follows from the fact that Sε is locally
optimal with respect to c′. Together with c(Sε) ≥ K/2, this implies

c(Sε)− c(S)

c(S)
≤ nq

c(S)
≤ nq

c(Sε)− nq ≤
2nq

K − 2nq
= ε.

Let us now analyze the running time of the ε-local search algorithm. In each im-
proving move within the local search in Step 4 of the algorithm, the objective function
value (with respect to c′) is decreased by at least q units. Thus the number of calls
to Improve between two consecutive iterations of Step 2 is O(n(1 + ε)/ε) = O(n/ε).
Step 2 is executed at most log c(S0) times, where S0 is the starting solution. Thus
the total number of neighborhoods searched is O(n ε−1 log c(S0)). Therefore, if the
neighborhood N can be searched in polynomial time for an improving solution, we
have a fully polynomial-time ε-local optimization scheme. Note that the number of
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iterations includes the factor log c(S0), and hence the bound is not strongly polyno-
mial. However, it is possible to prove a strongly polynomial bound on the number
of iterations. For this, we make use of the following lemma, which Radzik (1993)
attributed to Goemans.

Lemma 2.2. Let d = (d1, . . . , dn) be a real vector and let y1, . . . , yp be vectors in
{0, 1}n. If, for all i = 1, . . . , p− 1, 0 ≤ d yi+1 ≤ 1

2 d yi, then p = O(n log n).
Note that the value of K at each execution of Step 2 is reduced at least by

half. Further, K is a linear combination of ce for e ∈ E and the coefficients in this
linear combination are from the set {0, 1}. Lemma 2.2 implies that Step 2 of the
ε-local search algorithm can be executed at most O(n log n) times. Thus the total
number of calls of Improve in Step 4 throughout the algorithm is O(ε−1 n2 log n).
If ζ(n, log cmax) is the time needed to search the neighborhood N for an improving
solution (i.e., the running time of Improve) and ξ(n) is the time needed to ob-
tain a feasible starting solution, the complexity of the ε-local search algorithm is
O(ξ(n)+ ζ(n, log cmax)n ε

−1 min{n log n, logK0}), where K0 := c(S0) is the objective
function value of the starting solution and cmax is the maximal value of an objective
function coefficient. The following theorem summarizes the preceding discussion.

Theorem 2.3. The ε-local search algorithm correctly identifies an ε-locally op-
timal solution of an instance of a combinatorial optimization problem in O(ξ(n) +
ζ(n, log cmax)n ε

−1 min{n log n, logK0}) time.
Thus if ζ(n, log cmax) and ξ(n) are polynomial, then the ε-local search algorithm

is a fully polynomial-time ε-local optimization scheme. Note that ζ(n, log cmax) and
ξ(n) are indeed polynomials of the input size for all problems in PLS.

Corollary 2.4. Every problem in PLS has a fully polynomial-time ε-local opti-
mization scheme.

The running time of the ε-local search algorithm can sometimes be improved
by exploiting the special structure of the underlying neighborhood. A neighbor-
hood function N generates a so-called k-opt neighborhood if S1, S2 ∈ N(S) implies
|(S1 \ S2) ∪ (S2 \ S1)| ≤ k, which is equivalent to bounding the Hamming distance
between the incidence vectors of S1 and S2 by k. For the k-opt neighborhood, by
choosing the parameter q := Kε

2k(1+ε) in the ε-local search algorithm, we still get an

ε-local optimum. Moreover, the number of calls of Improve between two consecutive
executions of Step 2 of this modified algorithm is O(ε−1) for fixed k. This brings down
the total number of such calls to O(ε−1 min{n log n, logK0}) and implies a running
time of O(ξ(n) + nkε−1 min{n log n, logK0}) for the ε-local search algorithm.

Similarly, if the considered combinatorial optimization problem possesses a 2-
approximation algorithm, one can use this algorithm to compute the starting solu-
tion S0. If such a solution is used as the starting solution, then the ε-local search
algorithm executes Step 2 only once and hence the total number of improving moves
is O(n ε−1). Consequently, the overall running time of the ε-local search algorithm
is O(ξ(n) + ζ(n, log cmax)n ε

−1), where ξ(n) now denotes the running time of the
2-approximation algorithm. In fact, whenever one has a feasible solution S0 for an
instance I such that c(S0) ≤ p(〈I〉)c(S∗) for some polynomial p of the input size 〈I〉,
then one can adapt the value of q to q := (Kε)/(n p(〈I〉)(1 + ε)) and the stopping
criterion of the main loop accordingly, so that the ε-local search algorithm computes
an ε-local optimum in O(n p(〈I〉)ε−1) iterations.

Arkin and Hassin (1998) applied a similar approach to that used in the ε-local
search algorithm to compute a local optimum in polynomial time in the context of
the weighted k-set packing problem. They considered a neighborhood for which the
value of each local optimum is within a certain factor of the value of a global optimum;
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hence, this approach, which they attributed to Rubinstein, leads to a polynomial-time
approximation algorithm. It has since been applied in related situations as well; see,
e.g., Arkin et al. (2002).

3. Negative results. In this section we present a collection of results that un-
derscore that neither the accuracy of the solutions produced by the ε-local search al-
gorithm nor its running time can be significantly improved unless additional, problem-
specific knowledge is used. Let us first argue that any algorithm to compute a local
optimum for a problem in PLS has to have exponential running time in the worst
case if the algorithms for checking feasibility and neighborhood search are oracles
completely hiding both the set of feasible solutions and the neighborhood structure.

Theorem 3.1. If the only available information on an instance (F , c) of a com-
binatorial optimization problem Π is the objective function vector c, a feasible solution
S0 ∈ F , a membership oracle, and a neighborhood search oracle Improve, then any
algorithm for computing a local optimum takes exponential time in the worst case.

Proof. Let the ground set be E = {1, 2, . . . , n}. The objective function coeffi-
cients are ci = 2i−1 for i = 1, 2, . . . , n. Let the nonempty subsets of E be labeled
S0, S1, . . . , S2n−2 such that c(S0) > c(S1) > · · · > c(S2n−2). Let A be an arbitrary
algorithm that computes a local optimum. Note that A can either call Improve with
a feasible solution and some objective function or check whether a particular solution
is feasible by asking the membership oracle. We show that A needs exponential time
in the worst case by exhibiting an adverse strategy. In fact, an adversary adapts the
set of feasible solutions and the neighborhood function to A’s sequence of questions
as follows. Whenever A asks the membership oracle whether a set Si is feasible, the
adversary answers “No” unless Si has been declared feasible earlier. On the other
hand, whenever A calls up Improve with a feasible solution Si and an objective
function vector c′, Improve returns Sj , where j > i is the smallest index for which
Sj has not been labeled infeasible. If no such j exists or c′(Sj) ≥ c′(Si), then Si is
locally optimal (with respect to c′). It is not difficult to see that A has to touch every
single subset before it can identify the unique minimum.

The importance of Theorem 3.1 relates to the fact that the ε-local search al-
gorithm requires only a subset of the information stated in the assumptions of this
theorem; in particular, it does not make use of the membership oracle.

We next note that finding an ε-local optimum of additive error ε with respect to
a given neighborhood structure is as hard as finding a local optimum with respect to
the same neighborhood structure. While its proof relies on a standard argument, the
result is still worth recording.

Observation 3.2. If there is an algorithm that for every instance (F , c) of a
combinatorial optimization problem Π with neighborhood N finds in polynomial time
a feasible solution Sε such that c(Sε) ≤ c(S) + ε for all S ∈ N(Sε) for some fixed
ε > 0, then there is a polynomial-time algorithm to find a local optimum.

Proof. Let (F , c) be an instance of Π, where w.l.o.g. c is an integer-valued function.
Create a new instance (F , c′) by setting c′e := (1+ε)ce for all elements e of the ground
set. Apply the given algorithm to the new instance and let S′ be the resulting solution.
Then c′(S′) − c′(S) ≤ ε for all S ∈ N(S′). Thus, c(S′) − c(S) ≤ ε/(ε + 1) < 1 for
all S ∈ N(S′). Since c is integer-valued, it follows that S′ is a local optimum for the
original instance.

The next result is somewhat similar to (Garey and Johnson (1979), Theorem 6.8)
except that we are discussing it in the context of local optimality.

Observation 3.3. If a combinatorial optimization problem Π has a fully poly-
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nomial-time ε-local optimization scheme (Aε)ε>0 such that the actual running time
of Aε is polynomial in the input size and log 1/ε, then there is a polynomial-time
algorithm that computes a local optimum.

Proof. Let (F , c) be an instance of Π, where w.l.o.g. c is an integer-valued function.
Choose ε := 1/(n cmax +1) and apply Aε. Note that its running time is polynomial in
the input size of the instance. If Sε is the solution returned by this algorithm, then
c(Sε) ≤ (1+ ε)c(S) < c(S)+1 for all S ∈ N(Sε). Hence, Sε is a local optimum.

4. Extensions and variants. We now discuss some extensions and variations
of the results of section 2 that range from approximation guarantees in the case of
exact neighborhoods, over simplifications of the ε-local search algorithm for explicitly
given neighborhoods of polynomial size, to replacing Improve with weaker oracles
and bounded integer programming problems.

0

0

0

0

0

0

1
1

1

11

1

1

2 3

4

5n

Fig. 4.1. A wheel on n + 1 nodes.

4.1. Exact neighborhoods. Recall that a neighborhood function N for a com-
binatorial optimization problem Π is exact if every local optimum is already globally
optimal. In view of this, one may be tempted to conjecture that the objective function
value of an ε-local optimum with respect to an exact neighborhood is also within a
factor of (1 + ε) of the value of a global optimum. However, this is not true as shown
by the following example.

Let G = (V,E) be a connected graph with edge weights ce for e ∈ E. Let F
be the family of all spanning trees of G. Hence, we are considering the minimum
spanning tree problem. For any tree T ∈ F , consider the neighborhood N(T ) that
consists of those spanning trees obtained from T by adding an edge e ∈ E \ T to T
and removing an edge f ∈ T from the induced elementary cycle. This is the 2-opt
neighborhood, which is known to be exact. Now choose G as a wheel (see Figure 4.1)
with node set {0, 1, . . . , n}. For each edge (0, i), i = 1, 2, . . . , n, of this wheel, assign
a cost of 1, and for each edge (i, i+ 1), i = 1, 2, . . . , n (where node n+ 1 is identified
with node 1), assign a cost of zero. The spanning tree T ε, which is a star rooted at
node 0, is a 1/(n− 1)-local optimum for any n ≥ 3. However, the Hamiltonian path
T ∗ = (0, 1, . . . , n) is a minimum spanning tree and c(T ε) − c(T ∗) = (n − 1)c(T ∗).
Thus, T ε is not a (1 + ε)-approximation for any ε < n− 1.

Still, for exact neighborhoods our fully polynomial-time ε-local optimization
scheme actually is an FPTAS, as the following theorem shows.

Theorem 4.1. If the neighborhood N of a combinatorial optimization problem Π
is exact, then the objective function value of the solution produced by the ε-local search
algorithm is within a factor of (1 + ε) of that of a global minimum.
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Proof. Let (F , c) be a given instance of Π. Let S∗ be an optimal solution and let Sε

be the solution produced by the algorithm. Let K, q, and c′ denote the corresponding
values from the last execution of Step 2 of the ε-local search algorithm. Since Sε is
locally optimal with respect to c′ and the neighborhood is exact, Sε is an optimal
solution for (F , c′). Thus,

c(Sε) ≤
∑
e∈Sε

⌈
ce
q

⌉
q ≤

∑
e∈S∗

⌈
ce
q

⌉
q ≤

∑
e∈S∗

q

(
ce
q

+ 1

)
≤c(S∗) + nq≤c(S∗) +

ε

1 + ε
c(Sε),

where the last inequality follows from the definition of q and the fact that c(Sε) ≥ K/2.
The result follows.

Theorem 4.1 implies that whenever a combinatorial optimization problem has an
exact neighborhood and an initial feasible solution is readily available, then the ε-local
search algorithm is a (1+ε)-approximation algorithm that calls Improve a polynomial
number of times. However, Grötschel and Lovász (1995) and Schulz, Weismantel, and
Ziegler (1995) showed that under these circumstances, one can actually compute an
optimal solution with a polynomial number of calls of Improve. Yet, one still obtains
an FPTAS even if the exact neighborhood can only be searched approximately, as we
are about to see next.

4.2. Approximate version of neighborhood search. Very large-scale neigh-
borhood (VLSN) search algorithms are local search algorithms using neighborhoods
of very large size; see Ahuja et al. (2002) for a survey. For many VLSNs of NP-hard
combinatorial optimization problems, the problem of finding an improving solution
is itself NP-hard. On the other hand, solutions produced by local search algorithms
using such huge neighborhoods could be of very high quality. To keep the complexity
of a VLSN algorithm manageable, approximation algorithms are often employed to
search an underlying neighborhood such that if the approximation algorithm fails to
find an improving move, the algorithm terminates, leaving an “approximate” local
solution. More precisely, instead of Improve, we may only have at our command a
subroutine δ-Improve, which solves the following problem:

Given an objective function vector c and a solution S ∈ F ,
find S′ ∈ N(S) such that c(S′) < c(S), or assert that S is a
δ-local optimum.

(4.1)

Naturally, finding a δ-local optimum efficiently, given an algorithm δ-Improve,
faces similar difficulties as the problem of finding a local optimum when an algo-
rithm Improve is provided. However, one can easily modify the ε-local search al-
gorithm so that it computes a (δ + ε)-local optimum in polynomial time. In fact,
if one uses δ-Improve in lieu of Improve and selects the scaling parameter q to
be q := Kε

2n(1+δ)(1+δ+ε) , the resulting algorithm produces a (δ + ε)-local optimum in

time O(ξ(n) + ψ(n, log cmax)n ε
−1 min{n log n, logK0}), where ψ(n, log cmax) is the

running time of δ-Improve. Hence, a (strongly) polynomial-time algorithm for solv-
ing (4.1) implies a (strongly) polynomial-time algorithm to compute a (δ + ε)-local
optimum for every ε > 0. In view of the results discussed in section 4.1, it is partic-
ularly interesting to note that in the case of an exact neighborhood, the existence of
a polynomial-time algorithm δ-Improve for all δ > 0 implies that the combinatorial
optimization problem possesses an FPTAS. Indeed, if we call (4.1) the augmentation
problem if N is exact (e.g., N(S) = F for all S ∈ F) and δ = 0, and a family of al-
gorithms δ-Improve (with running time polynomial in the input size and 1/δ for all
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δ > 0) a fully polynomial-time approximation scheme for the augmentation problem,
we can state the following result.

Theorem 4.2. A combinatorial optimization problem has a fully (strongly) poly-
nomial-time approximation scheme if and only if its corresponding augmentation prob-
lem has a fully (strongly) polynomial-time approximation scheme.

The proof of Theorem 4.2 is similar to that of Theorem 4.1.
Sometimes the objective function value of each local optimum is within a constant

factor of that of a global optimum. The class of problems with this property contains
the class GLO (Ausiello and Protasi (1995)). For instance, each local optimum of the
flip neighborhood for the Max Cut problem has value at least half that of an optimal
cut (Sahni and Gonzalez (1976)). The following theorem can be proved in a similar
manner to Theorem 4.1 by setting q := Kε

2nα(1+ε) in the ε-local search algorithm.

Theorem 4.3. Let Π be a combinatorial optimization problem with efficiently
searchable neighborhood function N such that every local optimum is within a constant
factor α ≥ 1 of the optimal value. Then there is an algorithm that computes a feasible
solution of cost at most α+ ε times that of an optimal solution in time polynomial in
the input size and 1/ε, for any ε > 0.

4.3. Polynomial-sized neighborhoods. The ε-local search algorithm is de-
signed to work for any local search problem for which an Improve (or δ-Improve)
oracle is available, regardless of the size or structure of the neighborhood and the
implementation of Improve. In particular, the ε-local search algorithm identifies
for the TSP and each of the following neighborhoods an ε-local optimum in poly-
nomial time: the twisted sequences neighborhood, the pyramidal tours neighbor-
hood, the permutation tree neighborhood, neighborhoods based on partial orders,
as well as neighborhoods induced by polynomial-time solvable special cases. While
all these exponential-sized neighborhoods can be searched efficiently (i.e., they have
polynomial-time improvement oracles), it is not known for any of them how to find
a local optimum in polynomial time (Deineko and Woeginger (2000); Ahuja et al.
(2002); Gutin, Yeo, and Zverovitch (2002)).

Input: Objective function c : E → N; neighborhood function N : F → 2F ; initial
feasible solution S ∈ F ; accuracy ε > 0.

Output: Solution Sε ∈ F that is an ε-local optimum with respect to N and c.

Step 1: while S is not ε-locally optimal do
Choose S′ ∈ N(S) satisfying c(S′) < c(S)/(1 + ε);
S := S′;

Step 2: return Sε := S.

Fig. 4.2. ε-local search algorithm for neighborhoods of polynomial size.

Nonetheless, neighborhoods frequently are of polynomial size and explicitly given,
like the k-opt neighborhood for the TSP (for fixed k), the flip neighborhood for Max

Cut and Max 2Sat, or the swap neighborhood for the graph partitioning problem.
In this case, one can give a simpler algorithm for computing an ε-local optimum;
see Figure 4.2. Note that Step 1 can be realized by an exhaustive search of the
neighborhood of S. Obviously, the running time of this algorithm is polynomial in the
input size and 1/ε. By using an appropriately modified version of Lemma 2.2, one can
actually show that the running time depends only on the input dimension n and 1/ε.
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However, this simpler algorithm has some drawbacks compared to the general ε-local
search algorithm, even if one limits this comparison to problems with explicitly given
neighborhoods of polynomial size. In particular, neither Theorem 4.1 nor Theorem 4.2
can be proved with its help. In fact, for the minimum spanning tree example described
in Figure 4.1, the simpler algorithm with accuracy ε ≥ 1/(n − 1) would terminate
with the initially given solution T ε, although the cost of this solution is n times that
of an optimal solution. In contrast, the original ε-local search algorithm would return
an optimal solution in this case (and a (1 + ε)-approximate solution in general).

4.4. Weaker version of neighborhood search. In the context of global opti-
mization, Schulz, Weismantel, and Ziegler (1997) pointed out that the requirements on
the improvement oracle can be somewhat weakened. Interestingly, this extension also
works in the context of local optimization, as we will show now. For that, we replace
Improve with another subroutine, which we call Test. Test accepts the same input
as Improve, namely, a current feasible solution S together with an objective function
vector c. It also answers “Yes” or “No” depending on whether S is locally optimal
with respect to c or not, but in contrast to Improve it does not provide a solution
S′ ∈ N(S) of lower cost if S is not locally optimal. It just answers “Yes” or “No.”

Lemma 4.4. Test can emulate Improve in polynomial time; i.e., whenever the
input solution S is not locally optimal, a polynomial number of calls to Test suffices
to create a solution S′ ∈ N(S) of lower cost.6

Proof. Let (F , c) be an instance and S a feasible solution that is not locally opti-
mal with respect to c under the given neighborhood N . W.l.o.g., we may assume that
S = E.7 Here, E = {1, 2, . . . , n} is the ground set. The algorithm that we are about
to explain proceeds by considering one coordinate after the other. In particular, it will
call Test n times. The first call TestN (S, c1) is made with the objective function

c1e :=

{
c1 −M if e = 1,

ce otherwise
for e ∈ E,

where M := n cmax + 1. If Test responds with “Yes,” then we can infer that all
solutions S′ in N(S) of cost lower than S with respect to c satisfy 1 /∈ S′. On the
other hand, if the reply is “No,” then there is at least one solution S′ ∈ N(S) such
that c(S′) < c(S) and 1 ∈ S′.

In general, assume that we already know a subset R ⊆ {1, 2, . . . , k} for some
k ∈ {1, 2, . . . , n− 1} with the following two properties:

(i) there exists a solution S′ ∈ N(S) with c(S′) < c(S) such that R = S′ ∩
{1, 2, . . . , k};

(ii) if j /∈ R for 1 ≤ j ≤ k, then all solutions S′′ ∈ N(S) with c(S′′) < c(S) satisfy
R ∩ {1, 2, . . . , j} = S′′ ∩ {1, 2, . . . , j}.

We then call TestN (S, ck+1) with

ck+1
e :=

⎧⎪⎨⎪⎩
ce −M if e ∈ R,
ck+1 −M if e = k + 1,

ce otherwise

for e ∈ E.

If the result is “Yes,” then we can infer that all solutions S′ ∈ N(S) with c(S′) < c(S)
and S′∩{1, 2, . . . , k} = R satisfy k+1 /∈ S′. However, if the reply is “No,” then there

6In contrast to all other results presented in this paper, here we need to assume that Test accepts
arbitrary, not just nonnegative, cost coefficients. In particular, we set cmax := maxe∈E |ce|.

7Otherwise one can transform the given instance into an equivalent one for which this is the case.
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must be a solution S′ ∈ N(S) with c(S′) < c(S) and S′ ∩ {1, 2, . . . , k} = R such that
k + 1 ∈ S′. We leave R unchanged in the former case, and we set R := R ∪ {k + 1}
in the latter case.

Consequently, after n steps we have identified a set S′ = R ∈ N(S) such that
c(S′) < c(S).

Lemma 4.4 and Theorem 2.3 imply the following result.
Corollary 4.5. An ε-local optimum of an instance (F , c) of a combinatorial

optimization problem Π with neighborhood function N that is given via a Test oracle
of running time ζ(n, log cmax) can be computed in time

O(ξ(n) + ζ(n, log cmax)n
2 ε−1 min{n log n, logK0}).

4.5. Bounded integer linear programming problems. Let us finally discuss
some generalizations to the case of integer linear programs with bounded variables.
In our discussions so far, we considered combinatorial optimization problems, which
in fact are 0/1-integer linear programs, i.e., problems of the form min{c x : x ∈ F}
with F ⊆ {0, 1}n. Interestingly, most of our results extend directly to the case of
integer linear programs with bounded variables, which can be described as follows:
min{c x : x ∈ F} with F ⊆ {0, 1, . . . , u}n for some nonnegative integer u. In this con-
text, a neighborhood assigns to each feasible solution x ∈ F a set of feasible points in
{0, 1, . . . , u}n. If an initial feasible solution and an algorithm Improve are available,
the ε-local search algorithm can easily be modified to compute an ε-local optimum in
this setting as well. In fact, by choosing the scaling parameter q := Kε

2n(1+ε)u , its num-

ber of iterations (and therefore the number of calls to Improve) is O(n ε−1u logK0).
Thus, if an initial feasible solution can be identified in polynomial time, if Improve

can be implemented in polynomial time, and if u is bounded by a polynomial in n
and log cmax, then the ε-local search algorithm runs in polynomial time.
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Abstract. In the atomic snapshot system model, the processes of an asynchronous distributed
system communicate by atomic write and atomic snapshot read operations on a shared memory con-
sisting of single-writer multiple-reader registers. The processes may fail by crashing. It is shown that
in this model, a wait-free full-information protocol complex is homotopy equivalent to the underlying
input complex. A span in the sense of Herlihy and Shavit provides the homotopy equivalence. It fol-
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groups.
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1. Introduction. Consider an asynchronous distributed system of n + 1 pro-
cesses that interact via shared objects, and assume that processes may fail by crashing.
Coordination problems such as consensus and its generalizations, known as decision
tasks, are fundamental to computation in such a system. A basic question of fault-
tolerant computability in the system is whether a given decision task can be solved
despite failure by various numbers of the constituent processes. A protocol that solves
a decision task regardless of any pattern of failures by up to f processes is called f-
resilient . A protocol that is n-resilient for a system of n + 1 processes is said to be
wait-free.

In this note, we restrict our attention to wait-free computation by deterministic
protocols. By using Borowsky–Gafni simulation [BG2, B, LR], the question of f -
resilient solvability of a decision task can in many cases be reduced to the question of
wait-free solvability of essentially the same task in a smaller system. Thus, the theory
of wait-free computation is of considerable significance.

It has been well established that insight into wait-free solvability of decision tasks
is gained by introducing certain simplicial complexes and using standard techniques
for studying their combinatorial and topological structure. The primer [HR] provides
a good introduction to this area of research. Simplicial complexes are associated with
the inputs and outputs of the task, and recent work [H] shows that it is also possible to
define a simplicial complex representing the task relation. If a protocol is wait-free on
an input complex, then there is an associated protocol complex, which is a geometric
representation of the various possible executions of the protocol. The general structure
of the protocol complex depends on the system model and is especially sensitive to the
kinds of shared objects that are available. The success of the entire approach hinges on
the fact that the topology of the simplicial complexes is computationally significant.
Indeed, the combinatorial and topological relationships between the various complexes
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convey critical information about the solvability of the task and, if solvable, about
the complexity of solution.

A typical system model in this line of research has a foundation of single-writer
multiple-reader shared-memory registers. More sophisticated shared objects, such as
(m, k)-consensus objects, may be added, significantly increasing the computational
power of the system. For this note, however, we are interested in the underlying
shared-memory register system. In addition to atomic writes, the system is assumed,
without loss of generality [Af+], to provide atomic snapshot reads for accessing shared
memory. This basic system will be referred to as the atomic snapshot (AS) system
model. In order to maximize computational power in the model, it is generally as-
sumed that protocols are structured to record full information. This means that each
process locally accumulates a view (i.e., history) of the computation and maintains
a copy of this view in shared memory. When a process reads, it appends a snapshot
of the entire shared memory to its local view; and when a process writes, the value
written is simply the current view of the process. It is not difficult to see that any
other value that one might desire the process to write can be inferred from the view.

Several variations on the AS system model have been proposed. [BG1] introduces
the immediate snapshot (IS) system model, whose executions are a strict subset of the
AS executions. In the IS model, the individual write and read operations are fused into
a single WriteRead operation. A set of processes may execute concurrent WriteRead
operations, the effect being equivalent to an AS execution in which the processes of
the set perform concurrent writes and then immediately perform concurrent snapshot
reads. Another alternative is the iterated immediate snapshot (IIS) system model
[B, BG3, HoS]. For the IIS system model, shared memory is divided into disjoint
regions; one region is used for each immediate snapshot of the system. When a
process executes its kth WriteRead operation, it writes a value into its single-writer
portion of the kth memory region, and an immediate atomic snapshot of the kth
memory region (only) is returned to the process. This snapshot value is then the
value to be written by the process in the (k + 1)th WriteRead operation.

It is known [BG3] that the AS, IS, and IIS system models are all computationally
equivalent for wait-free solution of decision tasks. In other words, a decision task is
wait-free solvable in one of the system models if and only if it is wait-free solvable in
all three. However, the protocol complexes that arise from the different models are
structurally distinct.

The IIS system model is the most restrictive. As a result, the associated protocol
complexes have the simplest structure. If a protocol is normalized so that each process
is directed to execute the same number of WriteRead operations (i.e., there is no early
stopping), then the protocol complex is an iterated standard chromatic subdivision
of the complex of input values [B, BG3, HS2]. Without normalization, the protocol
complex is a nonuniform chromatic subdivision of the input complex [HoS]. In either
case, an IIS protocol complex is homeomorphic to (i.e., of the same topological type
as) the underlying input complex.

It has been claimed [BG3, p. 197] that protocol complexes in the IS system model
are also chromatic subdivisions of the underlying input complexes, from which it
follows that an IS protocol complex is also homeomorphic to the underlying input
complex. No published proof of the claim is known to the author.

The purpose of this note is to clarify the structure of wait-free full-information
protocol complexes in the AS system model. An AS protocol complex is not generally
homeomorphic to the underlying input complex. Nevertheless, an AS protocol com-
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plex is equivalent to the input complex in a weaker topological sense. In this note we
show that a wait-free full-information AS protocol complex is homotopy equivalent to
(i.e., of the same homotopy type as) the underlying input complex. In fact, a span in
the sense of Herlihy and Shavit provides the homotopy equivalence.

Loosely speaking, homotopy equivalence is equivalence up to continuous deforma-
tion. It is a common notion in algebraic topology, and important standard functors,
such as the ordinary homology and homotopy group functors, do not differentiate
between spaces of the same homotopy type. Thus, from the point of view of ordinary
homology or homotopy groups, a wait-free AS protocol complex is indistinguishable
from the underlying input complex.

The fact that a wait-free AS protocol complex is homotopy equivalent to the
underlying input complex gives an intuitive explanation for why the asynchronous
computability theorem [HS2, HS3] works. Roughly speaking, the protocol complex
holds computational information in topological form, and all of the topological struc-
ture of the protocol complex exists, up to homotopy equivalence, in the input complex.
A span makes the translation between the two. The homotopy equivalence also clar-
ifies the basis of the obstruction method introduced in [H] for detecting impossibility
of solution of decision tasks. The obstruction method relies on the fact that a span
admits a left homotopy inverse, and this note shows that the left homotopy inverse
can be arranged as a two-sided homotopy inverse.

2. Preliminaries and notation. It is assumed that the reader is generally
familiar with the use of simplicial complexes in the study of wait-free solvability
of decision tasks. See [HR] for an introduction. Standard references for algebraic
topology are [Mu] and [S].

2.1. Simplexes and complexes. If A is an abstract simplicial complex, then
|A| denotes its polyhedron. Strictly speaking, A is a combinatorial object, while |A|
is an associated topological space. If f : A → B is a simplicial map of simplicial
complexes, then |f | : |A| → |B| denotes the associated piecewise-linear map between
the polyhedra. A(k) denotes the k-skeleton of A, which is the subcomplex consisting
of simplexes of A of dimension ≤ k. If σ(A) is a subdivision of A and S is a simplex
of σ(A), then carrier(S) denotes the smallest simplex of A whose polyhedron contains
|S|. If A is a simplex, then ∂A denotes its boundary.

Fix a set L of labels. A coloring of simplex S is an injective function from the
vertices of S to L. A coloring of simplicial complex A is a function χ from the vertices
of A to L such that the restriction of χ to each simplex of A is a coloring of that
simplex. A simplex or complex together with a coloring is called chromatic. If A
and B are chromatic complexes, then a simplicial map f : A → B is called chromatic,
provided χ(f(a)) = χ(a) for each vertex a of A. The set of labels used below is the
set of identifiers of the processes of the distributed system.

An input pair is an ordered pair (p, v), where p is a process identifier and v
is an input value. If x = (p, v), then we write id(x) = p and val(x) = v. A
nonempty set X = {x0, . . . , xr} of input pairs forms an input simplex , provided that
id(x0), . . . , id(xr) are distinct. In this case, X is an r-dimensional chromatic simplex
with coloring x �→ id(x). We write ids(X) = {id(x0), . . . , id(xr)}. A set K of input
simplexes is an input complex , provided that it satisfies the usual hereditary property
of simplicial complexes: if X ∈ K and X ′ is a nonempty subset of X, then X ′ ∈ K.

As a protocol executes, each process accumulates its local view of the computa-
tion. We assume that the view of a process begins with its input value. Therefore,
the process copies its input value to shared memory in its first write operation. The
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view continues, according to full information, with the sequence of snapshots of shared
memory witnessed by the process. If a process completes the protocol, then its view at
halting is its final view in the execution. A protocol pair is an ordered pair z = (p, w),
where p is a process identifier and w is the final view accumulated by p in some exe-
cution of the protocol. We write id(z) = p and view(z) = w. Also, inval(z) denotes
the input value for p in the execution. By assumption, inval(z) appears at the begin-
ning of view(z). A nonempty set Z = {z0, . . . , zr} of protocol pairs forms a protocol
simplex , provided that there is a single execution e of the protocol such that for each
j = 0, . . . , r process id(zj) accumulates view(zj) as its final view in e. In this case, we
say that e certifies Z. We write ids(Z) = {id(z0), . . . , id(zr)}.

If z is a protocol pair, then there may exist input pairs other than (id(z), inval(z))
that can be inferred from z. This is because the snapshots in view(z) may witness
the input values copied by other processes into shared memory. By Ξ(z) we mean the
input simplex consisting of all input pairs that are determined in this fashion from z.
If Z is a protocol simplex, then we let

Ξ(Z) =
⋃
z∈Z

Ξ(z).

There is a chromatic simplicial map ψ : Z → Ξ(Z) defined by z �→ (id(z), inval(z)).
Consider a full-information AS protocol that is wait-free on the input simplex X.

By P(X) we mean the protocol complex of all protocol simplexes that can be certified
by executions with X as input simplex:

P(X) = {Z : Ξ(Z) ⊆ X}.
Note in particular that Z ∈ P(Ξ(Z)). IfK is an input complex on which the protocol is
wait-free, then P(K) is the union of the complexes P(X) as X ranges over the various
input simplexes of K. In this case, there is a chromatic simplicial map ψ : P(K)→ K
defined as above.

2.2. Homotopy. By space we mean a topological space embedded in a finite-
dimensional Euclidean space. By map we mean a continuous function. Let X and Y
be spaces, and let f, g : X → Y be maps. A homotopy from f to g is a map

F : X × [0, 1]→ Y

that satisfies

F (−, 0) = f and F (−, 1) = g.

In other words, when suitably identifying the ends of the cylinder X × [0, 1] with X,
the restriction of F to one end is the map f , and the restriction of F to the other end
is the map g. Furthermore, the restriction of F to the cross section X × {t} is a map
F (−, t) : X → Y . Continuity of F on the cylinder ensures that as t moves from 0 to
1, F (−, t) “deforms continuously” from f to g. If there is a homotopy from f to g,
then f and g are said to be homotopic.

Example 2.2.1. Let X and Y be nonempty spaces with Y convex, and let
f, g : X → Y be maps. Define F : X × [0, 1]→ Y by

F (x, t) = (1− t)f(x) + tg(x).

F is into Y because (1 − t)f(x) + tg(x) parameterizes the line segment [f(x), g(x)],
which lies in Y by convexity. The continuity of f and g ensures that F is continuous.
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Thus, f and g are homotopic. F is often referred to as a straight-line homotopy
between f and g. It may be possible to form a straight-line homotopy even if Y is not
globally convex. If for every x ∈ X both f(x) and g(x) lie in a convex neighborhood
of Y , then F is a straight-line homotopy between f and g.

Let f : X → Y and g : Y → X be maps. If f ◦ g is homotopic to the identity map
of Y , then g is called a right homotopy inverse for f , and if g ◦ f is homotopic to the
identity map of X, then g is called a left homotopy inverse for f . If g is both a left
and a right homotopy inverse for f , then the same is true of f for g. In this case,
(1) f and g are called homotopy inverses of one another, (2) each of f and g is said
to be a homotopy equivalence, and (3) the spaces X and Y are said to be homotopy
equivalent .

A space X is contractible if it is homotopy equivalent to a one-point space. Any
nonempty convex space is contractible, and thus the polyhedron of any simplex is
contractible. A map f : X → Y is called null-homotopic if f is homotopic to a constant
map. Any map from a nonempty space to a contractible space is null-homotopic. The
following extension property is well known.

Proposition 2.2.2. Let X be homeomorphic to a closed disk, let ∂X be the
boundary sphere of X, and let Y be a nonempty space. A map f : ∂X → Y can be
extended to a map X → Y if and only if f is null-homotopic.

Note that if A is a simplex, then Proposition 2.2.2 can be applied with X = |A|
and ∂X = |∂A|. Since |∂A| has a collar neighborhood in |A|, one has the following
special case of the simplicial approximation theorem.

Proposition 2.2.3. Let A be a simplex, let σ0(∂A) be a subdivision of its
boundary, and let B be a simplicial complex. Suppose that there is a simplicial map
ϕ0 : σ0(∂A) → B. If |ϕ0| is null-homotopic, then there is a subdivision σ(A) and
there is a simplicial map ϕ : σ(A) → B such that σ(∂A) = σ0(∂A) and such that the
restriction of ϕ to σ(∂A) equals ϕ0.

The next result is fundamental and lies at the heart of the asynchronous com-
putability theorem of Herlihy and Shavit. It can be proved by generalizing the critical
state technique from the seminal paper [FLP] of Fischer, Lynch, and Paterson.

Theorem 2.2.4 (contractibility theorem [HS1]). Assume that an AS protocol
records full information, and let X be an input simplex on which the protocol is wait-
free. Then |P(X)| is contractible.

In [HS3], Herlihy and Shavit actually prove that |P(X)| has trivial fundamental
group and trivial reduced homology groups in all dimensions. The theorem of White-
head [S, p. 399] and standard homotopy theory [S, pp. 405–406] imply that these
conditions are equivalent to the contractibility of |P(X)|.

3. Wait-free AS protocol complexes. Consider a full-information AS proto-
col that is wait-free on the input complex K. We show in Theorem 3.2.2 that the
map

|ψ| : |P(K)| → |K|

is a homotopy equivalence and that if ϕ : σ(K)→ P(K) is a span in the sense of Herlihy
and Shavit, then |ϕ| is a homotopy inverse for |ψ|. The existence of spans is proved
in [HS3], but the condition that ϕ be chromatic is not needed in order to prove the
homotopy equivalence. In [HS3], most of the technical work to prove the existence
of spans is concerned with arranging the chromatic condition. To avoid assuming
these arguments, we review in subsection 3.1 the simple proof of the existence of



1220 JOHN HAVLICEK

“nonchromatic” spans that appears in [HS3]. This argument also serves as a model
for the proof of Theorem 3.2.2.

3.1. Nonchromatic spans. A nonchromatic span (for the protocol on K) is a
simplicial map ϕ from a subdivision σ(K) of K to P(K) such that for any simplex S
of σ(K), ϕ(S) ∈ P(carrier(S)). Note that if ϕ : σ(K)→ P(K) is a nonchromatic span
and if L is a subcomplex of K, then the restriction of ϕ to σ(L) is a nonchromatic
span for the protocol on L.

Theorem 3.1.1 (see [HS3]). Assume that an AS protocol records full informa-
tion, and let K be an input complex on which the protocol is wait-free. Then there
exists a nonchromatic span for the protocol on K.

Proof. We construct the subdivision σ(K) and the map ϕ inductively on the
skeleta of K. The 0-skeleton of K admits no subdivision. Let x be a vertex of K, and
let p = id(x). Since the protocol is wait-free, there is a finite execution e in which p
starts with input value val(x) and only p has events. Let z = (p, w), where w is the
final view of p in e. Then P({x}) has only the single vertex z. We must, therefore,
let ϕ(x) = z. This defines ϕ as a nonchromatic span for the protocol on K(0).

Assume now that k > 0, that the subdivision σ(K(k−1)) has been defined, and
that ϕ has been defined as a nonchromatic span for the protocol on K(k−1). LetX be a
k-simplex of K. The boundary ∂X is contained in K(k−1), so ϕ gives a simplicial map
σ(∂X) → P(X). According to the contractibility theorem, |P(X)| is contractible,
and so the restriction of |ϕ| to |∂X| is null-homotopic. By Proposition 2.2.3, the
subdivision σ(∂X) can be extended to a subdivision σ(X), and ϕ can be extended
to a simplicial map σ(X) → P(X). In this way, we define the subdivision σ(K(k))
and the map ϕ : σ(K(k)) → P(K(k)). Suppose that S is simplex of σ(K(k)). If S
lies in σ(K(k−1)), then ϕ(S) ∈ P(carrier(S)) by the inductive hypothesis. Otherwise,
carrier(S) is a k-simplex of K, say X. From our construction, we see that ϕ maps
S into P(X) = P(carrier(S)). This verifies that ϕ is a nonchromatic span for the
protocol on K(k) and completes the inductive step.

3.2. The homotopy type of wait-free AS protocol complexes. In this
subsection, we show that |K| and |P(K)| are homotopy equivalent spaces. According
to Theorem 3.1.1, there is a nonchromatic span ϕ : σ(K)→ P(K). We first show that
|ϕ| is a right homotopy inverse for |ψ|.

Proposition 3.2.1. |ψ| ◦ |ϕ| is homotopic to the identity map of |K|.
Proof. Without loss of generality, |K| = |σ(K)|. For any simplex S in σ(K),

ψ ◦ ϕ(S) ⊆ carrier(S).

Since |S| ⊆ |carrier(S)| and since |carrier(S)| is convex, we can form a straight-line
homotopy between |ψ| ◦ |ϕ| and the identity map of |K|.

Theorem 3.2.2. Assume that an AS protocol records full information. Let K
be an input complex on which the protocol is wait-free, and let ϕ : σ(K)→ P(K) be a
nonchromatic span. Then |ϕ| and |ψ| are homotopy inverses, and so |P(K)| and |K|
are homotopy equivalent.

Proof. From Proposition 3.2.1 we have that |ψ| ◦ |ϕ| is homotopic to the identity
map of |K|. We now construct a homotopy

F : |P(K)| × [0, 1]→ |P(K)|
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from |ϕ| ◦ |ψ| to the identity map of |P(K)| by induction on the skeleta of P(K). F
will be arranged so that for all Z ∈ P(K),

(∗) F (|Z| × [0, 1]) ⊆ |P(Ξ(Z))| .
Let z be a vertex of P(K). Then z is a vertex of P(Ξ(z)). Also ψ(z) is a vertex

of Ξ(z), and hence ϕ ◦ ψ(z) is a vertex of P(Ξ(z)). Since |P(Ξ(z))| is contractible,
there is a path in |P(Ξ(z))| from |ϕ|◦ |ψ|(|z|) to |z|. This path defines F on |z|× [0, 1].
Combining these paths defines F on |P(K)(0)| × [0, 1] in a way that satisfies (∗) for
all vertices of P(K).

Now let k > 0, and assume that F has been defined on |P(K)(k−1)| × [0, 1] and
satisfies (∗) for all simplexes in P(K)(k−1). Let Z be a k-simplex of P(K). Then
Z ∈ P(Ξ(Z)), and hence |Z| ⊆ |P(Ξ(Z))|. Also ψ(Z) ⊆ Ξ(Z), and hence |ϕ| ◦
|ψ|(|Z|) ⊆ |P(Ξ(Z))|. Let

Σ = |Z| × {0} ∪ |∂Z| × [0, 1] ∪ |Z| × {1}.
Notice that Σ is the boundary of the closed (k + 1)-disk |Z| × [0, 1], and hence Σ
is a k-sphere. By the inductive hypothesis, F is already defined on |∂Z| × [0, 1] and
satisfies F (|∂Z| × [0, 1]) ⊆ |P(Ξ(Z))|. For x ∈ |Z|, let F (x, 0) = |ϕ| ◦ |ψ|(x) and
F (x, 1) = x. These definitions of F cohere to give a map Σ → |P(Ξ(Z))|. Since
|P(Ξ(Z))| is contractible, Proposition 2.2.2 implies that F can be extended to a map
of the disk |Z| × [0, 1] → |P(Ξ(Z))|. Combining these extensions for the various k-
simplexes of P(K) gives the extension of F to |P(K)(k)| × [0, 1]. By construction, (∗)
holds for all simplexes in P(K)(k).
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Abstract. The failure rate of the Apriori Algorithm is studied analytically for the case of
random shoppers. The time needed by the Apriori Algorithm is determined by the number of item
sets that are output (successes: item sets that occur in at least k baskets) and the number of item
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We find that under a wide range of conditions the performance of the Apriori Algorithm is almost
as bad as is permitted under sophisticated worst-case analyses. In particular, there is usually a bad
level with two properties: (1) it is the level where nearly all of the work is done, and (2) nearly
all item sets counted are failures. Let l be the level with the most successes, and let the number
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The analytical results for random shoppers are compared against measurements for three data
sets. These data sets are more like the usual applications of the algorithm. In particular, the buying
patterns of the various shoppers are highly correlated. For most thresholds, these data sets also
have a bad level. Thus, under most conditions nearly all of the work done by the Apriori Algorithm
consists in counting item sets that fail.
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1. Introduction. The Apriori Algorithm [2, 3, 6, 16] solves the frequent item
sets problem, which is at the core of various algorithms for data mining problems.
The best known such problem is the problem of finding the association rules that
hold in a basket-items relation [2, 3, 16, 20]. Other data mining problems based on
the Apriori Algorithm are discussed in [6, 14, 16, 18, 21, 22].

The Apriori Algorithm analyzes a data set of baskets, each containing a set of
items, to determine which combination of items occur together frequently. Consider a
store with |I| items where b shoppers each have a single basket. Each shopper selects
a set of items for their basket. The input to the Apriori Algorithm is a list giving
the contents of each basket. For a fixed threshold k, the algorithm outputs a list of
those sets of items that are frequent ; that is, they are contained in at least k of the
b baskets.

The Apriori Algorithm is a level-wise algorithm. It considers sets of items in
order of their size: first sets of size one are tested to see whether they are contained
in k baskets, then sets of size two, etc. On each level, the algorithm knows the result
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of the previous level. The key idea of the Apriori Algorithm is that, on level l, a set is
tested if and only if all its subsets of size l−1 are frequent. An item set satisfying this
property is called a candidate (at level l). It is a success (at level l) if it is contained
in at least k baskets, and it is a failure otherwise.

This paper considers only the Apriori Algorithm. Many of its performance char-
acteristics come from the fact that it outputs every frequent item set. There are
several interesting algorithms for the frequent item set problem that output only the
maximal frequent item sets, since every subset of a frequent item set is also frequent
[1, 4, 12]. Also, there is an algorithm complementary to the Apriori Algorithm that
finds the infrequent item sets, starting with the set of all items and working downward
in set size.

This paper considers the expected amount of work that the Apriori Algorithm
does when the shoppers shop at random. Specifically, the probability that a shopper
buys an item is p, independent of all other shoppers and all other items. This is the
same probability model that has previously been used to estimate the probability that
a set is frequent [3, 17, 21]. The main advantage of using a parameterized probability
model is that we can study the performance of the algorithm under a wide range of
conditions. While the later sections contain many mathematical details, the main
conclusions are fairly simple. For most values of the parameters, random data result
in a high success rate (essentially 1) for small values of l, with a sudden switch to a
low success rate (essentially 0) for larger values of l. When l is below the level of the

switch, the number of candidates is just below
(|I|

l

)
and almost all of the candidates are

successes. When l is above the level of the switch, almost all candidates are failures,
and the number of candidates decreases rapidly. The level for the switch depends on
the parameters. When l is much less than |I|, nearly all the work of the algorithm
is done testing candidates from the level with the most successes. The algorithm has
a bad level where (1) most of the work is done and (2) there are a lot of candidates,
but few successes. For a few thresholds, two levels in a row are bad.

The main disadvantage of using a simple probability model is that most appli-
cations of the Apriori Algorithm involve data sets with complex correlations, and
such data sets are difficult to model mathematically. Therefore, we also measured the
success, candidate, and failure rates of the performance of the Apriori Algorithm on
three data sets: (1) synthetic data generated by the generator from the IBM Quest
Research Group [13]; (2) U.S. Census data, using Public Use Microdata Samples
(PUMS) (the same sample that was used by [5, 6] and processed in the same way);
and (3) a Web data set [24]. In one important way, the results with these data sets
were similar to that of random shoppers. For most thresholds, the experimental data
show the existence of a single bad level. This bad level came just after the level
with the most successes, it had a low success rate, and it consumed most of the work
that the algorithm did. On the other hand, with the experimental data there are
also many failures below the bad level, so that the number of candidates is much less
than

(|I|
l

)
.

2. The Apriori Algorithm. Let Jl be a set of l ≥ 1 items where the items are
selected from the set I. For a given Jl, define J−h

l to be the set obtained from Jl
by omitting element h, where h is an element of Jl. The key idea of the Apriori
Algorithm is that the set Jl cannot possibly have k occurrences unless, for each h
in Jl, the set J−h

l has k occurrences. Since the algorithm considers possible sets in
order of their size, it has already gathered the information about all the sets of size
l − 1 before it considers sets of size l.
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Apriori Algorithm.

Step 1. For l from 1 to |I| do
Step 2. For each set Jl such that for each h ∈ Jl the set J−h

l occurs in at least
k baskets do

Step 3. Examine the data to determine whether the set Jl occurs in at least
k baskets. Remember those cases where the answer is “yes.”

Step 2 of the algorithm generates each set Jl such that J−h
l occurs at least k times

(for each h in Jl). The sets that are generated are called candidates. For those sets
that are candidates, Step 3 examines the data (basket contents) to determine which
set of items occurs in at least k baskets. This counting and comparing with the
threshold is called the frequency test. A candidate that passes the frequency test is
called a success (or a frequent item set). A set that is subjected to the frequency
test but fails is called a failure. For algorithms that verify each success by doing the
frequency test, the main place for improvement is to reduce the number of failures.

For typical data sets, a careful implementation of the Apriori Algorithm will have
it spending most of its time accessing the data base (counting the occurrences of the
various candidates). The implementation should exit the loop in Step 1 early if there
are no “yes” answers for some value of l. On level l, it should consider only those sets
that are formed from sets that passed the frequency test on level l − 1. In addition,
no set of size l should be generated more than once. The sets can be generated by
assigning an order to the items and extending each set S on level l − 1 only with
items that are greater than the largest item in S. Assuming unit time for hash table
look-ups (for looking up various subsets of the extended S), the algorithm can do the
work for a single candidate set on level l in time bounded by a constant times l + 1.
See [2] for further discussion of the techniques used in good implementations.

Although the Apriori Algorithm uses explicit counting to verify that an item set
is frequent, this is not always logically necessary. Thus, if item A occurs in bA baskets
and item B occurs in bB baskets, then A and B must occur together in at least
bA + bB − b baskets [11]. Similar ideas are explored in [7].

3. Best and worst cases. We use the number of candidates as a proxy for the
amount of computing that the Apriori Algorithm does. Let NS be the number of
item sets that are successes. Let NF be the number of failures (candidates that are
not successes). The total work is proportional to NS +NF . The term NS represents
work that must be done by any algorithm that outputs every frequent item set, and
it is a property of the data, not of the algorithm. On the other hand, NF represents
work that we might hope to avoid.

The worst-case output is exponentially larger than the input (every set might be
frequent), so the worst-case time needed can be exponential in the size of the input.
A closely related problem that is NP-complete is to determine whether or not there
are any sets of size l that occur k times; this is NP-complete because the balanced
complete bipartite subgraph problem [9] reduces to it. The appendix has the details
of proofs for this and many other statements.

For algorithms that must output every frequent item set, the ratio NS/(NS +NF )
is the natural measure of algorithm efficiency. When every item set is frequent, NS

is 2|I| and NF = 0, so the algorithm is efficient. The worst ratio of work to output
occurs when no (nonempty) item set is frequent, in this case NS = 1, NF = |I|. (Most
versions of the algorithm avoid outputting the empty set, leading to values of NS one
less than above.)

Intermediate amounts of output are more interesting. In such cases, one can have
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a lot of output and also a high failure rate. In this regard, the worst-case bounds
of Geerts, Goethals, and Van den Bussche [10] are interesting. For their Theorem 1,
they write the number of successes on level l as a binomial coefficient with l on the
bottom in which the top index is as large as possible subject to the binomial coefficient
being no larger than the number of success. If the difference between the number of
successes and the binomial coefficient is positive, then they repeat the process with
the difference. Thus, they write the number of successes as a sum of binomial terms.
They show that the result of increasing each bottom index to l + 1 gives an upper
bound on the number of candidates for level l+ 1. This bound is exact for some data
sets, including one that results in no failures on level l. Experiments show that in
many cases this upper bound on candidates is close to the exact value for level l+ 1.
The same idea can be used to predict the number of successes on later levels, but it
often works less well for those levels.

The following argument also limits the number of candidates on level l+ 1. Con-
sider the graph where each candidate on level l+1 (each Jl+1) is connected to each of
its associated frequent items sets (J−h

l+1). Thus, there are [NS(l+1)+NF (l+1)](l+1)
arcs. Each of the NS(l) frequent item sets on level l is connected to at most |I| − l
candidates on level l + 1. Indeed, if we use |Il| to be the number of items that occur
among the frequent item sets of level l, there are at most |Il| − l connections from a
single level l frequent item set. Thus, we have

[NS(l + 1) +NF (l + 1)](l + 1) ≤ NS(l)(|Il| − l),(1)

[NS(l + 1) +NF (l + 1)] ≤
( |Il| − l
l + 1

)
NS(l).(2)

This gives

∑
0≤l≤|Il|−1

( |Il| − l
l + 1

)
NS(l)(3)

as an upper bound on the amount of work. In many cases, NS(l) increases rapidly
for small l and then suddenly drops rapidly to zero. In such cases, the largest term
in this sum is a good approximation to its total value.

We see that the Apriori Algorithm is rather efficient for algorithms that output
every frequent item set. The total work is never more than a constant plus a factor |I|
times larger than NS , the least amount of work that could possibly be done by any
algorithm in the class. When most of the work is concentrated on level l + 1, the
amount of work is better than this product by a factor of l + 1.

4. Average case. We now start an exact computation of the average-case per-
formance of the Apriori Algorithm for the case when the baskets are filled at random.
That is, each basket j has item i with probability p independent of what happens
for other baskets and other items. We eventually show that for most values of the
parameters, the average performance is not significantly better than that suggested
by the worst-case analysis (equation (3)).

Let Sl be the probability that the set consisting of items 1 to l is a frequent item
set, and let Fl be the probability that the same set is a candidate but fails to be a
frequent item set. Since each basket is filled randomly, any other set of l items has
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the same probability of success and failure. The expected number of successes is∑
1≤l≤|I|

(|I|
l

)
Sl,(4)

and the expected number of failures is∑
1≤l≤|I|

(|I|
l

)
Fl.(5)

The number of item sets for which the basket data is examined is∑
1≤l≤|I|

(|I|
l

)
(Sl + Fl).(6)

Under the above assumptions, the running time is bounded by a constant times∑
1≤l≤|I|

(l + 1)

(|I|
l

)
(Sl + Fl).(7)

Define the following conditions with respect to a single basket:
• M0: the basket has all the items 1 to l, and
• Mh (1 ≤ h ≤ l): the basket has all items from 1 to l except that it does not

have item h.
These conditions are disjoint; each basket obeys at most one of the conditions Mh,
0 ≤ h ≤ l.

The probability that a randomly filled basket obeys condition M0 is

P (l) = pl(8)

(when l ≤ |I|). The probability that a randomly filled basket obeys condition Mh (for
any h in the range 1 to l) is

Q(l) = pl−1(1− p).(9)

Note that

P (l − 1) = P (l) +Q(l).(10)

The probability that at least k baskets obey condition M0 is

Sl =
∑
j≥k

(
b

j

)
[P (l)]j [1− P (l)]b−j = 1−

∑
j<k

(
b

j

)
[P (l)]j [1− P (l)]b−j .(11)

The probability that j0 baskets obey condition M0, j1 baskets obey condition M1,
. . . , jl baskets obey condition Ml, and the remaining b− j0 − · · · − jl baskets do not
obey any of the conditions is(

b

j0, . . . , jl, b− j0 − · · · − jl

)
[P (l)]j0 [Q(l)]j1+···+jl [1− P (l)− lQ(l)]b−j0−···−jl ,(12)
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where the multinomial coefficient is the number of ways to arrange b distinct baskets
into l+1 sets, where set 0 has j0 baskets, . . . , set l has jl baskets, and b− j0−· · ·− jl
baskets are not in any of the l + 1 sets.

The item set {1, . . . , l} is a candidate if and only if for each h in the range 1 ≤ h ≤ l
we have the number of baskets satisfying condition M0 plus the number of baskets
satisfying condition Mh totaling at least k. Thus, item set {1, . . . , l} is a candidate
in just those cases where the conditions

j0 + j1 ≥ k, j0 + j2 ≥ k, . . . , j0 + jl ≥ k(13)

are all true. Thus, the probability that the set {1, . . . , l} is a candidate is the above
probability (12) summed over those cases that satisfy the conditions (13),

Cl =
∑
j0

j1≥k−j0
j2≥k−j0···
jl≥k−j0

(
b

j0, . . . , jl, b− j0 − · · · − jl

)

× [P (l)]j0 [Q(l)]j1+···+jl [1− P (l)− lQ(l)]b−j0−···−jl .(14)

Since the set {1, . . . , l} either does or does not occur in at least k baskets, the
probability that the item set {1, . . . , l} is a candidate but not a frequent item set is

Fl = Cl − Sl =
∑
j0<k

j1≥k−j0
j2≥k−j0···
jl≥k−j0

(
b

j0, . . . , jl, b− j0 − · · · − jl

)

× [P (l)]j0 [Q(l)]j1+···+jl [1− P (l)− lQ(l)]b−j0−···−jl .(15)

4.1. Efficient computation of Fl. The number of arithmetic operations
needed to compute S for fixed b, l, and p (using the right part of (11)) is O(k).
Furthermore, the number of operations for fixed l and p and for all k is only O(b).

The number of operations needed to compute F by direct application of (15) is
O(kbl). However, using the recurrence equations below, F can be computed in time
that is independent of k and polynomial in b and l.

Write (15) as

Fl =
∑
j0<k

(
b

j0

)
[P (l)]j0Rk−j0(b− j0, l, l, l),(16)

where

Rk(b, l,m, n) =
∑
j1≥k
j2≥k···
jl≥k

(
b

j1, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl .(17)

By considering the sum over jl (represented by j in the sum below) separately,
we have

Rk(b, l,m, n) =
∑
j≥k

(
b

j

)
[Q(m)]jRk(b− j, l − 1,m, n),(18)
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with boundary condition

Rk(b, 0,m, n) = [1− P (m)− nQ(m)]b.(19)

With these equations, a particular Rk(b, l,m, n) can be computed from the various
Rk(c, l − 1,m, n), where k ≤ c ≤ b, in O(b) operations. To compute R by repeated
application of (19), we need l levels with O(b) R’s per level. This leads to time O(lb2)
to compute a set of R. The time to compute Fl is dominated by the time needed to
compute the R’s, leading to time O(lb2) to compute a particular F . For fixed p and b
and for all k, Fl can also be computed in time O(lb2).

5. Approximations.

5.1. Chernoff bounds. The sums for Sl and Fl are incomplete binomial sums.
They do not have closed forms (implied by [15]), but, as we show below, Chernoff
techniques [8] lead to useful approximations. For

L(i) =

{
1, i ≤ k,
0, i > k

and U(i) =

{
0, i < k,
1, i ≥ k(20)

and for some fixed k in the range 0 ≤ k ≤ n, we have∑
0≤i≤k

ai =
∑

0≤i≤n

aiL(i) and
∑

k≤i≤n

ai =
∑

0≤i≤n

aiU(i).(21)

In addition, when each ai ≥ 0, replacing L(i) (or U(i)) with a pointwise upper bound
gives an upper bound on the sum. Chernoff [8] noticed that useful bounds for partial
binomial sums result when one uses

L(i) = x−k+i with x ≤ 1 and U(i) = x−k+i with x ≥ 1(22)

and then chooses the x that gives the smallest upper bound.
The Chernoff bound for S is

Sl ≤ x−k
∑
j

(
b

j

)
[xP (l)]j [1− P (l)]b−j = x−k[1 + (x− 1)P (l)]b(23)

for any x ≥ 1.
A Chernoff bound for R is

Rk(b, l,m, n) ≤ x−kl
∑

j1,...,jl

(
b

j1, . . . , jl, b− j1 − · · · − jl

)
× [xQ(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl(24)

≤ x−kl[1− P (m)− (n− lx)Q(m)]b(25)

for any x ≥ 1.
Using this Chernoff bound for R leads to the following Chernoff bound for F :

Fl ≤ y−k+1
∑
j

(
b

j

)
[yP (l)]jx−(k−j)l[1− P (l) + l(x− 1)Q(l)]b−j(26)

≤ x−kly−k+1[1 + (xly − 1)P (l) + l(x− 1)Q(l)]b(27)

for any x ≥ 1 and any y ≤ 1.
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5.2. Regions and boundaries for Sl. The optimum x for (23) is either on the
boundary (x = 1) or when the derivative with respect to x is equal to zero. Letting
x∗ be the x value that gives a derivative of zero, we have

x∗ =
k[1− P (l)]

(b− k)P (l)
.(28)

When x∗ ≥ 1, it is the optimum x for (23). Otherwise (x∗ < 1) the optimum x
is 1. In addition, we check whether x∗ is strictly within the range (x∗ > 1). This is
the case when

k > bP (l).(29)

This completes the first stage of finding the Chernoff approximation to Sl. In the
next two sections we determine just how small the Chernoff bound is as a function
of the parameters (b, k, l, and p). We show that the bound on Sl is an exponential
function of the negative of the square of the distance α1 (with α1 = k/b−P (l)) inside
the boundary (29). As we vary k, Sl is extremely small inside the region (k > bP (l)),
except near the boundary (bP (l)). Next we show that Sl is close to 1 once we go on the
other side of the boundary; the difference between Sl and 1 is an exponential function
of the negative of the square of the distance α2 (α2 = (P (l)−k/b)+1/b = −α1 +1/b)
from the boundary. Thus, knowing whether the optimizing x is strictly within range
or not gives us the most basic information about Sl (whether it is small (x∗ > 1) or
large (x∗ < 1)).

5.2.1. Upper bound on Sl. We now give an upper bound on Sl when k > bP (l)
to show that it is near 0. In the next section we give a lower bound when k > bP (l)
to show that in that case it is near 1.

By plugging the x∗ value from (28) into the bound from (23) we obtain

Sl ≤
(
P (l)

k

)k (
1− P (l)

b− k
)b−k

bb(30)

so long as x∗ ≥ 1. By (29) the condition x∗ > 1 is equivalent to k > bP (l), so we will
define α1 by

k = b[P (l) + α1].(31)

When k is greater than bP (l), Sl goes to zero rapidly. In particular

Sl ≤ e−bα2
1/{2P (l)[1−P (l)]}+O(bα3

1[1−P (l)]−2)(32)

when α1 > 0.

5.2.2. Lower bound on Sl. To obtain a lower bound on Sl when it is near 1,
start with the right part of (11). Shift the relation between k and α1 by 1 so that α2

is defined implicitly by

k = b[P (l)− α2] + 1.(33)

We can now modify the derivation of (32) (with x∗ < 1) to obtain

Sl ≥ 1− e−bα2
2/{2P (l)[1−P (l)]}+O(bα3

2P (l)−2)(34)

when α2 > 0 (the dominant O term here is different from what it was for (32)).
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5.3. Regions and boundaries for Fl. To find the optimum value for x and y
in (27) we start by taking derivatives of the bound with respect to x and y, setting
each result to zero, and solving for x and y. We want the x∗ that satisfies

(b− k)P (l)xl∗y + (b− kl)Q(l)x∗ − k[1− P (l)− lQ(l)] = 0.(35)

We want the y∗ that satisfies

(b− k + 1)P (l)xly∗ − (k − 1)[1− P (l) + lQ(l)(x− 1)] = 0.(36)

When considering whether the optimum x and y are strictly within range (x∗ > 1,
y∗ < 1) or on the boundary, there are four cases to investigate.

Region 1. Equation (35) with y = 1, x∗ > 1.
Region 2. Equation (36) with x = 1, y∗ < 1.
Region 3. Equations (35) and (36), x∗ > 1, y∗ < 1.
Region 4. x = 1, y = 1.

In (35) and (36), x∗ is associated with the effectiveness of the candidacy test (inequal-
ity (25)), and y∗ is associated with the probability of a set failing the frequency test
(inequality (27)).

The main regions of interest are Region 1, where we will show that Fl is small
because the candidacy test fails with high probability; Region 2, where Fl is small
because Sl is near 1 (Fl can never be larger than 1−Sl since failure requires not only
passing the candidacy test but also failing the frequency test); and Region 4, where Fl

has the trivial bound of 1. In section 5.3.3 we show that the set of parameter values
that satisfy the conditions for Region 3 includes the intersection of Regions 1 and 2.
Also Region 3 has no values outside of the union of Regions 1 and 2.

When the optimum value for at least one of x and y is strictly within range (not
equal to 1) then the bound for Fl is smaller. It will be shown in section 5.4 that the
bound on Fl is an exponential function of the square of the distance (basically the
difference between k/b and P (l) or P (l − 1); see section 5.4 for details) of x∗ or y∗
from the boundary, so Fl rapidly becomes extremely small as x∗ or y∗ moves away
from the boundary.

5.3.1. Region 1. When x∗ > 1, we will show in section 5.4.1 that the candidacy
test fails with high probability. To find when this occurs, notice that (35) is satisfied
by x = 1, y = 1 when

k = b[P (l) +Q(l)] = bP (l − 1).(37)

As b decreases, x∗ increases. This implies that, for y = 1, x∗ > 1 when

k > bP (l − 1).(38)

5.3.2. Region 2. When y∗ < 1, we will show in section 5.4.2 that the frequency
test succeeds with high probability. Consequently, since Fl can be no larger than
1− Sl, Fl is near 0 in this case.

When x = 1, the solution to (36) is

y∗ =
(k − 1)[1− P (l)]

(b− k + 1)P (l)
.(39)

This results in y∗ < 1 when

k < bP (l) + 1.(40)



1232 PAUL W. PURDOM, DIRK VAN GUCHT, AND DENNIS P. GROTH

For most parameter values, the regions (permitted values of k) of (38) and (40) do
not overlap. However, subtracting the right side of (40) from the right side of (38),
we find that they do overlap when

bQ(l) < 1.(41)

This happens both when pl−1 is small (pl−1 ≤ 1/b is small enough) and also when
1 − p is small (1 − p ≤ 1/b is small enough). When (41) is true for all l, the Apriori
Algorithm has no bad level. In this case, Sl is small for every l. Conditions where
the Apriori Algorithm does have a bad level (cases where Sl is near 1) are discussed
in section 5.4.4.

5.3.3. Region 3. To find values for the parameters such that x∗ > 1 and y∗ < 1
we need to satisfy (35) and (36) simultaneously. This results in the values

x∗ =
1− P (l)− lQ(l)

(b− k − l + 1)Q(l)
,(42)

y∗ = (k − 1)

(
(b− k − l + 1)Q(l)

1− P (l)− lQ(l)

)l−1
Q(l)

P (l)
.(43)

We have x∗ > 1 when

k + l − 1 < b < k + l − 1 +
1− P (l)− lQ(l)

Q(l)
.(44)

The upper and lower limits are the same when l = 1, so the range is empty in that
case.

All solutions to (44) are in the union of Regions 1 (inequality (38)) and 2 (in-
equality (40)). The smallest k that satisfies (38) is k just above bP (l− 1). This value
for k satisfies (44) when

b <
1

Q(l)
.(45)

Inequality (45) is true under the same conditions that (41) is true. Thus, (44) is
satisfied by k values outside of Region 1 only when Regions 1 and 2 overlap. Since
Region 1 gives a lower limit on k and Region 2 gives an upper limit, when Regions 1
and 2 overlap, their union includes all k values.

For k = 1, (43) implies that y = 0, which is less than 1. For l = 1, (43) has no
solutions. For k ≥ 2 and l ≥ 2, (43) implies y∗ < 1 when

b < k + l − 1 +
1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

.(46)

For parameter values to be in Region 3, both (44) and (46) must be satisfied.
The upper bound on b from (46) is greater than the lower bound from (44). The

upper bound on b from (46) is less than the upper bound from (44) when

k >
1

1− p .(47)

For p < 1/2, this condition is the same as k > 1.
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Since

1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

> 0,(48)

any k ≥ b−l+1 always satisfies (46). For l = 2, this rightmost term from (46) reduces
to

1

k − 1
,(49)

which is less than 1 for k ≥ 2. Thus, for l = 2, the only solution to (46) is k ≥ b− l+1.
The leftmost term of the right side of (46) (k) increases linearly with k; the

rightmost term decreases with k. The rate of decrease slows down as k increases. As
a result, the bound on b decreases at first and then increases. In some cases the bound
(for fixed l) holds for small k, does not hold for moderate k, and then holds again
for large k. As shown above (below (48)) the bound on b (inequality (44)) is always
obeyed when k is large. Numerical investigations show that sometimes the bound also
holds for small k, and sometimes it does not; sometimes the small k region extends
all the way to the large k region, and sometimes it does not.

5.3.4. Region 4. In this case x∗ < 1 and y∗ > 1. Thus by section 5.3.1,
k < bP (l − 1) and by section 5.3.2, k > bP (l) + 1. Thus, for such k, we have
bP (l) < k < bP (l − 1). In such cases, the candidacy test succeeds with probability
near 1, but the frequency test fails with high probability (Fl is high). Thus, the
Apriori Algorithm experiences a bad level in this region. In section 5.4.4 we give
bounds on Fl.

5.4. Bounds for Fl. Section 5.3 found the parameters regions relevant to Fl.
In this section we will establish bounds on Fl associated with these regions.

5.4.1. Bounds on Fl in Region 1. When k > bP (l− 1) we are in Region 1 of
section 5.3. We now give an upper bound on Fl to show that it is near 0 in this case.
Thus in this region the candidacy test fails with high probability.

By (27) with y = 1

Fl ≤ x−kl
∗ [1 + (xl∗ − 1)P (l) + l(x∗ − 1)Q(l)]b.(50)

(Note that bounds on Fl obtained with y = 1 are also bounds on Cl = Fl + Sl. The
definition for Cl (equation (14)) has a sum over all values of j0, but setting y = 1 also
sums at unit weight over all values of j0.) The optimum x∗ is given by (35). Solve (35)
(with y = 1) for x∗ with x∗ = 1 + δ and small δ. Let θ stand for a function that
approaches 1 in the limit as δ approaches 0. (Just as various big O’s are associated
with different implied constants, different θ’s are associated with different functions
that approach 1 in the limit.)

δ =
k − bP (l)− bQ(l)

b[lP (l − 1)]− kl[P (l − 1)]

(
1 +

[k − bP (l)− bQ(l)](b− k)l(l − 1)P (l)θ/2

{b[lP (l) +Q(l)]− kl[P (l − 1)]}2
)−1

.

(51)

Define α3 by

k = b[P (l − 1) + α3].(52)
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In (50) replace k by its value in terms of α3 and plug in the value of x implied by (51)
to obtain

Fl ≤ e−blθα2
3/(2{P (l−1)+(l−1)P (l)−l[P (l−1)]2})(53)

when α3 is small enough, i.e.,

α3 = {lP (l) +Q(l)− l[P (l − 1)]2}o(1).(54)

5.4.2. Region 2. When k < bP (l) + 1 we are in Region 2 of section 5.3, and
by (34) nearly all item sets pass the frequency test. Since an item set must first pass
the candidacy test and then fail the frequency test, Fl can be no larger than 1− Sl,
which (by (34)) gives the bound

Fl ≤ e−bα2
2/{2P (l)[1−P (l)]}+O(α3

2bP (l)−2),(55)

where α2 is defined by k = b[P (l)− α2] + 1 (equation (33)).

5.4.3. Region 3. Since the k values for Region 3 are entirely inside the union
of Regions 1 and 2, we can use results from the previous two sections to obtain upper
bounds on Fl. With additional algebra, even better upper bounds could be obtained,
but the previous bounds are good enough for most purposes.

5.4.4. Region 4. When bP (l) < k < bP (l−1) we are in Region 4 of section 5.3.
The candidacy test succeeds with high probability, but the frequency test succeeds
with low probability. We now give a lower bound on Fl to show that there are cases
where it is near 1.

In (17), the quantity Rk is defined by sums where each ji ≥ k (for 1 ≤ i ≤ l).
Using inclusion-exclusion arguments, an alternate way to compute Rk is

Rk(b, l,m, n) =
∑
h

(−1)h
(
l

h

)
rk(b, l,m, n, h),(56)

where

rk(b, l,m, n, h) =
∑
j1<k
j2<k···
jh<k

jh+1,...,jl

(
b

j1, j2, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl(57)

=
∑
j1<k
j2<k···
jh<k

(
b

j1, j2, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j1+···+jh [1− P (m)− (n− l + h)Q(m)]b−j1−···−jh .(58)

The h = 0 term of (56) is the sum over the full range for the j’s. The h = 1
term subtracts (for each j) the part of the range that is not included in the definition
of R. The h = 2 corrects for the overcorrection of the h = 1 term (regions where
two j’s were out of range were subtracted off twice). Each successive h corrects for
the previous h. Therefore, if the sum over h is terminated at some value before l, the
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result is a lower or upper limit on R depending on whether the first omitted term is
negative or positive. We use the following case of this result:

Rk(b, l,m, n) ≥ rk(b, l,m, n, 0)− lrk(b, l,m, n, 1)(59)

≥ [1− P (m)− (n− l)Q(m)]b − l
×
∑
j<k

(
b

j

)
[Q(m)]j [1− P (m)− (n− l + 1)Q(m)]b−j .(60)

By (16) we have

Fl ≥
∑
j0<k

(
b

j0

)
[P (l)]j0

×
(

[1− P (l)]b−j0 − l
∑

j<k−j0

(
b− j0
j

)
[Q(l)]j [1− P (l)−Q(l)]b−j0−j

)
.(61)

A lower bound on the sum that comes from the first term in the large parentheses
can be obtained by combining (32) with the right part of (11). Applying reasoning
similar to that leading to (27) gives the following bound related to the second term:∑

j0<k

(
b

j0

)
[P (l)]j0

∑
j<k−j0

(
b− j0
j

)
[Q(l)]j [1− P (l)−Q(l)]b−j0−j

≤ x−k+1y−k+1[1 + (xy − 1)P (l) + (x− 1)Q(l)]b,(62)

with the requirement x ≤ 1, y ≤ 1. By setting y = 1 the bound becomes x−k+1[1 +
(x − 1)P (l − 1)]b (using (10)). The same techniques that give the exponential term
in (34) can be applied to bound this term. Combining the bounds on the two parts
gives

Fl ≥ 1− e−bα2
1/{2P (l)[1−P (l)]}+O(bα3

1[1−P (l)]−2)

− le−bα2
4/{2P (l−1)[1−P (l−1)]}+O(bα3

4[P (l−1)]−2),(63)

with α1 and α4 related to k by k = b[P (l) + α1] and k = b[P (l − 1) − α4] − 1 when
both α1 and α4 are positive.

This bound is good enough to show that for some values of k, the Apriori Algo-
rithm has one bad level. Consider k equal to the integer nearest [bP (l)+bP (l−1)−1]/2,
i.e.,

k =
bP (l) + bP (l − 1)− 1

2
+ η,(64)

with |η| ≤ 1/2. This results in

α1 =
bP (l − 1)− P (l) + 1/b

2
+ η, α4 =

P (l − 1)− P (l) + 1/b

2
− η.(65)

For fixed k, p, and l and for large b, α1 and α4 approach constants. The bound on Fl

(inequality (61)) approaches 1 when b becomes large. Thus, when b is large, there is
a k value where Fl is extremely close to 1. When k is near bP (l) for some l the bound
from (63) is not good enough to show that Fl is close to 1. The sample calculations
(in section 7), however, show that for such k values there are usually two l values that
are each moderately bad (Fl above a constant), at least when b is not small. Thus,
the conclusion is that the Apriori Algorithm, when it is run on random data, usually
has one bad level or two half-bad levels.
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6. Total work. Equation (63) shows that for random data there are many cases
where the Apriori Algorithm has one bad level, i.e., a level where many item sets
pass the candidacy test but few of them pass the frequency test. Equation (41) shows
that there are rare cases where the Apriori Algorithm has no bad levels. The Apriori
Algorithm has a reputation for being effective in practice [2, 6, 20]. In this section
we show that for many parameter values, even when there is a bad level, the bad
level comes before the algorithm has done much work and the algorithm is extremely
good for the levels after the bad one. This leads to good overall performance. Under
the assumption that accesses to the original data dominate the running time, large
running times result from those terms in (6) where the binomial coefficient is large
and Sl +Fl is not small. No algorithm that explicitly examines the data to verify the
number of occurrences for a set can be fast if a large fraction of the possible sets for
large l must be processed. The merit of the Apriori Algorithm is that Sl +Fl usually
becomes extremely small once l increases beyond the value that results in k > bP (l).
This is shown by the following rough calculation. Consider the ratio of the l and l+1
terms from (6): ( |I|

l + 1

)/(|I|
l

)
=
|I| − l
l + 1

≈ |I|
l + 1

,(66)

so long as l is much less than |I|. Now choose l so that k is near to bP (l − 1). Using
this value of l in (53) results in α3 near 0 and Fl near 1. Now consider the failure
rate on the next level. Using l to refer to the earlier level, for the level following l, the
bound on the failure rate is given by (53) using a value of α3 near b[P (l− 1)− P (l)].
For this value of α3, (53) gives the bound

Fl+1 ≤ e−b3(l+1)[P (l−1)−P (l)]2θ/(2{P (l)+lP (l+1)−(l+1)[P (l)]2}).(67)

Since P (l) is pl, for small p this bound is approximately

e−b3(l+1)p−2/2.(68)

Since almost every possible item set needs work on level l, the ratio of the amount
of work that the Apriori Algorithm performs on level l+ 1 to the amount of work on
level l is approximately

|I|
l
e−(l+1)b3/(2p2).(69)

In most interesting cases this ratio will be much less than 1. There is further improve-
ment as l increases. For most parameter values and for random data the amount of
work that the Apriori Algorithm does drops rapidly after the bad level.

7. Sample computations. This section contains sample calculations for b =
1024 baskets, 1 ≤ l ≤ 5, with thresholds in the range 1 ≤ k ≤ 1024. Table 1 gives Sl

for p = 1/2, 1 ≤ l ≤ 5. Table 2 gives Sl for p = 1/16. Table 3 gives Fl for p = 1/2.
Table 4 gives Fl for p = 1/16. Each table has results for only a few selected values
of k. The selected values for k include those were Fl is maximum, where it is just
above 1/2, and where it is just below 1/2. Figure 1 is a graph of Sl for p = 1/2
(solid curves). Upper and lower bounds (dashed curves) from (32) and (34) are also
included. Figure 2 is a graph of Fl (solid curve) for p = 1/2 along with the bounds
from (53), (55), and (63) (dashed). For all bounds plotted in the figures, big O terms
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Table 1

Sl for b = 1024, p = 1/2, and selected values of k.

k S1 S2 S3 S4 S5

1 1−5.6× 10−309 1−1.2× 10−128 1−4.1× 10−60 1−2.0× 10−29 1−7.6× 10−15

2 1−5.7× 10−306 1−4.0× 10−126 1−6.1× 10−58 1−1.4× 10−27 1−2.6× 10−13

3 1−2.9× 10−303 1−6.8× 10−124 1−4.5× 10−56 1−4.8× 10−26 1−4.4× 10−12

4 1−1× 10−300 1−7.7× 10−122 1−2.2× 10−54 1−1.1× 10−24 1−5.0× 10−11

5 1−2.5× 10−298 1−6.6× 10−120 1−8.1× 10−53 1−1.9× 10−23 1−4.3× 10−10

22 1−1.5× 10−265 1−3.1× 10−95 1−2.3× 10−34 1−1.5× 10−10 1−2.4× 10−2

32 1−9.2× 10−250 1−3.3× 10−84 1−5.4× 10−27 1−2.0× 10−6 5.2× 10−1

33 1−2.9× 10−248 1−3.4× 10−83 1−2.4× 10−25 1−4.3× 10−6 4.5× 10−1

45 1−2.4× 10−231 1−5.7× 10−72 1−1.6× 10−19 1−4.2× 10−3 1.6× 10−2

57 1−6.8× 10−216 1−3.1× 10−62 1−3.7× 10−14 8.3× 10−1 3.1× 10−5

58 1−1.2× 10−214 1−1.7× 10−61 1−9.2× 10−14 8.0× 10−1 1.6× 10−5

64 1−1.9× 10−207 1−4.0× 10−57 1−1.4× 10−11 5.2× 10−1 2.5× 10−7

65 1−2.9× 10−206 1−2.0× 10−56 1−3.0× 10−11 4.7× 10−1 1.2× 10−7

91 1−6.2× 10−178 1−1.9× 10−40 1−1.1× 10−4 5.8× 10−4 2.3× 10−18

120 1−1.5× 10−150 1−7.6× 10−27 7.9× 10−1 5.3× 10−11 2.0× 10−34

121 1−1.2× 10−149 1−1.9× 10−26 7.6× 10−1 2.6× 10−11 4.7× 10−35

128 1−1.3× 10−143 1−9.8× 10−24 5.1× 10−1 1.4× 10−13 1.7× 10−39

129 1−8.8× 10−143 1−2.3× 10−23 4.8× 10−1 6.6× 10−14 3.8× 10−40

186 1−2.8× 10−100 1−7.1× 10−8 1.3× 10−7 8.9× 10−39 6.4× 10−83

247 1−3.7× 10−65 7.5× 10−1 2.0× 10−24 1.2× 10−75 5.2× 10−139

248 1−1.2× 10−64 7.3× 10−1 8.7× 10−25 2.4× 10−76 5.3× 10−140

256 1−9.6× 10−61 5.1× 10−1 1.1× 10−27 7.2× 10−82 4.7× 10−148

257 1−2.9× 10−60 4.8× 10−1 4.8× 10−28 1.4× 10−82 4.6× 10−149

377 1−8.1× 10−18 3.8× 10−17 1.4× 10−87 9.8× 10−182 4.9× 10−286

503 7.2× 10−1 6.9× 10−62 1.5× 10−178 2.2× 10−314 2.1× 10−458

504 7.0× 10−1 2.4× 10−62 2.3× 10−179 1.5× 10−315 7.0× 10−460

512 5.1× 10−1 4.0× 10−66 4.4× 10−186 6.6× 10−325 9.3× 10−472

513 4.9× 10−1 1.3× 10−66 6.3× 10−187 4.4× 10−326 3.0× 10−473

533 1× 10−1 1.6× 10−76 3.3× 10−204 5.6× 10−350 1.9× 10−503

were ignored and θ was set to 1. The p = 1/16 cases do not lead to clear graphs, so
none are given. For this case, one can best see what is happening by examining the
tables.

When deciding which results to report, we had to balance the interest in large
values for b (up to 100,000 in [2]) with the need to keep the computing time reasonable.
Also, we had to balance the interest in small values for p with the need for results to
show the various characteristics of the algorithm. And it is difficult to compute (1−p)j
accurately when p is near zero and j is large. We used code where the number of
multiplications increased only as fast as ln j. The values of S were computed exactly
using Maple and then converted to floating point. The Maple program was too slow
to compute F in this way, so F was computed only with floating point arithmetic.
For S, the results from exact arithmetic were not significantly different from those for
floating point arithmetic, but the floating point calculations sometimes gave zero for
values below 10−70. Also, it was difficult to tell just how close to 1 a floating point
value was once it went above 1− 10−12.

From Table 1 and also from Figure 1, we see that, for fixed, moderate-sized values
of k, Sl is extremely close to 1 for small values of l and that Sl is extremely small for
large values of l. The transition from near 1 to small is quite sharp with increasing l.
The transition value of l increases as k decreases. For large k, even S1 is small. For
small k one must go to large l values (not shown) before Sl becomes small. In Figure 1,
the red curves (rightmost group) refer to l = 1. The upper dotted one is the upper
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Table 2

Sl for b = 1024, p = 1/16, and selected values of k.

k S1 S2 S3 S4 S5

1 1−2.0× 10−29 1−1.8× 10−2 2.2× 10−1 1.6× 10−2 9.8× 10−4

2 1−1.4× 10−27 1−9.1× 10−2 2.6× 10−2 1.2× 10−4 4.8× 10−7

3 1−4.8× 10−26 7.6× 10−1 2.2× 10−3 6.3× 10−7 1.5× 10−10

4 1−1.1× 10−24 5.7× 10−1 1.3× 10−4 2.4× 10−9 3.8× 10−14

5 1−1.9× 10−23 3.7× 10−1 6.6× 10−6 7.6× 10−12 7.3× 10−18

22 1−1.5× 10−10 3.0× 10−10 3.2× 10−35 1.3× 10−61 4.2× 10−88

32 1−2.0× 10−6 1.0× 10−18 1.0× 10−55 3.7× 10−94 1.1× 10−132

33 1−4.3× 10−6 1.2× 10−19 7.3× 10−58 1.7× 10−97 3.1× 10−137

45 1−4.2× 10−3 9.2× 10−32 2.0× 10−84 1.6× 10−142 1.1× 10−192

57 8.3× 10−1 2.5× 10−45 1.9× 10−112 5.5× 10−181 1.3× 10−249

58 8.0× 10−1 1.7× 10−46 7.8× 10−115 1.4× 10−184 2.1× 10−254

64 5.2× 10−1 8.9× 10−54 2.5× 10−129 2.6× 10−206 2.3× 10−283

65 4.7× 10−1 5.1× 10−55 8.9× 10−132 5.9× 10−210 3.3× 10−288

91 5.8× 10−4 2.0× 10−89 1.6× 10−197 5.1× 10−307 1.4× 10−416

120 5.3× 10−11 5.6× 10−132 4.8× 10−275 1.9× 10−419 6.1× 10−564

121 2.6× 10−11 1.6× 10−133 8.7× 10−278 2.1× 10−423 4.3× 10−569

128 1.4× 10−13 2.3× 10−144 4.5× 10−297 4.1× 10−451 3.1× 10−605

129 6.6× 10−14 6.3× 10−146 7.7× 10−300 4.4× 10−455 2.1× 10−610

186 8.9× 10−39 7.9× 10−241 1.8× 10−463 2.4× 10−687 2.6× 10−911

247 1.2× 10−75 1.0× 10−352 6.7× 10−649 3.0× 10−945 1.2× 10−1243

248 2.4× 10−76 1.3× 10−354 5.1× 10−652 1.5× 10−950 3.5× 10−1249

256 7.1× 10−82 5.4× 10−370 4.9× 10−677 3.3× 10−985 1.8× 10−1293

257 1.4× 10−82 6.3× 10−372 3.6× 10−680 1.5× 10−989 5.2× 10−1299

Table 3

Fl for b = 1024, p = 1/2, and selected values of k.

k F1 F2 F3 F4 F5

1 5.6× 10−309 1.1× 10−128 4.1× 10−60 2.0× 10−29 7.6× 10−15

2 5.7× 10−306 4.0× 10−126 6.1× 10−58 1.4× 10−27 2.6× 10−13

3 2.9× 10−303 6.8× 10−124 4.5× 10−56 4.8× 10−24 4.4× 10−12

4 1.0× 10−300 7.7× 10−122 2.2× 10−54 1.1× 10−24 5.0× 10−11

5 2.5× 10−298 6.6× 10−120 8.0× 10−53 1.9× 10−23 4.2× 10−10

22 1.5× 10−265 3.1× 10−95 2.3× 10−34 1.5× 10−10 2.4× 10−2

32 9.2× 10−250 3.3× 10−83 5.4× 10−27 2.0× 10−6 4.8× 10−1

33 2.9× 10−248 3.4× 10−82 2.4× 10−26 4.3× 10−6 5.5× 10−1

45 2.4× 10−231 5.7× 10−72 1.6× 10−19 4.2× 10−3 1.0−3.4× 10−2

57 6.8× 10−216 3.1× 10−62 3.7× 10−14 1.7× 10−1 5.6× 10−1

58 1.2× 10−214 1.7× 10−61 9.2× 10−14 2.0× 10−1 5.0× 10−1

64 1.9× 10−207 4.0× 10−57 1.4× 10−11 4.8× 10−1 1.8× 10−1

65 2.9× 10−206 2.0× 10−56 3.0× 10−11 5.3× 10−1 1.4× 10−1

91 6.2× 10−178 1.9× 10−40 1.1× 10−4 1.0−1.0× 10−3 5.6× 10−7

120 1.5× 10−150 7.6× 10−27 2.1× 10−1 5.2× 10−1 2.0× 10−18

121 1.2× 10−149 1.9× 10−26 2.4× 10−1 4.7× 10−1 6.8× 10−19

128 1.3× 10−143 9.8× 10−24 4.9× 10−1 1.9× 10−1 2.0× 10−22

129 8.8× 10−143 2.3× 10−23 5.2× 10−1 1.6× 10−1 6.1× 10−23

186 2.8× 10−100 7.1× 10−8 1.0−3.4× 10−7 3.8× 10−13 7.3× 10−60

247 3.7× 10−65 2.5× 10−1 5.0× 10−1 4.7× 10−40 4.7× 10−112

248 1.2× 10−64 2.7× 10−1 4.7× 10−1 1.3× 10−40 4.7× 10−113

256 1.0× 10−60 4.9× 10−1 2.2× 10−1 4.5× 10−45 1.1× 10−122

257 2.9× 10−60 5.1× 10−1 1.9× 10−1 1.2× 10−45 3.9× 10−124

377 8.0× 10−18 1.0 8.7× 10−30 3.8× 10−165

503 2.8× 10−1 5.2× 10−1 2.7× 10−109

504 3.0× 10−1 4.9× 10−1 1.5× 10−110

512 4.9× 10−1 2.6× 10−1 2.2× 10−121

513 5.1× 10−1 2.4× 10−1 7.4× 10−123

533 9.0× 10−1 1.0× 10−2 1.8× 10−158
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Table 4

Fl for b = 1024, p = 1/16, and selected values of k.

k F1 F2 F3 F4 F5

1 2.0× 10−29 1.8× 10−2 7.3× 10−1 1.9× 10−3 6.4× 10−10

2 1.4× 10−27 9.1× 10−2 7.3× 10−1 2.9× 10−5 6.3× 10−13

3 4.8× 10−26 2.4× 10−1 4.5× 10−1 2.3× 10−7 3.0× 10−16

4 1.1× 10−24 4.3× 10−1 2.0× 10−1 1.2× 10−9 9.8× 10−20

5 1.9× 10−23 6.3× 10−1 6.3× 10−2 4.7× 10−12 2.4× 10−23

22 1.5× 10−10 1.0−6.0× 10−10 7.1× 10−23 3.9× 10−61 5.6× 10−93

32 2.0× 10−6 1.0−4.1× 10−6 1.6× 10−40 1.7× 10−93 2.0× 10−137

33 4.3× 10−6 1.0−8.7× 10−6 2.1× 10−42 8.1× 10−97 6.0× 10−142

45 4.2× 10−3 1.0−8.4× 10−3 2.1× 10−68 1.1× 10−137 2.7× 10−197

57 1.7× 10−1 6.9× 10−1 2.4× 10−92 5.1× 10−180 1.2× 10−274

58 2.0× 10−1 6.4× 10−1 1.4× 10−94 1.3× 10−183 1.7× 10−287

64 4.8× 10−1 2.7× 10−1 3.4× 10−108 2.8× 10−205

65 5.3× 10−1 2.2× 10−1 1.7× 10−110 6.4× 10−209

91 1−5.8× 10−4 3.3× 10−7 3.9× 10−173

120 1.0−5.3× 10−11 2.8× 10−21 4.0× 10−250

121 1.0−2.6× 10−11 6.7× 10−22 3.5× 10−253

128 1.0−1.4× 10−13 2.1× 10−26 9.7× 10−276

129 1.0−6.3× 10−14 4.4× 10−27 4.1× 10−279

186 1.0 7.0× 10−77

247 1.0 1.3× 10−150

248 1.0 5.8× 10−152

256 1.0 5.1× 10−163

257 1.0 2.0× 10−164

bound from (32). The solid one is the actual value from (11). The lower dashed one
is the lower bound from (34). Proceeding to the left, we have corresponding groups
for l = 2, 3, 4, and 5. For l = 3, 4, and 5, one can notice that the plotted “upper
bound” goes below the actual value. This is because the big O term was omitted,
and it is significant in these cases. Nonetheless, even without the big O term the
upper bound gives the general idea for how the actual function behaves (it becomes
extremely small). Table 2 shows that the p = 1/16 is similar to the p = 1/2 case.
Notice that S with p = 1/2 and l = 4 has approximately the same value that S does
for p = 1/16 and l = 1, particularly when k is small.

Table 3 and also Figure 2 show the values of Fl (solid) for p = 1/2 from (16),
(17), and (19). Figure 3 also shows the upper (dotted) and lower (dashed) bounds
computed from (53), (55), and (63). The red group of curves (rightmost) is for l = 1.
The next rightmost group (orange) is for l = 2; the leftmost group is for l = 5 (blue).
For any fixed k, there is one or sometimes two values of l for which Fl is not small.
For most large values of k, there is just one l value where Fl is large, and for that one
l value the resulting Fl is extremely close to 1, but for some large k values, there are
two l values for which Fl is moderately large. As k becomes smaller, the l value that
results in Fl being near 1 decreases. Also, Fl no longer becomes quite so close to 1.
Table 4 shows Fl for p = 1/16. Notice that, for small k, F with p = 1/2 and l = 4
has approximately the same value as F does for p = 1/16 and l = 1. Table 5 shows
the extend of the various regions when b = 1024, p = 1/2, and 1 ≤ l ≤ 5. Table 6
shows information for the p = 1/16 case.

8. Experimental results. In this section we report the results of running the
Apriori Algorithm on data that are more like those used in practice. We used three
data sets: (1) synthetic data produced by the generator from the IBM Quest Research
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Fig. 1. The value of Sl and approximations to Sl for p = 1/2 and 1 ≤ l ≤ 5. The red curves
are for S1. The upper red dotted curve is the upper bound on S1 ( (32) with the big O term omitted).
The solid red curve is the actual value of S1. The lower red dashed curve is the lower bound on S1

( (34) with the big O term omitted). The bounds are plotted only for the range where they are valid.
Proceeding to the left, each group of three curves shows similar information on Sl for l = 2, 3, 4,
and 5.
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Fig. 3. The value of Fl for p = 1/2 and 1 ≤ l ≤ 5 along with upper (dotted) and lower (dashed)
bounds.

Table 5

Region boundaries for b = 1024, p = 1/2.

l 1 2 3 4 5

Region 1 k ≥ 513 k ≥ 257 k ≥ 129 k ≥ 65
Region 2 k ≤ 512 k ≤ 256 k ≤ 128 k ≤ 64 k ≤ 32
Region 3 1023 ≤ k ≤ 1023 1022 ≤ k ≤ 1022 1020 ≤ k ≤ 1021 1016 ≤ k ≤ 1020
Region 4 513 ≤ k ≤ 1024 257 ≤ k ≤ 512 129 ≤ k ≤ 256 65 ≤ k ≤ 128 33 ≤ k ≤ 64

Table 6

Region boundaries for b = 1024, p = 1/16.

l 1 2 3 4 5

Region 1 k ≥ 65 k ≥ 5 k ≥ 1 k ≥ 1
Region 2 k ≤ 64 k ≤ 4 k ≤ 0 k ≤ 0 k ≤ 0
Region 3 1023 ≤ k ≤ 1023 1020 ≤ k ≤ 1022 833 ≤ k ≤ 1021 2 ≤ k ≤ 1020
Region 4 65 ≤ k ≤ 1024 5 ≤ k ≤ 64 ≤ k ≤ 4

Group [13]; (2) real data based on the U.S. Census [23]; and (3) real Web data [24].
These data sets have two major differences from the sets analyzed in the previous
sections: (1) the probability of an item being in a basket is not the same for every
item, but varies greatly from item to item (this effect is particularly strong in the
census and Web data sets), and (2) the items are correlated [5].

Given the major differences between the data used in the analytical study and
the data used for the experimental study, it is not surprising that many of the results
from the experiments differ from those of the analysis. However, the experiments did
verify one important conclusion of the analysis: work done by the Apriori Algorithm is
dominated by the failure rate and the total failure rate is almost as high as it possibly
can be. To be more precise, for most thresholds, there is a single level where most of
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the work is done, and on this level almost every candidate fails to be a success.
In the random model, there is a fixed number of items, |I|, each occurring in a

basket with probability p. For level l, when the threshold, k, is such that k < bpl,
almost every item set with l items (

(|I|
l

)
item sets) is frequent. Once l is large enough

that k > bpl, then almost no item set with l items is frequent. When p is small, the
value of bpl changes rapidly with l.

One can obtain an informal understanding of the experimental data presented
below by permitting |I|, b, and p to vary (both with the threshold, k, and the level, l).

In the random model, level l will have approximately
(|I|

l

)
successful item sets so long

as k is much less than bpl, and it will have a lot less if k is much larger than bpl. Also,
when p is small, the value of bpl changes rapidly with l. The ratio of the number of
item sets on level l to level l − 1 is

(|I|
l

)
/
( |I|
l−1

)
, which is approximately |I|/l if |I| is

much larger than l. Thus, we would expect the number of item sets to increase rapidly
with l until the level where bpl becomes larger than k. Even when the effective |I|
decreases with l and the effective p increases, one is likely to get behavior that is
qualitatively the same. The number of item sets will increase rapidly at first, and
then it will suddenly decrease. The cause of the decrease will be the high failure rate
on the level just before the decrease. This will be the level where most of the work is
done, because it is the level with the most candidates.

Now, consider some actual data sets. These data sets were run through a version of
the Apriori Algorithm that computes frequent item sets for all values of the threshold
with a lower limit being imposed on the threshold as needed to avoid running out of
computer memory. Figures 4–9 show the results for three data sets. In each figure, the
bottom axis shows the threshold. Each color curve refers to one level of the Apriori
Algorithm: level 1, red; level 2, orange; level 3, yellow; level 4, green; level 5, blue.
Figures 4, 6, and 8 show, for each of the data sets, the number of candidates as a solid
curve, the upper bound from [10] as a dotted curve, and the number of failures as a
dashed curve. For a given level, the upper bound is highest, the number of candidates
is in the middle, and the number of failures is lowest. Often the dotted and/or dashed
curves are so close to the solid curve that they don’t show up. Figures 5, 7, and 9
show, for each of the data sets, the ratio of failures to candidates (for each level).

8.1. Synthetic data. The first data set was generated using the synthetic data
set generator from the IBM Quest Research Group [13] to create data sets in the same
fashion as [3]. We tested several synthetic data sets, each of which had 1000 items.
We report the results for the T5.I2.D100K (average transaction size, 5; size of the
average maximal frequent item set, 2; number of transactions, 100,000), as they are
representative of the experimental results for the other synthetic data sets.

The solid curves in Figure 4 show the number of candidates on each level (which
is proportional to the work done on the level). Notice that for high thresholds
(above 849) the most work is done on level 1; for intermediate thresholds (between
16 and 849) the most work is done on level 2; and for low thresholds (between 1 and 15)
the most work is done on level 3. Notice that for the highest solid curve (which one
is highest depends on the threshold) the number of failures is almost equal to the
number of candidates. In Figure 4 this shows up by the dashed curve falling on top of
the solid curve (or almost on top). Figure 5 shows the ratio of failures to candidates.
This ratio is close to 1 for the curve that is uppermost in Figure 4.

For each threshold, the uppermost curve represents the bad level, the level where
most of the work is done and where almost every candidate is a failure. For levels past
the bad level, one may want to use a version of the Apriori Algorithm that counts
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Fig. 4. Behavior of the algorithm on synthetic data. The dotted lines show the upper bounds,
the solid lines show the actual number of candidates considered, and the dashed lines show the
number of candidates that fail for each level.
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Fig. 5. The failure rate for the synthetic data set.
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Fig. 6. Behavior of the algorithm on census data. The dotted lines show the upper bounds, the
solid lines show the actual number of candidates considered, and the dashed lines show the number
of candidates that fail for each level.
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Fig. 7. The failure rate for the census data set.
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Fig. 8. Behavior of the algorithm on Web data. The dotted lines show the upper bounds, the
solid lines show the actual number of candidates considered, and the dashed lines show the number
of candidates that fail for each level.
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item sets for all remaining levels in one pass. (This was one of the main motivations
for [10].)

8.2. Census data. The second data set was U.S. Census data, using Public Use
Microdata Samples (PUMS) [23]. We chose the same sample that was used by [5, 6].
The data represents a 5% sample of the 1990 U.S. Census data for Washington, D.C.
It contains 30,370 entries with 122 attributes.

Following [5, 6, 11], we modified the data in the following ways. For monetary
values, we took the ceiling of the logarithm of the value. Then we assigned a unique
integer to each possible value in the data. In total, the converted PUMS data was
16.6 MB, with 7523 unique items. In addition, we pruned the highly frequent items,
which yield an intractable number of frequent item sets.

Due to the high number of correlated items in this type of data our computing
resources did not permit us to compute levels 4 and 5 for thresholds less than 25.

The solid curves in Figure 6 show the number of candidates on each level. Notice
that for high thresholds (above 872) the most work is done on level 1 and for inter-
mediate thresholds (between 25 and 872) the most work is done on level 2. We are
missing data for low thresholds. Figures 6 and 7 show that for the level where most
of the work is done, the ratio of failures to candidates is almost 1.

8.3. Web data. The third data set was the BMS-WebView-1 data set described
in [24]. This data contains click stream data from a Web-based merchandising com-
pany. There are 59,602 transaction and 497 distinct items in the Web data.

Figure 8 shows the results for the Web data. Resources did not permit thresholds
below 35 for levels 4 and above.

Level 3, however, has a large enough number of successes to suggest that levels
4 and 5 are the truly “bad” levels for this data. The slope of these two levels is
extremely steep, with level 5 being nearly vertical. Figure 9 shows the ratio of failures
to candidates for the Web data.

9. Discussion. For random shopper and for most values of the parameters, the
amount of work that the Apriori Algorithm does increases rapidly with the level until
a bad level is reached. Until the bad level, almost every item set is frequent; level l will
have almost

(|I|
l

)
successes. At the bad level and beyond almost every item set fails

to be frequent. Almost all of the work done by the algorithm consists of processing
the failures on the bad level. Which level is bad depends on the threshold (and the
other parameters). For special values of the threshold two neighboring level will each
be halfway bad.

The experimental data in the paper came from shoppers that were far from ran-
dom. For most thresholds, there still was a bad level where almost all the work for
the whole algorithm consisted of processing failures on the bad level. The fraction of
failures on the early levels was not large, but it was large enough that the number of
successes on level l was much less than

(|I|
l

)
.

Our assumptions on random shoppers and the assumptions that realize the worst-
case bounds of [10, Theorem 1] (highly correlated shopping) appear quite different,
but in some ways they are quite similar. Consider the case where the number of
successes on level l is

(
m
l

)
for some integer m. Then the upper bound limit on the

number of candidates for level l + 1 is
(

m
l+1

)
, the same as for the random shopper

case when p = 1 and |I| = m. Indeed the random shopper model gives essentially
the same prediction for the number of candidates for any value of p large enough
that k < bpl. From this point of view, the key insight of their Theorem 1 is that the
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binomial coefficient leads to a useful estimate of how many items are still important
when the Apriori Algorithm gets to level l.

We believe that comparing properties that are observed for the random shopper
with the properties that are observed with worst-case shoppers can give some insight
as to how the Apriori Algorithm will behave with typical data sets.

Appendix. This section gives proofs and the derivations of equations.

Proof. A subpart of the Apriori Algorithm is NP-complete. Determining whether
some set of size l occurs k times is in NP because one can guess the set and then
verify the number of occurrence by counting the occurrences. The proof that the
problem is NP-hard uses reduction from the balanced complete bipartite subgraph
problem: given a positive integerK and a bipartite graph with vertices V and edges E,
determine whether there are two disjoint sets of edges (V1 and V2) such that |V1| = K,
|V2| = K, and such that there is an edge in E between each vertex in V1 and each
vertex in V2. Since any such subgraph must be in a single connected component of the
original graph, we can process each connected component of the graph separately. In
a single connected component, the vertices of a bipartite graph naturally fall into two
groups where all the edges in a group are connected by paths of even length. To map
the given single component bipartite graph to baskets and items, associate (in a one-
to-one manner) each vertex of one part with an item, and associate (in a one-to-one
manner) each vertex of the other part with a basket. Have item i in basket b if and
only if the vertex associated with i has an edge connecting to the vertex associated
with b. If there is solution to the given instance of the balanced complete bipartite
subgraph problem, then that solution directly gives an item set of size K that occurs
in K baskets. Also if there is an item set of size K that occurs in K baskets, then
the corresponding subgraph is a solution to the given instance.

Equation (11). We have j (j ≥ k) baskets that contain the set and b− j baskets
that do not contain the set, so

Sl =
∑
j≥k

(
b

j

)
[P (l)]j [1− P (l)]b−j .(11a)

From the binomial theorem we have∑
j

(
b

j

)
[P (l)]j [1− P (l)]b−j = 1,(A1)

so ∑
j≥k

(
b

j

)
[P (l)]j [1− P (l)]b−j = 1−

∑
j<k

(
b

j

)
[P (l)]j [1− P (l)]b−j .(11b)

Equation (12). The factor [P (l)]j0 is the probability that the first j0 baskets
obey condition M0, [Q(l)]j1 is the probability that the next j1 baskets obey condi-
tion M1, . . . , [Q(l)]jl is the probability that the next jl baskets obey condition Ml,
and [1 − P (l) − lQ(l)]b−j0−···−jl is the probability that the remaining baskets obey
none of the conditions M0, . . . ,Ml. (Notice that each basket obeys at most one of the
conditions Mh (0 ≤ h ≤ l).) However, the various baskets can come in any order, and
the multinomial coefficient allows for this. Thus the probability that jh baskets obey
condition Mh (0 ≤ h ≤ l) and that the remaining b− j0−· · ·− jl baskets do not obey
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any of the conditions is(
b

j0, . . . , jl, b− j0 − · · · − jl

)
[P (l)]j0 [Q(l)]j1+···+jl [1− P (l)− lQ(l)]b−j0−···−jl .(12)

Equation (18).

Rk(b, l,m, n) =
∑
j1≥k
j2≥k···
jl≥k

(
b

j1, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl(17)

=
∑
j1≥k

(
b

j1

)
[Q(m)]j1

∑
j2≥k
j3≥k···
jl≥k

(
b− j1

j2, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j2+···+jl [1− P (m)− nQ(m)](b−j1)−j2−···−jl(A2)

=
∑
j≥k

(
b

j

)
[Q(m)]jRk(b− j, l − 1,m, n).(18)

Equation (19). The boundary condition is just (17) with l replaced with 0.

Equation (27). Using the binomial theorem on the jl sum in (25), we have

x−kl
∑

j1,...,jl

(
b

j1, . . . , jl, b− j1 − · · · − jl

)
× [xQ(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl

= x−kl
∑

j1,...,jl−1

(
b

j1, . . . , jl−1, b− j1 − · · · − jl−1

)
× [xQ(m)]j1+···+jl−1 [1− P (m)− nQ(m)]b−j1−···−jl−1 .(A3)

The remaining l − 1 sums can be done the same way to obtain

Rk(b, l,m, n) ≤ x−kl
∑

j1,...,jl

(
b

j1, . . . , jl, b− j1 − · · · − jl

)
× [xQ(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl

≤ x−kl[1− P (m)− (n− lx)Q(m)]b.(25)

Equation (28). Less algebra is needed to minimize the logarithm of the bound,
and it leads to the same result. Start with the derivative of the logarithm of (23):

d {−k lnx+ b ln[1 + (x− 1)P (l)]}
d x

=
−k
x

+
bP (l)

1 + P (l)(x− 1)
.(A4)

Now set the logarithm to zero and replace x (the free variable) with x∗ (the value
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that results in the derivative being zero):

−k
x∗

+
bP (l)

1 + P (l)(x∗ − 1)
= 0,(A5)

−kP (l)(x∗ − 1)− k + bP (l)x∗ = 0,(A6)

x∗ =
k[1− P (l)]

(b− k)P (l)
.(28)

Equation (29).

k[1− P (l)]

(b− k)P (l)
> 1,(A7)

k[1− P (l)] > (b− k)P (l)(A8)

(since b > k), so

k > bP (l).(29)

Equation (30). Plugging (28) into (23) gives

Sl ≤
(
k[1− P (l)]

(b− k)P (l)

)−k [
1 +

(
k[1− P (l)]

(b− k)P (l)
− 1

)
P (l)

]b
,(A9)

Sl ≤ {k[1− P (l)]}−k[P (l)]k(b− k)−b+k(b− k + {k[1− P (l)]− (b− k)P (l)})b,

Sl ≤
(
P (l)

k

)k (
1− P (l)

b− k
)b−k

bb.(30)

Equation (32). Replace k in (30) with its value in terms of α1 (equation (31)):

Sl ≤
(

P (l)

b[P (l) + α1]

)b[P (l)+α1]( 1− P (l)

b− b[P (l) + α1]

)b−b[P (l)+α1]

bb,(A10)

Sl ≤
(

P (l)

b[P (l) + α1]

)b[P (l)+α1]( 1− P (l)

b[1− P (l)− α1]

)b[1−P (l)−α1]

bb,(A11)

Sl ≤
(

1

b[1 + α1/P (l)]

)b[P (l)+α1]( 1

b{1− α1/[1− P (l)]}
)b[1−P (l)−α1]

bb,(A12)

Sl ≤
(

1

1 + α1/P (l)

)b[P (l)+α1]( 1

1− α1/[1− P (l)]

)b[1−P (l)−α1]

.(A13)

To further simplify this, we will write it as Sl ≤ eX with

X = ln

[(
1

1 + α1/P (l)

)b[P (l)+α1]( 1

1− α1/[1− P (l)]

)b[1−P (l)−α1]
]

(A14)

= −b[P (l) + α1] ln

(
1 +

α1

P (l)

)
− b[1− P (l)− α1] ln

(
1− α1

[1− P (l)]

)
.(A15)
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Dividing by b, we have

X

b
= −[P (l) + α1] ln

(
1 +

α1

P (l)

)
− [1− P (l)− α1] ln

(
1− α1

[1− P (l)]

)
(A16)

= −[P (l) + α1]

[(
α1

P (l)

)
− 1

2

(
α1

P (l)

)2

+O

((
α1

P (l)

)3
)]

(A17)

+ [1− P (l)− α1]

[(
α1

1− P (l)

)
+

1

2

(
α1

1− P (l)

)2

+O

((
α1

1− P (l)

)3
)]

(A18)

= −α1 +
α2

1

2P (l)
−O

(
α3

1

P (l)2

)
− α2

1

P (l)
+

α3
1

2P (l)2
−O

(
α4

1

P (l)3

)
+ α1 +

α2
1

2[1− P (l)]
+O

(
α3

1

[1− P (l)]2

)
− α2

1

1− P (l)
− α3

1

2[1− P (l)]2

−O
(

α4
1

[1− P (l)]3

)
(A19)

= − α2
1

2P (l)
− α2

1

2[1− P (l)]
+O

(
α3

1

[1− P (l)]2

)
−O

(
α3

1

P (l)2

)
.(A20)

The big O is with respect to α1. We assume that 0 < p < 1. Since negative big O
terms can be dropped in an upper limit,

Sl ≤ e−bα2
1/{2P (l)[1−P (l)]}+O(bα3

1[1−P (l)]−2).(32)

Equation (35). The derivative of the logarithm of the bound on F (inequality (27))
with respect to x is

d [−kl lnx− (k − 1) ln y + b ln[1 + (xly − 1)P (l) + l(x− 1)Q(l)]

dx

=
−kl
x

+
b[lxl−1yP (l) + lQ(l)]

1 + (xly − 1)P (l) + l(x− 1)Q(l)
.(A21)

Setting this to zero gives

−kl[1 + (xl∗y − 1)P (l) + l(x∗ − 1)Q(l)] + bx∗[lxl−1
∗ yP (l) + lQ(l)] = 0,(A22)

−kl − klP (l)xl∗y + klP (l) + kl2Q(l)− kl2Q(l)x∗ + blP (l)xl∗y + blQ(l)x∗ = 0,

(A23)

(b− k)P (l)xl∗y + (b− kl)Q(l)x∗ − k[1− P (l)− lQ(l)] = 0.(35)

Equation (36). The derivative of the logarithm bound (inequality (27)) with
respect to y gives

d [−kl lnx− (k − 1) ln y + b ln[1 + (xly − 1)P (l) + l(x− 1)Q(l)]

dy
(A24)

= −k − 1

y
+

bxlP (l)

1 + (xly − 1)P (l) + l(x− 1)Q(l)
.(A25)
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Setting this to zero gives

−(k − 1)[1 + (xly∗ − 1)P (l) + l(x− 1)Q(l)] + bxly∗P (l) = 0,(A26)

(b− k + 1)P (l)xly∗ − (k − 1)[1− P (l) + lQ(l)(x− 1)] = 0.(36)

Equation (37). Equation (35) with x∗ = 1, y = 1 is

(b− k)P (l) + (b− kl)Q(l)− k[1− P (l)− lQ(l)] = 0,(A27)

k = b[P (l) +Q(l)] = bP (l − 1).(37)

Equation (38). By implicit differentiation of (35) (with y = 1) we have

d {(b− k)P (l)xl∗ + (b− kl)Q(l)x∗ − k[1− P (l)− lQ(l)]}
db

= 0,(A28)

P (l)xl∗ +Q(l)x∗ + [(b− k)lP (l)xl−1
∗ + (b− kl)Q(l)]

d x∗
db

= 0,(A29)

d x∗
db

= − P (l)xl∗ +Q(l)x∗
(b− k)lP (l)xl−1∗ + (b− kl)Q(l)

.(A30)

Since x∗ solves (35) (with y = 1) we have

(b− k)P (l)xl∗ + (b− kl)Q(l)x∗ = k[1− P (l)− lQ(l)],(A31)

which is positive. Thus

(b− k)P (l)lxl−1
∗ + (b− kl)Q(l) =

(b− k)P (l)xl∗ + (b− kl)Q(l)x∗
x∗

+ (l − 1)(b− k)P (l)xl−1
∗(A32)

is also positive (because x∗ > 0, b − k > 0, and l ≥ 1). Thus, d x∗/db is negative. If
we start at the b value that results in x∗ = 1, and decrease b, then x∗ increases. Thus,
it becomes larger than 1 and stays larger than 1.

Equation (39). Equation (36) with x = 1 is

(b− k + 1)P (l)y∗ − (k − 1)[1− P (l)] = 0,(A33)

y∗ =
(k − 1)[1− P (l)]

(b− k + 1)P (l)
.(39)

Equation (40).

(k − 1)[1− P (l)]

(b− k + 1)P (l)
< 1,(A34)

(k − 1)[1− P (l)] < (b− k + 1)P (l),(A35)

k − 1 < bP (l),(A36)

k < bP (l) + 1.(40)
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Equation (42). From (35)

P (l)xl∗y =
k[1− P (l)− lQ(l)]− (b− kl)Q(l)x∗

b− k .(A37)

From (36)

P (l)xly∗ =
(k − 1)[1− P (l) + l(x− 1)Q(l)]

b− k + 1
.(A38)

Setting x to x∗, y to y∗, the two right sides equal, and clearing fractions gives

k(b− k + 1)[1− P (l)− lQ(l)]− (b− kl)(b− k + 1)Q(l)x

= (k − 1)(b− k)[1− P (l) + lQ(l)x− lQ(l)],(A39)

(b2 − bk + b− bkl + k2l − kl)Q(l)x = (bk − k2 + k)[1− P (l)− lQ(l)]

− (bk − k2 − b+ k)[1− P (l) + lQ(l)x− lQ(l)],(A40)

(b2 − bk + b− bkl + k2l − kl + bkl − k2l − bl + kl)Q(l)x

= (bk − k2 + k − bk + k2 + b− k)[1− P (l)− lQ(l)],(A41)

(b2 − bk + b− bl)Q(l)x = b[1− P (l)− lQ(l)],(A42)

x =
1− P (l)− lQ(l)

(b− k − l + 1)Q(l)
.(42)

Equation (43). Plugging the value of x from (42) into (35) gives

(b− k)
(

1− P (l)− lQ(l)

(b− k − l + 1)Q(l)

)l

P (l)y

+
(b− kl)[1− P (l)− lQ(l)]

b− k − l + 1
− k[1− P (l)− lQ(l)] = 0,(A43)

y =
k[1− P (l)− lQ(l)]− (b−kl)[1−P (l)−lQ(l)]

b−k−l+1

(b− k)
(

1−P (l)−lQ(l)
(b−k−l+1)Q(l)

)l
P (l)

,(A44)

y =
(b− k − l + 1)l−1Q(l)l{k(b− k − l + 1)[1−P (l)−lQ(l)]−(b− kl)[1−P (l)−lQ(l)]}

(b− k)[1− P (l)− lQ(l)]lP (l)
,

(A45)

y =
(b− k − l + 1)l−1Q(l)l(bk − k2 − kl + k − b+ kl)[1− P (l)− lQ(l)]

(b− k)[1− P (l)− lQ(l)]lP (l)
,(A46)

y =
(b− k − l + 1)l−1Q(l)l(k − 1)[1− P (l)− lQ(l)]

[1− P (l)− lQ(l)]lP (l)
,(A47)

y = (k − 1)

(
(b− k − l + 1)Q(l)

1− P (l)− lQ(l)

)l−1
Q(l)

P (l)
.(43)
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Equation (44). To have x > 1 we need

1− P (l)− lQ(l)

(b− k − l + 1)Q(l)
> 1.(A48)

For b > k + l − 1 we have

1− P (l)− lQ(l) > (b− k − l + 1)Q(l),(A49)

1− P (l) > (b− k + 1)Q(l),(A50)

b < k − 1 +
1− P (l)

Q(l)
.(A51)

So that the upper and lower bounds look more similar, we rewrite the upper bound
on b by adding and subtracting l:

k + l − 1 < b < k + l − 1 +
1− P (l)− lQ(l)

Q(l)
.(44)

Suppose b < k + l − 1. Then from (A48) we have

1− P (l)− lQ(l) < (b− k − l + 1)Q(l),(A52)

1− P (l) < (b− k + 1)Q(l),(A53)

b > k − 1 +
1− P (l)

Q(l)
,(A54)

k + l − 1 > b > k − 1 +
1− P (l)

Q(l)
.(A55)

For this range to be nonempty, we need

k + l − 1 > k − 1 +
1− P (l)

Q(l)
,(A56)

0 >
1− P (l)

Q(l)
− l,(A57)

0 >
1− P (l)− lQ(l)

Q(l)
,(A58)

but this cannot be. We have P (l) + lQ(l) = pl + l(1 − p)pl−1, which are some of
the terms in the binomial expansion of [p + (1 − p)]l = 1. Since all of the terms are
nonnegative (for 0 ≥ p ≥ 1) the sum of some of the terms is no more than 1, so the
right side of (A58) is nonnegative. Thus, the range is always empty.

Equation (45).

b < bP (l − 1) + l − 1 +
1− P (l)− lQ(l)

Q(l)
,(A59)

b[1− P (l − 1)] <
1− P (l)−Q(l)

Q(l)
,(A60)

b[1− P (l − 1)] <
1− P (l − 1)

Q(l)
,(A61)

b <
1

Q(l)
.(A62)
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Equation (46). To have y < 1 we need

(k − 1)

(
(b− k − l + 1)Q(l)

1− P (l)− lQ(l)

)l−1
Q(l)

P (l)
< 1.(A63)

For l ≥ 2

(b− k − l + 1)Q(l)

1− P (l)− lQ(l)

(
(k − 1)Q(l)

P (l)

)1/(l−1)

< 1,(A64)

b− k − l + 1 ≤ 1− P (l)− lQ(l)

Q(l)
(

(k−1)Q(l)
P (l)

)1/(l−1)
,(A65)

b < k + l − 1 +
1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

.(46)

The upper bound on b from (46) is greater than the lower bound from (44).

k + l − 1 +
1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

> k + l − 1,(A66)

1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

> 0.(A67)

All the terms on the left are positive for 0 < p < 1.
Equation (47). We now consider when the upper bound on b from (46) is less

than the upper bound from (44):

k + l − 1 +
1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

< k + l − 1 +
1− P (l)− lQ(l)

Q(l)
,

(A68)

1− P (l)− lQ(l)

Q(l)

(
P (l)

(k − 1)Q(l)

)1/(l−1)

<
1− P (l)− lQ(l)

Q(l)
,(A69)

0 <
1− P (l)− lQ(l)

Q(l)

[
1−

(
P (l)

(k − 1)Q(l)

)1/(l−1)
]
.(A70)

As shown above (below (A58)), the first factor is always positive. For the second
factor to be positive we need

1 >

(
P (l)

(k − 1)Q(l)

)1/(l−1)

,(A71)

1 >
P (l)

(k − 1)Q(l)
,(A72)

(k − 1)(1− p)pl−1 > pl,(A73)

(k − 1)(1− p) > p,(A74)

k − kp− 1 + p > p,(A75)

k(1− p) > 1,(A76)

k >
1

1− p .(47)



AVERAGE-CASE PERFORMANCE OF THE APRIORI ALGORITHM 1255

Equation (51). Equation (35) with y = 1 is

(b− k)P (l)xl + (b− kl)Q(l)x− k[1− P (l)− lQ(l)] = 0.(A77)

Let x = 1+δ with small δ and expand to second order. Let θ stand for quantities that
approach 1 in the limit as δ approaches 0. In other words, θ is short for [1 + o(1)],
where δ is the variable that is approaching zero.

(b− k)P (l)

(
1 + lδ +

l(l − 1)δ2θ

2

)
+ (b− kl)Q(l)(1 + δ) = k[1− P (l)− lQ(l)],

(A78)

(b− k)P (l)

(
lδ +

l(l − 1)δ2θ

2

)
+ (b− kl)Q(l)δ

= k[1− P (l)− lQ(l)]− (b− k)P (l)− (b− kl)Q(l),(A79)

δ =
k[1− P (l)− lQ(l)]− (b− k)P (l)− (b− kl)Q(l)

l(b− k)P (l)[1 + (l − 1)θδ/2] + (b− kl)Q(l)
,(A80)

δ =
k − bP (l)− bQ(l)

b[lP (l) +Q(l)]− kl[P (l) +Q(l)] + (b− k)l(l − 1)P (l)θδ/2
,(A81)

δ =
k − bP (l − 1)

b[lP (l) +Q(l)]− klP (l − 1) + (b− k)l(l − 1)P (l)θδ/2
,(A82)

δ =
k − bP (l − 1)

b[lP (l) +Q(l)]− klP (l − 1)

(
1 +

(b− k)l(l − 1)P (l)θδ/2

b[lP (l) +Q(l)]− klP (l − 1)

)−1

,(A83)

δ =
k − bP (l − 1)

b[lP (l) +Q(l)]− klP (l − 1)

(
1 +

[k − bP (l − 1)](b− k)l(l − 1)P (l)θ/2

{b[lP (l) +Q(l)]− klP (l − 1)}2
)−1

.

(51)

Equation (53). Write (50) as

Fl ≤ eX ,(A84)

with

X = ln{x−kl[1 + (xl − 1)P (l) + l(x− 1)Q(l)]b}(A85)

= −kl lnx+ b ln[1 + (xl − 1)P (l) + l(x− 1)Q(l)].(A86)

Replace x with 1 + δ:

X = −kl ln(1 + δ) + b ln{1 + [(1 + δ)l − 1]P (l) + lQ(l)δ}.(A87)
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Expanding X in a power series to second order gives

X = −kl ln(1 + δ) + b ln

(
1 + lδP (l) +

l(l − 1)P (l)θδ2

2
+ lQ(l)δ

)

= −klδ +
klθδ2

2
+ b

(
lP (l)δ +

l(l − 1)δ2P (l)θ

2
+ lQ(l)δ

)

− b

2

(
lP (l)δ +

l(l − 1)P (l)θδ2

2
+ lQ(l)δ

)2

θ(A88)

= −l[k − bP (l)− bQ(l)]δ +
kl + bl(l − 1)P (l)− bl2[P (l) +Q(l)]2

2
θδ2(A89)

= −l[k − bP (l − 1)]δ +
kl + bl(l − 1)P (l)− bl2[P (l − 1)]2

2
θδ2.(A90)

Replace k by its definition in terms of α3 (equation (52)) to obtain

X = −l[k − bP (l − 1)]δ +
{kl + bl(l − 1)P (l)− bl2[P (l − 1)]2}θ

2
δ2(A91)

= −blα3δ +
bl{P (l − 1) + α3 + (l − 1)P (l)− l[P (l − 1)]2}θ

2
δ2(A92)

=

(
−blα3 +

bl{P (l − 1) + α3 + (l − 1)P (l)− l[P (l − 1)]2}θδ
2

)
δ.(A93)

Also replace k in (51) by its value in terms of α3 to obtain

δ =
α3b

b[lP (l) +Q(l)]− b[P (l − 1) + α3]lP (l − 1)

×
(

1 +
bα3{b− b[P (l − 1) + α3]}l(l − 1)P (l)θ/2

{b[lP (l) +Q(l)]− b[P (l − 1) + α3]l[P (l − 1)]}2
)−1

(A94)

=
α3

lP (l) +Q(l)− l[P (l − 1) + α3]P (l − 1)

×
(

1 +
α3[1− P (l − 1)− α3]l(l − 1)P (l)θ/2

{lP (l) +Q(l)− l[P (l − 1) + α3][P (l − 1)]}2
)−1

.(A95)

Since δ and α3 go to zero together, this can be written as

δ =
θα3

lP (l) +Q(l)− l[P (l − 1)]2
.(A96)
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Plugging the value of δ into the expression for X (equation (A93)) gives

X =

(
−blα3 +

bl{P (l − 1) + α3 + (l − 1)P (l)− l[P (l − 1)]2}θδ
2

)
δ(A97)

=

(
−blα3 +

bl{P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2 + α3}θα3

2{P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2}
)

× θα3

P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2
(A98)

=

(
−blα3 +

blθα3

2
+

blθα2
3

2{P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2}
)

× θα3

P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2
(A99)

= − blθα2
3

2{P (l − 1) + (l − 1)P (l)− l[P (l − 1)]2} .(A100)

Thus,

Fl ≤ e−blθα2
3/(2{P (l−1)+(l−1)P (l)−l[P (l−1)]2}).(53)

Equation (54). The derivation of (53) requires that δ = o(1). The step from (A98)
to (A99) requires that α3 be small compared to some other terms. Both conditions
imply

α3 = {lP (l) +Q(l)− l[P (l − 1)]2}o(1).(54)

Equation (56). By inclusion-exclusion, the sum for the region that defines Rk

is equal to the sum over the entire area (rk(b, l,m, n, 0)), minus the sums over the
various regions where a single j is required to be outside of Rk’s region (l copies of
rk(b, l,m, n, 1)), plus the sums over regions where two j’s are required to be outside
of Rk’s region, etc.

Equation (58).

rk(b, l,m, n, h) =
∑
j1<k
j2<k···
jh<k

jh+1,...,jl

(
b

j1, j2, . . . , jl, b− j1 − · · · − jl

)

× [Q(m)]j1+···+jl [1− P (m)− nQ(m)]b−j1−···−jl(57)

=
∑
j1<k
j2<k···
jh<k

jh+1,...,jl−1

(
b

j1, j2, . . . , jl−1, b− j1 − · · · − jl−1

)

× [Q(m)]j1+···+jl−1 [1− P (m)− (n− 1)Q(m)]b−j1−···−jl−1(A101)

· · ·

=
∑
j1<k
j2<k···
jh<k

(
b

j1, j2, . . . , jh, b− j1 − · · · − jh

)

× [Q(m)]j1+···+jh [1− P (m)− (n− l + h)Q(m)]b−j1−···−jh .(58)
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Bound on first term of (61). For

∑
j0<k

(
b

j0

)
[P (l)]j0 [1− P (l)]b−j0

use the Chernoff bound from (23).
Equation (62).

∑
j0<k

(
b

j0

)
[P (l)]j0

∑
j<k−j0

(
b− j0
j

)
[Q(l)]j [1− P (l)−Q(l)]b−j0−j

≤ x−k+1y−k+1
∑
j0,j

(
b

j0

)
[xyP (l)]j0

(
b− j0
j

)
× [xQ(l)]j [1− P (l)−Q(l)]b−j0−j(A102)

≤ x−k+1y−k+1[1 + (xy − 1)P (l) + (x− 1)Q(l)]b.(A103)

In real life, the Apriori Algorithm is used to analyze data that are more com-
plex. Presumably, no one is interested in running the algorithm on truly random
data. Rather, one is interested in the way in which the data differ from random.
Nonetheless, we believe that analysis with this simple probability model brings out
the main features of the performance of the algorithm. In principle, the techniques
in this paper can be applied to more complex probability models of shopping. The
challenge is to carry out the resulting calculations so that one can understand the
implications of the formulas that result when the analysis is done on more general
probability models.

With our probability model we calculate two quantities:
1. Success rate: the probability that a set is a success (i.e., passes the frequency

test) and test.
2. Failure rate: the probability that a set is a candidate (i.e., passes the candi-

dacy test) but not a success (i.e., fails the frequency test).
Notice that the success rate is a property of the probability model, not the algorithm.
All correct algorithms will have the same success rate. The Apriori Algorithm never
believes that an item set occurs k times without verifying the fact by counting oc-
currences in the data base. For algorithms that use this approach, the success rate
represents unavoidable work. The Apriori Algorithm is clever in trying to reduce the
failure rate. The failure rate represents work that one might hope to avoid.

Also, when there is a total of b baskets, bA baskets with item A, and bB items with
item B, the Apriori Algorithm is not aware that there must be at least 2b− bA − bB
baskets that contain both items A and B [11]. Similar ideas are explored in [7].

In the best case, the test for candidacy correctly predicts the result of the test
for frequency, and the amount of time spent by the Apriori Algorithm is essentially
the amount of time spent verifying that all the output sets should be output. A naive
upper bound comes from the fact that each candidate is based on a previous success.
Each success can lead to at most |I| candidates. Many previous papers have focused
on the total amount of work done by the Apriori Algorithm without concern as to the
amount of output generated, but such studies can be misleading in that the amount
of output is the main factor that determines how much work an Apriori-like algorithm
will do, and the amount of output is a feature of the problem instance rather than of
the algorithm. The simple lower and upper bound analyses say that the ratio between
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the number of candidates and the number of successes (i.e, the output) is between
1 and |I| (so long as there is at least one success).

Stronger worst-case bounds are given by Geerts, Goethals, and Van den Bussche
[10]. They start by writing the number of successes on level l as the sum of distinct
binomial coefficients where the first binomial coefficient has l as its bottom index and
the largest possible top index. The remaining terms (if any) have smaller bottom
indices. Their Theorem 1 says that the number of candidates on level l+1 is bounded
by the number obtained from increasing each bottom index by 1. This bound is exact
for some distributions, including one that results in no failures. Experiments show
that in many cases this upper bound is close to the exact value.

At first sight, the approach of Theorem 1 of [10] looks quite different from the
approach in this paper. However, in those cases where the number of candidates on
level l is exactly

(
ml,l

l

)
for some ml,l there are just two differences. First, [10] considers

only items that might still be active during the current level of the Apriori Algorithm
(ml,l). This is their main insight. Second, the upper limit corresponds to setting
our p to 1. The work in [10] shows that the number of candidates on level l can
never be more than

(
ml,l

l+1

)
. If ml,l is much bigger than l, the ratio of candidates on

level l + 1 to candidates on level l is approximately ml,l/(l + 1). When the number
of candidates cannot be represented as an appropriate binomial, there are additional
technical differences between the approach in [10] and in this paper, but they are not
significant to a qualitative understanding of the situation.

It is not logically necessary that an algorithm verify occurrences by explicit count-
ing. One alternative algorithm uses ideas that are the complement of those used by
the Apriori Algorithm. The key idea for this complementary algorithm is that if some
superset of a set J occurs at least k times, then so does set J . Also, if one changes the
problem so that one needs only the maximal frequent item sets instead of all frequent
item sets, then the amount of output needed is greatly reduced for some problem
instances.
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Abstract. We study combinatorial optimization problems in which a set of distributed agents
must achieve a global objective using only local information. Papadimitriou and Yannakakis [Pro-
ceedings of the 25th ACM Symposium on Theory of Computing, 1993, pp. 121–129] initiated the
study of such problems in a framework where distributed decision-makers must generate feasible
solutions to positive linear programs with information only about local constraints. We extend their
model by allowing these distributed decision-makers to perform local communication to acquire in-
formation over time and then explore the tradeoff between the amount of communication and the
quality of the solution to the linear program that the decision-makers can obtain.

Our main result is a distributed algorithm that obtains a (1 + ε) approximation to the optimal
linear programming solution while using only a polylogarithmic number of rounds of local commu-
nication. This algorithm offers a significant improvement over the logarithmic approximation ratio
previously obtained by Awerbuch and Azar [Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science, 1994, pp. 240–249] for this problem while providing a comparable
running time. Our results apply directly to the application of network flow control, an application in
which distributed routers must quickly choose how to allocate bandwidth to connections using only
local information to achieve global objectives. The sequential version of our algorithm is faster and
considerably simpler than the best known approximation algorithms capable of achieving a (1 + ε)
approximation ratio for positive linear programming.
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1. Introduction. Processors in a distributed environment must make decisions
based only on local data; thus fast distributed algorithms must often do without
global information about the system as a whole. This is exactly why computing many
target functions in distributed models quickly is provably hard [15]. However, quite
surprisingly, some of the most interesting global optimization problems can be very
closely approximated based only on local information and a modest amount of local
communication.

Our work is motivated by the application of developing flow control policies which
must achieve global objective functions. Flow control is the mechanism by which
routers of a network distribute the available network bandwidth across connections. In
our work, routing policies determine the routes in the network that connections must
use to transmit packets. Regulating the rates at which the connections may inject
data along these fixed routes is the problem of flow control. This connection-oriented,
or rate-based, approach to flow control is a standard for routing available bit-rate
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traffic in ATM networks [9] and is expected to become widely used in packet-switched
networks. In this approach, each router in the network must make regulatory decisions
based only on local information, which typically consists of the current transmission
rates of connections using the router. Most existing flow control policies try to satisfy
local objective functions such as max-min fairness [13, 7, 1, 11]. However, there are
many other practical scenarios in which global objective functions are the appropriate
choice. For example, in a commercial intranetwork in which users are paying for use
of the network bandwidth (possibly at different rates), the administrator would want
to use a flow control policy which maximizes total revenue. We express such a flow
control policy objective as a positive linear program, a linear program (LP) in which
all entries of the constraint matrix are nonnegative. Complicating the issue is the
problem that routers must generate feasible solutions to this LP quickly, and based
only on available information.

Motivated by this application and other related applications, Papadimitriou and
Yannakakis considered the problem of having distributed decision-makers assign val-
ues to a set of variables in an LP, where the agents have limited information [18]. In
one scenario that they describe, each agent, acting in isolation, must set the value of
a single primal variable, knowing only the constraints affecting that variable in the
LP. In the context of flow control, where the objective is to maximize the total flow
through the network, this corresponds to a setting in which connections only know
how many other connections share each of the routers they intend to use. When
all edge capacities are 1, their “safe” algorithm sets each connection’s flow to the
reciprocal of the maximum number of connections which share an edge with that
connection. It is not hard to see that the worst-case approximation ratio achieved by
the “safe” algorithm is Θ(∆), where ∆ is the maximum number of connections that
share an edge. They also prove that the “safe” algorithm achieves the best possible
worst-case ratio when agents may not communicate, leaving open the possibility that
much better ratios can be obtained when agents can interact.

We extend their model to allow computation to proceed in a sequence of rounds,
in each of which agents can communicate a fixed-size message to their immediate
neighbors, where agents are neighbors if and only if they share one or more constraints
in the LP. Our goal is to determine the number of rounds necessary to achieve a
(1 + ε) approximation ratio to the optimum LP solution. Although we focus on the
application of flow control, this study could also be performed on a range of resource
allocation problems, including those described in [18]. We note that similar models
for describing the interaction between connections and routers in both theoretical and
practical evaluations of flow control policies have been suggested in [3, 1, 5, 16].

Of course, a centralized administrator with complete information could solve the
problem exactly using one of the well-known polynomial-time algorithms for linear
programming (see, for example, [14]). Recently, however, much faster algorithms that
produce approximate solutions to positive LPs to within a (1 + ε) factor of optimal
have been designed. The sequential algorithm of Plotkin, Shmoys, and Tardos [19]
repeatedly identifies a globally minimum weight path and pushes more flow along that
path. More recently, faster approximation algorithms have been considered for several
related flow and bin-packing problems [8, 12] using this same principle of repeatedly
choosing a good flow, and incrementally increasing the rate of that flow. The technical
difficulty is to balance the amount of flow increase, such that the required approxima-
tion is achieved, with the number of needed steps (i.e., running time). In all of these
algorithms a global operator choosing the appropriate unsatisfied constraints is used.
Moreover, the more general multicommodity flow problem cannot be formulated as
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a positive LP, unless the number of dual variables or the number of constraints is
exponential. In these cases one must use a separation oracle, since only polynomially
many flows can be handled. For positive LPs, however, the number of constraints
is polynomially bounded and thus one can increase all dual variables simultaneously.
This is the approach taken by the algorithm of Luby and Nisan [17]. This algorithm,
which has both a fast sequential and parallel implementation, repeatedly performs
a global median selection algorithm on the values of the dual variables to choose
a threshold, then increases values of dual variables above this threshold. Although
these algorithms have efficient implementations, they both perform global operations,
which makes them unsuitable for fast distributed implementation, since emulating
those global operations requires a polynomial number of distributed rounds, and we
are interested in much more time-efficient solutions.

The only previously known result for a distributed flow control algorithm with
a global objective function is an algorithm of Awerbuch and Azar [3] which gives a
logarithmic approximation ratio and also runs in a polylogarithmic number of rounds.
Their algorithm is based on fundamental results from competitive analysis [2, 4]. The
deterministic algorithm we present produces (1+ ε) approximate solutions to positive
LPs, both in general and for the flow control problem, and builds on ideas used in these
other algorithms [3, 17, 19]. Our algorithm is most closely related to the algorithm of
Luby and Nisan but eliminates the need for the complex global selection operations
and a global normalization step upon termination, enabling fast implementation in a
distributed setting. Those simplifications carry over to serial and parallel settings as
well, where we have a dramatically simpler implementation which saves a 1

ε factor in
the running time over the Luby–Nisan algorithm. Finally, we can parameterize the
algorithm to quantify a tradeoff between the number of rounds and the quality of
the approximation. In practice, we can run the algorithm for any number of phases,
with the guarantee that after a constant number of phases, we have a logarithmic
factor approximation, and after a logarithmic number of phases, we have a (1 + ε)
approximation.

The rest of the paper is organized as follows. We begin with a presentation of
our algorithm first as an easily understandable and implementable serial algorithm
for approximately solving positive linear programming in section 2. In section 2.3,
we prove that the algorithm achieves a (1 + ε) approximation ratio, and we analyze
its running time. We formulate our distributed model and give an explanation of the
correspondence between flow control policies and positive LPs in section 3. Then in
section 3.2, we present the distributed implementation applicable to the flow control
problem and explain the modifications to the analysis for this case.

2. Sequential approximation algorithms. We consider positive LPs repre-
sented in the following standard form, which is well known to be as general as arbitrary
positive linear programming.

PRIMAL DUAL

max Y =

n∑
j=1

yj min X =

m∑
i=1

xi

∀i,
∑
j

aijyj ≤ 1 ∀j,
∑
i

aijxi ≥ 1

∀j, yj ≥ 0 ∀i, xi ≥ 0

∀i, j, aij ≥ 0 ∀i, j, aij ≥ 0
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Initialize-Parameters()

δ = (1 + ε)2; ρ = 1
r
;

Q = ρ ln(6γmeε);
φ = (r + δ)(Q+ ρ ln(Q+ ρ ln((1 + 2ρ)2Q)));

ψ0 = m; ψF = 6mφ
r+δ
· e δφ

r+δ ;

Update-Weights()

∀i, λi =
∑

j aijyj ;

∀i, xi = eλiφ

ψ
;

∀j, αj =
∑

i aijxi;

Sequential-LP-Approx()

Initialize-Parameters();
∀j, yj = ε

nφ
;

ψ = ψ0;
do until (ψ > ψF ) // Outer loop: Phase

Update-Weights();
do until (minj αj ≥ 1) // Inner loop: Iteration

∀j, if (αj < 1) then yj = yj
(
1 + ε

φ

)
;

Update-Weights();
od
ψ = ψ(1 + ε);

od
∀j, output yj ;

Fig. 1. The sequential positive LP approximation algorithm.

We will further assume that the LP is presented to the algorithm in a normalized
form in which the aij are either 0 or satisfy 1

γ ≤ aij ≤ 1. In the sequential case, one can
convert an arbitrary LP in standard form into an LP in normalized form in linear time
simply by dividing all constraints by amax = max aij and setting γ = amax

amin
(where

amin = min{aij |aij > 0}). We will describe how to perform this transformation
efficiently in a distributed setting in section 3.

2.1. Overview of results. The parameterized algorithm for approximately
solving a positive LP in normalized form is given in Figure 1. The main theorem
that we will prove about the performance of this algorithm relates the quality of the
approximation to the running time as follows.

Theorem 1. For any 0 < ε ≤ 1 and 0 < r ≤ ln(γm), the algorithm produces
a feasible (r + (1 + ε)2) approximation to the optimum primal linear programming

solution and runs in O
(nm ln( γm

r )

rε

)
time.

The following corollary clarifies the tradeoff between the running time and the
quality of the approximation and follows directly from Theorem 1.

Corollary 2. For any ε ≤ 1, the algorithm produces a (1+ ε) approximation to

the optimum in O
(nm ln( γm)

ε

ε2

)
time. For any 1 ≤ r′ ≤ ln(γm), the algorithm produces

a (1 + r′) approximation to the optimum in O
(nm ln2(γm)

r′
)

time.
Proof of Corollary 2. To prove the first claim of the corollary, set r = ε in

Theorem 1, and to prove the second, set r = 1 + r′ − (1 + ε)2 and choose ε so that
0 < ε <

√
2− 1, which implies r > 0 in Theorem 1.

2.2. Description of the algorithm. In the sequential implementation of our
algorithm presented in Figure 1, the main body of the program in the bottom panel
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runs in a sequence of phases, the number of which ultimately depends only on the
desired approximation ratio. Within a phase, values of appropriate primal variables yj
are increased monotonically until a threshold is reached. We refer to a set of increase
operations across all primal variables constituting the inner loop of our main program
as an iteration of our algorithm, noting that the number of iterations per phase may
vary. We will demonstrate that at the time slot t ending each phase, the nonnegative
settings for the primal variables yj(t) and the dual variables xi(t) are primal and dual
feasible, respectively, satisfying the constraints below.

Primal Feasibility: ∀i,
n∑

j=1

aijyj(t) ≤ 1.

Dual Feasibility: ∀j,
m∑
i=1

aijxi(t) ≥ 1.

2.2.1. Moving between pairs of feasible solutions. Since the values of pri-
mal variables increase monotonically in our algorithm, it is crucial to carefully se-
lect the variables to increase in each phase. To this end, our algorithm uses expo-
nential weight functions which have been employed in a variety of related contexts,
including [2, 4, 17, 19, 3]. To do so, we associate each dual constraint with a mea-
sure αj(t) =

∑
i aijxi(t), and we associate each primal constraint with a measure

λi(t) =
∑

j aijyj(t). Throughout the algorithm, the values of the dual variables xi
are tied to the values of “neighboring” primal variables yj by the exponential weight-
ing function defined in Update-Weights():

∀t : xi(t) =
eλi(t)φ

ψ
=
eΣjaijyj(t)φ

ψ
,

where φ is a constant which again depends only on the desired approximation ratio,
and ψ is a scaling factor which is initialized to m, then grows geometrically with the
phase number until it reaches ψF , which is the termination condition.

By establishing this connection between primal and dual variables, when the
value αj(t) is less than 1, the dual constraint

∑
i aijxi(t) ≥ 1 is violated, but can be

satisfied by a sufficient increase in yj . This relationship suggests the following idea
for an algorithm, which we employ. Start with a pair of dual and primal feasible
solutions. Scale down the dual feasible solution by a multiplicative factor, making
the solution dual infeasible, and causing some dual constraints to be violated. Then
move back to a dual feasible solution by increasing those primal variables j for which
αj(t) < 1, and repeat the process until a satisfactory approximation is achieved.

A hypothetical depiction of the intermediate primal and dual feasible solutions
Y (t) =

∑
j yj(t) and X =

∑
i xi(t) at the end of each phase relative to the value of the

optimal solution is shown in Figure 2. We maintain the invariant that the values of
the intermediate primal feasible solutions are monotonically nondecreasing over time,
but no such guarantee is provided for the intermediate dual feasible solutions. Linear
programming feasibility ensures that values of intermediate primal feasible solutions
are necessarily smaller than or equal to the value of the program, denoted by OPT,
and similarly, values of intermediate dual feasible solutions are necessarily larger than
or equal to the value of the program. Upon termination, we prove that the final (and
maximal) primal feasible solution is within a desired (in this case, 1 + ε) factor of
the minimal intermediate dual feasible solution. By linear programming duality, this
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Y
Y

Y

Y
Y

X

X

X

X

primal solutions

X

X

X

X

value of the solution

OPT

time

dual solutions

Y
Y

Y

X

Y

Y*
(1+ ε) Y*

Fig. 2. Intermediate primal and dual feasible solutions.

implies that the final primal feasible solution gives the desired approximation to the
value of the program.

In the sequential implementation presented in Figure 1, the bottleneck operation
is to recompute the αj ’s after each iteration, which takes O(nm) time. In fact, the
running time of this bottleneck operation can be more precisely written as O(E),
where E is the total number of nonzero entries of the constraint matrix of the LP.
When multiplied by the total number of iterations, which we demonstrate to be at
most polylogarithmic in section 2.3, we have the bound on the total sequential running
time.

2.3. Analysis of the algorithm. In this section, we bound the approximation
ratio of our approximation algorithm and present an analysis of its sequential running
time. We will later extend both of these results in a straightforward way to the
distributed case.

First we prove a claim we made earlier, that at the end of each phase both the
primal and the dual solutions are feasible. From the definition of the algorithm,
the values of primal variables increase monotonically, and therefore the values of
intermediate primal solutions also increase monotonically. Thus to carry out the
analysis of the approximation ratio, it will remain only to prove that the value of the
final primal feasible solution and the value of the minimal dual feasible solution are
at most a (1 + ε) factor apart. In the proof we use the following three facts, which all
follow from the initialization of the parameters given in Initialize-Parameters() in
Figure 1.

Fact 3. φ ≥ ε.
Proof. Fact 3 immediately follows from the definition of φ and from the fact that

ε ≤ 1.

Fact 4. φ = O
( (r+δ) ln( γm

r )
r

)
.

Proof. By definition, φ = (r + δ)(Q + ρ ln(Q + ρ ln((1 + 2ρ)2Q))) and Q =
ρ ln(6γmeε). Thus Q ≥ ρ and we have φ = O((r+ δ)(Q+ρ lnQ)). Since by definition
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we also have Q = O(ρ ln(γm)) (recall that ρ is a shorthand for 1/r), it suffices to
show

ρ ln(γm) + ρ ln(ρ ln(γm)) = O(ρ ln(ργm)).

Now since r ≤ ln(γm), we have that ln(γm) = O(ln(ργm)), and ln(ρ(ln(γm)) =
O(ln ρ + ln ln(γm)) = O(ln ρ + ln(γm)) = O(ln(ργm)), and the result follows di-
rectly.

Fact 5. eφ−ε ≥ γψ.
Proof. Substituting ψF for ψ and multiplying by eε, we must show

eφ ≥ (γeε)
6mφ

r + δ
e

δφ
r+δ

or

e
rφ
r+δ ≥ (6γmeε)

(
φ

r + δ

)
or

e
φ

r+δ ≥
(

6γmeε
φ

r + δ

) 1
r

.

Now by taking the natural logarithm of both sides above, we need to show

φ

r + δ
≥ 1

r

[
ln (6γmeε) + ln

(
φ

r + δ

)]
.

Recall from the definitions that ρ = 1
r , Q = ρ ln(6γmeε), and φ

r+δ = Q +

ρ ln(Q+P ), where P = ρ ln((1+2ρ)2Q). Therefore, it is enough to prove the following:

Q+ ρ ln(Q+ P )−Q− ρ ln(Q+ ρ ln(Q+ P ))

= ρ ln

(
Q+ P

Q+ ρ ln(Q+ P )

)
≥ 0.

Since P and ρ are clearly nonnegative, and Q ≥ 1, to show that ρ ln
(

Q+P
Q+ρ ln(Q+P )

)
is

nonnegative we need P ≥ ρ ln(Q+ P ) or, substituting for P ,

ρ ln((1 + 2ρ)2Q) ≥ ρ ln(Q+ ρ ln((1 + 2ρ)2Q)),

(1 + 2ρ)2Q ≥ Q+ ρ ln((1 + 2ρ)2Q),

2Q(2ρ+ 2) ≥ ln((1 + 2ρ)2Q).

Using 2 ln((1 + 2ρ)Q) ≥ ln((1 + 2ρ)2Q), and 2Q(2ρ + 2) ≥ 2Q(2ρ + 1), we have to
show

2Q(2ρ+ 1) ≥ 2 ln((1 + 2ρ)Q).

The final inequality follows from the fact that x ≥ lnx, which completes the
proof.
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2.4. Feasibility. Recall that the algorithm maintains the invariant that dual
feasibility is achieved prior to each increase in ψ.

Fact 6 (dual feasibility). At the end of each phase, for all j, αj ≥ 1.
We next prove that the yj ’s are primal feasible throughout the execution of the

algorithm, using Claim 7 to help perform the induction. In the proof it will be
convenient to treat the initial increase of yj ’s from 0 to their initialized value as
iteration 0.

Claim 7. For all i and for every iteration, ∆λi ≤ ε
φ .

Claim 8 (primal feasibility). For all i, λi ≤ 1 throughout the execution of the
algorithm.

We prove these two claims simultaneously by induction over iterations of the
algorithm.

Proof. Let Ji = {j|aij > 0}. The first step is to prove that the claims hold for
iteration 0:

λi =
∑
j∈Ji

aijyj ≤
∑
j∈Ji

aij
ε

nφ
≤ ε

φ
.

Since φ ≥ ε this also implies that Claim 8 holds at iteration 0.
Consider a subsequent iteration, and let ∆v denote the change in variable v during

that iteration. We have that for all j, ∆yj ≤ yj ε
φ by the rate of increase in an iteration,

so for all i,

∆λi =
∑
j

aij∆yj ≤
∑
j

aijyj
ε

φ
= λi

ε

φ
≤ ε

φ
,

where the final inequality holds by the inductive hypothesis of Claim 8. This completes
the proof of Claim 7.

To complete the proof of Claim 8, we consider two cases for λi separately. We
first consider values i for which λi < 1 − ε

φ prior to an iteration. From the proof of

Claim 7 we have that after such an iteration, λ′i ≤ λi + ε
φ < 1, giving the desired

result.
Next we consider those i for which λi ≥ 1− ε

φ prior to an iteration. Fix such an i
and fix any j ∈ Ji. We have that

αj =
∑
k

akjxk ≥ aijxi = aij
eλiφ

ψ
≥ aij e

φ−ε

ψ
.

By Fact 5, we have that by our choice of φ, eφ−ε ≥ γψ, and hence αj ≥ aijγ ≥ 1, by
the definition of γ. By the increase rule in the algorithm, we never increase the value
of primal variable yj if αj ≥ 1, so in fact no primal variable in Ji increases in this
iteration. Therefore, λi does not increase during this iteration and remains smaller
than 1 by the induction hypothesis, completing the proof.

2.5. Proof of a (1 + ε) approximation ratio. We now turn to bound the
approximation ratio obtained by the algorithm stated as the first half of Theorem 1.

Claim 9. For any 0 < ε ≤ 1 and 0 < r ≤ ln(γm), the algorithm produces
a feasible (r + (1 + ε)2) approximation to the optimum primal linear programming
solution.

We use the notation ∆Y =
∑

j ∆yj to denote the aggregate change in the y values
over the course of an iteration and similar notation for other variables. We begin with
the following lemma.
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Lemma 10. For every iteration,

∆X

∆Y
≤ φ(1 + ε).

Proof. As ε ≤ 1, we have from Claim 7 that ∆λiφ ≤ ε ≤ 1. It follows that

∆xi = xi
(
e∆λiφ − 1

)
≤ xi∆λiφ(1 + ∆λiφ)

≤ xi∆λiφ(1 + ε),

using the inequality ez − 1 ≤ z(1 + z) for z ≤ 1.
Prior to a given iteration, let S = {j|αj < 1}. S is the set of indices of primal

variables which will be active in the upcoming iteration, i.e., those variables yj whose
values will increase in the iteration. (Recall that a variable yj may be increased several
times in a phase.) The lemma follows from the following sequence of inequalities:

∆X =
∑
i

∆xi ≤
∑
i

xi∆λiφ(1 + ε)

=
∑
i

xi
∑
j∈S

aij∆yjφ(1 + ε)

=
∑
j∈S

∆yj
∑
i

aijxiφ(1 + ε)

=
∑
j∈S

∆yjαjφ(1 + ε)

< ∆Y φ(1 + ε).

The final inequality holds from the definition of S.
In stating and proving the next lemma, we require a more precise description of

our notation. We now consider the change in the values of the dual variables X over
the course of a phase. In the proof, we let X ′ denote the sum of the xi at the end of
the current phase, and we let X denote the sum of the xi at the end of the previous
phase, i.e., before they are scaled down. We let ∆X denote the change in the sum of
the xi over the course of the current phase. We further define X∗ to be the minimum
over all dual feasible solutions obtained at the end of each phase and let YL be the
primal feasible solution obtained at the end of the final phase. Fact 6 and Claim 8,
respectively, imply that X∗ is dual feasible and YL is primal feasible. In conjunction
with Lemma 11 below, this implies the approximation result stated in Claim 9, by
linear programming duality.

Lemma 11.

YL ≥ X∗

r + (1 + ε)2
.

Proof. We prove the lemma for two separate cases: the first is an easy case in which
the initial primal feasible solution is a close approximation to the optimum, and in the
second we repeatedly apply Lemma 9 to bound the ratio between X∗ and YL. Let X0

denote the value for X before the initialization of the yj ’s, that is, X0 =
∑

i
e0

m = 1,
and let X1 denote the value for X after the first phase. Similarly, let XL denote the
value of the dual solution at the end of the final phase.
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Case I. XL ≤ r+δ
φ(1+ε) (X1−X0). Letting Y1 denote the value of the primal solution

at the end of the first phase, we apply Lemma 9 to the iterations comprising the first
phase, giving us

X1 −X0 ≤ Y1φ(1 + ε).

Since the values of the primal feasible solutions increase monotonically throughout
the course of the algorithm, the lemma holds by the following sequence of inequalities:

X∗ ≤ XL ≤ (r + δ)Y1 ≤ (r + (1 + ε)2)YL.

Case II. XL > r+δ
φ(1+ε) (X1 − X0). Since the values X are scaled by a ψ

ψ′ = 1
1+ε

factor just following the end of each phase, the earlier definitions imply that

X ′ = X
ψ

ψ′ + ∆X.

By rewriting this expression and applying the inequality ez ≥ 1 + z, we have

X ′ = X
ψ

ψ′

(
1 +

∆X(1 + ε)

X

)
≤ X ψ

ψ′
(
e

∆X(1+ε)
X

)
.

Now, using X∗ ≤ X and applying Lemma 10 yields

X ′ ≤ X ψ

ψ′

(
e

∆Y φ(1+ε)2

X∗

)
.

Let ψ1 and ψL to be the initial value of ψ and the value of ψ in the last phase of the
algorithm, i.e., ψL < ψF . Using the bound above repeatedly to compare XL with X1

gives us

XL ≤ X1
ψ1

ψL

(
e

YLφ(1+ε)2

X∗

)
.(1)

Since XL is dual feasible and the optimal solution is bounded below by 1 (by
the normalized form of the program) we have that XL ≥ 1 = X0. Also note that
by the assumption r ≤ ln(γm), we have φ ≥ (r + δ). We can now use these facts in
conjunction with the fact that XL >

r+δ
φ(1+ε) (X1 −X0) to obtain

X1 <
XLφ(1 + ε)

r + δ
≤ XL

(
φ(1 + ε)

r + δ
+ 1

)
≤ XL

φ(2 + ε)

r + δ
.

Using the bound above in (1) and observing that ψ1 = m and ψL ≥ ψF /(1 + ε) we
get

e
YLφ(1+ε)2

X∗ ≥ ψF

mφ(2+ε)
r+δ (1 + ε)

=
6m φ

r+δ e
δφ
r+δ

m(2 + ε)(1 + ε) φ
r+δ

=
6e

δφ
r+δ

(2 + ε)(1 + ε)
≥ e

(1+ε)2φ

r+(1+ε)2 ,

where the final inequality holds by substituting δ = (1 + ε)2 and using ε ≤ 1. We
therefore get

YL
X∗ ≥

1

r + (1 + ε)2
,

concluding the proof of the lemma for Case II.
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2.6. Running time. For the algorithm provided so far, we have the following
running time bounds, which are slightly weaker than those stated in Theorem 1.
These weaker bounds are presented since a natural translation of these time bounds
and the preceding analysis extends directly to the distributed algorithm which we
present in section 3. After proving these bounds, we provide a simple improvement
which applies only in the sequential case and which is used to give the time bounds
stated in Theorem 1.

Claim 12. The sequential algorithm runs in O
( (r+1)nm ln2( γm

r ) ln( (r+1)γn ln m
rε )

r2ε2

)
time.

Proof. We bound the number of phases by measuring the change in ψ, which
increases by a (1 + ε) factor per phase. From the definitions in Figure 1, and using
Fact 4 for the final equality, we have that

⌈
log1+ε

(
ψF

ψ0

)⌉
= O

⎛⎝ δφ
r+δ + ln

(
φ

r+δ

)
ε

⎞⎠ = O

(
φ

(r + δ)ε

)
= O

(
ln(γmr )

rε

)
.

We now bound the number of iterations in a phase by computing the maximum
number of iterations needed to increase all αj values above 1. For a given j, we
say that yj is large once yj ≥ γ

φ ln(γψ). We show that once yj is large, αj ≥ 1, and

therefore j no longer participates in the phase. Let the set Ij = {i|aij > 0}. Therefore
for all i ∈ Ij ,

λi =
∑
k

aikyk ≥ 1

γ
yj ≥ 1

φ
ln(γψ),

αj =
∑
i

aijxi =
∑
i

aij · e
λiφ

ψ
≥ 1.

Initially, yj = ε
nφ and at every iteration it increases by a factor of 1+ ε

φ . Therefore
the number of iterations yj can participate in before yj becomes large is at most⌈

log1+ ε
φ

(
nφ

ε
· γ
φ

ln(γψ)

)⌉
= O

(
φ

ε
· ln
(γn
ε

ln(γψ)
))

.

From Fact 5 we have ln(γψ) = O(φ). By using this fact, and by another applica-
tion of Fact 4, we bound the number of iterations during a phase by

O

(
φ

ε
· ln
(
γnφ

ε

))
= O

(
r + δ

rε
ln
(γm
r

)
ln

(
γn

ε

r + δ

r
ln
(γm
r

)))

= O

⎛⎝ (r + 1) ln
(
γm
r

)
ln
(

(r+1)γn lnm
rε

)
rε

⎞⎠ .

Note that the term r+1
r cannot be removed since r can be any value satisfying

0 < r ≤ ln(γm). Multiplying this by the earlier bound on the number of phases
and using the fact that each iteration can be computed in O(nm) time, this com-
pletes the proof of Claim 12.

To prove the time bound stated in the second half of Theorem 1, we need to

give a sequential algorithm which completes in O
(nm ln( γm

r )

rε

)
time. This running time

can be achieved by an algorithm which performs exactly one iteration per phase. In
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the sequential case, we accomplish this by increasing a candidate yj not merely by a
multiplicative factor of 1 + ε

φ per iteration, but by increasing it by the amount which

causes αj to reach a value of 1 directly. (Note that this procedure is straightforward to
implement in the sequential case, but not in the distributed case.) This improvement
causes each phase to terminate in a single iteration; Claims 7 and 8 still hold (the
other claims are unaffected); and we achieve the time bound stated in Theorem 1.

3. The distributed model. We now consider the following model in the spirit
of Papadimitriou and Yannakakis [18], in which distributed agents generate approxi-
mate solutions to positive LPs in the standard form presented in section 2.

We associate a primal agent with each of the n primal variables yj and a dual
agent with each of the m dual variables xi. Each agent is responsible for setting the
value of their associated variable. For any i, j such that aij > 0, we say that dual
agent i and primal agent j are neighbors. In each distributed round of computation,
each agent may broadcast a fixed-size message to all of its neighbors; i.e., in one
round each primal agent j may broadcast one message to its set of dual neighbors
Ij = {i|aij > 0}, and each dual agent i may broadcast one message to its set of primal
neighbors Ji = {j|aij > 0}.

After a fixed number of rounds, the agents must choose feasible values for their
variables to minimize (in the case of the primal) the approximation ratio, OPT∑

yj
, where

OPT is the value of the optimal solution to the LP. We then study the tradeoff
between the number of rounds and the quality of the approximation ratio obtained.

The application of flow control in a network with per-flow queuing motivates the
following mapping to our model of primal agents and dual agents. Each of n connec-
tions transmits data along a fixed path in the network, and a connection corresponds
to a primal agent. Each of the paths traverses an ordered subset of the m routers
which comprise the network, and these routers correspond to dual agents. At a given
time step t, each connection j transmits at a given rate into the network, thereby es-
tablishing the value yj(t) of its primal variable. Once these new flow values stabilize,
each router i uses its local load to set a value for the primal variable xi(t). Based on
a simple function (the sum) of the values of dual variables along its path, the source
uses this control information to compute a new flow value yj(t+ 1). To compute this
sum, each connection transmits a fixed-length control message which loops through
the routers along its path and back to the source. As mentioned earlier, this simple
and natural model of communication between connections and routers corresponds to
models previously suggested in both practical and theoretical studies of flow control
[3, 1, 5, 16].

Each router i has capacity Ci, which it may share among the connections which
utilize it, while each connection accrues benefit Bj for every unit of end-to-end ca-
pacity which it receives. Therefore, the connections act as the primal agents and the
routers act as the dual agents in the following positive LP:

max

n∑
j=1

Bjyj ,

∀i,
∑
j

ãijyj ≤ Ci,

∀i, j, ãij = 1 or 0.

Clearly, this positive LP can be converted to standard form by the local operation
aij =

ãij

BjCi
. In a synchronous model, each round takes time equal to the maximum
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Router-Initializei()

Ji = {j|aij > 0}; ñi =
∑

j∈Ji
aij ;

for all j ∈ Ji, read 〈yj , 0, 0〉;
p = 0; t = 0; ψ = m;

Router-Updatei()

λi =
∑

j aijyj ;

xi = eλi

ψ
;

send 〈xi, p, t〉 to all j ∈ Ji;

Router-DLPi()

Router-Initializei();
do until (all j ∈ Ji terminate)

Router-Updatei();
do until (all j ∈ Ji end phase)

for all active connections j ∈ Ji, read 〈yj , p, t〉;
t++;
call Router-Updatei();

od // End of phase

p++;
ψ = ψ(1 + ε);

od

Fig. 3. The distributed algorithm at router i.

round-trip time experienced by a connection in the network. However, this synchro-
nization assumption can and will subsequently be relaxed with no changes to the
algorithms we propose. A final note is that the message size we use in our implemen-
tation can be bounded by a number of bits polynomial in logm, log γ, and 1/ε.

3.1. The distributed approximation algorithm. Several additional compli-
cations must be addressed in the definition and description of the distributed algo-
rithm provided in Figures 3 and 4 for routers and connections, respectively. Since
global operations cannot be performed efficiently, each connection and router must
be able to independently compute the values of all of the parameters described in the
serial implementation. In the case of parameters which are fixed, such as the value
of m (the number of nodes in the network), and for the parameters which affect the
approximation ratio, r and ε, we assume that these values are known in advance to
all connections and routers. We do not assume that n, the number of connections, is
globally known. In the sequential case, knowledge of this parameter was required to
initialize the variables yj so as to satisfy Claims 7 and 8. In the distributed setting,
each connection j instead computes a local estimate of n, nj , which it can compute in
two distributed rounds, and which then used in initialization satisfies Claims 7 and 8.
Finally, the parameter γ used to convert the program into normalized form may not
be globally known, in which case the LP cannot be normalized efficiently. Approxi-
mately solving such programs in the distributed setting adds considerable complexity,
and we defer providing techniques for doing so until section 3.2.

Connections and routers communicate using the message-passing model described
in section 3. As in the serial algorithm, agents track time in terms of phases and it-
erations. When transmitting the value of a variable using the send primitive, agents
timestamp the transmission with their current phase number p and iteration t. Like-
wise, in receiving the value of a variable using the read primitive, agents specify
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Connection-Initializej()

Ij = {i|aij > 0};
nj = maxi∈Ij ñi;
yj = ε

njφ
;

sendi∈Ij 〈yj , 0, 0〉;

Update-yj()

t++;

yj = yj
(
1 + ε

φ

)
;

sendi∈Ij 〈yj , p, t〉;

Compute-αj()

readi∈Ij 〈xi, p, t〉;
αj = sumi∈Ijaijxi;

Connection-DLPj()

Initialize-Parameters(); // As defined in Figure 1

Connection-Initializej();
p = 0; // Phase counter

do until (ψ > ψF )
t = 0; // Iteration counter

Compute-αj();
do until (αj ≥ 1)

Update-yj();
Compute-αj();

od // End of phase

p++;
od
output yj and terminate;

Fig. 4. The distributed algorithm at connection j.

their phase number p and iteration t, and they wait until they receive the appropriate
value. For simplicity, we assume that these control messages reliably flow through
the path, although, in practice, retransmissions would likely be necessary. Also, strict
alternation between primal and dual rounds eliminates the possibility of deadlock.

In our implementation, message-passing primitives enable control to alternate
between connections and routers at a local level. This is not to say that control is
globally synchronized—in fact, at any instant in time, connections in separate areas of
the network might not even be working on the same phase. However, it is the case that
any given router is working on only a single phase at an instant in time. Therefore,
all the connections through a router which is currently working on phase i are either
actively working on phase i themselves or are idle and awaiting permission to proceed
to phase i+1. Aside from message-passing, the other technical obstacle in converting
the centralized algorithm to a distributed algorithm is the condition for ending a
phase. In the centralized algorithm, a phase terminates when mink αk ≥ 1. Since we
cannot hope to track the value of this global expression in our distributed model, we
instead let each connection j check whether αj ≥ 1 locally and independently. When
the condition is satisfied, connection j terminates its phase by incrementing its phase
number and informing its neighboring routers.

The analysis of feasibility and the bounds on the quality of the approximation are
identical to those for the centralized algorithm. This is the case because the value of
any primal variable at the time that the corresponding connection completes phase i
satisfies the conditions placed on primal variables after phase i in the centralized
implementation. A similar statement holds with respect to the values of dual variables
at the time their corresponding routers complete phase i. These statements hold for
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each primal and dual variable independently, and irrespective of the fact that phase
completion times may not occur uniformly across the network. As for the distributed
running time, the following corollary to Claim 12 holds.

Corollary 13. The distributed algorithm runs in O
( (r+1) ln2( γm

r ) ln( (r+1)γn ln m
rε )

r2ε2

)
rounds.

3.2. Distributed techniques to convert to special form. Recall that we can
convert a program in standard form to the normalized form by dividing all constraints
by amax, thereby setting γ = amax

amin
. If bounds on the values of amax and amin are

known in advance, for example, if connections and routers can all bound the min and
max values of the edge capacities and benefit coefficients, then γ can be estimated.
But these bounds may not be globally known; moreover, the value of γ, which impacts
the running time of our algorithm, depends on the values of the entries of the matrix.
We now show that solving a problem in standard form can be reduced to solving
problems in a special form (similar to a form used by Luby and Nisan in [17]), where
the value of γ depends only on m and ε and does not affect the approximation ratio
obtained, nor does it significantly affect the running time of our algorithm. Moreover,
this transformation can be done distributively in a constant number of rounds, without
global knowledge of amax and amin.

A precondition for transforming an LP Z in standard form to an LP Z ′ in special
form is that we can generate a feasible solution for Z with value c which approximates
the value of the optimal solution for Z to within a factor of τ : c ≤ OPT ≤ cτ . If this
precondition is satisfied, we can perform the following transformation, which bounds

the value of the a′ij in Z ′ by ε2

mτ ≤ a′ij ≤ 1 for all i and j, giving γ′ = mτ
ε2 . Note that

the value of γ now depends on the extent to which we can bound the value of the LP,
but not on the relative values of the constraints (which could be very small).

Define ν = m
cε , and perform the following transformation operation on the con-

straints:

a′ij =

⎧⎪⎨⎪⎩
ε

ντc if aij <
ε
cτ ,

1 if aij > ν,
aij

ν otherwise.

This transformed LP has the following properties:

1. If {y′j} is a primal feasible solution for Z ′, then

{
yj =

{
0 if ∃i such that a′ij = 1,
y′
j

ν otherwise

}

is primal feasible for Z, and
∑

j yj ≥
∑

j y′
j

ν − ε ·OPT.

2. If {yj} is primal feasible for Z, then
{
y′j =

yjν
1+ε

}
is primal feasible for Z ′, and∑

j y
′
j =

∑
j

yjν
1+ε .

3. ε
ντc ≤ a′ij ≤ 1 for all i and j.

Property 3 is clearly true, but the other two properties require the short proofs below.

Proof of property 1. Take a feasible solution {y′j} for Z ′ and let {yj} be as
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specified. Then for any fixed value of i,∑
j

aijyj =
∑

j|a′
ij<1

aijyj ≤
∑

j|a′
ij<1

νa′ijyj

≤
∑

j|a′
ij<1

νa′ij
y′j
ν
≤ 1.

The final inequality holds by the feasibility of the solution {y′j}, so the solution {yj}
is feasible for Z. The value of this solution satisfies

∑
j

yj =
∑
j

y′j
ν
−

∑
j|∃i s.t. a′

ij=1

y′j
ν

≥
∑
j

y′j
ν
−

∑
j|∃a′

ij=1

1

ν

≥
∑
j

y′j
ν
− m

ν

≥
∑
j

y′j
ν
− ε ·OPT.

The first inequality holds by the fact that for any feasible {y′j} and for any i and j,
a′ijy

′
j ≤ 1. The second inequality holds by the bound on the number of routers in the

network, and the final inequality holds by the definition of ν.

Proof of property 2. Take a feasible solution {yj} for Z and let {y′j} be as specified.
Then for any fixed value of i,

∑
j

a′ijy
′
j =

∑
j

a′ij

(
yjν

1 + ε

)

=
∑

j|aij>
ε
cτ

a′ij

(
yjν

1 + ε

)
+

∑
j|aij≤ ε

cτ

a′ij

(
yjν

1 + ε

)
≤

∑
j|aij>

ε
cτ

aijyj
1 + ε

+
∑

j|aij≤ ε
cτ

εyj
(1 + ε)τc

≤ 1

1 + ε
+

ε

(1 + ε)τc

∑
j

yj

≤ 1

1 + ε
+

ε

(1 + ε)
= 1.

The final line holds from the bound on the optimal solution for Z:
∑

j yj ≤ OPT ≤ cτ ,
so the solution y′j is feasible.

Now we generate an approximate solution to Z by performing the transformation
to special form and then computing a (1 + ε) approximation {y′j} for Z ′ using our
algorithm. We transform this solution to {yj} using the transformation described in
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property 1 and get a primal feasible solution Y for our LP such that

Y =
∑
j

yj ≥
∑

j y
′
j

ν
− ε ·OPT ≥ OPT′

ν(1 + ε)
− ε ·OPT

≥ OPT

(
1

(1 + ε)2
− ε
)
.

The first inequality is from property 1, the second is based on the fact that {y′j} is
a (1+ε) approximation to the value of Z ′ (denoted by OPT′), and the final inequality
is from property 2.

Next we need to explain how to choose the parameters c and τ so as to guarantee
the precondition c ≤ OPT ≤ cτ . Recall that Ij denotes the set of edges incident
to connection j, Ij = {i|aij > 0}, and Ji denotes the set of connections incident to
edge i, Ji = {j|aij > 0}. Now define

βi = min
l∈Ji

max
k∈Il

akl,

a quantity which can be locally computed in one round for each router i. Also, let
β = mini βi, and for each connection j, define β̂j = mini∈Ij βi. It is relatively easy
to show that 1

β ≤ OPT ≤ m
β . The first inequality holds from the primal feasibility

of the solution in which the connection j used in the evaluation of the minimum βi
is assigned flow yj = 1

β . The second inequality holds from the dual feasibility of the

solution in which each router i is assigned weight xi = 1
βi

.
Therefore, we can set c = 1

β , and τ = m in the sequential implementation, giving

γ′ = m2

ε2 and an O
(nm ln(m/rε)

rε

)
running time.

3.3. Approximating β in the distributed setting. In the sequential case,
knowledge of β is enough to perform the transformation to special form, but connec-
tions and routers may not know this value. We now describe a technique in which
we distributively subdivide the LP into subprograms based on local estimates of β.
The value of each subprogram is bounded, so we can work in special form. Then we
recombine solutions in such a way as to only assign nonzero rates to connections with
good estimates of β, but we prove that this only reduces the sum of the rates by a
small factor.

Set p =
⌈

1
ε

⌉
, and for q = 0, . . . , p− 1, define the sets

Gq
t =

{
j

∣∣∣∣(mε )p(t−1)+q

≤ β̂j <
(m
ε

)pt+q
}

for integer t. It is clear that each connection belongs to exactly p of these sets.
Independently for each value of q, each router i assigns flow only to connections
which are members of Gq

Tiq
, where Tiq is the minimal value of t for which Gq

t

⋂
Ji is

nonempty. In effect, this means that the algorithm is run on the network p successive
times. From the connection’s point of view, it runs p successive algorithms, using βj
as an approximation for β. In each of these p trials, it can be rejected (i.e., given no
flow) by some of the routers. The final flow assigned to connection j is the average
of the flows given in the p independent trials. We will prove that this procedure does
not decrease the sum of the rates by more than an additional (1− ε)2 factor.

Now define OPT(X) to be the value of the modified LP when flow can only be
assigned to connections in the set X. It is not difficult to show that OPT(Gq

t ) is
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bounded between
(

ε
m

)p(t−1)+q
and

(
ε
m

)p(t−1)+q · (mε )1/ε ·m. Thus, we have that for
each set Gq

t , the special form of the modified LP for connections in Gq
t satisfies the

precondition with c =
(

ε
m

)p(t−1)+q
and τ =

(
m
ε

)1/ε ·m. Therefore, for each of these

LPs, we can use γ = mτ
ε2 =

(
m
ε

)2+1/ε
.

We now turn to bound the approximation ratio. Consider a particular q ∈
{0, . . . , p − 1}, and let T and Q be the unique integers such that β is in the in-

terval defined by Gq
T and β >

(
m
ε

)pT+Q−1
. For q �= Q and for the dual feasible

setting {xi = 1
βi
},

OPT

(⋃
t>T

Gq
t

)
≤

∑
i|i∈Il,l∈Gq

t ,t>T

xi

≤ m(
m
ε

)pT+Q
≤ ε

β
≤ ε ·OPT.

This implies that OPT(Gq
T ) ≥ (1− ε) OPT for all q �= Q. The quality of the solution

we obtain is therefore bounded below by

1

p

∑
q �=Q

OPT(Gq
T ) ≥ p− 1

p
(1− ε) OPT ≥ (1− ε)2 OPT .

Putting everything together, we have a distributed algorithm that assumes global
knowledge only of m and the approximation parameters r and ε. This algorithm finds
a primal feasible (r+ (1 + ε)5) approximation of the optimal solution, and terminates

in O
( (r+1) ln2(m/rε) ln( (r+1)mn

rε )

r2ε5

)
distributed rounds.

4. Discussion. We studied the problem of having distributed decision-makers
with local information generate feasible solutions to positive LPs. Our results explore
the tradeoff between the amount of local communication that these agents may per-
form and the quality of the solution they obtain, measured by the approximation ratio.
While we have provided an algorithm which obtains a (1 + ε) approximation ratio in
a polylogarithmic number of distributed communication rounds, proving nontrivial
lower bounds on the running time needed to obtain a (1 + ε) approximation remains
an open question, as does the challenging problem of providing fast approximation
algorithms for general LPs.
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Abstract. We present a new algorithm for the preemptive offline scheduling of independent
jobs on a system consisting of m identical machines. The jobs can be parallel; that is, they may
need the concurrent availability of several machines for their execution. To this end, we introduce a
machine model which is based on existing multiprocessors and accounts for the penalty of preemption.
After examining the relation between makespan and total weighted completion time costs for the
scheduling of parallel jobs, we show that our new algorithm achieves an approximation factor of 2.37
for total weighted completion time scheduling if no preemption penalty is considered. This compares
favorably to the thus far best approximation factor of 8.53 for the nonpreemptive case. To fine-
tune the algorithm with respect to different preemption penalties, we use a fairly simple numerical
optimization problem. Further, we present an algorithm to transform the preemptive schedule into
a nonpreemptive one. This leads to an improved approximation factor of 7.11 for the nonpreemptive
weighted completion time scheduling.
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1. Introduction. We address preemptive and nonpreemptive scheduling of par-
allel jobs without release dates. There is a job system τ consisting of independent
parallel jobs to be scheduled on m identical machines. Each job j is characterized
by its fixed degree of parallelism mj ≤ m, its processing time pj ≥ 1, and a weight
wj ≥ 0. Exactly mj machines must be allocated to a job j at any time the job is
executing and each machine can execute at most one job at a time. Note that the
actual processing of job j will require the same time on any subset of mj machines.
In the preemptive version, it is possible to temporarily suspend the execution of a
job j on all machines assigned to it and to resume its processing on the same subset
of machines at a later time, that is, no migration of the job after a preemption is
permitted. This preemption process can be repeated. Both the suspension and the
resumption of the job will result in a preemption penalty of p

2 . Our preemptive model
and its relation to real implementations are explained in section 2 in more detail.

The completion time of job j in a schedule S is denoted as Cj(S). In this pa-
per, it is the goal of the scheduling algorithm to minimize the sum of the weighted
completion times C(S) =

∑
j∈τ wjCj(S) of S, also called total weighted completion

time of S. These problems are denoted as Pm|sizej |
∑
wjCj = Pm|mj |

∑
wjCj

and Pm|mj ,prmp, no mig|∑wjCj , respectively. In addition, we consider the make-
span Cmax(S) = maxj∈τ Cj(S) of S, that is, the problems Pm|mj |Cmax and
Pm|mj ,prmp, no mig|Cmax. Minimizing the total weighted completion time is known
to be NP-hard in the strong sense, even if all jobs are sequential; that is, mj = 1 is
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valid for all j ∈ τ [2]. This result also holds in the preemptive case [9]. Hence,
we are interested in polynomial-time algorithms that provide approximate solutions.
Such an algorithm is called a ρ-approximation algorithm if its result is never worse
than ρ times the optimal value. Then we also say that ρ is the approximation factor.
Further, we denote the optimal total weighted completion time and the optimal make-
span for a job system τ on a given machine systemM as C∗(τ,M) and C∗

max(τ,M),
respectively. If the context is clear, we will omit τ and/orM.

Approximation algorithms have already been presented for several nonpreemptive
variants of this problem. For sequential jobs (mj = 1), Kawaguchi and Kyan [8] de-
scribed a list scheduling algorithm called LRF (largest ratio first) with an approxima-

tion factor of 1+
√

2
2 . This problem is denoted as Pm||∑wjCj . The extension of this

problem to include parallel jobs (Pm|mj |
∑
wjCj) has only recently been addressed

when Schwiegelshohn et al. [11] showed that the SMART (scheduling to minimize
average response time) algorithm generates shelf-based nonpreemptive schedules with
an approximation factor of 8.53. Turek et al. [14] proved that a generalization of
Kawaguchi and Kyan’s LRF method produces an approximation factor of 2 for par-
allel jobs with unique weights if the resource requirement of each job is at most 50%
of the maximum number of machines. However, when allowing arbitrary jobs, this
method may result in schedules which significantly deviate from the optimum.

Among other problems, Chakrabarti et al. [3] addressed the nonpreemptive sched-
uling of so-called malleable jobs with different release dates and proved an expected
performance within 8.67 of optimal for a randomized online algorithm. We call a job
malleable if it can be executed on any number of machines up to mj with a corre-
sponding increase or decrease of the processing time. Deng et al. [5] discussed preemp-
tive response time scheduling for malleable jobs with unique weights and described
a 2-approximation algorithm. They use an online model where the total resource
consumption of a job (the sum of the execution times of this job on all machines) is
invariant but becomes known only at the completion of the job. Note that Deng’s
model is significantly different from ours as migration is allowed and the number of
machines allocated to a job may change after the preemption of the job. Based on
the work from Afrati et al. [1], Fishkin, Jansen, and Porkolab [7] recently showed a
PTAS (polynomial time approximation scheme) for the problem Pm|mj , rj |

∑
wjCj

if the number of machines is constant; that is, a 1 + ε approximation is achieved with
a running time of f( 1

ε ,m)O(n log n). Note that the running time of this algorithm is
exponential in m while m is used in our algorithm only to compare values. Finally,
Phillips, Stein, and Wein [10] have demonstrated how to transform preemptive sched-
ules of sequential jobs (mj = 1) into nonpreemptive schedules with only a factor 3
increase in the average weighted completion time.

In this paper, we present a 2.37-approximation algorithm for our preemptive
problem if there is no preemption penalty. This result is further used to derive a
nonpreemptive algorithm with an approximation factor of 7.11. In both cases, we
also give a performance guarantee for the makespan problem. This concept of bicri-
teria scheduling has been introduced by Stein and Wein [13] who showed that there
are always schedules which approximate both the makespan and the total weighted
completion time.

After presenting our model in section 2 and comparing it to some real world con-
straints, we discuss some aspects of bicriteria scheduling of parallel and independent
jobs. Previous results with relevance to our algorithm are addressed in section 4.
Next, we introduce the new preemptive algorithm in section 5 and analyze it after-
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ward. We show that the total weighted completion time approximation factor of our
algorithm can be minimized by solving a numerical optimization problem. Then we
present a method, similar to the one published by Phillips, Stein, and Wein [10], to
transform our preemptive schedule into a nonpreemptive one. Finally, our preemptive
and nonpreemptive results are compared to the worst-case bounds of nonpreemptive
SMART schedules.

2. The model. For a given job system τ and a machine system M consisting
of m independent machines and a preemption penalty p, we now formally introduce
a preemptive schedule with no migration being permitted.

Definition 2.1 (preemptive schedule without migration).

In a preemptive schedule S(τ,M) without migration, each job j ∈ τ is assigned
1. a nonnegative integer dj,
2. a (2dj + 2)-tuple of time instants tj(0) ≤ tj(1) ≤ · · · ≤ tj(2dj + 1), and
3. a set Mj ⊆ {1, . . . ,m} with |Mj | = mj.

Again, we usually omit τ and M. In Definition 2.1, dj denotes the number of
preemptions for job j in schedule S. The execution of job j in S is started at time
tj(0), suspended at times tj(2δ − 1), resumed at times tj(2δ), and completed at time
tj(2dj +1) = Cj(S) with 0 < δ ≤ dj . Finally, Mj is the set of machines on which job j
is executed. Note that for a system of identical machines and either a nonpreemptive
schedule or a preemptive schedule with migration, it is sufficient to consider only the
number mj of required machines, while the specification of the actual machine set Mj

is necessary in a preemptive schedule without migration. In the latter case, we say
that a job j is resident on Mj from tj(0) to tj(2dj + 1).

A preemptive schedule S(τ,M) without migration is called valid if the following
conditions are fulfilled for all j ∈ τ :

1.
∑dj

δ=0 tj(2δ + 1)− tj(2δ) = pj + pdj ,

2. tj(µ)− tj(µ− 1) ≥
⎧⎨⎩

0 for µ = 2δ with 0 < δ ≤ dj ,
p
2 for (µ = 1 or µ = 2dj + 1) and dj �= 0,
p for µ = 2δ + 1 with 0 < δ < dj ,

3. Mj ∩Mj′ = ∅ if j �= j′ and tj(2δ) ≤ tj′(2δ′) < tj(2δ + 1) for any 0 ≤ δ ≤
dj and 0 ≤ δ′ ≤ dj′

Job j executes between time tj(2δ) and time tj(2δ+1) while it is inactive between
time tj(2δ − 1) and time tj(2δ). As each suspension and each resumption of a job
execution produce a preemption penalty of p

2 , there is a minimal time period between
resumption and the next suspension of a job. This property is described in condition 2
above. Note that no preemption penalty is encountered if a job starts or terminates.
The various cases of condition 2 can be seen in Figure 1. In the figures shown in this
paper, all machines are arranged along a single (horizontal) line. In a nonpreemptive
schedule, the execution of a job can therefore be described as several rectangles of
the same height which are aligned along a horizontal line. However, for reasons of
simplicity, we simply assume that the machines assigned to a job are arranged in
a contiguous fashion. Hence, we represent each nonpreemptively executed job as a
single rectangle. Then in a preemptive schedule without migration, the execution of a
job is described as several rectangles which are aligned along a vertical line. In order
to better demonstrate the preemption penalty, we assume that during the preemption
penalty all involved machines remain idle; see Figure 1. Therefore, the combined area
of all rectangles associated with the actual processing of a job j remains invariant
and has the value mjpj . Condition 1 gives the total time a job j is active on its
assigned machines including all preemption penalties. Finally, condition 3 ensures
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Fig. 1. Different preemption penalty cases.

that no machine can be assigned to more than one job at any time.
Our machine model is based on multiprocessor systems like the IBM RS/6000

SP. A typical installation consists of m nodes which use an interconnection network
for communication. Each node has its own processor, main memory, and a local hard
disk for swapping. Usually most of the nodes are identical. In the IBM machine, the
interconnection network does not prefer specific subsets of nodes, and the nodes are
assigned to jobs in an exclusive fashion. Therefore, the execution time of a job does
not depend on the assigned node partition.

Some multiprocessors perform preemption by simultaneously switching the con-
text of all nodes executing the same job. This kind of preemption is called gang
scheduling [6]. Our model also uses gang scheduling as at any time, a job can execute
only on all or on none of the machines of its machine set. In practice, the context
switch is typically executed with the help of the local processor memory and/or the
local hard disk. Typically during the context switch, the interconnection network is
needed only to synchronize the nodes of a partition to act concurrently. However,
the context switch may leave some messages in the interconnection network without
target process. These messages must be temporarily saved until the target process
resumes execution. Further, the context switch requires the saving and loading of a
job status and may cause additional cache misses and page faults. In our model, all
those delays are combined into a constant overhead, the so-called preemption penalty
p
2 . This preemption penalty is encountered whenever the execution of a job is inter-
rupted or resumed. Therefore, a complete context switch produces the preemption
penalty p.

3. Bicriteria scheduling. Most previous scheduling work has addressed a single
scheduling goal. Algorithms that approximate more than one criterion have received
little attention. Recently, Stein and Wein [13] showed that for any scheduling problem,
there are always schedules with a total weighted completion time and a makespan that
are both within 2 of the optimal value.

Although we focus mainly on the total weighted completion time in this paper,
we also address the makespan of our schedules. While Stein and Wein were primarily
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interested in the existence of schedules with bicriteria properties, we want to show
that our polynomial time algorithms approximate both the total weighted completion
time and the makespan, similar to Chakrabarti et al. [3].

In this section, we give a few results to show the relation between total weighted
completion time and makespan scheduling for parallel jobs on identical machines.
First, we present a simple example to demonstrate that there are job systems where
any optimal makespan schedule Smax results in C(Smax) = Θ(m)C∗.

Example 3.1. Assume a system τ of m + 1 jobs such that there are m identical
jobs j with mj = 1, pj = 1, and wj = 1 and a single job j′ with mj′ = m−1, pj′ = m,
and wj′ = 1. It is easy to see that in any optimal makespan schedule Smax, job j′

must start at time 0 on any subset of m−1 machines while all other jobs are executed
one after another on the single remaining machine. However, in the optimal total
completion time schedule S, all m small jobs start concurrently at time 0 while job j′

is executed after all other jobs are completed. This yields Cmax(Smax) = m = C∗
max

and C(Smax) = m(m+3)
2 = Θ(m)(2m + 1) = Θ(m)C(S). Although Smax and S are

both nonpreemptive schedules, the result is also valid in the preemptive case.

Next, we address the opposite case; that is, we determine the makespan for op-
timal total weighted completion time schedules. First, we consider nonpreemptive
schedules.

Lemma 3.1. There are job systems such that any nonpreemptive optimal total
weighted completion time schedule S results in Cmax(S) = Θ(m)C∗

max.

Proof. Assume a system of 2m jobs such that p2i−1 = m + i − 1, m2i−1 = 1,
p2i = 1, and m2i = m hold for 1 ≤ i ≤ m. The weights of the jobs are defined
recursively. We start with w2m = 1. For all other jobs, there is w2i−1 = w2i(m + i)

and w2i = (m+ i)
∑2m

k=2i+1 wk.

It is easy to see that we have C∗
max = 3m − 1 as job 2m − 1 cannot be executed

concurrently with any job 2i. Therefore, an optimal makespan schedule is obtained
by starting job 2i at time i while all jobs 2i− 1 concurrently start their execution at
time m.

On the other hand, we consider a list schedule S where all jobs start in the
order 1, 2, . . . , 2m. Then no two jobs are executed concurrently as each sequential job
(mj = 1) is sandwiched between two parallel jobs requiring all machines. This results
in Cmax(S) = 1.5(m2 +m) = Θ(m)C∗

max. It remains to be shown that S is the only
nonpreemptive schedule with optimal total weighted completion time.

Note that we need to consider only schedules with nonnegative integer starting
times for all jobs as the processing time of each job is an integer. Otherwise it is
possible to reduce the total weighted completion time by starting the first job j with
a noninteger starting time r at time �r	, as this does not affect the execution of any
other job.

Assume that the starting times of jobs 1, . . . , 2k are identical in schedule S and in
any optimal total weighted completion time schedule. Then no job j > 2k can start
before C2k(S) = t2k(1) due to its processing time for odd j or its degree of parallelism
for even j. Therefore, we simply disregard all jobs 1, . . . , 2k and assume t2k(1) = 0
for the rest of the proof. Let us further introduce job system τ̌ = {2k + 3, . . . , 2m}.
There are three possible cases:

1. Schedule S1. Jobs 2k + 1 and 2k + 2 start at times 0 and p2k+1 = m + k,
respectively. All jobs from τ̌ are executed in the time frame [m + k + 1,∞) in an
optimal fashion.

2. Schedule S2. Job 2k + 1 does not start before time 1. All jobs from τ̌ and
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job 2k + 2 are executed in the time frame [0,∞) in an optimal fashion.
3. Schedule S3. Job 2k + 2 does not start before time p2k+1 + 1. All jobs from

τ̌ and job 2k + 1 are executed in the time frame [0,∞) in an optimal fashion.

This results in the following total weighted completion times:

C(S1) = C∗(τ̌) +

⎛⎝∑
j∈τ̌

wj

⎞⎠ (m+ k + 1) + w2k+2(m+ k + 1)(m+ k)

+ w2k+2(m+ k + 1)

= C∗(τ̌) +

(
(m+ k + 1)2 +

m+ k + 1

m+ k + 2

)
w2k+2,

C(S2) ≥ C∗(τ̌) + w2k+2(m+ k + 1)(m+ k + 1) + w2k+2

= C∗(τ̌) + ((m+ k + 1)2 + 1)w2k+2,

C(S3) ≥ C∗(τ̌) + w2k+2(m+ k + 1)(m+ k) + w2k+2(m+ k + 2)

= C∗(τ̌) + ((m+ k + 1)2 + 1)w2k+2.

Therefore, jobs 2k + 1 and 2k + 2 must start at times t2k(1) and t2k(1) + p2k+1,
respectively, to obtain an optimal total weighted completion time schedule. It follows
by induction that S is the only schedule with optimal total weighted completion
time.

However, if preemption with migration is allowed, the relation between total
weighted completion time scheduling and makespan scheduling is different as shown
by the next lemma. Contrary to the model of Definition 2.1, the model of Lemma 3.2
allows the execution of job j to resume after a preemption on any subset of mj idle
machines. This problem is denoted as P |mj ,prmp|∑wjCj .

Lemma 3.2. Assume m identical machines and a system τ of independent jobs.
If preemption with job migration and without preemption penalty is allowed, then
any optimal total weighted completion time schedule S also guarantees Cmax(S) ≤
(2− 1

m )C∗
max.

Proof. We say that a time instance t in schedule S is open if at most m
2 machines

are used at t. If schedule S does not contain any open time instances in the interval
[0, Cmax(S)), then we have

C∗
max ≥

1

m

∑
j∈τ

mjpj ≥ m+ 1

2m
Cmax(S) ≥ m

2m− 1
Cmax(S).

Otherwise, assume that t is the last open time instance in schedule S with mt

machines being busy at t. Further, let job j execute at t. Then S has the following
properties:

(i) If j does not execute in S at a time instance t′ of the interval [0, tj(2dj +1)),
then at least m−mj + 1 ≥ m−mt + 1 machines are busy at t′.

(ii) If j executes at a time instance t′ in S, then at least mt ≥ mj machines
must be used at t′ as all jobs executing at t must also execute at all previous open
time instances.

(iii) At least m −mt + 1 machines must be used at any time instance t′ in the
interval [Cj(S), Cmax(S)) as t is the last open time instance and there must be at
least one job that executes at t′ while not executing at t if we have Cj(S) < Cmax(S).

Therefore, a total machine-time product of at least mtpj+(m−mt+1)(Cmax(S)−
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pj) ≤ mC∗
max is required for τ . For pj ≥ Cmax(S)

2− 1
m−mt+1

, this results in

Cmax(S)

2− 1
m

≤ Cmax(S)

2− 1
m−mt+1

≤ pj ≤ C∗
max.

Otherwise as 2mt < m+ 1 holds, we have

C∗
max ≥

1

m
((m−mt + 1)Cmax(S)− (m− 2mt + 1)pj)

≥
(
m−mt + 1− m− 2mt + 1

2− 1
m−mt+1

)
Cmax(S)

m

=
1

2− 1
m−mt+1

Cmax(S) ≥ Cmax(S)
1

2− 1
m

.

This lemma shows that any optimal total weighted completion time schedule
deviates by at most a factor 2− 1

m from the optimal makespan schedule for a specific
scheduling problem (P |mj ,prmp|∑wjCj), while Stein and Wein [13] proved a more
general result with a deviation factor for the total weighted completion time. Also
note that it is still an open problem to bound the makespan approximation factor for
an optimal total weighted completion time schedule using our model of preemption
without migration.

4. Previous results and simple extensions. We start this section by extend-
ing our comparison of preemptive and nonpreemptive schedules with respect to the
total weighted completion time criterion. Then we give the total weighted comple-
tion time and the makespan approximation factors for two types of algorithms: a list
scheduling algorithm based on Smith’s ratio [12] and the SMART algorithm [15].

For the case that all jobs of a job system are sequential (mj = 1 for all j ∈
τ), McNaughton [9] proved that the total weighted completion time of the optimal
nonpreemptive schedule cannot be reduced by introducing preemption. However, our
results in the previous section already indicate that there are differences between
preemptive and nonpreemptive schedules if jobs are parallel. The following simple
example shows that the total weighted completion time of an optimal preemptive
schedule is smaller than the corresponding value of an optimal nonpreemptive schedule
for some job systems. It can also be seen that this result holds, even if all jobs have
unit weight.

Example 4.1. Assume a system of three jobs with the properties w1 = w2 =
w3 = 1, p1 = 2, p2 = 1, p3 = 4, m1 = m, m2 = m − 1, and m3 = 1. In an optimal
nonpreemptive total weighted completion time schedule Sn, job 2 starts concurrently
with job 3. This block and job 1 are then scheduled in any order resulting in C(Sn) =
11; see the left schedule of Figure 2.

In the optimal preemptive total weighted completion time schedule Sp, however,
first job 2 and job 3 are started together; see the right schedule of Figure 2. Then
at time t = 1, job 3 is interrupted and job 1 is executed to completion. Finally, the
execution of job 3 is resumed at time t = 3. Assuming no preemption penalty (p = 0),
we have C(Sp) = 10.

Next, we consider the LRF algorithm, a simple nonpreemptive list scheduling
algorithm where the order of the jobs is determined by the nonincreasing ratio sj =
wj

pjmj
. Since the ratio

wj

pj
is known as Smith’s ratio [12], we call sj the modified Smith

ratio. The LRF algorithm always removes the first job in a list and schedules it as
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Fig. 2. Optimal nonpreemptive schedule (left) and optimal preemptive schedule (right).

early as possible without affecting the completion time of any previously scheduled
job.

Kawaguchi and Kyan [8] have shown that the LRF algorithm guarantees C(S) ≤√
2+1
2 C∗ if all jobs are sequential (mj = 1 for all j ∈ τ).

Later, Turek et al. [14] proved that the approximation factor of the LRF algorithm
is 2 if mj ≤ m

2 and wj = 1 hold for each job j ∈ τ . This proof can be easily extended
to the weighted case. Before this is done, we repeat Lemma 3.2 of [11], which gives
several lower bounds for nonpreemptive weighted completion time schedules.

Lemma 4.1. For any job system τ and a machine system that does not allow
preemption, the optimal total weighted completion time solution C∗ satisfies Aτ ≤ C∗,∑

j∈τ wjpj ≤ C∗, and Aτ + 1
2

∑
j∈τ wjpj − 1

2m

∑
j∈τ wjpjmj ≤ C∗.

Aτ is called the squashed area bound and was originally introduced for the un-
weighted case in [15]. For this bound, each job j is transformed into a fully parallel
job j′ with mj′ = m, pj′ =

pjmj

m , and wj′ = wj . Therefore, the resulting scheduling
problem is equivalent to a simple single machine problem, and an optimal schedule
for these parallel jobs is generated by Smith’s rule. For a proof of Lemma 4.1, see
[11].

Next, we extend Turek’s Lemma 4.1 in [14] to consider arbitrary weights as well.
Lemma 4.2. For any job system τ with mj ≤ m

2 for all j ∈ τ and a machine
system that does not allow preemption, C(S) ≤ 2C∗ holds for all LRF schedules S.

Proof. We prove this lemma by induction. Let us assume that the jobs of τ are
enumerated using the modified Smith ratio and that the following condition holds for
job system τ ′ = {1, . . . , j − 1}:

C(τ ′) ≤ 2Aτ ′ +
∑
i∈τ ′

wipi − 1

m

∑
i∈τ ′

wipimi ≤ 2C∗(τ ′).

Using τ ′′ = τ ′ ∪ {j}, we need to show that

C(τ ′′) = C(τ ′) + wjCj(S)

≤ 2Aτ ′′ +
∑
i∈τ ′′

wipi − 1

m

∑
i∈τ ′′

wipimi

= 2Aτ ′ + 2
wj

m

∑
i∈τ ′

pimi + 2
wjpjmj

m
+
∑
i∈τ ′

wipi + wjpj − 1

m

∑
i∈τ ′

wipimi

−wjpjmj

m
.

Due to the induction assumption, this is true if the following inequality holds:

wj(Cj(S)− pj) ≤ 2
wj

m

∑
i∈τ ′

pimi +
wjpjmj

m
.
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To see the validity of the inequality, note that Cj(S)− pj is the starting time of job
j in any nonpreemptive schedule S. Further, at any time instance before Cj(S)− pj ,
more than m

2 machines are used by jobs in τ ′ as S is a list schedule and each job
needs at most m

2 machines.
Next, let us consider the case where all jobs of a job system require more than

50% of the machines (mj >
m
2 ). Here it is easy to obtain an optimal total weighted

completion time schedule as no two jobs can be executed concurrently. However, due
to different machine requirements of the various jobs, scheduling the jobs in Smith
order is not necessarily optimal.

Corollary 4.3. Assume a job system τ with mj >
m
2 for all j ∈ τ . Then any

LRF schedule S satisfies C(S) ≤ 2C∗.
Proof. We construct a new job system τ ′ such that for each job j ∈ τ , there is

a job j′ ∈ τ ′ with wj′ = wj , mj′ = m, and pj′ =
pjmj

m >
pj

2 . Arranging the jobs of
τ ′ in Smith order produces an optimal schedule S′ = Aτ ′ . Note that jobs j and j′

have the same relative position in schedules S and S′, respectively. This results in
Cj(S) < 2Cj′(S

′) and leads to

C(S) < 2C(S′) = 2Aτ ′ = 2Aτ ≤ 2C∗.

But if both cases in Lemma 4.2 and Corollary 4.3 are combined, meaning that
jobs may be arbitrary, the approximation factor for the LRF algorithm may be as
bad as m [14].

Further, many nonpreemptive schedules with small approximation factors for
C∗

max cannot guarantee a constant approximation factor for C∗; see [15]. Here, we
want to address the opposite case and discuss the approximation factors for C∗

max

of some nonpreemptive schedules with good total weighted completion time perfor-
mance. For the sake of completeness, we briefly recall the γ-SMARTNFIW as used in
[11]. The SMART algorithm generates a shelf schedule; that is, the jobs are assigned
to shelves, and all jobs belonging to the same shelf start at the same time. The height
of a shelf is the processing time of the longest running job assigned to it, and a shelf is
placed on top of its predecessor with the first shelf starting at time 0. For γ-SMART,
the job system τ is partitioned such that all jobs j with γµ ≤ pj < γµ+1 belong to
the same height component µ ≥ 0. The jobs in such a height component are then
ordered by increasing ratio

mj

wj
and assigned to shelves in a next fit fashion (next fit

increasing width (NFIW) to weight). Finally, the shelves are scheduled using Smith’s
rule, where the Smith ratio of a shelf is determined by its height and the sum of the
weights of all jobs assigned to it.

Corollary 4.4. For any job system τ , a γ-SMARTNFIW schedule S satisfies
Cmax(S) < (1 + 2γ + γ

γ−1 )C∗
max.

Proof. First, we restrict ourselves to a job system τ1 ⊆ τ that contains all jobs
scheduled on the first shelf of each height component. We use the notation Cmax(S, τ1)
to denote the makespan of schedule S if we restrict ourselves to the jobs of τ1 and
remove all time intervals of S where all machines are idle. Assuming γk ≤ pmax =
maxj∈τ pj < γk+1, that is, at most k + 1 height components, we obtain for the

makespan Cmax(S, τ1) ≤ pmax + γ γk−1
γ−1 . Therefore, we have

Cmax(S, τ1) <

(
1 +

γ

γ − 1

)
pmax ≤

(
1 +

γ

γ − 1

)
C∗

max(τ).

Next, we consider all shelves belonging to the same height component µ. Assume
that those shelves are enumerated in the order in which they are filled with jobs. As
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the jobs of this height component are assigned to the shelves in a next fit fashion, the
width of the first job in shelf 2i plus the width of all jobs in shelf 2i− 1 must exceed
m. With nµ and τµ denoting the number of shelves and the jobs in height component
µ, respectively, we obtain ∑

j∈τµ

mj >
⌊nµ

2

⌋
m ≥ nµ − 1

2
m

and

1

m

∑
j∈τµ

pjmj >
nµ − 1

2
γµ.

Note that nµγ
µ+1 is an upper bound for the combined height of all shelves of height

component µ in schedule S. Further, one shelf of each height component is al-
ready considered in the schedule for the jobs of τ1. Finally, we have C∗

max(τ) ≥
1
m

∑
j∈τ pjmj . The combination of all those results leads to

Cmax(S) < Cmax(S, τ1) +

k∑
µ=0

(nµ − 1)γµ+1 <

(
1 +

γ

γ − 1

)
C∗

max(τ) + 2γ
1

m

∑
j∈τ

pjmj

<

(
1 +

γ

γ − 1
+ 2γ

)
C∗

max(τ).

In the next corollary, we again address job systems where no job needs more than
50% of the machines.

Corollary 4.5. Assume a job system τ with mj ≤ m
2 for all j ∈ τ . Then an

LRF schedule S satisfies Cmax(S) < (3− 1
m )C∗

max.
Proof. Assume job j with Cj(S) = Cmax(S). As S is a nonpreemptive LRF

schedule, there are at least m+1
2 machines busy during all time instances before time

tj(0) = Cj(S)− pj . This leads to C∗
max ≥ 1

m

∑
j∈τ pjmj >

1
m

(m+1)(Cj(S)−pj)
2 .

Therefore, we have C∗
max ≥ pj and C∗

max >
m+1
2m (Cmax(S)−pj) ≥ 1

2− 1
m

(Cmax(S)−
pj) which results in

Cmax(S) = Cmax(S)− pj + pj <

(
3− 1

m

)
C∗

max.

If mj = 1 holds for all jobs j ∈ τ , the LRF schedule S becomes a list schedule
and therefore guarantees Cmax(S) ≤ (2− 1

m )C∗
max.

5. The algorithm. In this section, we introduce the new preemptive algorithm
PSRS (preemptive Smith ratio scheduling), shown in Table 1.

Let us start the discussion of Algorithm PSRS by explaining the elements and
components used during its execution. Q is the list of those jobs that are not yet
scheduled. The order of Q is determined by the modified Smith ratio (largest ratio
first). ts is a local variable of the algorithm and gives the earliest starting time of
the next job to be scheduled. Note that ts cannot decrease during the run of the
algorithm and that it is not smaller than the starting time of the job that has been
scheduled last. Therefore, all jobs will start in the order given by Q. Next, T (m′) is a
function returning the first time instance after ts such that at least m′ machines are



1290 UWE SCHWIEGELSHOHN

Table 1

The preemptive Algorithm PSRS.

Create a priority list Q for all jobs such that job i precedes job j if si > sj ;
ts = 0;
while (Q �= ∅){

pick the next job j and delete it from Q;
dj = 0;

if (mj > m
2

and
pj
v
≤ T (mj)− T (m

2
)) {

tj(0) = T (m
2

) + p
2

+
pj
v

;
ts = tj(0) + pj + p

2
;

for all jobs i with ti(2di + 1) ≥ tj(0)− p
2

do {
di = di + 1;
ti(2di + 1) = ti(2di − 1) + pj + p;
ti(2di − 1) = ti(0);
ti(2di) = ts − p

2
;

}
} else {

tj(0) = T (mj);
ts = tj(0);

}
tj(1) = tj(0) + pj ;

}

available in the temporary schedule at time ts. As no job in this temporary schedule
starts after time ts, we can formally write

T (m′) = min

⎧⎨⎩t|t ≥ ts and m−m′ ≥
∑
j

mj with tj(2dj + 1) > t

⎫⎬⎭ .

Note that tj(2dj+1) is a value that may change during the further run of the algorithm
and therefore may be different from the final completion time Cj(S). Finally, v ≤ 1
is a constant that is used to minimize the approximation factor of Algorithm PSRS.
The value of v will be determined in the next section.

Intuitively, Algorithm PSRS removes the first job j from Q and schedules it in a
nonpreemptive (LRF) fashion as long as the job needs at most 50% of all machines
(mj ≤ m

2 ). However, if a job j requires more than m
2 machines, we determine the

difference between the first time instances after ts where m
2 and mj machines are

available, respectively. If this time difference is less than the ratio
pj

v , we schedule j
in the same way as those jobs with less parallelism; that is, j starts at time T (mj)
and runs to completion. Otherwise at time T (m2 ) +

pj

v , we preempt all jobs in the
temporary schedule that do not finish before that time and start job j at time T (m2 )+
pj

v + p
2 as we need to account for the preemption penalty to interrupt those other jobs.

Note that we also preempt jobs that would complete at time T (m2 ) +
pj

v . Those jobs
complete immediately after their execution is resumed. This is only done for the
sake of a slightly simpler analysis. After job j has been completed, the execution
of those preempted jobs is resumed, thus causing another preemption penalty of p

2 .
The next job cannot start before the execution of the preempted jobs is resumed.
This assures that the necessary machines are available to resume execution of the
preempted job without migration. Therefore, any preemption-causing job will not
execute concurrently with any other job. Finally, note that jobs j ∈ τ with mj >

m
2

are not preempted.
In further parts of this paper, we use the following notation for variables or

functions that change their values during an iteration of the algorithm: q(j) and q(j)
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denote the value of a variable or a function q at the beginning and at the end of the
iteration where job j is scheduled, respectively.

Now, we discuss the validity of the schedule produced by PSRS.

Lemma 5.1. Consider a job system τ and a machine system M. Then PSRS
always generates a valid schedule that does not require migration.

Proof. First note that at the beginning of any iteration, tj(2dj) ≤ ts holds for
any job j that is already scheduled (j ∈ τ\Q). Initially, PSRS assigns to each job j
an integer dj = 0 and time instances tj(0) and tj(1) with tj(1)− tj(0) = pj ≥ 1 and
ts(j) ≤ tj(0) ≤ ts(j). During a later iteration, job j′ may cause preemption and dj(j

′)
may become dj(j

′) = dj(j
′) + 1 while the schedule remains unchanged in the interval

[0, 2dj(j
′)). The validity of the scheduling conditions for tj(2dj(j

′) − 1), tj(2dj(j
′)),

and tj(2dj(j
′) + 1) can easily be verified. Finally, as already mentioned above, each

preempted job can be continued on the same set of machines it has used before.

The time complexity of PSRS is O(|τ |2) as in the worst case, O(|τ |) jobs may
preempt O(|τ |) jobs each. Also note that the LRF schedules for sequential jobs
and for jobs requiring at most m

2 machines are both included in Algorithm PSRS.
Therefore, if the job system τ observes the corresponding resource restrictions, PSRS

guarantees C(S) <
√

2+1
2 C∗ [8] and C(S) < 2C∗, respectively.

6. Approximation factors. In this section, we address the approximation fac-
tors for Algorithm PSRS. First, we derive the makespan approximation factor.

Theorem 6.1. Cmax(S) < (2 + 1
v + p)C∗

max holds for all PSRS schedules S.

Proof. First, we address the average machine usage in the time interval
[0, (T (m2 ))(i)) with i being the job scheduled last by PSRS. Note that Cmax(S) −
(T (m2 ))(i) ≤ maxj∈τ{pj} holds.

Consider the scheduling of job j. Algorithm PSRS will not introduce any addi-
tional idle time in the time interval [0, (T (m2 ))(j)) during the later scheduling of any
other job.

If mj ≤ m
2 holds, then more than m

2 machines are used at any time instance in

[(T (m2 ))(j), (T (m2 ))(j)).

Assume job j withmj >
m
2 . Then fewer thanmj machines are idle at any moment

in time interval [(T (m2 ))(j), (T (mj))(j)). If j does not cause any preemption, then

(T (mj))(j) − (T (m2 ))(j) <
pj

v and (T (m2 ))(j) = (T (mj))(j) + pj hold. At least mj

machines are used in S at any time instance of the interval [(T (mj))(j), (T (m2 ))(j)).
Therefore, at least the fraction 1

1
v +1

≤ 1
2 of all machines is used on average in the

time frame [(T (m2 ))(j), (T (m2 ))(j)) of schedule S.

Next, assume that job j preempts jobs j1, . . . , jk. Therefore, we have mj +∑k
µ=1mjµ > m. Execution of jobs j1, . . . , jk is resumed at time tj(1)+p

2 = (T (m2 ))(j)+

(1 + 1
v )pj + p = (T (m2 ))(j). During the time frame [(T (m2 ))(j), (T (m2 ))(j)), the

total used machine-time product is at least
∑k

µ=1mjµ
1
vpj + mjpj > mpj . With

(T (m2 ))(j)− (T (m2 ))(j) = pj(
1
v + 1) + p and pj′ ≥ 1 for all jobs j′ ∈ τ , we can there-

fore conclude that more than the fraction 1
1
v +1+p

of all machines is used on average

in [(T (m2 ))(j), (T (m2 ))(j)) and in [0, (T (m2 ))(i)) as well.

Further, we have C∗
max ≥

∑
j∈τ

mjpj

m and C∗
max ≥ maxj∈τ pj . This results in

Cmax(S) = Cmax(S)−
(
T
(m

2

))
(i) +

(
T
(m

2

))
(i)
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Table 2

Worst-case job system for makespan schedules.

pj mj wj Number of jobs

1
v

1 pj 2m

1 m− 1 mj m

m 1 pj 1

Table 3

Worst-case job system for weighted completion time schedules.

pj mj wj Number of jobs

1
v

1 pj k(x + 1)

1 m− x mj k

ky 1 pj x

1 m 0 �kyv�

< max
j∈τ

pj +

(
1

v
+ 1 + p

)
1

m

∑
j∈τ

mjpj

≤ C∗
max +

(
1

v
+ 1 + p

)
C∗

max =

(
1

v
+ 2 + p

)
C∗

max.

Note that the approximation factor is a function of v and p. This factor is tight
for Algorithm PSRS and large values of m. This can be seen from the job system
in Table 2 for which PSRS produces Cmax(S) = (2 + 1

v + p)C∗
max if m → ∞ holds.

As the modified Smith ratio is the same for all jobs, we assume that in list Q of
Algorithm PSRS, two jobs of the first group are always followed by one job of the
second group, while the single job of the third group is the last job of Q. This results
in Cmax(S) = m( 1

v + 1 + p) +m. In an optimal schedule, the job of the last group is
scheduled first. Then all jobs of the second group are executed concurrently with this
job followed by all jobs of the first group. This leads to C∗

max = m+ 2
v .

Next, we introduce the job systems of Table 3. Those job systems consist of four
different types of jobs. Later, we will prove that one of those job systems produces the

maximum ratio C(S)
C∗ of any PSRS schedule S for k  m → ∞. First, we determine

C(S) and C∗, respectively. The real number y ≥ 1
k and the nonnegative integer

x ≤ m
2 − 1 in Table 3 are parameters.

The modified Smith ratio is 1 for all jobs of the first three types. Therefore, any
order of those jobs in list Q is possible. We assume that x + 1 jobs of the first type
are always followed by one job of the second type. The type 2 job causes preemption
of the previous x + 1 type 1 jobs. All jobs of the third type are put into Q after
all jobs of the first two types. Note that the last type of job has a modified Smith
ratio of 0. Hence, these jobs must be at the end of Q and they do not contribute to
C∗. However, these jobs delay the completion of type 3 jobs and therefore indirectly
increase C(S) of the PSRS schedule S.

A schedule with an optimal total weighted completion time schedule for this job
system is obtained by starting all type 3 jobs at time 0 (contribution of those jobs to
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the total weighted completion time: xk2y2). All type 2 jobs are executed one after
another. The whole staple of these jobs also starts at time 0 (contribution of all type 2

jobs: (m − x)k(k+1)
2 ). Finally, all jobs of type 1 are scheduled at the earliest time

possible, that is, on top of either the type 2 jobs or the type 3 jobs. This leads to
three possible cases:

1. All type 1 jobs do not complete after time k, that is, the completion time of
the last type 2 job.

2. All type 1 jobs do not complete after time ky, that is, the completion time of
all type 3 jobs.

3. Some type 1 jobs complete after max{k, ky}.
By comparison of those three cases, it can be determined that the worst ratio C(S)

C∗
is obtained for case 2, that is, if y > 1 + x+1

v(m−x) holds. Therefore, the contribu-

tion of type 1 jobs is between k(x+1)
v k + m−x

2v2 �k(x+1)
m−x 	(�k(x+1)

m−x 	 + 1) and k(x+1)
v k +

m−x
2v2 �k(x+1)

m−x �(�k(x+1)
m−x �+ 1).

In the PSRS schedule, the first x + 1 type 1 jobs and the first job of type 2 will

contribute to the total weighted completion time with (x+1
v +m−x)( 1

v+1+p)− (m−x)p
2 .

Therefore, the contribution of all type 1 and type 2 jobs together is k(k+1)
2 (x+1

v +m−
x)( 1

v + 1 + p) − k (m−x)p
2 . Finally, all type 3 jobs are executed after all type 1 and

type 2 jobs. As already mentioned, the completion time of those jobs is increased by
type 4 jobs. This results in a contribution of not more than kxy(kyv+ k)( 1

v + 1 + p).
Hence, the high order terms of C(S) and C∗ are given by

lim
k�m,m→∞

C∗ = k2

(
xy2 +

1

2
(m− x)

(
x+ 1

v(m− x) + 1

)2
)

and

lim
k�m,m→∞

C(S) = k2

(
xy(yv + 1) +

1

2

(
x+ 1

v
+m− x

))(
1

v
+ 1 + p

)
.

The maximum ratio C(S)
C∗ of all PSRS schedules S for the job system of Table 3

with k  m → ∞ depends on p and is denoted as fC(p). It is obtained by solving
the following optimization problem:

fC(p) = lim
k,m→∞

min
0<v≤1

(
max

y≥0,0≤x<m
2

(
C(S)

C∗

))
.

First, we discuss the reason to assume m → ∞. There are k(x + 1) type 1 jobs
in the job systems of Table 3. If we allow any value between 0 and m

2 for x in the
optimization problem, then we need to consider only the contribution of the additional

k type 1 jobs as their influence on the ratio of C(S)
C∗ varies with the size of m. The

contribution of those jobs to C∗ is at least k2

v , while they contribute k(k+1)
2v ( 1

v +1+p)

to C(S). As we have k(k+1)
2 ≤ k2 for k ≥ 1, we can ignore this contribution in order

to determine an upper bound of the worst case; that is, we can assume m→∞. With
respect to Algorithm PSRS, this means that we allow a parallel job j to preempt jobs
that together use m−mj instead of m−mj +1 machines. In particular, this includes
the case where mj = �m2 � holds; see the proof of Corollary 6.5, step 4. Clearly, this
modification does not reduce C(S). However, note that it is used for the analysis
only.

Before determining the approximation factor for the total weighted completion
time, we introduce a lower bound C̃∗ for the optimal total weighted completion time
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C∗. To obtain C̃∗, we simply assume that for all jobs, we have either mj = 1 or
mj > �m2 � in the optimal schedule. This is achieved by modifying the job system
τ such that every job j ∈ τ with 1 < mj ≤ �m2 � is replaced by mj sequential jobs
i1, . . . , imj with piκ = pj , miκ = 1, and siκ = sj for 1 ≤ κ ≤ mj . Any valid schedule

for τ is valid for the new job system as well. Therefore, C̃∗ is a lower bound for C∗.
Note that C̃∗ = C∗ holds for the job systems of Table 3.

If there are no jobs j ∈ τ with 2 ≤ mj ≤ �m2 � and all jobs of job system τ have a
modified Smith ratio of 1, then there are no intermittent idle times on any machine
in the optimal schedule as no parallel jobs (mj >

m
2 ) can be executed concurrently.

Note that the optimal schedule is nonpreemptive in this case and the total weighted
completion time for each machine of the system is 1

2 ((
∑

j pj)
2 +
∑

j p
2
j ) with the sums

being taken over all jobs j ∈ τ that are scheduled on this machine [12].
Under these conditions, the total weighted completion time is minimized if the

makespan is the same for all machines of the system due to reasons of convexity [8].
Although the same makespan for all machines cannot be achieved for the job systems
of Table 3, we will use this property for a subset of machines. In particular, we assume
that in the optimal schedule, all those machines executing more than one sequential
job have the same makespan. Again for the job systems of Table 3, this assumption
does not result in a deviation from C∗ as for k →∞, the execution time of all type 1
and type 2 jobs is small compared to the makespan of the machines assigned to them.

Further, for our analysis we increase the completion time of each preemption-
causing job in a PSRS schedule by p

2 ; that is, the job completes at the same time
when the execution of the preempted jobs is resumed. Hence for such a preemption-
causing job j, we have tj(1) = ts(j) = (T (m2 ))(j). This modification increases the

ratio C(S)

C̃∗ while fC(p) remains unchanged.
The next theorem is one of the main results of this paper and states that the

approximation factor of PSRS is fC(p).

Theorem 6.2.
C(S)
C∗ ≤ fC(p) holds for all PSRS schedules S.

To prove Theorem 6.2, we gradually restrict the number of job systems, which
must be considered in order to generate the maximum deviation of C(S) from the
lower bound C̃∗ of the optimum C∗, until we reach the job systems of Table 3. To
enhance readability, the proof of Theorem 6.2 is divided into a lemma and several
corollaries.

The total weighted completion times of the PSRS schedule and the optimal sched-
ule for the job systems of Table 3 are determined only by jobs with the same modified
Smith ratio. Therefore, we start our proof by showing that for the determination
of the approximation factor of Algorithm PSRS, it is sufficient to consider only the
completion times of the jobs with maximum modified Smith ratio in all job systems
and PSRS schedules. To this end, we introduce the following notations:

τ̂ =

{
i|i ∈ τ and si = max

j∈τ
(sj)

}
,

Ĉ(S) =
∑
i∈τ̂

witi(2di + 1).

Ĉ(S) is a restriction of C(S) to the contribution of all jobs of the subset τ̂ in
schedule S. As the order of all jobs j ∈ τ̂ in Q is arbitrary, there may be several
different PSRS schedules S with different values of Ĉ(S) for a given job system τ .
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Further, we consider C̃∗(τ̂), which is the lower bound of the optimal total weighted
completion time for a job system consisting of only the jobs in τ̂ .

With these notations, we can state the next lemma, which is closely related to
Theorem 2 of Kawaguchi and Kyan’s paper [8].

Lemma 6.3 (Kawaguchi and Kyan). If Ĉ(S)

C̃∗(τ̂)
≤ λ holds for all job systems and

PSRS schedules S, then C(S)

C̃∗ is also upper bounded by λ.
This lemma allows us to assume that for the purpose of worst-case analysis, any

job system consists only of some jobs with a modified Smith ratio of 1 while sj = 0
holds for all other jobs j of the job system as sj is only used in Algorithm PSRS
to determine the order of Q. Note that this property is true for the job systems of
Table 3. Although the proof can be directly derived from [8], it is restated here for
the sake of completeness.

Proof. The proof is done by induction over the number k of different modified
Smith ratios in a job system. The lemma clearly holds for k = 1.

Assume that the claim holds for all job systems with k different modified Smith
ratios and that τ is a job system with k + 1 different modified Smith ratios. We use
s1 = maxj∈τ{sj} and s2 = maxj∈τ\τ̂{sj} to denote the largest and the second largest

modified Smith ratio values of τ , respectively. Further, we have Ĉ(S)

C̃∗(τ̂)
≤ λ.

We generate a job system τ ′ by modifying the weights of the jobs in τ as follows:

wj ←
{ s2

s1
wj for j ∈ τ̂ ,

wj for j ∈ τ\τ̂ ,
Note that any PSRS schedule S(τ) is also a PSRS schedule for τ ′ as any order of

jobs in τ also can be applied to τ ′. Based on our induction assumption, C(S(τ ′))
C̃∗(τ ′)

≤ λ
holds for such a schedule S(τ ′) as there are only k different modified Smith ratios in
τ ′.

As the difference between the total weighted completion times of schedule S for
job systems τ and τ ′ is caused only by jobs in τ̂ , we have

C(S(τ))− C(S(τ ′)) =

(
1− s2

s1

)
Ĉ(S).

Further, note that the contribution of all jobs in τ̂ to C̃∗(τ) is at least C̃∗(τ̂).
Therefore, we can state the following relationship between C̃∗(τ) and C̃∗(τ ′):

C̃∗(τ) ≥
(

1− s2
s1

)
C̃∗(τ̂) + C̃∗(τ ′).

Combining those inequalities finally results in

C(S(τ))

C̃∗(τ)
≤ C(S(τ ′)) + (1− s2

s1
)Ĉ(S)

C̃∗(τ ′) + (1− s2
s1

)C̃∗(τ̂)
≤ λC̃

∗(τ ′) + (1− s2
s1

)C̃∗(τ̂)

C̃∗(τ ′) + (1− s2
s1

)C̃∗(τ̂)
= λ.

However, jobs in τ\τ̂ may cause preemption and therefore indirectly affect Ĉ(S)
by increasing the completion time of some jobs in τ̂ ; see, for instance, the type 4 jobs
in the job systems of Table 3. As we are interested in this property only for jobs
j ∈ τ\τ̂ , we assume that mj = m holds for those jobs. To formally describe an upper
bound for the influence of those jobs, we define the time tb in a PSRS schedule to be

tb = min
j∈τ\τ̂

{
T
(m

2

)
(j)
}
.
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tb is a lower bound for the first time in a PSRS schedule at which a job j ∈ τ\τ̂
with mj = m may be scheduled. If τ = τ̂ holds, then we simply add a job j with

wj = 0, mj = m, and pj = 1. This job cannot decrease Ĉ(S) while C̃∗ remains
unchanged.

Therefore, tj(0) ≤ tb holds for all j ∈ τ̂ , and any job i ∈ τ̂ with ti(2di + 1) <
tb + 1

v is not preempted by any job j ∈ τ\τ̂ as we have pj ≥ 1. We use the set
τ̂t = {j ∈ τ̂ |tj(2dj + 1) ≥ tb + 1

v} to describe those jobs whose completion time is
delayed by jobs in τ\τ̂ . Let p̌j be the remaining processing time of a job j ∈ τ̂ at time
tb in the PSRS schedule S. Then there can be at most �vp̌j	 jobs with processing
time 1 and a modified Smith ratio of 0 that preempt job j. Therefore, we have
tj(2dj + 1) ≤ tb + p̌j(1 + v + vp). As we are interested only in the worst case, it is
assumed from now on that tj(2dj + 1) = tb + p̌j(1 + v + vp) holds for all jobs j ∈ τ̂t.
This allows us to ignore all jobs j ∈ τ\τ̂ . Again note that the following properties
hold in the job systems of Table 3:

(i) tb = k( 1
v + 1 + p);

(ii) τ̂t consists of all type 3 jobs with p̌j = pj ;
(iii) tj(2dj + 1) = tb + pj(1 + v + vp) for all jobs j ∈ τ̂t and k →∞.
The rest of the proof of Theorem 6.2 is divided into three corollaries. As already

mentioned, we repeatedly transform a job system τ into a new (more restricted) job
system τ ′. To distinguish between corresponding expressions of both systems we use
the single quote character, for instance, schedule S(τ) for job system τ and another
schedule S′(τ ′) for job system τ ′.

Assume that a job system τ with Ĉ(S(τ))

C̃∗(τ̂)
≥ ∆ > 0 is transformed into a job

system τ ′ such that Ĉ(S(τ))− Ĉ(S′(τ ′)) ≤ ∆(C̃∗(τ̂)− C̃∗(τ̂ ′)) holds. Then we have

Ĉ(S′)
C̃∗(τ̂ ′)

=
Ĉ(S)− (Ĉ(S)− Ĉ(S′))

C̃∗(τ̂ ′)
≥ Ĉ(S)−∆(C̃∗(τ̂)− C̃∗(τ̂ ′))

C̃∗(τ̂ ′)

≥
Ĉ(S)− Ĉ(S)

C̃∗(τ̂)
(C̃∗(τ̂)− C̃∗(τ̂ ′))

C̃∗(τ̂ ′)
=
Ĉ(S) C̃

∗(τ̂ ′)
C̃∗(τ̂)

C̃∗(τ̂ ′)
=

Ĉ(S)

C̃∗(τ̂)
.

For worst-case analysis, it is therefore sufficient to consider only job system τ ′

instead of both systems τ and τ ′. We will repeatedly use this approach to restrict the
number of those job systems which may generate a worst case.

In the following, we say that all jobs j ∈ τ with mj >
m
2 are wide jobs. In the

first of the above mentioned three corollaries, we address those wide jobs.

Corollary 6.4. Assume a job system τ with Ĉ(S)

C̃∗(τ̂)
≥ 1 + 1

v + p and a PSRS

schedule S(τ). Then there is a job system τ ′ and a PSRS schedule S′(τ ′) with
Ĉ(S′(τ ′))
C̃∗(τ̂ ′)

≥ Ĉ(S(τ))

C̃∗(τ̂)
such that for every job j ∈ τ̂ ′ with mj >

m
2

1. either we have pj = 1 and j causes preemption in S′,
2. or (T (mj))(j) = (T (m2 ))(j) holds in Algorithm PSRS.

Proof. We prove this corollary by using three different simple transformations
that are described below.

1. Time split of a wide job causing preemption. A time split is a division of the
job into several independent jobs with the same amount of parallelism. Assume a
wide job j ∈ τ̂ with pj ≥ 2 that causes preemption in S. Then we have tj(1) =
(T (m2 ))(j) + ( 1

v + 1)pj + p. Remember that the completion time of job j has been
increased by p

2 .
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Fig. 3. Time split of a job causing preemption (p = 0).

We transform τ into τ ′ by replacing j in Q with two jobs j1 and j2 such that

mj1 = mj2 = mj , sj1 = sj2 = sj = 1, pj1 = 1, and pj2 = pj − 1 holds.

S′ is the result of applying Algorithm PSRS on job system τ ′ with the new list
Q′. Note that S and S′ are identical until time (T (m2 ))(j) and that both jobs j1 and
j2 will cause preemption in S′. The completion times of jobs j1 and j2 in S′ are given
below:

t′j1(1) =
(
T ′
(m

2

))
(j1) +

1

v
+ 1 + p =

(
T
(m

2

))
(j) +

1

v
+ 1 + p

and

t′j2(1) = tj(1) + p.

Further, no job in τ ∩ τ ′ can complete earlier in S′ than it does in S; that is,
ti(2di +1) ≤ t′i(2d′i +1) holds for all jobs i ∈ τ ∩ τ ′ (see also Figure 3). This results in

Ĉ(S)− Ĉ(S′) ≤ mjpjtj(1)−mj1pj1t
′
j1(1)−mj2pj2t

′
j2(1)

= mj(pj − 1)

(
1

v
+ 1− p

)
≤ mj(pj − 1)

(
1

v
+ 1 + p

)
.

It is easy to see that a valid schedule for τ ′ can be obtained from any valid schedule
for τ by replacing job j with jobs j1 and j2. With ťj denoting the completion time of
job j in the optimal schedule for τ , we have

C̃∗(τ̂)− C̃∗(τ̂ ′) ≥ mjpj ťj −mj2pj2 ťj −mj1pj1(ťj − pj2) = mj(pj − 1).

Together with the remarks above, this yields

Ĉ(S′)
C̃∗(τ̂ ′)

≥ Ĉ(S)

C̃∗(τ̂)
≥ 1 +

1

v
+ p.

2. Scaling. Next, a job system τ is transformed into τ ′′ by replacing each job
i ∈ τ with job j ∈ τ ′′ such that we have

mj = mi, pj = api, and wj = awi

using a positive integer a. This results in Ĉ(S′′)
C̃∗(τ̂ ′′)

= Ĉ(S)

C̃∗(τ̂)
if p = 0 holds. Then we

obtain τ ′ from τ ′′ by repeatedly applying the previous time splitting step to all jobs
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Fig. 4. Time split of a wide job not causing preemption (p = 0).

j ∈ τ ′′ if those jobs cause preemption and have pj ≥ 2. Note that if a job i ∈ τ̂ is
preempted k-times in schedule S, then the corresponding job j ∈ τ̂ ′ is preempted at
least ak-times in S′. Also remember that ti(2di +1) = tb + p̌i(1+ v+ vp) holds for all
jobs i ∈ τ̂t. The same is true for all jobs i ∈ τ̂ ′t . This scaling procedure will therefore
result in Ĉ(S′) ≥ aĈ(S), C̃∗(τ̂ ′) = aC̃∗(τ̂), and in

Ĉ(S′)
C̃∗(τ̂ ′)

≥ Ĉ(S)

C̃∗(τ̂)
≥ 1 +

1

v
+ p,

even if p is positive.
If all pi are rational numbers, then a can be selected such that pj = 1 holds for

all jobs j ∈ τ̂ ′ that cause preemption in S′. As scaling will not decrease the ratio
Ĉ(S)

C̃∗(τ̂)
, we can assume k →∞ and that pj = 1 holds for every preemption-causing job

j. These properties are valid for the job systems of Table 3.
3. Time split of a wide job not causing preemption. Assume a job i ∈ τ̂ with mi >

m
2 such that we have (T (mi))(i) − (T (m2 ))(i) > 0 and pi

v > (T (mi))(i) − (T (m2 ))(i)
in Algorithm PSRS; that is, i does not cause preemption in schedule S. Now, job
system τ is transformed into τ ′ by replacing i in Q with two jobs i1 and i2 such
that mi1 = mi2 = mi, si1 = si2 = si = 1, pi1 = v((T (mi))(i) − (T (m2 ))(i)), and
pi2 = pi − pi1 hold.

If we have pi1 < 1 or pi2 < 1, then the job system is appropriately scaled as de-
scribed above. In S′, job i1 now causes preemption while (T ′(mi2))(i2) = (T ′(m2 ))(i2)
holds for job i2 in Algorithm PSRS; see Figure 4. Therefore, we have t′i2(1) = ti(1)+p
and t′i1(1) = ti(1)− pi2 + p.

This results in

Ĉ(S)− Ĉ(S′) ≤ mipiti(1)−mi1pi1t
′
i1(1)−mi2pi2t

′
i2(1)

= mi(pi1pi2 − pi1p− pi2p) ≤ mipi1pi2

(
1

v
+ 1 + p

)
and

C̃∗(τ̂)− C̃∗(τ̂ ′) ≥ mipi1pi2 .

Note that Corollary 6.4 is valid for any p.
Now, we describe the properties of our next target job system. There are only

wide and sequential jobs in this job system. All jobs in τ̂t start at the same time
after the other jobs in τ̂ have completed. All other sequential jobs (mj = 1) in τ̂
are preempted exactly once and have a remaining processing time of 0 when their
execution is resumed. Finally, each wide job j ∈ τ̂ preempts m−mj sequential jobs;
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that is, as many machines as possible are left idle. Again, all these properties are
valid for the job systems of Table 3 if those additional k type 1 jobs are ignored in
the PSRS schedule as discussed before.

Corollary 6.5. Assume a job system τ with Ĉ(S)

C̃∗(τ̂)
≥ 1 + 1

v + p and a PSRS

schedule S. Then there is another job system τ ′ and a PSRS schedule S′ such that
Ĉ(S′)
C̃∗(τ̂ ′)

≥ Ĉ(S)

C̃∗(τ̂)
and the following properties hold:

(i) mi ≥ �m2 � or mi = 1 for all jobs i ∈ τ̂ ′;
(ii) t′i(0) = t′b for all jobs i ∈ τ̂ ′t in S′;
(iii) pi = 1

v and d′i = 1 for all jobs i ∈ τ̂ ′\τ̂ ′t with mi = 1;
(iv) m−mj jobs are preempted by any job j ∈ τ̂ ′ with mj ≥ �m2 � in S.
Proof. Again we use several simple transformations to prove this corollary.
1. Time split after preemption. In this part, we apply time splitting to all jobs

that are preempted and have more than 0 processing time left when their execution is
resumed. To this end, let i ∈ τ̂ be a job with mi ≤ m

2 and ti(2di +1) > ti(2di) that is
preempted at least once by a job in τ̂ in PSRS schedule S. Then schedule S and job
system τ are transformed into schedule S′ and job system τ ′ by replacing i in S with
two jobs i1 and i2 such that mi1 = mi2 = mi, si1 = si2 = si = 1, pi1 = ti(1)− ti(0),
pi2 = pi − pi1 , d′i1 = 1, d′i2 = di − 1, t′i1(µ) = ti(µ) for 0 ≤ µ ≤ 2, t′i1(3) = ti(2), and
t′i2(µ− 2) = ti(µ) for 2 ≤ µ ≤ 2di + 1 hold.

Note that job i is split in S at the time when its execution is resumed after its
first preemption. A temporary violation of the minimal execution time condition for
job i2 always can be removed by use of the scaling procedure of Corollary 6.4. This
is also true for other parts of this proof.

For this time splitting of job i, the condition t′i2(2d
′
i2

+1)− t′i2(0) ≤ pi2(1+v+vp)
holds, and the completion time of no other job is affected. Therefore, we have

Ĉ(S)− Ĉ(S′) ≤ mipiti(2di + 1)−mi2pi2t
′
i2(2d

′
i2 + 1)−mi1pi1t

′
i1(2d

′
i1 + 1)

= mipi1(t
′
i2(2d

′
i2 + 1)− t′i2(0))

≤ mipi1pi2(1 + v + vp)

≤ mipi1pi2

(
1 +

1

v
+ p

)
and

C̃∗(τ̂)− C̃∗(τ̂ ′) ≥ mipi1pi2 .

To generate PSRS schedule S′ for τ ′, we simply construct Q′ from Q by replacing
i with i1 and introducing i2 just after the job j, which causes preemption of i1 in S′.
This is possible as sj = 1 holds.

The repeated application of this procedure in combination with the proper scaling
will assure that each job i in τ̂ ′\τ̂ ′t with mi ≤ m

2 is preempted at most once and that
it will complete immediately when its execution is resumed. Further, no job in τ̂t is
preempted by any job in τ̂ .

2. Machine split after a preemption. The division of a parallel job into several
independent jobs with the same processing time and the same modified Smith ratio
is called a machine split of this job.

If a job i ∈ τ̂ starts in schedule S at time 0 or at the same time that a preemption-
causing job completes, we replace i with mi identical jobs j such that mj = 1, pj = pi,
and si = sj = 1 hold. Note that we have ts(i) = ti(0). Therefore, none of the mi

newly generated sequential jobs can start before ti(0) in PSRS schedule S′. Hence,
this transformation does not affect the cost of the PSRS schedule and results in
Ĉ(S)− Ĉ(S′) = 0 ≤ C̃∗(τ̂)− C̃∗(τ̂ ′).
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3. Removal of sequential jobs. Next, we transform τ into τ ′ by removing a
sequential job i ∈ τ̂\τ̂t, if this procedure does not decrease the completion time of any
other job and if there is a (preemption-causing) wide job j ∈ τ̂ with ti(2di+1) ≤ tj(1).
Note that after the removal of job i, a combined machine-time product of at least
mtj(1)

1+ 1
v +p

is still used for the execution of all jobs in τ̂\τ̂t that complete no later than tj(1)

in S′; see step 1 of this proof and the proof of Theorem 6.1. As already mentioned,
we assume that the makespan is the same for all machines executing more than one
sequential job in the schedule producing C̃∗(τ̂ ′). Therefore, this makespan is at least
tj(1)

1+ 1
v +p

. With k →∞, this results in

Ĉ(S)− Ĉ(S′) ≤ pitj(1)

and

C̃∗(τ̂)− C̃∗(τ̂ ′) ≥ 1

2m

(
mtj(1)

1 + 1
v + p

+ pi

)2

− 1

2

(
tj(1)

1 + 1
v + p

)2

≥ pi tj(1)

1 + 1
v + p

.

If a job j ∈ τ̂ preempts n sequential jobs, then we transform τ into τ ′ with the
help of steps 1 and 3 by removing n+mj −m of these sequential jobs. This will not
affect the completion time of any other job.

4. Increase of the preemption ratio. Next, we address those time intervals of the
schedule where preemption occurs less frequently. Intuitively, it seems obvious that
these intervals cannot contribute to a worst case as there the ratio of busy machines
to idle machines is not worse than in intervals with more preemption. To prove this,
we consider a time interval T = [ta, te) that starts either at 0 or at tj1(1) < tb with
j1 ∈ τ̂ being a preemption-causing job. Let j2 be the first job in τ̂ that completes
after time ta in S. We define te = tj2(2dj2 + 1) and consider those cases where job j2
does not cause preemption and cannot be removed using step 2.

Let i1, . . . , in be the jobs which start at time ta in schedule S. As shown in step 2
of this proof, we can assume that all these jobs are sequential. Note that there are
more than m

2 of those jobs and all of them do not complete before time te.
Now, we perform several transformations with jobs i1, . . . , in in order to introduce

preemption in T . Remember that we can always apply the scaling procedure to avoid
any problems with the minimum processing time.

(i) Every job iµ with tiµ(1) > te is split at time te using the previously described
method. The descendant of job iµ that starts at time ta replaces job iµ in Q′. Now,
all jobs that are executed in T start at time ta and complete at time te. Note that
the resulting schedule will probably not be a PSRS schedule.

(ii) We use scaling with a factor a and time splitting to obtain b groups of
�m2 	 jobs with processing time 1

v and b groups of �m2 � jobs with processing time 1
such that the combined processing time of all those jobs is equivalent to a(te − ta)n.
In schedule S′′, we arrange those jobs such that all jobs of a group are executed
concurrently and one group with processing time 1

v is immediately followed by one
group with processing time 1. For the resulting job system τ ′′ and schedule S′′, we

have Ĉ(S′′)
C̃∗(τ̂ ′′)

≥ Ĉ(S)

C̃∗(τ̂)
.

(iii) Next, we combine each group with processing time 1 into a single wide job
to generate job system τ ′. Note that we still have C̃∗(τ̂ ′) = C̃∗(τ̂ ′′).

(iv) Finally, we arrange Q′ such that the original jobs, executing in T , are re-
placed by a repeated sequence of �m2 	 sequential jobs always followed by one wide



PREEMPTIVE SCHEDULING OF PARALLEL JOBS 1301

�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

�����
�����
�����
�����

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

0 m
Machines

0 m

0 m 0 m

Machines

MachinesMachines

j1 j1

j1j1
Time

Time

Fig. 5. Increase of the preemption ratio.

Table 4

Source (top) and target (bottom) job system for the special case.

pi mi si Number of jobs

g 1 1 m
2

b− a 1 1 m
2

1 m
2

1 a

pi mi si Number of jobs

d− c 1 1 m′

1 m−m′ 1 e− c

1 m 1 c

job. These jobs are introduced into Q′ before the other descendants of jobs i1, . . . , in.
This produces PSRS schedule S′. The completion time of no job completing after ate
in schedule S′′ is decreased. Therefore, we have C(S′) ≥ C(S′′).

These steps are also described in Figure 5. Due to this transformation, we can
assume that each job i ∈ τ̂t starts at time tb.

The proof of Corollary 6.5 results from the combination of those four steps.
To complete the proof of Theorem 6.2, we must address the processing times of

the jobs in τ̂t and the machine requirements of all preemption-causing jobs.
We start by looking at the special case described in Figure 6. There, we transform

the source job system into the target system in Table 4 with m′ not necessarily being
an integer. Further, we assume that g > b > a  1 holds. This can always be
achieved by scaling; see Corollary 6.4. Optimal schedules for both systems are given
in Figure 6. In addition, we consider separate optimal schedules for the sequential jobs
only and require that the machine-time product and the total weighted completion
time remain invariant for both systems; that is, we have

(g + b− a)m
2

= (d− c)m′ and (g2 + (b− a)2)m
2

= (d− c)2m′.
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Fig. 6. Source (left) and target (right) optimal schedules for the special case.

The same must be valid for the parallel jobs in the schedules of Figure 6; that is,

a
m

2
= cm′ + e(m−m′) and

1

2
a2m

2
=

1

2
(c2m′ + e2(m−m′)) hold.

There are four equations to determine the four variables m′, c, d, and e. Solving
this system of equations results in

m′ =
m

2

(g + b− a)2
g2 + (b− a)2 , c =

a(b− a)
g + b− a, d = c+

g2 + (b− a)2
g + b− a , e =

ag

g − b+ a
.

There is no difference in the total weighted completion time of both schedules, as we
have

a(b− a)m
2

= c(d− c)m′.

Intuitively, we can therefore state that for m → ∞, a job system containing m
sequential jobs with two different processing times always can be transformed into
a job system where all sequential jobs have the same processing time and the same
total weighted completion times, and the total machine-time products of the optimal
schedules remain invariant. This transformation can be applied repeatedly to handle
job systems where several different processing times exist for the m sequential jobs.
With this result, we are ready to prove the next corollary.

Corollary 6.6. Assume a job system τ as described in Corollaries 6.4 and 6.5

with Ĉ(S)

C̃∗(τ̂)
> 1 + 1

v + p and a PSRS schedule S. Then there is another job system

τ ′ and a PSRS schedule S′ such that Ĉ(S′)
C̃∗(τ̂ ′)

≥ Ĉ(S)

C̃∗(τ̂)
and the following properties in

addition to those of Corollaries 6.4 and 6.5 hold:
(i) pi = pj for all jobs i, j ∈ τ̂ ′t;
(ii) mi = m− |τ̂ ′t | for all wide jobs i ∈ τ̂ ′.

Finally, the job systems described by this corollary are the job systems of Table 3
if the additional k type 1 jobs are ignored in the PSRS schedule.

Proof. Using our lower bound approximations, the optimal schedule for job system
τ̂ can be described by the top left schedule in Figure 7 where all jobs in τ̂t are
shaded. Consider a machine with a larger makespan than the minimal makespan for
all machines in this schedule. Such a machine executes a single job j ∈ τ̂t and possibly
some parallel jobs from τ̂ . We group all those machines such that the same number of
parallel jobs is executed on each machine of a group and the sequential jobs on these
machines have the same processing time.

We choose two groups and pick m̄ machines from each group. m̄ need not be an
integer. The special case is applied to these 2m̄machines. Note that it is not necessary
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Fig. 7. Transformation of τ̂ ′.

to consider the parallel jobs that are executed on each of these 2m̄ machines. This
procedure is applied repeatedly until we obtain the job system τ ′′ and the optimal
schedule given by the top right schedule of Figure 7. The special case does not change
the combined machine-time product of all parallel jobs together. However, as we have
e > a in the special case, it is necessary to combine some of the resulting jobs in order
to generate parallel jobs, that is, to guarantee that in the optimal schedule, no parallel
job is executed concurrently with any sequential job in τ̂ ′′\τ̂ ′′t . The processing time
1 for all parallel jobs can be achieved by using scaling and splitting; see the proof of
Corollary 6.4.

Without taking into account any scaling, we have C̃∗(τ̂) ≥ C̃∗(τ̂ ′′) as the number
of machines not executing any job in τ̂ ′′t is increased by the transformation, and their
makespan is balanced.

The PSRS schedule S′′ is obtained by ordering all parallel jobs i, j ∈ τ̂ ′′ such
that i precedes j in Q if mi > mj holds, and arranging the sequential jobs in τ̂ ′′\τ̂ ′′t
accordingly to fit the conditions of Corollary 6.5. Therefore, S is transformed into S′′

by repeatedly exchanging a sequential job i ∈ τ̂\τ̂t of processing time 1
v with a part of

a parallel job j ∈ τ̂ with processing time 1 and ti(3) < tj(1) in S. As we have v ≤ 1,

this results in Ĉ(S) ≤ Ĉ(S′′).
If there is any j ∈ τ̂ ′′ with mj = m, then we can assume that this job completes

first in S′′. Remember that this job will preempt a single sequential job i. However,
this job i is ignored in our analysis. Next, we remove j. The repeated application
of this procedure leads to job system τ̂ ′ and schedule S′ as shown on the bottom of
Figure 7. The removal of job j results in

Ĉ(S′′)− Ĉ(S′) =

(
1 +

1

v
+ p

)∑
i∈τ̂ ′′

wi

and

C̃∗(τ̂ ′′)− C̃∗(τ̂ ′) =
∑
i∈τ̂ ′′

wi.



1304 UWE SCHWIEGELSHOHN

Finally, if there is any wide job i with mi < |τ̂t|, then we create a new job system
τ ′ by enlarging i to i′ with mi′ = |τ̂t| and by removing |τ̂t| − mi of the sequential
jobs preempted by i in S. As v ≤ 1 holds, this procedure is similar to the removal
of a sequential job; see step 3 in the proof of Corollary 6.5. Note that increasing the
parallelism of any job up to |τ̂t| does not constrain the optimal schedule.

The proof of Corollary 6.6 also concludes the proof of Theorem 6.2.
To obtain the minimal value fC(0) = 2.366, we choose v = 0.836, x = 0.183m,

and y = 2. Note that we have fC(0) > 1
v + 1 = 2.196.

7. Nonpreemptive scheduling. Preemptive schedules are sometimes used to
construct nonpreemptive ones with good performance; see Phillips, Stein, and Wein
[10] and Chekuri et al. [4]. As PSRS schedules have a good approximation factor
compared to the best nonpreemptive methods, they are a good candidate for this
approach. In addition, a PSRS schedule is a simple interleave of two nonpreemptive
schedules which can easily be separated. Therefore, we address the transformation of
a PSRS schedule into a nonpreemptive schedule in this section.

For the purpose of this transformation, we use the case p = 0. Further, τp(S)
denotes the set of jobs that preempt at least one other job in a given PSRS schedule
S. Remember that no job i ∈ τ\τp(S) is executed concurrently with any job in τp(S)
in schedule S. Formally, we can therefore state that

ti(2di + 1) ≥ pi +
∑

j∈τP (S)∧tj(1)<ti(2di+1)

pj .

The transformation algorithm is given in Table 5. All schedule data used in this
algorithm, like ti(2di + 1), refer to the PSRS schedule S. Intuitively, the algorithm
generates two sequences of time frames, each of which covers the whole schedule.
The time frames of each sequence increase in size with their position in the sequence.
The second frame of the second sequence may be the only exception to this rule.
The second sequence is related to all jobs in τp(S) while the first sequence covers
all other jobs in τ . Finally, a nonpreemptive schedule is generated by interleaving
both sequences and determining a new list of jobs. The order of this list is based
on the time frame in which a job completes. For jobs completing in the same time
frame, the order of the original priority list Q is used. Schedule S′ depends on two
parameters α > 1 and ∆ < 1, which describe the rate of frame length increase and
the offset between the time frames of different sequences, respectively. The algorithm
further uses n as an iteration counter and the variables l1, l2, l3, and l4 to denote the
bounds of the actual time frames. The transformation algorithm has the same time
complexity as Algorithm PSRS.

For the construction of the nonpreemptive list schedule, it is important to re-
member that removing any job from the priority list in such a list schedule cannot
increase the completion time of any other job in the schedule.

To evaluate the resulting nonpreemptive schedule S′, we first determine the make-
span of the schedule after iteration n.

Corollary 7.1. After execution of iteration n of the transformation algorithm,
the makespan of this part of the nonpreemptive schedule is upper bounded by

n∑
µ=0

µ∑
ν=0

αν + c1 + c2 − c3 =

n∑
µ=0

αµ+1 − 1

α− 1
+ c1 + c2 − c3

=
αn+2 − α− (n+ 1)(α− 1)

(α− 1)2
+ c1 + c2 − c3
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Table 5

Nonpreemptive transformation of a PSRS schedule.

Generate a PSRS schedule S for a job system τ and a priority list Q;
n = 0;
l1 = 0;
l3 = 0;
while (l1 < maxi∈τ ti(2di + 1)){

l2 = l1 + αn;
list schedule all jobs i ∈ τ\τp(S) with l1 < ti(2di + 1) ≤ l2 in the order given by Q;
l1 = l2;
l4 = l2 + ∆αn+1;
list schedule all jobs i ∈ τp(S) with l3 < ti(2di + 1) ≤ l4 in the order given by Q;
l3 = l4;
n = n + 1;

}

with

(i) c1 = ti(1)− l2 for i ∈ τp(S) and ti(0) < l2 < ti(1) ≤ l4,
(ii) c2 =

∑
pi with i ∈ τp(S) and l2 ≤ ti(0) < ti(1) ≤ l4, and

(iii) c3 = l2 − ti(0) for i ∈ τp(S) and ti(0) < l2 < l4 < ti(1).

Note that for jobs from τp(S), the processing time, which falls into the time
interval [0, l2], is considered in the double sum term. Therefore, the correction terms
c1 and c2 are used for jobs from τp(S) that complete after l2 but before l4. Hence, they
are scheduled in iteration n. The correction term c3 addresses a job from τp(S) that
starts before l2 and finishes after l4. Therefore, it is not yet scheduled but considered
in the double sum term. Of course, if we have c3 �= 0, then c1 = c2 = 0 must hold.

Proof. The proof is done by induction over the iteration index n. The claim
clearly holds for n = 0. Assume that it is also true for some n. In the next iteration,

the first sequence will cover S up to time l2 =
∑n+1

µ=0 α
µ = αn+2−1

α−1 . Here l1, l2, l3,
and l4 denote the bounds of the frames in this iteration n+ 1.

For the makespan C̄max of a list schedule of all jobs j in τn+1 = {j ∈ τ\τp(S)|l1 <
tj(2dj + 1) ≤ l2} with the order of Q, we have

C̄max ≤ max
j∈τn+1

{tj(2dj + 1)} −
∑

i∈τp(S)∧ti(1)≤tj(2dj+1)

pi

due to our observation above. Note that setting maxj∈τn+1{tj(2dj + 1)} = l2 in-
cludes the processing time of all jobs from τp(S) that complete in the time interval
[0, l2]. Considering the jobs in τp(S) with l2 < ti(1) and ti(0) < l4 completes the
proof.

Now, we give a bound on the completion time t′i(1) of job i ∈ τ\τp(S) in the
nonpreemptive schedule S′. To this end, we assume that i is scheduled in iteration n;
that is, l1 =

∑n−1
µ=0 α

µ < ti(2di + 1) ≤∑n
µ=0 α

µ = l2 holds.

For n = 0, it is easy to see that we have t′i(1) ≤ ti(2di + 1). In all other cases,
there is

t′i(1)

ti(2di + 1)
≤ ti(2di + 1) +

∑n−1
µ=0

αµ+1−1
α−1 + c1 + c2 − c3

ti(2di + 1)

≤ 1 +

∑n−1
µ=0

αµ+1−1
α−1 + ∆αn∑n−1
µ=0 α

µ
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= 1 +
α

α− 1
+

∆(α− 1)αn − n
αn − 1

≤ 1 +
α

α− 1
+ ∆(α− 1) for ∆(α− 1) ≤ n.

Similarly, a bound on the completion time t′i(1) in S′ is calculated for any job

i ∈ τp(S). Again, it is assumed that i is scheduled in iteration n with l3 =
∑n−1

µ=0 α
µ +

∆αn < ti(1) ≤ ∑n
µ=0 α

µ + ∆αn+1 = l4. Remember that for all jobs from τ\τp(S),
the processing time, which falls into the time interval [0, l2] in schedule S, is already

included in the term
∑n

µ=0
αµ+1−1
α−1 .

For n = 0, there is
t′i(1)
ti(1)

≤ 1+∆α
1+ 1

v

. In the general case, we have

t′i(1)

ti(1)
≤ max{0, ti(1)− l2}+

∑n
µ=0

αµ+1−1
α−1

ti(1)

≤
∑n

µ=0
αµ+1−1
α−1∑n−1

µ=0 α
µ + ∆αn

=
αn+2 − 1− (α− 1)(n+ 2)

(α− 1)(αn − 1 + ∆αn(α− 1))

≤ α2

(α− 1)(1 + ∆(α− 1))
for α+ 1−∆ ≤ (1 + ∆(α− 1))(n+ 2).

Therefore, we can derive the following performance guarantee for the nonpreemp-
tive schedule.

Theorem 7.2. If ∆(α − 1) ≤ 1, α + 1 − ∆ ≤ 3(1 + ∆(α − 1)), and 1+∆α
1+ 1

v

≤
α2

(α−1)(1+∆(α−1)) hold, then the transformation of a PSRS schedule S into a nonpre-

emptive schedule S′ guarantees

C(S′)
C∗ ≤ max

{
1 +

α

α− 1
+ ∆(α− 1),

α2

(α− 1)(1 + ∆(α− 1))

}
fc(0).

Proof. The proof is a direct consequence of the statements made above.

For ∆ = 0.25 and α = 3, we obtain C(S′)
C∗ ≤ 3× 2.37 = 7.11. The validity of the

additional conditions of Theorem 7.2 can easily be checked. Similarly, a makespan
performance guarantee can be determined from the proof of Theorem 7.2.

8. Conclusion. First, we addressed bicriteria scheduling of parallel jobs in gen-
eral and gave a few new results. Then we presented an algorithm that generates
preemptive offline schedules for parallel and independent jobs with fixed resource
requirements. This algorithm is obtained by combining two algorithms with good
performance for restricted input sets. The schedule is based on a priority list and has
small approximation factors for both total weighted completion time and makespan
criteria. It does not require job migration. The method belongs to the class of list
scheduling algorithms. It is carefully analyzed and a tight worst-case approximation
factor is determined. Moreover, the analysis provides information about the structure
of “bad cases.” Also, we derived a numerical optimization problem which can be used
to fine-tune the total weighted completion time approximation factor. Finally, we
transformed the preemptive schedules into nonpreemptive ones with a better bound
for total weighted completion time than those obtained by previously known methods.



PREEMPTIVE SCHEDULING OF PARALLEL JOBS 1307

Table 6

Comparison between various scheduling methods.

Schedule Type
C(S)
C∗

Cmax(S)
C∗

max

SMART nonpreemptive 8.53 5.19

SMART nonpreemptive 9 5

PSRS nonpreemptive 7.11 9.60

PSRS nonpreemptive 7.26 9.00

PSRS with p = 0 preemptive 2.37 3.20

PSRS with p = 0 preemptive 2.42 3

PSRS with p = 1 preemptive 3.41 4.31

PSRS with p = 1 preemptive 3.61 4

The generated schedules are based upon our machine model which is derived
from existing parallel computers. To our knowledge, it is also the first time that a
preemption penalty is considered in the analysis of such an algorithm. Compared
with nonpreemptive SMART schedules, our approximation factors are significantly
better, even if we assume that a context switch is as time consuming as the minimal
completion time of a job including loading the job and storing its results, that is, if
p = 1 holds. As shown in Table 6, PSRS and SMART schedules can be fine-tuned to

minimize either C(S)
C∗ or Cmax(S)

C∗
max

.

PSRS schedules have the additional advantage that they use preemption only for
jobs which require at most 50% of the nodes. Even in this case, there are at most
two jobs resident on any node at the same time. Moreover, PSRS schedules only
need global preemption which may be easier to implement than other forms of gang
scheduling with respect to running messages in the interconnection network.

Acknowledgments. The author is grateful to Joel Wein for a helpful discussion
on bicriteria scheduling. The author would also like to thank the anonymous referees
for their helpful remarks.
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Abstract. The nondeterministic advice complexity of the P-selective sets is known to be exactly
linear. Regarding the deterministic advice complexity of the P-selective sets—i.e., the amount of
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We prove that every associatively P-selective set is commutatively, associatively P-selective.
Using this, we establish an algebraic sufficient condition for the P-selective sets to have a linear upper
bound (which thus would match the existing lower bound) on their deterministic advice complexity:
If all P-selective sets are associatively P-selective, then the deterministic advice complexity of the
P-selective sets is linear. The weakest previously known sufficient condition was P = NP.

We also establish related results for algebraic properties of, and advice complexity of, the non-
deterministically selective sets.
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1. Introduction. Selman [Sel79, Sel81, Sel82a, Sel82b] defined the P-selective
sets about twenty years ago. In addition to being of interest in their own right,
they have recently had some surprising applications. For example, selectivity is a
powerful tool in the study of search versus decision problems [HNOS96a], and non-
deterministic generalizations of selectivity are the key tools used to show that even
NP machines cannot uniquely refine satisfying assignments unless the polynomial hi-
erarchy collapses [HNOS96b], that even weaker refinements are also precluded unless
the polynomial hierarchy collapses [Ogi96, NRRS98], and that many cardinality types
of nondeterministic function classes cannot collapse unless the polynomial hierarchy
collapses [HOW02].

Definition 1.1 (see [Sel79]). A set B is P-selective if and only if there is a
(total) polynomial-time function f : Σ∗ × Σ∗ → Σ∗ such that

1. (∀x, y)[f(x, y) = x ∨ f(x, y) = y], and
2. (∀x, y)[(x ∈ B ∨ y ∈ B) =⇒ f(x, y) ∈ B].

We call such a function f a P-selector function for B.
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That is, a set B is P-selective if there is a polynomial-time function f that, given
any two strings, always chooses one of them, and f does this in such a way that if
exactly one of the strings is in B, then the P-selector function chooses that string.
f(x, y) is often described, very informally, as choosing one of x or y that is more likely
to be in the set, though a more accurate description would be that f chooses one of
x or y that is logically no less likely than the other to be in the set.

The P-selective sets have been extensively studied, and much about them is well
understood (see the recent book [HT03] about selectivity theory). Though some P-
selective sets are very complex—highly undecidable—the P-selective sets nonetheless
have a broad range of structural simplicity properties. Most crucially in terms of
the study in this paper, Ko [Ko83] showed that they have low nonuniform complexity
(P-sel ⊆ P/O(n2)). The following are a few of the many other simplicity results known
to hold: Ko and Schöning [KS85] showed that all P-selective sets in NP are in the
second level of the low hierarchy of Schöning [Sch83], and Allender and Hemachandra
[AH92] showed that the Ko–Schöning result is the strongest lowness result for P-sel
that holds with respect to all oracles; a long line of work starting with Selman [Sel79]
and Toda [Tod91] (see also [Siv99] and the references therein) has shown that no
P-selective set can be NP-hard under ≤p

m or various other reductions unless P = NP;
Naik and Selman [NS99] have shown that no P-selective set can be truth-table-hard for
NP unless certain (intuitively unlikely) containments hold in the relationship between
adaptive and nonadaptive queries to NP; and as a consequence of the work of Ko
[Ko83] and Cai [Cai01] no P-selective set can be truth-table-hard for NP (or even
Turing-hard for NP) unless the polynomial hierarchy collapses to S2, where S2 is the
symmetric alternation class of Canetti [Can96] and Russell and Sundaram [RS98].
Note that S2 ⊆ ZPPNP ⊆ NPNP [Cai01], where ZPP as usual denotes expected
polynomial time, so this is a very dramatic collapse.

In this paper, we show that sets having P- or NP-selector functions with nice
algebraic properties have simplicity properties far beyond those known for general
P-selective or NP-selective sets. More generally, we study the class of languages one
obtains from P- and NP-selector functions having certain algebraic properties, and
the possibility of obtaining such algebraically nice P- or NP-selector functions.

In particular, section 4 shows that any P-selective (NP-selective) set having an
associative P-selector (NP-selector) function also has a commutative, associative P-
selector (NP-selector) function. Section 5 shows that sets having an associative
P-selector can be accepted by deterministic advice interpreters using only a linear
amount of advice. In contrast, the best upper bound on the deterministic advice
complexity of the P-selective sets is the quadratic bound obtained by Ko [Ko83].

Our result provides a new sufficient condition—all P-selective sets are associa-
tively P-selective—for all P-selective sets having linear deterministic advice; the weak-
est previously known sufficient condition was the quite demanding assumption that
P = NP.

Section 6 shows that associatively NP-selective sets with weak census functions
cannot be coNP-immune. Section 7 establishes a structural sufficient condition for all
P-selective sets being associatively, commutatively P-selective, and proves that if all
NPMV-selective sets have associative NPMV-selector functions, then the polynomial
hierarchy collapses.

2. Definitions. Commutativity and associativity are concepts often associated
with single-valued total functions. However, as we will discuss soon, these concepts can
be naturally applied to multivalued and/or partial functions (see, e.g., [RS97, HR99]).
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For a 2-ary multivalued function f , let set-f(x, y) denote the set of values of f on
input (x, y).1 f(x, y) is undefined if and only if set-f(x, y) = ∅. We extend this
notation to single-valued functions in the obvious way. For a 2-ary single-valued
function f let set-f(x, y) = {f(x, y)} if f(x, y) is defined and let set-f(x, y) = ∅
otherwise. For a (single- or multivalued) function f , a set A, and a string y, define
set-f(A, y) =

⋃
a∈A set-f(a, y) and set-f(y,A) =

⋃
a∈A set-f(y, a). A 2-ary function f

is called total on a set B if and only if f(x, y) is defined for all x, y ∈ B. A function
is called total if it is total on Σ∗.

A total 2-ary (single- or multivalued) function f is associative on a set B if and
only if set-f(a, set-f(b, c)) = set-f(set-f(a, b), c) holds for all a, b, c ∈ B.2 (Note
that for total single-valued functions this is equivalent to saying that f(a, f(b, c)) =
f(f(a, b), c) holds for all a, b, c ∈ B.) We say a total function f is associative if f
is associative on Σ∗. A total 2-ary (single- or multivalued) function f is associative
at each length if f is associative on Σn for each n (where Σn is the set of words of
length n). A 2-ary function f (partial or total, single- or multivalued) is commutative
if and only if set-f(a, b) = set-f(b, a) holds for all a and b. (For total single-valued
functions this is equivalent to saying that f(a, b) = f(b, a) holds for all a, b.)

For partial functions the literature distinguishes two notions of associativity,
namely, (strong) associativity and weak associativity [HR99, RS97]. A partial 2-ary
function f is called associative (or strongly associative) if and only if set-f(a, set-f(b, c))
= set-f(set-f(a, b), c) holds for all a, b, and c. A partial 2-ary function f is called
weakly associative if and only if for all a, b, and c, either (a) set-f(a, set-f(b, c)) = ∅
or set-f(set-f(a, b), c) = ∅, or (b) set-f(a, set-f(b, c)) = set-f(set-f(a, b), c). In other
words, if any of the four applications of f are undefined, weak associativity “for-
gives” the equality requirement. The two approaches to associativity for functions
correspond to the two notions of equality for partial functions, which date back to
the work of Kleene [Kle52]. Note that both of these definitions, for total functions,
exactly coincide with the associativity definition for total functions given earlier.

Definition 2.1 (see [HHN+95, HNOS96b]). For any class of (partial or total,
single- or multivalued) functions F , we say a set B is F-selective exactly if there is a
function f ∈ F such that

1. (∀x, y)[set-f(x, y) ⊆ {x, y}], and
2. (∀x, y)[{x, y} ∩ B 
= ∅ =⇒ (set-f(x, y) 
= ∅ ∧ set-f(x, y) ⊆ B)].

A function f with property 1 is called a self-contained function. A function with
properties 1 and 2 is called an F-selector function for B (when B is clear from
context or unimportant, we will simply speak of an F-selector function, and when
F is clear from context or unimportant, we will simply speak of a selector function
(for B)).

1Formally, one should speak of relations rather than functions. However, the longstand-
ing convention in computer science is to refer to such objects as “multivalued functions” (see
[BLS84, BLS85, Sel96]). Similarly, the notation “set-f(...)” is also standard in the literature on
multivalued functions, and we follow it. Though this notation makes equations a bit longer and less
beautiful (than in the reasonable alternative, which some people prefer, of viewing f as standing for
set-f), it does avoid some confusion. For example, suppose f is undefined when its first argument
is x0 and its second argument is y0. Then we would say that f(x0, y0) is undefined. In contrast,
set-f(x0, y0) certainly is defined, and in particular set-f(x0, y0) = ∅. Readers particularly interested
in the history, types, and notation involving multivalued functions may wish to look at the interesting
papers of Book, Long, and Selman mentioned earlier in this footnote.

2As it stands, the definition allows the possibility that some of the values or all of the values in
set-f(b, c), set-f(a, b), set-f(a, set-f(b, c)), and set-f(set-f(a, b), c) might not belong to B. However,
since we will typically be applying this to total, self-contained functions, the four just-mentioned
sets will each be nonempty subsets of B.
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This definition requires a selector function for a set B to be defined whenever at
least one input is in B. In other words, partial selector functions can be undefined
only if both inputs are in B. Observe that for any total self-contained function f we
have that for any strings a, b, and c,

set-f(a, b) ∩ set-f(a, c) ⊆ set-f(a, set-f(b, c)) ⊆ set-f(a, b) ∪ set-f(a, c)

and

set-f(a, c) ∩ set-f(b, c) ⊆ set-f(set-f(a, b), c) ⊆ set-f(a, c) ∪ set-f(b, c).

We will use the following notational shorthand for the classes that we will study.
(The ordering of “A” and “C” changes to avoid confusion with the existing class
“AC,” and to make clear that the “�” modifies just the “A.”)

Definition 2.2. For any class of (partial or total, single- or multivalued) func-
tions F ,

1. F-sel = {B | B is F-selective},
2. A-F-sel = {B | B is F-selective via an associative F-selector function},
3. C-F-sel = {B | B is F-selective via a commutative F-selector function},
4. CA-F-sel = {B | B is F-selective via a commutative, associative F-selector

function},
5. A�-F-sel = {B | B is F-selective via an F-selector function that is associa-

tive at each length},
6. A�C-F-sel = {B | B is F-selective via a commutative F-selector function

that is associative at each length}.
FP will denote the (possibly partial) polynomial-time computable functions. FPt

will denote those functions in FP that are total. (In the literature, some authors use
the notation “FP” to denote what we in this paper denote FPt. To avoid confusion,
we urge the reader to note carefully that throughout this paper FP (and also the
function classes NPSV and NPMV to soon be defined) do not require totality except
when subscripted with a “t”, i.e., FPt, NPSVt, and NPMVt.)

For any set C, FPC will be the class of all (possibly partial) functions that are
computable in polynomial time with the help of oracle C. For any class C, FPC =
{g | (∃C ∈ C)[g ∈ FPC ]}. FPt

C and FPt
C are defined analogously.

FP and FPt functions each have some fixed arity for their domain, and their
codomain is of arity one and is Σ∗. That is, FP and FPt are, respectively, potentially-
partial and per-force-total functions, each of type Σ∗ → Σ∗, or of type Σ∗×Σ∗ → Σ∗,
or of type Σ∗ × Σ∗ × Σ∗ → Σ∗, etc. However, for selector functions, which are the
main focus of this paper, the (input) arity is always two—selector functions by their
nature are two-argument functions. So, throughout this paper, whenever we speak of
selector-type functions (or related functions that by their nature or the way we use
them are clearly 2-ary), we will simply write expressions such as “there is an f ∈ FP”
when in fact we mean “there is a 2-ary function f ∈ FP.”

We will follow the same convention regarding the nondeterministic function classes
NPSV, NPSVt, NPMV, and NPMVt. These classes in general are meaningful for
1-ary functions, for 2-ary functions, etc. However, since this paper focuses on selector
functions, which are always 2-ary, we will in effect silently treat the classes as if they
are over 2-ary functions. So, for example, in the following paragraph, our machines
have two arguments. (The case of k-ary, k 
= 2, functions belonging to these classes is
identically defined except with k arguments.) And throughout this paper we simply
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say, for our nondeterministic function classes, things such as “there is an f ∈ NPSV”
when in fact we mean “there is a 2-ary function f ∈ NPSV.”

In the literature (and in the present paper), FPt-sel is often denoted P-sel (note
that Definition 2.2 for F = FPt yields the same class of P-selective sets as defined in
Definition 1.1), and NPSVt-sel is often denoted NP-sel. (Both FPt-sel and NPSVt-sel
in fact, by the convention mentioned in the previous paragraph, actually are intended
to refer to functions of type Σ∗ × Σ∗ → Σ∗ from FPt and NPSVt, respectively.)

We now define the standard nondeterministic function classes [BLS84, BLS85].
For any nondeterministic polynomial-time Turing machine (NPTM, for short) M
taking two strings as its input and for any two strings x and y, let outM (x, y) denote
the set of all strings that are output on some accepting path of M(x, y), by which
we mean M with x as its first argument and y as its second argument. Note that we
view the collection of outputs as a set, not as a multiset (if one path outputs 101 and
seven paths output 1100, the set of outputs is simply {101, 1100}), and note also that
the functions computed by such machines may in some cases be partial functions,
and may in some cases be multivalued functions. NPSV is the class of all single-
valued functions f such that there exists an NPTM M such that, for all x, y ∈ Σ∗,
outM (x, y) = {f(x, y)} if f(x, y) is defined and outM (x, y) = ∅ if f(x, y) is undefined.
NPMV is the class of all functions f such that there exists an NPTM M such that,
for all x, y ∈ Σ∗, outM (x, y) = set-f(x, y). NPSVt and NPMVt denote the set of all
total NPSV and NPMV functions, respectively.

As to levels of the polynomial hierarchy [MS72, Sto76] beyond NP, as is standard
we will use Σp

2 to denote the class of all languages that can be accepted by non-
deterministic polynomial-time Turing machines with the help of an NP oracle, i.e.,
Σp

2 = NPNP. And as is standard we will use Σp
3 to denote the class of all languages

that can be accepted by nondeterministic polynomial-time Turing machines with the

help of a Σp
2 oracle, i.e., Σp

3 = NPΣp
2 = NPNPNP

.

Just as P-sel and NP-sel are standard notational conventions when FPt-sel and
NPSVt-sel are actually meant (see [Sel79] and [HHN+95]), we similarly write A-P-sel
and A-NP-sel as shorthand for A-FPt-sel and A-NPSVt-sel, respectively, and we do
likewise for the other four prefixes C-, CA-, A�-, and A�C-.

From the definitions,

CA-P-sel
⊆ A-P-sel ⊆

⊆ A�C-P-sel ⊆
A�-P-sel ⊆ P-sel

and

A�C-P-sel ⊆ C-P-sel ⊆ P-sel.

Exactly the same inclusion relations hold for the various subtypes of NP-selective and
of NPMVt-selective sets.

The following facts are well known.

Fact 2.3.

1. FP-sel = P-sel = C-P-sel.
2. NP-sel = C-NP-sel.
3. NPSV-sel = C-NPSV-sel.
4. NPMVt-sel = C-NPMVt-sel.
5. NPMV-sel = C-NPMV-sel.
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Regarding the first equality of part 1 of Fact 2.3, recall that any partial selector
function can only be undefined if both of its inputs are not in the selected set. Of
course one can alter a deterministic polynomial-time Turing machine computing a
partial selector function f for a set A in such a way that it outputs any one of the
two inputs, say the lexicographically larger one, in the case that it “plans” to output
nothing. The total function computed by the altered Turing machine is also a selector
function for A. The other facts hold since if a set B is F-selective via an F-selector
function f (with F ∈ {FPt,NPSVt,NPSV,NPMVt,NPMV}), then the function f ′

defined by

f ′(x, y) = f(min(x, y),max(x, y))(∗)

is a commutative F-selector function for B.
Advice classes capture the information content of sets with respect to some com-

plexity class of decoder sets.
Definition 2.4 (see [KL80]).
1. For a complexity class C and a function f : N → N, a set B is in C/f(n) if

and only if there exist a set C ∈ C and a function h : 1∗ → Σ∗ such that, for
all x ∈ Σ∗,
(a) |h(1|x|)| = f(|x|), and
(b) x ∈ B ⇐⇒ 〈x, h(1|x|)〉 ∈ C.

2. For any complexity class C and any function class F , C/F =
⋃

f∈F C/f(n).
In this paper, we are particularly interested in the advice classes P/O(n), P/n+1,

P/n, (NP ∩ coNP)/n+1, and NP/n+1. Also, poly denotes the class of polynomials
mapping from N to N, and we will use later classes of the form C/poly.

For each set of strings A and each natural number n, let A=n and A≤n denote
all strings in A of length exactly n and of length up to and including n, respectively.
Let F be any function class. A set B is F-printable if there is a function g ∈ F such
that, for all n ∈ N, g(1n) outputs B≤n in some fixed standard way of encoding sets
as strings [HY84]. That is, there is a function from F that finds all elements in the
set up to a given length. By tradition, P-printable denotes the FPt-printable sets.

Consider a relation R over the universe U , i.e., R ⊆ U × U . We say that R is
reflexive if and only if (∀a ∈ U)[(a, a) ∈ R]. R is said to be antisymmetric if and only
if (∀a, b ∈ U)[((a, b) ∈ R ∧ (b, a) ∈ R) =⇒ a = b]. We say that R is a transitive
relation if and only if (∀a, b, c ∈ U)[((a, b) ∈ R ∧ (b, c) ∈ R) =⇒ (a, c) ∈ R]. For each
a, b ∈ U , a and b are called comparable with respect to R if (a, b) ∈ R ∨ (b, a) ∈ R.
R is called a partial order on U if and only if R is reflexive, antisymmetric, and
transitive. (Informally, order mirrors the relation “less than or equal to.”) R is called
a linear order (or total order, or, for short, we may sometimes simply write order) on U
if and only if R is a partial order on U and each pair of elements from U is comparable
with respect to R. Given a set U and a relation ≤ that is a partial order on U , (a) an
element x ∈ U is said to be maximal if and only if (∀y ∈ U)[x ≤ y =⇒ x = y]; (b) an
element x ∈ U is said to be minimal if and only if (∀y ∈ U)[y ≤ x =⇒ x = y]. If a
maximal (minimal) element exists in a linear order it is unique and can be referred
to as maximum (minimum). (For a review of the basics of orders see, e.g., [Cam94,
Chapter 12].)

As is standard in graph theory, in a directed graph (digraph for short) G = (V,E),
we have that V is a finite set and E ⊆ V × V . A digraph G = (V,E) is called a
tournament if and only if (a) for all u, v ∈ V such that u 
= v, exactly one of the edges
(u, v) and (v, u) belongs to E, and (b) for all u ∈ V , it holds that (u, u) /∈ E. We will
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in this paper slightly modify this notion by adding self-loops at each node, that is, a
digraph G = (V,E) is called a self-looped tournament (s-tournament, for short) if and
only if (a) for all u, v ∈ V such that u 
= v, exactly one of the edges (u, v) and (v, u)
belongs to E, and (b) for all u ∈ V , it holds that (u, u) ∈ E. (If we were dealing only
with tournament-type graphs, this modification would not be useful. However, in
this paper we study even multivalued selector functions, and the natural graphs that
these induce are of a different flavor, and in particular when they are transitive and
contain cycles will have self-loops along all cycles even if we do not build self-loops into
the way we induce these graphs. Thus, to allow the similarity of the relationship—
which we will later see—between associativity of selector functions and transitivity
of selector-induced digraphs to be as clear as possible, we use s-tournaments rather
than tournaments.)

A digraph G = (V,E) is called a complete digraph (or synonymously a weak
clique) if and only if, for all u, v ∈ V , at least one of the edges (u, v) and (v, u)
belongs to E. A digraph G = (V,E) is called a strong clique if and only if, for all
u, v ∈ V , the edge (u, v) belongs to E. (Note that both complete digraphs and strong
cliques by these definitions must have every self-loop.) A subgraph G′ of G is called a
maximal strong clique if G′ is a strong clique and there is no subgraph G′′ in G that
is a strong clique and contains G′ as a proper subgraph.

As is standard, given a digraph G = (V,E), a digraph G′ = (V ′, E′) is said to
be an induced subgraph of G exactly if V ′ ⊆ V and E′ = {(a, b) | a ∈ V ′ ∧ b ∈
V ′ ∧ (a, b) ∈ E}.

3. Commutative selectors and digraphs. Parts 1, 2, and 4 of Fact 2.3 es-
tablish that without loss of generality one can assume P- (NP- or NPMVt-) selectors
to be commutative. Or, to be more precise, they make clear that restricting oneself
to commutative selector functions in these contexts in no way shrinks the class of sets
obtained. This observation enables one to use results from graph theory, in particular,
from tournament theory, to pinpoint the advice complexity of selective sets.

Below we would like to make the link between commutative selector functions
and directed graphs (in special cases, s-tournaments) more explicit and prove some
results regarding this link.

Since our focus will be on self-contained associative functions, the following easy
observation will be quite useful in the upcoming proofs. Note that the functions g
spoken of in Proposition 3.1 may potentially be nontotal and/or multivalued.

Proposition 3.1. Let B ⊆ Σ∗ and let g be any commutative self-contained
function that is total on B. Then the following are equivalent:

1. g is associative on B.
2. (∀a, b, c ∈ B)[set-g(a, set-g(b, c)) = set-g(b, set-g(a, c)) = set-g(c, set-g(a, b))].
3. (∀a, b, c ∈ B : ||{a, b, c}|| = 3)[set-g(a, set-g(b, c)) = set-g(b, set-g(a, c)) =
set-g(c, set-g(a, b))].

Proof. Let g be a commutative self-contained function that is total on B, B ⊆ Σ∗.
Note that part 1 in light of g’s commutativity implies part 2 and that part 2 implies
part 3. We will complete the proof by showing that part 3 implies part 2 and that
part 2 implies part 1.

Suppose that part 2 holds; that is, suppose (∀a, b, c ∈ B)[set-g(a, set-g(b, c)) =
set-g(b, set-g(a, c)) = set-g(c, set-g(a, b))]. Let x, y, z ∈ B. By our assumption we
have set-g(x, set-g(y, z)) = set-g(z, set-g(x, y)). Since g is total on B and commuta-
tive we have set-g(z, set-g(x, y)) = set-g(set-g(x, y), z) and thus set-g(x, set-g(y, z)) =
set-g(set-g(x, y), z). This by definition shows that g is associative.
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Now suppose that part 3 holds; that is, suppose (∀a, b, c ∈ B : ||{a, b, c}|| =
3)[set-g(a, set-g(b, c)) = set-g(b, set-g(a, c)) = set-g(c, set-g(a, b))]. Let x, y, z ∈ B.
The only cases we need to consider are ||{x, y, z}|| = 1 and ||{x, y, z}|| = 2. If
||{x, y, z}|| = 1, i.e., x = y = z, then set-g(x, set-g(y, z)) = set-g(y, set-g(x, z)) =
set-g(z, set-g(x, y)) = {x} since g is total on B and self-contained. If ||{x, y, z}|| = 2,
assume without loss of generality that x = z and x 
= y. It follows that set-g(y,
set-g(x, z)) = set-g(y, x) since g is total on B and self-contained, and set-g(y, x) =
set-g(x, y) since g is commutative. Observe that set-g(x, set-g(y, z)) = set-g(x, set-
g(y, x)) = set-g(x, set-g(x, y)) = set-g(z, set-g(x, y)) since x = z and g is com-
mutative. It remains to show that set-g(z, set-g(x, y)) = set-g(y, set-g(x, z)), i.e.,
in the current setting, showing that set-g(x, set-g(x, y)) = set-g(x, y). Note that
set-g(x, x) = {x} and set-g(x, y) ∈ {{x}, {y}, {x, y}} since g is total on B. If
set-g(x, y) = {x}, then set-g(x, set-g(x, y)) = set-g(x, y) = {x}. If set-g(x, y) =
{y}, then set-g(x, set-g(x, y)) = set-g(x, y) = {y}. If set-g(x, y) = {x, y}, then
set-g(x, set-g(x, y)) = set-g(x, y) = {x, y}. We have shown that part 3 implies
part 2.

In particular note that, by Proposition 3.1, for any commutative self-contained
function g that is total on some set B, g is associative on every one- or two-element
set of strings from B, since item 3 of Proposition 3.1 is trivially satisfied when
||{a, b, c}|| < 3.

Let f be a (single- or multivalued) commutative self-contained function, f :
B × B → B for a finite set B. Consider the digraph G = (B,E), where E =
{(x, y) | x, y ∈ B ∧ y ∈ set-f(x, y)}. If f is total on B, then G is a complete digraph.
If f is single-valued and total on B, then G is even an s-tournament. We will call
G the f -induced digraph on B. If f is single-valued and total on B, then G will
be called the f -induced s-tournament on B. Note that the functions f spoken of in
Proposition 3.2 may be multivalued.

Proposition 3.2. Let B be a finite set and let f be a commutative self-contained
function that is total on B. f is associative on B if and only if E = {(x, y) | x, y ∈
B ∧ y ∈ set-f(x, y)}, the edge set of the f-induced digraph, is a transitive relation.

Proof. Let B be a finite set and let f be a commutative self-contained function
that is total on B.

We first prove the “only if” direction. So let f be associative on B, i.e., for
all x, y, z ∈ B, set-f(x, set-f(y, z)) = set-f(set-f(x, y), z). Suppose that E is not
transitive. This means that there exist strings a, b, c ∈ B such that (a, b) ∈ E and
(b, c) ∈ E yet (a, c) /∈ E. It follows that a 
= b (since if a = b, then (b, c) = (a, c)),
b 
= c (since if b = c, then (a, b) = (a, c)), and a 
= c (since if a = c, then (a, a) = (a, c)
and since f is total on B (a, a) ∈ E). So a, b, c ∈ B are pairwise different strings
such that (a, b) ∈ E, (b, c) ∈ E, and (a, c) /∈ E. We will derive a contradiction
by showing that f is not associative, i.e., set-f(set-f(a, b), c) 
= set-f(a, set-f(b, c)).
We do so by showing c ∈ set-f(set-f(a, b), c) and c /∈ set-f(a, set-f(b, c)). We have
b ∈ set-f(a, b) and c ∈ set-f(b, c), and thus c ∈ set-f(set-f(a, b), c). On the other hand,
c /∈ set-f(a, b) since f is a self-contained function and c 
= a and c 
= b. We also have
c /∈ set-f(a, c) since (a, c) /∈ E. Since set-f(a, set-f(b, c)) ⊆ set-f(a, b) ∪ set-f(a, c) we
have c /∈ set-f(a, set-f(b, c)).

We now prove the “if” direction. So suppose that E is transitive. We have to
show that f is associative on B, i.e., for any strings a, b, c ∈ B we have to show
set-f(a, set-f(b, c)) = set-f(set-f(a, b), c). By Proposition 3.1 it suffices to show
that, for all strings a, b, c ∈ B such that ||{a, b, c}|| = 3, set-f(a, set-f(b, c)) =
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set-f(b, set-f(a, c)) = set-f(c, set-f(a, b)). So suppose a, b, c ∈ B are strings such
that ||{a, b, c}|| = 3.

We show set-f(c, set-f(a, b)) ⊆ set-f(a, set-f(b, c)). (The proof of the other
inclusions follows via variable renaming and commutativity.) Consider w ∈ set-f(c,
set-f(a, b)). If w = a, we have a ∈ set-f(c, set-f(a, b)), which implies, since a 
= c,
a ∈ set-f(a, b) and implies, since a /∈ {b, c}, a ∈ set-f(c, a) = set-f(a, c). Since
set-f(a, b) ∩ set-f(a, c) ⊆ set-f(a, set-f(b, c)) it follows that a ∈ set-f(a, set-f(b, c)).
Similarly, if w = b, we have b ∈ set-f(c, set-f(a, b)), which in turn implies (since
b 
= c) b ∈ set-f(a, b) and implies (since b /∈ {a, c} and b ∈ set-f(a, b)) b ∈ set-f(c, b) =
set-f(b, c). It follows that set-f(a, b) ⊆ set-f(a, set-f(b, c)) and hence b ∈ set-f(a,
set-f(b, c)). Finally suppose w = c, which yields c ∈ set-f(c, set-f(a, b)). It follows
(since c /∈ {a, b}) that either (a) a ∈ set-f(a, b) and c ∈ set-f(c, a) = set-f(a, c), or
(b) b ∈ set-f(a, b) and c ∈ set-f(c, b) = set-f(b, c). If (a) holds we have (b, a) ∈ E and
(a, c) ∈ E. By the transitivity of E it follows that also (b, c) ∈ E. By the definition
of E this implies c ∈ set-f(b, c), and thus c ∈ set-f(a, set-f(b, c)). If (b) holds, we
have (a, b) ∈ E and (b, c) ∈ E. Hence also (a, c) ∈ E since E is transitive. It follows
that c ∈ set-f(a, c), and thus c ∈ set-f(a, set-f(b, c)).

Tournaments such that their edge set is a transitive relation are called transitive
tournaments. Transitive tournaments implicitly impose a linear order on their nodes.
We will use the following result (which can be viewed as a tournament-language
expression of the fact that each finite linear order has a minimal and also a maximal
element).

Proposition 3.3 (see [Moo68]3). The following statements are equivalent for
s-tournaments G = (V,E):

1. G is a transitive s-tournament.
2. G contains no directed cycles of length greater than 1.
3. Every induced (directed) subgraph G′ = (V ′, E′), V ′ 
= ∅, of G contains a

(distance-one) source node, i.e., a node s ∈ V ′ such that for all u ∈ V ′,
(s, u) ∈ E′.

4. Every induced (directed) subgraph G′ = (V ′, E′), V ′ 
= ∅, of G contains a
(distance-one) target node, i.e., a node t ∈ V ′ such that for all u ∈ V ′,
(u, t) ∈ E′.

From Propositions 3.1, 3.2, and 3.3 we immediately obtain the following corollary.
Corollary 3.4. Let f be a single-valued, commutative self-contained func-

tion that is total on {a, b, c}. f is not associative on {a, b, c} if and only if both
||{a, b, c}|| = 3 and the f-induced s-tournament on {a, b, c} is a 3-cycle (plus three
self-loops).

A statement similar to that of Proposition 3.3 can also be made for complete
digraphs. But in contrast to the linear order implicitly given by a transitive s-
tournament, a transitive complete digraph gives a linear order on a partition of its
set of nodes, while the nodes of each part of the partition are in some sense pairwise
indistinguishable.

Without giving all the definitions, we mention that in graph theory textbooks
(see [BJG00], for instance) one can find the fact that the strongly connected compo-
nents of a general digraph form a partial order. If we consider a complete digraph,
we immediately have that the strongly connected components form an order. The
additional assumption of transitivity then yields that the strongly connected compo-

3Moon stated the result for tournaments, and so his statement lacks the “length greater than 1”
condition in statement 2.
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nents are actually strong cliques. However, for reasons of self-containment we state
and prove that graph-theoretic result below in a way that suits our purposes best.

Proposition 3.5. The following statements are equivalent for complete digraphs
G = (V,E):

1. E is a transitive relation.
2. For every k ≥ 1, if (a1, a2), (a2, a3), . . . , (ak−1, ak), (ak, a1) ∈ E, then (ai, aj)

∈ E for all 1 ≤ i, j ≤ k. In other words, if a1 → a2 → · · · → ak−1 → ak → a1

is a directed cycle in G, then the nodes a1, a2, . . . , ak form a strong clique.
3. Every induced (directed) subgraph G′ = (V ′, E′), V ′ 
= ∅, of G contains a

nonempty strong distance-one source-clique, i.e., an induced subgraph S =
(VS , ES), VS 
= ∅, of G′ having the following properties:
(a) S is a maximal strong clique, i.e., for every v ∈ V ′ − VS, the induced

graph on the vertices VS ∪ {v} is not a strong clique.
(b) For all u ∈ VS and for all v ∈ V ′ − VS, (u, v) ∈ E′ and (v, u) /∈ E′.

4. Every induced (directed) subgraph G′ = (V ′, E′), V ′ 
= ∅, of G contains a
nonempty strong distance-one target-clique, i.e., an induced subgraph T =
(VT , ET ), VT 
= ∅, of G′ having the following properties:
(a) T is a maximal strong clique, i.e., for every v ∈ V ′ − VT , the induced

graph on the vertices VT ∪ {v} is not a strong clique.
(b) For all u ∈ VT and for all v ∈ V ′ − VT , (u, v) /∈ E′ and (v, u) ∈ E′.

Proof. Let G = (V,E) be a complete digraph. If V = ∅, all four conditions hold,
so in this proof we henceforward assume V 
= ∅.

Statement 1 implies statement 2. Suppose that E is transitive. Transitivity
implies that for any vertices u, v we have that the existence of a directed path from u
to v implies (u, v) ∈ E. (This can easily be shown by induction on the length of the
path connecting u and v.) Now consider a cycle a1 → a2 → · · · → ak−1 → ak → a1.
Because for any vertices ai, aj there is a path from ai to aj , we have (ai, aj) ∈ E.
Hence the nodes a1, a2, . . . , ak form a strong clique.

Statement 2 implies both statement 3 and statement 4. Suppose that statement 2
holds for a complete digraph G = (V,E). Let G′ = (V ′, E′), V ′ 
= ∅, be an induced
subgraph of G. There are strong cliques in G′, because in a complete digraph every
vertex forms a one-node strong clique. For the same reason, G′ has no zero-node
maximal strong cliques. We show that maximal strong cliques are disjoint. If two
maximal strong cliques C and C ′ have a vertex in common, then there is a cycle
connecting all vertices in C and C ′. Then statement 2 implies that C ∪ C ′ forms a
strong clique, contradicting the maximality of C and C ′. Also, for two maximal strong
cliques C and C ′ all edges between them lead from C to C ′, or all of them lead from
C ′ to C, because otherwise there would be a cycle through all vertices of C and C ′,
contradicting the maximality of C and C ′. Since every vertex v ∈ V ′ is in a maximal
strong clique, the maximal strong cliques partition V ′. Define a relation � on the
maximal strong cliques by C � C ′ if and only if there are a ∈ C and a′ ∈ C ′ with
(a, a′) ∈ E. Note that any two maximal strong cliques are comparable with respect
to this relation, since G is a complete directed graph. Furthermore, the relation � is
reflexive, antisymmetric, and transitive. Reflexivity and antisymmetry are obvious.
Transitivity can be seen as follows: Suppose C � C ′ and C ′ � C ′′ holds for three
maximal strong cliques C, C ′, and C ′′ of G′. We have to show that then also C � C ′′.
If C = C ′′, then C � C ′′ holds trivially since � is reflexive. If C 
= C ′′, then either
C � C ′′ or C ′′ � C, but not both since � is antisymmetric. If C � C ′′, we are done.
If C ′′ � C, then it indeed holds that there is a cycle through all vertices of C∪C ′∪C ′′.
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So, by statement 2, C ∪ C ′ ∪ C ′′ forms a strong clique, contradicting the maximality
of C, C ′, and C ′′. Thus the transitivity of � is proven.

We have shown that the maximal strong cliques of G′ are linearly ordered by �.
Let Cmin be the minimum element, and let Cmax be the maximum element in this
order. (Cmin and Cmax do exist since G′ is a (finite) graph and thus contains only
a finite number of maximal strong cliques.) Then Cmin witnesses statement 3 and
Cmax witnesses statement 4.

Statement 3 implies statement 1. Let a, b, c ∈ V and suppose (a, b) ∈ E and
(b, c) ∈ E. We will show that also (a, c) ∈ E. Note that if a = b or a = c or b = c,
then (a, c) ∈ E is trivially satisfied. So let ||{a, b, c}|| = 3 and consider the induced
subgraph consisting of the three nodes a, b, and c—call it G[a,b,c] = ({a, b, c}, Eabc).
According to statement 3 there is a subgraph S = (VS , ES), VS ⊆ {a, b, c}, satisfying
(a) S is a maximal strong clique and (b) for all u ∈ VS and for all v ∈ {a, b, c} − VS ,
(u, v) ∈ Eabc and (v, u) /∈ Eabc. Hence, if c ∈ VS , then b ∈ VS , and if b ∈ VS , then also
a ∈ VS . Since VS 
= ∅, we can therefore conclude a ∈ VS . It follows that (a, c) ∈ E.

Quite similarly to the proof that statement 3 implies statement 1, one can show
that statement 4 implies statement 1.

Combining Propositions 3.2 and 3.5 we get the following corollary.
Corollary 3.6. Let f be a (potentially multivalued) commutative self-contained

function that is total on {a, b, c}. f is not associative on {a, b, c} if and only if both
||{a, b, c}|| = 3 and the f-induced digraph on {a, b, c} contains exactly one of the cycles
a→ b→ c→ a and a← b← c← a.

Proof. Let f be a multivalued, commutative self-contained function that is total
on a set {a, b, c}. Let G = ({a, b, c}, E) be the f -induced digraph on {a, b, c}.

Suppose that f is not associative on {a, b, c}. By the comment made immediately
after the proof of Proposition 3.1, it follows that ||{a, b, c}|| = 3. It follows from
Proposition 3.2 that the edge set of the f -induced digraph is not a transitive relation
and thus the f -induced digraph does not satisfy statement 2 of Proposition 3.5. It
is not hard to see that this can only be the case if the f -induced digraph on {a, b, c}
contains exactly one of the cycles a→ b→ c→ a and a← b← c← a.

Now assume that ||{a, b, c}|| = 3 and the f -induced digraph on {a, b, c} contains
exactly one of the cycles a→ b→ c→ a and a← b← c← a. By Proposition 3.5 we
conclude that the edge set of the f -induced digraph is not transitive, which in turn,
by Proposition 3.2, implies that f is not associative on {a, b, c}.

Later in this paper, we will establish advice bounds in part by using the fact
that associativity of a selector function (a restricted form of self-contained function)
implies a linear structure on the underlying set.

4. Adding commutativity to associativity is free. Are all associatively P-
selective sets commutatively, associatively P-selective? If they are, this will not only
collapse two of our classes, but will also allow us to use results from the previous
section in our study of associative selector functions. Unfortunately, Fact 2.3 (P-sel =
C-P-sel) does not say that A-P-sel = CA-P-sel. The reason it does not guarantee
this is that it is conceptually possible that the transformation denoted there by (∗)
will, while gaining commutativity, destroy associativity. Theorem 4.1 and its proof
establish that, for the case of FPt- and NPSVt-selector functions, this conceptual
possibility is not a reality.

Theorem 4.1.

1. A-P-sel = CA-P-sel.
2. A-NP-sel = CA-NP-sel.
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Proof. As noted earlier, if B is P-selective (NP-selective) via a P-selector (NP-
selector) function f , then the function f ′(x, y) = f(min(x, y),max(x, y)) is a commu-
tative P-selector (NP-selector) for B. We show that the above transformation from
f to f ′ preserves associativity when f is a P-selector (NP-selector) function. Let
B ∈ A-P-sel (B ∈ A-NP-sel) via an associative FPt-selector (NPSVt-selector) func-
tion f . It is clear that f ′ ∈ FPt (f ′ ∈ NPSVt) and that f ′ is commutative. As
mentioned above, f ′ is also a P-selector (NP-selector) for B. It remains to show that
f ′ is associative.

Suppose that f ′ is not associative. According to Proposition 3.1 there exist three
strings a, b, and c such that ||{a, b, c}|| = 3 and f ′(a, f ′(b, c)) = f ′(b, f ′(a, c)) =
f ′(c, f ′(a, b)) does not hold. Without loss of generality assume a <lex b <lex c. It
follows from Corollary 3.4 that the f ′-induced s-tournament on {a, b, c} is a 3-cycle
(plus three self-loops). Suppose that the cycle is directed from a to b, from b to c, and
back to a. This implies that f ′(a, b) = b, f ′(b, c) = c, and f ′(a, c) = a. However, due
to the definition of f ′ this implies that f(a, b) = f ′(a, b) = b, f(b, c) = f ′(b, c) = c, and
f(a, c) = f ′(a, c) = a which contradicts the associativity of f since f(a, f(b, c)) = a
yet f(f(a, b), c) = c. Similarly, if the cycle is directed from c to b, from b to a, and
back to c, then f ′(a, b) = a, f ′(b, c) = b, and f ′(a, c) = c. According to the definition
of f ′ this implies f(a, b) = f ′(a, b) = a, f(b, c) = f ′(b, c) = b, and f(a, c) = f ′(a, c) = c
which contradicts the associativity of f since f(a, f(b, c)) = a yet f(f(a, b), c) = c.
This shows that f ′ is associative.

Similarly we have the following result.

Theorem 4.2.

1. A�-P-sel = A�C-P-sel.
2. A�-NP-sel = A�C-NP-sel.

Proof. If a selector function f is associative at each length, then we may invoke
the entire proof of Theorem 4.1, except only seeking a counterexample (to the “asso-
ciativity at each length” of f ′(x, y) = f(min(x, y),max(x, y))) among triples of strings
all of the same length. As in that proof, if such a counterexample exists (among some
three strings of the same length) it forms a 3-cycle (plus three self-loops) in the as-
sociated digraph. However, exactly as in the proof of Theorem 4.1, that contradicts
the assumed associativity-at-each-length of f .4

So the transformation from a selector f to a selector f ′ via f ′(x, y) = f(min(x, y),
max(x, y)) not only provides commutativity but also preserves associativity if f is total
and single-valued. We mention that for this same case another standard transforma-
tion providing commutativity (namely, f ′′(x, y) = max(f(x, y), f(y, x))) also has the
associativity-preserving property.

However, the picture changes dramatically if one looks at multivalued selector

4Note that in the above proof, though commutativity of f ′ follows immediately from the definition
of f ′, showing that f ′ is associative at each length relies on the fact that f is total at each length.
However, the following strengthening of Theorem 4.2 clearly follows from the proof of Theorem 4.2:
For every FP-selector (respectively, NPSV-selector) f for a set B that is associative at each length,
f ′ is a commutative FP-selector (respectively, NPSV-selector) for B that is associative at each
length n at which f is total.

However, we note in passing that one cannot strengthen Theorem 4.2 further to A�-FP-sel =
A�C-FP-sel and A�-NPSV-sel = A�C-NPSV-sel by exploiting f ′. A counterexample is the following:
For strings a, b, c, b <lex c <lex a all of the same length, let set-f(a, b) = set-f(b, a) = set-f(a, c) =
set-f(c, b) = ∅ and set-f(c, a) = set-f(b, c) = {c}. One can easily check that f is associative on the
three-element set {a, b, c}. But f ′(a, f ′(b, c)) = c yet f ′(f ′(a, b), c) = ∅. Similarly to the counter-
example showing that f ′ does not preserve associativity for multivalued functions (Proposition 4.3),
one can extend the definition of f to cover all strings from Σ∗.
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functions f , for instance, NPMVt selector functions. Though for the second transfor-
mation it is not even clear what is meant by max(f(x, y), f(y, x)) and whether that
is again a function from NPMVt, it can be shown that the first transformation does
not preserve associativity.

Proposition 4.3. There are total associative multivalued selector functions f
such that the selector function f ′, defined by f ′(x, y) = f(min(x, y),max(x, y)), is not
associative.

Proof. Set a = ε, b = 0, and c = 1. Consider the total multivalued selector
function f that has the following values on a, b, and c and thus induces the following
values of f ′ on a, b, and c:

set-f(a, b) = {a} set-f(b, a) = {b} set-f ′(a, b) = set-f ′(b, a) = set-f(a, b) = {a}
set-f(a, c) = {a, c} set-f(c, a) = {c} set-f ′(a, c) = set-f ′(c, a) = set-f(a, c) = {a, c}
set-f(b, c) = {b, c} set-f(c, b) = {c} set-f ′(b, c) = set-f ′(c, b) = set-f(b, c) = {b, c}

Furthermore, for each x ∈ {a, b, c} and each y ∈ Σ∗ − {a, b, c}, let set-f(x, y) =
set-f(y, x) = {y}. And for y, z ∈ Σ∗ − {a, b, c} let set-f(y, z) = set-f(z, y) =
{max(y, z)}. Note that if {e, e′} � {a, b, c}, then we have set-f(e, e′) = set-f ′(e, e′).

It is not hard to verify that f is indeed associative, due to the way any non-{a, b, c}
argument “trumps” any {a, b, c} argument, and regarding all-{a, b, c} arguments we
have

set-f(a, set-f(b, c)) = set-f(set-f(a, b), c) = {a, c},
set-f(a, set-f(c, b)) = set-f(set-f(a, c), b) = {a, c},
set-f(b, set-f(a, c)) = set-f(set-f(b, a), c) = {b, c},
set-f(b, set-f(c, a)) = set-f(set-f(b, c), a) = {b, c},
set-f(c, set-f(a, b)) = set-f(set-f(c, a), b) = {c},
set-f(c, set-f(b, a)) = set-f(set-f(c, b), a) = {c}.

But f ′ is not associative since it holds that set-f ′(a, set-f ′(c, b)) = {a, c} and set-
f ′(set-f ′(a, c), b) = {a, b, c}.

Observe that we have shown that under the mentioned transformation from f
to f ′ gains in commutativity can lose associativity. However, for total multivalued
functions there is another transformation that does preserve associativity while adding
commutativity, namely, set-f̂(x, y) = set-f(x, y) ∪ set-f(y, x) for all x and y. Theo-
rem 4.4 establishes this.

Theorem 4.4. A-NPMVt-sel = CA-NPMVt-sel.
Proof. It suffices to show A-NPMVt-sel ⊆ CA-NPMVt-sel. Let B ∈ A-NPMVt-sel

and let f ∈ NPMVt be an associative selector for B. We will now show that f̂ is a
commutative and associative NPMVt-selector for B.

It is not hard to see that f̂ is commutative, that f̂ ∈ NPMVt, and that indeed f̂ is
an NPMVt-selector for B. It remains to show that f̂ is associative. By Proposition 3.1
it suffices to show that f̂ is associative on every set {a, b, c} such that ||{a, b, c}|| = 3.

By Corollary 3.6 it suffices to show that the f̂ -induced graph on {a, b, c}, call it
G[a,b,c] = ({a, b, c}, Eabc), contains both the cycles a→ b→ c→ a and a← b← c← a
if it contains at least one of them.

Suppose G[a,b,c] contains a → b → c → a (the case where G[a,b,c] contains a ←
b ← c ← a is analogous under renaming so we do not separately cover it). We have
to show that the other cycle is also in G[a,b,c], i.e., (a, c), (c, b), and (b, a) are in
Eabc. For symmetry reasons, it suffices to show that (a, c) ∈ Eabc or, equivalently,

c ∈ set-f̂(a, c). Because (a, b) ∈ Eabc, we have b ∈ set-f̂(a, b) and thus b ∈ set-f(a, b)
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or b ∈ set-f(b, a). Similarly, because (b, c) ∈ Eabc, we have c ∈ set-f̂(b, c) and thus
c ∈ set-f(b, c) or b ∈ set-f(c, b). We distinguish four cases.
Case 1 (b ∈ set-f(a, b) and c ∈ set-f(b, c)):

This implies c ∈ set-f(set-f(a, b), c). Since f is associative, we have that c ∈
set-f(a, set-f(b, c)). Since f is self-contained and thus set-f(a, set-f(b, c)) ⊆
set-f(a, b)∪ set-f(a, c) we conclude c ∈ set-f(b, c) and c ∈ set-f(a, c). There-

fore c ∈ set-f̂(a, c).
Case 2 (b ∈ set-f(a, b) and c ∈ set-f(c, b)):

This implies c ∈ set-f(c, set-f(a, b)). Since f is associative, we have that
c ∈ set-f(set-f(c, a), b). It follows that c ∈ set-f(c, a) since f is self-contained.

Therefore c ∈ set-f̂(a, c).
Case 3 (b ∈ set-f(b, a) and c ∈ set-f(b, c)):

This implies c ∈ set-f(set-f(b, a), c). Since f is associative, we have that
c ∈ set-f(b, set-f(a, c)). Again, it follows that c ∈ set-f(a, c) since f is self-

contained. Therefore c ∈ set-f̂(a, c).
Case 4 (b ∈ set-f(b, a) and c ∈ set-f(c, b)):

This implies c ∈ set-f(c, set-f(b, a)). Since f is associative, we have that
c ∈ set-f(set-f(c, b), a). It follows that c ∈ set-f(c, b) since f is self-contained

and thus c ∈ set-f(c, a). Therefore c ∈ set-f̂(a, c).

It follows that (a, c) ∈ Eabc. This completes the proof that f̂ is associative.
We also have the following.
Theorem 4.5. A�-NPMVt-sel = A�C-NPMVt-sel.
The proof of this theorem proceeds in analogy to the proof of Theorem 4.4, except

that here we focus on strings of equal length.5

Finally we turn to partial selector functions. The definition of selector functions
allows a partial selector function for a set B to be undefined only when both inputs
are not contained in B. However, the additional requirement of associativity forces
any selector function for a nonempty set to be outright total.

Proposition 4.6.

1. If a (single- or multivalued) selector function f for a set B 
= ∅ is associative,
then f is a total function.

2. If a (single- or multivalued) selector function f for a set B is associative at
each length, then f(x, y) is defined for all x and y such that both |x| = |y|
and B=|x| 
= ∅.

Proof. We first prove part 1 of the proposition. Let f be an associative selector
function for a set B 
= ∅. For any inputs x and y such that {x, y} ∩ B 
= ∅, f(x, y) is
not undefined (equivalently, set-f(x, y) 
= ∅), due to the definition of selectivity. As-
sume x, y /∈ B and f(x, y) is undefined, i.e., set-f(x, y) = ∅. Consider a third string
z ∈ B. Such a string exists since B 
= ∅. Note that set-f(x, z) = {z} and set-f(y, z) =
{z} according to the definition of a selector function. So set-f(x, set-f(y, z)) = {z}

5Comments similar to those of footnote 4 apply here. Namely, the following strengthening of
Theorem 4.5 clearly follows from the proof of Theorem 4.5: For every NPMV-selector f for a set B
that is associative at each length, f̂ is a commutative NPMV-selector for B that is associative at
each length n at which f is total.

However, Theorem 4.5 cannot be strengthened to A�-NPMV-sel = A�C-NPMV-sel using f̂ . A
counterexample is the following: For strings a, b, c all of the same length, let set-f(a, b) = set-f(b, a) =
set-f(a, c) = set-f(c, b) = ∅ and set-f(c, a) = set-f(b, c) = {c}. One can easily check that f is asso-

ciative on the three-element set {a, b, c}. But set-f̂(a, set-f̂(b, c)) = {c} yet set-f̂(set-f̂(a, b), c) = ∅.
Similarly to the counterexample showing that f ′ does not preserve associativity for multivalued
functions (Proposition 4.3), one can extend the definition of f to cover all strings from Σ∗.
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yet (since set-f(x, y) = ∅) set-f(set-f(x, y), z) = ∅. This contradicts the associativity
of f .

The proof of part 2 is very similar to the proof of part 1.

Corollary 4.7.

1. A-FP-sel =A-FPt-sel=CA-FPt-sel. (That is, A-FP-sel =A-P-sel = CA-P-sel.)
2. Every set B ∈ A�-FP-sel has a commutative FP-selector that is total at each

length n for which B=n 
= ∅ and associative at each length n for which
B=n 
= ∅.

3. A-NPSV-sel = A-NPSVt-sel = CA-NPSVt-sel. (That is, A-NPSV-sel =
A-NP-sel = CA-NP-sel.)

4. Every set B ∈ A�-NPSV-sel has a commutative NPSV-selector that is total at
each length n for which B=n 
= ∅ and associative at each length n for which
B=n 
= ∅.

5. A-NPMV-sel = A-NPMVt-sel = CA-NPMVt-sel.
6. Every set B ∈ A�-NPMV-sel has a commutative NPMV-selector that is total

at each length n for which B=n 
= ∅ and associative at each length n for which
B=n 
= ∅.

Parts 1 and 3 follow directly from Proposition 4.6 and Theorem 4.1. Note that ∅
is trivially contained in CA-P-sel. Parts 2 and 4 follow implicitly from Proposition 4.6
and the proof of Theorem 4.2 (note footnote 4). Part 5 follows directly from Propo-
sition 4.6 and Theorem 4.4. Part 6 again follows implicitly from Proposition 4.6 and
the proof of Theorem 4.5 (note footnote 5).

5. Associativity drops advice complexity to linear. Ko showed the follow-
ing result.

Theorem 5.1 (see [Ko83]). P-sel ⊆ P/O(n2).

That is, deterministic advice interpreters given quadratic advice accept the P-
selective sets. It is also known that nondeterministic advice interpreters with linear
advice accept the P-selective sets, and this is optimal.

Theorem 5.2 (see [HT96]; see also [HNP98]). P-sel ⊆ NP/n+1 but P-sel �

NP/n.

It is natural to wonder whether the “P” advice interpretation of Theorem 5.1 can
be unified with the linear advice amount of Theorem 5.2 to obtain the very strong
claim P-sel ⊆ P/O(n). Currently, no proof of this claim is known, researchers studying
selectivity generally doubt that it holds, and there is some very recent relativized
evidence in harmony with that doubt [Tha03]. However, proving the claim false
seems unlikely in the immediate future, since by Theorem 5.2 any such proof would
implicitly prove P 
= NP.

Nonetheless, the following result shows that all associatively P-selective sets are
accepted by deterministic advice interpreters with linear advice.

Theorem 5.3. A�-FP-sel � P/n+1.

(P/1) − NPMV-sel 
= ∅ (see the comments in the proof of Theorem 5.3 below
regarding why this holds). In light of this inequality, Theorem 5.3 supports the
following corollary.

Corollary 5.4.

1. A-P-sel � P/n+1.
2. A�-P-sel � P/n+1.

Proof of Theorem 5.3. Let B ∈ A�-FP-sel. Let f be a commutative FP-selector
for B that (a) is total at each length n such that B=n 
= ∅ and that (b) is associative at
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each length n such that B=n 
= ∅. By Corollary 4.7 we know that such a commutative
FP-selector for B must exist.

Let n ∈ N such that B=n 
= ∅. Consider the directed graph Gn = (B=n, En),
where En = {(x, y) | x, y ∈ B=n ∧ f(x, y) = y}. Gn is a nonempty s-tournament.

Since f is a commutative selector function that is total and associative on B=n,
it follows from Proposition 3.2 that En is a transitive relation. So Gn is a transitive
s-tournament, which by Proposition 3.3 implies that Gn contains a source node sn.
Note that x ∈ B=n implies f(x, sn) = x and x ∈ Σn −B=n implies f(x, sn) = sn. In
other words, for all n ∈ N, if B=n 
= ∅ then there exists a string sn ∈ B=n such that
for all x ∈ Σn,

x ∈ B ⇐⇒ f(x, sn) = x.

Define, for all n ∈ N,

h(1n) =

{
1sn if B=n 
= ∅,
0n+1 otherwise.

Note that h on any input 1n outputs a string of length exactly n + 1. Let L =
{〈x, 1y〉 | |x| = |y| ∧ f(x, y) = x}. Clearly, L ∈ P. Due to the above construction we
also have, for all x ∈ Σ∗,

x ∈ B ⇐⇒ 〈x, h(1|x|)〉 ∈ L.

This shows that B ∈ P/n+1.
It remains to show that P/n+1 − A�-FP-sel 
= ∅. In fact, it clearly holds even

that (P/1) − NPMV-sel 
= ∅. The proof of this claim consists of a diagonalization
against all self-contained NPMV functions. Let f1, f2, . . . be an enumeration (not
necessarily effective, though in fact there do exist such effective enumerations) of all
self-contained NPMV functions. Set

B =
{
02i−1 | i ∈ N ∧ set-fi(0

2i−2, 02i−1) = {02i−2}
}

∪
{
02i−2 | i ∈ N ∧ set-fi(0

2i−2, 02i−1) 
= {02i−2}
}
.

B is not NPMV-selective, yet B ∈ P/1.
Note that for the correctness of the proof of Theorem 5.3 it actually suffices for

f to be a partial FP-selector that is weakly associative at each length. f being a
selector for B ensures that Gn is an s-tournament since partial selectors for B can
be undefined only if both inputs are not in B. The weak associativity at each length
of f yields that En is transitive. And finally, the above-defined set L remains a P set
even under those weaker assumptions.

We note also that, more generally than Theorem 5.3, if a set A and a (not nec-
essarily commutative) P-selector f for it have the property that at each nonempty
length m there is some string y ∈ A=m at that length—or even at some length linearly
related to that length—such that f(y, z) = z or f(z, y) = z for each z ∈ A=m, then
A is in P/O(n). However, among ways of ensuring that this condition is met, we feel
that associativity is a particularly natural and well-structured property to study.

The number of advice bits in Theorem 5.3 and Corollary 5.4, n+ 1, is optimal.
Theorem 5.5. A-P-sel � P/n.
Proof. Hemaspaandra and Torenvliet [HT96] construct a P-selective set, which

we will call B, such that B � P/n. We will show that their set is A-selective. (We will
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not repeat their proof that B � P/n, since they already proved that.) Hemaspaandra
and Torenvliet do not completely specify the P-selector function for B, though they
make it clear that B is P-selective. In fact, it is easy to see that there are ways of
completing the specification of their P-selector function so that it is not associative.
However, our task is merely to prove that there is at least one way to complete their
P-selector function so as to make it associative. We now do so.

The set B constructed by Hemaspaandra and Torenvliet satisfies the following
properties:

1. B ∈ DTIME[22n

].
2. For all strings x, if x ∈ B, then |x| ∈ L, where �0 = 2, �i+1 = 222�i

for all
i ≥ 0, and L = {�0, �1, �2, . . . }.

3. For all strings x and y such that |x| = |y|, if x ≤lex y, then χB(x) ≤ χB(y),
where χB denotes the characteristic function of B.

Let f be the following function:

f(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if |x| ∈ L and |y| /∈ L,
y if |x| /∈ L and |y| ∈ L,
x if |x|, |y| ∈ L, |x| < |y|, and x ∈ B,
y if |x|, |y| ∈ L, |x| < |y|, and x /∈ B,
y if |x|, |y| ∈ L, |x| > |y|, and y ∈ B,
x if |x|, |y| ∈ L, |x| > |y|, and y /∈ B,
max(x, y) otherwise.

Note that the “otherwise” case is reached exactly when

(|x| /∈ L and |y| /∈ L) or |x| = |y|.
In light of the above properties of B it is not hard to verify that f is polynomial-

time computable. The key thing to note to see this is that when |x|, |y| ∈ L and
|x| 
= |y|, then in that case the huge gaps in L and the fact that B ∈ DTIME[22n

]
allow us to brute-force test min(x, y) ∈ B in time polynomial in |x| + |y|. Also (the
polynomial-time computable function) f is clearly a P-selector for B.

What remains to show is that f is associative. From its definition, f is clearly
commutative. So by Proposition 3.1, it suffices to show that for all x, y, z ∈ Σ∗,
||{x, y, z}|| = 3, it holds that f(x, f(y, z)) = f(y, f(x, z)) = f(z, f(x, y)). So let a, b,
and c be three strings such that ||{a, b, c}|| = 3. Assume without loss of generality
that a <lex b <lex c. Clearly it will also hold that |a| ≤ |b| ≤ |c|.
Case 1 (|a|, |b|, |c| /∈ L):

Applying the definition of f , we see that f(a, f(b, c)) = f(b, f(a, c)) =
f(c, f(a, b)) = max(a, b, c).

Case 2 (the length of exactly one string from {a, b, c} is in L):
Let w ∈ {a, b, c} be the unique string among a, b, and c such that |w| ∈ L.
Let v1 and v2 be the two strings in {a, b, c} such that |v1|, |v2| /∈ L. So
f(w, v1) = w, f(w, v2) = w, and consequently, since f is a self-contained
function, f(w, f(v1, v2)) = f(v1, f(w, v2)) = f(v2, f(w, v1)) = w. It follows
that f(a, f(b, c)) = f(b, f(a, c)) = f(c, f(a, b)) = w.

Case 3 (the length of exactly two strings from {a, b, c} is in L):
Let v ∈ {a, b, c} be the unique string among a, b, and c such that |v| /∈
L. Let w1 and w2 be the two strings in {a, b, c} such that |w1|, |w2| ∈
L. So f(v, w1) = w1, f(v, w2) = w2, and consequently f(v, f(w1, w2)) =
f(w1, f(v, w2)) = f(w2, f(v, w1)) = f(w1, w2). It follows that f(a, f(b, c)) =
f(b, f(a, c)) = f(c, f(a, b)) = f(w1, w2).
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Case 4 (|a|, |b|, |c| ∈ L):
Case 4.1 (‖{|a|, |b|, |c|}‖ = 1):

So |a| = |b| = |c| and thus, by the definition of f , we have f(a, f(b, c)) =
f(b, f(a, c)) = f(c, f(a, b)) = max(a, b, c).

Case 4.2 (‖{|a|, |b|, |c|}‖ = 2):
So, as |a| ≤ |b| ≤ |c|, it holds that |a| = |b| or |b| = |c|, yet not all three
strings have the same length.
Case 4.2.1 (|a| = |b| and |b| < |c|):

Note that f(a, b) = max(a, b) = b,

f(a, c) =

{
a if a ∈ B,
c otherwise,

and f(b, c) =

{
b if b ∈ B,
c otherwise.

Recall that a <lex b <lex c. Due to the third property of B quoted
earlier in this proof, we thus have a ∈ B =⇒ b ∈ B or, equivalently,
b /∈ B =⇒ a /∈ B. So

f(a, f(b, c)) = f(b, f(a, c)) = f(c, f(a, b)) =

{
b if b ∈ B,
c otherwise.

Case 4.2.2 (|a| < |b| and |b| = |c|):
Recall that a <lex b <lex c. So f(b, c) = max(b, c) = c,

f(a, b) =

{
a if a ∈ B,
b otherwise,

and f(a, c) =

{
a if a ∈ B,
c otherwise.

It follows that

f(a, f(b, c)) = f(b, f(a, c)) = f(c, f(a, b)) =

{
a if a ∈ B,
c otherwise.

Case 4.3 (‖{|a|, |b|, |c|}‖ = 3):
So we have |a|, |b|, |c| ∈ L and |a| < |b| < |c|. Thus

f(a, b) =

{
a if a ∈ B,
b otherwise,

f(a, c) =

{
a if a ∈ B,
c otherwise,

and f(b, c) =

{
b if b ∈ B,
c otherwise.

It follows that

f(a, f(b, c)) = f(b, f(a, c)) = f(c, f(a, b)) =

⎧⎨⎩
a if a ∈ B,
b if a /∈ B and b ∈ B,
c otherwise.

This completes the proof of the claim that f is associative.
Corollary 5.6.

1. A�-P-sel � P/n.
2. A�-FP-sel � P/n.

In fact, for any recursive function g, A-P-sel � DTIME[g(n)]/n. The reason for
this is that we may take the P-selective set that Hemaspaandra and Torenvliet [HT96]
prove is not in DTIME[g(n)]/n and, just as in the proof of Theorem 5.5, may complete



ALGEBRAIC PROPERTIES FOR SELECTOR FUNCTIONS 1327

its P-selector function in a manner that achieves associativity. From this observation,
it follows that the linear advice bound for associatively NP-selective sets and also
the linear advice bound for associatively NPMV-selective sets that will be proven as
Theorem 5.9 and Corollary 5.10 are optimal.

Corollary 5.7.

1. A-NP-sel � (NP ∩ coNP)/n.
2. A�-NP-sel � (NP ∩ coNP)/n.
3. A�-NPSV-sel � (NP ∩ coNP)/n.
4. A-NPMVt-sel � NP/n.
5. A�-NPMVt-sel � NP/n.
6. A�-NPMV-sel � NP/n.

So we have established an n-bit lower bound for the advice complexity of (asso-
ciatively) NP- and NPMV-selective sets. The following upper bounds on the amount
of advice needed to (nondeterministically) accept NP- and NPMV-selective sets are
known.

Theorem 5.8.

1. [HHN+95] NP-sel ⊆ (NP ∩ coNP)/poly.
2. [HNOS96b] NPSV-sel ⊆ NP/poly ∩ coNP/poly and NPSV-sel ∩ NP ⊆ (NP ∩

coNP)/poly.
3. [HNOS96b] NPMVt-sel ⊆ NP/poly ∩ coNP/poly.
4. [HNOS96b] NPMV-sel ⊆ NP/poly.

We note that the results we have stated that involve complexity classes relativize.
In particular, one can relativize them by any particular NP∩coNP set, and so regard-
ing associativity and the NP-selective sets (equivalently, the NPSVt-selective sets and,
equivalently, the FPNP∩coNP

t -selective sets and, equivalently, the FPNP∩coNP-selective
sets; see [HNOS96b, HHN+95] for definitions and discussion; note that FPNP∩coNP

t -sel
= FPNP∩coNP-sel for basically the same reason that FPt-sel = FP-sel), it follows from
our results that all length-associatively NP-selective sets are in (NP ∩ coNP)/n+ 1.

Theorem 5.9.

1. A�-NP-sel � (NP ∩ coNP)/n+1.
2. A�-NPMV-sel � NP/n+1 ∩ coNP/n+1.

Proof. Regarding the strictness (� rather than ⊆) of both parts, this follows from
the easy fact (noted in the proof of Theorem 5.3) that (P/1) − NPMV-sel 
= ∅. The
containment claims of both parts remain to be proven.

We now prove the containment part of item 1 of the theorem, i.e., that A�-NP-sel ⊆
(NP ∩ coNP)/n+1. Let B ∈ A�-NP-sel. It follows from Theorem 4.2 that there exists
a commutative NPSVt-selector f for B that is associative at each length.

One can now invoke the entire containment part of the proof of Theorem 5.3,
i.e., the proof for the claim A�-P-sel ⊆ P/n+1 (this is actually that proof weakened
to the case described by part 2 of Corollary 5.4), with the obvious change from P-
selector to NPSVt-selector, and thus resulting in the fact that the set L defined in
the proof of Theorem 5.3 is now in NP ∩ coNP. To see the latter, simply note that
L = {〈x, 1y〉 | |x| = |y| ∧ f(x, y) = x} can also be written as L = {〈x, 1y〉 | |x| =
|y| ∧ (x = y ∨ f(x, y) 
= y)} since f is a total NPSV-selector.

We now show the containment part of item 2, i.e., that A�-NPMV-sel ⊆ NP/n+1∩
coNP/n+1. Let B ∈ A�-NPMV-sel. It follows from Corollary 4.7 that there exists
a commutative NPMV-selector f for B that is total at each length at which B is
nonempty, and that is associative at each length at which B is nonempty.

Let n ∈ N be such that B=n 
= ∅. Consider the digraph Gn = (B=n, En), where
En = {(x, y) | x, y ∈ B=n ∧ y ∈ set-f(x, y)}. By the definition of NPMV-selectivity
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(see Definition 2.1), f must be defined for all x, y ∈ B=n. So Gn is a nonempty
complete digraph. In fact, note even that, from Proposition 4.6, f is defined for all
x, y ∈ Σn. Since f is a commutative selector function that is total and associative
on B=n, it follows from Proposition 3.2 that En is a transitive relation. So it follows
from Proposition 3.5 that Gn contains a nonempty strong distance-one source-clique,
i.e., an induced subgraph S = (VS , ES), VS 
= ∅, having the following properties:

1. S is a maximal strong clique.
2. For all u ∈ VS and for all v ∈ B=n − VS , (u, v) ∈ En and (v, u) /∈ En.

Let un denote the lexicographically smallest string in VS . (This is just for specificity.
Any string from VS would function the same way.) Note that x ∈ B=n implies
x ∈ set-f(un, x), whereas x ∈ Σn−B=n implies x /∈ set-f(un, x). Hence, for all n ∈ N

such that B=n 
= ∅ there exists a string un ∈ B=n such that for all x ∈ Σn,

x ∈ B ⇐⇒ x ∈ set-f(un, x).

Define, for all n ∈ N,

h(1n) =

{
1un if B=n 
= ∅,
0n+1 otherwise.

Note that h on any input 1n outputs a string of length exactly n+1. Let L = {〈x, 1y〉 |
|x| = |y| ∧ x ∈ set-f(y, x)}. Clearly, L ∈ NP. Due to the above construction we also
have, for all x ∈ Σ∗,

x ∈ B ⇐⇒ 〈x, h(1|x|)〉 ∈ L.

This shows that B ∈ NP/n+1.
To see that B ∈ coNP/n+1 we have to repeat the argument on Σn − B=n. Let

n ∈ N such that both B=n 
= ∅ and Σn−B=n 
= ∅. (If B=n = ∅ or Σn−B=n = ∅, then
we at this length easily have a coNP/n+1 algorithm for that case and will signal such
cases explicitly in the advice function that we will soon build.) Consider the digraph
G′

n = (Σn − B=n, E′
n), where E′

n = {(x, y) | x, y ∈ Σn − B=n ∧ y ∈ set-f(x, y)}.
G′

n is a nonempty complete digraph. (G′
n is nonempty since Σn−B=n 
= ∅ and G′

n is
a complete digraph since f is total at length n due to B=n 
= ∅ and Proposition 4.6.)
Since f is a commutative selector function that is total and associative on Σn −B=n

it follows from Proposition 3.2 that E′
n is a transitive relation. Hence it follows from

Proposition 3.5 that G′
n contains a nonempty strong distance-one target-clique, i.e.,

an induced subgraph T = (VT , ET ), VT 
= ∅, having the following properties:
1. T is a maximal strong clique.
2. For all u ∈ VT and for all v ∈ (Σn −B=n)− VT , (u, v) /∈ E′

n and (v, u) ∈ E′
n.

Let vn denote the lexicographically largest string in VT . (This is just for specificity.
Any string from VT would function the same way.) It follows that for n ∈ N, if
B=n 
= ∅ and Σn −B=n 
= ∅, then there exists a string vn ∈ Σn −B=n such that for
all x ∈ Σn,

x ∈ B ⇐⇒ vn /∈ set-f(x, vn).

Define, for all n ∈ N,

h′(1n) =

⎧⎨⎩
0n+1 if B=n = ∅,
01n if B=n = Σn,
1vn if B=n 
= ∅ and B=n 
= Σn.
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Note that h′ on any input 1n outputs a string of length exactly n + 1. Let L′ =
{〈x, 1y〉 | |x| = |y| ∧ y /∈ set-f(x, y)} ∪ {〈x, 01|x|〉 | x ∈ Σ∗}. Clearly, L′ ∈ coNP.
Due to the above construction we also have, for all x ∈ Σ∗,

x ∈ B ⇐⇒ 〈x, h′(1|x|)〉 ∈ L′.

This shows that B ∈ coNP/n+1.
Since, as noted earlier, (P/1) − NPMV-sel 
= ∅, Theorem 5.9 yields the following

corollary.
Corollary 5.10.

1. A-NP-sel � (NP ∩ coNP)/n+1.
2. A�-NPSV-sel � NP/n+1 ∩ coNP/n+1.
3. A-NPMVt-sel � NP/n+1 ∩ coNP/n+1.
4. A�-NPMVt-sel � NP/n+1 ∩ coNP/n+1.

We mention in passing that—since log2((2
n+1 − 1) + 1) = n + 1 and thus one

can include in the advice-seeking s-tournament all lengths up to the current one—the
n + 1 advice bounds in part 1 of Corollaries 5.4 and 5.10 even hold in the “strong
advice” model of Ko, Balcázar, and Schöning [Ko87, BS92] in which advice must
work for all strings up to and including a given length (see also the discussion in
[HT96]). The n + 1 advice bound in the “NP/n + 1” of part 3 of Corollary 5.10 for
the same reason holds also in the “strong advice” model. Since the “coNP/n + 1”
part of the proof of part 2 of Theorem 5.9 had two special-meaning advice cases,
at first it might seem that regarding the “coNP/n + 1” of part 3 of Corollary 5.10
�log2((2

n+1−1)+2)� = n+2 advice bits, rather than n+1 advice bits, are needed in
the “strong advice” model. However, note that we can hardcode into our machine the
issue of whether some one string, say ε, is in our A-NPMVt-sel set, and then can leave
ε out of all the tournaments and always handle it directly. This ensures that the size
of the collection of strings that we have to worry about of length up to n is 2n+1 − 2,
and so the advice size we need is �log2((2

n+1 − 2) + 2)� = n + 1. So A-NPMVt-sel
indeed is in NP /strong n+1 ∩ coNP /strong n+1, where by /strong we mean the strong
advice model. Keeping in mind that (P/1) − NPMV-sel 
= ∅, we state the discussion
of this paragraph as follows.

Proposition 5.11.

1. A-P-sel � P /strong n+ 1.
2. A-NP-sel � (NP ∩ coNP) /strong n+ 1.
3. A-NPMVt-sel � NP /strong n+ 1 ∩ coNP /strong n+ 1.

It is natural to wonder whether there is some natural “NPSV” analogue of part 1 of
Theorem 5.9 that yields an (NP∩coNP)/n+1 result. In light of part 2 of Theorem 5.8,
one in particular might hope that A�-NPSV-sel∩NP ⊆ (NP∩ coNP)/n+1. However,
we see no way of proving this. The key obstacle is obtaining the “NP ∩ coNP” of
“(NP∩ coNP)/n+ 1” when dealing with partial function classes such as NPSV. One
can patch one’s way around the partialness of NPSV, namely, by using the advice to
give not just an appropriate (via part 3 of Proposition 3.3) string from the set but
also a certificate proving that the string is in the set. However, doing so requires
enough bits to encode the certificate. So what one obtains, if one modifies part 1 of
Theorem 5.9 carefully via the strategy just described, is the following result, in which
NP1 denotes the class, introduced by Kintala and Fischer in 1977 ([KF77]; see also,
for contrast, [KF80]), of sets that are accepted by NP machines that use at most a
linear number of nondeterministic moves.

Theorem 5.12. A�-NPSV-sel ∩ NP1 ⊆ (NP ∩ coNP)/O(n).
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The following is crucial in seeing that Theorem 5.12 holds. When given advice
asserting that our A�-NPSV-selective set, B, contains y as a “magic” (in the sense of
part 3 of Proposition 3.3) string for length |y|, only if the advice contains a correct
certificate for y ∈ B do we go forward and run our NPSV-selector function f , i.e.,
f(x, y), where x, |x| = |y|, is the string whose membership we are interested in. So
we run f only on cases in which at least one of the inputs on which we run f is clearly
known by us to belong to B. By the definition of NPSV-selectivity, f on such inputs
will always be defined. Thus, working hand in hand with the advice and the definition
of NPSV-selectivity, we have in effect locally total-ized f , and this is what creates an
NP ∩ coNP set and yields the (NP ∩ coNP)/O(n) result.

To the best of our knowledge, Theorem 5.12 is only the second time in the litera-
ture that the direct local totalization of NPSV functions appears. The first time was
in Hemaspaandra et al. [HNOS96b], though in contrast there they were in the con-
text of a Ko-type [Ko83] advice setting, i.e., one in which (ignoring certificate space)
a linear number of linear-sized strings were being provided. Here, we have given a
second application of their local totalization technique, this time in the context of
the (ignoring certificate space) one-string advice of the sort provided by part 3 of
Proposition 3.3.

Finally, we would like to remark on results involving weak associativity. If we
assume the NPSV- or NPMV-selectors to be only weakly associative, we are merely
able to show containment in NP/n+1.

6. Printability and nonimmunity. Associativity yields additional simplicity
properties. Let us consider nonimmunity results (i.e., presence of infinite subsets). For
general NPSV-selective sets and thus also for NP- and P-selective sets, Theorem 6.1
holds. In contrast, for associatively NPSV-selective sets, we have Theorem 6.2. To see
how these bounds relate, note that UPNP ⊆ NPNP. Of course, NPNP is synonymous
with Σp

2; however, so as to ensure the relationship to UPNP—and the way we’ll use
those “NP”s in our proofs—shows clearly, throughout this section we will write NPNP

rather than Σp
2.

Theorem 6.1. Every infinite NPSV-selective set B has an infinite FPB⊕NPNP

-
printable subset.

Theorem 6.2. Every infinite set B that is either A-NPSV-selective or A�-NP-

selective has an infinite FPB⊕UPNP

-printable subset.

Corollary 6.3.

1. Every infinite P-selective set B has an infinite FPB⊕NPNP

-printable subset.

2. Every infinite NP-selective set B has an infinite FPB⊕NPNP

-printable subset.
3. Every infinite A-P-selective (or even A�-P-selective) set B has an infinite

FPB⊕UPNP

-printable subset.
4. Every infinite A-NP-selective set B has an infinite FPB⊕UPNP

-printable sub-
set.

Proof of Theorem 6.1. Let B be an infinite NPSV-selective set. By Fact 2.3 there
exists a commutative NPSV-selector f for B. Let n ∈ N. Consider the f -induced
digraph on B=n (in the sense defined in section 3) and call it GB,n,f . Since f is
always defined when at least one of its inputs is in B, it follows that GB,n,f is an
s-tournament. By applying a standard result (stated as Theorem 3.1 in [HO02]; the
theorem refers to tournaments rather than s-tournaments, but the difference does not
affect this result) of Ko [Ko83] about tournament theory to GB,n,f , we have that for
each n ∈ N there exists a set Dn ⊆ B=n such that
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1. ‖Dn‖ ≤ n+ 1, and
2. for every string x ∈ B=n, there exists a string y ∈ Dn such that y ∈
set-f(x, y).

Of course, when B=n = ∅, GB,n,f has no nodes and Dn = ∅.
Since f is a selector for B and thus f(u, v) = v for all u /∈ B and all v ∈ B, we

can state that for each n ∈ N such that B=n 
= ∅ there exists a set Dn ⊆ B=n such
that

1. ‖Dn‖ ≤ n+ 1, and
2. for every string x ∈ Σn, there exists a string y ∈ Dn such that y ∈ set-f(x, y).

Let setcode denote some standard encoding (of finite sets into strings) that is
computable and invertible in polynomial time. Let 〈·, ·〉 be a standard polynomial-
time computable, polynomial-time invertible pairing function. Define

E = {〈1n, setcode({y1, y2, . . . , yj})〉 | 1 ≤ j ≤ n+ 1 ∧
|y1| = · · · = |yj | = n ∧ (∀x ∈ Σn)(∃i : 1 ≤ i ≤ j)[x /∈ set-f(x, yi)]}.

Observe that the condition x /∈ set-f(x, yi) is equivalent to set-f(x, yi) ∈ {∅, {yi}}.
Clearly, E ∈ coNP. For all n, let g(1n) denote the lexicographically largest string ω
such that 〈1n, ω〉 ∈ E if such a string ω exists. (Note that in light of the discussion
earlier in this proof and the properties and single-valuedness of f , it holds that, for
each n such that B=n 
= ∅, there exists at least one string w such that 〈1n, w〉 ∈ E.)
Otherwise g(1n) is undefined. Given 1n one can by applying a prefix search procedure
compute g(1n) in polynomial time with the help of oracle queries to the oracle F =
{〈1n, z〉 | n ∈ N ∧ z ∈ Σ∗ ∧ (∃ω ∈ Σ∗)[〈1n, zω〉 ∈ E]}. Clearly, F ∈ NPNP and hence

g ∈ FPNPNP

.
We claim that, for all n, if B=n 
= ∅, then for every 〈1n, setcode({y1, y2, . . . , yj})〉 ∈

E (1 ≤ j ≤ n + 1)—and so in particular for 〈1n, g(1n)〉—there exists an index i,
1 ≤ i ≤ j, such that yi ∈ B=n. To see this, suppose that B=n 
= ∅, yet there exists
some 〈1n, setcode({y1, y2, . . . , yj})〉 ∈ E (1 ≤ j ≤ n+1) such that, for all i, 1 ≤ i ≤ j,
yi /∈ B=n. Let x ∈ B=n. Due to the definition of E we have that there exists an
index i, 1 ≤ i ≤ j, such that either set-f(x, yi) = {yi} or f(x, yi) is undefined, both
of which are impossible since f is an NPSV-selector for B and so, when exactly one
of its arguments (x in this case) is in B, it outputs that argument.

Consider the set

C = B ∩
⋃

{i∈N | g(1i) is defined}
setcode−1(g(1i)).

Note that C is infinite if B is infinite. Also C ⊆ B. In order to see that C is

FPB⊕NPNP

-printable, consider the following DPTMM : On input 1n, M(1n) computes
g(10), g(11), . . . , g(1n) with the help of the NPNP part, F , of its B ⊕ NPNP oracle.
It then computes the polynomial-sized set

⋃
{i≤n | g(1i) is defined} setcode−1(g(1i)) and

then, using the B part of its oracle, finds which of these strings are in B and outputs
them.

Theorem 6.1 should be contrasted with the result of Hemaspaandra et al. [HOZZ04]

that P-sel is not (weak-FPNPNP

-rankable)-immune.
Proof of Theorem 6.2. In light of part 3 of Corollary 4.7, it actually holds that

A�-NP-sel ⊇ A-NP-sel = A-NPSV-sel. Hence it suffices to show the claim for A�-NP-
selective sets. Let B be an infinite A�-NP-selective set. By part 2 of Theorem 4.2,
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A�-NP-sel = A�C-NP-sel. So, let f be a commutative NPSVt-selector for B that is
associative at each length.

Consider the function score that is defined as

score(x) = ‖{z ∈ Σ|x| | f(x, z) = x}‖.

Note that for each n ∈ N and for each x ∈ Σn, (a) x /∈ B =⇒ score(x) ≤ 2n−‖B=n‖
and (b) x ∈ B =⇒ score(x) ≥ 2n − ‖B=n‖ + 1. So for all x ∈ B and all y /∈ B such
that |x| = |y|, score(y) < score(x). It follows from the fact that f is commutative, to-
tal, single-valued, and length-associative that for all n, max{score(y) | |y| = n} = 2n

(consider Proposition 3.3 applied to the f -induced digraph on the nodes (Σ∗)=n).
So for each n there exists exactly one string at length n, call it dn, such that
score(dn) = max{score(y) | |y| = n} = 2n. Thus, the set

F = {〈1n, z〉 | n ∈ N ∧ z ∈ (Σ∗)≤n ∧ (∃ω : |ω| = n− |z|)[score(zω) = 2n]}

is in UPNP. (To see this, note that score(x) = 2|x| is in our setting equivalent to
(∀y ∈ Σ|x|)[x = y ∨ f(x, y) 
= y].) Given 1n, computing dn can be done in polynomial
time with the help of oracle F . Let C = B ∩ {di | i ≥ 0}. Clearly, since B is infinite,

by our choice of di we have that C is both infinite and FPB⊕UPNP

-printable.
So, Theorems 6.1 and 6.2 have been proven.6

It follows from the proof of Theorem 6.2 that any associatively NPSV selective
set for which there is an infinite set of lengths at which we know it is not empty is in
fact not coNP-immune. This is a very weak type of partial census information.

Definition 6.4. We say a set B is hintable if there is an infinite tally set,
T ⊆ 1∗, such that T ∈ P and

(∀i)[1i ∈ T =⇒ ‖B=i‖ 
= 0].

Theorem 6.5. Any hintable A-NPSV-selective (or even A�-NPSV-selective) set
has an infinite coNP subset (i.e., languages in A�-NPSV-sel∩Hintable are not coNP-
immune).

Proof. Let B be an infinite hintable A�-NPSV-selective set. Let the tally set T be
a hint set for B in the sense of Definition 6.4. Let f be a commutative NPSV-selector
for B that is total at each length n such that B=n 
= ∅ and associative at each length n
such that B=n 
= ∅. Such a selector for B exists by Corollary 4.7. Define the function
score as in the proof of Theorem 6.2. Since B is A�-NPSV-selective, we have that, for
all n, if B=n 
= ∅, then there exists a unique string of length n having a score of 2n

and it is in B. (If B=n = ∅, then there might be no string at length n having a score
of 2n.) The set

C = {x | 1|x| ∈ T ∧ score(x) = 2n}

is an infinite subset of B and is in coNP since it will hold that C = {x | 1|x| ∈
T ∧ (∀y : |y| = |x|)[y = x ∨ y /∈ set-f(x, y)]}.

6If one cares about the number of queries to B needed in the printability claims of Theorems
6.1 and 6.2 and Corollary 6.3, the following, which was communicated to us (regarding a somewhat
weaker set of results in an earlier version of this paper) by Till Tantau [Tan01], can be observed: One
can limit one’s queries to B to a logarithmic number by putting the queries to B into a Toda-like
ordering ([Tod91]; see also [HT03]) and binary searching to find which are in and which are out. (For
the nondeterministic selectivity claims, one will use the power of NP in the oracle to Toda-order the
strings. Also, the partial-function cases do not present a problem, e.g., on those one can modify for
the partial case the “bubblesort”-type proof given by Hemaspaandra and Torenvliet [HT03, Proof of
Lemma 4.5].
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7. Are all P-selective sets associatively P-selective? Many of our results
give simplicity properties of A-P-sel. It is natural to wonder whether in fact A-P-sel
is all of P-sel, that is, whether all P-selective sets are associatively P-selective. In this
section, we prove upper bounds on the power needed to associatively select sets. One
consequence, Corollary 7.3, is that if P = NP, then A-P-sel and P-sel are equal.

Theorem 7.1.

1. Every NPMVt-selective set has a single-valued, commutative selector function
in FPt

NP that is associative.
2. Every NPMV-selective set A has a single-valued, commutative selector func-

tion in FPt
NP that is associative on A.

3. Every NPMV-selective set has a single-valued, commutative selector function
in FPt

Σp
2 that is associative.

Proof. We first prove part 1 of the result. Let A be an NPMVt-selective set. Let f
be an NPMVt-selector for A. Without loss of generality, assume f to be commutative
(see Fact 2.3). For every pair of strings x and y, ω is called a connector of x and y if
and only if either (a) ω ∈ set-f(x, ω) and y ∈ set-f(ω, y), or (b) x ∈ set-f(x, ω) and
ω ∈ set-f(ω, y). Note that for any two strings x and y, there always exist connectors
of x and y, namely, x and y. Define the function g by setting, for all x and y,

g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if the lexicographically smallest connector ω of x and
y yields ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y) but not
x ∈ set-f(x, ω) ∧ ω ∈ set-f(ω, y),

x if the lexicographically smallest connector ω of x and
y yields x ∈ set-f(x, ω) ∧ ω ∈ set-f(ω, y) but not
ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y),

max(x, y) if the lexicographically smallest connector ω of x and
y yields ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y) and x ∈
set-f(x, ω) ∧ ω ∈ set-f(ω, y).

Note that g is a single-valued function in FPt
NP. To compute g(x, y) the NP

oracle is first used to—via either binary search or prefix search—compute the lexico-
graphically smallest connector of x and y, and then, via two more queries, is used to
determine which of the three cases from the definition of g is applicable. Note that g
is commutative and self-contained.

To see that g is even a selector for A, suppose that there are strings x and y such
that x ∈ A and y /∈ A yet g(x, y) = y. Let ω be the lexicographically smallest connec-
tor for x and y. It follows that either (a) ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y) but not x ∈
set-f(x, ω) ∧ ω ∈ set-f(ω, y), or (b) y = max(x, y), ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y),
and x ∈ set-f(x, ω) ∧ ω ∈ set-f(ω, y). However, in both cases the properties of a
selector function (in this case f) imply that if x ∈ A, so are ω and y, contradicting
our assumption.

It remains to show that g is associative. Suppose that g is not associative. Let
a, b, c be a counterexample to the associativity of g. Since g is a single-valued, commu-
tative self-contained function, it follows from Corollary 3.4 that both ||{a, b, c}|| = 3
and the g-induced digraph on a, b, c is a 3-cycle (plus three self-loops). Without loss
of generality, suppose that g(a, b) = b, g(b, c) = c, and g(a, c) = a. Let ω be the
lexicographically smallest connector among all connectors for a and b, for b and c,
and for a and c.

Suppose that ω is a connector for a and b. Due to symmetry we can make
that assumption without loss of generality. Since g(a, b) = b there are two possible
scenarios.
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h(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if x and y have a connector z such that z ≤lex

max(x, y) and the lexicographically smallest con-
nector ω of x and y yields ω ∈ set-f(x, ω) ∧ y ∈
set-f(ω, y) but not x ∈ set-f(x, ω) ∧ ω ∈ set-f(ω, y),

x if x and y have a connector z such that z ≤lex

max(x, y) and the lexicographically smallest con-
nector ω of x and y yields x ∈ set-f(x, ω) ∧ ω ∈
set-f(ω, y) but not ω ∈ set-f(x, ω) ∧ y ∈ set-f(ω, y),

max(x, y) if x and y have a connector z such that z ≤lex

max(x, y) and the lexicographically smallest connec-
tor ω of x and y yields both ω ∈ set-f(x, ω) ∧ y ∈
set-f(ω, y) and x ∈ set-f(x, ω) ∧ ω ∈ set-f(ω, y),

max(x, y) if x and y have no connector z such that z ≤lex

max(x, y).

Fig. 7.1. Definition of the function h used in the proof of Theorem 7.1.

Case 1 (ω ∈ set-f(a, ω) ∧ b ∈ set-f(ω, b) but not a ∈ set-f(a, ω) ∧ ω ∈
set-f(ω, b)):
Since f is total, set-f(ω, c) 
= ∅. If set-f(ω, c) = {c}, then ω is also a con-
nector for a and c contradicting, in light of the definition of g and the fact
that in this case ω ∈ set-f(a, ω) and set-f(ω, c) = {c} yet ω /∈ set-f(ω, c),
g(a, c) = a. If set-f(ω, c) = {ω}, then ω is also a connector for b and c in such
a way as to similarly contradict g(b, c) = c. If set-f(ω, c) = {ω, c}, there are
two possibilities. The first is that set-f(ω, b) = {b}. However, that implies
g(b, c) = b, which contradicts our assumption that g(b, c) = c. The second
possibility is that set-f(ω, b) = {b, ω}. This implies (under the rules of Case 1
and the subcase we are in) that set-f(a, ω) = {ω}. However, this implies that
g(c, a) = c, which contradicts our assumption that g(a, c) = a.

Case 2 (b = max(a, b), ω ∈ set-f(a, ω) ∧ b ∈ set-f(ω, b), and a ∈ set-f(a, ω)
∧ ω ∈ set-f(ω, b)):
Since f is total, f(ω, c) is defined. If set-f(ω, c) = {c}, then we have g(a, c) =
c, contradicting our assumption that g(a, c) = a. If set-f(ω, c) = {ω},
then we have g(b, c) = b, contradicting our assumption that g(b, c) = c.
If set-f(ω, c) = {ω, c}, then the definition of g and the assumed values of g
imply that b = max(a, b), a = max(a, c), and c = max(b, c), which contradicts
||{a, b, c}|| = 3.

It follows that g is associative, which completes the proof of part 1.
We next show part 2. This can be shown quite similarly, and so we will sketch only

the main differences to the proof of part 1. Let A be an NPMV-selective set. Let f
be an NPMV-selector for A. Without loss of generality, assume f to be commutative
(Fact 2.3). Observe that f(x, y) and also that one of f(x, x) and f(y, y) is defined
whenever at least one of x and y is in A. Thus, whenever at least one of x and y
is in A there exists a connector z of x and y such that z ≤lex max(x, y). Define the
function h, for all x and y, as shown in Figure 7.1. Note that h is a single-valued
FPt

NP function that is commutative. Similarly to the proof of part 1, one can now
show that h is a selector function for A that is associative on A. For the latter note
that any connector z of two strings x, y ∈ A is also in A.

Part 3 follows from the proofs of parts 1 and 2. The function h as defined in the
proof of part 2 is a total, commutative, and single-valued FPNP function. We can
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now repeat the entire proof of part 1 but replacing f by h and NPMVt by FPt
NP in

that proof. It follows that the function g as defined in the proof of part 1 is now in
our modified version a total single-valued FPΣp

2 -selector for A that is commutative
and associative.

Corollary 7.2.

1. Every P-selective set, and even every FP-selective set, has a commutative
selector function in FPt

NP that is associative.
2. Every NP-selective set has a commutative selector function in FPt

NP that is
associative.

3. Every NPSV-selective set A has a commutative selector function in FPt
NP

that is associative on A.
4. Every NPSV-selective set has a commutative selector function in FPt

Σp
2 that

is associative.

The above corollary is a straightforward consequence of Theorem 7.1. Regarding
the “every FP-selective” in part 1, recall FP-sel = P-sel from Fact 2.3.

Corollary 7.3. If P = NP, then P-sel = A-P-sel, FP-sel = A-FP-sel, NP-sel =
A-NP-sel, NPSV-sel = A-NPSV-sel, NPMVt-sel = A-NPMVt-sel, and NPMV-sel =
A-NPMV-sel.

The above corollary follows directly from Theorem 7.1 and and Corollary 7.2.
Regarding the NPSV-sel = A-NPSV-sel and NPMV-sel = A-NPMV-sel conclusions of
the above corollary, recall that P = NP ⇐⇒ P = Σp

2.

Theorem 5.3 provides a sufficient condition, based on an algebraic property for
selector functions, for P-sel ⊆ P/O(n). If one were interested only in structural
complexity-class-collapse sufficient conditions, Theorem 5.3 would be no improve-
ment over the P = NP sufficient condition implicit in the result of Hemaspaandra and
Torenvliet that P-sel ⊆ NP/O(n) (and thus P-sel ⊆ P/O(n) if P = NP), since in light
of Corollary 7.3 the best known structural complexity-class-collapse condition suffi-
cient to imply P-sel = A-P-sel is also the collapse P = NP. However, we feel that this
is the wrong view, and that “P-sel = A-P-sel” is probably a fundamentally different
type of assumption than P = NP. For example, if P-sel = A-P-sel were in fact equiv-
alent to P = NP, then P = NP would (trivially) not just be a sufficient condition for
P-sel = A-P-sel but would also be a necessary condition. In fact, not only is P = NP
not known to be necessary for P-sel = A-P-sel, but in fact no structural complexity-
class-collapse condition—not even very weak collapses like P = UP or P = ZPP—is
known to be necessary. Our point here is that, though by Corollary 7.3 P = NP is one
way to achieve P-sel = A-P-sel, we conjecture that it is unlikely that one can prove
that it characterizes P-sel = A-P-sel. And thus our P-sel = A-P-sel sufficient condition
for P-sel ⊆ P/O(n) is best viewed as a new algebraic sufficient condition quite differ-
ent from the known (and extremely demanding) structural complexity-class-collapse
sufficient conditions.

We do have a structural complexity-class-collapse condition, namely, the collapse
of the polynomial hierarchy, that follows from the assumption that every NPMV-
selective set is in fact associatively NPMV-selective. (S2 is the symmetric alternation
class of Canetti [Can96] and Russell and Sundaram [RS98]. Note that a collapse

to SNP
2 is known to be at least as strong as a collapse to ZPPΣp

2 or to Σp
3, since

SNP
2 ⊆ ZPPΣp

2 ⊆ Σp
3 ([CCHO03]; see that paper also for the definition of SNP

2 ).)

Theorem 7.4. NPMV-sel = A-NPMV-sel =⇒ PH = SNP
2 .

Proof. Assume that NPMV-sel = A-NPMV-sel. By Corollary 5.10 we have
that A-NPMV-sel ⊆ NP/n+1 ∩ coNP/n+1. So under our assumption, NPMV-sel ⊆
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NP/n+1 ∩ coNP/n+1. However, it is well known that NP ⊆ NPMV-sel. Putting all
the pieces together we obtain NP ⊆ coNP/n+1. This itself, by the recent strength-
ening of Yap’s theorem [Yap83] by Cai et al. [CCHO03], implies that PH = SNP

2

(equivalently, PH = NPNPNP

= ZPPNPNP

= SNP
2 ).

Finally, we mention two open issues. First, can one prove a complete or partial
converse of other parts of Corollary 7.3? Second, one would ultimately like to know
whether all P-selective sets have linear deterministic advice, i.e., whether P-sel ⊆
P/O(n). This paper gives a new sufficient condition for that, namely, P-sel ⊆ P/O(n)
if all P-selective sets have associative (or even merely length-associative) selector
functions.
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[Sch83] U. Schöning, A low and a high hierarchy within NP, J. Comput. System Sci., 27
(1983), pp. 14–28.

[Sel79] A. Selman, P-selective sets, tally languages, and the behavior of polynomial time
reducibilities on NP, Math. Systems Theory, 13 (1979), pp. 55–65.

[Sel81] A. Selman, Some observations on NP real numbers and P-selective sets, J. Comput.
System Sci., 23 (1981), pp. 326–332.

[Sel82a] A. Selman, Analogues of semirecursive sets and effective reducibilities to the study
of NP complexity, Inform. and Control, 52 (1982), pp. 36–51.

[Sel82b] A. Selman, Reductions on NP and P-selective sets, Theoret. Comput. Sci., 19 (1982),
pp. 287–304.

[Sel96] A. Selman, Much ado about functions, in Proceedings of the 11th Annual IEEE
Conference on Computational Complexity, IEEE Computer Society Press, Los
Alamitos, CA, 1996, pp. 198–212.

[Siv99] D. Sivakumar, On membership comparable sets, J. Comput. System Sci., 59 (1999),
pp. 270–280.

[Sto76] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976),
pp. 1–22.

[Tan01] T. Tantau, personal communication, 2001.
[Tha03] M. Thakur, On Optimal Advice for P-Selective Sets, Technical Report TR-819, De-

partment of Computer Science, University of Rochester, Rochester, NY, 2003.
[Tod91] S. Toda, On polynomial-time truth-table reducibilities of intractable sets to P-selective

sets, Math. Systems Theory, 24 (1991), pp. 69–82.
[Yap83] C. Yap, Some consequences of non-uniform conditions on uniform classes, Theoret.

Comput. Sci., 26 (1983), pp. 287–300.



GRAPHS WITH TINY VECTOR CHROMATIC NUMBERS
AND HUGE CHROMATIC NUMBERS∗

URIEL FEIGE† , MICHAEL LANGBERG‡ , AND GIDEON SCHECHTMAN§

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 6, pp. 1338–1368

Abstract. Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246–265] introduced the notion
of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector
k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly
∆1−2/k colors. Here ∆ is the maximum degree in the graph and is assumed to be of the order of nδ

for some 0 < δ < 1. Their results play a major role in the best approximation algorithms used for
coloring and for maximum independent sets.

We show that for every positive integer k there are graphs that are vector k-colorable but do
not have independent sets significantly larger than n/∆1−2/k (and hence cannot be colored with
significantly fewer than ∆1−2/k colors). For k = O(logn/ log logn) we show vector k-colorable
graphs that do not have independent sets of size (log n)c, for some constant c. This shows that the
vector chromatic number does not approximate the chromatic number within factors better than
n/polylogn.

As part of our proof, we analyze “property testing” algorithms that distinguish between graphs
that have an independent set of size n/k, and graphs that are “far” from having such an independent
set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J.
ACM, 45 (1998), pp. 653–750] for this problem.
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1. Introduction. An independent set in a graph G is a set of vertices that
induce a subgraph which does not contain any edges. The size of the maximum
independent set in G is denoted by α(G). For an integer k, a k-coloring of G is a
function σ : V → [1 . . . k] which assigns colors to the vertices of G. A valid k-coloring
of G is a coloring in which each color class is an independent set. The chromatic
number χ(G) of G is the smallest k for which there exists a valid k-coloring of G.

Finding α(G) and χ(G) are fundamental NP-hard problems, closely related by
the inequality α(G)χ(G) ≥ n. Given G, the question of estimating the value of
α(G) (χ(G)) or finding large independent sets (small colorings) in G has been studied
extensively. Let G be a graph of size n. Both χ(G) and α(G) can be approximated

within a ratio of O(n(log log n)2

log3 n
) (see [Hal93, Fei02]). It is known that unless NP

= ZPP, neither α(G) nor χ(G) can be approximated within a ratio of n1−ε for any
ε > 0 [H̊as99, FK98]. Under stronger complexity assumptions, there is some 0 < δ < 1

such that neither problem can be approximated within a ratio of n/2logδ n [Kho01].
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The approximation ratios for these problems significantly improve in graphs that
have very large independent sets or very small chromatic numbers. The algorithms
achieving the best ratios in these cases [KMS98, AK98, BK97, HNZ01] are all based
on the idea of vector coloring, introduced by Karger, Motwani, and Sudan [KMS98].

Definition 1.1. A vector k-coloring of a graph is an assignment of unit vectors
to its vertices such that, for every edge, the inner product of the vectors assigned to
its endpoints is at most (in the sense that it can only be more negative) −1/(k − 1).

Every k-colorable graph is also vector k-colorable (by identifying each color class
with one vertex of a perfect (k − 1)-dimensional simplex centered at the origin).
Moreover, unlike the chromatic number, a vector k-coloring (when it exists) can be
found in polynomial time using semidefinite programming (up to arbitrarily small
error in the inner products). Given a vector k-coloring of a graph, Karger, Motwani,
and Sudan show how to color a graph with roughly ∆1−2/k colors, where ∆ is the
maximum degree in the graph. (In comparison, the technique of inductive coloring
might use ∆ + 1 colors.) In fact, they show how to find an independent set of size
roughly n/∆1−2/k. Combined with other ideas, this leads to coloring algorithms and
algorithms for finding independent sets with the best currently known performance
guarantees. For example, there is a polynomial time algorithm that colors 3-colorable
graphs with roughly n3/14 colors [BK97]. For nonconstant values of k, it is known
how to find an independent set of size Ω(logn) in a vector log n-colorable graph.

There have also been negative results regarding vector k-colorable graphs. Ex-
amples appearing in [KMS98] (and improved by Alon and Szegedy) show vector 3-
colorable graphs that do not have independent sets larger than roughly n0.95. The case
of nonconstant k is addressed in [Fei97] (technically, the results there deal with the
Lovász theta function, which is even a stronger notion than vector coloring), where

graphs that are vector 2O(
√

logn)-colorable are shown not to have independent sets
larger than 2O(

√
logn). In all these negative examples, the vertex sets of the graphs

involved can be viewed as a subset of {0, 1}n, with two vertices connected by an edge
if their Hamming distance is larger than some prespecified value.

Our results. In this work we present a different family of graphs with stronger
negative properties. For every constant k > 2 and every ε > 0, we show graphs that
are vector k-colorable, with α(G) ≤ n/∆1− 2

k−ε. This essentially matches the positive
results of [KMS98]. As a function of n rather than ∆, we show vector 3-colorable
graphs with α(G) < n0.843. Moreover, for k = O(log n/ log log n), we show vector
k-colorable graphs with α(G) ≤ (log n)c, for some universal c. This shows that the
vector coloring number by itself does not approximate the chromatic number within
a ratio better than n/polylogn. Another consequence of this (that is touched upon
in Remark 2.1 in section 2) is that certain semidefinite programs do not approximate
the size of the maximum independent set with a ratio better than n/polylogn.

Theorem 1.2.

1. For every constant ε > 0 and constant k > 2, there are infinitely many graphs
G that are vector k-colorable and satisfy α(G) ≤ n/∆1− 2

k−ε, where n is the
number of vertices in G, ∆ is the maximum degree in G, and ∆ > nδ for
some constant δ > 0.

2. For some constant c, there are infinitely many graphs G that are vector
O( logn

log log n )-colorable and satisfy α(G) ≤ (log n)c.
3. There are infinitely many graphs G that are vector 3-colorable and satisfy
α(G) ≤ n0.843.

Observe that if Theorem 1.2(1) is proven for some graph with n vertices and
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maximum degree ∆, then for every positive integer c it also holds for some graph
with c · n vertices and the same maximum degree ∆. (Simply make c disjoint copies
of the original graph.) Hence the theorem becomes stronger as ∆ becomes larger in
comparison to n. We guarantee that ∆ can be taken at least as large as nδ for some
δ that depends on ε and k. For every fixed ε and k, the value of δ can be taken as
a fixed constant bounded away from 0 and independent of n. We have not made an
attempt to find the tightest possible relation between δ and ε and k.

Proof techniques. The graphs that we use are essentially the same graphs that
were used in [FS02] to show integrality gaps for semidefinite programs for Max-Cut.
Namely, they are obtained by placing n points at random on a d-dimensional unit
sphere and connecting two points by an edge if the inner product of their respective
vectors is below −1/(k − 1). Such graphs are necessarily vector k-colorable, as the
embedding on the sphere is a vector k-coloring. So the bulk of the work is in proving
that they have no large independent set. For this we use a two-phase plan. First we
consider a continuous (infinite) graph, where every point on the sphere is a vertex
and two vertices are connected by an edge if the inner product of their respective
vectors is below −1/(k− 1). On this continuous graph we use certain symmetrization
techniques in order to analyze its properties. Specifically, we prove certain inequalities
regarding its expansion. In the second phase, we consider a (finite) random vertex
induced subgraph of the continuous graph. Based on the expansion properties of the
continuous graph, we show that the random sample has no large independent set.

Two remarks are in order here. One is that it is very important for our bounds
that the final random graph does not contain too many vertices compared to the
dimension d. A small number of vertices implies low degree, and allows for a more
favorable relation between the maximum degree and the chromatic number. For this
reason we cannot use the continuous graph (or a finite discrete approximation of the
continuous graph) as is. Its degree is very large compared to its chromatic number. We
thus consider the graph obtained by randomly sampling the vertices of the continuous
graph. In section 7, we follow a suggestion of Luca Trevisan (private communication)
and present an alternative proof of Theorem 1.2(1) by considering the graph obtained
by randomly sampling the edges of the continuous graph. It appears that parts (2)
and (3) of Theorem 1.2 cannot be proven using edge sampling.

The other remark is that we do not get an explicit graph as our example, but
rather a random graph (or a distribution on graphs). This is to some extent unavoid-
able, given that there are no known efficient deterministic constructions of Ramsey
graphs (graphs in which the size of the maximum independent set and maximum
clique are both bounded by some polylog in n). The graphs we construct (when
k = log n/ log log n) are Ramsey graphs, because it can be shown that the maximum
clique size is never larger than the vector coloring number.

Property testing. The following problem in property testing is addressed by Gol-
dreich, Goldwasser, and Ron [GGR98]. For some value of ρ < 1, consider a graph with
the following “promise”: either it has an independent set of size ρn, or it is far from
any such graph, in the sense that any vertex-induced subgraph of ρn vertices induces
at least εn2 edges. One wants an algorithm that samples as few vertices as possible,
looks at the subgraph induced on them, and, based on the size of the maximum inde-
pendent set in that subgraph, decides correctly (with high probability) which of the
two cases above hold. In [GGR98] it is shown that a sample of size proportional to ε−4

suffices. We are in a somewhat similar situation when we move from the continuous
graph to our random sample. The continuous graph is far from having an indepen-
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dent set of measure ρ.1 We want to take a sample as small as possible (its size will
be denoted by s) such that the induced subgraph does not contain an independent
set of size ρs. Luckily in our case, we can use a stronger guarantee on the continuous
graph. We know that even every set of measure ρ/2 induces at least the measure
of ε edges.2 In this case we show that a sample size s proportional to 1/ε suffices.
This dramatic improvement over the [GGR98] bound is crucial to the success of our
analysis. We note that this improvement is not only based on our stronger guarantee
on the continuous graph G. Even in exactly the same setting of [GGR98], we show
that a sample size s proportional to ε−3 suffices. These results are of interest in the
context of property testing regardless of their applications to the vector coloring issue.

Strict vector coloring. One may strengthen the notion of vector k-coloring by
requiring that, for every edge, the inner product of the unit vectors corresponding to
its endpoints be exactly −1/(k− 1), rather than at most −1/(k− 1). This is called a
strict vector coloring. This notion is known to be equivalent to the theta function of
Lovász [Lov79, KMS98]. Every k-colorable graph is also strictly vector k-colorable.
As strict vector coloring is a stronger requirement than vector coloring, then it is
possible that strict vector k-colorable graphs have smaller chromatic numbers than
vector k-colorable graphs. So far, there are not any algorithmic techniques that can
use this observation to further improve the approximation ratios for chromatic number
or for independent set. We remark, however, that the negative results in this work
apply only to vector coloring and not to strict vector coloring. It is an open question
whether similar negative results are true for strict vector coloring, or equivalently,
whether the same gaps (such as n/polylogn) can be shown between the value of the
theta function and the size of the maximum independent set. Note that the weaker
negative results of [Fei97] and some of the negative results in [KMS98] do apply also
to strict vector coloring.

The remainder of this paper is organized as follows. In section 2 we briefly review
the semidefinite programs that compute the vector chromatic number and its variants.
In section 3 we present the continuous graph and analyze its properties. In section 4
we prove Theorem 1.2. Our results on property testing are presented in sections 5
and 6. In section 7 we present an alternative proof of Theorem 1.2(1). In section 8 we
discuss some problems that remain open. Finally, in section 9 we present the proof
of several technical lemmas that appear throughout our work.

2. The vector chromatic number and its variants. There are many equiv-
alent ways to define the vector chromatic number and its variants. We will follow the
definitions suggested in [KMS98, Cha02]. Let G = (V,E) be a graph of size n. For
convenience we will assume that V = [1, . . . , n]. The semidefinite relaxations below
assign unit vectors to every vertex i ∈ V . These unit vectors are to satisfy certain
constraints which will in turn determine the value of the relaxations.
COL1(G) Minimize k

subject to
〈vi, vj〉 ≤ − 1

k−1 ∀(i, j) ∈ E,
〈vi, vi〉 = 1 ∀i ∈ V ;

COL2(G) Minimize k

1As the continuous graph is infinite, terms such as the number of vertices are replaced by the
continuous analog measure. The measure we use on the unit sphere is the natural measure, which
associates with each subset its relative area on the sphere.

2The measure we use on the edge set is the product measure induced by the standard uniform
measure on Sd−1.
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subject to
〈vi, vj〉 = − 1

k−1 ∀(i, j) ∈ E,
〈vi, vi〉 = 1 ∀i ∈ V ;

COL3(G) Minimize k
subject to

〈vi, vj〉 = − 1
k−1 ∀(i, j) ∈ E,

〈vi, vj〉 ≥ − 1
k−1 ∀i, j ∈ V,

〈vi, vi〉 = 1 ∀i ∈ V.
The function COL1(G) is the vector chromatic number ofG as defined in [KMS98].

The function COL2(G) is the strict vector chromatic number of G and is equal to
the Lovász θ function on Ḡ [Lov79, KMS98], where Ḡ is the complement graph of
G. Finally, the function COL3(G) will be referred to as the strong vector chromatic
number as defined in [Sze94, Cha02]. Let ω(G) denote the size of the maximum clique
in G; in the following we show that

ω(G) ≤ COL1(G) ≤ COL2(G) ≤ COL3(G) ≤ χ(G).

It is not hard to verify that COL1(G) ≤ COL2(G) ≤ COL3(G). To show the
other inequalities we need the following fact. For every integer k, the k unit vec-
tors {v1, . . . , vk} that minimize the value of maxi �=j∈[1,...,k] 〈vi, vj〉 are the vertices of a

simplex in Rk−1 centered at the origin. For each i, j ∈ [1, . . . , k], these vectors satisfy
〈vi, vj〉 = − 1

k−1 .
Now to prove the inequality COL3(G) ≤ χ(G), consider a k-coloring σ of G. The

coloring σ partitions the vertex set V into k color classes {V1, . . . , Vk}. Assigning each
color class Vi with the corresponding vector vi above, we obtain a valid assignment
for COL3(G). To show that ω(G) ≤ COL1(G), consider a graph G with maximum
clique size ω(G). To obtain a valid assignment of vectors to COL1(G) of value k we
require that all pairs of vectors corresponding to the vertices of the maximum clique
will have inner product of value at most − 1

k−1 . As mentioned above, this can happen
only if ω(G) ≤ k.

Remark 2.1. The results of our work show a large gap between COL1(G) and
χ(G) (Theorem 1.2). Combining these results with certain proof techniques appearing
in [Sze94], a similar gap between ω(G) and COL3(G) can also be obtained. Details
are omitted.

3. The continuous graph. Let d be a large constant, and let Sd−1 = {v ∈
Rd | ‖v‖ = 1} be the d-dimensional unit sphere. Let Gk = (V,E) be the continuous
graph in which (a) the vertex set V consists of all the points on the unit sphere Sd−1,
and (b) the edge set E of Gk consists of all pairs of vertices whose respective vectors
(from the origin) form an angle of at least arccos(−1/(k − 1)). As the size of V and
E is infinite (and uncountable), terms such as the number of vertices in V will be
replaced by the continuous analogue measure.

In this section we analyze various properties of Gk. Specifically, we show that
Gk has certain expansion properties. We then use this fact in section 4 to prove the
main theorem of our work. In our analysis, we will assume that the dimension d is
(at least) a very large constant (our proofs rely on such d). Additional constants that
will be presented in the remainder of this section are to be viewed as independent of
d.

Definition 3.1 (sphere measure). Let µ be the normalized (d− 1)-dimensional
natural measure on Sd−1, and let µ2 be the induced measure on Sd−1×Sd−1. For any
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two (not necessarily disjoint) subsets A and B of V , we define the measure of edges
from A to B as

E(A,B) = µ2 ({(x, y) | x ∈ A, y ∈ B, (x, y) ∈ E}) .
Definition 3.2 (sphere caps). Let a ∈ [0, 1] and x ∈ Sd−1. An a-cap centered

at x is defined to be the set Ca = {u ∈ Sd−1 | 〈u, x〉 ≥ a}. Denote the measure of an
a-cap by ρ(a).

A few remarks are appropriate. Notice that for every x, x′, an a-cap centered at
x has the same measure as an a-cap centered at x′ (sphere symmetry). Furthermore,
notice that large caps have small corresponding values of a and vice versa. The value
of ρ(a) = µ(Ca) is approximately given by the following lemma proven, for example,
in [FS02].

Lemma 3.3. Let Ca be an a-cap centered at some x ∈ Sd−1. There exists a
constant c > 0 (independent of a and d) s.t. (such that)

c√
d

(
1− a2

) d−1
2 ≤ µ(Ca) = ρ(a) ≤ 1

2

(
1− a2

) d−1
2 .

Lemma 3.4. Let ρ( 1
k−1 ) be the measure of a 1

(k−1) -cap. Every vertex v in the

graph Gk has degree ρ( 1
k−1 ).

Proof. Each vertex v in Gk is adjacent to every vertex in the 1
(k−1) -cap centered

at −v (here −v is the vertex antipodal to v). Hence, the measure of vertices adjacent
to a given vertex v in Gk is that of a 1

(k−1) -cap.

The main property of Gk of interest to us is the measure of edges between any
two given subsets of V of a specified size. We first prove that the sets in Gk which
share the least amount of edge are caps with the same center.

Theorem 3.5. Let 1 ≥ a > 0, and let A and B be two (not necessarily disjoint)
measurable sets in V of measure ρ(a). Let x be an arbitrary vertex of Sd−1. The
minimum of E(A,B) is obtained when A = B = Ca, where Ca is an a-cap of measure
ρ(a) centered at x.

The proof of Theorem 3.5 is based on symmetrization techniques similar to those
presented in [BT76, FS02]. We prove Theorem 3.5 in section 9. We now turn to
analyzing the measure of edges between caps of measure ρ(a). Namely, we study the
value of E(Ca, Ca). For large values of a, it is not hard to see that Ca will not induce any
edges. This follows from the fact that any two vertices u and v in Ca satisfy 〈u, v〉 ≥
2a2−1. Hence, in the following we consider values of a which satisfy 2a2−1 < − 1

k−1 .

For such values of a we show that E(Ca, Ca) is proportional to µ2(E)ρ(a)2+
2

k−2 (which
we denote by λ(a)). Notice that two random subsets A and B of Gk of measure ρ(a)
are expected to satisfy E(A,B) = µ2(E)ρ(a)2, which is fairly close to λ(a). Actually,

we show that E(Ca, Ca) is in the range [(1− c√log(d)/d)
d−1
2 λ(a), λ(a)] for some large

constant c. It is not hard to verify that the term (1 − c√log(d)/d)
d−1
2 is negligible

compared to λ(a), once d is taken to be large enough.

Theorem 3.6. Let
√

k−2
2(k−1) > a > 0 and k > 2 be constant. Let x ∈ Sd−1, and

let Ca be an a-cap centered at x. Let ε(a) be the value of E(Ca, Ca). Finally let

λ(a) =

((
1− 1

(k − 1)2

)(
1− 2(k − 1)

k − 2
a2

)) d−1
2

.

Then ε(a) ∈ [(1− c√log(d)/d)
d−1
2 λ(a), λ(a)] for some constant c > 0.
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v

C

(a,b)

   a

z

N

C N

Fig. 1. Projecting Sd−1 onto the two-dimensional subspace {(r1, r2, 0, . . . , 0) | r1, r2 ∈ R} of
Rd, we obtain the circle above. C is the projection of an a-cap Ca centered at (1, 0, . . . , 0) (where
a is the distance of the cap from the origin). The vertex v = (a,

√
1− a2, 0, . . . , 0) ∈ Ca is on the

boundary of Ca. N is the projection on the sphere of the set of points N(v) that are adjacent to
v (i.e., form an angle of at least arccos(−1/(k − 1)) with v). The shaded section is C ∩ N (the
projection of Ca ∩N(v)). The point (a, b) is the closest point of the projection of Ca ∩N(v) to the
origin. It is not hard to verify that b2 = (1/(k − 1) + a2)2/(1 − a2). Finally, we denote the value
of
√
a2 + b2 by z. Claim 3.7 addresses the measure of Ca ∩ N(v) and states that it is essentially

the measure of a z-cap. This is done by studying the points in Sd−1 whose projection falls close to
(a, b). Roughly speaking, we first show that such points are in Ca ∩N(v); then, using Claim 9.7, we
show that the measure of these points is essentially the measure of a z-cap.

Proof. Let x ∈ Sd−1. Let Ca be an a-cap centered at x. W.l.o.g. we will assume
that x = (1, 0, . . . , 0). Consider a vertex v ∈ Ca on the boundary of Ca. Let N(v)
be the set of vertices adjacent to v. We start by computing the measure of vertices
that are neighbors of v and are in the cap Ca, i.e., the measure of N(v) ∩ Ca = {u =
(u1, . . . , ud) ∈ Sd−1 | u1 ≥ a and 〈v, u〉 ≤ −1/(k − 1)}.

Claim 3.7. Let a, k be as in Theorem 3.6. Let v = (a,
√

1− a2, 0, . . . , 0) be
a vertex on the boundary of Ca.Let N(v) be the set of neighbors of v. Let z =√
a2 + (1/(k−1)+a2)2

1−a2 .Finally let δ = c
√

log(d)
d for a sufficiently large constant c. The

measure of vertices in N(v) ∩ Ca satisfies

(1− δ) d−1
2

(
1− z2

) d−1
2 ≤ µ(N(v) ∩ Ca) ≤

(
1− z2

) d−1
2 .

Claim 3.7 addresses the measure of Ca ∩N(v), and states that it is essentially the

measure of a z-cap
(
where z =

√
a2 + (1/(k−1)+a2)2

1−a2

)
. To prove Claim 3.7 we study

the measure of certain restricted sets in Sd−1. These sets are studied in Claim 9.7 of
section 9. Claims 3.7 and 9.7 are depicted in Figure 1 and proven in section 9.

To complete the proof of Theorem 3.6, let a, z, δ be as in Claim 3.7. For a vertex
v ∈ Ca let N(v) ∩ Ca be the set of vertices adjacent to v in Ca. For the upper bound,
notice that of all vertices in Ca, the vertices v in which µ(N(v) ∩ Ca) is largest are
the vertices on the boundary of Ca. By Claim 3.7, for these vertices µ(N(v) ∩ Ca) is

bounded by (1 − z2)
d−1
2 . We thus conclude that ε(a) is bounded by the measure of
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vertices in Ca times (1− z2)
d−1
2 . That is,

ε(a) ≤ ρ(a)(1− z2)
d−1
2 ≤ (1− a2)

(
1−

(
a2 +

(1/(k − 1) + a2)2

1− a2

)) d−1
2

= λ(a).

As for the lower bound, let w = (w1, w2, . . . , wd) be a vertex in Ca with first
coordinate w1 of value a+ δ. Consider any vertex v = (v1, v2, . . . , vd) ∈ Ca with first
coordinate v1 of value less than a + δ. It is not hard to verify that the measure of
N(v)∩Ca is greater than the measure of N(w)∩Ca. Using an analysis similar to that
of Claim 3.7, we have that µ(N(w) ∩ Ca) is greater than or equal to

(1− cδ) d−1
2

(
1−

(
a2 +

(1/(k − 1) + a(a+ δ))2

1− (a+ δ)2

)) d−1
2

≥ (1− cδ) d−1
2

(
1− z2

) d−1
2

for a sufficiently large constant c (which changes values between both sides of the
second inequality). Furthermore, for our choice of δ, the measure of vertices v =
(v1, v2, . . . , vd) in Ca with v1 ≤ a + δ is at least ρ(a)/2 (Claim 9.3). Hence, we

conclude that E(Ca, Ca) is at least ρ(a)
2 (1− cδ) d−1

2

(
1− z2

) d−1
2 . Simplifying the above

expression, we conclude our assertion.
Theorem 3.6 addresses the case in which k is constant and the caps considered

are both of measure ρ(a) for a constant value of a. For the proof of Theorem 1.2(2)
we also need to address nonconstant values of a and k which depend on d.

Theorem 3.8. Let a = (log(d)/d)
1
4 . Let k satisfy 1/(k− 1) = a2. Let x ∈ Sd−1,

and let Ca be an a-cap centered at x. Let ε(a) be the value of E(Ca, Ca). The value of
ε(a) is in the range[

1

poly(d)

(
1− 2(k − 1)

k − 2
a2

) d−1
2

,

(
1− 2(k − 1)

k − 2
a2

) d−1
2

]
.

The outline of the proof of Theorem 3.8 is similar to that of Theorem 3.6. A full
proof appears in section 9.

Definition 3.9. Let ρ < 1. A graph G = (V,E) is said to be pairwise 〈ρ, ε〉-
connected iff every two (not necessarily disjoint) subsets A and B of V of measure ρ
satisfy E(A,B) ≥ ε.

Combining Theorems 3.5, 3.6, and 3.8 we obtain the following result.
Corollary 3.10. Let a, k, ε(a) be defined as in Theorem 3.6 or 3.8. The graph

Gk is pairwise 〈ρ(a), ε(a)〉-connected.
Roughly speaking, Corollary 3.10 addresses the expansion properties of the con-

tinuous graph Gk. In section 5, we show that these properties imply certain upper
bounds on the independence number of a small random sample of Gk. Namely, we
prove the following theorem.

Theorem 3.11. Let a, k, ε(a) be defined as in Theorem 3.6 or 3.8. Let H be a
random sample of s vertices of Gk (according to the uniform distribution on Sd−1).

Let c be a sufficiently large constant. If s ≥ cρ(a)
ε(a) log2(1/ρ(a)), then the probability

that α(H) > e2ρ(a)s is at most 1/4.
In the following section, Theorem 3.11 is used to prove the main result of this

work, Theorem 1.2. The proof of Theorem 3.11 will be presented in section 5.2.

4. Proof of Theorem 1.2. Recall that we are looking for a graph H for which
both the vector chromatic number and the size of the maximum independent set are
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small. The graphs H that we present are random subgraphs of the graphs Gk defined
in section 3. The three assertions of Theorem 1.2 are all proven similarly; the main
difference among their proofs is the choice of parameters used. To avoid confusion,
we restate Theorem 1.2 using a slightly different notation then that appearing in the
original presentation.

Theorem 1.2 (restated).
1. For every constant γ > 0 and constant k > 2, there are infinitely many graphs

H that are vector k-colorable and satisfy α(H) ≤ s/∆
1− 2

k−γ

H , where s is the
number of vertices in H, ∆H is the maximum degree in H, and ∆H > sδ for
some constant δ > 0.

2. For some constant c, there are infinitely many graphs H of size s that are
O( log s

log log s ) vector colorable and satisfy α(H) ≤ (log s)c.
3. There are infinitely many graphs H of size s which are vector 3-colorable and

satisfy α(H) ≤ s0.843.
Proof of Theorem 1.2(1). Let k > 2 be constant. Let γ > 0 be an arbitrarily small

constant. Let c be a sufficiently large constant, and let a = γ/c. Let G = Gk = (V,E)
be the continuous graph from section 3. (Here and in the remainder of the proof, we
assume that the dimension d of the graph Gk is taken to be significantly larger than
1/γ.) Finally, let ∆ = ρ( 1

k−1 ) be the measure of vertices adjacent to any given vertex
of G.

Recall (from Corollary 3.10) that G is pairwise 〈ρ(a), ε(a)〉-connected. Let ρ =
ρ(a) and ε = ε(a). This implies (Theorem 3.11) that with probability ≥ 3/4 a
random subset H of G of size s ≥ cρε log2(1/ρ) satisfies α(H) ≤ e2ρs. (Recall that c
is a sufficiently large constant.) We start by simplifying the expression bounding s.

Claim 4.1. A random subset H of G of size s = 1/(∆ρ
k

k−2+γ) satisfies α(H) ≤
e2ρs = e2/(∆ρ

2
k−2+γ) with probability ≥ 3/4.

Proof. It suffices to prove that s = 1/(∆ρ
k

k−2+γ) ≥ cρε log2(1/ρ). The claim

follows (by basic calculations) from the fact that ε can be bounded by ∆ρ
2(k−1)
k−2 +γ .

By Theorem 3.6, we have that

ε(a) =

[(
1− c

(√
log(d)

d

))(
1− 1

(k − 1)2

)(
1− 2(k − 1)

k − 2
a2

)] d−1
2

.

It is not hard to verify that (1−c(√log(d)/d))
d−1
2 > ργ/2. Furthermore, by Lemma 3.3

we have that (1 − 1
(k−1)2 )

d−1
2 > ∆. Hence, ε(a) ≥ ργ/2(1 − 2(k−1)

k−2 a2)
d−1
2 ∆. Recall

that a was defined as γ/c for a sufficiently large constant c. This implies that

γ ≥ 2
a2
(

2(k−1)
k−2

)2

1− a2 2(k−1)
k−2

(k > 2 is constant). This expression is designed to fit the requirement appearing

in Claim 9.1 (of section 9). Now by Claim 9.1, it holds that (1 − 2(k−1)
k−2 a2)

d−1
2 ≥

ρ
2(k−1)
k−2 + γ

2 . We conclude that ε(a) ≥ ∆ρ
2(k−1)
k−2 +γ .

Let H be a random subgraph of G of size s = 1/(∆ρ
k

k−2+γ). We will show that
H satisfies the asserted conditions with probability greater than 1/2. First notice
that any subgraph of G is vector k-colorable, including the subgraph H. Second, by
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Claim 4.1, α(H) ≤ e2/(∆ρ
2

k−2+γ) with probability ≥ 3/4. It is left to analyze the
maximum degree of H.

Claim 4.2. With probability greater than 3/4, the maximum degree ∆H of the
subgraph H is in the range [ 12∆s, 2∆s].

Proof. Consider a vertex h ∈ H. Let dh be the degree of h. As every vertex in G
is of degree ∆, the expected value of dh is ∆(s−1). Thus (using standard bounds) the
probability that dh deviates from its expectation by more than a constant fraction of
its expectation is at most 2−Ω(∆s). The probability that some vertex in H has degree
�∈ [ 12∆s, 2∆s] is thus at most 2log(s)−Ω(∆s) ≤ 3/4 for our choice of s.

The first assertion of Theorem 1.2 now follows using basic calculations.
Proof of Theorem 1.2(2). Let d be a large constant. Let k − 1 =

√
d/ log(d). Let

a2 = 1
k−1 . Let G = Gk = (V,E) be the continuous graph from section 3.

Recall (Corollary 3.10) that G is pairwise 〈ρ(a), ε(a)〉-connected. Let ρ = ρ(a)
and ε = ε(a). This implies (Theorem 3.11) that with probability ≥ 3/4 a random
subset H of size s ≥ cρε log2(1/ρ) satisfies α(H) ≤ e2ρs (here c is a sufficiently large
constant). As before we start by simplifying the expression bounding s.

Claim 4.3. There exists a constant γ s.t. with probability at least 3/4 a random
set H of G of size s = dγ

ρ log2(1/ρ) satisfies α(H) ≤ e2ρs with probability ≥ 3/4.

Proof. Recall that k − 1 =
√
d/ log(d), a2 = 1

k−1 . As before, it suffices to bound
ε = ε(a). By Theorem 3.8, we have

ε ≥ 1

poly(d)

(
1− a2 2(k − 1)

k − 2

) d−1
2

.

Furthermore, using Claims 9.1 and 9.2 (of section 9), we obtain(
1− a2 2(k − 1)

k − 2

) d−1
2

=

(
1− a2

(
2 +

2

k − 2

)) d−1
2

≥ 1

poly(d)

(
1− a2

)d−1 ≥ ρ2

poly(d)
.

We conclude that there exists a constant γ such that ε ≥ ρ2

dγ .

Let H be a random subset of vertices of G of size s = dγ

ρ log2(1/ρ). Notice that

log(s) = θ(
√
d log d) and s ≤ θ(d

γ+2

ρ ). By definition, G is k vector colorable. This

implies that any subgraph of G (including that induced by H) is k = O
( log(s)

log(log(s))

)
vector colorable, which completes the proof of the first part of our assertion. For the
second part of our assertion, by Claim 4.3 the subset H does not have an independent
set of size e2ρs ≤ logγ(s) with probability at least 3/4 (for some different constant
γ).

Proof of Theorem 1.2(3). The proof follows the line of proof appearing above.
In general, we use the graph G = G3, but this time the value of a is set to be
a = 0.36. Again, G is pairwise 〈ρ(a), ε(a)〉-connected, where ε(a) can be bounded

by approximately (3
4 (1 − 4a2))

d−1
2 . Let ρ = ρ(a) and ε = ε(a). By Theorem 3.11,

a random subset H of size s ≥ cρε log2(1/ρ) does not have an independent set of
size e2ρs (with probability ≥ 3/4). Computing the value of logs ρs, we obtain our
assertion. We would like to note that results of a similar nature can be obtained using
the above techniques for any value of k.

5. Random sampling. We now turn to proving Theorem 3.11 stated in sec-
tion 3. This is done in two steps. In section 5.1 we prove results analogous to those
presented in Theorem 3.11 when the graphs considered are finite. In section 5.2 we
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show that our analysis extends to the continuous case (of section 3) as well. Finally, in
section 5.3, we continue the study of finite graphs, and obtain results of independent
interest in the context of property testing.

Let G be a graph of size n which does not have an independent set of size ρn
(i.e., α(G) < ρn). Let H be a random subgraph of G of size s (i.e., H is the subgraph
induced by a random subset of vertices in G of size s). In this section we study the
minimal value of s for which α(H) ≤ ρs with high probability.

In general, if our only assumption on G is that α(G) < ρn, we cannot hope to
set s to be smaller than n. Hence, we strengthen our assumption on G, to graphs G
which not only satisfy α(G) ≤ ρn but are also far from having an independent set of
size ρn. (We defer defining the exact notion of “far” until later in this discussion.)
That is, given a graph G which is far from having an independent set of size ρn, we
ask for the minimal value of s for which (with high probability) a random subgraph
of size s does not have an independent set of size ρs. This question (and many other
closely related ones) have been studied in [GGR98] under the title of property testing.

In [GGR98], a graph G of size n is said to be ε-far from having an independent
set of size ρn if any set of size ρn in G has at least εn2 induced edges. It was shown in
[GGR98] that if G is ε-far from having an independent set of size ρn, then with high

probability a random subgraph of size s = c log (1/ε)ρ
ε4 , for a sufficiently large constant

c, does not have an independent set of size ρs.
The results of [GGR98] do not suffice for the proof (as we present it) of The-

orem 1.2. We thus turn to strengthening their results. To do so, we introduce a
stronger notion of being “ε-far.” Roughly speaking, we prove that, under our new
notion of distance, choosing s to be of size ρ

ε suffices. Furthermore, by applying our
proof techniques on the original notion of distance presented in [GGR98], we improve
the result of [GGR98] stated above and obtain a sample size proportional to 1/ε3. In
section 6 we continue to study the original notion of ε-far from [GGR98] and present
a lower bound on the sample size which is proportional to 1/ε2. The proof techniques
used in this section are based on the techniques appearing in [GGR98] and [AK02].
(In the latter, property testing of the chromatic number is considered.) We start with
the following definitions (which are finite versions of those given in section 3.)

Definition 5.1. Let A and B be (not necessarily disjoint) subsets of G. For
each vertex v ∈ A let dv(B) be the number of neighbors v has in B. Let E(A,B) =∑

v∈A dv(B).
Definition 5.2. Let ρ < 1. A graph G = (V,E) is said to be 〈ρ, ε〉-connected iff

every subset A of V of size ρn satisfies E(A,A) ≥ εn2 (i.e., the number of edges in
the subgraph induced by A is greater than ε

2n
2).

Notice that ε ≤ ρ2. Furthermore, notice that a graph G is 〈ρ, ε〉-connected iff G
is ε/2-far (by the definitions presented in [GGR98]) from having an independent set
of size ρn.

Definition 5.3. Let ρ < 1. A graph G = (V,E) is said to be pairwise 〈ρ, ε〉-
connected iff every two (not necessarily disjoint) subsets A and B of V of size ρn
satisfy E(A,B) ≥ εn2.

As mentioned above, for 〈ρ, ε〉-connected and pairwise 〈ρ, ε〉-connected graphs G,
we study the minimal value of s for which a random subgraph H of G of size s satisfies
α(H) ≤ ρs with high probability. Namely, we analyze the probability that a random
subset H of G satisfies α(H) ≤ ρs (as a function of ρ, ε, and the sample size s). The
main idea behind our proof is as follows. Given a sample size s, we start by bounding
the probability that a random subset R of G of size k > ρs is an independent set.
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Then, using the standard union bound on all subsets R of H of size greater than ρs,
we bound the probability that α(H) > ρs.

Throughout this section we analyze the properties of random subsets H which
are assumed to be small. Namely, we assume that the value of s and the parameters
ρ, ε, and n satisfy (a) s < c

√
n and (b) s < cρn for a sufficiently small constant c. In

our applications (and also in standard ones) these assumptions hold.
In section 5.1 we analyze the above proof strategy and show that it suffices to

bound a condition slightly weaker than the condition α(H) > ρs. Namely, using this
scheme, we are able to bound the probability for which α(H) > δρs for sufficiently
large constants δ. This result is used to prove Theorem 3.11 of section 3. In section 5.3
we refine our scheme and obtain the main result of this section.

Theorem 5.4. Let G be a 〈ρ, ε〉-connected graph. Let H be a random sample of
G of size s. For any constant c1 > 0 there exists a constant c2 > 0 (depending on c1
alone) s.t.

1. if s ≥ c2 ρ4

ε3 log
(
ρ
ε

)
, then the probability that H has an independent set of size

> ρs is at most e−c1
ρ
ε ;

2. if G is pairwise 〈ρ, ε〉-connected, and s ≥ c2 ρ5

ε3 log
(
ρ
ε

)
log( 1

ρ ), then the proba-

bility that H has an independent set of size > ρs is at most e−c1
ρ2 log(1/ρ)

ε .

5.1. The naive scheme. Let G = (V,E) be a 〈ρ, ε〉-connected graph (pairwise
or not). In this section we study the probability that a random subset R of V of
size k is an independent set. We then use this result to bound the probability that a
random subset H of G of size s has a large independent set.

We would like to bound (from above) the probability that R induces an indepen-
dent set. Let {r1, . . . , rk} be the vertices of R. Consider choosing the vertices of R
one by one such that at each step the random subset chosen so far is Ri = {r1, . . . , ri}.
Assume that at some stage Ri is an independent set. We would like to show (with
high probability) that after adding the remaining vertices of {ri+1, . . . , rk} to Ri, the
final set R will not be an independent set.

Let I(Ri) (for independent) be the set of vertices in V which are not adjacent to
any vertices in Ri, and let N(Ri) be the set of vertices that are adjacent to a vertex
in Ri. Consider the next random vertex ri+1 ∈ R. If ri+1 is chosen from N(Ri),
then Ri+1 is no longer an independent set (implying that neither is R), and we view
this round as a success. Otherwise, ri+1 happens to be in I(Ri), and Ri+1 is still
an independent set. But if ri+1 also happens to have many neighbors in I(Ri), then
adding it to Ri will substantially reduce the size of I(Ri+1), which works in our favor.
This later case is also viewed as a successful round regarding Ri.

Motivated by the discussion above, we continue with the following definitions.
As before, let G = (V,E) be a 〈ρ, ε〉-connected graph (pairwise or not), let R =
{r1, . . . , rk} be a set of vertices in V , and let Ri = {r1, . . . , ri}. Each subset Ri of V
defines the following partition (LIi, HIi, Ni) of V :

• Let Ii be the vertices that are not adjacent to any vertex in Ri (notice that
it may be the case that Ri ∩ Ii �= φ). Ii is now partitioned into two parts:
vertices in Ii which have low degree, denoted as the set LIi, and vertices of
high degree, denoted as HIi. Namely, LIi is defined to be the ρn vertices of
Ii with minimal degree (in the subgraph induced by Ii), and HIi is defined
to be the remaining vertices of Ii. Ties are broken arbitrarily or in favor of
vertices in Ri (namely, vertices in Ri are placed in Ii before other vertices of
identical degree). If it is the case that |Ii| ≤ ρn, then LIi is defined to be Ii,
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and HIi is defined to be empty.
• Ni is defined to be the remaining vertices of V (namely, the vertices that

share an edge with some vertex in Ri).
We define the partition corresponding to R0 = φ as (LI0, HI0, NI0), where LI0 are
ρn vertices of G of minimal degree, HI0 are the remaining vertices of G, and N0 = φ.

Notice, using this notation, that the subset Ri is an independent set iff Ri∩Ni =
φ, or equivalently, Ri ⊆ Ii. Moreover, in this case Ri ⊆ LIi. (All vertices of Ri

have degree 0 in the subgraph induced by Ii.) Furthermore, each vertex ri in an
independent set R = Rk = {r1, . . . , rk} satisfies ri ∈ Ii−1.

We are now ready to bound the probability that a random subset R = {r1, . . . , rk}
of G is independent. Let Ri = {r1, . . . , ri}, and let (LIi, HIi, Ni) be the corresponding
partitions of V defined by Ri. Consider the case in which R is an independent set. As
mentioned above, this happens iff for every i the vertex ri is chosen to be independent
from the subset Ri−1, or in other words, ri ∈ Ii−1 = LIi−1 ∪HIi−1. We would like
to show that this happens with small probability (if k is large enough).

Initially, the subset I0 is large (the entire vertex set V ), and it gets smaller and
smaller as we proceed in the choice of vertices in R. Each vertex in ri ∈ HIi−1 reduces
the size of Ii−1 substantially, while each vertex in LIi−1 may only slightly change the
size of Ii−1. In the following, we show that there cannot be many vertices ri ∈ R that
happen to fall into HIi−1 (as each such vertex reduces the size of Ii−1 substantially).
We thus turn to considering vertices ri that fall in LIi−1. (There are almost k such
vertices.) The size of LIi is bounded by ρn. Hence, the probability that ri ∈ LIi
is bounded by ρ (by our definitions Ri−1 ⊆ LIi−1 and the vertex ri is random in
V \ Ri−1). This implies that the probability that R is an independent set is roughly
bounded by ρk. Details follow.

Lemma 5.5. Let G be a 〈ρ, ε〉-connected graph. Let R = {r1, . . . , rk} be a set
in G. The number of vertices ri that satisfy ri ∈ HIi−1 is bounded by t = ρ

ε . If G
is pairwise 〈ρ, ε〉-connected, then the number of vertices ri that satisfy ri ∈ HIi−1 is

bounded by t = 2ρ2�log (1/ρ)�
ε .

Proof. We start with the following claim.
Claim 5.6. Let Ri be as defined above, and let (LIi, HIi, Ni) be its corresponding

partition. Let Ii = LIi ∪HIi. If G is 〈ρ, ε〉-connected, then every vertex in HIi has
degree at least ε

ρn (in the subgraph induced by Ii). If G is pairwise 〈ρ, ε〉-connected,

then every vertex in HIi has degree at least ε
2ρ2 |Ii| (in the subgraph induced by Ii).

Proof. Assume that |Ii| = αρn for some α ≥ 1 (otherwise the set HIi is empty,
and the claim holds). Notice that this implies |LIi| = ρn. For the first part of
our claim, recall by the definition of 〈ρ, ε〉-connected graphs that E(LIi, LIi) ≥ εn2.
Hence, we conclude that there exists a vertex in LIi of degree at least ε

ρn (in the

subgraph induced by LIi). The set LIi ⊆ Ii, and thus also, in the subgraph induced
by Ii, there exists a vertex in LIi of degree at least ε

ρn. As LIi are the vertices of
minimal degree in Ii, we conclude the first part of our assertion.

For the second part, let Ii = X1∪X2∪· · ·∪X�, where {X1, . . . , X�} is a partition
of Ii into  sets in which the size of Xj for all j �=  is ρn. Notice that  = �α� + 1.
For each v ∈ Ii let dv(Ii) be the degree of v in the subgraph induced by Ii.

In this case our graph G is pairwise 〈ρ, ε〉-connected. This implies that the value
of E(LIi, Xj) for each j (except j = ) is at least εn2. Hence,

∑
v∈LIi

dv(Ii) is at

least �α�εn2 ≥ α
2 εn

2. This implies that LIi must include a vertex v with degree
dv(Ii) ≥ α ε

2ρn. As LIi are the vertices of minimal degree in Ii, we conclude our
assertion.
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Now to prove our lemma, consider the subsets Ri = {r1, . . . , ri} and their cor-
responding partitions (LIi, HIi, Ni). Let Ii = LIi ∪ HIi. Let N(ri) be the vertices
adjacent to ri in Ii−1. We would like to bound the number of vertices ri that are in
HIi−1. We start with the case in which G is 〈ρ, ε〉-connected. Consider a vertex ri
in HIi. By Claim 5.6, its degree in Ii−1 is |N(ri)| ≥ ε

ρn. Each vertex ri ∈ HIi−1

increases the size of Ni−1 by at least |N(ri)|. Initially, N0 is empty, and after rk is
chosen, |Nk| ≤ n. We conclude that there are at most ρ

ε vertices ri in R which are
in HIi−1. This bound can be further improved by a factor of approximately ρ to
2ρ2�log (1/ρ)�

ε using tighter analysis when G is also pairwise 〈ρ, ε〉-connected; details
follow.

Let x ≥ 0 be an integer, and let Sx = {i | ri ∈ HIi−1 and |Ii−1| ∈ [ n
2x+1 ,

n
2x )}.

We would like to bound the size of Sx for all possible values of x. We start by
considering values of x between 0 and �log(1/ρ)� − 1. Consider a vertex ri in which
i ∈ Sx. That is, ri ∈ HIi−1 and n

2x ≥ |Ii−1| > n
2x+1 . By Claim 5.6, the degree of ri

in Ii−1 is |N(ri)| ≥ ε
2ρ2 |Ii−1| ≥ ε

2ρ2
n

2x+1 . Each vertex ri in which i ∈ Sx increases the

size of Ni−1 by at least |N(ri)|. For such vertices, Ni−1 is of size at least n− n
2x and

at most n− n
2x+1 . We conclude that |Sx| is of size at most 2ρ2

ε .
For x ≥ �log(1/ρ)�, the set Sx is a subset of {i | ri ∈ HIi−1 and |Ii−1| ≤ ρn}.

Recall that HIi−1 = φ whenever |Ii−1| ≤ ρn. This implies that Sx = φ in these cases.

In sum, we conclude that
∑

x |Sx| ≤ 2ρ2�log (1/ρ)�
ε , which concludes our proof.

Theorem 5.7. Let G be a 〈ρ, ε〉-connected graph (pairwise or not). Let t be as
in Lemma 5.5. Let k ≥ 2t. The probability that k random vertices of G induce an
independent set is at most

ρk
(
ek

tρ

)t

.

Proof. Let R = {r1, . . . , rk} be a set of k random vertices. As mentioned previ-
ously, the probability that ri ∈ LIi−1 is at most ρ. This follows from the fact that
(1) the size of LIi−1 is at most ρn, (2) Ri−1 ⊆ LIi−1 (by our definitions), and (3) the
vertex ri is random in V \Ri−1.

Now in order for R to be an independent set, every vertex ri of R must be in the
set Ii−1. Furthermore, by Lemma 5.5 all but t vertices ri of R must satisfy ri ∈ LIi−1.
Hence, the probability that R is an independent set is at most(

k

t

)
ρk−t ≤

(
ke

t

)t

ρk−t = ρk
(
ek

tρ

)t

.

Let δ be a large constant. We now use Theorem 5.7 to bound the probability that
a random subset H of G of size s has an independent set of size > δρs. The result is
the following Corollary 5.8, which will be used in section 5.2 to prove Theorem 3.11.
In section 5.3 we refine our proof techniques and get rid of the parameter δ. That is,
we bound the probability that a random subset H of G of size s has an independent
set of size > ρs.

Corollary 5.8. Let G be a 〈ρ, ε〉-connected graph (pairwise or not). Let t be
as in Lemma 5.5. Let H be a random sample of G of size s. Let δ > e, and let c be

a sufficiently large constant. If s ≥ ct log(1/ρ)
ρ , then the probability that α(H) > δρs is

at most
(
e
δ

)Ω(δρs)
.

Proof. Let k = δρs. Using Theorem 5.7 and the fact that a subset R of H is
random in G, the probability that there is an independent set R in H of size k is at
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most (
s

k

)
ρk
(
ek

tρ

)t

≤
[(e
δ

) k
t ek

tρ

]t
≤
(e
δ

)Ω(k)

.

In the last inequality we have used the fact that k
t is greater than c log(1/ρ) for a

sufficiently large constant c.

5.2. Proof of Theorem 3.11. We would now like to show that the analysis
presented in section 5.1 also holds for our continuous graph Gk of section 3. Namely,
we would like to prove the following analogue of Corollary 5.8.

Theorem 3.11 (restated). Let a, k, ε(a) be defined as in Theorem 3.6 or 3.8.
Let H be a random sample of s vertices of Gk (according to the uniform distribution

on Sd−1). Let c be a sufficiently large constant. If s ≥ cρ(a)
ε(a) log2(1/ρ(a)), then the

probability that α(H) > e2ρ(a)s is at most 1/4.
Proof. Let H = {h1, . . . , hs} be s random points of the unit sphere (that is, H is

a random subset of Gk of size s). Let Rk = {r1, . . . , rk} be a subset of H of size k.
Finally, for i ∈ {1, . . . , k} let Ri = {r1, . . . , ri} and (LIi, HIi, Ni) be its corresponding
partition (as defined in section 5.1). For each i the subsets LIi, HIi, and Ni are
measurable (this follows from the fact that the neighborhood of each vertex is a cap
of Sd−1). Hence, the proofs of Lemma 5.5 and Theorem 5.7 hold under Definitions 3.1,
3.2, and 3.9 of section 3. This suffices to conclude our assertion.

5.3. An enhanced analysis. Let G = (V,E) be a 〈ρ, ε〉-connected graph (pair-
wise or not), and let H = {h1, . . . , hs} be a set of random vertices of size s in V . In
the previous section we presented a bound on the probability that α(H) > δρs for
large constant values of δ. In this section we enhance our analysis and bound the
probability that α(H) > ρs (namely, we get rid of the additional parameter δ).

Recall our proof technique from section 5.1. We started by analyzing the proba-
bility that a subset R of H of size k is an independent set. Afterwards we bounded
the probability that α(H) > δρn by using the standard union bound on all subsets
R of H of size greater than k = δρn. In this section we enhance the first part of this
scheme by analyzing the probability that a subset R of H of size k is a maximum
independent set in H (rather than just an independent set of H). Then, as before,
using the standard union bound on all large subsets R of H, we bound the probability
that α(H) > ρs. We show that taking the maximality property of R into account will
suffice to prove Theorem 5.4.

Let H = {h1, . . . , hs} be s random vertices in G. We would like to analyze
the probability that a given subset R of H of size k is a maximum independent set.
Recall (section 5.1) that the probability that R is an independent set is bounded by
approximately ρk. An independent set R is a maximum independent set in H only if
adding any other vertex in H to R will yield a set which is no longer independent. Let
R = Rk be an independent set, and let (LIk, HIk, Nk) be the partition (as defined
in section 5.1) corresponding to R. Consider an additional random vertex h from H.
The probability that R ∪ h is no longer an independent set is approximately |Nk|/n
(here we assume that |R| is small compared to n). The probability that for every

h ∈ H \R the subset R∪{h} is no longer independent is thus � (|Nk|/n)
s−k

. Hence,
the probability that a given subset R of H of size k is a maximum independent set is
bounded by approximately ρk (|Nk|/n)

s−k
. This value is substantially smaller than

ρk iff |Nk| is substantially smaller than n. We conclude that it is in our favor to
somehow ensure that |Nk| is not too large. We do this in an artificial manner.
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Let R = {r1, . . . , rk} be an independent set, let Ri = {r1, . . . , ri}, and let
(LIi, HIi, Ni) be the partition (as defined in section 5.1) corresponding toRi. Roughly
speaking, in section 5.1, every time a vertex ri was chosen, the subset Ni was updated.
If ri was chosen in HIi−1, then Ni−1 grew substantially, and if ri was chosen in LIi−1,
the subset Ni−1 was only slightly changed. We would like to change the definition
of the partition (LIi, HIi, Ni) corresponding to Ri to ensure that Ni is always sub-
stantially smaller than n. This cannot be done unless we relax the definition of Ni.
In our new definition, Ni will no longer represent the entire set of vertices adja-
cent to Ri; rather, Ni will include only a subset of vertices adjacent to Ri (a subset
which is substantially smaller than n). Namely, in our new definition of the partition
(LIi, HIi, Ni) the set Ni−1 is changed only if ri was chosen in HIi−1. In the case
in which ri ∈ LIi−1 ∪ Ni−1, we do not change Ni−1 at all. As we will see, such a
definition will imply that |Ni| ≤ (1− ρ)s, which will now suffice for our proof.

A new partition. Let H = {h1, . . . , hs} be a subset of V . Let Ri = {r1, . . . , ri}
be a subset of H of size i. Each such subset Ri defines a partition (LIi, HIi, Ni) of
V . As before, let Ii = LIi ∪HIi.

1. Initially R0 = φ, LI0 is the ρn vertices in V of minimal degree (in V ),
HI0 = V \ LI0, and N0 = φ. In the above, ties are broken by an assumed
ordering on the vertices in V .

2. Let (LIi, HIi, Ni) be the partition corresponding to Ri, and let ri+1 be a
new random vertex. Let Ri+1 = Ri ∪ {ri+1}; then we define the partition
(LIi+1, HIi+1, Ni+1). Let N(ri+1) be the neighbors of ri+1 in Ii. We consider
the following cases:
• If ri+1 ∈ LIi, then the partition corresponding to Ri+1 will be exactly

the partition corresponding to Ri, namely, LIi+1 = LIi, HIi+1 = HIi,
and Ni+1 = Ni. Notice that this implies that Ni+1 no longer represents
all neighbors of Ri+1. There may be vertices adjacent to Ri+1 which are
in Ii+1.

• If ri+1 ∈ HIi, then we consider two subcases:
– If |Ni∪N(ri+1)| ≤ (1−ρ)n, then LIi+1, HIi+1, and Ni+1 are defined

as in section 5.1. Namely, Ni+1 = Ni ∪N(ri+1). Ii+1 is defined to
be V \ Ni+1. LIi+1 is defined to be the ρn vertices of Ii+1 with
minimal degree (in the subgraph induced by Ii+1), and HIi+1 is
defined to be the remaining vertices of Ii+1. Ties are broken by the
assumed ordering on V .

– If |Ni∪N(ri+1)| > (1−ρ)n, then let N̂(ri+1) be the first (according
to the assumed ordering on V ) (1− ρ)n− |Ni| vertices in N(ri+1),
and set Ni+1 = Ni ∪ N̂(ri+1). Furthermore, set LIi+1 to be the
remaining ρn vertices of G, and HIi to be empty. Notice that in
this case, |Ni+1| is of size exactly (1− ρ)n.

• If ri+1,∈ Ni then, once again, the partition corresponding to Ri+1 will
be exactly the partition corresponding to Ri.

A few remarks are in order. First, it is not hard to verify that the definition above
implies the following claim.

Claim 5.9. Let i ∈ {1, . . . , k}. The partitions (LIi, HIi, Ni) corresponding to
Ri as defined above satisfy (a) Ii ⊆ Ii−1, (b) Ni−1 ⊆ Ni, (c) |Ni| ≤ (1 − ρ)n, (d)
|LIi| = ρn, (e) that the set LIi is the ρn vertices of minimal degree in Ii.

Second, due to the iterative definition of our new partition, the partitions (LIi,
HIi, Ni) corresponding to the subsets Ri depend strongly on the specific ordering of
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the vertices in Ri. Namely, in contrast to the partitions used in section 5.1, a single
subset R with two different orderings may yield two different partitions. For this
reason, in the remainder of this section we will assume that the vertices of H are
chosen one by one. This will imply an ordering on H and on any subset R of H. The
partitions we will study will correspond to these orderings only.

Finally, in section 5.1, an (ordered) subset R = {r1, . . . , rk} was independent iff
for all i, ri ∈ Ii−1 (according to the definition of Ii−1 appearing in section 5.1). In
this section, if R is independent, then it still holds that for all i, ri ∈ Ii−1. However,
it may be the case that for all i, ri ∈ Ii−1, but R is not an independent set. In the
remainder of this section, we call ordered subsets R for which for all i, ri ∈ Ii−1, free
sets. We analyze the probability that a random ordered subset H of V of size s does
not have any free sets of size larger then ρs. This implies that H does not include
any independent sets of size ρs.

Definition 5.10. An ordered subset Ri = {r1, . . . , ri} is said to be free if it is
the case that rj ∈ Ij−1 for all j ≤ i.

Claim 5.11. Let H = {h1, . . . , hs} be an ordered set of vertices in a (pairwise)
〈ρ, ε〉-connected graph G. If α(H) > ρs, then the maximum free set in H (w.r.t. the
ordering implied by H) is of size > ρs.

Proof. Let I be an independent set of size > ρs in H. It is not hard to verify that
I (under the ordering implied by H) is a free set. We conclude that the maximum
free set R in H (ordered by the ordering implied by H) is of size > ρs.

Claim 5.11 implies that to prove Theorem 5.4 it suffices to analyze the maximum
free set R ⊆ H. Moreover, the only ordered subsets R that we need to consider are
those ordered by the ordering implied by H. We now turn to proving Theorem 5.4.
Roughly speaking, we start by analyzing the probability that a random subset R is a
free set. We then analyze the probability that a given subset R in H is a maximum
free set. Finally, we use the union bound on all subsets R of H of size > ρs to obtain
our results.

In the remainder of this section, we will assume that the subset H is chosen from
G randomly with repetitions. That is, H is a random multiset of size s. Our results
(with minor modifications) apply also to the case in which H is a random subset of G
(and not a multiset) if the size of H is not very large (here we assume that |H| � √n).
As in such cases, a set H of size s which is randomly chosen from V with repetitions
will not include the same vertex twice (with high probability).

We start by stating the following lemmas, which are analogous to Lemma 5.5 and
Theorem 5.7 from section 5.1. The main difference between the lemmas below (and
their proofs) and those of the previous section is in the definition of the partition
(LIi, HIi, Ni) and in the fact that they address free sets instead of independent sets.
Proof of the lemmas is omitted.

Lemma 5.12. Let G be a 〈ρ, ε〉-connected graph. Let R = {r1, . . . , rk} be an
ordered set in G of size k. The number of vertices ri which satisfy ri ∈ HIi−1 is
bounded by t = ρ

ε . If G is pairwise 〈ρ, ε〉-connected, then the number of vertices ri

which satisfy ri ∈ HIi−1 is bounded by t = 2ρ2�log (1/ρ)�
ε .

Lemma 5.13. Let G be a 〈ρ, ε〉-connected graph (pairwise or not). Let t be as
in Lemma 5.12. Let k ≥ 2t. Let R = {r1, . . . , rk} be k random vertices of G. The
probability that R induces a free set is at most

ρk
(
ek

tρ

)t

.
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We now address the probability that a random subset R of H is a maximum free
set. We will then use the union bound on all subsets R of H of size > ρs to obtain
our results.

Lemma 5.14. Let G be a 〈ρ, ε〉-connected graph (pairwise or not). Let t be as in
Lemma 5.12. Let k ≥ 2t. Let H be an ordered random sample of G of size s ≥ k.
The probability that a given subset R of H is a maximum free set is at most

ρk
(
ek

tρ

)t

(1− ρ)s−k.

Proof. Let R = {r1, . . . , rk} (ordered by the ordering induced by H). The set R
is a maximum free set in H only if (a) R is free and (b) for each vertex h ∈ H which
is not in R, the ordered set R+ = {r1, . . . , rj , h, rj+1, . . . , rk} is not free. Here the
index j is such that rj appears before h in the ordering of H, and rj+1 appears after
h (i.e., R+ is ordered according to the ordering of H).

The probability that R is free has been analyzed in Lemma 5.13. It is left to
analyze the probability that R+ is not free for every vertex h �∈ R, given that R is free.
Consider a vertex h ∈ H which is not in R, and let R+ = {r1, . . . , rj , h, rj+1, . . . , rk}.

Claim 5.15. Let R = {r1, . . . , rk} be a free set and R+ = {r1, . . . , rj , h, rj+1, . . . , rk}.
Let the partition corresponding to Rj = {r1, . . . , rj} be (LIj , HIj , Nj). If h ∈ LIj ,
then R+ is also a free set.

Proof. We will use the following notation. Let Ri = {r1, . . . , ri} denote the
first i vertices of R, and let (LIi, HIi, Ni) be its corresponding partition. For i > j,
let R+

i = {r1, . . . , rj , h, rj+1, . . . , ri} denote the first i + 1 vertices of R+, and let
(LI+

i , HI
+
i , N

+
i ) be its corresponding partition. Finally, let R+

h denote the subset
{r1, . . . , rj , h} and (LI+

h , HI
+
h , N

+
h ) be its corresponding partition.

We would like to prove that R+ is free. That is, we would like to show (a) that
ri ∈ Ii−1 for each i ≤ j, (b) that h ∈ Ij , (c) that rj+1 ∈ I+

h , and (d) that ri ∈ I+
i−1

for i ≥ j + 2. Recall that R is free, and thus ri ∈ Ii−1 for all i ∈ {1, . . . , k}.
The first assertion follows from the fact that the first j vertices of R and R+ are

identical. The second follows from the assumption that h ∈ LIj . For the third as-
sumption, notice (as h ∈ LIj) that the partition corresponding to R+

h = {r1, . . . , rj , h}
is equal to the partition corresponding to Rj = {r1, . . . , rj}. This follows from our
definition of the partition (LI+

h , HI
+
h , N

+
h ). As rj+1 ∈ Ij , we conclude that rj+1 ∈ I+

h .
For the final assertion, observe that for any i ≥ j+1, the partition corresponding

to R+
i is equal to the partition corresponding to Ri. This can be seen by induction

(on i). We start with the partitions corresponding to Rj+1 and R+
j+1. The partition

(LIj+1, HIj+1, Nj+1) is defined uniquely by the partition corresponding to Rj and the
vertex rj+1. Similarly, the partition (LI+

j+1, HI
+
j+1, N

+
j+1) is defined uniquely by the

partition corresponding to R+
h and the vertex rj+1. As the partition corresponding

to R+
h is equal to the partition corresponding to Rj , we conclude that the same

hold for the partitions corresponding to Rj+1 and R+
j+1. The inductive step is done

similarly. The partition corresponding to Ri (R+
i ) is defined uniquely by the partition

corresponding to Ri−1 (R+
i−1) and the vertex ri. As the partition corresponding to

Ri−1 equals that corresponding to R+
i−1, we conclude our claim. As R is free, ri ∈ Ii−1

for every i ≥ j + 2. This implies also that ri ∈ I+
i−1, which proves the final asser-

tion.
Claim 5.15 implies that the probability that R+ = {r1, . . . , rj , h, rj+1, . . . , rk} is

not free, given that R is free, is at most (1 − ρ) (recall that the set LIj is of size
exactly ρn). This holds independently for every vertex h in H \R. We conclude that



1356 U. FEIGE, M. LANGBERG, AND G. SCHECHTMAN

the probability that R is a maximum free subset of H is at most the probability that
R is free times (1− ρ)s−k.

We now turn to analyzing the probability that a random ordered subset H of G
of size s has a free set of size larger than ρs. We follow the line of analysis given in
section 5.1 and analyze the probability that H has a free set of size larger than δρs
for any δ > 1. We then get rid of the factor δ to obtain our main theorem of this
section.

Corollary 5.16. Let G be a 〈ρ, ε〉-connected graph (pairwise or not). Let t be
as in Lemma 5.12. Let H be a random sample of G of size s. Let δ > 1, and let c be
a sufficiently large constant. Let Γ = ln δ − δ−1

δ . If s ≥ ct
ρΓ (log(1/ρ) + log(1 + 1/Γ)) ,

then the probability that H has a free set of size > δρs is at most

s

(
1

eΓ

)Ω(δρs)

.

Proof. Let k = δρs, let δ′ > δ, and let k′ = δ′ρs > k. Using Lemma 5.14, the
probability that there is a maximum free set R in H of size k′ is at most∑

k′>k

(
s

k′

)
ρk

′
(
ek′

tρ

)t

(1− ρ)s−k′ ≤
∑
k′>k

(
ek′

tρ

)t
ss(1− ρ)s−k′

k′k
′
(s− k′)s−k′ ρ

k′

≤
∑
k′>k

(
ek′

tρ

)t
ek

′ δ′−1
δ′

δ′k
′

=
∑
k′>k

⎡⎣ek′
tρ

(
1

eln δ′− δ′−1
δ′

) k′
t

⎤⎦t

≤
∑
k′>k

⎡⎣ek′
tρ

(
1

eΓ

) k′
t

⎤⎦t

≤
∑
k′>k

(
1

eΓ

)Ω(k′)

≤ s
(

1

eΓ

)Ω(k)

.

We use the facts that k′
t is greater than both c 1

Γ log(1 + 1/Γ) and c 1
Γ log(1/ρ) for a

sufficiently large constant c, and that Γ is an increasing function of δ (for δ >
1).

It remains to get rid of the additional parameter δ of Corollary 5.16 (namely, to
analyze the probability that α(H) > ρs).

Lemma 5.17. If a given graph G is (pairwise) 〈ρ, ε〉-connected, then G is also
(pairwise) 〈ρ(1− ε

4ρ2 ), ε2 〉-connected.

Proof. We present proof for the case in which G is 〈ρ, ε〉-connected; a similar
proof holds for the case in which G is pairwise 〈ρ, ε〉-connected. Let A be some subset
of G of size ρ(1− ε

4ρ2 )n. Let Ac be any set in V \A of size ε
4ρn. It is known that the

number of edges induced by the set A∪Ac is at least ε
2n

2 (notice that |A∪Ac| = ρn
and E(A ∪Ac, A∪Ac) ≥ εn2). The number of edges (in A ∪Ac) adjacent to vertices
in Ac is bounded by ε

4ρρn
2 = ε

4n
2. Hence, the number of edges induced by vertices

in A is at least εn2

4 , implying that E(A,A) ≥ ε
2n

2.
Theorem 5.4 (restated). Let G be a 〈ρ, ε〉-connected graph (pairwise or not).

Let t be as in Lemma 5.12. Let H be a random sample of G of size s. Let c be a
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sufficiently large constant. If s ≥ ctρ
3

ε2 log
(
ρ
ε

)
, then the probability that H has an

independent set of size > ρs is at most e−Ω(t).
Proof. By Lemma 5.17, G is also 〈ρ(1 − ε

4ρ2 ), ε2 〉-connected (pairwise or not).

Let ρ′ = ρ(1 − ε
4ρ2 ) and ε′ = ε

2 . We would like to bound the probability that H
does not have any independent sets of size greater than ρs. Let δ = 1 + ε

4ρ2 . Notice

that δρ′ ≤ ρ. Hence, it suffices to bound the probability that α(H) > δρ′s. This
probability, in turn, is at most the probability that H has a maximum free set of size
greater than k = δρ′s (Claim 5.11).

Let Γ = ln(δ)− δ−1
δ . It is not hard to verify that Γ = θ((δ − 1)2) = θ( ε2

ρ4 ) for our
value of δ. By our assumption, s is greater than or equal to

ct
ρ3

ε2
log
(ρ
ε

)
≥ c1t

ρ(δ − 1)2

(
log

(
1

ρ′

)
+ log

(
1 +

1

(δ − 1)
2

))

≥ c2t

ρ′Γ

(
log

(
1

ρ′

)
+ log

(
1 +

1

Γ

))
,

where in the above, c1 and c2 are constants closely related to c. Now, by Corol-
lary 5.16, for our choice of s, the probability that H has a maximum free set of size

greater than k = δρ′s is at most s
(

1
eΓ

)Ω(δρ′s) ≤ e−Ω(t).
Roughly speaking, Theorem 5.4 states that, given a 〈ρ, ε〉-connected graph G,

a random sample H of G of size s proportional to ρ4

ε3 (or larger) will not have an
independent set of size ρs (with high probability). This improves upon the bound
of s � ρ

ε4 presented in [GGR98] both in the dependence on ρ (as ρ < 1) and in the

dependence on ε. Moreover, we present a further improvement to s � ρ5

ε3 if our graphs
are considered to be pairwise 〈ρ, ε〉-connected. In section 6 we continue to study the
minimal value of s for which α(H) < ρs with high probability, and present a lower

bound on the size of s which is proportional to ρ3

ε2 .

6. Lower bounds for the testing of α(G). In this section we present graphs
G which are 〈ρ, ε〉-connected, but with some constant probability a random sample R
of G of size s ∼ ρ3/ε2 is likely to have an independent set of size greater than ρs.

Lemma 6.1. Let ρ be a small constant and ε < ρ2 s.t. ρ3/ε2 � n. For n large
enough, there exists a graph G on n vertices for which (a) G is 〈ρ, ε〉connected, and

(b) with constant probability (independent of ρ and ε) a random set R of size s = ρ3

ε2

will have an independent set of size ρs.
Proof. Consider the graph G = (V,E) in which |V | = n, and V consists of two

disjoint sets A and V \ A, where A is an independent set of size (1 − ε
ρ2 )ρn, V \ A

induces a clique, and every vertex in A is adjacent to every vertex in V \ A. On
one hand, every subset of size ρn in G induces a subgraph with at least εn2/2 edges
(implying that G is 〈ρ, ε〉-connected). On the other hand, let R be a random subset of

V obtained by picking each vertex independently with probability ρ3

ε2n . The expected

size of R is s = ρ3

ε2 . In the following we assume that R is exactly of size s; minor
modifications in the proof are needed if this assumption is not made. The set R ∩ A
is an independent set in the subgraph induced by R. The expected size of R ∩ A is
(1− ε

ρ2 )ρs. Let N(0, 1) denote a standard normal variable. It can be seen using the

central limit theorem (for example, [Fel66]) that, for our choice of parameters, the
probability that |R ∩ A| deviates from its expectation by more than a square root of
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its expectation is at least

Pr

[
|R ∩A| >

(
1− ε

ρ2

)
ρs+

√
ρs

]
> Pr [N(0, 1) > 1] ,

which is some constant probability independent of ε and ρ. In such a case the size of
R ∩ A will be greater than (1− ε

ρ2 )ρs+
√
ρs = ρs for our value of s, hence implying

assertion (b) of the lemma.

7. An alternative proof of Theorem 1.2(1). In Theorem 1.2(1), we are
interested in presenting a vector k-colorable graph H in which a special relationship
is satisfied between its maximum degree and its maximum independent set. It is not
hard to verify that the graphs Gk presented in section 3 are far from satisfying this
relationship, as the maximum degree ∆ of these graphs is too large. We overcome
this problem in sections 4 and 5 by considering a random (vertex-induced) subgraph
of Gk. We have shown that such a subgraph will suffice for proving the three parts
of Theorem 1.2.

Another method for coping with the large maximum degree ∆ ofGk was suggested
by Luca Trevisan (private communication). Instead of sampling vertices from Gk at
random in order to obtain a sparse graph, consider sampling edges at random. In the
following section we combine the idea of edge sampling with our results from section 3
and prove the first part of Theorem 1.2. The use of edge sampling simplifies the proof
of Theorem 1.2(1) (as the analysis presented in section 5 is no longer needed). It
appears that the remainder of Theorem 1.2 cannot be proven using edge sampling
(as we are interested in graphs in which the maximum independent set is small with
respect to the number of vertices in the graph).

To construct the graph H we will follow a three-phase plan. Our starting point
will be the continuous graph Gk (of section 3), which is vector k-colorable and proven
to be pairwise 〈ρ, ε〉-connected. We then define and analyze a (finite) discrete version
Gd

k of Gk, which will be shown to inherit many of the properties of Gk. Namely, this
discrete graph will be almost vector k-colorable, and will be pairwise 〈ρ, ε〉-connected.
Finally, we will define H to be the graph obtained by randomly removing edges from
the discrete graph Gd

k.
The discrete graph Gd

k. We now define a discrete analogue Gd
k of the continuous

graph Gk from section 3. Recall that the vertex set of Gk is the d-dimensional unit
sphere Sd−1. It is shown in [FS02] that Sd−1 can be partitioned into n = 2θ(d

2) cells
of equal size and of diameter at most 2−d each. Let P = {C1, . . . , Cn} denote the
cells obtained in the above partition. The graph Gd

k will be of size n, in which each
vertex vi ∈ V corresponds to a cell Ci ∈ P. The edge set of Gd

k consists of an edge
(u, v) iff there is a positive measure of edges in Gk between their corresponding cells
Cu, Cv.

Lemma 7.1. Let A and B be subsets of Gd
k, and let Ac and Bc be the corresponding

subsets of Gk. (a) The size of A (B) is ρn iff Ac (Bc) has measure ρ. (b) E(A,B) ≥
E(Ac, Bc)n

2. The definition of E(A,B) is given in Definition 5.1 of section 5.
Proof. For the first part of the lemma, assume that the set A has ρn vertices; thus

the corresponding subset Ac consists of ρn cells each of measure n−1. We conclude
that the subset Ac has measure exactly ρ. On the other hand, if Ac has measure ρ
and consists of the union of k cells of measure n−1, then k must be ρn. For the second
part, assume that E(A,B) = εn2; then, by the fact that each edge between A and B
corresponds to at most the measure of n−2 edges between Ac and Bc, we conclude
that E(Ac, Bc) is at most ε.



GRAPHS WITH TINY VECTOR CHROMATIC NUMBERS 1359

Theorem 7.2. Let a, k, ε(a) be as defined in Theorem 3.6 or 3.8. The graph Gd
k

is pairwise 〈ρ(a), ε(a)〉-connected.
Proof. Let A andB be subsets (inGd

k) of size ρ(a)n. The corresponding subsets Ac

and Bc of Gk are also of measure ρ(a) (Lemma 7.1). By Corollary 3.10, E(Ac, Bc) ≥
ε(a). We conclude that E(A,B) ≥ E(Ac, Bc)n

2 ≥ ε(a)n2.

Lemma 7.3. The graph Gd
k is vector k

(
1+ ck2

2d

)
-colorable for some constant c > 0.

Proof. Recall that each cell in Gd
k has diameter at most 2−d. Hence, two vertices

in Gd
k are connected only if their inner product is less than −1/(k − 1) + θ(1)2−d ≤

− 1

k(1+ θ(k)

2d
)−1

.

By definition, the continuous graph Gk is vector k-colorable. In Lemma 7.3 we
showed that the finite approximationGd

k toGk is almost vector k-colorable. In general,
this does not suffice for the proof of Theorem 1.2, as we are interested in graphs which
are vector k-colorable (rather than “almost vector k-colorable”). This can be fixed
by starting with a continuous graph with vector coloring number slightly less than k

(e.g., k/
(
1 + ck2

2d

)
). In order to simplify our presentation, we ignore this point and

consider the graph Gd
k to be exactly vector k-colorable. This is possible due to the

fact that the properties of Gk are continuous in k. Namely, choosing d large enough,

it can be seen that the multiplicative error of (1 + ck2

2d ) in the value of k does not
affect the analysis appearing throughout this section.

Lemma 7.4. Let ρ( 1
k−1 ) be the measure of a 1

(k−1) -cap. Every vertex v in the

graph Gd
k has degree dv ∈ [ 1

poly(d)ρ(
1

k−1 )n, poly(d)ρ( 1
k−1 )n].

Proof. Consider a vertex v in Gd
k and its corresponding cell Cv. The degree of v

is the number of cells in Gk that share a positive measure of edges with the cell Cv.
The total measure of these cells is at least the measure of a ( 1

k−1 + θ(2−d))-cap and

at most the measure of a ( 1
k−1 − θ(2−d))-cap. Hence, by Lemma 7.1, we conclude our

theorem.
We now prove the first part of Theorem 1.2 by considering the graph H obtained

by randomly sampling the edges of Gd
k.

Theorem 7.5. For every constant γ > 0 and constant k > 2, there are infinitely

many graphs H that are vector k-colorable and satisfy α(H) ≤ n/∆
1− 2

k−γ

H , where n
is the number of vertices in H and ∆H is the maximum degree in H.

Proof. Let k > 2 be constant. Let γ > 0 be an arbitrarily small constant. Let
a = γ/c for a sufficiently large constant c. Let G = Gd

k = (V,E) be the discrete
graph defined above. Let n be the size of the vertex set V of G, and let ∆ be the
maximum degree of G. Recall that n = 2θ(d

2), where d is the dimension in which the
corresponding graph Gk was defined. We will assume that the dimension d is a very
large constant determined after fixing a. Finally, let ρ = ρ(a).

By Lemma 7.4, all vertices in G are of degree in the range [ 1
poly(d)∆,∆], where

∆ ∼ poly(d)ρ( 1
k−1 )n. By Theorem 7.2 and the proof of Claim 4.1, every subset of

vertices U in G of size ρn has at least ∆ρ
2(k−1)
k−2 +γn edges.

Let p = 1/(∆ρ
k

k−2+2γ). Let H be the subgraph of G obtained by deleting each
edge of G independently with probability (1− p).

Lemma 7.6. With probability ≥ 3/4, all vertices v of H will have degree dv(H)
in the range [

1

poly(d)
ρ−

k
k−2−2γ , 2ρ−

k
k−2−2γ

]
.
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Proof. The expected degree dv(H) of each vertex v in H satisfies

dv(H) ∈
[

1

poly(d)
ρ−

k
k−2−2γ , ρ−

k
k−2−2γ

]
.

It is not hard to verify (using standard bounds) that with probability ≥ 3/4 it is
the case that all vertices v have degree dv(H), which does not deviate from their
expectation by more than a constant fraction of their expectation.

Lemma 7.7. With probability ≥ 3/4 the size of the maximum independent set in
H (α(H)) is at most ρn.

Proof. It suffices to show that every subset U of H of size ρn has at least a single
edge. Using Claim 9.2, it follows that for each subset U of H, the probability that all
its edges were removed is at most

(1− p)∆ρ
2(k−1)
k−2

+γ
n ≤ e−ρ1−γn.

The number of subsets U of size ρn is(
n

ρn

)
≤ eρn lnn ≤ 1

4
eρ

1−γn.

Applying the union bound on all subsets U of H of size ρn, we conclude our asser-
tion.

Now with probability at least 1/2 both Lemma 7.6 and Lemma 7.7 hold, implying
our theorem.

8. Discussion. In our work we have presented tight bounds on the chromatic
number of vector k-colorable graphs, tight in the sense that they match the upper
bounds presented in [KMS98]. Many questions still remain open.

Stronger coloring relaxations. As mentioned in the introduction and section 2,
there are stronger relaxations for the minimum coloring problem that also have a
geometrical interpretation. For example, one such relaxation is the well known (and
extensively studied) Lovász theta function [Lov79]. It is not hard to verify that these
relaxations can be used as is in the coloring algorithm presented in [KMS98]. One may
speculate that using such stronger relaxations will yield improved coloring results. At
the moment this is not known to be true.

One may consider proving that even the use of such stronger relaxations in the
[KMS98] algorithm cannot yield stronger coloring results. Or in other words, one
may try to extend our negative results to stronger relaxations as well. A few remarks
are in place. It seems as though the techniques we use in this work do not extend
to the stronger coloring relaxations presented in section 2. Our graphs (continuous
and random), or to be precise, their embeddings, are not valid with respect to these
stronger coloring relaxations. Therefore, in order to extend our negative results, one
must change these embeddings appropriately without increasing their vector chro-
matic number. It seems as if changing the embedding of our graphs to satisfy these
stronger coloring relaxations has a large effect on their vector chromatic number. This
implies that such an approach will yield weaker negative results.

Alternatively, one may consider using our proof techniques on graphs other than
the ones presented. One natural candidate is the graph G = (V,E) in which the
vertex set V consists of the set {0, 1}n and two vertices are connected by an edge if
their Hamming distance is equal to some prespecified value. The graph G and certain
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subgraphs of G have been used in the past in the context under discussion (see, e.g.,
[KMS98, Fei97, GK98, Cha02]). Using our proof technique on such graphs involves
the analysis of certain edge isoperimetric inequalities (analogous to those presented
in Theorem 3.5). Unfortunately, little is known regarding the edge isoperimetric
inequalities of the above graphs G. Such inequalities have been studied in the past
[Bez02, KKL88], yielding partial results. However, these results do not suffice to
extend our proof techniques. A better understanding of edge isoperimetric inequalities
of these graphs is of great interest, regardless of their application to the vector coloring
issue.

Property testing. In sections 5 and 6 we study the property testing paradigm
with respect to the independent set problem. We present improved results on the
sample size needed when testing graphs which are far from having large independent
sets. Namely, in Theorem 5.4 we prove that if a graph G of size n is 〈ρ, ε〉-connected,
then with high probability a random induced subgraph of G of size s ∼ 1/ε3 will not
have an independent set of size ρs. (This improves upon the sample size of s ∼ 1/ε4

presented in [GGR98].) Moreover, in Lemma 6.1 we show that the sample size s must
be of size at least ∼ 1/ε2 if we wish the probability of failure to be nonconstant. It
would be interesting if the factor ε gap between the upper and lower bounds presented
above could be settled.

9. Proof of claims.
Claim 9.1. For 1 ≥ p ≥ 0 and y ≥ 1, we have that (1 − p)y ≥ 1 − py ≥

(1− p)y+ py2

1−py .
Proof. It is well known that ey ≥ 1 + y for any real y. Hence,

1− py =
1

1 + py + p2y2

1−py

≥ e−p(y+ py2

1−py ) ≥ (1− p)y+ py2

1−py .

As for the other direction, for every y ≥ 1

d

dp
((1− p)y − 1 + py) = y(1− (1− p)y−1) ≥ 0.

Claim 9.2. For all x > 1(
1− 1

x

)
1

e
≤
(

1− 1

x

)x

≤ 1

e
.

Proof. It is known that for all x > 1(
1− 1

x

)x

≤ 1

e
≤
(

1− 1

x

)x−1

.

Claim 9.3. Let a > δ > 0 such that aδ ≥ 2 log(d)/d; then

ρ(a)− ρ(a+ δ) ≥
(

1− 1

d

)
ρ(a).

Proof. Recall that c√
d

(
1− a2

) d−1
2 ≤ ρ(a) ≤ (1− a2

) d−1
2 , for some constant c > 0.

Thus,

ρ(a+ δ) ≤ (1− a2 − δ2 − 2aδ
) d−1

2 ≤ ((1− a2)(1− 2aδ)
) d−1

2

≤ (1− a2
) d−1

2
2

d2
≤ ρ(a)

d
.
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Theorem 3.5 (restated). Let 1 ≥ a > 0, and let A and B be two (not necessarily
disjoint) measurable sets in V of measure ρ(a). Let r be an arbitrary vertex of Sd−1.
The minimum of E(A,B) is obtained when A = B = Ca, where Ca is an a-cap of
measure ρ(a) centered at r.

Proof. Our proof is similar to that presented in [FS02]. We start by reviewing
the two-point symmetrization procedure introduced in [BT76]. Let r ∈ Sd−1 and
H be the hyperplane passing through the origin with normal r. The hyperplane H
partitions Sd−1 into three sets: points above, below, and on the hyperplane. Define S0

to be the set {u ∈ Sd−1 | 〈u, r〉 = 0}, S+ to be {u ∈ Sd−1 | 〈u, r〉 > 0}, and S− to be
{u ∈ Sd−1 | 〈u, r〉 < 0}. For any x ∈ Sd−1 denote its reflection with respect to H as
σ(x). Finally, given any (measurable) subset X of Sd−1, we define the symmetrization
X∗ of X w.r.t. H as follows. If x is a point in X ∩ S− such that σ(x) �∈ X, replace x
with σ(x). All other points x ∈ X remain in X∗, and no other new points are added
to X∗. Formally

X∗ = X \ {x | x ∈ X ∩ S−, σ(x) �∈ X} ∪ {σ(x) | x ∈ X ∩ S−, σ(x) �∈ X}.

Notice that the measure of X and X∗ are identical.
Now, let Λ be the set consisting of all pairs of closed subsets in Sd−1. Given two

closed subsets A and B of measure ρ(a), let λ(A,B) = λ ⊂ Λ be the set of pairs
(α, β) ∈ Λ that satisfy the following:

1. µ(A) = µ(α), µ(B) = µ(β);
2. for all ε > 0, µ(Aε) ≥ µ(αε) µ(Bε) ≥ µ(βε);
3. E(A,B) ≥ E(α, β),

where for any set A, the set Aε is defined as {x ∈ Sd−1 | ∃y ∈ A s.t. ‖x− y‖ ≤ ε}.
We start by showing that λ is closed under the two-point symmetrization tech-

nique. Next we prove that λ is a closed subset of Λ (under the Hausdorff topol-
ogy). Afterwards, we show that there exists a cap C of measure ρ(a) such that
(C,C) ∈ λ = λ(A,B), implying that E(A,B) ≥ E(C,C). This concludes our proof
for subsets A and B which are closed. Finally, we turn to the general case.

Lemma 9.4. The set λ is closed under the two-point symmetrization procedure
(w.r.t. any r ∈ Sd−1 and the hyperplane H passing through the origin defined by r).

Proof. Let H be some hyperplane passing through the origin. Let (α, β) be a pair
in λ. Let α∗ and β∗ be the sets obtained after the symmetrization procedure w.r.t.
H applied to the sets α and β. It suffices to show that (α∗, β∗) ∈ λ. In [Ben84] it is
shown that both α∗ and β∗ preserve the first two properties of λ. Hence, we turn to
the third property. We need to show that the subsets α∗ and β∗ obtained after the
symmetrization procedure share fewer edges than the original sets α and β (which in
turn share fewer edges than A and B). Let x+ and y+ be two points in S+, and let x−

and y− be their corresponding mirror images. Let α′ be the restriction of α to these
four points (that is, α′ = α∩{x+, x−, y+, y−}). Define β′, α∗′

, and β∗′
similarly. We

will show that E(α′, β′) ≥ E(α∗′
, β∗′

). It is not hard to verify that this implies our
assertion.

Let E′ be the edge set induced by the vertices {x+, x−, y+, y−}. Recall, by the
definition of our continuous graph Gk, that the edge set E consists of pairs of points
x and y in Sd−1 which satisfy 〈x, y〉 ≤ − 1

k−1 . This implies that E′ is symmetric and
has the following properties:

1. (x+, y+) ∈ E′ ↔ (x−, y−) ∈ E′.
2. (x+, y−) ∈ E′ ↔ (x−, y+) ∈ E′.
3. (x+, y+) ∈ E′ → (x+, y−) ∈ E′.
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Fig. 2. Three cases of E′, α′, and β′ are presented. The set α′ = α∩{x+, x−, y+, y−} and α∗′

are presented by the letter A. The set β′ = β ∩ {x+, x−, y+, y−} and β∗′ are presented by the letter

B. A point in α′ ∩ β′ (α∗′ ∩ β∗′) is presented by A/B. A point in neither α nor β is represented by
a solid dot. The edge set E′ is depicted by solid lines. Finally, the hyperplane H is represented as a
horizontal line. Each configuration is presented before (above) and after (below) the symmetrization
procedure. In case (a) the set α′ is closed under the symmetrization procedure w.r.t H and −H. In

such cases it holds that E(α′, β′) = E(α∗′ , β∗′ ). In cases (b) and (c) notice that there is a difference

between the value of E(α∗′ , β∗′ ) and the number of undirected edges between the sets α∗′ and β∗′

(for example, in case (b), E(α∗′ , β∗′ ) = {(x+, y+), (y+, x+)} is of size 2).

Consider the case in which E′ consists of the edges (x+, y−) and (x−, y+) only,
the subset α′ is equal to {x+, x−}, and the subset β′ is equal to {y−}. This case in
depicted in Figure 2(a). In this specific case we have that α∗′

= α′ and β∗′
= {y+},

implying that E(α′, β′) = E(α∗′
, β∗′

) = 1. Notice that, as α′ and β′ are finite sets,
we measure the amount of edges between α′ and β′ using the discrete analogue of
E(α′, β′) defined in Definition 5.1 of section 5 (the same goes for α∗′

and β∗′
).

There are, of course, several other cases to consider (12 edge configurations and
256 cases of different subsets α′ and β′). Some of these cases are depicted in Figure 2.
This large case analysis may be significantly reduced using various observations (in-
volving the equivalence of many different cases). We have checked our assertion on
the full case analysis (using a computer program). A similar proof holds when x+ or
y+ are in S0 (details omitted).

Lemma 9.5. λ is closed in Λ.
Proof. Let (αn, βn) be a sequence in λ tending to (α, β) (in the Hausdorff topol-

ogy). We will show that (α, β) ∈ λ. For every ε, δ > 0 we have for large enough values
of n that

αε ⊆ (αn)ε+δ, βε ⊆ (βn)ε+δ; µ((αn)ε+δ) ≤ µ(Aε+δ), µ((βn)ε+δ) ≤ µ(Bε+δ).

Sending δ to zero and using the fact that for all closed sets α, µ(αε) → µ(α), we
conclude the second property of λ, namely that µ(αε) ≤ µ(Aε) and µ(βε) ≤ µ(Bε).

For the first property, sending ε to zero, we have on one hand that µ(α) ≤ µ(A)
and µ(β) ≤ µ(B). For the other direction observe that µ(αε) ≥ µ(αn) = µ(A) and
µ(βε) ≥ µ(βn) = µ(B) for any ε > 0, provided that n is large enough.
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For the final property of λ, let θ(ε) = µ2({(x, y) | x ∈ αε, y ∈ βε, (x, y) ∈ E}).
Notice that E(α, β) ≤ θ(ε). Let n be large enough to ensure that αε ⊆ (αn)2ε, βε ⊆
(βn)2ε. For such n it is the case that θ(ε) ≤ E((αn)2ε, (βn)2ε). Furthermore, as
(αn, βn) ∈ λ for all values of n, we have that µ((αn)2ε \ αn) ≤ µ(A2ε \ A) and
µ((βn)2ε \ βn) ≤ µ(B2ε \ B). Observe that both µ(A2ε \ A) and µ(B2ε \ B) tend to
zero as ε tends to zero. We conclude that E((αn)2ε, (βn)2ε) tends to E(αn, βn) as ε
tends to zero uniformly in n.

Hence, given δ > 0, one can find ε > 0 such that E((αn)2ε, (βn)2ε) ≤ E(αn, βn)+δ
for all values of n. We conclude that for n large enough

E(α, β) ≤ θ(ε) ≤ E((αn)2ε, (βn)2ε) ≤ E(αn, βn) + δ ≤ E(A,B) + δ.

Since this holds for all δ, we conclude our assertion.
Lemma 9.6. There exists a cap C of measure ρ(a) such that (C,C) ∈ λ.
Proof. Fix a point x0 ∈ Sd−1, and let C be the cap centered at x0 of measure ρ(a).

The function f1(α, β) = µ(C∩α) is upper semicontinuous on Λ.3 Λ with the Hausdorff
topology is a compact set, since λ is closed (Lemma 9.5); the function f1 achieves
its maximum over λ on some pair (αmax, βmax) ∈ λ. In [FS02] it is shown (using
Lemma 9.4) that αmax = C. This is done by showing that f1(α

∗
max, β) ≥ f1(αmax, β)

with equality iff αmax = C, where α∗
max is the subset obtained by the symmetrization

procedure with respect to a hyperplane H s.t. x0 �∈ H, and β is arbitrary.
Now consider the function f2(C, β) = µ(C ∩ β) defined on Λ′ = {(C, β) | (C, β) ∈

Λ}. The function f2 is also upper semicontinuous (this time on Λ′). Furthermore,
it is shown in [FS02] that Λ′ with the Hausdorff topology is a compact set and that
λ′ = {(C, β) | (C, β) ∈ λ} is closed in Λ′. Therefore, the function f2 achieves its
maximum over λ′ on some pair (C, βmax). As before, it can be seen that βmax = C.
We conclude that (C,C) ∈ λ.

As mentioned previously, Lemma 9.6 implies our theorem for subsets A and B,
which are closed. The proof for general subsets A and B follows by considering any
series {Ai} and {Bi} of closed sets that satisfy: (a) for all n, An ⊆ A and Bn ⊆ B, (b)
µ(An)→ µ(A) and µ(Bn)→ µ(B), and (c) for all n, µ(An) = µ(Bn). Now let C, {Ci}
be caps, all centered at the same point x ∈ Sd−1 such that µ(C) = µ(A) = µ(B) and
for all n, µ(Cn) = µ(An) = µ(Bn). It now holds that

E(A,B) ≥ E(An, Bn) ≥ E(Cn, Cn)→ E(C,C).

Claim 9.7. Let a, z, δ be as in Claim 3.7. Let b2 = z2 − a2. Let N =
{(u1, . . . , ud) ∈ Sd−1 | u1 = a, u2 = b}. Let Nδ be a δ neighborhood of N (i.e.,
all points in Sd−1 which are of distance less that δ from the set N). The measure of

the set Nδ is at least (1− z2)
d−1
2 .

Proof. Recall that z =
√
a2 + b2. Let N̂ = {(u1, . . . , ud) ∈ Sd−1 | u1 = z, u2 = 0}

be the set obtained from N by rotating the unit sphere by an angle of arccos a
z . Using

spherical symmetry, we have that the measure of the set Nδ is equal to the measure
of the δ neighborhood of the set N̂ (which will be denoted as N̂δ). Hence, in the
following we will present a lower bound on the measure of N̂δ. We start by computing
the measure of the strip

S =

{
(u1, . . . , ud) ∈ Sd−1 | u1 ∈

[
z − δ2

1000
, z +

δ2

1000

]}
.

3f(α) is upper semicontinuous on Λ if for every sequence αn → α in Λ it is the case that f(α) is
at least lim sup f(αn).



GRAPHS WITH TINY VECTOR CHROMATIC NUMBERS 1365

Using Claims 9.2 and 9.3, we conclude (for sufficiently large d) that

µ(S) = ρ

(
z − δ2

1000

)
− ρ

(
z +

δ2

1000

)
≥ 1

2
ρ

(
z − δ2

1000

)
≥ 1

δ3
(
1− z2

) d−1
2 .

Let γ be a constant such that
√

1− z2 ≥ |γ| > δ/10. Consider the set R =
{(u1, . . . , ud) ∈ Sd−1 | u1 = z, u2 = γ}. Denote the δ2/200 neighborhood of R
as Rγ . Using spherical symmetry, one can upper bound the measure of the set Rγ by

the measure of the cap {(u1, . . . , ud) ∈ Sd−1 | u1 >
√
z2 + γ2 − δ2/200}, which is at

most (
1−

(√
z2 + γ2 − δ2

200

)2
) d−1

2

≤ (1− z2
) d−1

2 ≤ δ3µ(s).

Let R be the union of the sets Rγ for |γ| = δ/10, δ/10+δ2/1000, δ/10+2δ2/1000, . . . ,√
1− z2. We conclude that the measure of R is at most 1

2µ(S).
Finally, each v = (v1, . . . , vd) ∈ S \R satisfies v1 ∈ [z− δ2/1000, z+ δ2/1000] and

v2 ∈ [−δ/10, δ/10] and thus is in N̂δ. Hence S \ R ⊆ N̂δ, implying that the measure

of N̂δ is at least 1
2µ(S) ≥ (1− z2)

d−1
2 .

Claim 3.7 (restated). Let a, k be as in Theorem 3.6. Let v = (a,
√

1− a2, 0, . . . , 0)
be a vertex on the boundary of Ca. Let N(v) be the set of neighbors of v. Let z =√
a2 + (1/(k−1)+a2)2

1−a2 . Finally let δ = c
√

log(d)
d for a sufficiently large constant c. The

measure of vertices in N(v) ∩ Ca satisfies

(1− δ) d−1
2 (1− z2)

d−1
2 ≤ µ(N(v) ∩ Ca) ≤ (1− z2)

d−1
2 .

Proof. The set N(v) ∩ Ca is equal to{
(u1, . . . , ud) ∈ Sd−1 | u1 ≥ a and u2 ≤ −1/(k − 1) + au1√

1− a2

}
.

Denote 1/(k−1)+a2

√
1−a2 by f(a). Let z =

√
a2 + f(a)2. By spherical symmetry, it can be

seen that the above set is of measure at most (1− z2)
d−1
2 , and of measure greater or

equal to the measure of Γ = {(u1, . . . , ud) ∈ Sd−1 | u1 ≥ z and 0 ≤ u2 ≤ c(u1 − z)},
where 1 ≥ c ≥ tan(arccos(a)

2 ) (for any a ∈ [0, 1/2], c is in the range (1/2, 1)). Hence, it
suffices to bound the measure of Γ by below.

Let δ = c
√

log(d)
d for a sufficiently large constant c. The set Γ above is of measure

larger than the measure of the δ neighborhood of

N =

{
(u1, . . . , ud) ∈ Sd−1 | u1 = z + δ

(
1 +

2

c

)
and u2 = δ

}
for c as above. (The δ neighborhood of N is defined as in Claim 9.7.) We denote this

set as Nδ. By Claim 9.7, the measure of Nδ is at least of value (1 − z2 − θ(δ)) d−1
2 .

(Notice that z > 1/k, which in turn is independent of d; thus Claim 9.7 can be applied

in our case.) Hence, the measure of N(v) ∩ Ca is at least (1− θ(δ)) d−1
2 (1 − z2)

d−1
2 ,

which concludes our proof.
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Theorem 3.8 (restated). Let a = ( log(d)
d )

1
4 . Let k satisfy 1

k−1 = a2. Let r ∈
Sd−1, and let Ca be an a-cap centered at r. Let ε(a) be the value of E(Ca, Ca). The
value of ε(a) is in the range[

1

poly(d)

(
1− 2(k − 1)

k − 2
a2

) d−1
2

,

(
1− 2(k − 1)

k − 2
a2

) d−1
2

]
.

Proof. We start by stating the following claim.
Claim 9.8. Let Ca be an a-cap centered at r = (1, 0, . . . , 0). Let v be the vertex

(a,
√

1− a2, 0, . . . , 0) on the boundary of Ca. Let N(v) be the set of neighbors of v.

Let z =
√
a2 + (1/(k−1)+a2)2

1−a2 . If z4 = O(log(d)/d), then the measure of vertices in
N(v) which are in the cap Ca satisfies

1

poly(d)

(
1− z2

) d−1
2 ≤ µ(N(v) ∩ Ca) ≤

(
1− z2

) d−1
2 .

Proof. The set N(v) ∩ Ca is equal to{
(u1, . . . , ud) ∈ Sd−1 | u1 ≥ a and u2 ≤ −1/(k − 1) + au1√

1− a2

}
.

Denote 1/(k−1)+a2

√
1−a2 by f(a). Let z =

√
a2 + f(a)2. By spherical symmetry, it can be

seen that the above set is of measure at most (1−z2)
d−1
2 , and of measure greater than

or equal to the measure of Γ = {(u1, . . . , ud) ∈ Sd−1 | u1 ≥ z and 0 ≤ u2 ≤ c(u1−z)},
where 1 ≥ c ≥ tan(arccos(a)

2 ). Hence, it suffices to bound the measure of Γ by below.

Let r1, . . . , rd be independent standard normal variables, let s =
√∑d

i=1 r
2
i , and

let s3 =
√∑d

i=3 r
2
i . Let φ(x) be the standard normal density function. The measure

of Γ is given by the probability

µ(Γ) = Pr

[
r1
s
≥ z and 0 ≤ r2

s
≤ c

(r1
s
− z
)]

≥ Pr

⎡⎣r1 ≥
√
z2(r22 + s23)

1− z2
and 0 ≤ r2 ≤ A

⎤⎦
≥ Pr[s23 ≤ d] Pr

⎡⎣r1 ≥
√
z2(r22 + d)

1− z2
and 0 ≤ r2 ≤ Ad

⎤⎦
≥ 1

4
Pr

[
r1 ≥

√
z2d

1− z2
and 0 ≤ r2 ≤ min(Ad, B)

]

≥ 1

4
Pr

[√
z2d

1− z2
≤ r1 ≤

√
z2(d+ 1)

1− z2
and 0 ≤ r2 ≤ min(Ad, B)

]
,

where A = c
r1−z
√

r2
1(1+c2−c2z2)+s23(1−c2z2)

1−c2z2 , Ad = c
r1−z
√

r2
1(1+c2−c2z2)+d(1−c2z2)

1−c2z2 , and

B is of value

√
r2
1(1−z2)

z2 − d. Notice that we have used the fact that Pr[s23 ≤ d] ≥ 1/4.
We proceed by evaluating min(Ad, B). Both Ad and B are functions of r1.

Furthermore, r21 is in the range [ z2d
1−z2 ,

z2(d+1)
1−z2 ]. Letting x ∈ [0, 1], we can repre-

sent Ad and B as functions of x by setting r1 to be
√

z2(d+x)
1−z2 . That is, Ad =
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z
√
d+x−

√
d+xz2(1+c2−c2z2)√

1−z2(1−c2z2)
and B =

√
x. It is not hard to verify that for our value of

z it is the case that min(Ad, B) = Ad. Thus

µ(Γ) ≥ 1

4
Pr

[√
z2d

1− z2
≤ r1 ≤

√
z2(d+ 1)

1− z2
and 0 ≤ r2 ≤ Ad

]

= w

∫
r1∈R1

∫ Ad

r2=0

e−
r21+r22

2 ≥ w
∫
r1∈R1

e−
r21
2

Ad

∫ Ad

r2=0

r2e
− r22

2

= w

∫
r1∈R1

e−
r21
2

Ad
(1− e−A2

d
2 ) ≥ w

∫
r1∈R1

Ade
− r21

2

≥ w
∫ 1

x=0

Ade
− z2(d+x)

2(1−z2)
z

2
√

1− z2
√
d+ x

dx

≥ w z2

d(1− z2)(1− c2z2)
e
− dz2

2(1−z2)

∫ 1

x=0

xe
− z2x

2(1−z2)

≥ w z2

d(1− z2)(1− c2z2)
e
− dz2

2(1−z2)

≥ w z2

d(1− z2)(1− c2z2)

(
1− z2

1− z2

) d−1
2

≥ w z2

d(1− z2)(1− c2z2)

(
1− z2

) d−1
2
(
1− 2z4

) d−1
2 ,

where R1 is the range [
√

z2d
1−z2 ,

√
z2(d+1)
1−z2 ], and w is some constant independent of d

(the value of w may change from line to line). Above we use the fact that ex > 1 + x
and the fact that Ad is bounded by above by a constant independent of d. In the final

inequalities we use a change of variables r1 =
√

z2(d+x)
1−z2 and the fact that 1 + α/3 ≤√

1 + α ≤ 1 + α/2 for α < 3. As µ(Γ) ≥ 1
poly(d) (1− z2)

d−1
2 for z4 = O(log(d)/d), we

conclude our assertion.

For the proof of Theorem 3.8, let z =
√
a2 + (1/(k−1)+a2)2

1−a2 (as in Claim 9.8); thus
z4 = O(log(d)/d). For the upper bound, use a bound on the measure of Ca and the

upper bound in Claim 9.8. As for the lower bound, let δ = 2( log(d)
d )

3
4 . Such a choice

of δ will satisfy aδ ≥ 2 log(d)
d , and zδ = O(log(d)/d).

Let w = (w1, w2, . . . , wd) ∈ Ca with first coordinate w1 of value a + δ. Consider
a vertex v = (v1, v2, . . . , vd) ∈ Ca with first coordinate v1 of value less than a + δ.
By Claim 9.8, it is not hard to verify that the measure of N(v) ∩ Ca is greater than

the measure of N(w) ∩ Ca, which is greater than 1
poly(d) (1− czδ) d−1

2 (1 − z2)
d−1
2 ≥

1
poly(d) (1 − z2)

d−1
2 for some constant c. (We use Claim 9.2 and the fact that zδ =

O(log(d)/d).) As aδ ≥ 2 log(d)/d, we conclude, using Corollary 9.3, that the measure
of edges in E(Ca, Ca) is at least

(ρ(a)− ρ(a+ δ))
1

poly(d)

(
1− z2

) d−1
2 ≥ ρ(a)

poly(d)

(
1− z2

) d−1
2

≥ 1

poly(d)

(
1− a2

) d−1
2
(
1− z2

) d−1
2 .
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Simplifying the above expression with the help of Claim 9.2, we then conclude our
assertion.

Acknowledgment. We would like to thank Luca Trevisan for his suggestion to
analyze edge sampling.
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Abstract. We study the question of whether the class DisjNP of disjoint pairs (A,B) of NP-sets
contains a complete pair. The question relates to the question of whether optimal proof systems exist,
and we relate it to the previously studied question of whether there exists a disjoint pair of NP-sets
that is NP-hard. We show under reasonable hypotheses that nonsymmetric disjoint NP-pairs exist,
which provides additional evidence for the existence of P-inseparable disjoint NP-pairs.

We construct an oracle relative to which the class of disjoint NP-pairs does not have a complete
pair; an oracle relative to which optimal proof systems exist, and hence complete pairs exist, but no
pair is NP-hard; and an oracle relative to which complete pairs exist, but optimal proof systems do
not exist.

Key words. disjoint NP-pairs, promise problems, propositional proof systems, oracles, symme-
try
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1. Introduction. We study the class DisjNP of disjoint pairs (A,B), where A
and B are nonempty, disjoint sets belonging to NP. Such disjoint NP-pairs are inter-
esting for at least two reasons. First, Grollmann and Selman [GS88] showed that the
question of whether DisjNP contains P-inseparable disjoint NP-pairs is related to the
existence of public-key cryptosystems. Second, Razborov [Raz94] and Pudlák [Pud03]
demonstrated that these pairs are closely related to the theory of proof systems for
propositional calculus. Specifically, Razborov showed that existence of an optimal
propositional proof system implies existence of a complete pair for DisjNP. Primarily
in this paper we are interested in the question raised by Razborov [Raz94] of whether
DisjNP contains a complete pair. We show connections between this question and
earlier work on disjoint NP-pairs, and we exhibit an oracle relative to which DisjNP
does not contain any complete pair.

From a technical point of view, disjoint pairs are simply an equivalent formula-
tion of promise problems. There are natural notions of reducibilities between promise
problems [ESY84, Sel88] that disjoint pairs inherit easily [GS88]. Hence, complete-
ness and hardness notions follow naturally. We begin in the next section with these
definitions, some easy observations, and a review of the known results.

In section 3 we observe that if DisjNP does not contain a Turing-complete disjoint
NP-pair, then DisjNP does not contain a disjoint NP-pair all of whose separators
are Turing-hard for NP. The latter is a conjecture formulated by Even, Selman,
and Yacobi [ESY84] and has several known consequences: Public-key cryptosystems
that are NP-hard to crack do not exist; NP �= UP, NP �= coNP, and NPMV �c

∗Received by the editors April 16, 2003; accepted for publication (in revised form) May 12, 2004;
published electronically August 27, 2004.

http://www.siam.org/journals/sicomp/33-6/42584.html
†Lehrstuhl für Informatik IV, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

(glasser@informatik.uni-wuerzburg.de). The research of this author was performed at the University
at Buffalo with support by a postdoctoral grant from the German Academic Exchange Service
(Deutscher Akademischer Austauschdienst—DAAD).

‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260
(selman@cse.buffalo.edu, samik@cse.buffalo.edu, lzhang7@cse.buffalo.edu). The research of the sec-
ond author was partially supported by NSF grant CCR-0307077.

1369



1370 C. GLASSER, A. SELMAN, S. SENGUPTA, AND L. ZHANG

NPSV. Our main result in this section is an oracle X relative to which DisjNP
does not contain a Turing-complete disjoint NP-pair and relative to which P �= UP.
Relative to X, by Razborov’s result [Raz94], optimal propositional proof systems do
not exist. P-inseparable disjoint NP-pairs exist relative to X, because P �= UP [GS88].
Most researchers believe that P-inseparable disjoint NP-pairs exist, and we believe
that no disjoint NP-pair has only NP-hard separators. Both of these properties hold
relative to X. This is the first oracle relative to which both of these conditions hold
simultaneously. Homer and Selman [HS92] obtained an oracle relative to which all
disjoint NP-pairs are P-separable, so the conjecture of Even, Selman, and Yacobi holds
relative to their oracle only for this trivial reason. Now let us say a few things about
the construction of oracle X. Previous researchers have obtained oracles relative to
which certain (promise) complexity classes do not have complete sets. However, the
technique of Gurevich [Gur83], who proved that NP∩coNP has Turing-complete sets if
and only if it has many-one-complete sets, does not apply. Neither does the technique
of Hemaspaandra, Jain, and Vereshchagin [HJV93], who demonstrated, among other
results, an oracle relative to which FewP does not have a Turing-complete set.

In section 4 we show that the question of whether DisjNP contains a Turing-
complete disjoint NP-pair has an equivalent natural formulation as a hypothesis
about classes of single-valued partial functions. Section 5 studies symmetric disjoint
NP-pairs. Pudlák [Pud03] defined a disjoint pair (A,B) to be symmetric if (A,B)
is many-one reducible to (B,A). P-separable easily implies symmetric. We give
complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs. As
a consequence, we obtain new ways to demonstrate existence of P-inseparable sets.
Also, we use symmetry to show under reasonable hypotheses that many-one and
Turing reducibilities differ for disjoint NP-pairs. (All reductions in this paper are
polynomial-time-bounded.) Concrete candidates for P-inseparable disjoint NP-pairs
come from problems in UP or in NP ∩ coNP. Nevertheless, Grollmann and Selman
[GS88] proved that the existence of P-inseparable disjoint NP-pairs implies the exis-
tence of P-inseparable disjoint NP-pairs, where both sets are NP-complete. Here we
prove two analogous results. Existence of nonsymmetric disjoint NP-pairs implies ex-
istence of nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there
exists a many-one-complete disjoint NP-pair, then there exists such a pair where both
sets are NP-complete. Natural candidates for nonsymmetric or ≤pp

m -complete disjoint
NP-pairs arise either from cryptography or from proof systems [Pud03]. Our theorems
show that the existence of such pairs will imply that nonsymmetric (or ≤pp

m -complete)
disjoint NP-pairs exist where both sets of the pair are ≤p

m-complete for NP.
Section 6 constructs two oracles O1 and O2 that possess several interesting prop-

erties. First, let us mention some properties that hold relative to both of these oracles.
Relative to both oracles, many-one-complete disjoint NP-pairs exist. Therefore, while
we expect that complete disjoint NP-pairs do not exist, this is not provable by rel-
ativizable techniques. P-inseparable disjoint NP-pairs exist relative to these oracles,
which we obtain by proving that nonsymmetric disjoint NP-pairs exist. The conjecture
of Even, Selman, and Yacobi holds. Therefore, while nonexistence of Turing-complete
disjoint NP-pairs is a sufficient condition for this conjecture, the converse does not
hold, even in worlds in which P-inseparable pairs exist. Also, relative to these oracles,
there exist P-inseparable pairs that are symmetric. Whereas nonsymmetric implies
P-inseparability, again, we see that the converse does not hold.

In section 6 we discuss the properties of these oracles in detail. Relative to O1,
optimal proof systems exist, while relative to O2, optimal proof systems do not exist.
In particular, relative to O2, the converse of Razborov’s result does not hold. (That
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is, relative to O2, many-one complete pairs exist.)

The construction of O2 involves some aspects that are unusual in complexity
theory. We introduce undecidable requirements, and as a consequence, the oracle is
undecidable. In particular, we need to define sets A and B, such that relative to O2,
the pair (A,B) is many-one complete. Therefore, we need to show that for every two
nondeterministic, polynomial-time-bounded oracle Turing machines NMi and NMj ,

either L(NMO2
i ) and L(NMO2

j ) are not disjoint or there is a reduction from the

disjoint pair (L(NMO2
i ), L(NMO2

j )) to (A,B). We accomplish this as follows: Given
NMi, NMj , and a finite initial segment X of O2, we prove that either there is a finite
extension Y of X such that for all oracles Z that extend Y ,

L(NMZ
i ) ∩ L(NMZ

j ) �= ∅

or there is a finite extension Y of X such that for all oracles Z that extend Y ,

L(NMZ
i ) ∩ L(NMZ

j ) = ∅.

Then we select the extension Y that exists. In this manner we force one of these two
conditions to hold.

In the latter case, to obtain a reduction from the pair (L(NMO2
i ), L(NMO2

j )) to
(A,B) requires encoding information into the oracle O2. The other conditions that
we want O2 to satisfy require diagonalizations. In order to prove that there is room to
diagonalize, we need to carefully control the number of words that must be reserved
for encoding. This is a typical concern in oracle constructions, but even more so here.
We manage this part of the construction by inventing a unique data structure that
stores words reserved for the encoding, and then prove that we do not store too many
such words.

2. Preliminaries. We fix the alphabet Σ = {0, 1}, and we denote the length of
a word w by |w|. The set of all (resp., nonempty) words is denoted by Σ∗ (resp., Σ+).
Let Σ<n df

= {w ∈ Σ∗ | |w| < n}, and define Σ≤n, Σ≥n, and Σ>n analogously. For a set
of words X let X<n df

= X ∩Σ<n, and define X≤n, X=n, X≥n, and X>n analogously.
For sets of words we take the complement with respect to Σ∗. For A,B ⊆ Σ∗ let
A⊕B df

= {0x | x ∈ A} ∪ {1y | y ∈ B}.
The set of (nonzero) natural numbers is denoted by N (resp., N

+). We use
polynomial-time computable and polynomial-time invertible pairing functions 〈·, ·〉 :
N

+×N
+→ N

+ and 〈·, ·, ·〉 : N
+×N

+×N
+→ N

+. For a function f , dom(f) denotes the
domain of f .

Cook and Reckhow [CR79] defined a propositional proof system (proof system,
for short) to be a function f : Σ∗ → TAUT such that f is onto and f ∈ PF. (TAUT
denotes the set of tautologies.) Note that f is not necessarily honest; it is possible
that a formula φ ∈ TAUT has only exponentially long proofs w, i.e., f(w) = φ and
|w| = 2Ω(|φ|).

Let f and f ′ be two proof systems. We say that f simulates f ′ if there is a
polynomial p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w)
and |h(w)| ≤ p(|w|). If, additionally, h ∈ PF, then we say that f p-simulates f ′.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates)
every other proof system. The notion of simulation between proof systems is analogous
to the notion of reducibility between problems. Using that analogy, optimal proof
systems correspond to complete problems.
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2.1. Disjoint pairs, separators, and a conjecture. We begin with the fol-
lowing definition.

Definition 2.1. A disjoint NP-pair (NP-pair, for short) is a pair of nonempty
sets A and B such that A,B ∈ NP and A ∩ B = ∅. Let DisjNP denote the class of
all disjoint NP-pairs.

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S;
we say that S separates (A,B). Let Sep(A,B) denote the class of all separators of
(A,B). For disjoint NP-pairs (A,B), the fundamental question is whether Sep(A,B)
contains a set belonging to P. In that case the pair is P-separable; otherwise, the
pair is P-inseparable. The following proposition summarizes the known results about
P-separability.

Proposition 2.2.

1. P �= NP ∩ coNP implies that NP contains P-inseparable sets.
2. P �= UP implies that NP contains P-inseparable sets [GS88].
3. If NP contains P-inseparable sets, then NP contains NP-complete P-insep-

arable sets [GS88].
While it is probably the case that NP contains P-inseparable sets, there is an

oracle relative to which P �= NP and P-inseparable sets in NP do not exist [HS92].
So P �= NP probably is not a sufficiently strong hypothesis to show existence of
P-inseparable sets in NP.

Definition 2.3. Let (A,B) be a disjoint NP-pair.
1. X ≤pp

m (A,B) if, for every separator S of (A,B), X ≤p
m S.

2. X ≤pp
T (A,B) if, for every separator S of (A,B), X ≤p

T S.
3. (A,B) is NP-hard if SAT ≤pp

T (A,B).
4. (A,B) is uniformly NP-hard if there is a deterministic polynomial-time oracle

Turing machine M such that for every S ∈ Sep(A,B), SAT ≤p
T S via M .

Grollmann and Selman [GS88] showed that NP-hard implies uniformly NP-hard;
i.e., both statements of the definition are equivalent. Even, Selman, and Yacobi
[ESY84] conjectured that there does not exist a disjoint NP-pair (A,B) such that all
separators of (A,B) are ≤p

T hard for NP.
Conjecture 2.4 (see [ESY84]). There do not exist disjoint NP-pairs that are

NP-hard.
If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack

[ESY84]. This conjecture is a strong hypothesis with the following known conse-
quences. In section 3 we show a sufficient condition for Conjecture 2.4 to hold.

Proposition 2.5 (see [ESY84, GS88, Sel94]). If Conjecture 2.4 holds, then
NP �= coNP, NP �= UP, and NPMV �c NPSV.

2.2. Reductions for disjoint pairs. We review the natural notions of re-
ducibilities between disjoint pairs [GS88].

Definition 2.6 (nonuniform reductions for pairs). Let (A,B) and (C,D) be
disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D), (A,B) ≤pp
m (C,D),

if for every separator T ∈ Sep(C,D) there exists a separator S ∈ Sep(A,B)
such that S ≤p

m T .
2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B) ≤pp

T (C,D),
if for every separator T ∈ Sep(C,D) there exists a separator S ∈ Sep(A,B)
such that S ≤p

T T .
Definition 2.7 (uniform reductions for pairs). Let (A,B) and (C,D) be disjoint

pairs.
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1. (A,B) is uniformly many-one reducible in polynomial-time to (C,D),
(A,B) ≤pp

um (C,D), if there exists a polynomial-time computable function f
such that for every separator T ∈ Sep(C,D), there exists a separator S ∈
Sep(A,B) such that S ≤p

m T via f .
2. (A,B) is uniformly Turing reducible in polynomial-time to (C,D),

(A,B) ≤pp
uT (C,D), if there exists a polynomial-time oracle Turing machineM

such that for every separator T ∈ Sep(C,D), there exists a separator S ∈
Sep(A,B) such that S ≤p

T T via M .
If f and M are as above, then we also say that (A,B) ≤pp

um (C,D) via f and
(A,B) ≤pp

uT (C,D) via M . Observe that if (A,B) ≤pp
m (C,D) and (C,D) is P-

separable, then so is (A,B) (and the same holds for ≤pp
T , ≤pp

um, and ≤pp
uT ). We retain

the promise problem notation in order to distinguish from reducibilities between sets.
Grollmann and Selman proved that Turing reductions and uniform Turing reductions
are equivalent.

Proposition 2.8 (see [GS88]). (A,B) ≤pp
T (C,D) ⇔ (A,B) ≤pp

uT (C,D) for all
disjoint pairs (A,B) and (C,D).

In order to obtain the corresponding theorem for ≤pp
um, we can adapt the proof of

Proposition 2.8, but a separate argument is required.
Lemma 2.9. Let S and T be nonempty, disjoint sets. Let X and Y be nonempty,

finite, disjoint sets such that X ∩T = ∅ and Y ∩S = ∅. Then the disjoint pairs (S, T )
and (S ∪X,T ∪ Y ) are equivalent by polynomial-time uniform reductions.

Proof. First we show that (S ∪X,T ∪ Y ) ≤pp
um (S, T ). Choose a ∈ S and b ∈ T .

Define the polynomial-time computable function f by

f(x)
df
=

⎧⎨⎩
a if x ∈ X,
b if x ∈ Y,
x otherwise.

Let A ∈ Sep(S, T ). We need to see that f−1(A) ∈ Sep(S ∪ X,T ∪ Y ). So we show
that

1. S ∪X ⊆ f−1(A), and
2. T ∪ Y ⊆ f−1(A).

For item 1, if x ∈ X, then f(x) = a ∈ S ⊆ A. So f(X) ⊆ A. Hence, X ⊆ f−1(A).
If x ∈ S −X, then f(x) = x ∈ S ⊆ A. So, S −X ⊆ f−1(A). For item 2, if x ∈ Y ,
then f(x) = b ∈ T ⊆ A. So f(Y ) ∩ A = ∅. That is, Y ⊆ f−1(A). If x ∈ T − Y , then
f(x) = x ∈ T . So f(T − Y ) ∩A = ∅. That is, T − Y ⊆ f−1(A).

Every separator of (S ∪X,T ∪Y ) is a separator of (S, T ). Therefore, the identity
function provides a uniform reduction from (S, T ) to (S ∪X,T ∪ Y ).

Theorem 2.10. ≤pp
m = ≤pp

um.
Proof. Assume that (Q,R) is not uniformly many-one reducible to (S, T ). That

is, for every polynomial-time computable function f , there exists a set A ∈ Sep(S, T )
such that f−1(A) /∈ Sep(Q,R). Then for every polynomial-time computable func-
tion f , there exists A ∈ Sep(S, T ) and a string y that witnesses the fact that
f−1(A) /∈ Sep(Q,R). Namely, either

y ∈ Q ∧ y /∈ f−1(A) (i.e., f(y) /∈ A) or y ∈ R ∧ y ∈ f−1(A) (i.e., f(y) ∈ A).

We will show from this assumption that (Q,R) is not many-one reducible to (S, T ).
We will construct a decidable separator A of (S, T ) such that for every polynomial-
time computable function f , f−1(A) is not a separator of (Q,R). Let {fi}i≥1 be an
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effective enumeration of the polynomial-time computable functions with associated
polynomial-time bounds {pi}i≥1.

The separator A of (S, T ) will be constructed inductively to be of the form S ∪⋃
{Yi | i ≥ 1}, where

⋃
{Yi | i ≥ 1} is a subset of T and Y0 ⊆ Y1 ⊆ · · · . At stage i of

the construction, we will choose a finite subset Yi of T such that f−1(S ∪ Yi) is not a
separator of (Q,R).

Stage 0. Define Y0 = {0} and n0 = 1.
Stage i (i ≥ 1). By induction hypothesis, Yi−1 is defined, ni−1 ≥ 0 is defined, and

Yi−1 ⊆ T ∩ Σ≤ni−1 .
Now we state a sequence of claims.
Claim 2.11. There exists a set X, X ⊆ T ∪ Σ≤ni−1 , and a witness yi demon-

strating that f−1
i (S ∪ Yi−1 ∪X) is not a separator of (Q,R). That is,

yi ∈ Q ∧ yi /∈ f−1
i (S ∪ Yi−1 ∪X) (i.e., fi(yi) /∈ S ∪ Yi−1 ∪X)

or

yi ∈ R ∧ yi ∈ f−1
i (S ∪ Yi−1 ∪X) (i.e., fi(yi) ∈ S ∪ Yi−1 ∪X).

If the claim is false, then for every X ⊆ T ∪ Σ≤ni−1 , Q ⊆ f−1
i (S ∪ Yi−1 ∪X) and

R ⊆ f−1
i (S ∪ Yi−1 ∪X). The set of all languages S∪Yi−1∪X, whereX ⊆ T ∪ Σ≤ni−1 ,

is exactly the set of separators of the disjoint pair

(S ∪ Yi−1, T ∪ (Σ≤ni−1 − (S ∪ Yi−1))).

Thus, if the claim is false, then (Q,R) is uniformly many-one reducible to (S ∪ Yi−1,
T ∪ (Σ≤ni−1 − Yi−1)). However, by Lemma 2.9, this contradicts the assumption that
(Q,R) is not uniformly reducible to (S, T ). Hence the claim is true.

Claim 2.12. There exists a finite set X, X ⊆ T ∪ Σ≤ni−1 , and a witness yi that
satisfy the condition of Claim 2.11.

For X and witness yi, whose existence Claim 2.11 guarantees, |fi(yi)| ≤ pi(|yi|).
So X ′ = X ∩ Σ≤pi(|yi|) and yi satisfy the condition as well.

Claim 2.13. There is an effective procedure that on input (i, Yi−1, ni−1) finds a

finite set X ⊆ T ∪ Σ≤ni−1 and witness yi to satisfy the condition of Claim 2.11.
This is trivial. Effectively enumerate pairs of finite sets and strings until a pair

with the desired property is found.
At Stage i, apply Claim 2.13; define Yi = Yi−1 ∪ X and define ni = 1 +

max(2ni−1 , pi(|yi|)).
Define A = S ∪

⋃
{Yi | i ≥ 1}. Since

⋃
{Yi | i ≥ 1} ⊆ T , A is a separator of

(S, T ). It is easy to see that A is decidable. Finally, for every fi, i ≥ 1, f−1
i (A) is

not a separator of (Q,R): Clearly this holds for f−1
i (S ∪ Yi), and the construction

preserves this property.
We obtain the following useful characterization of many-one reductions. Observe

that this is the way Razborov [Raz94] defined reductions between disjoint pairs.
Theorem 2.14. (Q,R) ≤pp

m (S, T ) if and only if there exists a polynomial-time
computable function f such that f(Q) ⊆ S and f(R) ⊆ T .

Proof. By Theorem 2.10 there is a polynomial-time computable function f such
for every A ∈ Sep(S, T ), f−1(A) ∈ Sep(Q,R). That is, if A ∈ Sep(S, T ), then
Q ⊆ f−1(A) and R ⊆ f−1(A), which implies that f(Q) ⊆ A and f(R)∩A = ∅. Well,
S ∈ Sep(S, T ). So f(Q) ⊆ S. Also, T ∈ Sep(S, T ). So f(R) ∩ T = ∅. That is,
f(R) ⊆ T . The converse is immediate.
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3. Complete disjoint NP-pairs. Keeping with common terminology, a dis-
joint pair (A,B) is ≤pp

m -complete (≤pp
T -complete) for the class DisjNP if (A,B) ∈

DisjNP and for every disjoint pair (C,D) ∈ DisjNP, (C,D) ≤pp
m (A,B) (resp.,

(C,D) ≤pp
T (A,B)).

Consider the following assertions:

1. DisjNP does not have a ≤pp
T -complete disjoint pair.

2. DisjNP does not have a ≤pp
m -complete disjoint pair.

3. DisjNP does not contain a disjoint pair all of whose separators are ≤p
T -hard

for NP (i.e., Conjecture 2.4 holds).
4. DisjNP does not contain a disjoint pair all of whose separators are ≤p

m-hard
for NP.

Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94]
of whether DisjNP contains complete disjoint pairs. Assertion 3 is Conjecture 2.4.
Assertion 4 is the analogue of this conjecture using many-one reducibility.

We can dispense with assertion 4 immediately, for it is equivalent to NP �= coNP.

Proposition 3.1. NP �= coNP if and only if DisjNP does not contain a disjoint
pair all of whose separators are ≤p

m-hard for NP.

Proof. If NP = coNP, then (SAT,SAT) is a disjoint pair in DisjNP all of whose
separators are ≤p

m-hard for NP.

To show the other direction, consider the disjoint pair (A,B) ∈ DisjNP and
assume that all of its separators are ≤p

m-hard for NP. Since B is a separator of
(A,B), SAT ≤p

m B. Therefore, SAT ≤p
m B, implying that SAT ∈ NP. Thus, NP =

coNP.

Proposition 3.2. Assertion 1 implies assertions 2 and 3. Assertion 2 implies
assertion 4. Assertion 3 implies assertion 4.

This proposition states, in part, that assertion 1 is so strong as to imply Conjec-
ture 2.4.

Proof. It is trivial that assertion 1 implies assertion 2, and that assertion 3 implies
assertion 4.

We prove that assertion 1 implies assertion 3. Assume assertion 3 is false and let
(A,B) ∈ DisjNP such that all separators are NP-hard. We claim that (A,B) is ≤pp

T -
complete for DisjNP. Let (C,D) belong to DisjNP. Let S be an arbitrary separator
of (A,B). Note that S is NP-hard and C ∈ NP. So C ≤p

T S. Since C is a separator
of (C,D), this demonstrates that (C,D) ≤pp

T (A,B).

Similarly, we prove that assertion 2 implies assertion 4. In this case, every separa-
tor S of (A,B) is ≤p

m-hard for NP. So C ≤p
m S. Therefore, (C,D) ≤pp

m (A,B).

Homer and Selman [HS92] constructed an oracle relative to which P �= NP and
every disjoint NP-pair is P-separable. Relative to this oracle, assertion 3 holds and
assertions 1 and 2 are false. To see this, let (A,B) be an arbitrary disjoint NP-pair.
We show that (A,B) is both ≤pp

T -complete and ≤pp
m -complete. For any other pair

(C,D) ∈ DisjNP, since (C,D) is P-separable, there is a separator S of (C,D) that is
in P. Therefore, for any separator L of (A,B), S trivially ≤p

m-reduces and ≤p
T -reduces

to L. So (C,D) ≤pp
m (A,B) and (C,D) ≤pp

T (A,B).

There exists an oracle relative to which UP = NP �= coNP [GW03]. So, relative
to this oracle assertion 4 holds, but assertion 3 is false. In section 6 we will construct
oracles relative to which assertion 4 holds while assertions 1 and 2 fail.

In Theorem 3.8 we construct an oracle X relative to which assertion 1 is true. In
Corollary 3.11 we observe that P �= UP relative to X. Therefore, by Proposition 3.2,
all of the following properties hold relative to X:
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1. DisjNP does not have a ≤pp
T -complete disjoint pair.

2. Conjecture 2.4 holds; so UP �= NP, NP �= coNP, NPMV �c NPSV, and
NP-hard public-key cryptosystems do not exist [ESY84, Sel94].

3. P �= UP; therefore P-inseparable disjoint NP-pairs exist [GS88].
4. Optimal propositional proof systems do not exist [Raz94].
5. There is a tally set T ∈ coNP − NP and a tally set T ′ ∈ coNE − E [Pud86,

KP89].

The following lemma is essential to the proofs of Theorems 3.8 and 6.1. Intuitively
this lemma says that, given two nondeterministic machines and some oracle, either
we can force the languages accepted by these machines to be not disjoint, or we can
ensure that one of the machines rejects a given string q by reserving only polynomially
many strings.

Lemma 3.3. Let M and N be nondeterministic polynomial-time oracle Turing
machines with polynomial-time bounds pM and pN , respectively. Let Y be an oracle
and q ∈ Σ∗, |q| = n. Then, for any set T , at least one of the following holds:

• ∃S ⊆ T , ‖S‖ ≤ pM (n) + pN (n), such that q ∈ L(MY ∪S) ∩ L(NY ∪S).
• ∃S′ ⊆ T , ‖S′‖ ≤ pM (n) · (pN (n) + 1), such that either (i) for any S ⊆ T , if
S ∩ S′ = ∅, then MY ∪S(q) rejects, or (ii) for any S ⊆ T , if S ∩ S′ = ∅, then
NY ∪S(q) rejects.

Proof. Let us define the following languages:

• LM = {〈P,Qy, Qn〉 | for some set SM ⊆ T , P is an accepting path of
MY ∪SM (q) and Qy (resp., Qn) is the set of words in SM (resp., T −(Y ∪SM ))
that are queried on P}.

• LN = {〈P,Qy, Qn〉 | for some set SN ⊆ T , P is an accepting path of
NY ∪SN (q) and Qy (resp., Qn) is the set of words in SN (resp., T − (Y ∪SN ))
that are queried on P}.

We say that 〈P,Qy, Qn〉 ∈ LM conflicts with 〈P ′, Q′
y, Q

′
n〉 ∈ LN if Qy ∩ Q′

n �= ∅ or
Q′

y ∩Qn �= ∅. In other words, there is a conflict if there exists at least one query that
is in T and that is answered differently on P and P ′.

Case I. There exist 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′
y, Q

′
n〉 ∈ LN that do not conflict.

Let S = Qy ∪Q′
y. We claim in this case that q ∈ L(MY ∪S) ∩ L(NY ∪S). Let SM

and SN be the subsets of T that witness 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′
y, Q

′
n〉 ∈ LN .

So P is an accepting path of MY ∪SM (q), and P ′ is an accepting path of NY ∪SN (q).
Assume that on P there exists a query r that is answered differently with respect
to the oracles Y ∪ SM and Y ∪ S. Hence r /∈ Y . Moreover, either r ∈ SM − S or
r ∈ S − SM . However, r cannot belong to SM − S, since otherwise r ∈ Qy, and
therefore r ∈ S. So r ∈ S − SM . Hence r /∈ Qy, and therefore r ∈ Q′

y. On the
other hand, r ∈ S − SM implies r ∈ T − (Y ∪ SM ). Therefore, r ∈ Qn ∩ Q′

y, which
contradicts the assumption in Case I. This shows that P is an accepting path of
MY ∪S(q). Analogously we show that P ′ is an accepting path of NY ∪S(q). Hence
q ∈ L(MY ∪S) ∩ L(NY ∪S). Note that ‖S‖ = ‖Qy ∪Q′

y‖ ≤ pM (n) + pN (n).

Case II. Every triple 〈P,Qy, Qn〉 ∈ LM conflicts with every triple 〈P ′, Q′
y, Q

′
n〉 ∈

LN .

Note that in this case we cannot have both a triple 〈P, ∅, Qn〉 in LM and a triple
〈P ′, ∅, Q′

n〉 in LN , simply because these two triples do not conflict with each other.
We use the following algorithm to create the set S′ as claimed in the statement of
this lemma.

S′ = ∅
while (LM �= ∅ and LN �= ∅)
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(1) Choose some (P∗, Q∗y , Q
∗
n) ∈ LM

(2) S′ = S′ ∪ Q∗y ∪ Q∗n
(3) For every t = (P, Qy, Qn) ∈ LM
(4) if Qy ∩ (Q∗y ∪ Q∗n) �= ∅ then remove t

(5) For every t′ = (P′, Q′y, Q
′
n) ∈ LN

(6) if Q′y ∩ (Q∗y ∪ Q∗n) �= ∅ then remove t′

end while

We claim that after k iterations of the while loop, for every triple (P ′, Q′
y, Q

′
n) ∈

LN , ‖Q′
n‖ ≥ k. If this claim is true, the while loop iterates at most pN (n) + 1 times,

since for any triple in LN , ‖Q′
n‖ is bounded by the running time of N on q, i.e., pN (n).

On the other hand, during each iteration, S′ is increased by at most pM (n) strings,
since for any triple in LM , ‖Qy ∪Qn‖ is bounded by the running time of M on q, i.e.,
pM (n). Therefore, ‖S′‖ ≤ pM (n) · (pN (n) + 1) when this algorithm terminates.

Claim 3.4. After the kth iteration of the while loop of the above algorithm, for
every t′ = 〈P ′, Q′

y, Q
′
n〉 that remains in LN , ‖Q′

n‖ ≥ k.

Proof. For every k, tk denotes the triple 〈P k, Qk
y , Q

k
n〉 ∈ LM that is chosen during

the kth iteration in step (1). For every t′ = 〈P ′, Q′
y, Q

′
n〉 that is in LN at the beginning

of this iteration, tk conflicts with t′ (assumption of Case II). Therefore, there is a
query in (Qk

n ∩Q′
y) ∪ (Qk

y ∩Q′
n). If this query is in Qk

n ∩Q′
y, then t′ will be removed

from LN in step (6). Otherwise, i.e., if Qk
y∩Q′

n �= ∅, then let q′ be the lexicographically

smallest query in Qk
y ∩Q′

n. In this case, t′ will not be removed from LN ; we say that
t′ survives the kth iteration due to query q′. Note that t′ can survive only due to a
query that is in Q′

n. We will use this fact to prove that ‖Q′
n‖ ≥ k after k iterations.

We show now that any triple that is left in LN after k iterations survives each
iteration due to a different query. This will complete the proof of the claim. Assume
that t′ survives iteration k by query q′ ∈ Qk

y∩Q′
n. If t′ had survived an earlier iteration

l < k by the same query q′, then q′ is also in Ql
y ∩ Q′

n. Therefore, Ql
y ∩ Qk

y �= ∅. So

tk = 〈P k, Qk
y , Q

k
n〉 should have been removed in step (4) during iteration l, and cannot

be chosen at the beginning of iteration k, as claimed. Hence, q′ cannot be the query
by which t′ had survived iteration l. This proves Claim 3.4.

Therefore, now we have a set S′ ⊆ T of the required size such that either LM

or LN is empty. Assume that LM is empty, and for some set SM ⊆ T it holds that
SM ∩ S′ = ∅ and M (Y ∪SM )(q) accepts. Let P be an accepting path of M (Y ∪SM )(q)
and let Qy (resp., Qn) be the set of words in SM (resp., T − (Y ∪ SM )) that are
queried on P . The triple 〈P,Qy, Qn〉 must have been in LM and has been removed
during some iteration. This implies that during that iteration, Qy ∩S′ �= ∅ (step (4)).
Since Qy ⊆ SM , this contradicts the assumption that SM ∩ S′ = ∅.

A similar argument holds for LN . Hence either LM = ∅ and M (Y ∪S)(q) rejects
for any S ⊆ T such that S ∩ S′ = ∅, or LN = ∅ and N (Y ∪S)(q) rejects for any S ⊆ T
such that S ∩ S′ = ∅. This ends the proof of Lemma 3.3.

We define the following notions for reductions relative to oracles.
Definition 3.5. For any set X, a pair of disjoint sets (A,B) is polynomial-

time Turing reducible relative to X (≤pp,X
T ) to a pair of disjoint sets (C,D) if for

any separator S that separates (C,D), there exists a polynomial-time deterministic
oracle Turing machine M such that MS⊕X accepts a language that separates (A,B).

Definition 3.6. For any set X, let

DisjNPX = {(A,B) | A ∈ NPX , B ∈ NPX , A �= ∅, B �= ∅, and A ∩B = ∅}.

(C,D) is ≤pp,X
T -complete for DisjNPX if (C,D) ∈ DisjNPX and for all (A,B) ∈
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DisjNPX , (A,B) ≤pp,X
T (C,D). Similarly, (C,D) is ≤pp

T -complete for DisjNPX if

(C,D) ∈ DisjNPX and for all (A,B) ∈ DisjNPX , (A,B) ≤pp
T (C,D).

However, the following proposition shows that if there exists a disjoint pair that
is Turing-complete relative to X, then there is a pair that is Turing-complete such
that the reduction between the separators does not access the oracle.

Proposition 3.7. For any set X, DisjNPX has a ≤pp,X
T -complete pair if and

only if DisjNPX has a ≤pp
T -complete pair.

Proof. The if direction is trivial. We only show the only if direction. Suppose
(C,D) is ≤pp,X

T -complete for DisjNPX . We claim that (C⊕X,D⊕X) is ≤pp
T -complete

for DisjNPX . Observe that (C ⊕ X,D ⊕ X) ∈ DisjNPX . Consider any (A,B) ∈
DisjNPX . Let S′ separate (C ⊕ X,D ⊕ X). Define S = {x | 0x ∈ S′}. Then S

separates (C,D) and S′ = S ⊕ X. Since (C,D) is ≤pp,X
T -complete for DisjNPX ,

there exists a polynomial-time oracle Turing machine M so that L(MS⊕X) separates
(A,B). That is, L(MS′

) separates (A,B), which is what we needed to prove.
Theorem 3.8. There exists an oracle X such that DisjNPX does not have a

≤pp,X
T -complete pair.

Proof. By Proposition 3.7, it suffices to show that DisjNPX has no ≤pp
T -complete

pair. By Proposition 2.8, it suffices to construct X such that for every (C,D) ∈
DisjNPX there exists a disjoint pair (A,B) ∈ DisjNPX such that (A,B) �

pp
uT (C,D).

Suppose {Mk}k≥1 (resp., {Ni}i≥1) is an enumeration of deterministic (resp., non-
deterministic) polynomial-time oracle Turing machines. Let rk and pi be the corre-
sponding polynomial time bounds for Mk and Ni. For any r, s, d, let Σd

rs = 0r10s1Σd

and ldrs = r + s + d + 2 (i.e., ldrs is the length of strings in Σd
rs). For Z ⊆ Σ∗, i ≥ 1,

and j ≥ 1, define

AZ
ij = {0n | ∃x, |x| = n, 0i10j10x ∈ Z}

and

BZ
ij = {0n | ∃x, |x| = n, 0i10j11x ∈ Z}.

We construct the oracle in stages. Xm denotes the oracle before stage m. We
define X =

⋃
m≥1Xm. Initially, let X = ∅. In stage m = 〈i, j, k〉, we choose

some number n = nm and add strings from Σn+1
ij to the oracle such that either

L(N
Xm+1

i ) ∩ L(N
Xm+1

j ) �= ∅ or (A
Xm+1

ij , B
Xm+1

ij ) is not uniformly Turing reducible to

(L(N
Xm+1

i ), L(N
Xm+1

j )) via M
Xm+1

k . This construction ensures that for every i and j,

(L(NX
i ), L(NX

j )) is not ≤pp
uT -complete for DisjNPX .

We describe the construction of Xm+1. We choose some large enough n = nm,
and we will add words from Σn+1

ij to the oracle. We need a sufficient number of words

in Σn+1
ij for diagonalization. Therefore, n has to be large enough such that

rk(n)pi(rk(n))(pj(rk(n)) + 1) < 2n.

On the other hand, if m ≥ 2, then we have to make sure that adding words of length
ln+1
ij does not influence diagonalizations made in former steps. Therefore, if m ≥ 2
and m − 1 = 〈i′, j′, k′〉, then n > nm−1 and n has to be large enough such that

ln+1
ij is greater than l

nm−1+1
i′j′ , max(pi′(nm−1), pj′(nm−1)), and max(pi′(rk′(nm−1)),

pj′(rk′(nm−1))). Since nm−1 > nm−2 > · · · , these conditions not only guard against
interference with step m− 1, but guard against interference with all steps m′ < m.
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Suppose there exists an S ⊆ Σn+1
ij such that L(NXm∪S

i )∩L(NXm∪S
j )∩Σ≤rk(n) �=

∅. Let Xm+1 = Xm ∪ S and go to the next stage m+ 1.
Otherwise,

for all S ⊆ Σn+1
ij , L(NXm∪S

i ) ∩ L(NXm∪S
j ) ∩ Σ≤rk(n) = ∅.(1)

In this case, we consider the computation of Mk on 0n. We determine some w ∈ Σn+1
ij

and let Xm+1 = Xm∪{w}. We construct a set Q ⊆ L(N
Xm+1

j ). Hence L(N
Xm+1

i )∪Q
is a separator of (L(N

Xm+1

i ), L(N
Xm+1

j )). The sets Xm+1 and Q satisfy either

0n ∈ AXm+1

ij and 0n /∈ L(M
L(N

Xm+1
i

)∪Q

k )(2)

or

0n ∈ BXm+1

ij and 0n ∈ L(M
L(N

Xm+1
i

)∪Q

k ).(3)

This shows that (A
Xm+1

ij , B
Xm+1

ij ) does not ≤pp
uT -reduce to (L(N

Xm+1

i ), L(N
Xm+1

j ))
via Mk.

The difficulty of finding w and Q rises mainly from the following: If we want
to preserve the computation of Mk on 0n, then we have to ensure that all oracle
queries are preserved. Since the oracle is a separator of two NP languages, we have
to maintain the acceptance behaviors of Ni and Nj with respect to the queries made
by Mk(0

n). This results in reserving too many strings. In particular, this may leave
no room for the diagonalization in Σn+1

ij . However, by Lemma 3.3, we can do better.

Now we construct the set Q, and at the same time we reserve strings for Xm+1.
The latter makes sure that either Ni or Nj rejects on certain queries.

Initially we set Q = ∅. We run Mk on 0n using oracle L(NXm
i ) ∪ Q, until the

first string q is queried. We apply Lemma 3.3 with M = Ni, N = Nj , Y = Xm, and
T = Σn+1

ij . By equation (1), the first statement of Lemma 3.3 cannot hold. Hence,

there is a set S′ ⊆ Σn+1
ij , ‖S′‖ ≤ pi(rk(n)) · (pj(rk(n)) + 1), such that either

(∀S, S ⊆ Σn+1
ij , S ∩ S′ = ∅)[q /∈ L(NXm∪S

i )](4)

or

(∀S, S ⊆ Σn+1
ij , S ∩ S′ = ∅)[q /∈ L(NXm∪S

j )].(5)

We reserve all strings in S′ for Xm+1. If equation (4) is true, then we continue
running Mk without changing Q. (Hence, answer “no” to query q.) Otherwise, let
Q = Q ∪ {q} and continue running Mk with oracle Xm ∪ Q. (Hence, answer “yes”
to query q.) By the choice of q, Q remains a separator of (L(NXm

i ), L(NXm
j )). We

continue running Mk until the next string is queried and then apply Lemma 3.3 again,
obtain the set S′ that satisfies equation (4) or (5) for the new query, and update Q
accordingly. We do this repeatedly until the end of the computation of Mk on 0n.

The number of strings in Σn+1
ij that are reserved for Xm+1 is at most

rk(n) · pi(rk(n)) · (pj(rk(n)) + 1) < 2n.

So there exist a string 0i10j10x ∈ Σn+1
ij and a string 0i10j11y ∈ Σn+1

ij such that neither

string is reserved for Xm+1. If M
L(NXm

i
)∪Q

k (0n) accepts, then let w = 0i10j11y.
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Otherwise, let w = 0i10j10x. We define Xm+1 = Xm ∪ {w}. This completes stage m
and we can go to the next stage m+ 1.

The following two claims prove the correctness of the construction.

Claim 3.9. After every stage m = 〈i, j, k〉, either L(N
Xm+1

i ) ∩ L(N
Xm+1

j )∩
Σ≤rk(nm) �= ∅ or (A

Xm+1

ij , B
Xm+1

ij ) does not ≤pp
uT -reduce to (L(N

Xm+1

i ), L(N
Xm+1

j ))
via Mk.

Proof. If L(N
Xm+1

i ) ∩ L(N
Xm+1

j ) ∩ Σ≤rk(nm) �= ∅, then we are done. Otherwise,
it follows that equation (1) holds. In this case we constructed Q. We know that
every string that was added to Q is enforced to be rejected by NXm

j . Since w is

not reserved and Xm+1 = Xm ∪ {w}, Q is also in the complement of L(N
Xm+1

j ).

Therefore, L(N
Xm+1

i ) ∪Q is a separator of (L(N
Xm+1

i ), L(N
Xm+1

j )).

All queries of Mk(0
nm) under oracle L(N

Xm+1

i ) ∪ Q are answered the same way
as in the construction of Q. The reason is as follows: For any query q, if we reserve
strings from Σnm+1

ij for Xm+1 such that Ni always rejects q (equation (4)), then q

will not be put into Q. Hence q will get the answer “no” from oracle L(N
Xm+1

i ) ∪Q,
which is the same as in the construction of Q. If we reserve strings from Σnm+1

ij for

Xm+1 such that Nj always rejects q (equation (5)), then q will be put into Q. Hence q

gets the answer “yes” under oracle L(N
Xm+1

i )∪Q, which is the same answer as given
in the construction of Q. Therefore, by the choice of w, we obtain the following:

• If M
L(N

Xm+1
i

)∪Q

k (0nm) accepts, then 0nm+1 ∈ BL(N
Xm+1
i

)∪Q

ij .

• If M
L(N

Xm+1
i

)∪Q

k (0nm) rejects, then 0nm+1 ∈ AL(N
Xm+1
i

)∪Q

ij .

Hence L(M
L(N

Xm+1
i

)∪Q

k ) does not separate (A
Xm+1

ij , B
Xm+1

ij ).

Claim 3.10. For all (C,D) ∈ DisjNPX , where C = L(NX
i ) and D = L(NX

j ), it

holds that (AX
ij , B

X
ij ) ∈ DisjNPX and (AX

ij , B
X
ij ) �

pp
uT (C,D).

Proof. First, we claim that there is no stage m = 〈i, j, k〉 such that L(N
Xm+1

i ) ∩
L(N

Xm+1

j )∩Σ≤rk(nm) �= ∅. Otherwise, since the number nm+1 is chosen large enough,
all strings that are added to the oracle in later stages will not change the computations
of Ni and Nj on inputs of lengths ≤ rk(nm). Therefore, L(NX

i ) ∩L(NX
j ) �= ∅, which

contradicts our assumption.

From Claim 3.9 it follows that for every stage m = 〈i, j, k〉, (A
Xm+1

ij , B
Xm+1

ij ) does

not ≤pp
uT -reduce to (L(N

Xm+1

i ), L(N
Xm+1

j )) via Mk. Again, since nm+1 is chosen large
enough, all strings added to the oracle in later stages will not change the following:

1. The membership of 0nm in A
Xm+1

ij and B
Xm+1

ij . Strings of length lnm+1
ij are

only added to the oracle at stage m and not in any other stage.
2. The computations of Ni and Nj on inputs of lengths ≤ rk(nm) (which is the

maximal length of strings that can be queried by Mk on 0nm).

Hence, (AX
ij , B

X
ij ) does not ≤pp

uT -reduce to (C,D) via Mk. Since this holds for all k,

we obtain (AX
ij , B

X
ij ) �

pp
uT (C,D).

It remains to observe that (AX
ij , B

X
ij ) ∈ DisjNPX : For each m = 〈i, j, k〉 we

added exactly one string from Σnm+1
ij to the oracle. Moreover, for any other m′ =

〈i′, j′, k′〉 we added only words from Σ
nm′+1
i′j′ to the oracle; this does not influence AX

ij

and BX
ij .

This completes the proof of the theorem.

Corollary 3.11. For the oracle X from Theorem 3.8 it holds that PX �= UPX .



DISJOINT NP-PAIRS 1381

Proof. Choose i and j such that NX
i (resp., NX

j ) accepts X (resp., X). We show

that AX
ij ∈ UPX − PX .

Note that L(NX
i ) ∩ L(NX

j ) = ∅. By the construction in Theorem 3.11, for every

length n, we add at most one string of the form 0i10j10x, |x| = n, to the oracle. So
AX

ij ∈ UPX .

Assume AX
ij = L(MX

k ) for some deterministic polynomial-time oracle Turing ma-

chine Mk. Note that X is the only separator of (L(NX
i ), L(NX

j )). Therefore, it follows

that (AX
ij , B

X
ij ) ≤pp

uT (L(NX
i ), L(NX

j )) via Mk. This contradicts Claim 3.10.

4. Function classes and disjoint pairs. We show that there exists a Turing-
complete disjoint NP-pair if and only if NPSV contains a Turing-complete partial
function. We know already that there is a connection between disjoint NP-pairs
and NPSV. Namely, Selman [Sel94] proved that Conjecture 2.4 holds if and only if
NPSV does not contain an NP-hard partial function, and Köbler and Messner [KM00]
proved that there exists a many-one-complete disjoint NP-pair if and only if NPSV
contains a many-one-complete partial function. Recall [Sel94] that NPSV is the set
of all partial, single-valued functions computed by nondeterministic polynomial-time-
bounded transducers.

If g is a single-valued total function, then we define M [g], the single-valued partial
function computed by M with oracle g, as follows: x ∈ dom(M [g]) if and only if M
reaches an accepting state on input x. In this case, M [g](x) is the final value of
M ’s output tape. In the case that g is a total function and f = M [g], we write
f ≤p

T g.
The literature contains two different definitions of reductions between partial

functions, because one must decide what to do in case a query is made to the or-
acle function when the query is not in the domain of the oracle function. Fenner
et al. [FHOS97] determined that in this case the value returned should be a special
symbol, ⊥. Selman [Sel94] permits the value returned in this case to be arbitrary,
which is the standard paradigm for promise problems. Here we use the promise prob-
lem definition of Selman [Sel94]. Recall that for multivalued partial functions f and g,
g is an extension of f if dom(f) ⊆ dom(g), and for all x ∈ dom(f) and for every y, if
g(x) �→ y, then f(x) �→ y.

Definition 4.1. For polynomial-length-bounded, partial multivalued functions f
and g, f is Turing reducible to g (as a promise problem, so we write f ≤pp

T g) in poly-
nomial time if for some deterministic polynomial-time-bounded oracle transducer M ,
for every single-valued total extension g′ of g, M [g′] is an extension of f .

Here, if the query q belongs to the domain of g, then the oracle returns a value
of g(q). We will use the result [Sel94] that f ≤pp

T g if and only if for every single-
valued total extension g′ of g, there is a single-valued total extension f ′ of f such that
f ′ ≤p

T g′.
A single-valued partial function g is ≤pp

T -complete for NPSV if g belongs to NPSV
and, for all f ∈ NPSV, f ≤pp

T g.
Theorem 4.2. NPSV contains a ≤pp

T -complete partial function ⇔ DisjNP con-
tains a ≤pp

T -complete pair.
Proof. For any f ∈ NPSV, define the following sets:

Rf = {〈x, y〉 | x ∈ dom(f), y ≤ f(x)}(6)

and

Sf = {〈x, y〉 | x ∈ dom(f), y > f(x)}.(7)
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Note that (Rf , Sf ) is a disjoint NP-pair.

Claim 4.3. For every separator A of (Rf , Sf ), there is a single-valued total
extension f ′ of f such that f ′ ≤p

T A.

Consider the following oracle transducer T that computes f ′ with oracle A. On
input x, if x ∈ dom(f), then T determines the value of f(x), using a binary search
algorithm, by making repeated queries to A. Note that for x ∈ dom(f) and for any y,
if y ≤ f(x), then 〈x, y〉 ∈ Rf , and if y > f(x), then 〈x, y〉 ∈ Sf . Clearly, T computes
some single-valued total extension of f . This proves the claim.

Let f be a ≤pp
T -complete function for NPSV and assume that A separates Rf

and Sf . By Claim 4.3, there is a single-valued total extension f ′ of f such that
f ′ ≤p

T A.

Let (U, V ) ∈ DisjNP. We want to show that (U, V ) ≤pp
T (Rf , Sf ). Define

g(x) =

⎧⎨⎩
0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

Then g ∈ NPSV, so g ≤pp
T f . Therefore, there is a single-valued total extension g′

of g such that g′ ≤p
T f ′.

Define L = {x | g′(x) = 0}. It is easy to see that L ≤p
T g′. Also note that U ⊆ L

and V ⊆ L, and, therefore, L separates U and V . Then the following sequence of
reductions shows that L ≤p

T A:

L ≤p
T g′ ≤p

T f ′ ≤p
T A.

Thus, for every separator A of (Rf , Sf ), there is a separator L of (U, V ) such that
L ≤p

T A. Therefore, (Rf , Sf ) is ≤pp
T -complete for DisjNP.

For the other direction, assume that (U, V ) is ≤pp
T -complete for DisjNP. Define

the following function:

f(x) =

⎧⎨⎩
0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

Clearly, f ∈ NPSV.

Let f ′ be a single-valued total extension of f , and let L = {x | f ′(x) = 0}. Clearly,
L ≤p

T f ′. Also, since U ⊆ L and V ⊆ L, L is a separator of (U, V ).

We want to show that for any g ∈ NPSV, g ≤pp
T f . Consider the disjoint NP-pair

(Rg, Sg) for the function g as defined in equations (6) and (7). There is a separator A
of (Rg, Sg) such that A ≤p

T L, since L is a separator of the ≤pp
T -complete disjoint

NP-pair (U, V ). As noted in Claim 4.3, there is a single-valued total extension g′

of g such that g′ ≤p
T A. Therefore, the following sequence of reductions shows that

g ≤pp
T f :

g′ ≤p
T A ≤p

T L ≤p
T f ′.

Hence, f is complete for NPSV.

Corollary 4.4.

1. Let f ∈ NPSV be ≤pp
T -complete for NPSV. Then (Rf , Sf ) is ≤pp

T -complete
for DisjNP.
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2. If (U, V ) is ≤pp
T -complete for DisjNP, then fU,V is complete for NPSV, where

fU,V (x) =

⎧⎨⎩
0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

3. Relative to the oracle in Theorem 3.8, NPSV does not have a ≤pp
T -complete

partial function.

5. Nonsymmetric pairs and separation of reducibilities. Pudlák [Pud03]
defined a disjoint pair (A,B) to be symmetric if (B,A) ≤pp

m (A,B). Otherwise, (A,B)
is nonsymmetric. For example, the canonical disjoint NP-pair for the propositional
proof system Resolution is symmetric [Pud03] (see section 6.3 for the definition of
canonical pairs). In this section we give complexity-theoretic evidence of the exis-
tence of nonsymmetric disjoint NP-pairs. As a consequence, we obtain new ways to
demonstrate existence of P-inseparable sets and show that ≤pp

m and ≤pp
T reducibilities

differ for disjoint NP-pairs.
A set L is P-printable if there is k ≥ 1 such that all elements of L up to length n

can be printed by a deterministic Turing machine in time nk+k [HY84, HIS85]. Every
P-printable set is sparse and belongs to P. An infinite set A is P-printable-immune if
no infinite subset of A is P-printable.

A set L is p-selective if there is a polynomial-time-bounded function f such that
for every x, y ∈ Σ∗, f(x, y) ∈ {x, y}, and {x, y} ∩ L �= ∅ ⇒ f(x, y) ∈ L [Sel79].

A partial function f ∈ PF is almost-always one-way [FPS01] if no polynomial-
time Turing machine inverts f correctly on more than a finite subset of range(f).

Proposition 5.1.

1. (A,B) is symmetric if and only if (B,A) is symmetric.
2. If (A,B) is P-separable, then (A,B) is symmetric.

Proof. The proof of the first assertion is trivial. For the proof of the second
assertion, let (A,B) be a P-separable disjoint NP-pair. Fix a ∈ A and b ∈ B, and
let the separator be S ∈ P. Consider the following polynomial-time computable
function f . On input x, if x ∈ S, then f outputs b; otherwise, f outputs a. Therefore,
x ∈ A implies x ∈ S, which implies f(x) = b ∈ B, and x ∈ B implies x /∈ S, which
implies f(x) = a ∈ A. Therefore, (A,B) ≤pp

m (B,A), i.e., (A,B) is symmetric.
We will show the existence of a nonsymmetric disjoint NP-pair under certain hy-

potheses, due to the following proposition, that will separate ≤pp
m and ≤pp

T reducibili-
ties.

Proposition 5.2.

1. If (A,B) is a nonsymmetric disjoint NP-pair, then (B,A) �
pp
m (A,B).

2. For any disjoint NP-pair (A,B), (B,A) ≤pp
T (A,B).

Proof. The first assertion follows from the definition of symmetric pairs. For the
second assertion, observe that for any S separating A and B, S separates B and A,
while for any set S, S ≤p

T S.
We will use the following proposition in a crucial way to provide some evidence

for the existence of nonsymmetric disjoint NP-pairs. In other words, we will seek to
obtain a disjoint NP-pair (A,B) such that either A or B is p-selective, but (A,B) is
not P-separable.

Proposition 5.3. For any disjoint NP-pair (A,B), if either A or B is p-
selective, then (A,B) is symmetric if and only if (A,B) is P-separable.

Proof. We know from Proposition 5.1 that if (A,B) is P-separable, then it is
symmetric. Now assume that (A,B) is symmetric via some function f and assume
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(without loss of generality) that A is p-selective and the p-selector function is g. The
following algorithm M separates A and B. On input x, M runs g on the strings
(x, f(x)), and accepts x if and only if g outputs x. If x ∈ A, then f(x) ∈ B, and
therefore g has to output x. On the other hand, if x ∈ B, then f(x) ∈ A. So g will
output f(x) and M will reject x. Therefore, A ⊆ L(M) ⊆ B.

Now we give evidence for the existence of nonsymmetric disjoint NP-pairs.

Theorem 5.4. If E �= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that
(A,A) is not symmetric.

Proof. If E �= NE ∩ coNE, then there is a tally set T ∈ (NP ∩ coNP) − P. From
Selman [Sel79, Theorem 5], the existence of such a tally set implies that there is a
p-selective set A ∈ (NP ∩ coNP) − P. Clearly, (A,A) is not P-separable. Hence, by
Proposition 5.3, (A,A) is nonsymmetric.

As a corollary, if E �= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that
(A,A) �

pp
m (A,A), yet clearly (A,A) ≤pp

T (A,A).

We will show that the hypotheses in Theorem 5.5 imply the existence of a non-
symmetric disjoint NP-pair. Note that the hypotheses in this theorem are similar to
those studied by Fortnow, Pavan, and Selman [FPS01] and Pavan and Selman [PS02].
However, our hypotheses are stronger than the former and weaker than the latter.

Theorem 5.5. The following are equivalent.

1. There is a UP-machine N that accepts 0∗ and, for every polynomial-time
machine M , {n |M on input 0n outputs the accepting computation of N on
input 0n} is a finite set.

2. There is a set S in UP accepted by a UP-machine N such that S has exactly
one string of every length and, for every polynomial-time machine M , the
following set is finite: {n |M on input 0n outputs the accepting computation
of N on input xn}, where xn denotes the word of length n that belongs to S.

3. There is an honest one-to-one, almost-always one-way function f such that
range(f) = 0∗.

4. There is a language L ∈ P that has exactly one string of every length and L
is P-printable-immune.

5. There is a language L ∈ UP that has exactly one string of every length and
L is P-printable-immune.

Proof. We show the following cycles: 1 ⇒ 2 ⇒ 3 ⇒ 1 and 1 ⇒ 4 ⇒ 5 ⇒ 1.

Trivially, item 1 implies item 2. To prove that item 2 implies item 3, let N be
a UP-machine that satisfies the conditions of item 2 and let S = L(N). For any
y that encodes an accepting computation of N on some string x, define f(y) = 0|x|.
Since y also encodes x, f is polynomial-time computable. Since N runs in polynomial
time, f is honest. On the other hand, if any polynomial-time computable machine
can invert f on 0n for infinitely many n, then that machine actually outputs infinitely
many accepting computations of N .

We show that item 3 implies item 1. Given f as in item 3, we know that since f is
honest, ∃k > 0 such that |x| ≤ |f(x)|k. We describe a UP-machine N that accepts 0∗.
On input 0n, N guesses x, |x| ≤ nk, and accepts 0n if and only if f(x) = 0n. Since f is
one-to-one, N has exactly one accepting path for every input of the form 0n, and since
range(f) = 0∗, L(N) = 0∗. If there is a polynomial-time machine M that outputs
infinitely many accepting computations of N , then M also inverts f on infinitely many
strings.

To prove that item 1 implies item 4, let N be the UP-machine in item 1. We can
assume without loss of generality that for all but finitely many n, on input 0n, N has
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exactly one accepting computation of length nk for some k > 0. Let us define the
following language:

L′ = {x10n10l | n ≥ 0, x is an accepting path of N(0n), and 0 ≤ l ≤ (n+ 1)k − nk}.

It is easy to see that L′ is in P, and for all but finitely many n, L has exactly one
string of length n. Therefore, there exists a finite variation L ∈ P such that L has
exactly one string of every length. If L has an infinite P-printable subset, then so
has L′. Let M ′ be a polynomial-time transducer that prints an infinite subset of L′.
It follows that M ′ outputs infinitely many accepting computations of N .

Item 4 trivially implies item 5. We show that item 5 implies item 1. Let L be
such a language in UP via a UP-machine N . Define a UP-machine N ′ to accept 0∗ as
follows. On input 0n, N ′ guesses a string x of length n and a computation path w of N
on x. N ′ accepts 0n if and only if w is an accepting computation. If a polynomial-time
machine can output infinitely many accepting computations of N ′, then essentially
the same machine also outputs infinitely many strings in L, and hence L cannot be
P-printable-immune.

Theorem 5.6. Each of the hypotheses stated in Theorem 5.5 implies the existence
of nonsymmetric disjoint NP-pairs.

Proof. Let us define the following function:

dt(i) =

{
1 if i = 0,

22dt(i−1)

otherwise.

Let M be the UP-machine accepting 0∗, as in the first hypothesis in Theorem 5.5.
Let an be the accepting computation of M on 0n. We can assume that |an| = p(n),
where p(·) is some fixed polynomial. We define the following sets:

LM = {〈0n, w〉 | w ≤ an, n = dt(i) for some i > 0}

and

RM = {〈0n, w〉 | w > an, n = dt(i) for some i > 0}.

Note that (LM , RM ) is a disjoint NP-pair. We claim that LM is p-selective. The
description of a selector f for LM follows. Assume that 〈0k, w1〉 and 〈0l, w2〉 are
input to f . If k = l, then f outputs the lexicographically smaller one of w1 and w2.
Otherwise, assume that k < l, and without loss of generality, both k and l are in

range(dt). In that case, l ≥ 22k

> 2|ak|, and therefore f can compute ak, the accepting
computation of M on 0k, by checking all possible strings of length |ak|. Therefore, in
O(l) time, f outputs 〈0k, w1〉 if w1 ≤ ak, and outputs 〈0l, w2〉 otherwise. Similarly,
we can show that RM is p-selective.

We claim that (LM , RM ) is a nonsymmetric disjoint NP-pair. Assume on the
contrary that this pair is symmetric. Therefore, by Proposition 5.3 (LM , RM ) is P-
separable; i.e., there is S ∈ P that is a separator for (LM , RM ). Using a standard
binary search technique, a polynomial-time machine can compute the accepting com-
putation of M on any 0n, where n = dt(i) for some i > 0. Since the length of the
accepting computation of M on 0n is p(n), this binary search algorithm takes time
O(p(n)) which is polynomial in n. This contradicts our hypothesis, since we assumed
that no polynomial-time machine can compute infinitely many accepting computa-
tions of M . Therefore, (LM , RM ) is a nonsymmetric disjoint NP-pair.
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If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NP-pair
(A,B) so that (A,B) �

pp
m (B,A) while (A,B) ≤pp

T (B,A).
Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint

NP-pairs implies the existence of P-inseparable pairs where both sets of the pair are
NP-complete. The following results are in the same spirit. We note that natural
candidates for nonsymmetric (or ≤pp

m -complete) disjoint NP-pairs arise either from
cryptography or from proof systems [Pud03]. However, the following theorems show
that the existence of such pairs will imply that nonsymmetric (or ≤pp

m -complete)
disjoint NP-pairs exist where both sets of the pair are ≤p

m-complete for NP.
Theorem 5.7. There exists a nonsymmetric disjoint NP-pair (A,B) if and only

if there exists a nonsymmetric disjoint NP-pair (C,D) where both C and D are ≤p
m-

complete for NP.
Proof. The if part is trivial. We prove the only if part. Let {NMi}i≥1 be a

standard enumeration of polynomial-time-bounded nondeterministic Turing machines
with associated polynomial-time bounds {pi}i≥1. It is known that the following set
is NP-complete [BGS75]:

K = {〈i, x, 0n〉 | NMi accepts x within n steps}.

Let (A,B) be a nonsymmetric disjoint NP-pair. There exists i ≥ 1 such that A =
L(NMi), and A ≤p

m K via f(x) = 〈i, x, 0pi(|x|)〉. Note that f is honest and one-to-one.
Our first goal is to show that (K, f(B)) is nonsymmetric. Since f is a reduction

from A to K and A ∩ B = ∅, f(A) ⊆ K and f(B) ⊆ K, and so f(B) and K are
disjoint sets. Observe that f(B) is in NP because on any input y, we can guess x,
and verify that x ∈ B and f(x) = y. Therefore, (K, f(B)) is a disjoint NP-pair, and
K is ≤p

m-complete for NP.
In order to prove that this pair is nonsymmetric, assume otherwise. Then

(K, f(B)) ≤pp
m (f(B),K) and, therefore, ∃g ∈ PF such that g(K) ⊆ f(B) and

g(f(B)) ⊆ K. Consider the following polynomial-time computable function h. On
input x, h first computes y = g(f(x)). If y = 〈i, x′, 0pi(|x′|)〉 for some x′, then h
outputs x′; otherwise, it returns a fixed string a ∈ A. We claim that h(A) ⊆ B
and h(B) ⊆ A, thereby making (A,B) symmetric. For any x ∈ A, we know that
f(x) ∈ K. Hence g(f(x)) ∈ f(B), since g(K) ⊆ f(B). So g(f(x)) = 〈i, x′, 0pi(|x′|)〉
for some x′ ∈ B, and so h(x) = x′ ∈ B. For any x ∈ B, y = g(f(x)) ∈ K, since
g(f(B)) ⊆ K. If y = 〈i, x′, 0pi(|x′|)〉 for some x′, then x′ must be in A; else h will
return a ∈ A, and so, in either case, x ∈ B will imply that h(x) ∈ A. Therefore,
h(A) ⊆ B and h(B) ⊆ A. Thus (A,B) ≤pp

m (B,A), contradicting the fact that (A,B)
is nonsymmetric. Hence (K, f(B)) is a nonsymmetric disjoint NP-pair.

To complete the proof of the theorem, apply the construction once again, this time
with an honest reduction f ′ from f(B) to K. Namely, f ′(f(B)) ⊆ K and f ′(K) ⊆ K.
Similar to the above argument, it can be shown that f ′(K) and K are disjoint. Also,
since f ′ is one-to-one, we claim that f ′(K) is ≤p

m-complete for NP. Clearly, x ∈ K
implies f ′(x) ∈ f ′(K). On the other hand, for some x /∈ K, f ′(x) cannot be in f ′(K);
otherwise, f ′(x) = f ′(y) for some y′ ∈ K, contradicting the fact that f ′ is one-to-one.
Then K and f ′(K) are disjoint NP-complete sets, and the argument already given
shows that (f ′(K),K) is nonsymmetric.

Theorem 5.8. There exists a ≤pp
m -complete disjoint NP-pair (A,B) if and only

if there exists a ≤pp
m -complete disjoint NP-pair (C,D), where both C and D are ≤p

m-
complete sets for NP.

Proof. The proof is similar to that of Theorem 5.7. Consider the one-to-one
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function f defined by f(x) = 〈i, x, 0pi(|x|)〉 that many-one reduces A to the canonical
NP-complete set K.

Obviously (A,B) ≤pp
m (K, f(B)) via f , since f(A) ⊆ K, and K ∩ f(B) = ∅, as

shown in the proof of Theorem 5.7. Similar to that theorem, we apply the one-to-
one function f ′ that many-one reduces f(B) to K to obtain another disjoint pair
(f ′(K),K) where (K, f(B)) ≤pp

m (f ′(K),K) via f ′. So (A,B) ≤pp
m (K, f(B)) ≤pp

m

(f ′(K),K). Therefore (f ′(K),K) is also a ≤pp
m -complete disjoint NP-pair, and both

f ′(K) and K are ≤p
m-complete sets for NP.

6. Optimal proof systems relative to an oracle. The question of whether
optimal propositional proof systems exist has been studied in detail. Pudlák [Pud86]
and Kraj́ıček and Pudlák [KP89] showed that NE = coNE implies the existence
of optimal proof systems. Ben-David and Gringauze [BDG98] and Köbler, Mess-
ner, and Torán [KMT03] obtained the same conclusion under weaker assumptions.
On the other hand, Messner and Torán [MT98] and Köbler, Messner, and Torán
[KMT03] proved that existence of optimal proof systems results in the existence of
≤p

m-complete sets for the promise class NP ∩ SPARSE. These results hold relative
to all oracles. Therefore, optimal proof systems exist relative to any oracle in which
NE = coNE holds. Kraj́ıček and Pudlák [KP89], Ben-David and Gringauze [BDG98],
and Buhrman et al. [BFFvM00] constructed oracles relative to which optimal proof
systems do not exist. In addition, NP∩SPARSE does not have complete sets relative
to the latter oracle.

The relationship between the existence of optimal proof systems and disjoint NP-
pairs was first established by Razborov [Raz94], who showed that the existence of
optimal proof systems implies the existence of many-one-complete disjoint NP-pairs.
Köbler, Messner, and Torán [KMT03] proved that this holds even for a stronger form
of many-one reductions. They defined strong many-one reduction (we denote this by
≤pp

sm) between disjoint NP-pairs as follows: (A,B) ≤pp
sm (C,D) if there is f ∈ PF such

that f(A) ⊆ C, f(B) ⊆ D, and f(A ∪B) ⊆ C ∪D.1

In this section, we construct two oracles, O1 and O2. Relative to O1, NE = coNE,
and therefore [Pud86, KP89] optimal proof systems exist, implying the existence
of ≤p

m-complete sets for NP ∩ SPARSE [MT98] as well as the existence of ≤pp
sm-

complete disjoint NP-pairs [KMT03]. On the other hand, relative to this oracle,
E �= NE∩coNE = NE, thus implying, by Theorem 5.4, that nonsymmetric (and there-
fore P-inseparable) pairs exist. Since nonexistence of ≤pp

T -complete disjoint NP-pairs
implies Conjecture 2.4, it is natural to ask whether the converse of this implication
holds. Relative to O1, Conjecture 2.4 holds, and so the converse is false.

Ben-David and Gringauze [BDG98] asked whether the converse to Razborov’s
result holds. Relative to O2, NP ∩ SPARSE does not have a complete set, and so
optimal proof systems do not exist. On the other hand, ≤pp

sm-complete disjoint NP-
pairs exist. This shows that the converse to Razborov’s result does not hold (even for
the stronger notion of many-one reduction) in a relativized setting. Relative to O2,
the existence of ≤pp

sm-complete disjoint NP-pairs does not imply the existence of ≤p
m-

complete sets in NP∩SPARSE. In addition, relative toO2, NE �= coNE [Pud86, KP89]
and nonsymmetric disjoint NP-pairs exist.

Since relative to both O1 and O2, Conjecture 2.4 holds, ≤pp
sm-complete disjoint

NP-pairs exist, and nonsymmetric pairs exist, it follows that these are “independent”

1A forthcoming paper [GSS04] proves that there exist ≤pp
sm-complete disjoint NP-pairs if and

only if there exist ≤pp
m -complete disjoint NP-pairs.
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Table 1

Comparison of oracle properties.

O1 O2

∃ ≤pp
sm-complete disjoint NP-pairs Yes Yes

∃ nonsymmetric disjoint NP-pairs Yes Yes

Conjecture 2.4 holds Yes Yes

E �= NE Yes Yes

NE = coNE Yes No

∃ optimal propositional proof systems Yes No

NP ∩ SPARSE has ≤p
m-complete sets Yes No

of the assertion that NE = coNE, the existence of optimal proof systems, and existence
of ≤p

m-complete sets in NP ∩ SPARSE. In Table 1, we summarize the properties of
both oracles; “Yes” denotes that a particular property holds, while “No” means that
the property does not hold.

6.1. Notation. We fix the following enumerations: {NM i}i is an effective enu-
meration of nondeterministic, polynomial-time-bounded oracle Turing machines;
{NEi}i is an effective enumeration of nondeterministic, linear exponential-time-
bounded oracle Turing machines; {Mi}i is an effective enumeration of deterministic,
polynomial-time-bounded oracle Turing machines; {Ei}i is an effective enumeration
of deterministic, linear exponential-time-bounded oracle Turing machines; and {Ti}i
is an effective enumeration of deterministic, polynomial-time-bounded oracle Turing
transducers. Moreover, NM i, Mi, and Ti have running time pi = ni, and NEi and Ei

have running time 2in independent of the choice of the oracle. For any oracle Z, let
fZi denote the function that TZ

i computes.
We use the following model of nondeterministic oracle Turing machines. On some

input the machine starts the first phase of its computation, during which it is allowed
to make nondeterministic branches. In this phase the machine is not allowed to ask
any queries. At the end of the first phase the machine has computed a list of queries
q1, . . . , qn, a list of guessed answers g1, . . . , gn, and a character, which is either +
or −. Now the machine asks in parallel all queries and gets the vector of answers
a1, . . . , an. The machine accepts if the computed character is + and (a1, . . . , an) =
(g1, . . . , gn); otherwise the machine rejects. An easy observation shows that for every
nondeterministic polynomial-time oracle Turing machine M there exists a machine N
that works in the described way such that for all oracles X, L(MX) = L(NX).2

The analogous statement holds for nondeterministic, linear exponential-time-bounded
oracle Turing machines.

A computation path P of a nondeterministic polynomial-time oracle Turing ma-
chineN on an input x contains all nondeterministic choices, all queries, and all guessed
answers. A computation path P that has the character + (resp., −) is called a positive
(resp., negative) path. The set of queries that are guessed to be answered positively
(resp., negatively) is denoted by P yes (resp., P no); the set of all queries is denoted
by P all df

= P yes ∪ P no. The length of P (i.e., the number of computation steps) is
denoted by |P |. Note that this description of paths makes it possible to talk about
paths of computations without specifying the oracle; i.e., we can say that N on x has

2Note that for this property we need both: the character must be + and gi must be guessed
correctly. If the machine accepts just when the answers are guessed correctly, then we miss the
machine that accepts ∅ for every oracle.
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a positive path P such that P yes and P no satisfy certain conditions. However, when
talking about accepting and rejecting paths we always have to specify the oracle. (A
positive path can be accepting for certain oracles, and it can be rejecting for other
oracles.)

For X,Y ⊆ Σ∗ we write Y ⊇m X if X ⊆ Σ≤m and Y ≤m = X. We write
Y ⊆m X if and only if X ⊇m Y . We need to consider injective, partial functions
µ : N

+ → N × N
+ that have a finite domain. We do not distinguish between the

function and the set of all (n, i, j) such that µ(n) = (i, j). We denote both by µ. Let
µ and µ′ be injective, partial functions N

+ → N × N
+ that have a finite domain. If

µ �= ∅, then µmax
df
= max(dom(µ)). We write µ � µ′ if either µ = ∅, or µ ⊆ µ′ and

µmax < n for all n ∈ dom(µ′ − µ). We write µ ≺ µ′ if µ � µ′ and µ �= µ′.
For j ≥ 1, SPARSEj denotes the class of all languages L such that for all k ≥ 0,

‖L ∩ Σk‖ ≤ kj + j.

6.2. Existence of optimal proof systems. Now we develop the first of these
oracles.

Theorem 6.1. There exists an oracle relative to which the following holds:
(i) E �= NE = coNE.
(ii) Conjecture 2.4 holds.
For a fixed set X, let us define the following set, which is complete for NEX :

CX df
= {〈i, x, l〉 | NEX

i accepts x within l steps}.

We also define the following property:

〈i, x, l〉 ∈ CX ⇔ (∀y, |y| = 22|〈i,x,l〉|)[〈i, x, l〉y /∈ X].P1:

We call a set X ⊆ Σ≤k k-valid if property P1 holds for all strings 〈i, x, l〉 such that
|〈i, x, l〉| + 22|〈i,x,l〉| ≤ k. Note that ∅ is 0-valid and that the condition on the right-
hand side of P1 only depends on words in X that have length 22n+n for some natural
number n. We define the following sets:

AX df
= {0n | (n is odd) ∧ (∃y, |y| = 2n)[y ∈ X]}

and

BX df
= {02n

z | (n is odd) ∧ |z| = 2n ∧ (∃y, |y| = 2n)[zy ∈ X]}.

Clearly, AX ∈ NEX and BX ∈ NPX . We require the following for O1:
1. CO1 ∈ coNEO1 . (This implies NEO1 = coNEO1 , because CO1 is complete for

NEO1 by a reduction that is computable in linear time.)
2. AO1 /∈ EO1 (which implies EO1 �= NEO1 , since AO1 ∈ NEO1).
3. For every i, j, and r, BO1 does not ≤pp

T -reduce to (L(NMO1
i ), L(NMO1

j ))
via Mr. This will ensure that Conjecture 2.4 holds relative to O1.

Proof of Theorem 6.1. We will begin by stating two lemmas that will be used in
this proof.

Lemma 6.2. For every i and every k-valid X, there exists an l-valid Y ⊇k X,
where l > k, such that for every Z ⊇l Y , AZ �= L(EZ

i ).
Lemma 6.3. For every i, j, r and every k-valid X, there exists an l-valid Y ⊇k X,

where l > k, such that for every Z ⊇l Y , BZ does not ≤pp
T -reduce to (L(NMZ

i ),
L(NMZ

j )) via Mr.
We define the following list T of requirements. At the beginning of the construc-

tion, T contains {i}i≥1 and {(i, j, r)}i,j,r≥1. These have the following interpretations:
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• i ∈ T : ensure that AO1 �= L(EO1
i ).

• (i, j, r) ∈ T : ensure that BO1 does not ≤pp
T -reduce to (L(NMO1

i ), L(NMO1
j ))

via Mr.

The following algorithm is used to construct the oracle O1.

1 O1 := ∅; k := 0

2 while {true} {
3 Remove the next requirement t from T
4 if t = i then

5 apply Lemma 6.2 with X = O1 to get Y and l

6 else // t = (i, j, r)
7 apply Lemma 6.3 with X = O1 to get Y and l

8 O1 := Y; k := l

9 }
It is clear that the oracle constructed by this algorithm satisfies items (i) and (ii)

of Theorem 6.1. It remains to prove Lemmas 6.2 and 6.3.

Proof of Lemma 6.2. Fix an i and let X be any k-valid oracle. Let n be the
smallest odd length such that k ≤ 2n−1, n−1 < 2n−1, and 2in < 22n

. Note first that
we can assume that k = 2n−1. Otherwise, we claim that X can be extended to some
(2n − 1)-valid oracle X ′ ⊇k X. Assume that X is (m− 1)-valid for k < m ≤ 2n − 1;
we will show how X can be extended to an m-valid oracle. This can be iterated to
extend X to be (2n − 1)-valid.

Assume m = 22r + r and consider some 〈j, x, l〉 of length r. (If m is not of this
form, then, by property P1, an (m−1)-valid oracle is automatically anm-valid oracle.)

Note that |x| ≤ r and |l| ≤ r. Hence, NEX
j (x) can ask only queries of length

≤ 2r < m− 1. The answers to these queries will not change during the later stages of
the construction. So the result of NEX

j (x) is fixed. If NEX
j (x) rejects within l steps,

then choose some y of length 22r and put 〈j, x, l〉y in X. Otherwise, do not put any
such string in X. After all strings 〈j, x, l〉 are treated, we obtain an oracle X that is
m-valid. This shows that we can assume X to be (2n − 1)-valid.

Also note that any string w = 〈j, x, l〉y cannot have length 2n. If |w| = 2n, then,
since |y| = 22|〈j,x,l〉|, |〈j, x, l〉| < n/2. Hence, the highest length possible for 〈j, x, l〉 is
(n − 1)/2, in which case |y| = 2n−1 and |w| = (n − 1)/2 + 2n−2 < 2n. If |〈j, x, l〉| is
even smaller, then y is of smaller length as well, and so is |w|. This shows that |w|
can never be 2n for any n. As a consequence, we know that at stage k + 1 we do not
have to put any strings of the form 〈j, x, l〉y into X. Therefore, we can use this stage
for diagonalization.

Now we want to show that there exists an l-valid Y , l ≥ 2n, such that for every
Z ⊇l Y , AZ �= L(EZ

i ). Consider the computation of EX
i on 0n. Since the running

time of Ei is bounded above by 2in, the queries made by EX
i (0n) have length at

most 2in. Let N be the set of queries of length ≥ 2n (these are answered “no” in this
computation). Note that ‖N‖ ≤ 2in < 22n

. We put some v ∈ Σ2n − N in X if and
only if EX

i (0n) rejects. By the above discussion, k = 2n �= 22r + r for any r, and so v
cannot be of the form 〈j, x, l〉y. Therefore, X is 2n-valid.

Claim 6.4. We can extend X to some 2in-valid Y ⊇2n X such that N ⊆ Y .

Proof. Fix some 〈j, x, l〉 such that 2n < |〈j, x, l〉y| ≤ 2in. First we show that
there are at least 22n

different such y for this 〈j, x, l〉. We show this by proving that
|y| ≥ 2n. If |y| < 2n, then, since length of y can only be a power of 2, let us assume that
y = 2n−1. Then |〈j, x, l〉| = (n−1)/2, and therefore |〈j, x, l〉y| = (n−1)/2+2n−1 < 2n,
contradicting that |〈j, x, l〉y| > 2n.
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Now, simulate NEX
j (x) for l steps. If the simulation NEX

j (x) accepts within
l steps, then do not update X. Otherwise, i.e., if the simulation rejects, then choose
y′ such that |y′| = 22|〈j,x,l〉| and 〈j, x, l〉y′ /∈ N . Put 〈j, x, l〉y′ inX. Existence of such y′

is ensured, since the possible number of these words is 22n

, whereas ‖N‖ ≤ 2in < 22n

.
So, ifNEX

j accepts x within l steps, no extra string is put inX. On the other hand,

if NEX
j (x) does not accept within l steps, then we put an appropriate 〈j, x, l〉y′ /∈ N

inX. Once this procedure is completed for all 〈j, x, l〉, the oracle we obtain is 2in-valid.
We call that oracle Y . This proves Claim 6.4.

The proof of the lemma is completed by noting that Y ⊇2n X and Y ⊆ N .
Hence, 0n ∈ AY ⇔ 0n /∈ L(EY

i ). Let l = 2in (which is the l Lemma 6.2 refers
to). Any Z ⊇2in Y differs from Y only by strings of lengths > 2in. This does not
affect the computation of Ei(0

n), and therefore, by our construction, it follows that
0n ∈ AZ ⇔ 0n /∈ L(EZ

i ). This proves Lemma 6.2.
Proof of Lemma 6.3. Similar to the proof of Lemma 6.2, we can assume that

k = 2n+1 − 1, where n is odd. Let c
df
= (2n+1)r(i+j). We choose n to be large enough

so that the following hold:
• pr(2n+1)pi(pr(2

n+1))(pj(pr(2
n+1)) + 1) < 22n

;
• 2(2n+1)2r(i+j) < 22n

, i.e., 2c2 < 22n

.
Claim 6.5. There exist Y ′ ⊆ Σ≤c, N ′ ⊆ Σ≤c such that ‖Y ′‖ ≤ c2, ‖N ′‖ ≤ c2,

and for all X ′ ⊆ Σ2n+1

, if N ′ ⊆ X ′, then X ∪ Y ′ ∪X ′ is c-valid.
We will prove this claim later.
Choose some z such that |z| = 2n and for all y, |y| = 2n, zy /∈ Y ′, and zy /∈ N ′.

(Such a z exists because both ‖Y ′‖, ‖N ′‖ ≤ c2, and 2c2 < 22n

.) We can assume that

(∀X ′ ⊆ zΣ2n

)[L(NMX∪Y ′∪X′
i ) ∩ L(NMX∪Y ′∪X′

j ) ∩ Σ≤pr(2n+1) = ∅].(8)

Otherwise Y = X ∪ Y ′ ∪X ′ satisfies the requirement of Lemma 6.3.
We will consider the computation of Mr on 02n

z and construct sets Q and X ′

such that L(NMX∪Y ′∪X′
i )∪Q is a separator of L(NMX∪Y ′∪X′

i ) and L(NMX∪Y ′∪X′
j ),

and either

02n

z ∈ BX∪Y ′∪X′
and 02n

z /∈ L(M
L(NMX∪Y ′∪X′

i )∪Q
r )

or

02n

z /∈ BX∪Y ′∪X′
and 02n

z ∈ L(M
L(NMX∪Y ′∪X′

i )∪Q
r ).

This will imply that BX∪Y ′∪X′
does not ≤pp

T -reduce to (L(NMX∪Y ′∪X′
i ),

L(NMX∪Y ′∪X′
j )) via Mr. The details follow.

Initially we set Q = ∅. We run Mr on 02n

z using oracle L(NMX∪Y ′
i ) ∪ Q.

Note that this oracle is a separator of (L(NMX∪Y ′
i ), L(NMX∪Y ′

j )). The simulation

of Mr on 02n

z is continued until it makes some query q. At this point, we apply
Lemma 3.3 with M = NMi, N = NMj , Y = X ∪ Y ′, and T = zΣ2n

. Note that
on input 02n

z, Mr can make queries up to length pr(2
n+1), and we have ‖T‖ =

22n

> pi(pr(2
n+1))(pj(pr(2

n+1)) + 1). By Lemma 3.3 and equation (8), there is a set
S′ ⊆ zΣ2n

such that either

(∀S ⊆ zΣ2n

, S ∩ S′ = ∅)[q /∈ L(NMX∪Y ′∪S
i )](9)

or

(∀S ⊆ zΣ2n

, S ∩ S′ = ∅)[q /∈ L(NMX∪Y ′∪S
j )].(10)
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We know that ‖S′‖ ≤ pi(pr(2
n+1))(pj(pr(2

n+1)) + 1). We reserve all strings in S′

for X ′. If equation (9) is true, then we continue simulating Mr without modify-
ing the oracle (hence, answer “no” to query q). Otherwise, if equation (9) does
not hold, we update Q = Q ∪ {q} (hence, answer “yes” to query q and add q to
the oracle) and continue the simulation of Mr on 02n

z. We continue running Mr

until the next query, and then we apply Lemma 3.3 again, obtain the set S′ that
satisfies above equation (9) or equation (10) for the new query and update Q ac-
cordingly. We keep doing this until the end of the computation of Mr on 02n

z. The
number of strings in zΣ2n

we reserved for X ′ during the above process is at most
pr(2

n+1)pi(pr(2
n+1))(pj(pr(2

n+1)) + 1) < 22n

since the running time of Mr on 02n

z
is bounded by pr(2

n+1).
Since the number of strings reserved for X ′ in the above process is strictly less

than the number of strings of length 2n, there exists a string zy in zΣ2n

that is not
reserved for X ′. If Mr using oracle L(NMX∪Y ′

i ) ∪Q accepts 02n

z, we define X ′ = ∅.
In this case, 02n

z /∈ BX∪Y ′∪X′
. Otherwise, define X ′ = {zy}, in which case 02n

z ∈
BX∪Y ′∪X′

. Also observe that q is put in Q only when q /∈ L(NMX∪Y ′∪X′
j ). Therefore,

L(NMX∪Y ′∪X′
i ) ∪Q remains a separator of L(NMX∪Y ′∪X′

i ) and L(NMX∪Y ′∪X′
j ).

Let Y
df
= X ∪ Y ′ ∪ X ′. It is clear from the discussion above that BY does not

≤pp
T -reduce to L(NMY

i , NM
Y
j ) via Mr. Since X ′ ⊆ N ′, Y is c = (2n+1)r(i+j)-valid.

Furthermore, any string q that can be queried by Mr on 02n

z is of length ≤ (2n+1)r.
Therefore, the strings that are queried by NMi and NMj on input q are of lengths
at most (2n+1)r(i+j) = c. This implies that for all Z ⊇c Y , BZ does not ≤pp

T -reduce
to (L(NMZ

i ), L(NMZ
j )) via Mr, since any string of length more than c will not affect

the outcome of the computation. It remains to prove Claim 6.5.
Proof of Claim 6.5. We use the following algorithm to construct Y ′ and N ′.

Recall that c = (2n+1)r(i+j).
1. Y′ = ∅, N′ = ∅
2. Treated = ∅
3. L = {〈i, x, l〉 | 2n+1 < |〈i, x, l〉y| ≤ c where |y| = 22|〈i,x,l〉|}
4. while L �= ∅ {
5. Remove the smallest 〈i, x, l〉 from L
6. Treated = Treated ∪ {〈i, x, l〉}
7. if (∃X′ ⊆ Σ2n+1

such that X′ ⊆ N′ and

NEX∪Y
′∪X′

i (x) accepts within l steps)

8. Choose an accepting path P

9. Y′ = Y′ ∪ Pyes and N′ = N′ ∪ Pno

else

10. Choose some y ∈ Σ2|〈i,x,l〉| such that 〈i, x, l〉y /∈ N′

11. Y′ = Y′ ∪ {〈i, x, l〉y}
12. } //end while.

We claim that after each iteration of the while loop, the following invariance holds:
For every X ′ ⊆ N ′∩Σ2n+1

, property P1 holds for each 〈i, x, l〉 in Treated with oracle
X ∪ Y ′ ∪X ′. Initially, when Treated is empty, this holds trivially.

Let us assume that 〈i, x, l〉 is put in Treated during iteration m ≥ 1 of the while
loop. It is straightforward to see that after this iteration, the statements in the loop
ensure that the invariance holds for 〈i, x, l〉, since 〈i, x, l〉y is put into the oracle if and
only if NEi does not accept x within l steps. We have to show that the invariance also
holds for every such triple that had been put into Treated in some iteration m′ < m.
Let 〈j, u, t〉 be such a triple. It suffices to show that for t steps, NEj(u) behaves the
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same way after the mth iteration as it does after the m′th iteration. Assume that
during the m′th iteration NEj accepted u in t steps. All the queries that are made on
that accepting path are already in Y ′ or N ′ accordingly. Therefore, that path remains
accepting even during the mth iteration.

On the other hand, let us assume that for every X ′, NEj rejected u in t steps
during the m′th iteration. We will show that it will still reject u after the mth
iteration. To see this, let us assume that a previously rejecting path has become an
accepting path after the mth iteration. A query that was answered “yes” at that
point cannot be answered “no” now, since Y ′ now contains strictly more strings. So
assume that the queries q1, . . . , qd were answered “no” during the m′th iteration with
X∪Y ′∪X ′ as the oracle and are now answered “yes.” All strings that are added to Y ′

after iteration m′ are either of lengths ≥ |〈j, u, t〉y| > t or are from some X ′ ⊆ Σ2n+1

.
Hence q1, . . . , qd must be of length 2n+1. Note that at least one of these queries
must have been in N ′ during the m′th iteration; otherwise NEj would accept u at
that point with oracle X ∪ Y ′ ∪ (X ′ ∪ {q1, . . . , qd}). But any string that was in N ′

during an earlier iteration is not put in X ′ or Y ′ in later iterations. Therefore, our
assumption is false, and NEj will reject u during the mth iteration as well. This
proves the invariance.

What remains to show are the bounds on the sizes of Y ′ and N ′ and the max-
imum length of strings in Y ′ and N ′. For the size of Y ′ and N ′, note that if
|〈i, x, l〉y| ≤ c, then, since |y| = 22|〈i,x,l〉|, |〈i, x, l〉| ≤ (log c)/2, and therefore ‖L‖ ≤
2(log c)/2+1 < c. On the other hand, during every iteration, at most l strings are added
to Y ′ and N ′, and |l| < |〈i, x, l〉| ≤ (log c)/2, and therefore l < c as well. Since both
Y ′ and N ′ are initially empty, they are at most c2 in size. The maximum length
of strings in Y ′ and N ′ is c since the longest string that is added to Y ′ or N ′ is
max〈i,x,l〉∈L |〈i, x, l〉y| ≤ c.

This completes the proof of Claim 6.5.

This finishes the proof of Lemma 6.3.

This proves Theorem 6.1.

Corollary 6.6. The oracle O1 of Theorem 6.1 has the following additional
properties:

(i) UPO1 �= NPO1 �= coNPO1 and NPMVO1 �c NPSVO1 .
(ii) Relative to O1, optimal propositional proof systems exist.
(iii) There exists a ≤pp,O1

sm -complete disjoint NPO1-pair (A,B) that is PO1-insep-
arable but symmetric.

6.3. Nonexistence of optimal proof systems. In this section we construct an
oracle relative to which there exist ≤pp

sm-complete disjoint NP-pairs. For any oracle X,
(A,B) ≤pp,X

sm (C,D) if there is a function f ∈ PFX such that f(A) ⊆ C, f(B) ⊆ D,
and f(A ∪B) ⊆ C ∪D.3

Theorem 6.7. There exists an oracle O2 relative to which the following holds:

(i) There exist ≤pp
sm-complete disjoint NP-pairs.

(ii) There exist nonsymmetric disjoint NP-pairs.
(iii) NP ∩ SPARSE does not have ≤p

m-complete sets.
(iv) Conjecture 2.4 holds.

3(A,B) ≤pp,X
m (C,D) if for every separator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B)

such that S ≤p,X
m T . However, since Theorems 2.10 and 2.14 hold relative to all oracles, (A,B) ≤pp,X

m

(C,D) if and only if there is a function f ∈ PFX such that f(A) ⊆ C and f(B) ⊆ D. It follows

immediately that (A,B) ≤pp,X
sm (C,D) implies (A,B) ≤pp,X

m (C,D).
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Proof. In our construction we use the following witness languages, which depend
on an oracle Z:

A(Z)
df
= {w | w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[0wy ∈ Z]},

B(Z)
df
= {w | w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[1wy ∈ Z]},

C(Z)
df
= {0k | k ≡ 1 (mod 4), (∃y ∈ Σk−1)[0y ∈ Z]},

D(Z)
df
= {0k | k ≡ 1 (mod 4), (∃y ∈ Σk−1)[1y ∈ Z]},

Ei(Z)
df
= {0i1x | |0i1x| ≡ 1 (mod 4) and (∃y ∈ Σ∗, |y| = |0i1x|)[0i1xy ∈ Z]} for i ≥ 1,

F (Z)
df
= {0k | k ≡ 3 (mod 4), (∃y ∈ Σk)[y ∈ Z]}.

These languages are in NPZ . By definition, A(Z) and B(Z) depend on oracle words
of length ≡ 0 (mod 4), C(Z) and D(Z) depend on oracle words of length ≡ 1 (mod 4),
all Ei(Z) depend on oracle words of length ≡ 2 (mod 4), and F (Z) depends on oracle
words of length ≡ 3 (mod 4). We construct the oracle O2 such that A(O2)∩B(O2) =
C(O2) ∩D(O2) = ∅ and the following holds:

• (A(O2), B(O2)) is ≤pp
sm-complete. That is,

(∀(G,H) ∈ DisjNPO2)(∃f ∈ PF)

[f(G) ⊆ A(O2) ∧ f(H) ⊆ B(O2) ∧ f(G ∪H) ⊆ A(O2) ∪B(O2)].(11)

• (C(O2), D(O2)) is nonsymmetric. That is,

(∀f ∈ PFO2)[f(C(O2)) � D(O2) ∨ f(D(O2)) � C(O2)].(12)

• NPO2 ∩ SPARSE does not have ≤p,O2
m -complete sets. That is,

(∀j, L(NMO2
j ) ∈ SPARSEj)(∃n, En(O2) contains ≤ 2 words of every length)

(∀f ∈ PFO2)[En(O2) does not ≤p,O2
m -reduce to L(NMO2

j ) via f ].(13)

• F (O2) �
pp,O2

T (A(O2), B(O2)). That is,

(∃S, A(O2) ⊆ S ⊆ B(O2))[F (O2) /∈ PS ].(14)

In (11) and (14) we really mean f ∈ PF and F (O2) /∈ PS ; we explain why this
is equivalent to f ∈ PFO2 and F (O2) /∈ PS,O2 . We have to see that expressions
(11), (12), (13), and (14) imply statements (i), (ii), (iii), and (iv) of Theorem 6.7.
For (11) and (12) this follows from the fact that f ∈ PF implies f ∈ PFO2 . Each
language in NP is accepted by infinitely many machines NMj . Therefore, if there

exists a sparse language L such that L is many-one-complete for NPO2 ∩ SPARSE,
then there exists a j ≥ 1 such that L = L(NMO2

j ) and L ∈ SPARSEj . This shows

that expression (13) implies (iii). In (14) we actually should have F (O2) /∈ PS,O2

since the reducing machine has access to the oracle O2. However, since (i) holds and
since (O2, O2) ∈ DisjNPO2 , there exists an f ∈ PF with f(O2) ⊆ A(O2) ⊆ S and
f(O2) ⊆ B(O2) ⊆ S. Hence, q ∈ O2 ⇔ f(q) ∈ S. So we can transform queries
to O2 into queries to S; i.e., it suffices to show F (O2) /∈ PS . By expression (14), the
complete pair (A(O2), B(O2)) is not NPO2-hard; it follows that no disjoint NPO2-pair
is NPO2-hard.

We define the following list T of requirements. At the beginning of the construc-
tion, T contains all pairs (i, n) with i ∈ {1, 2, 3, 4} and n ∈ N

+. These pairs have the
following interpretations, which correspond to statements (i)–(iv) of Theorem 6.7:



DISJOINT NP-PAIRS 1395

• (1, 〈i, j〉): ensure

L(NMO2
i ) ∩ L(NMO2

j ) �= ∅

or

(L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)).

• (2, i): ensure that there exists some n such that [0n ∈ C(O2) ∧ TO2
i (0n) /∈

D(O2)] or [0n ∈ D(O2) ∧ TO2
i (0n) /∈ C(O2)].

• (3, 〈i, j〉): ensure either L(NMO2
j ) /∈ SPARSEj or [for some n, En(O2) con-

tains ≤ 2 words of every length, and En(O2) does not ≤p,O2
m -reduce to

L(NMO2
j ) via fO2

i ] (in the construction, n does not depend on i; i.e., (3, 〈i, j〉)
and (3, 〈i′, j〉) use the same n).

• (4, i): ensure that (A(O2), B(O2)) has a separator S such that 0n ∈ F (O2) ⇔
0n /∈ L(MS

i ).
Once a requirement is satisfied, we delete it from the list. Conditions of the form (2, ·)
and (4, ·) are reachable by the construction of one counterexample. In contrast, if we
cannot reach L(NMO2

i )∩L(NMO2
j ) �= ∅ for a condition of the first type, then we have

to ensure (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)). Similarly, if we cannot reach

L(NMO2
j ) /∈ SPARSEj for a condition of the third type, then, for a suitable n, we

have to ensure that En(O2) contains ≤ 2 words of every length. But these conditions
cannot be reached by a finite segment of an oracle; instead they influence the whole
remaining construction of the oracle. We have to encode answers to queries of the
form “does x belong to L(NMO2

i ) or to L(NMO2
j )” into the oracle O2, and we have

to keep an eye on the number of elements of En(O2). For this reason we introduce
the notion of (µ, k)-valid oracles. Here k is a natural number and µ is an injective,
partial function N

+ → N × N
+ that has a finite domain. Each (µ, k)-valid oracle is

a subset of Σ≤k. If a pair (0, j), j ≥ 1, is in the range of µ, then this means that
L(NMO2

j ) ∈ SPARSEj is forced, and therefore we must construct O2 so that for a
suitable n, En(O2) contains ≤ 2 words of every length. If a pair (i, j), i, j ≥ 1,
is in the range of µ, then L(NMO2

i ) ∩ L(NMO2
j ) = ∅ is forced, and therefore we

must construct O2 so that (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)) holds. For

the latter condition we have to encode certain information into O2, and the number k
says up to which level this encoding has been done. So (µ, k)-valid oracles should be
considered as finite prefixes of oracles that contain these encodings. For the moment
we postpone the formal definition of (µ, k)-valid oracles (Definition 6.9); instead we
mention its essential properties, which we will prove later.

(a) The oracle ∅ is (∅, 0)-valid.
(b) If X is a finite oracle that is (µ, k)-valid, then for all µ′ � µ, X is (µ′, k)-valid.
(c) If O2 is an oracle such that for some µ, O2

≤k is (µ, k)-valid for infinitely
many k, then the following hold:

– A(O2) ∩B(O2) = C(O2) ∩D(O2) = ∅.
– For all (i, j) ∈ range(µ), if i > 0, then

(L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2))

via some f ∈ PF.
– For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every

length and L(NMO2
j ) ∈ SPARSEj .
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Properties (a), (b), and (c) will be proved later in Propositions 6.10 and 6.11. More-
over, we will prove the following for all i, j ≥ 1 and all (µ, k)-valid X. (Note that
there is a correspondence between (i)–(iv) and P1–P4.)

P1: There exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′ such that
• either for all Z ⊇l Y , L(NMZ

i ) ∩ L(NMZ
j ) �= ∅, or

• (i, j) ∈ range(µ′).4

P2: There exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if
C(Z)∩D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z))
via TZ

i .
P3: (a) There exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′, such that

• either for all Z ⊇l Y , L(NMZ
j ) /∈ SPARSEj , or

• (0, j) ∈ range(µ′).
(b) For every n, if µ(n) = (0, j), then there exists an l > k and a (µ, l)-

valid Y ⊇k X such that for all Z ⊇l Y , En(Z) does not ≤p,Z
m -reduce to

L(NMZ
j ) via fZi .

P4: There exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if
A(Z) ∩B(Z) = ∅, then there exists a separator S of (A(Z), B(Z)) such that
F (Z) �= L(MS

i ).
We will prove properties P1, P2, P3(a), P3(b), and P4 in Propositions 6.21, 6.22,
6.23, 6.25, and 6.32, respectively.

We construct an ascending sequence of finite oracles X0 ⊆k0
X1 ⊆k1

X2 ⊆k2
· · ·

such that each Xr is (µr, kr)-valid, k0 < k1 < k2 < · · · , and µ0 � µ1 � µ2 � · · · . By
definition, O2 =

⋃
r≥0Xr. By items (b) and (c), A(O2)∩B(O2) = C(O2)∩D(O2) = ∅

follows immediately. Note that for each r ≥ 0 and i ≥ 1 it holds that Xr+i ⊇kr Xr

and µr � µr+i.
1. r := 0, kr := 0, µr := ∅, and Xr := ∅. Then by (a), Xr is (µr, kr)-valid.
2. Let e be the next requirement on T .

(a) If e = (1, 〈i, j〉), then we apply property P1 to Xr. Define kr+1 = l,
µr+1 = µ′, and Xr+1 = Y . Then kr < kr+1, µr � µr+1, and Xr+1 ⊇kr

Xr is (µr+1, kr+1)-valid such that
• either for all Z ⊇kr+1 Xr+1, L(NMZ

i ) ∩ L(NMZ
j ) �= ∅, or

• (i, j) ∈ range(µr+1).
Remove e from T and go to step 3.
Comment: If the former holds, then, since O2 ⊇kr+1

Xr+1, it holds that L(NMO2
i )∩

L(NMO2
j ) �= ∅, and therefore (L(NMO2

i ), L(NMO2
j )) /∈ DisjNPO2 . Otherwise,

(i, j) ∈ range(µr+1). By (b), for all i ≥ 1, Xr+i is (µr+1, kr+i)-valid. Therefore,

by (c), (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)) via some f ∈ PF.

(b) If e = (2, i), then µr+1
df
= µr and apply property P2 to Xr. We de-

fine kr+1 = l and Xr+1 = Y . Then kr+1 > kr and Xr+1 ⊇kr Xr is
(µr+1, kr+1)-valid so that for all Z ⊇kr+1 Xr+1, if C(Z) ∩ D(Z) = ∅,
then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z)) via TZ
i . Re-

move e from T and go to step 3.
Comment: Since O2 ⊇kr+1

Xr+1 and C(O2)∩D(O2) = ∅, this ensures that (C(O2),

D(O2)) does not ≤pp,O2
m -reduce to (D(O2), C(O2)) via TO2

i .

(c) If e = (3, 〈i, j〉) and (0, j) /∈ range(µr), then we apply property P3(a)
to Xr. Define kr+1 = l, µr+1 = µ′, and Xr+1 = Y . Then kr < kr+1,
µr � µr+1, and Xr+1 ⊇kr Xr is (µr+1, kr+1)-valid such that
• either for all Z ⊇kr+1

Xr+1, L(NMZ
j ) /∈ SPARSEj , or

4Proposition 6.21 says L(NMZ
i ) ∩ L(NMZ

j ) ∩ Σ≤l �= ∅, which is a stronger statement.
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• (0, j) ∈ range(µr+1).
If the former holds, then remove e from T and go to step 3. Otherwise,
do not remove e from T (it will be removed in the next iteration) and
go to step 3.
Comment: If the former of the two alternatives holds, then, since O2 ⊇kr+1

Xr+1,

it holds that L(NMO2
j ) /∈ SPARSEj . Otherwise, for a suitable n, (n, 0, j) ∈ µr+1.

By (b), for all i ≥ 1, Xr+i is (µr+1, kr+i)-valid. Therefore, by (c), it is enforced that

En(O2) contains ≤ 2 words of every length and L(NMO2
j ) ∈ SPARSEj . From now

on, all requirements of the form (3, 〈·, j〉) are treated in step 2(d). These steps will

make sure that En(O2) �
p,O2
m L(NMO2

j ).

(d) If e = (3, 〈i, j〉) and (0, j) ∈ range(µr), then choose n such that (n, 0, j) ∈
µr and apply property P3(b) to Xr. Define kr+1 = l, µr+1 = µr,
and Xr+1 = Y . Then kr < kr+1, µr � µr+1, and Xr+1 ⊇kr

Xr is
(µr+1, kr+1)-valid such that for all Z ⊇kr+1

Xr+1, En(Z) does not ≤p,Z
m -

reduce to L(NMZ
j ) via fZi . Remove e from T and go to step 3.

Comment: In the comment of the previous step we have seen that (0, j) ∈ range(µr)

implies that En(O2) ∈ SPARSEj+1. Since O2 ⊇kr+1
Xr+1 this step ensures that

En(O2) does not ≤p,O2
m -reduce to L(NMO2

j ) via fO2
i .

(e) If e = (4, i), then µr+1
df
= µr and apply property P4 to Xr. We de-

fine kr+1 = l and Xr+1 = Y . Then kr+1 > kr and Xr+1 ⊇kr
Xr is

(µr+1, kr+1)-valid such that for all Z ⊇kr+1
Xr+1, if A(Z) ∩ B(Z) = ∅,

then there exists a separator S of (A(Z), B(Z)) such that F (Z) �=
L(MS

i ). Remove e from T and go to step 3.
Comment: Since O2 ⊇kr+1

Xr+1 and A(O2) ∩ B(O2) = ∅, this ensures that there

exists a separator S of (A(O2), B(O2)) such that F (O2) �= L(MS
i ).

3. r := r + 1, go to step 2.
We see that this construction ensures (i), (ii), (iii), and (iv). This proves Theorem 6.7
except to show that we can define an appropriate notion of a (µ, k)-valid oracle that
has properties (a), (b), (c) and P1, P2, P3, P4.

We want to construct our oracle such that (A(O2), B(O2)) is a ≤pp
sm-complete

disjoint NPO2-pair. So we have to make sure that pairs (L(NMi), L(NMj)) that are
enforced to be disjoint (which means that (i, j) ∈ range(µ)) can be ≤pp

sm-reduced
to (A(O2), B(O2)). Therefore, we put certain codewords into O2 if and only if the
computation NMO2

i (x) (resp., NMO2
j (x)) accepts within t steps.

Definition 6.8 (µ-codeword). Let µ : N
+ → N × N

+ be an injective, partial
function with a finite domain. A word w is called a µ-codeword if w = 00n10t1xy
or w = 10n10t1xy such that n, t ≥ 1, |y| = 3|00n10t1x|, and µ(n) = (i, j) such
that i, j ≥ 1. If w = 00n10t1xy, then we say that w is a µ-codeword for (i, t, x); if
w = 10n10t1xy, then we say it is a µ-codeword for (j, t, x).

Condition (i) of Theorem 6.7 opposes conditions (ii), (iii), and (iv), because for (i)
we have to encode information about NPO2 computations into O2, and (ii), (iii),
and (iv) say that we cannot encode too much information (e.g., enough information
for UPO2 = NPO2). For this reason we have to look at certain finite oracles that
contain the needed information for (i) and that allow all diagonalization needed to
reach (ii), (iii), and (iv). We call such oracles (µ, k)-valid.

Definition 6.9 ((µ, k)-valid oracle). Let k ≥ 0 and let µ : N
+ → N × N

+ be
an injective, partial function with a finite domain. We define a finite oracle X to be
(µ, k)-valid by induction over the size of the domain of µ.

(IB) If ‖µ‖ = 0, then X is (µ, k)-valid
df⇐⇒ X ⊆ Σ≤k and A(X) ∩ B(X) =

C(X) ∩D(X) = ∅.
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(IS) If ‖µ‖ > 0, then µ = µ0 ∪ {(n0, i0, j0)}, where n0 = µmax and µ0 ≺ µ. X is

(µ, k)-valid
df⇐⇒ k ≥ n0, X is (µ0, k)-valid, and the following holds:

1. If i0 > 0, then we demand the following:
(a) For all t ≥ 1 and all x ∈ Σ∗, if 4 · |00n010t1x| ≤ k, then

(i) (∃y, |y| = 3|00n010t1x|)[00n010t1xy ∈ X] ⇔ NMX
i0 (x) accepts

within t steps, and
(ii) (∃y, |y| = 3|10n010t1x|)[10n010t1xy ∈ X] ⇔ NMX

j0(x) accepts
within t steps.

(b) For all l ≥ n0 and all (µ0, l)-valid Y , if Y ≤n0 = X≤n0 , then
L(NMY

i0) ∩ L(NMY
j0) ∩ Σ≤l = ∅.

2. If i0 = 0, then
(a) for every r ≥ 0, ‖En0(X) ∩ Σr‖ ≤ 2, and
(b) for all l ≥ n0 and all (µ0, l)-valid Y , if Y ≤n0 = X≤n0 , then

L(NMY
j0) ∩ Σ≤l ∈ SPARSEj0 .

Due to conditions 1(b) and 2(b), (µ, k)-valid oracles can be extended to (µ, k′)-
valid oracles with k′ > k (Lemma 6.17). There we really need the intersection with
Σ≤l. Otherwise—for example, in 1(b)—it could be possible that for a small oracle
Y ⊆ Σ≤l both machines accept the same word w that is much longer than l, but there
is no way to extend Y in a valid way to the level |w| such that both machines still
accept w (the reason is that the reservations (Definition 6.12) become too large).

Proposition 6.10 (basic properties of validity).

1. The oracle ∅ is (∅, 0)-valid (property (a)).
2. For every (µ, k)-valid X and every µ′ � µ, X is (µ′, k)-valid (property (b)).
3. For every (µ, k)-valid X and every (n, 0, j) ∈ µ, it holds that

(a) for every r ≥ 0, ‖En(X) ∩ Σr‖ ≤ 2, and
(b) L(NMX

j ) ∩ Σ≤k ∈ SPARSEj.

4. Let X be (µ, k)-valid and S ⊆ Σk+1 such that k + 1 �≡ 0 (mod 4), C(S) ∩
D(S) = ∅, and for all (n, 0, j) ∈ µ it holds that ‖En(S)‖ ≤ 2. Then X ∪S is
(µ, k + 1)-valid.

5. For every (µ, k)-valid X and every (i, j) ∈ range(µ), i > 0, it holds that
L(NMX

i ) ∩ L(NMX
j ) ∩ Σ≤k = ∅.

6. If X is (µ, k)-valid, then for every k′, µmax ≤ k′ ≤ k (resp., 0 ≤ k′ ≤ k if
µ = ∅), it holds that X≤k′

is (µ, k′)-valid.
Proof. Statements 6.10.1 and 6.10.2 follow immediately from Definition 6.9.

Let X be (µ, k)-valid and let (n, 0, j) ∈ µ. Let n0
df
= n, i0

df
= 0, j0

df
= j, and

µ0
df
= {(n′, i′, j′) ∈ µ | n′ < n}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and also

(µ0, k)-valid. From 6.9.2(a) it follows that 6.10.3(a) holds. From 6.9.2(b) (for l = k
and Y = X) we obtain L(NMX

j0
) ∩ Σ≤k ∈ SPARSEj0 . This shows 6.10.3(b).

We prove statement 6.10.4 by induction on ‖µ‖. First of all we see that A(S) =
B(S) = ∅, since S contains no words of length ≡ 0 (mod 4). If ‖µ‖ = 0, then, by
Definition 6.9, X ∪ S is (µ, k + 1)-valid. So assume ‖µ‖ > 0 and choose µ0, n0, i0, j0
as in Definition 6.9. We assume as an induction hypothesis that if X is (µ0, k)-valid,
then X ∪S is (µ0, k+ 1)-valid. We verify Definition 6.9 for X ∪S and k+ 1. Clearly,
k + 1 > k ≥ n0. Since X is (µ, k)-valid it is also (µ0, k)-valid. By the induction
hypothesis we obtain that X ∪ S is (µ0, k + 1)-valid.

Assume that i0 > 0; we verify item 1 of Definition 6.9. Since k + 1 �≡ 0 (mod 4),
the condition 4 · |00n010t1x| ≤ k + 1 is equivalent to 4 · |00n010t1x| ≤ k. Since t < k,
the computations mentioned in 6.9.1(a) cannot ask queries longer than k. So nothing
changes when these machines use oracle X instead of X ∪ S. Moreover, at the left-
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hand sides in 6.9.1(a), we can also use X instead of X ∪ S since we only test the
membership for words of length ≡ 0 (mod 4). This shows that in 6.9.1(a) we can
replace every occurrence of X ∪ S with X and obtain an equivalent condition. This
condition holds since X is (µ, k)-valid. Therefore, 6.9.1(a) holds for X ∪ S and k+ 1.
Condition 6.9.1(b) holds for X ∪ S and k + 1, since this condition does not depend
on k and since (X ∪ S) ∩ Σ≤k = X≤k.

Assume that i0 = 0; we verify item 2 of Definition 6.9. By assumption, ‖En0
(S)‖ ≤

2 and (since X is (µ, k)-valid) for all r ≥ 0, it holds that ‖En0
(X)∩Σr‖ ≤ 2. Words in

En0(X) are of length ≤ �k/2�. In contrast, words in En0(S) are of length �(k+1)/2�.
Hence, words in En0(X) are shorter than words in En0(S). So for all r ≥ 0,

‖En0(X ∪ S) ∩ Σr‖ = ‖(En0(X) ∩ Σr) ∪ (En0(S) ∩ Σr)‖
= ‖(En0

(X) ∩ Σr)‖+ ‖(En0
(S) ∩ Σr)‖ ≤ 2.

This shows 6.9.2(a). Condition 6.9.2(b) holds for X∪S and k+1, since this condition
does not depend on k, and since (X ∪S)∩Σ≤k = X≤k. This proves statement 6.10.4.

We prove statement 5 of Proposition 6.10 as follows. Let X be (µ, k)-valid and
(i0, j0) ∈ range(µ) such that i0 > 0. Choose n0 such that (n0, i0, j0) ∈ µ. Let
µ0

df
= {(n′, i′, j′) ∈ µ | n′ < n0}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and

also (µ0, k)-valid. Together with 6.9.1(b) (for l = k and Y = X) this implies that
L(NMX

i0 ) ∩ L(NMX
j0) ∩ Σ≤k = ∅.

We prove statement 6 of Proposition 6.10 by induction on ‖µ‖. If ‖µ‖ = 0, then,
by Definition 6.9, X≤k′

is (µ, k′)-valid for 0 ≤ k′ ≤ k. So assume ‖µ‖ > 0 and choose
µ0, n0, i0, j0 as in Definition 6.9. We assume as an induction hypothesis that if X
is (µ0, k)-valid, then, for every k′, n0 ≤ k′ ≤ k, it holds that X≤k′

is (µ0, k
′)-valid.

Choose k′ such that n0 ≤ k′ ≤ k; we show that X≤k′
is (µ, k′)-valid. Since X is

(µ, k)-valid it is also (µ0, k)-valid. By the induction hypothesis we obtain that X≤k′

is (µ0, k
′)-valid.

Assume that i0 > 0; we verify Definition 6.9.1. Note that in 6.9.1(a) we have
the condition 4 · |00n010t1x| ≤ k′. Hence, t < k′, and therefore the computations
mentioned in 6.9.1(a) cannot ask queries longer than k′. So nothing changes when
these machines use oracle X instead of X≤k′

. Moreover, at the left-hand sides in
6.9.1(a), we can also use X instead of X≤k′

since we only test the membership for
words of length ≤ k′. This shows that in 6.9.1(a) we can replace every occurrence
of X≤k′

with X and obtain an equivalent condition. This condition holds since X is
(µ, k)-valid. Therefore, 6.9.1(a) holds. Condition 6.9.1(b) holds, since X≤k′ ∩Σ≤n0 =
X≤n0 .

Assume that i0 = 0; we verify Definition 6.9.2. Condition 6.9.2(a) follows imme-
diately, since X is (µ, k)-valid. Condition 6.9.2(b) holds, since X≤k′ ∩Σ≤n0 = X≤n0 .
This proves statement 6 of Proposition 6.10.

Proposition 6.11. Let O2 be an oracle such that for some µ there exist infinitely
many k such that O2

≤k is (µ, k)-valid (property (c)).
1. A(O2) ∩B(O2) = C(O2) ∩D(O2) = ∅.
2. For all (i, j) ∈ range(µ), i > 0, it holds that L(NMO2

i ) ∩ L(NMO2
j ) = ∅ and

there exists some f ∈ PF such that (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2))

via f .
3. For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every length,

and L(NMO2
j ) ∈ SPARSEj.

Proof. Assume that A(O2) ∩ B(O2) �= ∅ and let w ∈ A(O2) ∩ B(O2). Then,
for k = 4 · (|w| + 1), w is already in A(O2

≤k) ∩ B(O2
≤k). This contradicts the
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assumption that there exists a k′ ≥ k such that O2
≤k′

is (µ, k′)-valid. Therefore,
A(O2)∩B(O2) = ∅. Analogously we see that C(O2)∩D(O2) = ∅. This shows item 1
of Proposition 6.11.

Let (i, j) ∈ range(µ), i > 0, and choose n such that (n, i, j) ∈ µ. Assume
L(NMO2

i )∩L(NMO2
j ) �= ∅, and let w ∈ L(NMO2

i )∩L(NMO2
j ). Then, for k = |w|i+j ,

w is already in L(NMO2
′

i )∩L(NMO2
′

j )∩Σ≤k, where O2
′ df
= O2

≤k. By our assumption

there exists a k′ ≥ k such that O2
′′ df

= O2
≤k′

is (µ, k′)-valid. It follows that w ∈
L(NMO2

′′
i ) ∩ L(NMO2

′′
j ) ∩ Σ≤k′

. This contradicts Proposition 6.10.5, and therefore

L(NMO2
i ) ∩ L(NMO2

j ) = ∅.
Let µ0

df
= {(n′, i′, j′) ∈ µ | n′ < n}. From our assumption and Proposition

6.10.2 it follows that for infinitely many k, O2
≤k is (µ0 ∪ {(n, i, j)}, k)-valid. So by

Definition 6.9, for infinitely many k the following holds: For all t ≥ 1 and all x ∈ Σ∗,
if 4 · |00n10t1x| ≤ k, then

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k

i (x) accepts within
t steps, and

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k

j (x) accepts within
t steps.

During the first t steps a machine can ask queries of length ≤ t < k only. Therefore,

above we can replace NMO2
≤k

i (x) and NMO2
≤k

j (x) by NMO2
i (x) and NMO2

j (x), re-

spectively. Moreover, since we have the condition 4 · |00n10t1x| ≤ k, we can replace
O2

≤k with O2 on the left-hand sides. Since the resulting condition holds for infinitely
many k, the following holds for all t ≥ 1 and x ∈ Σ∗:

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2] ⇔ NMO2
i (x) accepts within t steps.

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2] ⇔ NMO2
j (x) accepts within t steps.

The left-hand sides of these equivalences say 0n10t1x ∈ A(O2) and 0n10t1x ∈ B(O2),
respectively. This shows that (L(NMO2

i ), L(NMO2
j )) ≤pp

sm (A(O2), B(O2)) via some

f ∈ PF.5 Hence statement 2 of Proposition 6.11 holds.

Let (n, 0, j) ∈ µ. Assume that there exists an r ≥ 0 such that ‖En(O2)∩Σr‖ ≥ 3.
Then there exists some k such that ‖En(O2

′) ∩ Σr‖ ≥ 3, where O2
′ df

= O2
≤k. By

our assumption there exists some k′ ≥ k such that O2
′′ df

= O2
≤k′

is (µ, k′)-valid. It
follows that ‖En(O2

′′)∩Σr‖ ≥ 3. This contradicts Proposition 6.10.3(a), and therefore
En(O2) contains at most two words of every length.

Assume that L(NMO2
j ) /∈ SPARSEj . Then there exists somem such that L(NMO2

j )

∩Σm contains more than mj + j words. Therefore, with k
df
= mj and O2

′ df
= O2

≤k we

obtain L(NMO2
′

j ) ∩ Σ≤k /∈ SPARSEj . By our assumption there exists some k′ ≥ k

such that O2
′′ df

= O2
≤k′

is (µ, k′)-valid. It follows that L(NMO2
′′

j )∩Σ≤k′
/∈ SPARSEj .

This contradicts Proposition 6.10.3(b), and therefore L(NMO2
j ) ∈ SPARSEj .

Remember that our construction consists of a coding part to obtain condition (i)
of Theorem 6.7 and of separating parts to obtain conditions (ii), (iii), and (iv). In
order to diagonalize, we will fix certain words that are needed for the coding part,
and we will change our oracle on nonfixed positions to obtain the separation. For
this we introduce the notion of a reservation for an oracle. A reservation consists of
two sets Y and N , where Y contains words that are reserved for the oracle while N

5We can use f(x)
df
= 0n10|x|

i+j
1x, since NMi(x) and NMj(x) have computation times |x|i and

|x|j , respectively.
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contains words that are reserved for the complement of the oracle. This notion has
two important properties:

• Whenever an oracle X agrees with a reservation that is not too large, we can
find an extension of X that agrees with the reservation (Lemma 6.14).

• If we want to fix certain words to be in the oracle, then this is possible using
a reservation of small size. For this reason we can fix certain words to be in
the oracle and still be able to diagonalize (Lemma 6.18).

Definition 6.12 ((µ, k)-reservation). A pair (Y,N) of finite sets is a (µ, k)-
reservation forX if X is (µ, k)-valid, Y ∩N = ∅, Y ≤k ⊆ X, N≤k ⊆ X, A(Y )∩B(Y ) =
∅, all words in Y >k are of length ≡ 0 (mod 4), and if w ∈ Y >k is a µ-codeword
for (i, t, x), then NM i(x) has a positive path P such that |P | ≤ t, P yes ⊆ Y , and
P no ⊆ N .

Proposition 6.13 (basic properties of reservations). The following holds for
every (µ, k)-valid X:

1. (∅, ∅) is a (µ, k)-reservation for X.
2. If (Y,N) is a (µ, k)-reservation for X, then also (Y,N ∪N ′) for every N ′ ⊆
Y ∪X.

3. For every N ⊆ X, (∅, N) is a (µ, k)-reservation for X.
4. Let (Y,N) be a (µ, k)-reservation for X. For each (µ, k + 1)-valid Z ⊇k X

such that Y =k+1 ⊆ Z=k+1 ⊆ N
=k+1

, it holds that (Y,N) is a (µ, k + 1)-
reservation for Z.

5. Let (Y,N) be a (µ, k)-reservation for X. For every m ≥ 0, (Y ∩ Σ≤m,
N ∩ Σ≤m) is a (µ, k)-reservation for X.

Proof. This follows immediately from Definition 6.12.

Whenever a (µ, k)-reservation of some oracle X is not too large, then X has a
(µ,m)-valid extension Z that agrees with the reservation.

Lemma 6.14. Let (Y,N) be a (µ, k)-reservation for X and let m
df
= max({|w| |

w ∈ Y ∪ N} ∪ {k}). If ‖N‖ ≤ 2k/2, then there exists a (µ,m)-valid Z ⊇k X such
that Y ⊆ Z, N ⊆ Z, and (Z − Y ) ∩ Σ>k contains only µ-codewords.

Proof. Assume ‖N‖ ≤ 2k/2. We show the lemma by induction on n
df
= m− k. If

n = 0, then let Z = X and we are done.

Now assume n > 0. First of all we show that it suffices to find a (µ, k + 1)-

valid Z ′ ⊇k X such that Y =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

and (Z ′ − Y ) ∩ Σk+1 contains
only µ-codewords. In this case, Proposition 6.13.4 implies that (Y,N) is a (µ, k + 1)-
reservation for Z ′. So we can apply the induction hypothesis to (Y,N) considered as
a (µ, k+ 1)-reservation for Z ′. We obtain a (µ,m)-valid Z ⊇k+1 Z

′ such that Y ⊆ Z,
N ⊆ Z, and (Z−Y )∩Σ>k+1 contains only µ-codewords. Together this yields Z ⊇k X
and (Z − Y ) ∩ Σ>k contains only µ-codewords. It remains to find the mentioned Z ′.

If k + 1 �≡ 0 (mod 4), then Y =k+1 = ∅, since Y =k+1 contains only words of
length ≡ 0 (mod 4). We apply Proposition 6.10.4 to S

df
= ∅, and obtain that X is

(µ, k + 1)-valid. Therefore, with Z ′ df
= X we found the desired Z ′.

If k + 1 ≡ 0 (mod 4), then, starting with the empty set, we construct a set
S ⊆ Σk+1 by doing the following for each (n, i, j) ∈ µ, each t ≥ 1, and each x ∈ Σ∗

such that i > 0 and 4 · |00n10t1x| = k + 1:

• If NMX
i (x) accepts within t steps, then choose some y ∈ Σ3|00n10t1x| such

that 00n10t1xy /∈ N . Add 00n10t1xy to S.
• If NMX

j (x) accepts within t steps, then choose some y ∈ Σ3|10n10t1x| such
that 10n10t1xy /∈ N . Add 10n10t1xy to S.
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Observe that the choices of words y are possible since ‖N‖ ≤ 2k/2 < 23(k+1)/4 =

‖Σ3|00n10t1x|‖. Moreover, S contains only µ-codewords. For Z ′ df
= X ∪ S ∪ Y =k+1

we have Z ′ ⊇k X and Y =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

, since S ⊆ N
=k+1

. In addition,
(Z ′−Y )∩Σk+1 contains only µ-codewords, since this set is a subset of S. It remains
to show that Z ′ is (µ, k + 1)-valid.

Claim 6.15. A(Z ′) ∩B(Z ′) = C(Z ′) ∩D(Z ′) = ∅.
Proof. Since X is (µ, k)-valid we have A(X)∩B(X) = C(X)∩D(X) = ∅. When

we look at the definitions of A(X), B(X), C(X), and D(X), we see that in order to
show Claim 6.15, it suffices to show

A(Z ′) ∩B(Z ′) ∩ Σ
(k+1)

4 −1 = C(Z ′) ∩D(Z ′) ∩ Σk+1 = ∅.

We immediately obtain C(Z ′)∩D(Z ′)∩Σk+1 = ∅, since by definition, C(Z ′) andD(Z ′)
contain only words of lengths ≡ 1 (mod 4). Assume that A(Z ′)∩B(Z ′)∩Σ(k+1)/4−1 �=
∅, and choose some w ∈ A(Z ′) ∩ B(Z ′) ∩ Σ(k+1)/4−1. So there exist n, t ≥ 1,
x ∈ Σ∗, and y0, y1 ∈ Σ3|w|+3 such that w = 0n10t1x and 0wy0, 1wy1 ∈ Z ′. Note
that 0wy0, 1wy1 ∈ S ∪ Y =k+1, but both words cannot be in Y =k+1, since otherwise
we have A(Y ) ∩B(Y ) �= ∅, which contradicts our assumption that (Y,N) is a (µ, k)-
reservation. Therefore, either 0wy0 or 1wy1 belongs to S. Since all words in S are
µ-codewords, there exist i, j ≥ 1 such that (n, i, j) ∈ µ. Hence 0wy0 and 1wy1 are
µ-codewords. We claim that NMX

i (x) accepts within t steps, regardless of whether
0wy0 belongs to S or to Y =k+1. This can be seen as follows:

• If 0wy0 ∈ S, then from the construction of S it follows that NMX
i (x) accepts

within t steps.
• If 0wy0 ∈ Y =k+1, then, since 0wy0 is a µ-codeword of length > k, NM i(x)

has a positive path P with |P | ≤ t, P yes ⊆ Y , and P no ⊆ N . Since t ≤ k it
follows that P yes ∪P no ⊆ Σ≤k, and therefore P yes ⊆ X and P no ⊆ Σ≤k −X.
It follows that NMX

i (x) accepts within t steps.
Analogously we obtain that NMX

j (x) accepts within t steps. Since |x| ≤ k we have

seen that L(NMX
i )∩L(NMX

j )∩Σ≤k �= ∅ and (i, j) ∈ range(µ) such that i > 0. This
contradicts Proposition 6.10.5 and finishes the proof of Claim 6.15.

Claim 6.16. Z ′ is (µ′, k + 1)-valid for every µ′ � µ.
Proof. We prove the claim by induction on ‖µ′‖. If ‖µ′‖ = 0, then Z ′ is (µ′, k+1)-

valid by Claim 6.15.
Assume now that ‖µ′‖ > 0, and choose suitable µ0, n0, i0, j0 such that n0 = µ′

max,
µ′ = µ0∪{(n0, i0, j0)}, and µ0 ≺ µ′. Clearly, n0 ≤ µmax ≤ k < k+1. As an induction
hypothesis we assume that Z ′ is (µ0, k+1)-valid. We show that Z ′ is (µ′, k+1)-valid.

Assume i0 > 0. We claim that for all t ≥ 1 and all x ∈ Σ∗, if 4·|00n010t1x| ≤ k+1,
then the equivalences in 6.9.1(a) hold for Z ′ instead of X. This is seen as follows:

• If 4 · |00n010t1x| ≤ k, then they hold since X is (µ′, k)-valid and Z ′ ⊇k X.
• If 4 · |00n010t1x| = k + 1, then the implications “⇐” in statement 6.9.1(a)

hold, since NMZ′
i0

(x) and NMZ′
j0

(x) run at most t ≤ k steps and can therefore
use oracle X instead of Z ′, and because S ⊆ Z ′. For the other direction,
let w = 0n010t1x and assume that there exists some y ∈ Σ3|w|+3 such that
0wy ∈ Z ′. If 0wy ∈ S, then we have put this word to S, because NMX

i (x)

accepts within t steps. Since t < k, also NMZ′
i (x) accepts within t steps.

So assume 0wy ∈ Y =k+1 and note that 0wy is a µ-codeword. Since (Y,N)
is a (µ, k)-reservation for X, NM i(x) has a positive path P with |P | ≤ t,
P yes ⊆ Y , and P no ⊆ N . Since t < k, we have P yes ⊆ X and P no ⊆ Σ≤k−X.
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Hence, NMX
i (x) accepts within t steps, and thereforeNMZ′

i (x) accepts within
t steps. This shows the implication “⇒” in 6.9.1(a)(i). Analogously we see
the implication “⇒” in 6.9.1(a)(ii).

Condition 6.9.1(b) holds for Z ′ instead of X, since X is (µ′, k)-valid, n0 ≤ k and

therefore Z ′≤n0 = X≤n0 .
Assume i0 = 0. SinceX is (µ′, k)-valid, for all r ≥ 0 it holds that ‖En0

(X)∩Σr‖ ≤
2. Moreover, we have En0

(Z ′ ∩ Σk+1) = ∅, since by definition, En0
depends only on

oracle words of lengths ≡ 2 (mod 4). Therefore, for all r ≥ 0, ‖En0(Z
′)∩Σr‖ ≤ 2. This

shows 6.9.2(a). Condition 6.9.2(b) holds for Z ′ instead of X, since X is (µ′, k)-valid,

n0 ≤ k, and therefore Z ′≤n0 = X≤n0 . This proves Claim 6.16.
Claim 6.16 implies in particular that Z ′ is (µ, k + 1)-valid. This completes the

proof of Lemma 6.14.
One of the main consequences of Lemma 6.14 is that (µ, k)-valid oracles can be

extended to (µ, k′)-valid oracles for larger k′. We needed to include conditions 1(b)
and 2(b) in Definition 6.9 in order to obtain this property. Otherwise it is possible
that a certain way of extending the finite oracle X to some oracle X ′ has no extension
to an infinite oracle O2 so that L(NMO2

i ) ∩ L(NMO2
j ) = ∅. If this happens, then by

statement 6.9.1(a), for all extensions to an infinite oracle O2, A(O2) and B(O2) would
not be disjoint.

Lemma 6.17. If X is (µ, k)-valid, then for every m > k there exists a (µ,m)-valid
Z ⊇k X such that Z>k contains only µ-codewords.

Proof. It suffices to show the lemma for m = k + 1. Let Y = ∅ and N = {0k+1}.
By Proposition 6.13.3, (Y,N) is a (µ, k)-reservation for X. Since ‖N‖ = 1 ≤ 2k/2

we can apply Lemma 6.14, and we obtain a (µ, k + 1)-valid Z ⊇k X such that Z>k

contains only µ-codewords.
For a finite X ⊆ Σ∗, let �(X)

df
=
∑

w∈X |w|.
Lemma 6.18. Let X be (µ, k)-valid and let Z ⊇k X be (µ,m)-valid such that

m ≥ k and Z>k contains only words of length ≡ 0 (mod 4). For every Y ⊆ Z
and every N ⊆ Z there exists a (µ, k)-reservation (Y ′, N ′) for X such that Y ⊆ Y ′,
N ⊆ N ′, �(Y ′ ∪N ′) ≤ 2 · �(Y ∪N), Y ′ ⊆ Z, and N ′ ⊆ Z.

Proof. For every Y ⊆ Z let

D(Y )
df
= {q | Y >k contains a µ-codeword for (i, t, x) and q ∈ P all

i,t,x},

where Pi,t,x is the lexicographically smallest path among all paths of NMZ
i (x) that

are accepting and that are of length ≤ t. Note that D(Y ) is well-defined: If Y >k ⊆ Z
contains a µ-codeword, then this has the form 00n010t1xy (resp., 10n010t1xy), and
there exist i0, j0 ≥ 1 such that (n0, i0, j0) ∈ µ. Let µ0

df
= {(n′, i′, j′) ∈ µ | n′ < n0}.

By statement 2 of Proposition 6.10, Z is (µ0∪{(n0, i0, j0)},m)-valid. From statement
6.9.1(a) it follows that the path Pi0,t,x (resp., Pj0,t,x) exists.

If w is a µ-codeword for (i, t, x), then |Pi,t,x| ≤ t < |w|/4. Therefore, when looking
at the definition of D(Y ), we see that the sum of lengths of q’s that are induced by
some µ-codeword w is at most |w|/4 (remember that we use nondeterministic machines
that ask all queries in parallel). This shows the following.

Claim 6.19. For all Y ⊆ Z, �(D(Y )) ≤ �(Y )/4, and words in D(Y ) are not
longer than the longest word in Y .

Given Y and N , the procedure below computes the (µ, k)-reservation (Y ′, N ′).
1 Y0 := Y

2 N0 := N

3 c := 0
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4 do

5 c := c + 1

6 Yc := D(Yc−1) ∩ Z

7 Nc := D(Yc−1) ∩ Z

8 repeat until Yc = Nc = ∅
9 Y′ := Y0 ∪ Y1 ∪ · · · ∪ Yc
10 N′ := N0 ∪ N1 ∪ · · · ∪ Nc

Note that since all Yc are subsets of Z, the expressions D(Yc−1) in lines 6 and 7
are defined. It is immediately clear that Y ⊆ Y ′ ⊆ Z and N ⊆ N ′ ⊆ Z. Therefore
Y ′ ∩ N ′ = ∅. From Claim 6.19 we obtain �(Yi ∪ Ni) = �(D(Yi−1)) ≤ �(Yi−1)/4 for
1 ≤ i ≤ c. Therefore, the procedure terminates and �(Y ′ ∪ N ′) ≤ 2 · �(Y ∪ N). It
remains to show the following.

Claim 6.20. (Y ′, N ′) is a (µ, k)-reservation for X.

Clearly, Y ′≤k ⊆ X and N ′≤k ⊆ X. Moreover, A(Y ′)∩B(Y ′) = ∅, since otherwise

A(Z)∩B(Z) �= ∅, which is not possible, since Z is (µ,m)-valid. All words in Y ′>k
are

of length ≡ 0 (mod 4), since Y ′ ⊆ Z. Let v ∈ Y ′>k
be a µ-codeword for (i, t, x). More

precisely, v ∈ Yi′ ⊆ Z for a suitable i′ < c. Z is (µ,m)-valid and v is a µ-codeword that
belongs to Z. Therefore, as seen at the beginning of this proof, it follows thatNMZ

i (x)
accepts within t steps. Thus the path Pi,t,x exists and we obtain P all

i,t,x ⊆ D(Yi′). It
follows that P yes

i,t,x ⊆ Yi′+1 ⊆ Y ′ and P no
i,t,x ⊆ Ni′+1 ⊆ N ′. Therefore, NM i(x) has a

positive path P with |P | ≤ t, P yes ⊆ Y ′, and P no ⊆ N ′. This proves Claim 6.20 and
finishes the proof of Lemma 6.18.

For any (µ, k)-valid oracle either we can find a finite extension that makes the
languages accepted by NM i and NM j not disjoint, or we can force these languages
to be disjoint for all valid extensions.

Proposition 6.21 (property P1). Let i, j ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′ such that

• either for all Z ⊇l Y , L(NMZ
i ) ∩ L(NMZ

j ) ∩ Σ≤l �= ∅, or
• (i, j) ∈ range(µ′).

This proposition tells us that if the first property does not hold, then by Defini-
tion 6.9, since Y is (µ′, l)-valid, L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤m = ∅ for all (µ′,m)-valid

extensions Z of Y , where m ≥ l.
Proof. By Lemma 6.17, we can assume that k is large enough so that 2 · ki+j <

2k/2. If (i, j) ∈ range(µ), then by Lemma 6.17, for µ′ = µ and l = k + 1 there exists
a (µ′, l)-valid Y ⊇k X. Otherwise we distinguish two cases.

Case 1. There exists an l′ > k and a (µ, l′)-valid Y ′ ⊇k X such that L(NMY ′
i ) ∩

L(NMY ′
j ) ∩ Σ≤l′ �= ∅. Choose some x ∈ L(NMY ′

i ) ∩ L(NMY ′
j ) ∩ Σ≤l′ and let Pi, Pj

be accepting paths of the computations NMY ′
i (x), NMY ′

j (x), respectively. Note that

(P yes
i ∪P yes

j )∩Σ>l′ = ∅ and let N
df
= (P no

i ∪P no
j )∩Σ>l′ . By Proposition 6.13.3, (∅, N)

is a (µ, l′)-reservation for Y ′. Since ‖N‖ ≤ 2 · |x|i+j ≤ 2 · l′i+j
< 2l

′/2 we can apply
Lemma 6.14. We obtain some l ≥ l′ > k and some (µ, l)-valid Y ⊇l′ Y

′ ⊇k X such
that N ⊆ Σ≤l and N ⊆ Y . Therefore, for every Z ⊇l Y the computations NMZ

i (x)
and NMZ

j (x) will accept at the paths Pi and Pj , respectively. Hence L(NMZ
i ) ∩

L(NMZ
j ) ∩ Σ≤l �= ∅ for every Z ⊇l Y .

Case 2. For every l′ > k and every (µ, l′)-valid Y ′ ⊇k X it holds that L(NMY ′
i )∩

L(NMY ′
j ) ∩ Σ≤l′ = ∅. By Lemma 6.17, there exists a (µ, l)-valid Y ⊇k X where

l
df
= k + 1. Let n0

df
= l, i0

df
= i, j0

df
= j, µ0

df
= µ, and µ′ df

= µ0 ∪ {(n0, i0, j0)}. Observe
that n0 > k ≥ µmax, and therefore µ � µ′. We show that Y is (µ′, l)-valid.
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We already know that l ≥ n0 and that Y is (µ0, l)-valid. Since i0 > 0 we
only have to verify Definition 6.9.1. When looking at condition 6.9.1(a), we see that
4 · |00n010t1x| ≤ l is not possible, since n0 = l. Therefore, condition 6.9.1(a) holds.
Condition 6.9.1(b) follows from our assumption in Case 2. Therefore, Y is (µ′, l)-
valid.

In order to show that (C(O2), D(O2)) is not symmetric we have to diagonalize
against every possible reducing function, i.e., against every deterministic polynomial-
time oracle transducer. The following proposition makes sure that this diagonalization
is compatible with the notion of valid oracles.

Proposition 6.22 (property P2). Let i ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if C(Z)∩D(Z) = ∅,
then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z)) via TZ
i .

Proof. By Lemma 6.17 we can assume that k ≡ 0 (mod 4) and (k + 1)i + 1 <
2(k+1)/2. Consider the computation TX

i (0k+1), let x be the output of this computa-
tion, and let N be the set of queries that are of length greater than k. If |x| > k,
then additionally we add the word 0|x| to N . Note that this yields an N such that
X ∩N = ∅ and ‖N‖ ≤ (k + 1)i + 1 < 2(k+1)/2.

If x ∈ C(X) (note that this implies x = 0k
′

for some k′ ≤ k), then choose
some y ∈ 0Σk − N and let S

df
= {y}. In this case it holds that 0k+1 ∈ C(X ∪ S) ∧

x /∈ D(X ∪ S). The right part of the conjunction holds, since X is (µ, k)-valid, and
therefore C(X)∩D(X) = ∅. Otherwise, if x /∈ C(X), then choose some y ∈ 1Σk −N
and let S

df
= {y}. Here we obtain 0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S). Together this

means that we find some y ∈ Σk+1 −N such that with S
df
= {y} it holds that

[0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S)] ∨ [0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S)].(15)

Note that S ⊆ Σk+1 and k + 1 �≡ 0 (mod 4). Moreover, C(S) ∩ D(S) = ∅ and for
every n, En(S) = ∅, since by definition En depends only on oracle words of length
≡ 2 (mod 4). From Proposition 6.10.4 it follows that X ∪ S is (µ, k + 1)-valid. So by
Proposition 6.13.3, (∅, N) is a (µ, k+1)-reservation forX∪S. Since ‖N‖ < 2(k+1)/2 we
can apply Lemma 6.14. For l

df
= max({|w| | w ∈ N}∪ {k+ 1}) we obtain a (µ, l)-valid

Y ⊇k+1 X∪S such that N ⊆ Y and Y >k+1 contains only words of length ≡ 0 (mod 4).
Therefore, TY

i (0k+1) computes x. Since all queries asked at this computation are of
length ≤ l, we obtain that TZ

i (0k+1) computes x for every Z ⊇l Y . Since Y >k+1

does not contain words of length ≡ 1 (mod 4) we have C(Z) ∩ Σ≤l = C(X ∪ S) and
D(Z)∩Σ≤l = D(X ∪S) for each Z ⊇l Y . Note that k+1 ≤ l and |x| ≤ l. Therefore,
by equation (15), the following holds for every Z ⊇l Y :

[0k+1 ∈ C(Z) ∧ TZ
i (0k+1) /∈ D(Z)] ∨ [0k+1 ∈ D(Z) ∧ TZ

i (0k+1) /∈ C(Z)].(16)

Hence, for every Z ⊇l Y , if C(Z) ∩ D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2
m -

reduce to (D(Z), C(Z)) via TZ
i .

For any (µ, k)-valid oracle, either we can find a finite extension that destroys
NM j ’s promise to be sparse, or we can force NM j to be sparse for all valid extensions.

Proposition 6.23 (property P3(a)). Let j ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′, such that

• either for all Z ⊇l Y , L(NMZ
j ) /∈ SPARSEj, or

• (0, j) ∈ range(µ′).
This proposition tells us that if the first property does not hold, then there exists

some n such that (n, 0, j) ∈ µ′. In this case, from Definition 6.9 we obtain that for all
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(µ′,m)-valid extensions Z of Y it holds that L(NMZ
j )∩Σ≤m ∈ SPARSEj and En(Z)

contains at most 2 words of every length.

Proof. By Lemma 6.17, we can assume that k is large enough so that (kj + j+1) ·
kj < 2k/2. If (0, j) ∈ range(µ), then by Lemma 6.17, for µ′ = µ and l = k + 1 there
exists a (µ′, l)-valid Y ⊇k X. Otherwise we distinguish two cases.

Case 1. There exists an l′ > k and a (µ, l′)-valid Y ′ ⊇k X such that L(NMY ′
j ) ∩

Σ≤l′ /∈ SPARSEj . More precisely, there exists anm ≤ l′ such that ‖L(NMY ′
j )∩Σm‖ >

mj + j. We choose mj + j + 1 different words x0, . . . , xmj+j from L(NMY ′
j ) ∩ Σm.

For 0 ≤ i ≤ mj + j, let Pi be an accepting path of the computation NMY ′
j (xi).

For all i, note that P yes
i ∩ Σ>l′ = ∅ and let N be the union of all P no

i ∩ Σ>l′ . By
Proposition 6.13.3, (∅, N) is a (µ, l′)-reservation for Y ′. Since ‖N‖ ≤ (mj+j+1)·mj ≤
(l′j + j + 1) · l′j < 2l

′/2 we can apply Lemma 6.14. We obtain some l ≥ l′ > k and
some (µ, l)-valid Y ⊇l′ Y

′ ⊇k X such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for every
Z ⊇l Y and every i, the computation NMZ

j (xi) will accept at path Pi. Hence, for

every Z ⊇l Y , L(NMZ
j ) /∈ SPARSEj .

Case 2. For every l′ > k and every (µ, l′)-valid Y ′ ⊇k X, it holds that L(NMY ′
j )∩

Σ≤l′ ∈ SPARSEj . By Lemma 6.17, there exists a (µ, l)-valid Y ⊇k X with l
df
= k + 1.

Let n0
df
= l, i0

df
= 0, j0

df
= j, µ0

df
= µ, and µ′ df

= µ0 ∪ {(n0, i0, j0)}. Observe that
n0 > k ≥ µmax, and therefore µ0 � µ′. We will show that Y is (µ′, l)-valid.

Since l = µ′
max we have l ≥ µ′

max. We already know l ≥ n0 and that Y is
(µ0, l)-valid. Since i0 = 0, we only have to verify Definition 6.9.2. Since l = n0 and
Y ⊆ Σ≤l, we have En0(Y ) = ∅, which shows 6.9.2(a). Condition 6.9.2(b) follows from
our assumption in Case 2. Therefore, Y is (µ′, l)-valid.

If NMj is forced to be sparse for all valid extensions (Proposition 6.23), then
we have to make sure that L(NMj) is not many-one-complete for NP ∩ SPARSE.
We show that a certain En is sparse but is not many-one reducible to L(NMj). For
this we have to diagonalize against every possible reducing function, i.e., against
every deterministic polynomial-time oracle transducer. Proposition 6.25 makes sure
that this diagonalization is possible. Before we give this proposition, we prove the
following argument, which is used in the proofs for Proposition 6.25 and Lemma 6.29.

Proposition 6.24. Let X be (µ, k)-valid. Let (Y1, N1) be a (µ, k+1)-reservation
of some (µ, k+1)-valid Z1 ⊇k X, and let (Y2, N2) be a (µ, k+1)-reservation of some
(µ, k + 1)-valid Z2 ⊇k X such that Y1

>k+1 ∪ Y2
>k+1 contains only µ-codewords. If

‖N1 ∪ N2‖ ≤ 2(k+1)/2, Y1 ∩ N2 = Y2 ∩ N1 = ∅, and X ′ df
= X ∪ Y1

=k+1 ∪ Y2
=k+1 is

(µ, k + 1)-valid, then A(Y1 ∪ Y2) ∩B(Y1 ∪ Y2) = ∅.
Proof. In order to see that (Y1, N1) is a (µ, k+1)-reservation for X ′, it suffices to

show that Y1
=k+1 ⊆ X ′ and N1

=k+1 ⊆ X ′. The first inclusion holds by the definition
of X ′. The second one holds, since otherwise either Y1 ∩ N1 �= ∅ (not possible since
(Y1, N1) is a (µ, k + 1)-reservation) or Y2 ∩ N1 �= ∅ (not possible by assumption). It
follows that (Y1, N1) is a (µ, k + 1)-reservation for X ′, and, analogously, (Y2, N2) is a
(µ, k + 1)-reservation for X ′.

Assume that A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2) �= ∅. Choose a shortest w ∈ A(Y1 ∪ Y2) ∩
B(Y1 ∪ Y2). Hence, there exist y0, y1 ∈ Σ3|w|+3 such that 0wy0, 1wy1 ∈ Y1 ∪ Y2. Let
m

df
= |0wy0| − 1. We show m ≥ k + 1. Otherwise, if m ≤ k, then |0wy0| = |1wy1| ≤

k + 1. It follows that 0wy0, 1wy1 ∈ X ′, since (Y1, N1) and (Y2, N2) are (µ, k + 1)-
reservations for X ′. This implies w ∈ A(X ′)∩B(X ′), which is not possible. Therefore,
m ≥ k + 1.
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By Proposition 6.13.5, (Y1
≤m, N1

≤m) and (Y2
≤m, N2

≤m) are (µ, k+1)-reservations
for X ′. Let Y

df
= Y1

≤m ∪Y2
≤m and N

df
= N1

≤m ∪N2
≤m. We show that (Y,N) is a (µ,

k+1)-reservation for X ′. For this it suffices to verify Y ∩N = ∅ and A(Y )∩B(Y ) = ∅.
The first equality holds, since otherwise either Y1∩N2 �= ∅ or Y2∩N1 �= ∅, which is not
possible by assumption. If A(Y )∩B(Y ) �= ∅, then there exists some w′ ∈ A(Y )∩B(Y )
such that |w′| < |w|. This is not possible, since A(Y )∩B(Y ) ⊆ A(Y1∪Y2)∩B(Y1∪Y2)
and since w was chosen as short as possible. Therefore, (Y,N) is a (µ, k+1)-reservation
for X ′.

Note that ‖N‖ ≤ 2(k+1)/2. By Lemmas 6.14 and 6.17, there exists a (µ,m)-
valid Z ⊇k+1 X

′ such that Y ⊆ Z and N ⊆ Z. We know that |0wy0| > k + 1 and
0wy0 ∈ Y1 ∪ Y2. Without loss of generality we assume 0wy0 ∈ Y1. So by assumption,
0wy0 is a µ-codeword. Hence, w = 0n10t1x for suitable n, t, x such that n is in the
domain of µ. Let µ(n) = (i, j), where i, j ≥ 1. From 0wy0 ∈ Y1 it follows that
NMi(x) has a positive path P such that |P | ≤ t, P yes ⊆ Y1, and P no ⊆ N1. Since
elements from P yes and P no are of length ≤ t ≤ m, we obtain P yes ⊆ Y ⊆ Z, and
P no ⊆ N ⊆ Z. It follows that NMZ

i (x) accepts. Analogously (i.e., with the help of
1wy1) we obtain that NMZ

j (x) accepts. This shows x ∈ L(NMZ
i ) ∩ L(NMZ

j ) ∩Σ≤m,
which contradicts Proposition 6.10.5.

Proposition 6.25 (property P3(b)). Let i, j ≥ 1 and let X be (µ, k)-valid such
that for a suitable n, µ(n) = (0, j). There exists an l > k and a (µ, l)-valid Y ⊇k X
such that for all Z ⊇l Y , En(Z) does not ≤p,Z

m -reduce to L(NMZ
j ) via fZi .

Proof. Let α
df
= (k + 1)i, β

df
= (α + 1) · (αj + j) + 1, and γ

df
= β · (2 · αj + 2).

Note that if i and j are considered as constants, then the values of α, β, and γ are
polynomial in k+ 1. By Lemma 6.17, we can assume that k ≡ 1 (mod 4), and that k
is large enough such that n+ 2 + log γ ≤ (k + 1)/2 and (2 · αj + 2) · γ < 2(k+1)/2.

Let x1, . . . , xγ be the binary representations (possibly with leading zeros) of
1, . . . , γ, respectively, such that for all r, |0n1xr| = (k + 1)/2. For 1 ≤ r ≤ γ, let
zr

df
= fXi (0n1xr) and note that the lengths of these words are bounded by α. We

consider two cases.
Case 1. There exist a, b such that 1 ≤ a < b ≤ γ and za = zb. Let N be the

set of queries of length > k that are asked during the computations fXi (0n1xa) and
fXi (0n1xb). Note that these are negative queries. Observe that ‖N‖ ≤ 2 ·α < 2(k+1)/2

and choose a word ya of length (k+1)/2 such that 0n1xaya /∈ N . Let S
df
= {0n1xaya}.

It follows that C(S) ∩ D(S) = ∅. Moreover, for all n′ ≥ 1, ‖En′(S)‖ ≤ 1. From
Proposition 6.10.4 it follows that X ′ df

= X ∪ S is (µ, k + 1)-valid. By Proposition
6.13.3, (∅, N) is a (µ, k + 1)-reservation for X ′. By Lemma 6.14, there exists a (µ, l)-
valid Y ⊇k+1 X

′ such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for all Z ⊇l Y it holds
that fZi (0n1xa) = fZi (0n1xb) = za. Moreover, 0n1xa ∈ En(Z) and 0n1xb /∈ En(Z).
This shows that for all Z ⊇l Y , En(Z) does not ≤p,Z

m -reduce to L(NMZ
j ) via fZi .

Case 2. For 1 ≤ r ≤ γ, all zr are pairwise different. The remaining part of the
proof deals with this case. Until the end of the proof, r will always be such that
1 ≤ r ≤ γ. For every r, define the following set:

Lr
df
= {(Yr, Nr) | (Yr, Nr) is a (µ, k+1)-reservation for some (µ, k+1)-valid Z ⊇k X

such that Z=k+1 ⊆ 0n1Σ∗, ‖Z=k+1‖ ≤ 1, Yr
>k+1 contains only µ-

codewords, �(Yr∪Nr) ≤ 2 ·αj , and NMj(zr) has a positive path Pr

such that P yes
r ⊆ Yr and P no

r ⊆ Nr}.

In the following we consider vectors v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrs , Nrs))
such that 1 ≤ s ≤ β, all ra are from [1, γ] and are pairwise different, and (Yra , Nra) ∈
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Lra . Such vectors v are called vectors of reservations from L1, . . . , Lγ . We say that v
has a conflict if there exist a, b such that 1 ≤ a < b ≤ s, and either Yra ∩Nrb �= ∅ or
Nra ∩ Yrb �= ∅. In this case we also say that the reservations (Yra , Nra) and (Yrb , Nrb)
conflict. Now we are going to prove three claims. After this, with Claim 6.28 at hand,
we are able to finish Case 2.

Claim 6.26. Let (Ya, Na) ∈ La and (Yb, Nb) ∈ Lb. If (Ya, Na) and (Yb, Nb) do
not conflict, then A(Ya ∪ Yb) ∩B(Ya ∪ Yb) = ∅.

Assume that (Ya, Na) and (Yb, Nb) do not conflict. Let S
df
= Ya

=k+1 ∪Yb=k+1 and
X ′ df

= X ∪S. From the definition of La and Lb it follows that ‖S‖ ≤ 2. Therefore, for
all n′ ≥ 1, ‖En′(S)‖ ≤ 2. Moreover, C(S) = D(S) = ∅, since C and D depend only
on oracle words of length ≡ 1 (mod 4). From Proposition 6.10.4, we obtain that X ′ is
(µ, k+1)-valid. Note that ‖Na∪Nb‖ ≤ 2(k+1)/2, since ‖Na∪Nb‖ ≤ �(Na)+�(Nb)+2 ≤
2(2αj + 1) ≤ γ(2αj + 1). By assumption, Ya ∩ Nb = Yb ∩ Na = ∅. Therefore, from
Proposition 6.24 it follows that A(Ya ∪ Yb) ∩B(Ya ∪ Yb) = ∅. This shows Claim 6.26.

Claim 6.27. Every β-dimensional vector of reservations has a conflict.

Proof. Assume that there exists a vector of reservations

v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrβ , Nrβ ))

such that v has no conflict. Let µ′ df
= {(n′, i′, j′) ∈ µ | n′ < n}. Note that X is (µ′, k)-

valid and also (µ′ ∪ {n, 0, j}, k)-valid (Proposition 6.10.2). Let Y
df
=
⋃

1≤a≤β Yra ,

N
df
=
⋃

1≤a≤β Nra , and X ′ df
= X ∪ Y =k+1. We show that X ′ is (µ′, k + 1)-valid. Since

C and D depend only on oracle words of length ≡ 1 (mod 4), we have C(Y =k+1) =
D(Y =k+1) = ∅. Moreover, since n is not in the domain of µ′ and since all words
in Y =k+1 have the prefix 0n1, for all (n′, 0, j′) ∈ µ′ it holds that En′(Y =k+1) = ∅.
Therefore, from Proposition 6.10.4 it follows that X ′ is (µ′, k + 1)-valid.

Let us show that for 1 ≤ a ≤ β, (Yra , Nra) is a (µ′, k + 1)-reservation for X ′.
By definition, (Yra , Nra) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z ⊇k X.
Since every µ′-codeword is a µ-codeword, it suffices to verify Yra

=k+1 ⊆ X ′ and
Nra

=k+1 ⊆ X ′. The first inclusion holds by the definition of X ′. If the latter inclusion
does not hold, then Nra

=k+1 ∩ Y =k+1 �= ∅. Since Nra ∩ Yra = ∅, it follows that
Nra ∩Yrb �= ∅ for some b �= a. This implies that v has a conflict, which is not possible
by our assumption. This shows that for all a, if 1 ≤ a ≤ β, then (Yra , Nra) is a
(µ′, k + 1)-reservation for X ′.

We show that (Y,N) is a (µ′, k+1)-reservation forX ′. All (Yra , Nra) are (µ′, k+1)-
reservations that do not conflict with each other. From this we immediately obtain
that Y ∩ N = ∅, Y ≤k+1 ⊆ X ′, N≤k+1 ⊆ X ′, and all words in Y >k+1 are of length
≡ 0 (mod 4). If A(Y ) ∩ B(Y ) �= ∅, then there exist a, b such that A(Yra ∪ Yrb) ∩
B(Yra ∪Yrb) �= ∅. This contradicts Claim 6.26. Therefore, A(Y )∩B(Y ) = ∅. Finally,
if w ∈ Y >k+1 is a µ′-codeword for (i′, t′, x′), then there exists some a such that
w ∈ Yra

>k+1. Since (Yra , Nra) is a (µ′, k + 1)-reservation, NMi′(x
′) has a positive

path P such that |P | ≤ t′, P yes ⊆ Yra ⊆ Y , and P no ⊆ Nra ⊆ N . This shows that
(Y,N) is a (µ′, k + 1)-reservation for X ′.

By definition, for all r and all (Yr, Nr) ∈ Lr it holds that �(Yr∪Nr) ≤ 2·αj . There-
fore, ‖Nr‖ ≤ 2 ·αj +1 and it follows that ‖N‖ ≤ β ·(2 ·αj +1) ≤ 2(k+1)/2. By Lemmas
6.14 and 6.17 there exists some (µ′,m)-valid Z ⊇k+1 X

′ such that Y ∪ N ⊆ Σ≤m,
Y ⊆ Z, N ⊆ Z, and m ≥ α. From the definition of the sets Lr it follows that for
all a, if 1 ≤ a ≤ β, then NMZ

j (zra) accepts. The length of all zra is bounded by α. So

there exists a length l such that 0 ≤ l ≤ α and at least β/(α+ 1) > (αj + j) ≥ lj + j
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of the words zra are of length l. Hence ‖L(NMZ
j ) ∩ Σl‖ > lj + j, and therefore

L(NMZ
j ) ∩ Σ≤m /∈ SPARSEj .

We know that X is (µ′∪{n, 0, j}, k)-valid. Moreover, m ≥ k ≥ n and Z is (µ′,m)-
valid such that Z≤k = X≤k, and therefore Z≤n = X≤n. From Definition 6.9.2(b) it
follows that L(NMZ

j ) ∩ Σ≤m ∈ SPARSEj . This contradicts our observation in the
last paragraph and finishes the proof of Claim 6.27.

Claim 6.28. There exist some r and an N ⊆ Σ>k such that ‖N‖ ≤ (2 ·αj +2) ·γ
and, for every (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗,
‖Z ∩ Σk+1‖ ≤ 1, and Z>k+1 contains only µ-codewords, then NMZ

j (zr) rejects.
Proof. We use the following algorithm to create the set N . Note that this al-

gorithm modifies the sets Lr. This will decrease the number of possible vectors of
reservations from L1, . . . , Lγ .

1 N(0) := ∅, R(0) := ∅, i := 0

2 while (all Lr �= ∅)
3 i := i + 1

4 choose the largest d such that there exists a

d-dimensional vector v = ((Yr1 , Nr1), . . . , (Yrd , Nrd)) of

reservations from L1, . . . , Lγ such that

v has no conflict

5 R(i) := R(i− 1) ∪ {r1, r2, . . . , rd}
6 N(i) := N(i− 1) ∪ Y>k

r1
∪ N>k

r1
∪ · · · ∪ Y>k

rd
∪ N>k

rd

7 for every r and every (Yr, Nr) ∈ Lr:

remove (Yr, Nr) if Yr ∩ N(i) �= ∅
8 end while

9 N := N(i)
Let i ≥ 1 and consider the algorithm after the ith iteration of the while loop.

We claim that for every r /∈ R(i) and every (Yr, Nr) that remains in Lr, it holds
that Nr ∩ (N(i) − N(i − 1)) �= ∅. Otherwise, there exist r and (Yr, Nr) such that
r /∈ R(i), (Yr, Nr) ∈ Lr, Nr ∩ (N(i) − N(i − 1)) = ∅, and (Yr, Nr) has not been
removed in step 7. Therefore, Yr∩N(i) = ∅, which implies Yr∩ (N(i)−N(i−1)) = ∅.
Together with our assumption, this gives us (Yr ∪ Nr) ∩ (N(i) − N(i − 1)) = ∅. By
step 6 this means that (Yr, Nr) does not conflict with any reservation in v. There-
fore, with ((Yr, Nr), (Yr1 , Nr1), . . . , (Yrd , Nrd)) we found a (d + 1)-dimensional vec-
tor of reservations that has no conflict. This contradicts the choice of v in step 4.
Therefore, for every r /∈ R(i) and every (Yr, Nr) that remains in Lr, it holds that
Nr ∩ (N(i) − N(i − 1)) �= ∅. It follows that after l iterations of the while loop, for
every r /∈ R(l) and every (Yr, Nr) that remains in Lr, it holds that ‖Nr‖ ≥ l.

By Claim 6.27 and the choice of d in step 4 we have d < β. Therefore, after
(2 ·αj +2) iterations, ‖R(i)‖ < (2 ·αj +2) ·β = γ. So during the first (2 ·αj +2) itera-
tions i there always exists an r /∈ R(i). Moreover, for every r and every (Yr, Nr) ∈ Lr,
it holds that �(Yr ∪Nr) ≤ 2 ·αj , and therefore ‖Nr‖ ≤ 2 ·αj +1. From the conclusion
of the previous paragraph it follows that the while loop iterates at most 2 · αj + 2
times. This shows that the algorithm terminates. Since d < β, for all i ≥ 1 it holds
that ‖N(i) −N(i − 1)‖ < β · (2 · αj + 1) ≤ γ. Therefore, ‖N‖ ≤ (2 · αj + 2) · γ and
N ⊆ Σ>k when the algorithm terminates.

So we have a set N of the required size and an r such that Lr = ∅. We show
that N and r satisfy Claim 6.28. Assume that for some m ≥ k + 1 there exists a
(µ,m)-valid Z ⊇k X such that N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗, ‖Z ∩ Σk+1‖ ≤ 1,
Z>k+1 contains only µ-codewords, and NMZ

j (zr) accepts. Let Pr be an accepting

path of NMZ
j (zr).



1410 C. GLASSER, A. SELMAN, S. SENGUPTA, AND L. ZHANG

Let Z ′ df
= Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid

(since k + 1 > k ≥ µmax). Z
>k+1 contains only words of length ≡ 0 (mod 4), since it

contains only µ-codewords. So we can apply Lemma 6.18 (for X = Z ′, Y = P yes
r , and

N = P no
r ). We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that P yes

r ⊆ Y ′,
P no
r ⊆ N ′, �(Y ′ ∪ N ′) ≤ 2 · �(P yes

r ∪ P no
r ) ≤ 2 · αj , Y ′ ⊆ Z, and N ′ ⊆ Z. Together

with N ⊆ Z, this implies

Y ′ ∩N = ∅.(17)

We show that at the beginning of the algorithm, (Y ′, N ′) must have been in Lr . Since

Z>k+1 contains only µ-codewords and since Y ′ ⊆ Z, then Y ′>k+1
also contains only µ-

codewords. Moreover, Z ′=k+1
= Z=k+1 ⊆ 0n1Σ∗ and ‖Z ′∩Σk+1‖ = ‖Z ∩Σk+1‖ ≤ 1.

By our assumption, Pr is a positive path of NMj(zr), and it holds that P yes
r ⊆ Y ′

and P no
r ⊆ N ′. It follows that (Y ′, N ′) must have been in Lr.

Since Lr = ∅ when the algorithm terminates, (Y ′, N ′) has been removed during
some iteration i. This implies that during that iteration, Y ′ ∩ N(i) �= ∅ (by line 7).
Moreover, by line 9, N(i) ⊆ N . This implies Y ′ ∩ N �= ∅, which contradicts (17).
This proves Claim 6.28.

Now we finish Case 2. Let r and N be as in Claim 6.28. Choose a word yr
of length (k + 1)/2 such that 0n1xryr /∈ N . Let S

df
= {0n1xryr}. It follows that

C(S) = D(S) = ∅. Moreover, for all n′ ≥ 1, ‖En′(S)‖ ≤ 1. From Proposition 6.10.4
it follows that X ′ df

= X ∪ S is (µ, k + 1)-valid. By Proposition 6.13.3, (∅, N) is a
(µ, k + 1)-reservation for X ′. Note that ‖N‖ ≤ (2 · αj + 2) · γ < 2(k+1)/2. Therefore,
by Lemmas 6.14 and 6.17 there exists an l ≥ αj and a (µ, l)-valid Y ⊇k+1 X

′ such that
N ⊆ Y ∩Σ≤l and Y >k+1 contains only µ-codewords. From Claim 6.28 it follows that
NMY

j (zr) rejects. The computation times of fYi (0n1xr) and NMY
j (zr) are bounded

by αj ≤ l. Therefore, for all Z ⊇l Y it holds that fZi (0n1xr) = zr, 0n1xr ∈ En(Z),
and NMZ

j (zr) rejects. This shows that En(Z) does not ≤p,Z
m -reduce to L(NMZ

j ) via

fZi . This finishes the proof of Proposition 6.25.

Recall that we want to construct the oracle in a way such that (A(O2), B(O2)) is

not ≤pp,O2

T -hard for NPO2 . We have seen that it suffices to construct F (O2) such that
it does not ≤pp

T -reduce to (A(O2), B(O2)). We prevent F (O2) ≤pp
T (A(O2), B(O2))

via Mi as follows: We consider the computation Mi(0
n), where the machine can ask

queries to the pair (A(X), B(X)). In Lemma 6.29 we show that each query to this
pair can be forced to be either in the complement of A(X) or in the complement
of B(X). For this forcing it is enough to reserve polynomially many words for the
complement of X. If we forced the query to be in the complement of A(X), then
the oracle can safely answer that the query belongs to B(X). Otherwise it can safely
answer that the query belongs to A(X). After forcing all queries of the computation,
we add an unreserved word to F (X) if and only if the computation rejects. This will
show that F (X) does not ≤pp

T -reduce to (A(X), B(X)) via Mi (Proposition 6.32).

Lemma 6.29. Let k ≡ 2 (mod 4) and let X be (µ, k)-valid. For every q ∈ Σ∗,
|q| ≤ 2k/2−4 − 2, there exists an N ⊆ Σ>k such that ‖N‖ ≤ (8 · |q|+ 10)2 and one of
the following properties holds:

1. For all (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z, and Z>k+1 contains only
µ-codewords, then q /∈ A(Z).

2. For all (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z, and Z>k+1 contains only
µ-codewords, then q /∈ B(Z).
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Proof. We can assume that q = 0n10t1x for suitable n, t, x. Otherwise, q cannot
belong to A(Z) ∪B(Z) for all oracles Z, and we are done. Define the following sets:

LA
df
= {(YA, NA) | (YA, NA) is a (µ, k+1)-reservation for some (µ, k+1)-valid Z ⊇k X,

YA
>k+1 contains only µ-codewords, �(YA ∪ NA) ≤ 8(|q| + 1), and

(∃y ∈ Σ3|q|+3)[0qy ∈ YA]},

LB
df
= {(YB , NB) | (YB , NB) is a (µ, k+1)-reservation for some (µ, k+1)-valid Z ⊇k X,

YB
>k+1 contains only µ-codewords, �(YB ∪ NB) ≤ 8(|q| + 1), and

(∃y ∈ Σ3|q|+3)[1qy ∈ YB ]}.

We say that (YA, NA) ∈ LA and (YB , NB) ∈ LB conflict if and only if YA∩NB �= ∅ or
NA∩YB �= ∅. Note that if (YA, NA) and (YB , NB) conflict, then even YA∩NB∩Σ>k �= ∅
or NA ∩ YB ∩ Σ>k �= ∅.

Claim 6.30. Every (YA, NA) ∈ LA conflicts with every (YB , NB) ∈ LB.
Proof. Assume that there exist (YA, NA) ∈ LA and (YB , NB) ∈ LB that do not

conflict. Let Y ′ df
= YA ∪ YB , N ′ df

= NA ∪NB and S
df
= YA

=k+1 ∪ YB=k+1.
We show that (Y ′, N ′) is a (µ, k + 1)-reservation for X ′ df

= X ∪ S. Since k ≡
2 (mod 4) and S ⊆ Σk+1, it holds that C(S) = D(S) = ∅ and, for all n′ ≥ 1,
En′(S) = ∅. From Proposition 6.10.4, it follows that X ′ is (µ, k+ 1)-valid. Note that
‖NA ∪NB‖ ≤ 2(k+1)/2, since ‖NA ∪NB‖ ≤ �(NA) + �(NB) + 2 ≤ 16|q| + 18 ≤ 2k/2.
By assumption, YA ∩ NB = YB ∩ NA = ∅. From Proposition 6.24 it follows that
A(YA∪YB)∩B(YA∪YB) = ∅. Therefore, it remains to verify Y ′∩N ′ = ∅, Y ′=k+1 ⊆ X ′,
and N ′=k+1 ⊆ X ′. The first condition holds, since (YA, NA) and (YB , NB) do not

conflict. The second one holds by the definition of X ′. Finally, N ′=k+1 ⊆ X ′ holds,
since otherwise N ′=k+1 ∩S �= ∅, and therefore Y ′ ∩N ′ �= ∅. This shows that (Y ′, N ′)
is a (µ, k + 1)-reservation for X ′.

From the definition of LA and LB it follows that ‖N ′‖ ≤ 16 · |q| + 18 ≤ 2k/2.
By Lemma 6.14, there exist an m ≥ k + 1 and a (µ,m)-valid Z ⊇k+1 X

′ such that
Y ′ ⊆ Z. Since (YA, NA) ∈ LA and (YB , NB) ∈ LB , there exist y0, y1 ∈ Σ3|q|+3 such
that 0qy0 ∈ YA ⊆ Y ′ ⊆ Z and 1qy1 ∈ YB ⊆ Y ′ ⊆ Z. Therefore, q ∈ A(Z) ∩ B(Z),
which contradicts the fact that Z is (µ,m)-valid. This proves Claim 6.30.

We use the following algorithm to create the set N as claimed in the statement
of this lemma.

1 N := ∅
2 while (LA �= ∅ and LB �= ∅)
3 choose some (Y′A, N

′
A) ∈ LA

4 N := N ∪ Y′A
>k ∪ N′A

>k

5 for every (YA, NA) ∈ LA
6 remove (YA, NA) if YA ∩ (Y′A

>k ∪ N′A
>k

) �= ∅
7 for every (YB, NB) ∈ LB
8 remove (YB, NB) if YB ∩ (Y′A

>k ∪ N′A
>k

) �= ∅
9 end while

We claim that after l iterations of the while loop, for every (YB , NB) ∈ LB ,
‖NB‖ ≥ l. If this claim is true, the while loop iterates at most 8 · |q|+ 10 times, since
for any (YB , NB) ∈ LB , �(NB) ≤ 8 · |q| + 8, and therefore ‖NB‖ ≤ 8 · |q| + 9. On
the other hand, during each iteration, N is increased by at most 8 · |q| + 9 strings.
Therefore, ‖N‖ ≤ (8 · |q|+ 10)2 and N ⊆ Σ>k when this algorithm terminates.

Claim 6.31. After l iterations of the while loop, for every (YB , NB) that remains
in LB, ‖NB‖ ≥ l.
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Proof. For every l, let us denote the pair that is chosen during the lth iteration
in step 3 by (Y l

A, N
l
A). By Claim 6.30, every (YB , NB) that belongs to LB at the

beginning of this iteration conflicts with (Y l
A, N

l
A), i.e., N l

A ∩ YB ∩ Σ>k �= ∅ or Y l
A ∩

NB∩Σ>k �= ∅. IfN l
A∩YB∩Σ>k �= ∅, then (YB , NB) will be removed from LB in step 8.

Otherwise, Y l
A∩NB ∩Σ>k is not empty, and therefore there exists a lexicographically

smallest word wl in this set. In this case, (YB , NB) will not be removed from LB ; we
say that (YB , NB) survives the lth iteration due to the word wl. Note that (YB , NB)
can survive only due to a word that belongs to NB . We will use this fact to prove
that ‖NB‖ ≥ l after l iterations.

We show now that any pair (YB , NB) that is left in LB after l iterations survives
each of these iterations due to a different word. Since these words all belong to NB ,
this will complete the proof of the claim. Assume that there exist iterations l and l′

with l < l′ such that wl = wl′ . Then wl ∈ Y l
A ∩NB ∩Σ>k and wl′ ∈ Y l′

A ∩NB ∩Σ>k.

Therefore, Y l
A ∩ Y l′

A ∩ Σ>k �= ∅. So the pair (Y l′
A , N

l′
A) should have been removed in

iteration l (step 6) and cannot be chosen at the beginning of iteration l′, as claimed.
Hence, wl �= wl′ . This proves Claim 6.31.

Therefore, we now have a set N of the required size such that either LA or LB

will be empty. Assume that LA is empty; we will show that Lemma 6.29.1 holds.
Analogously we show that if LB is empty, then Lemma 6.29.2 holds. Assume that for
some m ≥ k + 1 there exists a (µ,m)-valid Z ⊇k X such that q ∈ A(Z), N ⊆ Z, and
Z>k+1 contains only µ-codewords. Hence, there exists some y ∈ Σ3|q|+3 such that
0qy ∈ Z.6

Let Z ′ df
= Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid.

Since Z>k+1 contains only µ-codewords, we can apply Lemma 6.18 for ({0qy}, ∅).
We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that 0qy ∈ Y ′, �(Y ′ ∪ N ′) ≤
2 · |0qy| = 8 · (|q|+ 1), and Y ′ ⊆ Z ⊆ N ′. Together with N ⊆ Z, this implies

Y ′ ∩N = ∅.(18)

Moreover, since Y ′ ⊆ Z, it holds that Y ′>k+1
contains only µ-codewords. It follows

that (Y ′, N ′) must have been in LA and has been removed during some iteration. This

implies that during that iteration, Y ′ ∩ (Y ′
A
>k ∪ N ′

A
>k

) �= ∅ (by line 6). Moreover,

by line 4, Y ′
A
>k ∪ N ′

A
>k

is a subset of N when the algorithm stops. This implies
Y ′ ∩N �= ∅, which contradicts equation (18). This proves Lemma 6.29.

Proposition 6.32 (property P4). Let i ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if A(Z)∩B(Z) = ∅,
then there exists a separator S of (A(Z), B(Z)) such that F (Z) �= L(MS

i ).
Proof. By Lemma 6.17, we can assume that k ≡ 2 (mod 4) and 64(k+10)3i < 2k/2.
We describe the construction of SA and SB , which are sets of queries we reserve

for B(Y ) and A(Y ), respectively. Let SA := A(X) and SB := B(X). We simulate the
computation MSA

i (0k+1) until we reach a query q1 that belongs to neither SA nor SB .
Note that |q1| ≤ (k + 1)i ≤ 2k/2−4 − 2. From Lemma 6.29 we obtain some N1 ⊆ Σ>k

such that ‖N1‖ ≤ (8 · |q1|+ 10)2 and either property 6.29.1 or property 6.29.2 holds.
If property 6.29.1 holds, then add q1 to SB ; otherwise add q1 to SA. Now return the

6Actually, it even holds that 0qy ∈ Z−X, but we do not need this explicitly in our argumentation.
In order to see this, we assume that 0qy is in X. Then q is in A(X) and ({0qy}, ∅) is a (µ, k)-
reservation for X. Therefore, ({0qy}, ∅) is a (µ, k + 1)-reservation for every (µ, k + 1)-valid Z ⊇k X.
Hence, ({0qy}, ∅) is in LA at the beginning of the algorithm. So it has been removed during the
algorithm. But this is not possible since elements in LA can only be removed in step 6, and there
we remove only (YA, NA) with YA ∩ Σ>k �= ∅. This shows 0qy ∈ Z −X.
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answer of “q1 ∈ SA?” to the computation. We continue the simulation until we reach
a query q2 that belongs to neither SA nor SB . Again we apply Lemma 6.29, obtain
the set N2, and add q2 either to SA or to SB . We continue the simulation until the
computation stops. Let n be the number of queries that were added to SA or SB .
Observe that SA ∩ SB = ∅ at the end of our simulation.

Let N
df
= N1∪· · ·∪Nn∪{04(k+1)i+4}. Then ‖N‖ ≤ (k+1)i ·(8·(k+1)i+10)2+1 ≤

2k/2. Hence there exists some w ∈ Σk+1 − N . If the simulation accepts, then let
S′ = ∅; otherwise let S′ df

= {w}. Since S ⊆ Σk+1 and k + 1 ≡ 3 (mod 4), we have
C(S′) = D(S′) = ∅ and for all n ≥ 1, En(S′) = ∅. From Proposition 6.10.4, it follows
that Y ′ df

= X ∪ S′ is (µ, k + 1)-valid. Since N ⊆ Σ>k and N ∩ S′ = ∅, we have
N ⊆ Y ′. Therefore, by Proposition 6.13.3, (∅, N) is a (µ, k + 1)-reservation for Y ′.
By Lemma 6.14, there exist an l ≥ 4(k + 1)i + 4 and a (µ, l)-valid Y ⊇k+1 Y

′ such
that N ⊆ Y and Y >k+1 contains only µ-codewords. In particular, it holds that l > k
and Y ⊇k X.

Claim 6.33. For every Z ⊇l Y it holds that SA ⊆ B(Z) and SB ⊆ A(Z).
Assume that SA∩B(Z) �= ∅ for some Z ⊇l Y , and choose a v ∈ SA∩B(Z). Since

SA contains only words of length ≤ (k + 1)i, we obtain v ∈ SA ∩ B(Z≤4(k+1)i+4) ⊆
SA ∩ B(Y ). So v cannot belong to A(Y ) since A(Y ) ∩ B(Y ) = ∅. In particular this
means v ∈ SA−A(X); i.e., v = qj for a suitable j with 1 ≤ j ≤ n. By our construction
qj was only added to SA when property 2 of Lemma 6.29 holds. Remember that Y is
(µ, l)-valid with l > k, Y ⊇k X, Nj ⊆ N ⊆ Y , and Y >k+1 contains only µ-codewords.
Therefore, from property 6.29.2 it follows that v = qj /∈ B(Y ), which contradicts

v ∈ SA ∩ B(Y ). This shows SA ⊆ B(Z). By the symmetric argument we obtain
SB ⊆ A(Z). This proves Claim 6.33.

Consider any Z ⊇l Y with A(Z) ∩ B(Z) = ∅. Let S
df
= A(Z) ∪ SA. Assume that

S is not a separator of (A(Z), B(Z)). Since A(Z) ⊆ S, we must have S ∩ B(Z) �= ∅.
Since A(Z)∩B(Z) = ∅, this implies SA ∩B(Z) �= ∅. This contradicts Claim 6.33. So
S is a separator of (A(Z), B(Z)). It remains to show F (Z) �= L(MS

i ).
By our construction, 0k+1 ∈ F (Y ′) if and only if MSA

i (0k+1) rejects. Since

Z ⊇k+1 Y
′, it holds that 0k+1 ∈ F (Z) if and only if MSA

i (0k+1) rejects. Assume that

there exists a query q that is answered differently in the computations MSA
i (0k+1)

and MS
i (0k+1) (take the first such query). Since SA ⊆ S, we obtain q ∈ S − SA, i.e.,

q ∈ A(Z). If q is in B(X), then q is in B(Z) ⊆ S, which is not possible. So q is neither
in SA nor in B(X), but q is asked in the computation MSA

i (0k+1). It follows that
q = qj for some j with 1 ≤ j ≤ n, and during the construction we added qj to SB . So

we have q ∈ SB ∩A(Z), which contradicts Claim 6.33. Therefore, MSA
i (0k+1) accepts

if and only if MS
i (0k+1) accepts. This shows 0k+1 ∈ F (Z) if and only if MS

i (0k+1)
rejects, i.e., F (Z) �= L(MS

i ).
This finishes the proof of Theorem 6.7.
Corollary 6.34. The oracle O2 of Theorem 6.7 has the following additional

properties:
(i) UPO2 �= NPO2 �= coNPO2 and NPMVO2 �c NPSVO2 .
(ii) Relative to O2, no optimal propositional proof systems exist.
(iii) There exists a ≤pp

sm-complete disjoint NPO2-pair (A,B) that is PO2-insepa-
rable but symmetric.

Proof. It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94].
Relative to O2, NP∩SPARSE does not have ≤p,O2

m -complete sets. Messner and Torán
[MT98] proved that this implies that there are no optimal propositional proof systems.
This shows (ii).
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Since (A,B) is ≤pp
sm-complete, it is symmetric. If (A,B) is PO2-separable, then

every disjoint NPO2-pair is PO2-separable, and therefore symmetric. This contradicts
item (ii) of Theorem 6.7. So (A,B) is PO2-inseparable.

7. Relationship to optimal propositional proof systems. It is known that
existence of optimal propositional proof systems implies existence of ≤pp

m -complete
disjoint NP-pairs. Messner and Torán [MT98] state that this result was communicated
to them by Impagliazzo and Pitassi. Ben-David and Gringauze [BDG98] cite Razborov
[Raz94] for this result. Köbler, Messner, and Torán [KMT03] cite Razborov, and
they prove the stronger result that existence of optimal propositional proof systems
implies existence of ≤pp

sm-complete disjoint NP-pairs.7 For the sake of completeness,
we provide here a straightforward proof of the weaker result.

Theorem 7.1. If optimal propositional proof systems exist, then there is a ≤pp
m -

complete disjoint NP-pair.
Proof. Let f be an optimal propositional proof system. We define the canonical

pair [Raz94, Pud03] for this proof system, (SAT∗,REFf ), where

SAT∗ = {(x, 0n) | x ∈ SAT}

and

REFf = {(x, 0n) | ¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Note that since f is polynomial-time computable, both SAT∗ and REFf are in
NP. Also, for any n, if (x, 0n) ∈ SAT∗, then x ∈ SAT, and if (x, 0n) ∈ REFf ,
then x /∈ SAT. Therefore, these sets are disjoint, and so (SAT∗,REFf ) is a disjoint
NP-pair. We will prove that this pair is ≤pp

m -complete.
Consider any other disjoint NP-pair (A,B). We will define a proof system fA,B

using this pair. Assume that A ≤p
m SAT via g ∈ PF and there is a polynomial p(·)

and a polynomial-time predicate R(·, ·) such that z ∈ B ⇔ ∃w, |w| ≤ p(|z|), R(z, w).

fA,B(y) =

⎧⎪⎨⎪⎩
¬g(z) if y = (z, w), where |w| ≤ p(|z|) and R(z, w),

z if y = (z, w), where |w| > 2|z| and z ∈ TAUT,

z ∨ ¬z otherwise.

(19)

We claim that fA,B is a proof system. First, note that for every z ∈ TAUT,
fA,B(z, w), for some w, |w| > 2|z|, will output z in time polynomial in |(z, w)|. Also,
since A ∩ B = ∅ and g reduces A to SAT, g(B) ⊂ SAT. Therefore, for every z ∈ B
(i.e., for every z such that R(z, w) for some w, |w| ≤ p(|z|)), g(z) /∈ SAT. Therefore,
fA,B outputs all possible tautologies and does not output anything that is not in
TAUT. Also, since g is polynomial-time computable, so is fA,B . It is therefore clear
that fA,B is a proof system; since f is an optimal proof system, there is a polynomial
q(·) such that for every tautology φ, and for every w such that fA,B(w) = φ, there is
a w′, |w′| ≤ q(|w|) and f(w′) = φ.

Now we define h ∈ PF such that (A,B) ≤pp
m (SAT∗,REFf ) via h. On input x,

h outputs (g(x), 0r(|x|)), where r(·) is some polynomial that we will fix later. If x ∈ A,
then g(x) ∈ SAT, and therefore h(x) ∈ SAT∗.

On the other hand, for all x ∈ B, g(x) /∈ SAT, i.e., ¬g(x) ∈ TAUT. Since
x ∈ B, there exists y = (x,w), where |w| ≤ p(|x|) such that fA,B(y) = ¬g(x). So,

7However, a forthcoming paper [GSS04] proves that there exist ≤pp
sm-complete disjoint NP-pairs

if and only if there exist ≤pp
m -complete disjoint NP-pairs.
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there is some y′, |y′| ≤ q(|y|), such that f(y′) = ¬g(x). We choose r to be large
enough so that r(|x|) > |y′|, and since q and p are polynomial, r can be chosen to
be a polynomial as well. This shows that x ∈ B implies h(x) ∈ REFf . Therefore,
(A,B) ≤pp

m (SAT∗,REFf ); i.e., (SAT∗,REFf ) is ≤pp
m -complete.

8. Conclusions. We partially summarize the import of the oracle results we
obtained in this paper. Various implications have been known and/or are observed
here for the first time. For several of these, our oracles demonstrate that the converses
do not hold robustly. The following are convenient lists of these instances:

• Existence of optimal proof systems implies existence of ≤pp
sm-complete NP-

pairs [Raz94, KMT03]. Relative to oracle O2, the converse is false.

Relative to both oracles O1 and O2, the converses of the following implications
are false:

1. Nonexistence of ≤pp
T -complete NP-pairs implies Conjecture 2.4 (observed in

section 3).
2. Nonsymmetric implies P-inseparable (observed in section 5).
3. Nonexistence of ≤pp

T -complete NP-pairs implies NP �= coNP (observed in
section 3).

4. Nonexistence of ≤pp
m -complete NP-pairs implies NP �= coNP (observed in

section 3).
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Abstract. Motivated by applications such as document and image classification in information
retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a
model called incremental clustering which is based on a careful analysis of the requirements of the
information retrieval application, and which should also be useful in other applications. The goal
is to efficiently maintain clusters of small diameter as new points are inserted. We analyze several
natural greedy algorithms and demonstrate that they perform poorly. We propose new deterministic
and randomized incremental clustering algorithms which have a provably good performance, and
which we believe should also perform well in practice. We complement our positive results with
lower bounds on the performance of incremental algorithms. Finally, we consider the dual clustering
problem where the clusters are of fixed diameter, and the goal is to minimize the number of clusters.

Key words. incremental clustering, dynamic information retrieval, minimum diameter cluster-
ing, agglomerative clustering, k-center, performance guarantee

AMS subject classifications. 68Q25, 68W40

DOI. 10.1137/S0097539702418498

1. Introduction. We consider the following problem: as a sequence of points
from a metric space is presented, efficiently maintain a clustering of the points so as to
minimize the maximum cluster diameter. Such problems arise in a variety of applica-
tions, in particular in document and image classification for information retrieval. We
propose a model called incremental clustering based primarily on the requirements
for the information retrieval application, although our model should also be relevant
to other applications. We begin by analyzing several natural greedy algorithms and
discover that they perform rather poorly in this setting. We then identify some new
deterministic and randomized algorithms with provably good performance. We com-
plement our positive results with lower bounds on the performance of incremental
algorithms. We also consider the dual clustering problem where the clusters are of
fixed diameter, and the goal is to minimize the number of clusters. Before describing
our results in any greater detail, we motivate and formalize our new model.
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Clustering is used for data analysis and classification in a wide variety of ap-
plications [1, 20, 29, 35, 44]. It has proved to be a particularly important tool in
information retrieval for constructing a taxonomy of a corpus of documents by form-
ing groups of closely related documents [21, 24, 37, 44, 45, 47, 48]. For this purpose,
a distance metric is imposed over documents, enabling us to view them as points in
a metric space. The central role of clustering in this application is captured by the
so-called cluster hypothesis: documents relevant to a query tend to be more similar to
each other than to irrelevant documents and hence are likely to be clustered together.
Typically, clustering is used to accelerate query processing by considering only a small
number of representatives of the clusters, rather than the entire corpus. In addition,
it is used for classification [19] and has been suggested as a method for facilitating
browsing [16, 17].

The current information explosion, fueled by the availability of hypermedia and
the World Wide Web, has led to the generation of an ever-increasing volume of data,
posing a growing challenge for information retrieval systems to efficiently store and
retrieve this information [50]. A major issue that document databases are now facing
is the extremely high rate of update. Several practitioners have complained that exist-
ing clustering algorithms are not suitable for maintaining clusters in such a dynamic
environment, and they have been struggling with the problem of updating clusters
without frequently performing complete reclustering [7, 8, 9, 15, 45]. From a theoret-
ical perspective, many different formulations are possible for this dynamic clustering
problem, and it is not clear a priori which of these best addresses the concerns of
the practitioners. After a careful study of the requirements, we propose the model
described below.

Hierarchical agglomerative clustering. The clustering strategy employed almost
universally in information retrieval is hierarchical agglomerative clustering (HAC);
see [20, 44, 45, 47, 48, 49]. This is also popular in other applications such as biology,
medicine, image processing, and geographical information systems. The basic idea is
this: initially assign the n input points to n distinct clusters; repeatedly merge pairs
of clusters until their number is sufficiently small. Many instantiations have been
proposed and implemented, differing mainly in the rule for deciding which clusters to
merge at each step. Note that HAC computes hierarchy trees of clusters (also called
dendograms) whose leaves are individual points and whose internal nodes correspond
to clusters formed by merging clusters at their children. A key advantage of these trees
is that they permit refinement of responses to queries by moving down the hierarchy.
Typically, the internal nodes are labeled with indexing information (sometimes called
conceptual information) used for processing queries and in associating semantics with
clusters (e.g., for browsing). Experience shows that HAC performs extremely well
both in terms of efficiency and cluster quality. In the dynamic setting, it is desirable
to retain the hierarchical structure while ensuring efficient update and high-quality
clustering. An important goal is to avoid any major modifications in the clustering
while processing updates, since any extensive recomputation of the index information
will swamp the cost of clustering itself. The input size in typical applications is such
that superquadratic time is impractical, and in fact it is desirable to obtain close to
linear time.

A model for incremental clustering. Various measures of distance between doc-
uments have been proposed in the literature, but we will not concern ourselves with
the details thereof; for our purposes, it suffices to note that these distance measures
induce a metric space. Since documents are usually represented as high-dimensional
vectors, we cannot make any stronger assumption than that of an arbitrary metric
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space, although, as we will see, our results improve significantly in geometric spaces.
Formally, the clustering problem is as follows: given n points in a metric spaceM,

partition the points into k clusters so as to minimize the maximum cluster diameter.
The diameter of a cluster is defined to be the maximum interpoint distance in it.
Sometimes the objective function is chosen to be the maximum cluster radius. In
Euclidean spaces, radius denotes the radius of the minimum ball enclosing all points in
the cluster. To extend the notion of radius to arbitrary metric spaces, we first select a
center point in each cluster, whereupon the radius is defined as the maximum distance
from the center to any point in the cluster. We will assume the diameter measure
as the default. We mention that there are several other measures of cluster quality
that have been considered in the literature (e.g., sum of squares of distances to cluster
centers, etc.). In this paper, we shall consider only the radius and diameter measures.

We define the incremental clustering problem as follows: for an update sequence
of n points in M, maintain a collection of k clusters such that as each input point
is presented, either it is assigned to one of the current k clusters or it starts off a
new cluster while two existing clusters are merged into one. We define the perfor-
mance ratio of an incremental clustering algorithm as the maximum over all update
sequences of the ratio of its maximum cluster diameter (or radius) to that of the
optimal clustering for the input points.

Our model enforces the requirement that at all times an incremental algorithm
should maintain a HAC for the points presented up to that time. As before, an
algorithm is free to use any rule for choosing the two clusters to merge at each step.
This model preserves all the desirable properties of HAC while providing a clean
extension to the dynamic case. In addition, it has been observed that such incremental
algorithms exhibit good paging performance when the clusters themselves are stored
in secondary storage, while cluster representatives are preserved in main memory [42].

We have avoided labeling this model as the online clustering problem or referring
to the performance ratio as a competitive ratio [34] for the following reasons. Recall
that in an online setting, we would compare the performance of an algorithm to that
of an adversary which knows the update sequence in advance but must process the
points in the order of arrival. Our model has a stronger requirement for incremental
algorithms, in that they are compared to adversaries which do not need to respect the
input ordering, i.e., we compare our algorithms to optimal clusterings of the final point
set, and no intermediate clusterings need be maintained. Also, online algorithms are
permitted superpolynomial running times. In contrast, our model essentially requires
polynomial-time approximation algorithms which are constrained to incrementally
maintain a HAC. It may be interesting to explore the several different formulations
of online clustering; for example, when the newly inserted point starts off a new
cluster, we could allow the points of one old cluster to be redistributed among the
remaining, rather than requiring that two clusters be merged together. The problem
with such formulations is that they do not lead to HACs; moreover, they entail the
recomputation of the index structures for all clusters, which renders the algorithms
useless from the point of view of real applications. We note that since the incremental
clustering model is more restrictive than the online model, our algorithms can also
be viewed as online clustering algorithms; the competitive ratios are the same as the
performance ratios that we prove here.

Previous work in static clustering. The closely related problems of clustering to
minimize diameter and radius are also called pairwise clustering and the k-center prob-
lem, respectively [4, 30]. Both are NP-hard [25, 38], and in fact hard to approximate
to within a factor of 2 for arbitrary metric spaces [4, 30]. For Euclidean spaces, clus-
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tering on the line is easy [6], but in higher dimensions it is NP-hard to approximate to
within factors close to 2, regardless of the metric used [22, 23, 27, 39, 40]. The furthest
point heuristic due to Gonzalez [27] (see also Hochbaum and Shmoys [32, 33]) gives a
2-approximation in all metric spaces. This algorithm requires O(kn) distance compu-
tations, and when the metric space is induced by shortest-path distances in weighted
graphs, the running time is O(n2). Feder and Greene [22] gave an implementation for
Euclidean spaces with running time O(n log k).

Clustering problems have been extensively studied in different communities from a
variety of different perspectives. The optimization viewpoint of clustering formulates
the problem as that of finding a solution that optimizes a certain objective function
that measures cluster quality. In addition to the minimum diameter and radius mea-
sures described above, several other objective functions have also been considered in
the literature. A lot of recent work has focused on the k-median objective [11, 36, 2].
Here the goal is to assign points to k centers such that the sum of distances of points
to their centers is minimized. Other objectives that have been studied include the
objective of minimizing the sum of all distances within each cluster [3, 18] and that of
minimizing the sum of cluster diameters [14]. In addition to this, outlier formulations
of clustering problems have also been studied [12]. Here the algorithm is allowed
to discard a fraction of the input as outliers and is required to obtain a clustering
solution that minimizes a given objective function on the remaining input points.

Overview of results. Our results for incremental clustering show that it is possible
to obtain algorithms that are comparable to the best possible in the static setting,
both in terms of efficiency and performance ratio. We begin in section 2 by considering
natural greedy algorithms that choose clusters to merge based on some measure of the
resulting cluster. We establish that greedy algorithms behave poorly by proving that
a center-greedy algorithm has a tight performance ratio of 2k − 1, and a diameter-
greedy algorithm has a lower bound of Ω(log k). It seems likely that greedy algorithms
behave better in geometric spaces, and we discover some evidence in the case of the
line. We show that diameter-greedy has performance ratio 2 for k = 2 on the line.
This analysis suggests a variant of diameter-greedy, and this is shown to achieve
ratio 3 for all k on the line. In section 3 we present the doubling algorithm and
show that its performance ratio is 8, and that a randomized version has ratio 5.43.
While the obvious implementation of these algorithms is expensive, we show that
they can be implemented so as to achieve amortized time O(k log k) per update.
These results for the doubling algorithm carry over to the radius measure. We also
give a variant of this algorithm that is oblivious to the number of clusters k. We
maintain a hierarchy from which, for any given k, at most k clusters can be obtained
such that the diameter of the clusters is at most a factor of 8 times the optimal
diameters for that value of k. Then, in section 4, we present the clique algorithm
and show that it has performance ratio 6, and that a randomized version has ratio
4.33. While the clique algorithm may appear to dominate the doubling algorithm,
this is not the case since the former requires computing clique partitions, an NP-
hard problem, although it must be said in its defense that the clique partitions need
only be computed in graphs with k + 1 vertices. While the performance ratio of
the clique algorithm is 8 for the radius measure, improved bounds are possible for
d-dimensional Euclidean spaces; specifically, we show that the radius performance
ratio of the clique algorithm in �d improves to 4(1 +

√
d/(2d+ 2)), which is 6 for

d = 1, and is asymptotic to 6.83 for large d. In section 5, we provide lower bounds
for incremental clustering algorithms. We show that even for k = 2 and on the
line, no deterministic or randomized algorithm can achieve a ratio better than 2.
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Table 1.1

Summary of results: An asterisk indicates randomization. All algorithms have lower bounds
on their performance ratios that match the upper bounds we establish.

Measure Algorithm Upper bound Lower bound

Diameter 1 +
√

2
Center-greedy 2k − 1
Diameter-greedy Ω(log k)
Doubling 8
Clique partition 6

(2− ε)∗
Doubling 5.437∗
Clique partition 4.33∗

Radius 3
Doubling 8
Clique partition 8

(3− ε)∗
Doubling 5.437∗
Clique partition 5.77∗

Dual clust. Ω( log d
log log log d

) in �d

O(2dd log d) in �d Ω(2dd log d)

We improve this lower bound to 2.414 for deterministic algorithms in general metric
spaces. Finally, in section 6 we consider the dual clustering problem of minimizing the
number of clusters of a fixed radius. Since it is impossible to achieve bounded ratios
for general metric spaces, we focus on d-dimensional Euclidean spaces. We present
an incremental algorithm that has performance ratio O(2dd log d), and also provide a
lower bound of Ω(log d/ log log log d). See Table 1.1 for a summary of our results.

Many interesting directions for future research are suggested by our work. There
are the obvious questions of improving our upper and lower bounds, particularly for
the dual clustering problem. An important theoretical question is whether the geomet-
ric setting permits better ratios than metric spaces do. Our model can be generalized
in many different ways. Depending on the exact application, we may wish to consider
other measures of clustering quality, such as minimum variance in cluster diameter,
and the sum of squares of the interpoint distances within a cluster. Then there is
the issue of handling deletions which, though not important for our motivating appli-
cation of information retrieval, may be relevant in other applications. Finally, there
is the question of formulating a model for adaptive clustering, wherein the clustering
may be modified as a result of queries and user feedback, even without any updates.

Recently, there has been considerable attention devoted to the streaming data
model which was formalized and extensively studied after the appearance of the con-
ference version of this paper. The streaming model is motivated by the goal of design-
ing highly efficient algorithms for very large data sets. In this model, an algorithm is
required to perform its computation in one pass or a few passes over the data while
using very little memory. Our algorithms can be viewed as streaming algorithms for
clustering problems where the goal is to minimize the maximum diameter or radius of
the clusters produced. Subsequent to this work, other clustering objectives have also
been studied in the streaming model, most notably the k-median objective [28, 13]
and the sum of cluster diameters objective [14].

2. Greedy algorithms. We begin by examining some natural greedy algo-
rithms. A greedy incremental clustering algorithm always merges clusters to minimize



1422 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

some fixed measure. Our results indicate that such algorithms perform poorly.

Definition 2.1. The center-greedy algorithm associates a center for each cluster
and merges the two clusters whose centers are closest. The center of the old cluster
with the larger radius becomes the new center.

It is possible to define variants of center-greedy based on how the centers of the
clusters are picked, but we restrict ourselves to the above definition for reasons of
simplicity and intuitiveness.

Definition 2.2. The diameter-greedy algorithm always merges those two clusters
which minimize the diameter of the resulting merged cluster.

We can establish the following lower bounds on the performance ratio of these
two greedy algorithms.

Theorem 2.3. The center-greedy algorithm’s performance ratio has a lower
bound of 2k − 1.

Proof. We first construct a graph G = (V,E) which defines the metric space on
which center-greedy has a performance ratio of 2k − 1. The vertex set of G is the
union of 2k disjoint sets S0, S1, . . . , S2k−1 with a total of 2k + k − 1 vertices. The
request sequence consists of the entire set of vertices v1, v2, . . . , v2k+k−1. We use a
complete binary tree T = (VT , ET ) whose leaves in a left to right order are the vertices
v1, . . . , v2k to describe our construction. Each internal node x of T has a binary label
associated with it, denoted by label(x). Let xl and xr be the left and right children of
node x. We recursively define the labels of nodes of T as follows. The root of the tree
is labeled with 0. If label(x) = i, we set label(xl) = i and label(xr) = 1− i. With each
edge (x, y) of the tree we associate an integer weight of value label(x) + label(y)− 1.
Note that the weights belong to {−1, 0, 1} by our labeling procedure. We now specify
the sets S0, S1, . . . , S2k−1. A leaf vi belongs to the set Sj if and only if the sum of
the weights of the edges on the path from vi to the root of T is equal to j − k. The
vertices v2k+1, . . . , v2k+k−1 belong to Sk. With each node x of T we also associate a
vertex v(x) of G as follows. If x is a leaf, we set v(x) = x; for an internal node x, we
set v(x) = v(xr). For a node x of T let po(x) = i if x is the ith vertex to be visited
in a post order traversal of T , where we do not include the leaves in the traversal.

Now we specify the distances among the vertices of G. We first specify the edges
present in G and then associate lengths with them. The other distances are induced
by these edges. The edge set E is defined by the sets S0, . . . , S2k−1 as follows:

{(vi, vj) | vi, vj ∈ Sr, 0 ≤ r ≤ 2k − 1}
⋃
{(vi, vj) | vi ∈ Sr, vj ∈ Sr+1, 0 ≤ r < 2k − 1}.

Edges between two vertices in the same set Si are called clique edges. All the clique
edges have length 1. The lengths of the other edges are defined as follows. We do
a post order traversal of T and, as we process each internal node x of T , we set
d(v(x), v(xl)) = 1−εpo(x) such that 1� ε1 > ε2 > · · · > ε2k−1 > 0. By our placement
of vertices in the sets Si, we are guaranteed that (v(x), v(xl)) ∈ E for all x in T . We
set to 1 any edge-length of an edge in E which is not already determined by the above
process. See Figure 2.1 for an illustration of the construction.

Let Cx denote the cluster with v(x) as the center and the leaves in the subtree
rooted at x as the elements. Let po−1(i) denote the vertex x where po(x) = i. For
1 ≤ i ≤ 2k − 1, let Ai be the set of clusters Cy such that y is the left child of some
node on the path from po−1(i) to the root of T but does not itself lie on the path.
We also include Cx in Ai, where x = po−1(i).

The lower bound is based on the following two claims.
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Fig. 2.1. Illustration of the lower bound construction for center-greedy for k = 4. The instance
consists of 2k + k − 1 = 19 vertices labeled v1, . . . , v19. Each vertex belongs to one of the sets
S0, . . . , S7 as indicated. Vertex and edge labels defined on the tree structure are illustrated. The
curved edges at the bottom of the figure indicate the additional edges added. (Note that distances
within each Si are all 1 and are not shown in the figure.) The curved edges also indicate the order
in which clusters are merged by the center-greedy algorithm: cluster centers at the end points of the
edge labeled 1 − ε1 are first merged followed by centers at the end points of the edge labeled 1 − ε2,
then 1− ε3 and so on.

Claim 2.4. For 1 ≤ i ≤ 2k − 1, Ai is the set of clusters of center-greedy which
contain more than one vertex after the k + i vertices v1, . . . , vk+i are given.

Observe that v1 ∈ S0 and v2k−1+1 ∈ S2k−1, and the distance between them is at
least (2k − 1)(1− ε1). From the above claim it follows that at the end of the request
sequence, all the vertices v1, . . . , v2k are in one cluster. Therefore, the diameter of
this cluster is at least (2k − 1)(1− ε1).

Claim 2.5. There is a k-clustering of G of diameter 1.

The clustering which achieves the above diameter is {S0∪S1, . . . , S2k−2∪S2k−1}.
This finishes the proof of the theorem.

Theorem 2.6. The diameter-greedy algorithm’s performance ratio is Ω(log k),
even on the line.

Proof. We will prove a lower bound of Ω(log k) for diameter-greedy on the real
line. Let Fj be the jth Fibonacci number. Let k and r be such that k = 2

∑r
i=1 Fi.

We will prove a lower bound of r+1 on diameter-greedy. To this end, we define sets of
points Aij for 1 ≤ i ≤ r and 1 ≤ j ≤ Fi. Fix ε and δ such that ε < δ � 1. The set Aij

consists of the points pij , qij , rij , and sij sorted by their x-coordinates; the distances
between them are as follows: d(pij , qij) = 1 + ε, d(qij , rij) = i, and d(rij , sij) = 1 + δ.
Further, the distance between two distinct Aij ’s is set to∞ (although any sufficiently
large value will do). For i = 1, . . . , r, let Ui, Vi,Wi, Xi, Yi, and Zi denote the following
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clusters:

Ui = ∪Fi
j=1{{pij , qij}, {rij , sij}},

Vi = ∪Fi
j=1{{qij}, {rij}},

Wi = ∪Fi
j=1{{pij}, {qij , rij}},

Xi = ∪Fi
j=1{{pij}, {qij , rij}, {sij}},

Yi = ∪Fi
j=1{{pij , qij , rij}, {sij}},

Zi = ∪Fi
j=1{{pij , qij , rij , sij}}.

Initially, the points given to diameter-greedy are the points qij and rij for each of
the sets Aij . Let Pi denote the sequence of requests pi1, . . . , piFi and let Si denote
the sequence si1, . . . , siFi

. Define Ki = P1S1P2S2 . . . PiSi. The request sequence is
Kr−1. Note that Kt = Kt−1PtSt. We show inductively that the following invariant
is maintained.

When the last element of Kt is received, diameter-greedy’s k+1 clus-
ters are

(∪t−2
i=1Zi)

⋃
Yt−1

⋃
Xt

⋃
(∪ri=t+1Vi).

Since there are k + 1 clusters, two of the clusters have to be merged
and the algorithm merges two clusters in Vt+1 to form a cluster of
diameter (t+1). Without loss of generality, we may assume that the
clusters merged are {q(t+1)1} and {r(t+1)1}.

Suppose that the situation is as described above at the end of the sequence Kt.
We will show that the invariant holds at the end of the sequence Kt+1. Note that
Kt+1 = KtPt+1St+1. Observe that merging any two clusters in Yt−1 will increase their
diameter to (t+1+ε+δ). Merging any two clusters inXt will increase their diameter to
(t+1+ε). Because we start with the situation where there is a cluster {q(t+1)1, r(t+1)1},
the request p(t+1)1 forces the formation of the cluster {q(t+1)2, r(t+1)2}, since any other
merging results in a diameter of more than t+ 1. Thus, at the end of the sequence of
requests Pt+1, we have k + 1 clusters (∪t−2

i=1Zi)
⋃
Yt−1

⋃
Xt

⋃
Xt+1

⋃
(∪ri=t+2Vi).

Since there are k+ 1 clusters, diameter-greedy merges two clusters in Xt to form
a cluster of diameter (t + 1 + ε). Thus, as we give points in St+1, it will form the
clusters Yt. Since Ft+1 > Ft, after Ft requests in the sequence St+1 all the clusters in
Xt would have merged and diameter-greedy starts merging clusters in Yt−1 to form
clusters Zt−1 of diameter (t + 1 + ε + δ). Since Ft+1 = Ft + Ft−1, at the end of the
request sequence St+1 it will have the k+1 clusters (∪t−1

i=1Zi)
⋃
Yt
⋃
Xt+1

⋃
(∪ri=t+2Vi).

This shows that the invariant is maintained at the end of the request sequence Kt+1.
It is easy to verify that the invariant is true for the base case of t = 3. Thus,

at the end of the request sequence Kr−1, the maximum diameter of the clusters of
diameter-greedy is r. Since k = 2

∑r
i=1 Fi = 2Fr+2 − 2, it follows that r = Ω(log k).

To finish the proof we observe that the optimal clusters are ∪r−1
i=1Ui

⋃
Vr, and the

diameter of these clusters is at most 1 + δ.
We now give a tight upper bound for the center-greedy algorithm. Note that

for k = 3 it has ratio 5, but for larger k its performance is worse than that of the
algorithms to be presented later.

Theorem 2.7. The center-greedy algorithm has performance ratio of 2k − 1 in
any metric space.
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Proof. Suppose that a set P of n points is inserted. Let their optimal clustering
be the partition S = {C1, . . . , Ck}, with d as the optimal diameter. We will show that
the diameter of any cluster produced by center-greedy is at most (2k − 1)d.

We define a graph G on the set S of the optimal clusters, where two clusters are
connected by an edge if the minimum distance between them is at most d, where
the distance between two clusters is the minimum distances between points in them.
Consider the connected components ofG. Note that two clusters in different connected
components have a minimum distance strictly greater than d. We say that a cluster
X intersects a connected component consisting of the optimal clusters Ci1 , . . . , Cir if
X intersects ∪rj=1Cij .

We claim that at all times, any cluster produced by center-greedy intersects ex-
actly one connected component of G. We prove this claim by induction over n.
Suppose the claim is true before a new point p arrives. Initially, p is in a cluster
of its own and center-greedy has k + 1 clusters, each of which intersect exactly one
connected component of G. Since there are k+1 cluster centers, two of them must be
in the same optimal cluster. This implies that the distance between the two closest
centers is at most d. If X1 and X2 are the clusters that center-greedy merges at this
stage, the centers of X1 and X2 must be at most d apart. Hence, both clusters’ centers
must lie in the same connected component of G, say C. By the inductive hypothesis,
all points in X1 and X2 must be in C. Hence, all points in the new cluster X1 ∪X2

must lie in C, establishing the inductive hypothesis.

Since each cluster produced by center-greedy lies in exactly one connected com-
ponent of G, the diameter is bounded by the maximum diameter of a connected
component, which is at most (2k − 1)d.

For diameter-greedy in general metric spaces, we can only prove the following
weak upper bound.

Theorem 2.8. For k = 2, the diameter-greedy algorithm has a performance ratio
3 in any metric space.

Proof. Let d be the diameter in the optimal clustering. If the minimum distance
between the two clusters (in the optimal clustering) is greater than d, then diameter-
greedy keeps the two clusters separate and achieves the optimum. If the minimum
distance between the two clusters is at most d, then all the points together form a
cluster of diameter at most 3d.

In spite of the lower bounds for greedy algorithms, they may not be entirely
useless since some variant may perform well in geometric spaces. We obtain some
positive evidence in this regard via the following analysis for the line. The upper
bounds given here should be contrasted with the lower bound of 2 for the line shown
in section 5. The following definitions underlie the analysis.

Definition 2.9. Given a set S of n points in the line, a t-partition subdivides
the interval between the first and last points of S into t subintervals whose end points
are in S. The t-diameter of S is the minimum over all t-partitions of the maximum
interval length in a t-partition of S. The 1-diameter is the diameter, while the 2-
diameter is the radius of S where the center is constrained to be a point of S.

We define the following family of algorithms based on the notion of the t-diameter.

Definition 2.10. The t-diameter-greedy algorithm merges those two clusters
which minimize the t-diameter of the merged cluster. Note that 1-diameter-greedy is
the same as diameter-greedy.

A few preliminary results on the t-diameter-greedy algorithm can be found in the
appendix.
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3. The doubling algorithm. We now describe the doubling algorithm which
has performance ratio 8 for incremental clustering in general metric spaces. The
algorithm works in phases and uses two parameters α and β to be specified later,
such that α/(α− 1) ≤ β. At the start of phase i, it has a collection of k + 1 clusters
C1, C2, . . . , Ck+1 and a lower bound di on the optimal clustering’s diameter (denoted
by opt). Each cluster Ci has a center ci which is one of the points of the cluster. The
following invariants are assumed at the start of phase i:

1. for each cluster Cj , the radius of Cj defined as maxp∈Cj
d(cj , p) is at most

αdi;
2. for each pair of clusters Cj and Cl, the intercenter distance d(cj , cl) ≥ di;
3. di ≤ opt.

Each phase consists of two stages: the first is a merging stage, in which the
algorithm reduces the number of clusters by merging certain pairs; the second is the
update stage, in which the algorithm accepts new updates and tries to maintain at
most k clusters without increasing the radius of the clusters or violating the invariants
(clearly, it can always do so by making the new points into separate clusters). A phase
ends when the number of clusters again exceeds k.

Definition 3.1. The t-threshold graph on a set of points P = {p1, p2, . . . , pn}
is the graph G = (P,E) such that (pi, pj) ∈ E if and only if d(pi, pj) ≤ t.

The merging stage works as follows. Define di+1 = βdi, and let G be the di+1-
threshold graph on the k + 1 cluster centers c1, c2, . . . , ck+1. The graph G is used
to merge clusters by repeatedly performing the following steps while the graph is
nonempty: pick an arbitrary cluster Ci in G and merge all its neighbors into it;
make ci the new cluster’s center; and remove Ci and its neighbors from G. Let
C ′

1, C
′
2, . . . , C

′
m be the new clusters at the end of the merging stage. Note that it is

possible that m = k+ 1 when the graph G has no edges, in which case the algorithm
will be forced to declare the end of phase i without going through the update stage.

Lemma 3.2. The pairwise distance between cluster centers after the merging stage
of phase i is at least di+1.

Lemma 3.3. The radius of the clusters after the merging stage of phase i is at
most di+1 + αdi ≤ αdi+1.

Proof. Prior to the merging, the distance between two clusters which are adjacent
in the threshold graph is at most di+1, and their radius is at most αdi. Therefore,
the radius of the merged clusters is at most

di+1 + αdi ≤ (1 + α/β)di+1 ≤ αdi+1,

where the last inequality follows from the choice that α/(α− 1) ≤ β.
The update stage continues while the number of clusters is at most k. When a

new point arrives, the algorithm attempts to place it in one of the current clusters
without exceeding the radius bound αdi+1: otherwise, a new cluster is formed with
the update as the cluster center. When the number of clusters reaches k + 1, phase
i ends and the current set of k + 1 clusters along with di+1 are used as the input for
the (i+ 1)st phase.

All that remains to be specified about the algorithm is the initialization. The
algorithm waits until k + 1 points have arrived and then enters phase 1 with each
point as the center of a cluster containing just itself, and with d1 set to the distance
between the closest pair of points. It is easily verified that the invariants hold at the
start of phase 1. The following lemma shows that the clusters at the end of the ith
phase satisfy the invariants for the (i+ 1)st phase.
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Lemma 3.4. The k + 1 clusters at the end of the ith phase satisfy the following
conditions:

1. The radius of the clusters is at most αdi+1.
2. The pairwise distance between the cluster centers is at least di+1.
3. di+1 ≤ opt, where opt is the diameter of the optimal clustering for the

current set of points.

Proof. We have k+1 clusters at the end of the phase since that is the terminating
condition for a phase. From Lemma 3.3, the radius of the clusters after the merging
stage is at most αdi+1. When adding new points, the algorithm ensures that the radius
bound is respected. From Lemma 3.2, the distance between the clusters centers after
the merging stage is di+1, and a new cluster is created only if a request point is at
least di+1 away from all current cluster centers. Therefore, the cluster centers have
pairwise distance at least di+1. Since at the end of the phase we have k + 1 cluster
centers that are di+1 apart, the optimal clustering is forced to put at least two of
them in the same cluster. It follows that opt ≥ di+1.

We make the following observations. The algorithm ensures the invariant that
di ≤ opt at the start of phase i. The radius of the clusters during phase i is at
most αdi+1. Therefore, the performance ratio at any time during the phase is at
most 2αdi+1/opt ≤ 2αβdi/opt ≤ 2αβ. We choose α = β = 2; note that this choice
satisfies the condition that α/(α − 1) ≤ β. This leads to the following performance
bound, which can be shown to be tight.

Theorem 3.5. The doubling algorithm has performance ratio 8 in any metric
space.

We give a simple example showing that our analysis of the doubling algorithm
is tight. Here we assume that k ≥ 3. The input sequence consists of k + 3 points,
p1, . . . , pk+1, pk+2, pk+3, given in that order. The points p1, . . . , pk+1 form a uniform
metric space with distance 1. The points pk+2 and pk+3 are distance 4 from the
points p1, . . . , pk+1 and are distance 8 from each other. It is easy to ensure that both
pk+2 and pk+3 will be added to the same cluster during the update stage of phase 1,
and thus the diameter of the largest cluster formed by the doubling algorithm is 8.
However, an optimum clustering can achieve diameter 1 by having pk+2 and pk+3 in
their own clusters and the rest of the points in a single cluster of diameter 1.

An examination of the proof of the preceding theorem shows that the radius of
the clusters is within a factor of 4 of the diameter of the optimal clustering, leading
to the following result.

Corollary 3.6. The doubling algorithm has performance ratio 8 for the radius
measure.

A simple modification of the doubling algorithm, in which we pick the new cluster
centers by a simple left-to-right scan, improves the ratio to 6 for the case of the line.

While the obvious implementation of this algorithm appears to be inefficient, we
can establish the following time bound, which is close to the best possible.

Theorem 3.7. The doubling algorithm can be implemented to run in O(k log k)
amortized time per update.

Proof. First of all, we assume that there is a black box for computing the distance
between two points in the metric space in unit time. This is a reasonable assumption
in most applications, and in any case even the static algorithms’ analysis requires
such an assumption. In the information retrieval application, the documents are
represented as vectors and the black-box implementation will depend on the vector
length as well as the exact definition of distance.
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We now show how the doubling algorithm may be implemented so that the amor-
tized time required for processing each new update is bounded by O(k log k). We
maintain the edge lengths of the complete graph induced by the current cluster cen-
ters in a heap. Since there are at most k clusters the space requirement is O(k2).
When a new point arrives, we compute the distance of this point to each of the cur-
rent cluster centers, which requires O(k) time. If the point is added to one of the
current clusters, we are done. If, on the other hand, the new point initiates a new
cluster, we insert into the heap edges labeled with the distances between this new
center and the existing cluster centers. For accounting purposes in the amortized
analysis, we associate log k credits with each inserted edge. We will show that it is
possible to charge the cost of implementing the merging stage of the algorithm to the
credits associated with the edges. This implies the desired time bound.

We can assume, without loss of generality, that the merging stage merges at least
two clusters. Let t be the threshold used during the phase. The algorithm extracts
all the edges from the heap which have length less than t. Let m be the number of
edges deleted from the heap. The deletion from the heap costs O(m log k) time. The
t-threshold graph on the cluster centers is exactly the graph induced by these m edges.
It is easy to see that the procedure described to find the new cluster centers using the
threshold graph takes time linear in the number of edges of the graph, assuming that
the edges are given in the form of an adjacency list. Forming the adjacency list from
the edges takes linear time. Therefore, the total cost of the merging phase is bounded
by O(m log k+m) = O(m log k) time. The credit of log k placed with each edge when
it is inserted into the heap accounts for this cost, completing the proof.

Finally, we describe a randomized doubling algorithm with significantly better
performance ratio. The algorithm is essentially the same as before, the main change
being in the value of d1, which is the lower bound for phase 1. In the deterministic
case we chose d1 to be the minimum pairwise distance of the first k + 1 points,
say x. We now choose a random value r from [1/e, 1] according to the probability
density function 1/r, set d1 to rx, and redefine β = e and α = e/(e − 1). Similar
randomization of doubling algorithms was used earlier in scheduling [41], and later in
other applications [10, 26].

Theorem 3.8. The randomized doubling algorithm has expected performance
ratio 2e ≈ 5.437 in any metric space. The same bound is also achieved for the radius
measure.

Proof. Let σ be the sequence of updates and let the optimal cluster diameter for
σ be γx for some γ ≥ 1; by the definition of x, the optimal value is at least x. Suppose
we choose d1 = rx for some r ∈ (0, 1]. Let ρr be the radius of the clusters created for
σ with this value of r. Using arguments similar to those in the proof of Theorem 3.5,
we can show that ρr is at most di+1 + αdi = ei+1d1/(e − 1), where i is the largest
integer such that di = ei−1d1 = ei−1rx ≤ opt = γx. Let i∗ be the integer such that

ei
∗−1 ≤ γ < ei

∗
and δ = γ/ei

∗
. Then ρr ≤ rexγ

(e−1)δ when r > δ, and ρr ≤ re2xγ
(e−1)δ when

r ≤ δ. Let X−
r and X+

r be indicator variables for the events [r ≤ δ] and [r > δ],
respectively. We claim that the expected value of ρr is bounded by

E[ρr] ≤
∫ 1

1/e

reγx(eX−
r +X+

r )

δr(e− 1)
dr

= opt

e

δ(e− 1)

∫ 1

1/e

(eX−
r +X+

r )dr
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= opt

eδ(e− 1)

δ(e− 1)
= eopt.

Therefore, the expected diameter is at most 2eopt.

Remark 3.9. The randomized version of the doubling algorithm can be converted
to a deterministic algorithm for the offline case which runs in O( 1

εnk
2) time and has

a performance ratio of 4(1 + ε).

3.1. An oblivious clustering algorithm. In this section we describe an in-
cremental hierarchical clustering algorithm that does not need an a priori bound on
the number of clusters. From the hierarchy, given an integer k, we can obtain a k-
clustering of the points such that the diameter of the clustering is at most a factor of
8 times the optimum diameter for the given value of k.

For convenience, assume that we have an a priori upper bound on the maximum
distance between points, which we take to be 1. We maintain the current points in
a tree, where every point is a vertex of the tree. For convenience, we assume that
if a point is a vertex of the tree, then one of its children corresponds to the same
vertex. The root, at depth 0, is a single vertex. The vertices at depth i ≥ 1 are
points within distance 1/2i−1 of their parents, and all the vertices at depth i are at a
distance greater than 1/2i from each other.

Initially, we have a single point at the root, which also occurs as the only child,
the only child of this child, and so on; for conceptual clarity, we may assume that the
depth of the tree is infinite. Suppose we have a tree representing the points at some
stage, and a new point p comes in. Let i be the largest integer such that p is within
1/2i of some point q at depth i. Then p is added at depth i+ 1, with q as its parent,
with p as its only child, p as the only child of the child, and so on. So p is at depth
i+ 1 with parent within distance 1/2i as desired, and also the vertices representing p
at depth j ≥ i+ 1 are at a distance greater than 1/2j of other points at depth j. See
Figure 3.1 for an example.

It remains to indicate how we obtain the k clusters from the tree when k is given.
Let i be the greatest depth containing at most k points. These are the k cluster
centers. The subtrees of the vertices at depth i are the clusters. As points are added,
the number of vertices at depth i increases; if it goes beyond k, then we change i to
i − 1, collapsing certain clusters; otherwise, the new point is inserted in one of the
existing clusters.

Theorem 3.10. The algorithm that outputs the k clusters obtained from the
tree construction has performance ratio 8 for the diameter measure and the radius
measure.

Proof. Suppose the optimal diameter is 1/2i+1 < d ≤ 1/2i. Then points at
depth i are in different clusters, so there are at most k of them. Let j ≥ i be
the greatest depth containing at most k points. Then these are the cluster centers,
and the vertices in the corresponding subtrees are at a distance of the root within
1/2j + 1/2j+1 + 1/2j+2 + · · · ≤ 1/2i−1 < 4d. Hence the radius of the clusters is at
most 4d, and thus the diameter is at most 8d. This proof also implies that if the
optimal radius is r, the radius of the clusters output is at most 8r.

The randomization technique used in the randomized doubling algorithm can also
be applied here to get a better performance ratio (in expectation). The construction
of the tree described above used distance threshold 1/2i for depth i. Instead, we use
distance threshold r/ei for depth i, where r is chosen at random from the interval
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Fig. 3.1. Illustration of the oblivious clustering algorithm. The points are numbered according
to their order of arrival, and the distance between points is the minimum of 1 and the distance
induced by the weighted graph shown. (a) Tree after first point p0 arrives. (b) Tree after four
points. (c) Addition of p4 and p5. If k = 3, in (b), the clusters are centered around p0, p1, and p3;
in (c) there is a single cluster around p0.

[1, e], according to the probability density function 1/r. Note that the value r is
chosen once at the beginning of the tree construction. By performing an analysis very
similar to that for the randomized doubling algorithm, we can show that the expected
diameter of the k-clustering obtained from the tree is at most 2e ≈ 5.437 times the
optimal diameter. The same bound holds for the radius as well.

4. The clique partition algorithm. We now describe the clique algorithm,
which has performance ratio 6. This does not totally improve upon the doubling algo-
rithm since the new algorithm involves solving the NP-hard clique partition problem,
even though it is only on a graph with k + 1 vertices. Finding a minimum clique
partition is NP-hard even for graphs induced by points in the Euclidean plane [25],
although it is in polynomial time for points on the line. Since the algorithm needs to
solve the clique partition problem on graphs with k + 1 vertices, this may not be too
inefficient for small k.

Definition 4.1. Given an undirected unweighted graph G = (V,E), an l-clique
partition is a partition of V into V1, V2, . . . , Vl such that for 1 ≤ i ≤ l, the induced
graph G[Vi] is a clique. A minimum clique partition is an l-clique partition with the
minimum possible value of l.

The clique algorithm is similar to the doubling algorithm in that it also operates
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in phases which have a merging stage followed by an update stage. The invariants
maintained by the algorithm are different though. At the start of the ith phase we
have k + 1 clusters C1, C2, . . . , Ck+1 and a value di such that

1. the radius of each cluster Cj is at most 2di;
2. the diameter of each cluster Cj is at most 3di;
3. di ≤ opt.

The merging works as follows. Let di+1 = 2di. We form the minimum clique
partition of the di+1-threshold graph G of the cluster centers. The new clusters
are then formed by merging the clusters in each clique of the clique partition. We
arbitrarily choose one cluster from each clique and make its center the cluster center
of the new merged cluster. Let C ′

1, C
′
2, . . . , C

′
li

be the resulting clusters. In the rest
of the phase we also need to know which old clusters merged to form each of the new
clusters.

Lemma 4.2. After the merging stage, the radius of the new clusters is at most
2di+1 and the diameter is at most 3di+1.

Proof. Let Cj1 , Cj2 , . . . , Cjnj
be the clusters whose union is the new cluster C ′

j

and without loss of generality assume that the center of Cj1 was chosen to be the
center of C ′

j . Since the centers of Cj1 , Cj2 , . . . , Cjnj
induce a clique in the di+1-

threshold graph, the distance from the new center to each of the old cluster centers
is at most di+1. The radius of each of Cj1 , Cj2 , . . . , Cjnj

is at most 2di. Therefore it

follows that the new radius is at most di+1 +2di ≤ 2di+1 and the diameter is at most
2di + di+1 + 2di ≤ 3di+1.

During the update phase, a new point p is handled as follows. Let the current
number of clusters be m, where li ≤ m ≤ k. Recall that C ′

1, C
′
2, . . . , C

′
li

are the
clusters formed during the merging stage. If there exists j such that j > li and
d(p, c′j) ≤ di+1, or if j ≤ li and d(p, cjs) ≤ di+1 where Cjs is a cluster which merged
to form C ′

j , add p to the cluster C ′
j . If no such j exists, make a new cluster with p as

the center. The phase ends when the number of clusters exceeds k+ 1, or if there are
k + 1 clusters at the end of the merging phase.

The following lemmas show that the clusters at the end of phase i satisfy the
invariants for phase i+ 1.

Lemma 4.3. The radius of the clusters at the end of the phase i is at most 2di+1

and the diameter of the clusters is at most 3di+1.

Proof. From Lemma 4.2, the radius of the clusters at the end of the merging
stage of phase i is at most 2di+1 and the diameter is at most 3di+1. We now argue
that these bounds are maintained during the update stage. If a point p is added to a
cluster Cj , j > li, it satisfies the condition d(p, c′j) ≤ di+1; hence the radius of such
a cluster is at most di+1, and hence the diameter is at most 2di+1. If p is added to
a cluster C ′

j , j ≤ li, then p satisfies the condition d(p, cjs) ≤ di+1 where cjs is the
center of a cluster that was merged to form the cluster C ′

j . The center c′j of C ′
j is at

a distance at most di+1 from the centers of all the clusters that were merged to form
C ′

j . Therefore p is at a distance 2di+1 from c′j . This shows the radius bound. For the
diameter bound, consider any two points p and q in the cluster C ′

j . There must be
cluster centers cjs and cjt of clusters that merged to form C ′

j such that d(p, cjs) ≤ di+1

and d(q, cjt) ≤ di+1. The diameter bound follows since d(cjs , cjt) ≤ di+1.

Lemma 4.4. At the end of phase i, di+1 ≤ opt.

Proof. Suppose di+1 > opt. Let S = {c1, c2, . . . , ck+1} be the cluster centers
at the beginning of the phase i. Note that the centers c′1, . . . , c

′
li

belong to S. Let
S′ = {c′j | j > li} be the set of cluster centers of the clusters which are formed
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in phase i after the merging stage. Since each center c′j in S′ started a new cluster,
d(c′j , p) > di+1 for all p ∈ S∪S′−{c′j}. Therefore, in the optimal solution, each center
in S′ is in a cluster which contains no center from S. This implies that the centers
in S are contained in at most li − 1 clusters of diameter di+1. This is a contradiction
since li was the size of the minimum clique partition of the di+1-threshold graph on
S.

Theorem 4.5. The clique algorithm has performance ratio 6 in any metric
space.

Proof. The diameter of the clusters during phase i is at most 3di+1, and we main-
tain the invariant that di ≤ opt at the start of the phase. Therefore the performance
ratio of the algorithm is at most 3di+1/di ≤ 6.

The analysis of the clique algorithm is tight, as shown by the following example.
We assume that k ≥ 4. The sequence consists of k+3 points p1, . . . , pk+1, pk+2, pk+3.
The first k points form a uniform metric space with distance 1. The point pk+1 is at
a distance 2 from p2 and distance 1 from pi for 2 ≤ i ≤ k. The point pk+2 has the
following properties: d(pk+2, p1) = 2, d(pk+2, pi) = 3 for 2 ≤ i ≤ k, d(pk+2, pk+1) = 4,
and d(pk+2, pk+3) = 6. The point pk+3 has the following properties: d(pk+3, p1) = 4,
d(pk+3, pi) = 3 for 2 ≤ i ≤ k, d(pk+3, pk+1) = 2, and d(pk+3, pk+2) = 6. After the
first k + 1 points are given the algorithm enters phase 1 with d1 = 1 and d2 = 2. In
the merging stage the first k + 1 points are merged into one single cluster since they
form a clique in the d2-threshold graph. It is easy to see that points pk+2 and pk+3

will be added to this cluster in the update stage, and the diameter of this cluster is
seen to be 6. There is, however, an optimal clustering that achieves diameter 1 for all
clusters: pk+2 and pk+3 are in their own clusters, p1 and pk+1 are in different clusters,
and the rest of the points can go either into the cluster containing p1 or into the one
containing pk+1.

Since the radius of the clusters is within 4 of the optimal diameter, we obtain the
following corollary.

Corollary 4.6. The clique algorithm has performance ratio 8 in any metric
space for the radius measure.

As in the case of the doubling algorithm, we can use randomization to improve the
bound. Let x be the minimum distance among the first k+1 points. The randomized
algorithm sets d1 = rx in phase 1 of the deterministic algorithm, where r is chosen
from [1/2, 1] according to the probability density function 1

r ln 2 . The analysis is similar
to that of Theorem 3.8 and we omit the details.

Theorem 4.7. The randomized clique algorithm has performance ratio 3
ln 2 ≈

4.33 in any metric space.

Corollary 4.8. The randomized clique algorithm has performance ratio 4
ln 2 ≈

5.77 for the radius measure in any metric space.

The special structure of the clusters in the clique algorithm can be used to show
that the performance ratio for the radius measure is better than 8 for the geometric
case. This is based on the following result in geometry, known as Jung’s theorem (see
[5, pp. 84–85]).

Proposition 4.9. Any convex set in Rd of diameter at most 1 can be circum-
scribed by a sphere of radius rd =

√
d/(2d+ 2).

Theorem 4.10. The clique algorithm has performance ratio 4(1 + rd) for the
radius measure in Rd. This implies performance ratio 6 for d = 1, 6.3 for d = 2, and
6.83 asymptotically for large d.

Proof. Let ai be the maximum radius of the clusters of the algorithm in phase
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i and let a∗i be the radius achievable by an optimal clustering. We claim that ai ≤
di+1(1 + rd) = 2di(1 + rd). Trivially, we have that a∗i ≥ opti/2, where opti is the
optimal diameter achievable for points at the start of phase i. From the invariants of
the algorithm we have that di ≤ opti, and hence we get that ai ≤ 4a∗i (1 + rd).

Now we prove the claim by induction. Assuming that the claim is true in phase
i−1, we prove that it is true in phase i. In phase i let C ′

1, C
′
2, . . . , C

′
li

be clusters formed
in the merging stage. It is easy to see that any new cluster formed during the update
stage has radius at most di+1; hence we can focus on the clusters C ′

1, C
′
2, . . . , C

′
li
.

Without loss of generality consider C ′
1, which is formed by the merging of clusters

C1, C2, . . . , Cj from the start of the phase. Let ci be the center of Ci, 1 ≤ i ≤ j. Since
the clusters were merged, it follows that the diameter of the point set {c1, c2, . . . , cj}
is at most di+1. Hence their radius, by Proposition 4.9, is at most di+1rd. From
the invariants at the start of the phase, d(p, ci) ≤ 2di = di+1 for p ∈ Ci. Further,
any new point added to the cluster C ′

1 is at most a distance of di+1 from a point in
{c1, c2, . . . , cj}. It follows that the radius of the cluster C ′

1 throughout the phase is at
most di+1rd + di+1, which proves the claim.

5. Lower bounds. We present some lower bounds on the performance of incre-
mental clustering. The lower bounds apply to both diameter and radius measures,
but our proofs are given for the diameter case. The following theorem shows that
even for the simplest geometric space, we cannot expect a ratio better than 2.

Theorem 5.1. For k = 2, there is a lower bound of 2 and 2 − 1/2k/2 on the
performance ratio of deterministic and randomized algorithms, respectively, for incre-
mental clustering on the line.

Proof. Start with the three points 1, 2, 3. Two consecutive points are necessarily
merged, say 2 and 3. Add a new point at 4. Then 1 or 4 is merged with [2, 3]. This
gives diameter 2, while the optimum is 1. In fact, this construction can be repeated
to obtain n points 1, 2, . . . , n clustered into 1 and [2, n].

For the randomized lower bound, consider the instance in the preceding para-
graph. To convert this to a randomized lower bound, the adversary places the fourth
point at 0 or 4 with equal probability, and now the algorithm has probability 1/2 of
creating the wrong cluster (that is, with diameter 2). This gives a lower bound of 1.5.
For general k, the algorithm makes k/2 copies of the above scenario far enough from
each other that the above analysis applies locally. The probability that the algorithm
succeeds in creating clusters of diameter 1 on all k/2 copies is 2−k/2. This implies a
lower bound of 2− 2−k/2.

In the case of general metric spaces, we can establish a stronger lower bound.
Theorem 5.2. There is a lower bound of 1+

√
2 ≈ 2.414 on the performance ratio

of any deterministic incremental clustering algorithm for arbitrary metric spaces.
Proof. Consider a metric space consisting of the points pij , 1 ≤ i, j ≤ 4, i �= j.

The distances between the points are the shortest path distances in the graph with the
following distances specified: d(pij , pji) = 1, and d(pij1 , pij2) =

√
2 for j1 �= j2. Let

Bi = {pij | 1 ≤ j ≤ 4, i �= j}. Note that the sets Bi, 1 ≤ i ≤ 4, partition the metric
space into 4 clusters of diameter

√
2. See Figure 5.1. Let A be any deterministic

algorithm for the incremental clustering problem. Let k = 6. Consider the clusters
produced by A after it is given the 12 points pij described above.

Case 1. Suppose the maximum diameter of A’s clusters is 1. Then A’s clusters
must be the 6 sets {pij , pji}. Now the adversary gives a point q such that d(q, pij) = 10
for 1 ≤ i, j ≤ 4. The optimal clustering is {q} and the setsB1, B2, B3, B4. The optimal
diameter is

√
2. We claim that the maximum diameter of A is at least 2 +

√
2. If the
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Fig. 5.1. Lower bound instance. Solid and dashed lines show edges of length 1 and
√

2, respec-
tively. Dotted ellipses show potential clusters. New points inserted after the first batch of 12 points
are shown as smaller circles.

cluster that contains q contains any other point, then our claim is clearly true. If on
the other hand the cluster that contains q does not contain any other point, A must
have merged two of its existing clusters. Then the maximum diameter of A’s resulting
clusters is at least 2 +

√
2. Thus the performance ratio of A is at least 1 +

√
2.

Case 2. Suppose the maximum diameter of A’s clusters is greater than 1. Then
some cluster of A contains 2 points which are at least distance

√
2 apart. Let these

points be pwx and pyz, (w, x) �= (z, y). Now the adversary gives 6 points rij , 1 ≤
i < j ≤ 4, such that d(rij , pij) = d(rij , pji) = 1. The optimal clustering consists of
the 6 sets {rij , pij , pji}. The optimal diameter is 1. We claim that the maximum
diameter of A’s clusters must be at least 1+

√
2. Note that d(ri1j1 , pi2j2) ≥ 1+

√
2 for

(i2, j2) �= (i1, j1), (i2, j2) �= (j1, i1). Also d(ri1j1 , ri2j2) ≥ 2 +
√

2 for (i1, j1) �= (i2, j2).
If A puts any two rij in the same cluster, our claim is clearly true. If all the rij are
in separate clusters, each of the 6 clusters must contain one of them. Also one of
the 6 clusters, say C, must contain both the points pwx and pyz. Then C must have
diameter at least 1+

√
2, since the rij in C must be at a distance at least 1+

√
2 from

one of pwx and pyz. Hence the performance ratio of A is at least 1 +
√

2.

This proves a lower bound of 1+
√

2 on the performance ratio of any deterministic
incremental algorithm.

Finally, we can improve the randomized lower bound slightly for the case of
arbitrary metric spaces.
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Theorem 5.3. For any ε > 0 and k ≥ 2, there is a lower bound of 2− ε on the
performance ratio of any randomized incremental algorithm.

Proof. We use Yao’s technique and show a lower bound on deterministic algo-
rithms on an appropriately chosen distribution. Let A be a deterministic algorithm for
incremental clustering. The distribution on inputs is as follows. Initially, the adver-
sary provides n points P1, P2, . . . , Pn such that the distance between any two of them
is 1. Then the adversary partitions the n points into k disjoint sets S1, S2, . . . , Sk at
random, such that all partitions are equally likely. Finally the adversary provides k
points Q1, Q2, . . . , Qk, such that d(Qi, Pj) = 1 if Pj ∈ Si, d(Qi, Pj) = 2 if Pj �∈ Si,
d(Qi, Qj) = 3. Now, the diameter of the optimal solution for any input in the distribu-
tion is 1, obtained by constructing the k clusters Si∪{Qi}. However, the incremental
algorithm can produce a clustering with diameter 1 only if the clusters it produces
after it sees points P1, P2, . . . , Pn are precisely the sets Si (selected at random by
the adversary). Let Xk(n) be the number of ways to partition the n points into k
sets. Then the probability that the incremental algorithm produces a clustering of
diameter 1 is at most p = 1/Xk(n). With probability at least 1− p, the incremental
algorithm produces a clustering of diameter at least 2. Thus the expected value of
the diameter of the clustering produced is at least 2 − p. Hence the expected value
of the performance ratio is at least 2 − p. By choosing n suitably large, Xk(n) can
be made arbitrarily large, and hence p can be made arbitrarily small, in particular
smaller than ε for any fixed ε > 0.

For the radius measure we have the following theorem.
Theorem 5.4. For the radius measure, no deterministic incremental clustering

algorithm has a performance ratio better than 3 and no randomized algorithm has a
ratio better than 3− ε for any fixed ε > 0.

Proof. We first consider the randomized case. The instances are very similar to
the ones used in the proof of Theorem 5.3. The only difference is that d(Qi, Pj) = 0.5
if Pj ∈ Si and d(Qi, Pj) = 1.5 if Pj �∈ Si. The optimal clusters are Si ∪ {Qi} for
1 ≤ i ≤ k and each of them has a radius of 0.5. Any other clustering has radius at
least 1.5 and the algorithm has a probability of (1−1/Xk(n)) of having such a cluster.

The instance used above can be adapted easily to show a bound of 3 for the
deterministic case; we leave the details to the reader.

6. Dual clustering. We now consider the dual clustering problem: for a se-
quence of points p1, p2, . . . , pn ∈ �d, cover each point with a unit ball in �d as it
arrives, so as to minimize the total number of balls used. In the static case, this
problem is NP-complete and a PTAS is achievable in any fixed dimension [31]. We
note that in general metric spaces, it is impossible to achieve any bounded ratio (for
example, consider the uniform metric space).

Our algorithm’s analysis is based on a theorem from combinatorial geometry
called Roger’s theorem [46] (see also [43, Theorem 7.17]), which says that Rd can
be covered by any convex shape with covering density O(d log d). Since the volume
of a radius 2 ball is 2d times the volume of a unit-radius ball, the number of balls
needed to cover a ball of radius 2 using balls of unit radius is f(d) = O(2dd log d).
We first describe an incremental algorithm which has performance ratio f(d). We
also establish an asymptotic lower bound of Ω( log d

log log log d ); for d = 1 and 2, our proof
yields lower bounds of 2 and 4, respectively.

Theorem 6.1. For the dual clustering problem in �d, there is an incremental
algorithm with performance ratio O(2dd log d).

Proof. Our incremental algorithm maintains a set C of centers which is a subset
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of the points that have arrived so far; initially, C = ∅. Define the range R(p) of a
center p to be the sphere of radius 2 about p. For any two centers p1 and p2, we
ensure that d(p1, p2) > 2. Associated with each center p is a set of points Γ(p) called
the neighbors of p. For convenience, we assume that p ∈ Γ(p). We ensure that all
neighbors of p lie in R(p). When a new point x is received, if x ∈ R(p) for some center
p, we add x to Γ(p), breaking ties arbitrarily. If no such center exists, x must be at a
distance greater than 2 from all the existing centers. In this case, we make x a new
center and set Γ(x) = {x}.

From Roger’s theorem on packing density, a sphere of radius 2 in �d can be
covered by f(d) = O(2dd log d) spheres of radius 1. When a new center p is created,
we fix a set of spheres S1(p), S2(p), . . . , Sf(d)(p) which cover R(p). Whenever a point
x is added to Γ(p), if it is not already covered by some previously placed sphere, we
add the sphere Sr(p), where r is any value such that x ∈ Sr(p). Note that such a
sphere must exist as x ∈ R(p) and the spheres S1(p), S2(p), . . . , Sf(d)(p) cover R(p)
completely.

Since no two centers can be covered by a sphere of unit radius, any solution must
use a separate sphere to cover each center. Hence, the number of centers is a lower
bound for the number of spheres used by the optimal offline algorithm. For each
center p, the incremental algorithm uses at most f(d) spheres to cover the points
in Γ(p). Hence, the performance ratio of the incremental algorithm is bounded by
f(d) = O(2dd log d).

Theorem 6.2. For the dual clustering problem in �d, any incremental algorithm
must have performance ratio Ω( log d

log log log d ).

Proof. The idea is as follows. At time t, when t points have been given by the
adversary, it will be the case that the points p1, . . . , pt can be covered by a ball of
radius Rt < 1. Then the adversary will find a point pt+1 lying outside the t unit balls
laid down by the algorithm so as to minimize the radius Rt+1 of the ball required to
cover all t + 1 points and present that as a request. The game terminates when, at
some time k+1, we have for the first time that Rk+1 > 1. Clearly, k is a lower bound
on the performance ratio since the points p1, . . . , pk can be covered by a ball of radius
Rk ≤ 1, and the algorithm has used k balls up to that point. It remains to analyze
the worst-case growth rate of Rt as a function of t. Note that R1 = 0 and R2 = 1/2.

Let αd denote the volume of a unit ball in �d. At time t, let Dt be any ball of
radius (at most) Rt that covers the points p1, . . . , pt. For some δt to be specified later,
define the ball D∗

t as a ball with the same center as Dt and with radius Rt + δt. We
will choose δt such that the volume of D∗

t is at least tαd, implying that the current t
unit balls placed by the algorithm cannot cover the entire volume of D∗

t . This would
imply that there is a choice of a point pt+1 inside D∗

t which is not covered by the
current t balls. It is also clear that the new set of t+ 1 points now can be covered by
a ball of radius at most Rt + δt/2, implying that

Rt+1 = Rt +
δt
2
.

Determining the value of δt is easy, since we have the inequality

αd(Rt + δt)
d > tαd

from the requirement that the ball Dt have volume equal to that of t unit balls. Now
let Rt = 1− εt. Substituting in the above equations, we obtain that δt = 2(εt − εt+1)
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and hence Rt + δt = 1 + εt − 2εt+1. Therefore

αd(1 + εt − 2εt+1)
d > tαd,

which implies that

ln(1 + εt − 2εt+1) >
ln t

d
.

Note that εt − 2εt+1 < 1. Using the fact that ln(1 + x) > x/2 for x < 1, we see
that choosing εi such that

εt − 2εt+1

2
=

ln t

d

will satisfy our requirements. Unfolding the recurrence,

ε1
2t
− εt+1 =

t∑
i=1

ln i

d2t−i
=

t∑
i=1

ln i

d2t−i
≤

t∑
i=1

ln t

d2t−i
≤ 2 ln t

d
.

Noting that ε1 = 1, we obtain that εt+1 ≥ 2−t − 2d−1 ln t. The lower bound is the
smallest value of t for which εt+1 is negative. Let tmax be the largest value of t for
which

1

2t
− 2 ln t

d
≥ 0.

This implies that 2t+1 ln t ≤ d and hence

tmax = Ω

(
log d

log log log d

)
.

This gives the desired lower bound.

Appendix. t-diameter-greedy algorithm. We give a few preliminary results
on the t-diameter-greedy algorithm defined in section 2.

Theorem A.1. For k = 3, there is a lower bound of 3 on the performance ratio
of the diameter-greedy algorithm on the line.

Proof. We first show that diameter-greedy achieves a ratio of 3 for k = 3. Suppose
that the optimal clustering is [r, s], [t, u], [v, w] with max(s− r, u− t, w− v) = d. It is
sufficient to show that a merging of two out of four clusters does not create a cluster of
diameter greater than 3d. There are two cases: if t− s, v−u > d, then this algorithm
actually produces the optimal solution; conversely, if t − s ≤ d, then either the first
two out of four clusters are contained in [r, u] with u− r ≤ 3d or the last two out of
four clusters are contained in [v, w] with w − v ≤ d.

For the case k = 2, we will in fact show that diameter-greedy creates two intervals
whose radius (the 2-diameter) is at most the diameter of the optimal solution. Suppose
the two intervals obtained by the algorithm are [0, a] and [b, 1], with a < b. The
optimum diameter is achieved when a ≤ 1/2 ≤ b, in which case it is max(a, 1 − b).
The other case has a and b on the same side of 1/2, say b < 1/2. We claim that in
this case, there are no gaps greater than b between consecutive points. Consequently,
the two consecutive points x ≤ 1/2 ≤ y satisfy y − x ≤ b, and the optimum diameter
is d = max(x, 1− y). The interval [0, a] has radius at most a < b ≤ x ≤ d as needed.
The interval [b, 1] has radius at most max(y− b, 1−y) ≤ max(x, 1−y) = d as needed.
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It remains to verify the claim that there are no gaps greater than b. If there is
such a gap, it must be inside [b, 1]. At some point, a merge crossing this gap was
performed. That is, we had three intervals [r, s], [t, u], [v, w] with t − s > b, and a
merge producing [r, u] was carried out. This can only happen if w − u > b. Thus, we
obtain two intervals [r, u] and [v, w] with b < (w − r)/2, v − r > b, and w − u > b.
We shall show that these three inequalities are preserved for the two current intervals
until the end of the algorithm. However, they are false at the end for the two intervals
[0, a] and [b, 1], a contradiction.

We show that the three inequalities are preserved. A new point z is added either
between the two intervals or outside the two intervals, say after w. If z is added after
w, then the resulting intervals are either [r, u] and [v, z], in which case the inequalities
still hold, or [r, w] and [z, z], which can only happen if z−w > b and so the inequalities
still hold. If z is added between the two intervals, say z ≤ (w + r)/2, and the two
resulting intervals are [r, z] and [v, w], then w − z ≥ (w − r)/2 > b, completing the
proof.

For k = 3, we give an example where a greedy algorithm based on diameter cannot
do strictly better than 3.

Theorem A.2. For k = 3, there is a lower bound of 3 on the performance ratio
of the diameter-greedy algorithm on the line.

Proof. The adversary gives the following sequence of points: 1 + ε, 2 + ε, 3, 4, 6−
2ε, 4 − ε, 7 − 2ε. The optimal intervals are [1 + ε, 2 + ε], [3, 4], [6 − 2ε, 7 − 2ε], giving
diameter 1. However, when the first four points are introduced, the interval [2 + ε, 3]
is created by diameter-greedy; when 6− 2ε is added the interval [4, 6− 2ε] is created;
when 4− ε is added then the enlarged interval [2+ε, 4− ε] is created; and finally when
7− 2ε is added either [1+ ε, 4− ε] or [4, 7− 2ε] is created, for a factor of [3− 2ε].

The proof only gives a lower bound of 2 for the t-diameter-greedy algorithm
when t > 1, leaving open the possibility that these algorithms may perform better
than diameter-greedy. Indeed, we have the following result.

Theorem A.3. The 3-diameter-greedy algorithm has performance ratio 3 on the
line.

Proof. In fact, we show that it produces a clustering with 3-diameter at most
the optimal diameter, and the factor of 3 follows. Assume this holds before the last
two clusters are merged. Let I1, I2, . . . , Ik be the intervals in the optimal clustering,
with maximum diameter d. Let C1, C2, . . . , Ck+1 be the current clusters, each with
3-diameter at most d, of which two must be merged. If Ci starts in Ia and ends in
Ib, let xi = b− a; notice that x1 + · · ·+ xk+1 ≤ k − 1. We assume that if Ci ends in
Ib, then Ci+1 starts in Ib; otherwise, we could replace the argument in the k intervals
Ij by an argument either in the first b intervals I1, . . . , Ib if there are at least b + 1
clusters Ci in this region, or in the last k− b intervals Ib+1, . . . , Ik if there are at least
k−b+1 current clusters Ci in this region. Now, the bounds imply that for some i, we
have xi + xi+1 < 2. If xi = xi+1 = 0, then the merging of Ci and Ci+1 is contained
in a single interval Ij and has a diameter at most d. If say xi = 0 and xi+1 = 1, then
the gap G between the two consecutive intervals Ij and Ij+1 involved is at most d,
since Ci+1 has 3-diameter at most d, so the merger of Ci and Ci+1 has 3-diameter at
most d given by the 3-partition Ij , G, Ij+1. This completes the proof.

We comment briefly on the running time of this algorithm. In the above proof,
the 3-diameter of an interval may be replaced by an easily computed upper bound:
at the time of creation of interval [a, b], let [x, y] be the gap containing (a+ b)/2, and
let the upper bound be max(x − a, y − x, b − y). Maintaining the n points sorted in
a balanced tree, the running time is O(log n) for each of the n points inserted.
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Abstract. In this paper we consider the problem of testing bipartiteness of general graphs. The
problem has previously been studied in two models, one most suitable for dense graphs and one most
suitable for bounded-degree graphs. Roughly speaking, dense graphs can be tested for bipartiteness
with constant complexity, while the complexity of testing bounded-degree graphs is Θ̃(

√
n), where n

is the number of vertices in the graph (and Θ̃(f(n)) means Θ(f(n) · polylog(f(n)))). Thus there is
a large gap between the complexity of testing in the two cases.

In this work we bridge the gap described above. In particular, we study the problem of testing
bipartiteness in a model that is suitable for all densities. We present an algorithm whose complexity
is Õ(min(

√
n, n2/m)), where m is the number of edges in the graph, and we match it with an almost

tight lower bound.
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1. Introduction. Property testing algorithms [21, 12] are algorithms that per-
form approximate decisions. Namely, for a predetermined property P they should
decide whether a given object O has property P or is far from having property P .
In order to perform this approximate decision they are given query access to the ob-
ject O. Property testing problems are hence defined by the type of objects in question,
the property tested, the type of queries allowed, and the notion of distance to having
a property. Much of the focus of property testing has been on testing properties of
graphs. In this context several models have been considered. In all models, for a fixed
graph property P , the algorithm is required to accept graphs that have P and to re-
ject graphs that are ε-far from having P for a given distance parameter ε. In all cases
the algorithm is allowed a constant probability of failure. The models differ in the
type of queries they allow and in the notion of distance they use (which underlies the
definition of being ε-far from having the property). The complexity of the algorithm
is measured by the number of queries that the algorithm performs.

1.1. Models for testing graph properties. The first model, introduced in
[12], is the adjacency-matrix model. In this model the algorithm may perform queries
of the following form: “Is there an edge between vertices u and v in the graph?”
That is, the algorithm may probe the adjacency matrix representing the graph. We
refer to such queries as vertex-pair queries. The notion of distance is also linked
to this representation: a graph is said to be ε-far from having property P if more
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than εn2 edge modifications should be performed on the graph so that it obtains the
property, where n is the number of vertices in the graph. In other words, ε measures
the fraction of entries in the adjacency matrix of the graph that should be modified.
This model is most suitable for dense graphs in which the number of edges, denotedm,
is Θ(n2). This model was studied in [12, 3, 2, 1, 4, 16, 8].

The second model, introduced in [13], is the (bounded-degree) incidence-lists model.
In this model, the algorithm may perform queries of the following form: “Who is the
ith neighbor of vertex v in the graph?” That is, the algorithm may probe the incidence
lists of the vertices in the graph, where it is assumed that all vertices have degree at
most d for some fixed degree-bound d. We refer to these queries as neighbor queries.
Here too the notion of distance is linked to the representation: A graph is said to be
ε-far from having property P if more than εdn edge modifications should be performed
on the graph so that it obtains the property. In this case ε measures the fraction of
entries in the incidence-lists representation (among all dn entries) that should be
modified. This model is most suitable for graphs with m = Θ(dn) edges, that is,
whose maximum degree is of the same order as the average degree. In particular,
this is true for sparse graphs that have constant degree. This model was studied in
[14, 13, 7].

In [20] it was suggested to decouple the issues of representation and type of
queries allowed from the definition of distance to having a property. Specifically, it
was suggested to measure the distance simply with respect to the number of edges,
denoted m, in the graph. Namely, a graph is said to be ε-far from having a property if
more than εm edge modifications should be performed so that it obtains the property.
In [20] the algorithm was allowed the same type of queries as in the bounded-degree
incidence-lists model, but no fixed upper-bound was assumed on the degrees and the
algorithm could query the degree of any vertex. The main advantage of this model
over the bounded-degree incidence-lists model is that it is suitable for graphs whose
degrees may vary significantly. To illustrate this, consider a (sparse) graph having
m = O(n) edges, where the maximum degree d of vertices in the graph is Ω(n).
Suppose we want to determine whether the graph is bipartite or ε-far from being
bipartite for some constant ε. If we worked in the bounded-degree incidence-lists
model then we could trivially accept all graphs, since for d = Ω(n) and constant ε
every graph having O(n) = o(dn) edges is ε-close to being bipartite. However, this
is no longer true when distance is measured with respect to the actual number of
edges m.

The model studied in this paper. In this work we are interested in a model that
may be useful for testing all types of graphs: dense, sparse, and graphs that lie in-
between the two extremes. As is discussed in more detail in the next subsection, the
two extremes sometimes exhibit very different behavior in terms of the complexity
of testing the same property. We are interested in understanding the transforma-
tion from testing sparse (and, in particular, bounded-degree) graphs to testing dense
graphs.

Recall that a model for testing graph properties is defined by the distance measure
used and by the queries allowed. The model of [20] is indeed suitable for all graphs
in terms of the distance measure used, since distance is measured with respect to the
actual number of edges m in the graph. Thus this notion of distance adapts itself to
the density of the graph, and we shall use it in our work.

The focus in [20] was on testing properties that are of interest in sparse (but not
necessarily bounded-degree) graphs, and hence they allowed only neighbor queries.
However, consider the case in which the graph is not sparse (but not necessarily dense).
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In particular, suppose that the graph has ω(n1.5) edges and that we are seeking an
algorithm that performs o(

√
n) queries. While in the case of sparse graphs, there is

no use in asking vertex-pair queries (i.e., is there an edge between a particular pair of
vertices), such queries may become helpful when the number of edges is sufficiently
large. Hence, we allow our algorithms to perform both neighbor queries and vertex-
pair queries.

1.2. Testing bipartiteness. One of the properties that has received quite a bit
of attention in the context of property testing is bipartiteness. Recall that a graph is
bipartite if it is possible to partition its vertices into two parts such that there are no
edges with both endpoints in the same part. This property was first studied in [12]
where it was shown that bipartiteness can be tested in the adjacency-matrix model
by a simple algorithm using Õ(1/ε3) queries. This was improved in [3] to Õ(1/ε2)
queries. The best lower bound known in this model is Ω̃(1/ε1.5), due to [8]. Thus
the complexity of this problem in the adjacency-matrix model is independent of the
number of vertices n and is polynomial in 1/ε. It is interesting to note that testing
bipartiteness is considered implicitly already in [9]. The result in [9] can be used to
obtain a testing algorithm in the adjacency-matrix model whose query complexity
does not depend on the size of the graph but whose dependence on ε is a tower of
height polynomial in 1/ε.

The complexity of testing bipartiteness is significantly different when considering
the bounded-degree incidence-lists model. In [14] a lower bound of Ω(

√
n) was estab-

lished in this model for constant ε and constant d (where d is the degree bound). An
almost matching upper bound of Õ(

√
n · poly(1/ε)) was shown in [13]. Thus, in the

case of bipartiteness there is a large gap between the results that can be obtained for
dense graphs and for constant-degree graphs.

Here we venture into the land of graphs that are neither necessarily sparse nor
necessarily dense and study the complexity of testing bipartiteness. As we discuss
briefly in subsection 1.5, other graph properties exhibit similar (and sometimes even
larger) gaps, and hence we believe that understanding the transformation from sparse
to dense graphs is of general interest.

1.3. Our results. In this work we present two complementary results for n-
vertex graphs having m edges:

• We describe and analyze an algorithm for testing bipartiteness in general
graphs whose query complexity and running time are O(min(

√
n, n2/m) ·

poly(logn/ε)). The algorithm has a one-sided error (i.e., it always accepts
bipartite graphs). Furthermore, whenever it rejects a graph it provides evi-
dence that the graph is not bipartite in the form of an odd cycle1 of length
poly(logn/ε).

• We present an almost matching lower bound of Ω(min(
√
n, n2/m)) (for a

constant ε). This bound holds for all testing algorithms (that is, for those
that are allowed a two-sided error and are adaptive). Furthermore, the bound
holds for regular graphs.

As seen from the above expressions, as long as m = O(n1.5), that is, the average
degree is O(

√
n), the complexity of testing (in terms of the dependence on n) is

Θ̃(
√
n). Once the number of edges goes above n1.5, we start seeing a decrease in the

query complexity, which in this case is at most O((n2/m) · poly(logn/ε)). In terms
of our algorithm, this is exactly the point where our algorithm starts exploiting its

1We use the term “odd cycle” as a shorthand for “odd-length cycle.”
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access to vertex-pair queries. Our lower bound shows that this behavior of the query
complexity is not only an artifact of our algorithm but is inherent in the problem.

Notes.

1. Observe that even if the graph is sparse, we obtain a new result that does
not follow from [13]. Namely, we have an algorithm with complexity Õ(

√
n ·

poly(1/ε)) for sparse graphs with varying degrees.
2. We note that the algorithm does not actually require to be given the number

of edges, m, in the graph but can instead compute an estimate of this number.
Such an estimate can be obtained without increasing the query complexity of
the algorithm [11, 15], and we discuss this issue shortly in section 4.

3. We assume that m = Ω(n). Since our distance measure is with respect to
the number of edges in the graph, without such an assumption it would be
impossible to distinguish between the following two (families of) graphs: a
graph that consists of many isolated edges and a single very small subgraph
that is far from bipartite (e.g., a clique), and a graph that consists of many
isolated vertices and a very small bipartite subgraph. We discuss this issue
briefly in section 4 as well.

1.4. Our techniques. We present our algorithm in two stages. First we de-
scribe an algorithm that works for almost-regular graphs, that is, graphs in which
the maximum degree is of the same order as the average degree. The algorithm and
its analysis closely follow the algorithm and analysis in [13]. Indeed, as long as the
degree d of the graph is at most

√
n, we execute the algorithm described in [13]. The

place where we depart from [13] is in the usage of vertex-pair queries once d >
√
n.

We refer to our first algorithm as Test-Bipartite-Reg.

In the second stage we show how to reduce the problem of testing bipartiteness
of general graphs to testing bipartiteness of almost-regular graphs. Namely, we show
how, for every given graph G, it is possible to define a graph G′ such that (1) G′ has
roughly the same number of vertices and edges as G, and its maximum degree is of
the same order as its average degree (which is roughly the same as the average degree
in G); (2) if G is bipartite, then so is G′, and if G is far from being bipartite, then so
is G′. We then show how to emulate the execution of the algorithm Test-Bipartite-Reg
on G′ given query access to G so that we may accept G if it accepts G′ and reject G
if it rejects G′.

In the course of this emulation we are confronted with the following interesting
problem: We would like to sample vertices in G according to their degrees (which aids
us in sampling vertices uniformly in G′, a basic operation that is required by Test-
Bipartite-Reg). The former is equivalent to sampling edges uniformly in G. In order
not to harm the performance of our testing algorithm, we are required to perform
this task using Õ(min(

√
n, n2/m)) queries. If m is sufficiently large (once again, if

m ≥ n1.5), this can be performed without increasing the complexity of our algorithm
simply by sampling sufficiently many pairs of vertices in G. However, we do not
know how to perform this task exactly (in an efficient manner) when the number of
edges is significantly smaller than n1.5. Nonetheless, we provide a sampling procedure
that selects edges according to a distribution that approximates the desired uniform
distribution on edges and is sufficient for our purposes. The approximation is such
that for all but a small fraction of the m edges, the probability of selecting an edge is
Ω(1/m). This procedure may be of independent interest.

We also conjecture that variants of our construction of G′ (and, in particular,
a simple probabilistic construction we suggest) may be useful in transforming other
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results that hold for graphs whose maximum degree is similar to their average degree
into results that hold for graphs with varying degrees.

We establish our lower bound by describing, for every pair n, d (n even, d ≥ 64),
two distributions over d-regular graphs. In one distribution all graphs are bipartite
by construction. For the other distribution we prove that almost all graphs are far
from being bipartite. We then show that every testing algorithm that can distin-
guish between a graph chosen randomly from the first distribution (which it should
accept with probability at least 2/3) and a graph chosen randomly from the sec-
ond distribution (which it should reject with probability at least 2/3) must perform
Ω(min(

√
n, n/d)) = Ω(min(

√
n, n2/m)) queries.

Our lower-bound proof implies the necessity of both neighbor queries and
vertex-pair queries in obtaining an upper bound whose dependence on n and m is
Õ(min(

√
n, n2/m)). Specifically, if only neighbor queries are allowed, then our analy-

sis implies a lower bound of Ω(
√
n) for every m, which is higher than Õ(n2/m) when

m = ω(n1.5). If only vertex-pair queries are allowed, then our analysis implies a lower
bound of Ω(n2/m), which is above the upper bound of Õ(

√
n) when m = o(n1.5).

1.5. Further research. As noted previously, there are other problems that ex-
hibit a significant gap between the query complexity of testing dense graphs (in the
adjacency-matrix model) and the complexity of testing sparse bounded-degree graphs
(in the bounded-degree incidence-lists model). In particular, this is true for testing
k-colorability. It is possible to test dense graphs for k-colorability using poly(k/ε)
queries [12, 3, 10], while testing sparse graphs requires Ω(n) queries [7]. We stress
that these bounds are for query complexity, where we put time complexity aside. We
would like to understand this transformation from essentially constant complexity (for
constant k and ε) to linear complexity, and we would like to know whether any inter-
mediate results can be obtained for graphs that are neither sparse nor dense. Other
problems of interest are testing whether a graph has a relatively large clique [12],
testing acyclicity of directed graphs [6], and testing that a graph does not contain a
certain subgraph [1, 4].

1.6. Organization of the paper. In section 2 we give some basic definitions
and notation. In sections 3 and 4 we describe and analyze our testing algorithms. In
section 5 we present our lower bound.

2. Preliminaries. Let G = (V,E) be an undirected graph with n vertices la-
beled 1, . . . , n, and let m = m(G) = |E(G)| be the total number of edges in G. Unless
stated otherwise, we assume that G contains no multiple edges. For each vertex v ∈ V
let Γ(v) denote its set of neighbors, and let deg(v) = |Γ(v)| denote its degree. The
edges incident to v are labeled from 1 to deg(v). We make no assumption on the cor-
responding order of the neighbors of a vertex. Note that each edge has two possibly
different labels, one with respect to each of its endpoints. We hence view edges as
quadruples. That is, if there is an edge between v and u and it is the ith edge incident
to v and the jth edge incident to u, then this edge is denoted by (u, v, i, j). When we
want to distinguish between the quadruple (u, v, i, j) and the pair (u, v), then we refer
to the latter as an edge-pair. We let dmax = dmax(G) denote the maximum degree
in the graph G and davg = davg(G) denote the average degree in the graph (that is,
davg(G) = 2m(G)/n).

Distance to having a property. Consider a fixed graph property P. For a given
graph G, let eP(G) be the minimum number of edges that should be added to G or
removed from G so that it obtains property P. The distance of G to having property P
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is defined as eP(G)/m(G). In particular, we say that graph G is ε-far from having the
property P for a given distance parameter 0 ≤ ε < 1 if eP(G) > ε ·m(G). Otherwise,
it is ε-close to having property P. In some cases we may define the distance to having
a property with respect to an upper bound mmax ≥ m(G) on the number of edges in
the graph (that is, the distance to having property P is defined as eP(G)/mmax). For
example, if the graph is dense so that m(G) = Ω(n2), then we set mmax = n2, and
alternatively, if the graph has some bounded degree d, then we set mmax = d · n. (In
the latter case we could set mmax = (d · n)/2, but for simplicity we set the slightly
higher upper bound.) If eP(G)/mmax > ε, then we shall say that the graph is ε-far
from having property P with respect to mmax.

Testing algorithms. A testing algorithm for a graph property P is required to
accept with probability at least 2/3 every graph that has property P and to reject
with probability at least 2/3 every graph that is ε-far from having property P, where
ε is a given distance parameter. If the algorithm always accepts graphs that have the
property, then it is a one-sided error algorithm. The testing algorithm is given the
number of vertices in the graph, the number of edges in the graph, or an upper bound
on this number,2 and it is provided with query access to the graph. Specifically, we
allow the algorithm the following types of queries.

• The first type of queries is degree queries. That is, for any vertex u of its
choice, the algorithm can obtain deg(u). We assume that a degree query has
cost one.
• The second type of queries is neighbor queries. Namely, for every vertex u

and index 1 ≤ i ≤ deg(u), the algorithm may obtain the ith neighbor of
vertex u.
• The third type of queries is vertex-pair queries. Namely, for any pair of

vertices (u, v), the algorithm can query whether there is an edge between
u and v in G.

Note that degree queries can be easily implemented using neighbor queries with cost
O(log dmax) = O(log n).

Bipartiteness. In this work we focus on the property of bipartiteness. Let (V1, V2)
be a partition of V . We say that an edge (u, v) ∈ E is a violating edge with respect
to (V1, V2) if u and v belong to the same subset Vb (for some b ∈ {1, 2}). A graph
is bipartite if there exists a partition of its vertices with respect to which there are
no violating edges. By definition, a graph is ε-far from being bipartite if for every
partition of its vertices, the number of violating edges with respect to the partition is
greater than ε ·m. Recall that a graph is bipartite if and only if it contains no odd
cycles.

3. The algorithm for the almost-regular case. In this section we describe
an algorithm that accepts every bipartite graph and that rejects with probability
at least 2/3 every graph that is ε-far from being bipartite with respect to an upper
bound mmax = dmaxn on the number of edges. Namely, this algorithm rejects (with
probability at least 2/3) graphs for which the number of edges that need to be removed
so that they become bipartite is greater than ε·mmax = ε·dmaxn. The query complexity
and running time of this algorithm are O(min(

√
n, n/dmax) · poly(logn/ε)).

In the case where the graph is almost regular, that is, the maximum degree of the
graph dmax is of the same order as the average degree, davg, then we essentially obtain

2As noted in the introduction, we can remove this assumption and have the algorithm compute
an estimate of the number of edges.
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a tester as desired (since in such a case εdmaxn = O(εm)). However, in general, dmax

may be much larger than davg (for example, it is possible that dmax = Θ(n) while
davg = Θ(1)). To deal with the general case we show in the next section (section 4)
how to reduce the problem in the general case to the special case of dmax = O(davg).

Test-Bipartite-Reg(n, dmax, ε)

• Repeat T = Θ(1
ε ) times:

1. Uniformly select a vertex s in V .
2. If Odd-Cycle(s) returns found, then output reject.

• In case no call to Odd-Cycle returned found, then output accept.

Odd-Cycle(s)

1. If d = dmax ≤
√
n, then let K

def
= Θ

(√n·log1/2(n/ε)
ε3

)
and L

def
= Θ

( log3(n/ε)
ε5

)
.

Otherwise (d >
√
n), let K

def
= Θ

(√n/d·log1/2(n/ε)

ε8

)
, and L

def
= Θ

( log6(n/ε)
ε8

)
.

2. Perform K random walks starting from s, each of length L.
3. Let A0 (A1) be the set of vertices that appear at the ends of the walks

performed in the previous step whose paths are of even (odd) length.
4. If d ≤ √n, then check whether A0∩A1 �= ∅. If the intersection is nonempty,

then return found; otherwise return not-found.
5. Else (d >

√
n), perform vertex-pair queries between every pair of vertices

u, v ∈ A0 (u, v ∈ A1). If an edge is detected, then return found; otherwise
return not-found.

Fig. 1. Algorithm Test-Bipartite-Reg for testing bipartiteness with respect to the upper bound
mmax = dmax · n on the number of edges, and the procedure Odd-Cycle for detecting odd cycles in
the graph G.

A high level description of the algorithm. Throughout this section let
d = dmax. Our algorithm, whose pseudocode appears in Figure 1, builds on the
testing algorithm for bipartiteness described in [13]. The query complexity of that
algorithm is O(

√
n · poly(logn/ε)), and it works with respect to mmax = dn as well.

In fact, as long as d ≤ √n, our algorithm is the same as the algorithm in [13].

In particular, as in [13], our algorithm selects Θ(1/ε) starting vertices and from
each it performs several random walks (using neighbor queries), each walk of length
poly(logn/ε). The exact form of these random walks is described momentarily. If
d ≤ √n, then the number of these random walks from each starting vertex s is
O(
√
n · poly(logn/ε)), and the algorithm simply checks whether an odd cycle was

detected in the course of these random walks. Specifically, the algorithm checks
whether there exists some vertex v that is reached at the end of two different walks
from s, where one walk corresponds to a path in the graph with even length, and one
walk corresponds to a path with odd length. The existence of such a vertex v implies
an odd cycle that contains s and v, and the algorithm rejects the graph in such a
case.

If d >
√
n, then there are two important modifications as compared to the case

d ≤ √n (which, as noted above, follows [13]). These modifications reduce the number
of queries performed as the degree increases.

1. The number of random walks performed from each starting vertex is reduced
to O(

√
n/d · poly(logn/ε)) (as compared to O(

√
n · poly(logn/ε)) walks for

the case d ≤ √n).
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2. The algorithm still considers the vertices reached at the end of these walks,
but now it performs an additional step. It partitions these vertices into two
subsets, denoted A0 and A1, according to the parity of the lengths of the
paths corresponding to the walks. The algorithm then performs vertex-pair
queries on each pair of vertices that belong to the same subset. If any edge
(u, v) is detected for u, v ∈ A0 or u, v ∈ A1, then the algorithm has evidence
of an odd cycle that included s (the starting vertex), u, and v, and it rejects.
The total number of vertex-pair queries is O((n/d) · poly(logn/ε)).

On a very intuitive level, if a graph is far from being bipartite, then many edges (and
vertices) belong to many odd cycles. The difference between the two cases described
above is that if d ≤ √n, then the algorithm tries to reach the same vertex twice, once
via an even-length path and once via an odd-length path. To this end it performs
about

√
n random walks (so as to “hit” the same vertex twice). In the case d >

√
n,

the algorithm performs far fewer walks, and so we cannot expect to reach the same
vertex twice. However, since the edge-density is higher, we do expect to have an
edge in the subgraph induced by the ending points of the walk. In particular, as our
analysis shows, we expect to see such an edge between vertices that are reached via
paths whose lengths have the same parity.

Random walks and paths in the graph. The random walks performed are defined
as follows: At each step, if the degree of the current vertex v is d′ ≤ d, then the walk
remains at v with probability 1− d′

2d ≥ 1
2 , and for each u ∈ Γ(v), the walk traverses

to u with probability 1
2d . The important property of the random walk is that the

stationary distribution it induces over the vertices is uniform.

To every walk (or, more generally, to any sequence of steps), there corresponds a
path in the graph. The path is determined by those steps in which an edge is traversed
(while ignoring all steps in which the walk stays at the same vertex). Such a path
is not necessarily simple but does not contain self-loops. Note that when referring
to the length of a walk, we mean the total number of steps taken, including steps in
which the walk remains at the current vertex, while the length of the corresponding
path does not include these steps.

Theorem 1. The algorithm Test-Bipartite-Reg accepts every graph that is bi-
partite and rejects with probability at least 2/3 every graph that is ε-far from being
bipartite with respect to mmax = dmaxn. Furthermore, whenever the algorithm rejects
a graph, it outputs a certificate to the nonbipartiteness of the graph in the form of
an odd cycle of length poly(logn/ε). The query complexity and running time of the
algorithm are O (min(

√
n, n/dmax) · poly(logn/ε)).

Note that the algorithm can work when G contains self-loops and multiple edges.
The latter will be of importance in the next section.

As a direct corollary of Theorem 1 (using m(G) = (ndavg(G))/2), we get the
following.

Corollary 2. For a given graph G, let γ(G)
def
= dmax(G)/davg(G). Then Test-

Bipartite-Reg(n, dmax(G), ε/(2γ(G))) accepts every graph that is bipartite and rejects
with probability at least 2/3 every graph that is ε-far from being bipartite (with respect
to m(G)).

The corollary below will become useful in the next section.

Corollary 3. If G is ε-far from being bipartite with respect to mmax = dmaxn,
then Ω(ε)-fraction of its vertices s are such that Odd-Cycle(s) returns found with
probability at least 2

3 .

The completeness part of Theorem 1 (i.e., showing that the algorithm accepts bi-
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partite graphs) is straightforward. We focus on proving the soundness of the algorithm
(i.e., that graphs that are ε-far from being bipartite are rejected with probability 2

3 ).
What we eventually show (in subsection 3.6) is the contrapositive statement, namely,
that if the test accepts G with probability greater than 1

3 , then there exists an ε-good
partition of G.

Our analysis follows the analysis presented in [13] quite closely. In particular,
whenever possible we refer the reader to proofs given in [13]. Here we present what is
necessary to establish the correctness of our algorithm and in particular those proofs
in which we diverge from [13]. Since the algorithm for the case dmax ≤

√
n is fully

analyzed in [13], from this point on we assume dmax >
√
n and analyze the algorithm

for this case.

3.1. Gaining intuition: The rapidly mixing case. To gain some intuition,
consider first the following “ideal” case: From each starting vertex s in G, and for
every v ∈ V , the probability that a random walk of length L = poly((logn)/ε) ends
at v is at least 1

2n and at most 2
n , i.e., approximately the probability assigned by the

stationary distribution. (Note that this ideal case occurs when G is an expander.)
Let us fix a particular starting vertex s. For each vertex v, let p0

v be the probability
that a random walk (of length L) starting from s ends at v and corresponds to an
even-length path. Define p1

v analogously for odd paths. Then, by our assumption

on G, for every v, p0
v + p1

v ≥ 1
2n . We consider two cases regarding the sum σ(G)

def
=∑

v,u∈V
(v,u)∈E

(p0
vp

0
u + p1

vp
1
u).

In case σ(G) is (relatively) “small,” we show that there exists a partition (V0, V1)
of V that is ε-good, and so G is ε-close to being bipartite. Otherwise (i.e., when the
sum is not “small”), we show that the rejection probability is bounded away from
zero. This implies that in case G is accepted with probability at least 1

3 , then G is
ε-close to being bipartite.

Consider first the case in which σ(G) < c · εdn for some suitable constant c < 1.
Let the partition (V0, V1) be defined as follows: V0 = {v : p0

v ≥ p1
v} and V1 =

{v : p1
v > p0

v}. Consider a particular vertex v ∈ V0. By definition of V0 and our
rapid-mixing assumption, p0

v ≥ 1
4n .

σ(G) =
∑

v,u∈V
(v,u)∈E

(p0
vp

0
u + p1

vp
1
u)

≥
∑

v,u∈V0

(v,u)∈E

p0
vp

0
u +

∑
v,u∈V1

(v,u)∈E

p1
vp

1
u

≥
∑

v,u∈V0

(v,u)∈E

1

16n2
+

∑
v,u∈V1

(v,u)∈E

1

16n2

≥ 1

16n2
· (the number of violating edges with respect to (V0, V1)).(1)

Thus, if there are more than εdn violating edges with respect to (V0, V1), then
σ(G) > 1

16 · εd
n , which contradicts our case hypothesis concerning σ(G) assuming

c ≤ 1/16.
We now turn to the second case, σ(G) ≥ c · εd

n . For every fixed pair i, j ∈
{1, . . . ,K} (recall that K = Θ(

√
n/d · poly(logn/ε)) is the number of walks taken

from s), consider the 0/1 random variable ηi,j that is 1 if and only if both the ith
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and the jth walks have path length with the same parity and if the endpoints of the
paths are vertices u, v such that (u, v) ∈ E. Then for every pair i, j,

Exp[ηi,j ] =
∑

u,v∈V, (u,v)∈E

(p0
vp

0
u + p1

vp
1
u) = σ(G).(2)

Since there are K2 = Θ(n/d · poly(logn/ε)) such pairs i, j, the expected value of
the sum over all ηi,j ’s is greater than some constant c′ > c. These random variables
are not pairwise independent; nonetheless we can obtain a constant bound on the
probability that the sum is 0 using Chebyshev’s inequality (cf. [5, sec. 4.3]).

Unfortunately, we may not assume in general that for every (or even some) start-
ing vertex, all (or even almost all) vertices are reached with probability Θ(1/n).
However, roughly speaking, we are able to show that every graph can be partitioned
into parts such that within each part we can perform an analysis that builds on the
ideas presented above. Furthermore, the different parts are separated by small cuts so
that if each part is close to being bipartite, then so is the whole graph. An important
component in the analysis is the definition of the Markov chain M�2

�1
(H), and we turn

to this definition in the next subsection.

3.2. The Markov chain M�2
�1

(H). LetH be an induced subgraph ofG. For any

given pair of lengths, �1 and �2, we define a Markov chain M�2
�1

(H). Roughly speaking,

M�2
�1

(H) captures random walks of length at most �1 · �2 in G that do not exit H for
(sub)walks of length �2 or more. The states of the chain consist of the vertices of H
and some additional auxiliary states. For vertices that do not have neighbors outside
of H, the transition probabilities in M�2

�1
(H) are exactly as in walks on G. However,

for vertices v that have neighbors outside of H there are two modifications: (1) For
each vertex u, the transition probability from v to u, denoted qv,u, is the probability of
a walk (in G) starting from v and ending at u after less than �2 steps (without passing
through any other vertex in H). Thus, walks of length less than �2 out of H (and, in
particular, the walk v − u in case (v, u) ∈ E) are contracted into single transitions.
Note that for every u and v in H we have qu,v = qv,u. (2) There is an auxiliary path
of length �1 emitting from v. The transition probability from v to the first auxiliary
vertex on the path equals the probability that a walk starting from v exits H and
does not return in less than �2 steps. From the last vertex on the auxiliary path there
are transitions to vertices in H with the corresponding conditional probabilities of
reaching them after such a walk.

A more formal definition of M�2
�1

(H) appears in the appendix, together with an
illustration (see Figure 8). The following definition and lemma will be instrumental
in our analysis.

Definition 3.1. We say that a vertex s is useful with respect to M�2
�1

(H) if the

probability that a walk in M�2
�1

(H) starting from s enters an auxiliary path after at

most �1 steps is at most 2�1
�2
· n
|H| .

Lemma 1. Let H be a subgraph of G, and let �1 and �2 be integers. Then at least
half of the vertices s in H are useful with respect to M�2

�1
(H).

The proof of the lemma appears in [13].

3.3. Useful vertices and small cuts. The following lemma can be viewed as
presenting a “contrapositive statement” of the work of Mihail [19]. While Mihail
showed that high expansion leads to fast convergence of random walks to the sta-
tionary distribution, the lemma below shows that too slow of a convergence implies
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small cuts that have certain additional properties. In particular, the vertices on one
side of the cut can be reached with roughly the same, relatively high probability from
some vertex s (where s need not necessarily be on the same side of the cut). In the
special case where H = G and G is rapidly mixing, the set S will be all of V , but
in the general case it will be a subset of those vertices that are reached from s with
probability that is not much smaller than that assigned by the stationary distribution
(of M�2

�1
(H)).

For states x and y in M�2
�1

(H) and an integer t, let qx,y(t) denote the probability

that a random walk in M�2
�1

(H) that starts at x ends at y after t steps.
Lemma 2. Let H be a subgraph of G with at least ε

4n vertices, and let �1 =

Θ
(( log(n/ε)

ε

)3)
, �2 = Θ

(
�1
ε2

)
, and F = O

(
1
ε

)
. Then for every vertex s that is useful

with respect to M�2
�1

(H), there exists a subset of vertices S in H, an integer t, �1/2 ≤
t ≤ �1, and a value β = Ω

(
ε2

log(n/ε)

)
such that the following hold:

1. The number of edges between S and the rest of H is at most ε
2 · d · |S|.

2. For every v ∈ S, √
1

|S| ·
β

|H| ≤ qs,v(t) ≤ F ·
√

1

|S| ·
β

|H| .

The proof of the lemma appears in [13].

3.4. Sufficient conditions for good partitions. In the next lemma we give
sufficient conditions under which subsets of vertices can be partitioned without having
many violating edges. For each b ∈ {0, 1} let qbs,v(t) denote the probability in M�2

�1
(H)

of a walk of length t starting from s, ending at v, and corresponding to a path whose
length has parity b. What the lemma essentially requires is that for some fixed vertex s
and subset of vertices S in H, there is a lower bound on the probability that each
vertex in S is reached from s (in t steps), and there are not too many vertices v in the
subset such that both q0s,v(t) and q1s,v(t) are large (with respect to this lower bound).

Lemma 3. Let H be a subgraph of G, s a vertex in H, S a subset of vertices
in H, and �1 and �2 integers. Assume that for some α > 0, t < �1, the following hold
in M�2

�1
(H):

1. For every v ∈ S, qs,v(t) ≥ α.
2.

∑
v,u∈S, (v,u)∈E(q0s,v(t)q

0
s,u(t)+q1s,v(t)q

1
s,u(t)) < ε

c ·d·|S|·α2 for some constant c.

Let (S0, S1) be a partition of S, where S0 = {v : q0s,v(t) ≥ q1s,v(t)} and S1 =
{v : q1s,v(t) > q0s,v(t)}. Then the number of violating edges in G with respect to
(S0, S1) is at most ε

c · d · |S|.
Proof. Consider a vertex v and let v ∈ Sb for b ∈ {0, 1}. By definition of the

partition (S0, S1), q
b
s,v(t) ≥ 1

2qs,v(t) ≥ α
2 .

Assume, contrary to what is claimed in the lemma, that the number of violating
edges with respect to (S0, S1) is more than ε

c · d · |S|. Then∑
v,u∈S, (v,u)∈E

(q0s,v(t)q
0
s,u(t) + q1s,v(t)q

1
s,u(t))

≥
∑

v,u∈S, (v,u)∈E, u,v∈S0

(q0s,v(t)q
0
s,u(t)) +

∑
v,u∈S, (v,u)∈E, u,v∈S1

(q1s,v(t)q
1
s,u(t))(3)

≥
∑

v,u∈S, (v,u)∈E, u,v∈S0

α2

4
+

∑
v,u∈S, (v,u)∈E, u,v∈S1

α2

4
(4)
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≥ α2

4
· ε
c
· d · |S|.(5)

But this contradicts the second hypothesis of the lemma.

3.5. Sufficient conditions for detecting odd cycles. In the next lemma we
describe sufficient conditions for “detecting” odd cycles when performing walks in
M�2

�1
(H) starting from some vertex s. What the lemma essentially requires is that

there exists a subset S of vertices such that there are both lower and upper bounds
on the probability that each vertex in S is reached from s (in t < �1 steps), and there
are many vertices v in S such that both q0s,v(t) and q1s,v(t) are large (with respect to
the lower bound). As stated later in Corollary 4, these conditions are sufficient for
detecting odd cycles when performing random walks in G of length �1 · �2.

Lemma 4. Let H be a subgraph of G, s a vertex in H, S a subset of vertices
in H, and �1 and �2 integers. Assume that for some α > 0 and F = Θ( 1

ε ) and t < �1,

the following hold in M�2
�1

(H):

1. For every v ∈ S, α ≤ qs,v(t) ≤ F · α;
2.

∑
v,u∈S, (v,u)∈E(q0s,v(t)q

0
s,u(t)+q1s,v(t)q

1
s,u(t)) ≥ ε

c ·d·|S|·α2 for some constant c.

Suppose we perform O
(

F 5

ε·α√d
√
|S|
)
random walks of length t starting from s in M�2

�1
(H).

Let A0 (A1) be the set of vertices that appear at the end of the walks whose corre-
sponding paths have even (odd) length, and let G0 (G1) be the subgraph induced by
A0 (A1). Then with probability at least 0.99 (taken over the random walks), either
G0 contains an edge or G1 contains an edge (i.e., the algorithm detects an odd cycle).

We note that when we apply Lemma 4, we set α = poly(ε/(log n))/
√|S| · |H|

and F = O(1/ε) so that the number of random walks that should be performed is
O(

√
n/d · poly((logn)/ε)).

Proof. Let γ
def
=

∑
v,u∈S, (v,u)∈E(q0s,v(t)q

0
s,u(t)+q1s,v(t)q

1
s,u(t)) so that by the second

hypothesis of the lemma γ ≥ ε
c · d · |S| · α2. Consider m = O

(
F 5

ε·α·√d
√
|S|
)

random

walks of length t starting from s. For 1 ≤ i �= j ≤ m, let ηi,j be a 0/1 random variable
that is 1 if and only if both the ith and the jth walk have path length with the same
parity and if the endpoints of the paths are the vertices u, v ∈ S such that (u, v) ∈ E.

Thus, we would like to bound the probability that
∑

i<j ηi,j = 0. The difficulty
is that the ηi,j ’s are not pairwise independent. Yet, since the sum of the covariances
of the dependent ηi,j ’s is quite small, Chebyshev’s inequality is still very useful (cf.
[5, sec. 4.3]). Details follow. For every i �= j,

Exp[ηi,j ] =
∑

v,u∈S, (v,u)∈E

(q0s,v(t)q
0
s,u(t) + q1s,v(t)q

1
s,u(t)) = γ.

By Chebyshev’s inequality,

Pr

⎡⎣∑
i<j

ηi,j = 0

⎤⎦ ≤ Var
[∑

i<j ηi,j

]
(
Exp

[∑
i<j ηi,j

])2 <
Var

[∑
i<j ηi,j

]
((

m
2

) · γ)2 .(6)

We now bound Var[
∑

i<j ηi,j ]. Since the ηi,j ’s are not pairwise independent, some
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care is needed: Let η̄i,j
def
= ηi,j − Exp[ηi,j ].

Var

⎡⎣∑
i<j

ηi,j

⎤⎦ = Exp

⎡⎢⎣
⎛⎝∑

i<j

η̄i,j

⎞⎠2
⎤⎥⎦

=
∑
i<j

∑
k<�

Exp [η̄i,j · η̄k,�]

=
∑
i<j

Exp
[
η̄2
i,j

]
+ 4

∑
i<j<k

Exp [η̄i,j · η̄j,k] + 0

=

(
m

2

)
· Exp[η̄2

1,2] + 4 ·
(
m

3

)
· Exp [η̄1,2 · η̄2,3] .(7)

The factor of 4 in the third equality is the number of possibilities that among the four
elements i, j, k, � (where i < j and k < �) exactly two are equal (namely, i = k < j < �,
i < j = k < �, i < k < j = �, and k < i = � < j). The 0 term is due to the fact that
when i, j, k, l are all distinct,

Exp [η̄i,j · η̄k,�] = Exp [ηi,j · ηk,�]− γ2

=
∑

i,j,k,�∈S, (i,j),(k,�)∈E

q0s,i(t)q
0
s,j(t)q

0
s,k(t)q

0
s,�(t)

+
∑

i,j,k,�∈S, (i,j),(k,�)∈E

q0s,i(t)q
0
s,j(t)q

1
s,k(t)q

1
s,�(t)

+
∑

i,j,k,�∈S, (i,j),(k,�)∈E

q1s,i(t)q
1
s,j(t)q

0
s,k(t)q

0
s,�(t)

+
∑

i,j,k,�∈S, (i,j),(k,�)∈E

q1s,i(t)q
1
s,j(t)q

1
s,k(t)q

1
s,�(t)− γ2

=

⎛⎝ ∑
(i,j)∈E(S)

q0s,i(t)q
0
s,j(t) + q1s,i(t)q

1
s,j(t)

⎞⎠2

− γ2 = γ2 − γ2 = 0.(8)

We next bound each of the two terms in (7).

Exp[η̄2
1,2] ≤ Exp[η2

1,2] = Exp[η1,2] = γ.(9)

Let vi be a random variable that represents the vertex at which the ith walk ends.

Exp[η̄1,2 · η̄2,3] ≤ Exp[η1,2 · η2,3]
≤

∑
v1,v2,v3∈S, (v1,v2),(v3,v2)∈E

q0s,v1
(t)q0s,v2

(t)q0s,v3
(t) + q1s,v1

(t)q1s,v2
(t)q1s,v3

(t)

≤ (number of pairs of edges in S with a common vertex in S)

· 2(max
v
{qs,v(t)})3

≤ 2 ·min(|S|2d, |S|d2) · F 3 · α3.(10)

Since by the lemma’s second hypothesis γ ≥ ε
c ·d · |S| ·α2, we can replace α in (10)

with
√

c·γ
ε·d·|S| and get

Exp[η̄1,2 · η̄2,3] ≤ 2 ·min(|S|2d, |S|d2) · F 3 ·
(

cγ

εd|S|
) 3

2

.(11)
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Combining (6)–(11), we get

Pr

⎡⎣∑
i<j

ηi,j = 0

⎤⎦ = O

(
m2 · γ +m3 ·min(|S|2d, |S|d2) · F 3 · ( γ

εd|S| )
3
2

m4 · γ2

)

= O

⎛⎜⎜⎝ 1

γ ·m2
+

F 3 min

(√
|S|
d ,

√
d
|S|

)
m · ε 3

2 · √γ

⎞⎟⎟⎠
= O

(
ε

F 10
+

1

F 2 · ε
)

= O(ε).(12)

As observed above, by the lemma’s hypothesis concerning γ, it holds that α =

O(
√
γ/(εd|S|)). Since m = Ω

(
F 5

ε·α·√d
√
|S|
)
, we have that m = Ω

(
F 5

√
1
ε·γ
)
, and the

lemma follows.
Based on the construction of M�2

�1
(H) we can map walks of length �1 · �2 in G to

walks of length �1 in M�2
�1

(H) and obtain the following corollary to Lemma 4.
Corollary 4. Let H be a subgraph of G, and let S, s, �1, �2, t, α, and F be

as in Lemma 4. Suppose we perform Θ
(

F 5

ε·α·√d
√
|S|
)

random walks of length �1 · �2
starting from s in G. Let A0 (A1) be the set of vertices that appear at the end of
the walks whose corresponding paths have even (odd) length, and let G0 (G1) be the
subgraph induced by A0 (A1). Then with probability at least 0.99, either G0 contains
an edge or G1 contains an edge (i.e., the algorithm detects an odd cycle).

The proof of the corollary is similar to that of an analogous corollary that appears
in [13].

3.6. Proof of Theorem 1. Recall that we need to show that if the test ac-
cepts G with probability greater than 1

3 , then G is ε-close to being bipartite.
We say that a vertex s in G is good (for defining a partition) if the following

holds. Suppose we take K random walks of length L in G starting from s. Then the
probability that we reach two vertices u and v such that (u, v) ∈ E and both u and v
appear at the ends of walks whose corresponding paths have lengths with the same
parity is at most 0.1. If a vertex is not good, then it is bad. Here K and L are set in
the algorithm.

Since the test rejects G with probability less than 2
3 , and T = Θ(1/ε), we know

that, for an appropriate constant in the Θ(·) notation above, the fraction of bad
vertices in G is at most ε

16 . We now show that in such a case we can find a partition
of the graph vertices that has at most εdn violating edges. We shall do so in steps,
where in each step we partition a new set of vertices, denoted S, until we are left with
at most ε

4n vertices. For each partitioned set S we show that (1) there are few (at
most ε

4d|S|) violating edges with respect to the partition of S; and (2) there are few
(at most ε

2d|S|) edges between S and the yet “unpartitioned” vertices R so that no
matter how the vertices in R are partitioned, the number of violating edges between
S and R is small.

At each step, let D be the set of vertices we have already partitioned, and let
H be the subgraph induced by V \ D. Initially, D = ∅, and H = G. Let �1 and �2
be as required by Lemma 2, and let the length L of the walks we perform on G be

�1 · �2. Since �1 = O
(( log(n/ε)

ε

)3)
, and �2 = O

(
�1
ε2

)
, we get that L = O

( log6(n/ε)
ε8

)
. Let

M
def
= M�2

�1
(H). While |H| ≥ ε

4n, we do the following. We select any vertex s in H
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that is both good and useful with respect to M (see Definition 3.1). By Lemma 1, at
least half of the vertices in H are useful. Since |H| ≥ ε

4n and the total number of bad
vertices is ε

16n <
ε
8n, there exist at least ε

16n vertices which are good and useful.

We next apply Lemma 2 to determine a set S and an integer t, �1/2 ≤ t ≤ �1,
with the properties stated in the lemma. In particular, the number of edges between

S and the rest of H is at most ε
2d|S|, and for every v ∈ S,

√
β

|S|·|H| ≤ qs,v(t) ≤
F ·

√
β

|S|·|H| , where F = O
(

1
ε

)
, and β = Ω

(
ε2

log(n/ε)

)
. We claim that it must be

the case that
∑

v,u∈V, (v,u)∈E(p0
v(t)p

0
u(t) + p1

v(t)p
1
u(t)) ≤ ε·β·d

|H| . This claim (which we

establish momentarily) implies that we can apply Lemma 3 (with α =
√

β
|S|·|H| ) to

show that S can be partitioned so that there are at most ε
4d|S| violating edges with

respect to this partition. The claim holds since otherwise we could apply Corollary 4
and reach a contradiction. Specifically, by letting the number of walks performed
from each starting vertex be

O

(
F 5

ε · α · √d ·√|S|
)

= O

( √|H|
ε6 · √d · √β

)
= O

(
log1/2(n/ε) ·√n/d

ε8

)
= K

(where F , α, and β are as set above), we would obtain a contradiction to our assump-
tion that s is good.

Thus, as long as |H| ≥ ε
4n, each set S contributed at most ε

4 · |S| · d + ε
2 · |S| · d

violating edges to the partition. Since these sets are disjoint, all these violating edges
sum up to 3ε

4 · d · n. The final H contributes at most ε
4 · n · d, and so G is ε-close to

being bipartite.

Verifying that indeed T = O(1/ε), K = Θ(
√
n/d · poly(logn/ε)), and L =

poly((logn)/ε)) and that the algorithm can be implemented using O(K · L +K2) =
O(n/d · poly(logn/ε)) queries, the theorem follows. (Recall that if d <

√
n, then we

obtain the bound of O(
√
n · poly(logn/ε)).)

4. The algorithm for the general case. In this section we build on the
testing algorithm presented in the previous section and describe a one-sided error
testing algorithm for bipartiteness that works with respect to the actual number of
edges m = m(G). Hence this algorithm is suitable for general graphs (for which
dmax may vary significantly from davg). The query complexity and running time of
the algorithm are of the same order of magnitude as for Test-Bipartite-Reg, that is,
O(min(

√
n, n2/m) · poly(logn/ε)). We note that once the graph becomes very dense,

that is, m = Ω(n2/ logc n) (where c is approximately 4), it is preferable to use the
adjacency-matrix model algorithm [12, 3] with distance parameter ε/(n2/m).

A high level description of the algorithm. The basic idea is to reduce the problem
of testing with respect to the actual number of edges m to the problem of testing
with respect to the upper bound mmax = dmax · n. Specifically, for any graph G
we show how to define a graph G′ over Θ(n) vertices that has the following useful
properties. First, the maximum degree in G′ is roughly the same as the average
degree, and furthermore, this degree is roughly the same as the average degree in G.
In particular, this implies that the two graphs have roughly the same number of edges.
Second, G′ approximately preserves the distance of G to bipartiteness. More precisely,
if G is bipartite, then so is G′, but if G is far from being bipartite with respect to
m(G), then G′ is far from being bipartite with respect to mmax = dmax(G

′)n′. Thus
G′ can be viewed as a kind of “regularized-degree version” of G.
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If we had direct access to G′, then by the above we would be done: by running
the algorithm Test-Bipartite-Reg on G′ we could decide whether G is bipartite or far
from being bipartite. However, we have access only to G. Nonetheless, given query
access to G we can efficiently “emulate” queries in G′. This would almost suffice for
running Test-Bipartite-Reg on G′. One more issue is the uniform selection of starting
vertices in G′, required by Test-Bipartite-Reg. As we shall see, selecting a vertex
uniformly from G′ is (roughly) equivalent to uniformly selecting an edge in G.

While we do not know how to efficiently select a vertex in G′ uniformly, we
describe a different selection procedure that suffices for our purposes. Specifically, the
selection procedure is such that for all but a small fraction of the n′ vertices in G′, the
probability of selecting a vertex v is Ω(1/n′). With slight abuse of terminology we shall
refer to this procedure as Sample-Vertices-Almost-Uniformly-in-G′.3 By Corollary 3,
this suffices for our purposes.

Multiple edges and the relation between m and n. The analysis of the algorithm
Test-Bipartite-Reg did not require any assumptions on the actual number of edges m
in the graph, and it did not preclude the existence of multiple edges. Here we consider
graphs that do not contain any multiple edges, and we assume that the number of
edges m in G is Ω(n). To justify the assumption on the number of edges, consider a
graph that consists of a clique over k = o(

√
n) vertices, where all remaining vertices

are isolated. This graph has m = Θ(k2) edges and is clearly far from being bipartite.
However, in order to distinguish it from a graph that consists of a complete bipartite
graph over 2k vertices (where all remaining vertices are isolated and clearly bipartite),
we need Ω(n/k) = ω(

√
N) queries. (Taking this to an extreme, if k = Θ(1), then we

will need Ω(n) queries.) We note that we could replace this assumption by introducing
to the complexity of the algorithm a dependence on n/m. This would, however, make
the analysis more cumbersome, without much benefit.

Another alternative assumption would be that the algorithm has the ability to
“ignore” isolated vertices (that is, vertices that have no incident edges and are hence
immaterial to the question of bipartiteness) and sample uniformly from the nonisolated
vertices. This would effectively imply that the algorithm is executed on a subgraph
induced by the n′ ≤ n nonisolated vertices, where within this subgraph, the number
of edges m′ = m is at least n′/2.

For simplicity we assume from this point on that m ≥ n.
We also note that we can actually deal with the case where there are multiple

edges, but they do not constitute more than a constant fraction of the total number
of edges.4 However, in order to deal with this case efficiently, we need to assume that
there is a concise way to represent the sets of labels of multiple edges that are incident
to each vertex. (In particular, this holds if the labels of multiple edges incident to
each vertex are consecutive.) For simplicity we assume there are no multiple edges.

The main theorem of this subsection follows.
Theorem 5. For every graph G having n vertices and m ≥ n edges, we can

define a graph G′ having n′ vertices and m′ edges for which the following hold:

3The reason we say that we abuse terminology is that the distribution on vertices in G′ induced
by this procedure may be very far from uniform according to any standard distance measure (e.g.,
statistical difference). However, it approximates the uniform distribution in the sense of assigning
relatively large weight to every sufficiently large subset.

4If the number of multiple edges is more than a constant fraction, then it is possible to obtain
a lower bound on the number of queries that depends on the ratio between the number of multiple
edges and the total number of edges. Specifically, consider a graph that contains a small clique with
many multiple edges, which is far from bipartite but cannot be distinguished from a bipartite graph
that contains a small complete bipartite graph with many multiple edges.
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1. n ≤ n′ ≤ 4n, m ≤ m′ ≤ 8m, and dmax(G
′) ≤ 2davg(G).

2. If G is bipartite, then G′ is bipartite, and if G is ε-far from being bipartite with
respect to m, then G′ is ε′-far being from bipartite with respect to mmax(G

′) =
dmax(G

′)n′ for ε′ = Θ(ε).
3. Given a starting vertex s in G′ it is possible to emulate random walks in
G′ starting from s by performing queries to G. The amortized cost of each
random-walk step is O(log2 n) (degree and neighbor) queries in G. By emu-
lating these random walks it is possible to execute a slight variant of Odd-
Cycle(s) in G′ which we denote Odd-Cycle′(s). This variant is such that
Pr[Odd-Cycle′(s) = found] ≥ Pr[Odd-Cycle(s) = found], where if Odd-
Cycle′(s) returns found, then we can obtain an odd cycle of length
poly(logn/ε) in the original graph G.

4. There exists a procedure Sample-Vertices-Almost-Uniformly-in-G′ that for
any given parameter 0 < δ ≤ 1 performs Õ(min(

√
n/δ, n2/m)) queries in G

and returns a vertex in G′ such that the following holds: For all but at most
δn′ of the vertices x in G′, the probability that x is selected by the procedure
is Ω(1/n′).

We note that for every graph G there is actually a family of graphs G′ with the
above properties (all defined over the same set of vertices). When we run algorithm
Test-Bipartite-Gen, we construct one such (arbitrary) graph G′ in the family as we
go along. One difficulty that arises is that when the algorithm asks a neighbor query
of the form “Who is the ith neighbor of v?”, it gets a vertex name u as an answer.
However, the algorithm lacks the information that v is (say) the jth neighbor of u.
This lack of knowledge makes the emulation of random walks and Odd-Cycle(s) in G′

more complicated. Due to that, item 3 of Theorem 5 is somewhat more involved.
As a corollary to Theorem 5 and Corollary 3 we obtain the following.
Corollary 6. Algorithm Test-Bipartite-Gen (see Figure 2) accepts every graph

G that is bipartite and rejects with probability at least 2/3 every graph G that is ε-far
from being bipartite (with respect to m(G)). Furthermore, whenever the algorithm
rejects a graph, it outputs a certificate to the nonbipartiteness of the graph G in the
form of an odd cycle of length poly(logn/ε). The query complexity and running time
of the algorithm are O

(
min(

√
n, n2/m) · poly(logn/ε)

)
.

Test-Bipartite-Gen(n, davg, ε)

• Repeat T = Θ(1
ε ) times:

1. Set ε′ = ε/144.
2. Select a vertex s in G′ by calling the procedure Sample-Vertices-Almost-

Uniformly-in-G′ with δ = ε′/c (where c is a sufficiently large constant).
3. Apply Odd-Cycle′(s).
4. If Odd-Cycle′(s) returns found, then output reject.

• In case no call to Odd-Cycle′ returned found, then output accept.

Fig. 2. Algorithm Test-Bipartite-Gen for testing bipartiteness with respect to the actual number
of edges m = m(G) in the graph G.

Note that davg, the average degree of the graph, is given as a parameter to the
algorithm. Since the algorithm does not actually need the exact value of davg, it
can instead estimate it. Specifically, Feige [11] shows how to obtain an estimate that
is within a factor of roughly 2 of the true value by performing at most O(

√
n/d0)

degree queries where d0 is an a priori lower bound on davg. Inspired by our procedure
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Sample-Edges-Almost-Uniformly-in-G, Goldreich and Ron [15] suggest an alternative
procedure that improves on the quality of the estimate. More importantly in our
context, they observe that both in the case of their procedure and in the case of
Feige’s procedure, it is possible to eliminate the need of the lower bound d0. That
is, given’s Feige’s algorithm, it is possible to obtain a constant factor estimate by
performing O(

√
n/davg) ≤ O(min(

√
n, n2/m)) queries (but without any knowledge

about davg).
We now turn to proving Theorem 5. We actually provide two proofs: one is

based on a deterministic construction of G′ and one on a probabilistic construction.
We start by presenting the deterministic construction.

4.1. Defining G′ and proving the first two items in Theorem 5. In all
that follows, let d = davg(G), and let d′ = dmax(G

′). We shall assume that d is a
sufficiently large constant. If davg(G) is not sufficiently large, then we still set d in
the construction below to be sufficiently large and run the algorithm with ε set to
ε/(d/davg(G)).

The idea. Recall that part of our goal is to have G′ be a “regularized” version
of G in the sense that in G′ all vertices have degree at most 2d (while in G there may
be vertices with degree much higher than the average degree d). To this end, every
vertex of G with degree higher than d is represented in G′ by a subset of vertices.
Each such subset is partitioned into two equal parts: an external subset (consisting of
external vertices) and an internal subset (consisting of internal vertices). The edges
between external vertices in G′ are determined by the edges of G. Namely, if (u, v) is
an edge in G, then in G′ there is an edge between one of the vertices in the external
subset of u to one of the vertices in the external subset of v. In addition, for every
vertex v (with degree greater than d) there is a bipartite subgraph between its internal
and external vertices. All vertices in the subgraph have degree d, and the subgraph
has good expansion properties.

The role of these subgraphs between external and internal vertices is to ensure
that if G is far from being bipartite, then so is G′. To gain some intuition observe that
for every partition (V1, V2) of G, there exists a corresponding partition (V ′

1 , V
′
2) of G′

that has the same number of violating edges. Specifically, for every vertex v ∈ V1

(v ∈ V2) we put in V ′
1 (V ′

2) all external vertices that correspond to v, and we put in
V ′

2 (V ′
1) all internal vertices that correspond to v. By this construction, there is a

one-to-one mapping between the edges in G that are violating with respect to (V1, V2)
and the edges in G′ that are violating with respect to (V ′

1 , V
′
2) (where all edges in

the subgraphs between external and internal vertices are nonviolating). Thus, if G
is far from being bipartite, so that all partitions (V1, V2) of G have many violating
edges, then this is also true of all partitions (V ′

1 , V
′
2) as defined above. However,

there are other partitions of G′ that may split the external vertices that correspond
to the same vertex in G into different parts and possibly have fewer violating edges.
What we show is that such splits must introduce violating edges in the subgraphs
between external and internal edges, where this is due to the expansion properties of
the subgraphs. Roughly speaking, if a partition “avoids violations” between external
vertices by splitting sets of external vertices, then it “pays” by introducing violations
between external and internal vertices.

4.1.1. The construction of G′. For each vertex v in G such that deg(v) ≤ d,
we have a single vertex in G′. For each vertex v in G such that deg(v) > d, the
graph G′ contains a subgraph, denoted H(v). It is a bipartite graph over two subsets
of vertices, one denoted X(v), the external part, and one denoted I(v), the internal
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part. Both parts consist of �deg(v)/d	 vertices. Every vertex in X(v) is assigned
up to d specific neighbors of v according to some fixed but arbitrary partition of the
neighbors of v. As we shall see below, this assignment determines the edges between
pairs of external vertices in G′ that correspond to different vertices in G. We refer to

the vertices in the two subsets by {Xi(v)}�deg(v)/d�
i=1 and {Ii(v)}�deg(v)/d�

i=1 , respectively.

The edges in H(v) are determined as follows. In case deg(v)/d < d then we have
�d2/deg(v)	

2 -multiple edges between every internal vertex and every external vertex in
H(v). It follows that the degree of every vertex within H(v) is


d2/deg(v)�
2

· �deg(v)/d	 ≤ d2

2 · deg(v)
· deg(v) + d

d
≤ d2

2 · deg(v)
· 2deg(v)

d
= d.

In case deg(v)/d ≥ d, denote s = �deg(v)/d	, and let H(v) be a bipartite expander
where each of its sides has s vertices (s ≥ d). Each vertex in H(v) has degree d. All
eigenvalues of the adjacency matrix of H but the largest one and the smallest one
(which are equal to d and −d, respectively) are at most d/4 in their absolute values.
Explicit constructions of such expanders can be found, e.g., in [18, 17]. Furthermore,
these constructions allow the determination of the ith neighbor of any given vertex in
constant time.

For the sake of the presentation, when deg(v) ≤ d so that v is represented by a sin-
gle vertex, we let H(v) be the subgraph that consists of this single vertex. This vertex
is considered an external vertex, denoted X1(v), and it is assigned all neighbors of v.

We have described how vertices of G are transformed into vertices of G′ (some
of which are connected by edges). It remains to describe the relevant transformation
to the edges of G. Consider an edge (u, v) ∈ E(G), where v is the ith neighbor of u
and u is the jth neighbor of v. Let Xk(u) and X�(v) be the external vertices that are
assigned the ith neighbor of u and the jth neighbor of v, respectively. Then, there is
an edge (Xk(u), X�(v)) in G′. It directly follows that every vertex in G′ has degree
at most 2d and that n′ = |V (G′)| ≤ ∑

v∈G 2�deg(v)/d	 ≤ 4n, and m′ = m(G′) ≤
4dn = 8m.

For an illustration of the construction of G′, see Figure 3.

u3 H(u4)

H(u3)

H(u2)

H(u1)
u1

u2u4

Fig. 3. An illustration for the construction of G′. On the left are four vertices in G and their
induced subgraph. On the right are the four corresponding subgraphs in G′ and the edges between
the external vertices in these subgraphs. (The external vertices are marked in bold, and there are
additional edges that do not appear in the figure between the external vertices in the figure and
external vertices of other subgraphs.)
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We have thus established the first item in Theorem 5, and we turn to the second
item. From the construction of G′ it is obvious that if G is bipartite, then so is G′.
It remains to prove the following lemma.

Lemma 5. If G is ε-far from being bipartite (with respect to m = (dn)/2), then
G′ is ε′-far from being bipartite with respect to d′n′ for ε′ = ε

144 .
In order to prove Lemma 5, we first prove the following proposition concerning

bipartite expander graphs. For any two (disjoint) subsets of vertices, A and B, we let
e(A,B) denote the number of edges with one endpoint in A and another in B.

Proposition 7. Let G = (A ∪ B,E) be a d-regular bipartite graph with sides
A and B of size s. Assume that all eigenvalues of the adjacency matrix of G, but
the largest one and the smallest one, are at most λ in their absolute values. Assume
further that λ ≤ d/4. Then for every two partitions A = A1 ∪ A2, B = B1 ∪ B2,
satisfying |A1| ≥ s/2,

e(A1, B1) + e(A2, B2) ≥ d|A2|
8

.

Proof. It is well known that the larger the “spectral gap” (i.e., the difference
between d and λ) is, the closer the edge distribution in G approaches that of a truly
random bipartite graph with sides of size s and edge probability d/s. Specifically, for
every A0 ⊆ A, B0 ⊆ B of sizes |A0| = a0, |B0| = b0,∣∣∣∣e(A0, B0)− da0b0

s

∣∣∣∣ ≤ λ√a0b0(13)

(see, e.g., Chapter 9 of [5]).
Let |A1| = a1, |A2| = a2 = s − a1, |B1| = b1, |B2| = b2 = s − b1. It is

given that a1 ≥ s/2. We may obviously assume that b1 ≥ a2/2, as otherwise at
least half of the edges incident to A2 have their other endpoint outside B1, implying
e(A2, B2) ≥ da2/2.

Applying the bound in (13) twice, we get

e(A1, B1) = d|B1| − e(A2, B1) ≥ db1 − da2b1
s
− λ

√
a2b1 =

da1b1
s
− λ

√
a2b1,(14)

e(A2, B2) = d|A2| − e(A2, B1) ≥ da2 − da2b1
s
− λ

√
a2b1 =

da2b2
s
− λ

√
a2b1.(15)

Consider first the case b2 ≤ s/2. In this case it follows from (14) that

e(A1, B1) ≥ da1b1
s
− λ

√
a2b1 ≥ d(s/2)(s/2)

s
− λ

√
(s/2)s

=
ds

4
− λs√

2
≥ ds

14
≥ da2

7
.

We thus assume that b2 > s/2. If da2b2/s ≥ 2λ
√
a2b1, we obtain from (15) that

e(A2, B2) ≥ da2b2
2s

≥ da2(s/2)

2s
=
da2

4
.

Hence we may assume that da2b2/s ≤ 2λ
√
a2b1. If da1b1/s ≥ 2λ

√
a2b1, then it follows

from (14) that

e(A1, B1) ≥ da1b1
2s

≥ d(s/2)(a2/2)

2s
=
da2

8
,

as required. Hence we may assume that da1b1/s ≤ 2λ
√
a2b1. It remains to check

that the latter assumption together with da2b2/s ≤ 2λ
√
a2b1 brings us to a contra-

diction. Indeed, multiplying these inequalities, we get d2a1a2b1b2/s
2 ≤ 4λ2a2b1 or
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d2a1b2 ≤ 4λ2s2. Recalling that a1 ≥ s/2, b2 > s/2, it follows that d < 4λ, which is a
contradiction to our assumption on λ.

Proof of Lemma 5. We shall show that the number of edges that should be
removed from G′ so as to make it bipartite is at most a constant factor smaller than
the number of edges that should be removed from G so as to make G bipartite. Since
the total numbers of edges in G and in G′ are of the same order, this suffices to prove
the lemma. To this end we prove the contrapositive statement. Specifically, suppose
G′ is ε′-close to being bipartite with respect to mmax = d′n′. Namely, there exists a
partition P ′ = (V ′

0 , V
′
1) of the vertices in G′ with respect to which there are at most

ε′ ·d′n′ violating edges in G′. We shall show how to construct, based on P ′, a partition
P = (V0, V1) of the vertices in G with respect to which there are at most εdn/2 = εm
violating edges in G, thus proving the lemma.

Consider a particular vertex v in G and the subset of external vertices X(v) in G′

that correspond to v. Let X0(v) = X(v)∩V ′
0 , and let X1(v) = X(v)∩V ′

1 . We refer to
the larger subset as the majority subset of v and to the smaller subset as the minority
subset of v. We define P = (V0, V1) by assigning each vertex v in G according to its
majority subset. Namely, if |X0(v)| ≥ |X1(v)|, then v is assigned to V0; otherwise, it
is assigned to V1. In what follows it will be convenient to refer to 0 and 1 as colors.

Also, when we refer to edges in G′ as violating edges, we mean with respect to P ′,
and when we refer to edges in G as violating edges, we mean with respect to P . Note
that the partition P is defined only according to the coloring of the external vertices
in G′, ignoring the coloring of the internal vertices. Also recall that there is a one-to-
one mapping between edges in G and edges in G′ whose endpoints are both external
vertices.

Since each vertex v in G is assigned the color of its majority subset, the violating
edges in G′ between pairs of vertices that both belong to majority subsets, or between
pairs of vertices that both belong to minority subsets, become violating edges in G.
Similarly, nonviolating edges in G′ between vertices in majority subsets, or between
vertices in minority subsets, become nonviolating edges in G. It remains to deal with
edges between minority and majority subsets in G′. These edges can be nonviolating
in G′ but may become violating in G.

We next show that the total number of vertices in G′ that belong to minority
subsets can be bounded as a function of the number of violating edges in G′. To this
end we show that if there were many minority vertices, then there would be many
violating edges in G′ between internal and external vertices.

For each vertex v in G, consider the majority and minority subsets of (the external
vertices of) v. Let the majority subset of X(v) be Xα(v), and let the minority subset
be Xβ(v) (where α, β ∈ {0, 1}).

Claim 1. For every vertex v in G, the number of violating edges in G′ between
vertices in X(v) and vertices in I(v) is at least

∣∣Xβ(v)
∣∣ · (d/8).

Proof. Similarly to our notation for external vertices, for the internal vertices of v

let I0(v)
def
= I(v) ∩ V ′

0 and I1(v)
def
= I(v) ∩ V ′

1 . Consider first the case deg(v)
d < d. By

construction of G′, |X(v)| = |I(v)| = �deg(v)/d	, and there are �d2/deg(v)	
2 multiple

edges between every pair of vertices (x, y) such that x ∈ X(v) and y ∈ I(v). Hence
the number of edges between X(v) and I(v) that are violating (with respect to P ′) is(|Xα(v)||Iα(v)|+ |Xβ(v)||Iβ(v)|) · 
d2/deg(v)�

2

≥ (|Xβ(v)||Iα(v)|+ |Xβ(v)||Iβ(v)|) · d2

4deg(v)
= |Xβ(v)| · d

4
.
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Next consider the more interesting case where deg(v)
d ≥ d. In this case Claim 1

directly follows from Proposition 7.

Thus we can conclude that if there are w external vertices that belong to minority
subsets, then they contribute at least w · d/8 violating edges in G′. Since the number
of violating edges in G′ is at most ε′n′d′ ≤ 8ε′nd, we have that w ≤ 64ε′n. As noted
previously, the total number of violating edges in G is upper bounded by the number
of violating edges in G′ plus the number of edges between minority and majority
(external) subsets. By the above discussion and the fact that every external vertex
has at most d neighbors that are external vertices, the number of violating edges in G
is at most 8ε′nd + 64ε′nd = 72ε′nd. Since ε′ = ε/144 and m = (nd)/2, the lemma
follows.

We have completed proving the first two items of Theorem 5, and we now turn
to the third item.

4.2. Establishing item 3 in Theorem 5. Here we stress that if the neighbor
and the vertex-pair queries would have returned more information, then the proof of
the current item would be significantly simpler. In particular, suppose that a neighbor
query (u, i) is answered with a pair (v, j) (instead of only v), which means that v is the
ith neighbor of u and u is the jth neighbor of v. Suppose also that when performing
a vertex-pair query (u, v), the algorithm is not only told whether (u, v) is an edge or
not, but rather, in the former case, it is also provided with pair (i, j), which means
that v is the ith neighbor of u and u is the jth neighbor of v. With this additional
information, the structure of G′ is implicitly given, and thus the emulation of random
walks in the execution of the procedure Odd-Cycle on G′ is straightforward. Here we
need to work harder to overcome the lack of information.

Random-walk steps. We first briefly discuss the emulation of random walks. If
the walk stays at the current vertex, then clearly there is no need for any emulation.
Hence, we need only to consider the case in which we have to select a random neigh-
bor. Recall that vertices in G′ are either of the form Xi(v) (the ith external vertex
corresponding to vertex v in G) or of the form Ii(v) (the ith internal vertex), where
1 ≤ i ≤ �deg(v)/d	. Recall that we can obtain deg(v) for any v by a single degree
query and, in particular, use this to find the degree of vertices in G′. For simplicity
of presentation, we assume from this point on that for every vertex v in G, the degree
of every vertex Ii(v) in G′ is d (instead of being at most d), and the degree of every
Xi(v) is 2d (instead of being at most 2d).

Performing a random-walk step in G′ from an internal vertex Ii(v) can be easily
done by using the explicit structure of the graph H(v) (which is either a complete
bipartite graph with multiple edges or an explicitly constructible expander). In order
to perform a random-walk step from an external vertex, Xi(v), we first determine
whether to take one of the d edges within the graph H(v) or whether to take one of
the d edges going from Xi(v) to another external vertex. In the first case we then
select an internal neighbor given the explicit structure of H(v). It remains to deal
with selecting an external neighbor. Note that in the special, but easy, case in which
deg(v) ≤ d and so H(v) is a single vertex, there is only the latter option.

As noted just following the statement of Theorem 5, we actually construct G′ as
we go along. The important thing to note is that the definition of G′ allows us to
assign the vertices in X(v) edges of v in an arbitrary manner (as long as each Xi(v)
is assigned (at most d) different edges). Hence, all we need to take care of is to be
consistent with previous choices and to ensure the correct distribution in the choice
of the random-walk step. To this end we may think of each external vertex as having
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d “ports,” labeled 1, . . . , d, which are initially unassigned. As the algorithm proceeds,
it puts a “link” between, say, the tth port of Xi(v) and the �th port of Xj(u) (where
(v, u) ∈ E(G)). When performing a random-walk step from Xi(v) (to a vertex outside
of H(v)), we uniformly select a port. Let us denote the index of the port selected
by t. If port t of Xi(v) is already linked to another port, then we simply take this link
to the port (and vertex) at the other end. Otherwise, we first set the link and then
take it. In order to set the link properly, we need to uniformly select a neighbor u
of v among the neighbors of v that were not yet assigned (to any port of one of the
external vertices of v). After doing so and selecting a neighbor u, we need to select a
yet unassigned port of one of the external vertices of u. The above can be done, with
the aid of sampling, at an amortized cost of O(log n) queries in G. Details follow.

For each external vertex Xi(v), the algorithm keeps a vector of length d, Γi(v).
The kth entry of Γi(v) contains the kth neighbor of Xi(v), if it was determined, and
is empty otherwise. Denote by fi(v) the number of free entries in the vector Γi(v).
Also denote by A(v) the set of neighbors of v that were already assigned to external
vertices of v, and by NA(v) the vertices that were not assigned. When setting a link
to a yet-unassigned port (filling in a new entry in Γi(v)), we distinguish between two
cases.

Case 1. If less than half of the neighbors of v in G are in A(v), then the algorithm
repeats at most (log2 n) times the following procedure: It chooses uniformly at random
a neighbor of v in G. If that neighbor belongs to NA(v), then a desired neighbor is
found. By repeating the above procedure O(log2 n) times, the probability that the
algorithm did not find a desired neighbor is at most o(1/n). In this case we say that
the algorithm fails. Since the total number of queries that the algorithm performs is
at most o(n), the total failure probability of the algorithm is o(1). Suppose that a
desired neighbor of v with the name u is found. In that case the algorithm should
move to one of the external vertices of u. The selected vertex Xk(u) is chosen with

probability fk(u)∑
1≤j≤�deg(u)/d� fj(u) . According to the chosen Xj(u), the algorithm sets

Γi(v)[t]← Xj(u). In addition, the algorithm chooses uniformly at random one of the
fj(u) free entries in the vector Γj(u). Assume that the chosen index is t′, 1 ≤ t′ ≤ d;
then the algorithm sets Γj(u)[t

′]← Xi(v).

Case 2. If more than half of the neighbors of v inG are in A(v), then the algorithm
reads all the neighbors of v in G that belong to NA(v) and attaches them arbitrarily
to the unoccupied entries in Γj(v), 1 ≤ j ≤ �deg(v)/d	. By doing this, the algorithm
(at most) doubles the number of neighbor queries performed on vertex v of G. Now,
suppose that in Γi(v)[t] there is a name of a vertex of G, say, u. In that case, the
algorithm should move to one of the external vertices Xk(u), 1 ≤ k ≤ �deg(u)/d	,
and this is done as in the first case.

Modifying the procedure Odd-Cycle. The procedure Odd-Cycle′ is the same as
Odd-Cycle in terms of the performance of random walks, which are emulated as
described above. The only modification is in the last stage, where the procedure
performs vertex-pair queries. Let (x, y) be the pair of vertices queried in G′. We
answer the query as follows. If (x, y) = (Xi(v), Ij(v)) for some vertex v in G, then
we answer according to the explicit construction of the subgraph H(v). If (x, y) =
(Xi(v), Ij(u)) for u �= v, then the answer is always negative. If (x, y) = (Xi(u), Xj(v)),
then we query the pair (u, v) in G. If there is no edge between (u, v) in G, we
answer that there is no edge between Xi(u) and Xj(v). Otherwise, we give a positive
answer. While this answer may be inconsistent with the construction of G′ (since it
would correspond to having a complete bipartite subgraph in G′ between the external
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vertices of u and the external vertices of v), it always provides evidence to an odd
cycle in the input graph G. An explanation follows.

Consider two paths in G′, where both paths start at the same vertex x ∈ H(s)
and end at a pair of external vertices Xi(v) and Xj(u), respectively, and whose lengths
have the same parity (so thatXi(v) andXj(u) both belong to the same Ab, b ∈ {0, 1}).
By construction of G′, such a pair of paths in G′ corresponds to a pair of paths in G,
which start at s, end at v and u, respectively, and have the same parity b as well. But
if there is an edge in G between v and u, then there is an odd cycle in G.

4.3. Establishing item 4 in Theorem 5. In this subsection we prove the last
item in Theorem 5. Recall that we are interested in a procedure for selecting a vertex
in G′ so that there is a sufficiently high probability of hitting any fixed sufficiently
large subset of vertices in G′. In particular, if G′ is far from being bipartite, then we
are interested in hitting the subset of vertices s for which Odd-Cycle(s) returns found
with probability at least 2/3.

Let V�(G) = {v ∈ V (G) : deg(v) ≤ d}, and let Vh(G) = {v ∈ V (G) : deg(v) > d},
where “�” stands for low, “h” stands for high, and, as before, d = davg(G) denotes
the average degree of vertices in G. We also define the corresponding sets in G′:
V�(G

′) = {x ∈ V (H(v)) : v ∈ V�(G)} and Vh(G′) = {x ∈ V (H(v)) : v ∈ Vh(G)}.
(Recall that H(v) is the subgraph in G′ that corresponds to v, and V (H(v)) is its set
of vertices.) Since V (G′) = V�(G

′)∪Vh(G′), it follows that selecting a vertex uniformly
in V (G′) can be done by first deciding whether to pick a vertex from V�(G

′) or from
Vh(G′) with probability proportional to the size of each set (relative to n′ = |V (G′)|)
and then picking a vertex uniformly from the selected set.

Recall that for every v ∈ V�(G) we have |V (H(v))| = 1 while for every v ∈ Vh(G),
|V (H(v))| = 2�deg(v)/d	. Therefore, picking a vertex uniformly in V�(G

′) corresponds
to picking a vertex uniformly in V�(G), while picking a vertex uniformly in Vh(G′)
corresponds to picking a vertex in Vh(G) with probability proportional to its degree.

Since we are not required to actually select every vertex in V (G′) with exactly
equal probability, but rather we are required to be able to select all but δn′ of the
vertices in V (G′) with probability at least Ω(1/n′), we may perform the above steps
in an approximate manner. In particular, by taking a sample of Θ(1/δ2) vertices
in G and querying their degrees, we may obtain an estimate, denoted µ̂(G′), of
|V�(G′)|/n′ = |V�(G)|/n′ such that if |V�(G′)|/n′ ≥ δ/2, then (1/8)|V�(G′)|/n′ ≤
µ̂(G′) ≤ 2(|V�(G′)|/n′) (recall that n ≤ n′ ≤ 4n). In order to uniformly select a
vertex in V�(G) (so as to obtain a uniformly selected vertex in V�(G

′)), we can simply
take a sample of vertices from V (G), query their degrees, and pick the first vertex
in the sample that belongs to V�(G) if such a vertex exists. If |V�(G′)|/n′ ≥ δ/2, so
that |V�(G)|/n ≥ δ/2, then a sample of size O(1/δ) suffices to ensure that with high
constant probability, the sample will indeed contain a vertex in V�(G).

The only step that is more involved is that of selecting a vertex in Vh(G) with
probability proportional to its degree. Observe that selecting a vertex from all of V (G)
with probability proportional to its degree can be performed by uniformly selecting
an edge in E(G) and then selecting one of its two endpoints with equal probability.
In the next subsection we describe and analyze a procedure that performs a certain
approximation to the uniform selection of an edge in E(G). In subsection 4.3.2 we
return to the problem of selecting a vertex in G′ almost uniformly.

4.3.1. Sampling edges almost uniformly in G. We consider two cases:
d >

√
δn and d ≤ √δn. Recall that our goal is to use Õ(min(

√
n/δ, n/d)) queries
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to G. The first case is easy since if G contains sufficiently many edges, then we simply
sample Θ(n/d) = Θ(n2/m) pairs of vertices in order to obtain an edge.

Sample-Edges-Uniformly-in-G

Repeat Θ(n/d) times:

• Select two vertices in G uniformly and at random.

• Check if there is an edge between these two vertices (by performing a single
vertex-pair query). If the answer is positive, then output this edge (and
exit the repeat loop).

Fig. 4. A procedure for sampling edges uniformly in G.

The straightforward procedure for this case is given in Figure 4. Clearly every
edge in G has equal probability of being selected by the procedure, and the query
complexity of this procedure is Θ(n/d), which for d >

√
δn is Θ(min(

√
n/δ, n/d)) as

required. (To be more precise, there is some probability that this procedure fails to
output an edge. However, the probability that this occurs can be made sufficiently
small so as to have a negligible effect on the success probability of our algorithm.)

In the second case, where G contains fewer edges (d ≤ √δn), we do not have
an algorithm that selects an edge uniformly from G (using relatively few queries).
However, we can show the following.

Lemma 6. There exists a procedure Sample-Edges-Almost-Uniformly-in-G that
uses Õ(

√
n/δ) degree and neighbor queries in G and for which the following holds:

For all but (δ/4)m of the edges e in G, the probability that the procedure outputs e
is at least 1/(64m). Furthermore, there exists a subset U0 ⊂ V (G), |U0| ≤ (δn/2),
such that for all edges e = (u, v) that are output with probability less than 1/(64m),
we have u, v ∈ U0.

Sample-Edges-Almost-Uniformly-in-G(δ)
1. Let t = 2

√
n/δ · logm. Uniformly select a subset of vertices S ⊂ V (G),

where |S| = t.
2. Partition the sampled vertices into subsets according to their degree: Si =
{v ∈ S : deg(v) ∈ (2i−1, 2i]}.

3. Choose an index i, 1 ≤ i ≤ logm, with probability |Si|2i∑
i |Si|2i .

4. Uniformly select a vertex v ∈ Si.
5. Uniformly select an edge incident to v.

Fig. 5. A procedure for selecting an edge in G so that all but at most a (δ/4)-fraction of the
edges are selected with probability Ω(1/m).

The procedure referred to in Lemma 6 is described in Figure 5. Before proving
Lemma 6 we provide some intuition concerning this procedure. We define the following
logm “buckets”: for 1 ≤ i ≤ logm,

Bi =
{
v ∈ V (G) : deg(v) ∈ (2i−1, 2i]

}
.(16)

Thus, in each bucket, all vertices have approximately the same degree. Suppose we
had a way to pick an index i with probability proportional to |Bi| · 2i, which is
approximately the same as picking i with probability proportional to the number of
edges incident to vertices in Bi. Further assume that for each i we could uniformly
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select a vertex in Bi. Then we could select an edge almost uniformly by selecting an
index i as described above, uniformly selecting a vertex v ∈ Bi, and then uniformly
selecting an edge incident to v.

The procedure Sample-Edges-Almost-Uniformly-in-G can be viewed as approxi-
mating this “ideal” procedure. Assume first that all buckets are relatively large (i.e.,
|Bi| = Ω(

√
n) for every 1 ≤ i ≤ logm). Then, by taking a uniformly selected sam-

ple of Θ̃(
√
n) vertices in G, we can obtain a good estimate of |Bi| (and by that, of

|Bi| · 2i), for every i, and we can uniformly select a vertex v ∈ Bi for any given i.
Unfortunately, if some buckets are small, then we might not sample from them at all.

To illustrate the seeming difficulty with such a case, suppose the graph is a star,
so that there is one vertex, denoted v∗ with degree n− 1, and all other vertices have
degree 1. In terms of our buckets we have |B0| = n− 1 so that |B0| · 20 = n− 1, and
|Blogn| = 1 so that |Blogn| ·2logn = n. The “ideal” procedure would select each of the
two buckets roughly with equal probability, and if it selects the bucket Blog n, then it
picks v∗. In other words, it picks v∗ with probability roughly 1/2. But if we take a
sample of Θ̃(

√
n) vertices, then the probability that v∗ falls in the sample is extremely

small. However, this turns out to be almost immaterial to the analysis since we are
interested in the end result of the distribution on edges. In the case of the star graph,
every edge incident to v∗ is also incident to one of the degree-1 vertices and hence
will be selected with equal probability.

In general, as we shall see in detail in the proof of Lemma 6, we can lower-bound
the probability of selecting each edge that has both endpoints in sufficiently large
buckets. On the other hand, we can upper-bound the total number of edges that have
both endpoints in small buckets. Details follow.

Proof of Lemma 6. Let the subsets (“buckets”) Bi be as defined in (16). Note that
in the procedure Sample-Edges-Almost-Uniformly-in-G (Figure 5), the subsamples Si

are simply Si = S ∩Bi. Next we define a set of indices I0 that includes indices of all
buckets Bi that have “few” elements. More precisely,

I0 =

{
i : 1 ≤ i ≤ logm and |Bi| ≤

√
δn

2 logm

}
.(17)

Let U0 be the set of vertices that belong to buckets with “few” elements: U0 =⋃
i∈I0

Bi.

Consider any fixed vertex v /∈ U0, and let i(v) be the index of the bucket that v
belongs to, that is, v ∈ Bi(v). We denote by Cv the event that v is selected in step 4
of the sampling algorithm. Then, for a vector (s1, . . . , slogm) we can estimate

Pr[Cv : |S1| = s1, . . . , |Slogm| = slogm] =
si(v)

|Bi(v)| ·
si(v)2

i(v)∑
i si2

i
· 1

si(v)
(18)

(first require that v falls in Si(v), then choose the bucket Si(v), and then choose v
inside Si(v)). Thus the above conditional probability is

si(v)

|Bi(v)| ·
2i(v)∑
i si2

i
≥ si(v)deg(v)

|Bi(v)|
∑

i si2
i
.(19)

The random variable si(v) is hypergeometrically distributed with parameters n, |Bi(v)|,
and t. It thus has mean t|Bi(v)|/n, and using known bounds on the tails of the
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hypergeometric distribution and our assumption on v (v /∈ U0 and therefore Bi(v) is
large), we can get

Pr

[
si(v)

|Bi(v)| ≥
t

2n

]
≥ 3

4
.

Consider the sum
∑t

i=1 si2
i. We have

Exp

[∑
i

|Si|2i
]

=
∑
i

|Bi|
n
· t · 2i

=
t

n
·
∑
i

|Bi|2i

≤ t

n
·
∑
i

∑
v∈Bi

(2deg(v)) ≤ 4 · t ·m
n

.

By Markov’s inequality, the probability that
∑

i |Si|2i > 16tm
n is less than 1/4. It thus

follows that

Pr

[(
si(v)

|Bi(v)| ≥
t

2n

)
&

(∑
i

si2
i ≤ 16tm

n

)]
≥ 1

2
.(20)

Consider only such vectors (s1, . . . , st). From (19) we obtain

Pr[Cv] ≥ 1

2
· t

2n
· deg(v)

16tm
n

=
deg(v)

64m
.(21)

Finally, for an edge e ∈ E(G), let us denote by Ce the event that e is se-
lected in the fourth step of the procedure Sample-Edges-Almost-Uniformly-in-G. Let
E(U0) denote the set of edges between pairs of vertices in U0, that is, E(U0) =
{(u, v) ∈ E(G) : u, v ∈ U0}. By definition of U0, |U0| ≤

√
δn/2, and hence |E(U0)| ≤

(δn)/4. Therefore, for all but at most (δn)/4 ≤ δm/4 of the edges in E(G), at least
one of their endpoints is not in U0. (Note that here we have used the assumption that
m ≥ n.) For each such edge (u, v) where u /∈ U0 (or v /∈ U0), we have

Pr[Ce] ≥ Pr[Cu] · 1

deg(u)
≥ deg(u)

64m
· 1

deg(u)
=

1

64m
.(22)

4.3.2. Sampling vertices in G′. We now return to selecting vertices in G′.
As discussed earlier, we can easily obtain an estimate of |V�(G′)|/n′ = |V�(G)|/n′,
denoted µ̂ = µ̂(G′), such that if |V�(G′)|/n′ ≥ δ/2, then (1/8)|V�(G′)|/n′ ≤ µ̂(G′) ≤
2(|V�(G′)|/n′), and hence we assume that we indeed have such an estimate.

Proof of item 4 in Theorem 5. We now show that the procedure Sample-Vertices-
Almost-Uniformly-in-G′ (see Figure 6) is as required in item 4 of Theorem 5. Consider
first the vertices in V�(G

′). If |V�(G′)|/n′ ≥ δ/2, then for each vertex x ∈ V�(G′), the
probability that we select x is µ̂(G′), times the probability that the sample contains a
vertex in V�(G

′), times 1/|V�(G′)|. Since γ̂ = Ω(|V�(G′)/n′) and the sample contains
a vertex from V�(G) with constant probability, the probability that we select x is
Ω(1/n′) as required. If |V�(G′)|/n′ < δ/2, then the probability that we obtain any
vertex in V�(G

′) may be very small, but we are allowed to have δn′ such vertices and
we shall account for these at most (δ/2)n′ vertices.



1468 TALI KAUFMAN, MICHAEL KRIVELEVICH, AND DANA RON

Sample-Vertices-Almost-Uniformly-in-G′(d, δ, µ̂)
1. Flip a coin with bias µ̂.
2. If the outcome is “heads,” then do (select a vertex in V�(G

′)):
(a) Uniformly select Θ(1/δ) vertices in G and query their degrees.
(b) If some vertex in the sample belongs to V�(G), then let v be the first

such vertex and output the single vertex x ∈ V (H(v)). Otherwise, pick
an arbitrary vertex v in the sample and output an arbitrary vertex
x ∈ V (H(v)).

3. Else (the outcome is “tails”), do (select a vertex in Vh(G′)):
(a) If d >

√
δn, then sample an edge e ∈ E(G) by running the procedure

Sample-Edges-Uniformly-in-G. In case the procedure fails, pick an
arbitrary edge e in E(G).

(b) Else (d ≤ √δn), sample an edge e ∈ E(G) by running the procedure
Sample-Edges-Almost-Uniformly-in-G(δ/2).

(c) Choose with equal probability one of the endpoints v of the edge e.
(d) Choose uniformly at random one of the vertices x in V (H(v)).

Fig. 6. A procedure for selecting a vertex in G′ so that all but at most a δ-fraction of the
vertices are selected with probability Ω(1/n′).

We now turn to the vertices in Vh(G′). For an edge e ∈ E(G), let Ce denote
the event that e is selected by Sample-Edges-Uniformly-in-G in case d >

√
δn, or

by Sample-Edges-Almost-Uniformly-in-G in case d ≤ √δn. For v ∈ V (G) let Cv

denote the event that v is selected in step 3(c) of procedure Sample-Vertices-Almost-
Uniformly-in-G′. For x ∈ V (G′) let Cx denote the event that x is selected in step 3(d)
of the procedure, and let v(x) be such that x ∈ H(v(x)). Recall that for every
v ∈ Vh(G), we have |V (H(v))| = 2�deg(v)/d	. Therefore, for every x ∈ Vh(G′),

Pr[Cx] ≥ Pr[Cv(x)] · 1

2�deg(v(x))/d	 =
∑

e=(u,v(x))

1

2
Pr[Ce] · 1

2�deg(v(x))/d	 .(23)

If d >
√
δn, then Pr[Ce] is only slightly smaller than 1/m (since there is a probability

that the procedure Sample-Edges-Uniformly-in-G fails to output an edge), implying
that Pr[Cx] = Ω(1/n′). If d ≤ √δn, then Pr[Ce] is determined by the procedure
Sample-Edges-Almost-Uniformly-in-G. Let U0 be as defined in Lemma 6, and consider
first the case where v(x) /∈ U0. Then for every edge e that is incident to v(x), we have
that Pr[Ce] ≥ 1/(64m) = 1/(32dn). By (23), for each such vertex x we have that

Pr[Cx] ≥ 1

2
deg(v(x)) · 1

32dn
· 1

2�deg(v(x))/d	 ≥
1

256n
≥ 1

256n′(24)

as required. Next consider the case that v(x) ∈ U0 but deg(v(x)) ≥ 2|U0|. In such a
case for at least half of the edges e incident to v(x) we have that Pr[Ce] ≥ 1/(32dn),
and we can deduce that Pr[Cx] ≥ 1

512n′ . It remains to show that the total number of
vertices x such that v(x) ∈ U0 and deg(v) ≤ 2|U0| is at most (δ/2)n′. Using the fact
that |U0| ≤

√
(δ/2)n/2 (recall that the procedure Sample-Edges-Almost-Uniformly-

in-G is called with its input parameter set to δ/2), and for every vertex v ∈ Vh(G),
|V (H(v))| = 2�deg(v)/d	 ≤ 2deg(v), we get∑

v∈U0: deg(v)≤2|U0|
|V (H(v))| ≤ 4|U0|2 ≤ (δ/2)n′.(25)
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The lemma follows.

4.4. A probabilistic construction of G′. In this subsection we describe an
alternative, probabilistic construction of a graph G′ that establishes Theorem 5. More
precisely, we describe such a construction that, under certain conditions on d and ε,
results, with very high probability, in a graph G′ as required in the theorem. Here too
the graph is constructed as the algorithm proceeds. In all that follows, let d = davg(G),
and let d′ = dmax(G

′). Let n (n′) be the number of vertices in G (G′), and m (m′)
be the number of edges in G (G′). The probabilistic construction is simpler, and
it is possible that it may be applicable to other problems as well. However, in this
construction we need that d = Ω(log n+ 1/ε).

4.4.1. The construction. As in the deterministic construction, every vertex
of G is transformed into �deg(v)/d	 vertices. Denote byX(v) the vertices in G′ related
to a vertex v ∈ V (G). The vertices in X(v) are denoted by Xi(v), 1 ≤ i ≤ �deg(v)/d	.
Thus, n′ = |V (G′)| ≤∑

v∈G�deg(v)
d 	 ≤ 2n. The edges of G′ are determined as follows:

an edge (u, v) ∈ E(G) chooses independently uniformly at random a vertex from X(v)
and a vertex from X(u). In G′ there will be an edge between these two randomly
chosen vertices. Clearly, m′ = |E(G′)| = |E(G)| = (nd)/2.

Lemma 7. For d = Ω(log n), the maximum degree d′ of G′ constructed above
is 2d with probability 1− o(1).

Proof. Let W i,j
v be an indicator random variable which is 1 if the jth induced

edge of v ∈ V (G) (1 ≤ j ≤ deg(v)) chooses vertex Xi(v) ∈ V (G′). Let W i
v

def
=∑

1≤j≤deg(v)W
i,j
v . W i

v is a sum of j independent indicator variables. Exp[W i
v] =

deg(v) · 1/(deg(v)/d) = d. Let Xi
v be an indicator variable which is 1 if W i

v >
2Exp[W i

v] = 2d and 0 otherwise.
Using standard bounds on tails of sums of bounded random variables (see, e.g., [5])

for a specific v ∈ V (G) and 1 ≤ i ≤ �deg(v)/d	, it follows that Pr[Xi
v = 1] < e−cd.

Using a union bound over all Xi
v’s, v ∈ V (G) and 1 ≤ i ≤ �deg(v)/d	, we get that

the probability that there exist a vertex v and an index i for which Xi
v = 1 is at most

n′ ·e−cd = o(1); thus with probability 1−o(1), the maximum degree of G′ constructed
above is 2d.

Lemma 8. For a graph G with d > 512/ε the following holds: If G is ε-far from
being bipartite (with respect to m = (dn)/2), then with probability 1−o(1), G′ is ε′-far
from being bipartite with respect to d′n′ for ε′ = ε

128 .
Proof. Consider a fixed partition P ′ = (V ′

0 , V
′
1) of the vertices in G′. The parti-

tion P ′ induces a partition of X(v) for every v. Let us denote by Xα(v) the majority
subset of X(v) induced by P ′. Consider a partition P = (V0, V1) of the vertices of G
induced by P ′ in the following way. For v ∈ V (G), if Xα(v) ⊂ V ′

0 , then v ∈ V0;
otherwise v ∈ V1. Since G is ε-far from being bipartite, at least one of the subsets
V0, V1 contains 1

4εnd edges. Without loss of generality, assume that |E(V0)| ≥ 1
4εnd.

Let H ′ be a subgraph of G′, defined as follows. The vertices of H ′ are⋃
v∈V0

Xα(v).

The edges of H ′ are the edges of G′, induced by V (H ′). Thus, V (H ′) ⊂ V ′
0 and

E(H ′) ⊂ E(V ′
0).

Claim 2. Pr[|E(H ′)| ≤ (ε/32)nd] < 2−c·n, where c > 1.
Once Claim 2 is proved, by taking a union bound over all possible partitions P ′

of the vertices of G′ we get that for every partition P ′ = (V ′
0 , V

′
1) of the vertices of G′,
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the number of violating edges in G′ is at least ε/32 · n · d with probability 1 − o(1).
Recall that n′ ≤ 2n and d′ ≤ 2d with probability 1− o(1). Thus, for every partition
of the vertices of G′, the number of violating edges is at least ε/128 · n′ · d′ with
probability 1− o(1), as required.

Proof of Claim 2. Consider an edge e = (u, v) ∈ E(G), and let φ(e) = (Xi(v), Xj(u))
be its corresponding edge in E(G′). For e ∈ E(V0), Pr[φ(e) ∈ E(H ′)] ≥ 1/2 · 1/2 =
1/4. Thus,

Exp[|E(H ′)|] ≥ 1/4|E(V0)|.
As |E(H ′)| is a sum of |E(V0)| independent Bernoulli random variables, each with
expectation at least 1/4, it follows from standard bounds on the tails of binomial
random variables (see, e.g., [5]) that

Pr[X|E(V0)| < (1/32)εnd] < e−εnd/512.

Thus, for d ≥ 512/ε we have

Pr[|E(H ′)| ≤ ε/32nd] < 2−cn

for c > 1, and the lemma is proved.
We have completed proving the first two items of Theorem 5, with regard to the

probabilistic construction.

4.4.2. Proving item 3 in Theorem 5. In order to prove this item we need to
explain how to emulate queries in G′ by performing queries in G.

Degree queries. Here we assume that in G′ the maximum degree is 2d. It was
proved before to be true with probability 1− o(1). Consider the following procedure
Assign-Edges(v), where v is a vertex of G: Find deg(v) by one query on G; for each
edge-index r ∈ {1, . . . ,deg(v)}, choose one of the vertices Xi(v) ∈ X(v) (1 ≤ i ≤
�deg(v)/d	) uniformly at random. Denote by Qi(v) a vector of 2d cells. This vector
contains the indices of edges that are assigned to Xi(v). Finally, choose an empty
cell t in the vector Qi(v), and set Qi(v)[t] := r. This procedure corresponds to the
random construction of G′.

Neighbor queries. For each vertex Xi(v), the algorithm keeps a vector (of length
2d), Wi(v) that contains an ordered list of all the vertices of G′ such that the al-
gorithm is committed to the existence of an edge between them and Xi(v). That
is, if Wi(v)[t] = Xj(u), it means that there is an edge (Xi(v), Xj(u)) in G′. In this
case Wj(u)[t

′] = Xi(v) for some t′, 1 ≤ t′ ≤ 2d. Note that the procedure Assign-
Edges(v) assigns each of the edges of v independently to one of the vertices Xi(v),
1 ≤ i ≤ �deg(v)/d	.

Suppose that the algorithm is located inXi(v) and it wishes to perform a neighbor
query. Choose uniformly at random a number k, 1 ≤ k ≤ 2d. Take an empty vector
Qi(v) of length 2d and copy into it the vector Wi(v). By that the algorithm keeps
its commitment about the edges which have already been exposed. Then, apply the
Assign-Edges(v) procedure only for edges of v that do not appear in one of the Wi(v),
1 ≤ i ≤ �deg(v)/d	 (i.e., to edges which were not exposed yet by the algorithm). If
Qi(v)[k] is empty, then the walk remains at Xi(v). If Qi(v)[k] contains a name of a
vertex in G′, the walk moves to that vertex; otherwise, Qi(v)[k] contains an index
of a neighbor of v in G. By performing a single neighbor query on G, the algorithm
determines the name of that neighbor (say) u in G. Then the walk needs to move
to one of the vertices Xj(u), 1 ≤ j ≤ deg(u)/d. It chooses one of the vertices Xj(u)
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uniformly at random. For the chosen j set Wi(v)[k] := Xj(u). Now choose a free cell
k′, 1 ≤ k′ ≤ 2d, in Wj(v), and set Wj(v)[k

′] := Xi(v). The walk is now at Xj(u).
Modifying the procedure Odd-Cycle. The procedure is modified in a similar manner

to that described for the deterministic construction. In particular, random walks
are emulated as described above. In the last stage, when vertex-pair queries are
performed, we do the following. In order to answer a vertex-pair query (Xi(v), Xj(u))
in G′, perform a vertex-pair query (u, v) in G. If there is no edge between (u, v) in G,
answer that there is no edge between Xi(u) and Xj(v). Otherwise, as explained for
the deterministic case, an odd cycle is detected in G.

4.4.3. Establishing item 4 in Theorem 5. In this subsection we prove the
last item in Theorem 5 (for the probabilistic construction). The proof is essentially
a simplified version of the proof for the deterministic case, but for the sake of com-
pleteness we include the details.

Recall that we are interested in a procedure for selecting a vertex in G′ such that
there is sufficiently high probability of hitting any fixed sufficiently large subset of
vertices in G′ (and, in particular, of hitting the subset of vertices s for which Odd-
Cycle(s) returns found with probability at least 2/3 (in the case G′ is far from being
bipartite)).

Sample-Vertices-Almost-Uniformly-in-G′(d, δ)
1. If d >

√
δn, then sample an edge e ∈ E(G) by running the procedure

Sample-Edges-Uniformly-in-G. In case the procedure fails, pick an arbitrary
edge e in E(G).

2. Else (d ≤ √δn), sample an edge e ∈ E(G) by running the procedure Sample-
Edges-Almost-Uniformly-in-G(δ/2).

3. Choose with equal probability one of the endpoints v of the edge e.
4. Choose uniformly at random one of the vertices x in X(v).

Fig. 7. A procedure for selecting a vertex in G′ so that all but at most a δ-fraction of the
vertices are selected with probability Ω(1/n′).

We now show that the procedure Sample-Vertices-Almost-Uniformly-in-G′ (see
Figure 7) is as required in item 4 of Theorem 5.

For an edge e ∈ E(G), let Ce denote the event that e is selected by Sample-
Edges-Uniformly-in-G in case d >

√
δn, or by Sample-Edges-Almost-Uniformly-in-G

in case d ≤ √δn. For v ∈ V (G) let Cv denote the event that v is selected in step 3
of procedure Sample-Vertices-Almost-Uniformly-in-G′. For x ∈ V (G′) let Cx denote
the event that x is selected in step 4 of the procedure, and let v(x) be such that
x ∈ X(x(v)). Recall that |X(v)| = �deg(v)/d	. Therefore, for every x ∈ V (G′),

Pr[Cx] ≥ Pr[Cv(x)] · 1

�deg(v(x))/d	 =
∑

e=(u,v(x))

1

2
Pr[Ce] · 1

�deg(v(x))/d	 .(26)

If d >
√
δn, then Pr[Ce] is only slightly smaller than 1/m (since there is a probability

that the procedure Sample-Edges-Uniformly-in-G fails to output an edge), implying
that Pr[Cx] = Ω(1/n′). If d ≤ √δn, then Pr[Ce] is determined by the procedure
Sample-Edges-Almost-Uniformly-in-G. Let U0 be as defined in Lemma 6, and consider
first the case where v(x) /∈ U0. Then for every edge e that is incident to v(x), we have
that Pr[Ce] ≥ 1/(64m) = 1/(32dn). By (26), for each such vertex x we have that
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Pr[Cx] ≥ 1

2
deg(v(x)) · 1

32dn
· 1

�deg(v(x))/d	 ≥
1

128n
≥ 1

128n′(27)

as required. Next consider the case that v(x) ∈ U0 but deg(v(x)) ≥ 2|U0|. In such a
case for at least half of the edges e incident to v(x) we have that Pr[Ce] ≥ 1/(32dn),
and we can deduce that Pr[Cx] ≥ 1

256n′ . It remains to show that the total number of
vertices x such that v(x) ∈ U0 and deg(v) ≤ 2|U0| is at most (δ/2)n′. Using the fact
that |U0| ≤

√
(δ/2)n/2 (recall that the procedure Sample-Edges-Almost-Uniformly-

in-G is called with its input parameter set to δ/2), and for every vertex v ∈ V (G),
|X(v)| = �deg(v)/d	 ≤ deg(v), we get∑

v∈U0: deg(v)≤2|U0|
|X(v)| ≤ 2|U0|2 ≤ (δ/2)n′.(28)

Thus, item 4 of Theorem 5 follows.

5. A lower bound. In this section we present a lower bound on the number
of queries necessary for testing bipartiteness. Similarly to the lower bound presented
in [14], this lower bound holds for testing algorithms that are allowed a two-sided error,
and the graphs used for the lower bound construction are regular graphs. However,
the lower bound of Ω(

√
n) (for constant ε) established in [14] holds for graphs having

constant degree (e.g., degree 3), and when the algorithm is allowed only neighbor
queries. Our lower bound is more general in that it allows the algorithm to perform
both neighbor queries and vertex-pair queries, and it is applicable to all degrees.
Indeed, the two families of graphs that we define below in our lower bound construction
can be viewed as generalizing the two families presented in [14]. However, since we
have to deal with any given degree d and not only with d = 3, and since we have to
deal with both types of queries, the analysis itself does not follow as a straightforward
generalization of the analysis in [14].

Theorem 8. Every algorithm for testing bipartiteness with distance parameter
ε ≤ 2−4 must perform Ω(min(

√
n, n2/m)) queries.

The high level structure of our proof is similar to other lower-bound proofs for
testing, which can be traced back to [22]. Specifically, we present two distributions
over graphs (which are defined in detail below): G(n, d) and G(n/2, n/2, d), where d is
the degree of the vertices in the graphs. (For simplicity we assume that n is even.) We
prove that graphs created randomly according to G(n, d) are ε-far from being bipartite
with high probability, while all graphs in the support of G(n/2, n/2, d) are bipartite.
We then show that a bipartite tester that asks o(min(

√
n, n2/m)) queries cannot

distinguish with sufficiently high probability whether a graph is created according
to the distribution G(n, d) or G(n/2, n/2, d). Note that by definition, in both cases
m = (nd)/2, and so n2/m = 2n/d.

The graph distribution G(n, d). A graph G in the support of the distribution
G(n, d) is composed of n vertices, and it is a d-regular graph. The edges of G are
determined according to the following random process. Consider a two-dimensional
table of size n× d, which we refer to as the matching table. Each cell in the matching
table is denoted by cu,i, where u denotes the row in which the cell is located (and
corresponds to a vertex in the graph) and i denotes the column in which the cell is
located (and corresponds to a label of an edge incident to v).

Consider a perfect matching over the cells of the table, randomly chosen over all
possible perfect matchings. This randomly chosen matching defines the edges of the
graph G. That is, if the cells cu,i and cv,j are matched, then this means that there is
an edge (u, v, i, j) in the graph.
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The graph distribution G(n/2, n/2, d). A graph G in the support of the distribu-
tion G(n/2, n/2, d) is a bipartite d-regular graph composed of n vertices, where each
side of the partition is of size n/2. The edges of G are determined according to the
following random process. First, we select a random partition of the graph vertices
{1, . . . , n} into two parts (sides), each of size n/2. Second, consider two tables, each
of size n/2× d, where each is attached to one of the partition sides. The rows in each
table refer to the vertices that belong to the relevant side of the partition. Let us
refer to the table attached to the first side of the partition as the even table and to
the table attached to the second side of the partition as the odd table.

A cell in these tables is denoted by cb,u,i, where b ∈ {1, 2} denotes the relevant
table, u denotes the row in which the cell is located, and i denotes the column in
which the cell is located.

Now, consider a perfect matching over the cells of the two tables, randomly chosen
over all possible perfect matchings that are restricted to matching cells from the odd
table with cells from the even table. This randomly chosen matching defines the edges
of the graph G. That is, if the cell c1,u,i is matched to the cell c2,v,j , this means that
there is an edge (u, v, i, j) in the graph (where u belongs to one side of the bipartite
graph and v to the other side).

By definition, all graphs in the support of G(n/2, n/2, d) are bipartite. We can
show that almost all graphs in the support of G(n, d) are far from being bipartite.

Lemma 9. With probability 1 − o(1), a graph chosen uniformly according to the
distribution G(n, d) is ε-far from being bipartite for every ε ≤ 1/16 and d ≥ 64.

Proof. We shall show that for every fixed partition (V0, V1) of V , the probability,
taken over the selection of a graph in G(n, d), that there are more than ε ·n ·d violating
edges with respect to (V0, V1), is very close to one. The lemma will then follow by a
union bound (over all partitions).

Let P = (V0, V1) be an arbitrary fixed partition of V . Without loss of generality,
let |V0| ≥ n/2. Consider the following process, denoted by CP , for choosing a random
d-regular graph having n vertices (i.e., a perfect matching over a matching table of
size n × d). Starting from b = 0, choose an arbitrary cell cu,i such that u ∈ Vb, and
match cu,i to a randomly chosen unmatched cell cv,j . If the number of unmatched
cells that belong to vertices in Vb is smaller than the number of unmatched cells that
belong to the other side of the partition, then switch sides (i.e., let b← 1− b). Finish
when all the cells are matched. Thus, the number of steps in this process is nd

2 − 1.
(In the last step there are two unmatched cells, which are matched together.) We
denote by GP the graph chosen according to process CP .

Claim 3. For every fixed partition P , the distribution on graphs induced by the
process CP is identical to G(n, d).

Proof. For each step t in the process CP , 1 ≤ t ≤ nd
2 − 1, let et be the edge

selected in that step. Let R0 be the set of all graphs in the support of G(n, d), and
denote by Rt ⊂ R0 the set of graphs in R0 that contain the edges e1, . . . , et. Using
this notation, at the start of process CP , before any edge is selected (any two cells
are matched), the process can potentially select any graph in R0. After performing
t steps, it is restricted to selecting graphs from Rt.

The probability that a particular graph G in the support of G(n, d) is selected is

Pr[GP = G] = Pr[G ∈ R1] · Pr[G ∈ R2|G ∈ R1] · · · · · Pr[G ∈ Rnd
2 −1|G ∈ Rnd

2 −2].

Consider any particular term Pr[G ∈ Rt|G ∈ Rt−1] in the above expression. Con-
ditioned on G belonging to Rt−1 (that is, the edges e1, . . . , et−1 selected by the
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process CP are all edges in G), we would like to know what the probability is that
G belongs to Rt as well. Let cu,i be the arbitrary unmatched cell selected by CP in
step t. Let v be the ith neighbor of u in G, where u is the jth neighbor of v. Since
G ∈ Rt−1, necessarily cv,j is an unmatched cell in the matching table. Hence, the
probability that G belongs to Rt (conditioned on it belonging to Rt−1) equals the
probability that cu,i is matched to cv,j , which is 1/(dn− 2(t− 1)− 1). Therefore,

Pr[GP = G] =
1

dn− 1
· 1

dn− 3
· · · · · 1

3
=

dn · (dn− 2) · · · · · 2
(dn)!

=
(2(dn/2)) · (2((dn/2)− 1)) · · · · · 2

(dn)!
=

2dn/2 · (dn/2)!

(dn)!
.(29)

It remains to show that the above expression equals 1/|R0|. But this is easy to verify.
By definition, |R0| is the total number of possible perfect matchings between the
dn cells in the matching table. Each such matching can be obtained by ordering all
the cells and letting the matching be defined by successive pairs. The number of such
orderings is (dn)!. However, different orderings may produce the same matching. In
particular, we need to take into account the overcounting due to orderings within
the pairs (i.e., the pairs (cv,i, cu,j) and (cu,j , cv,i) are the same) and the overcounting
due to orderings between the different pairs. In other words, we need to divide (dn)!
by 2dn/2 · (dn/2)!. We have thus obtained the inverse of the expression in (29), as
required.

We have thus completed proving the claim and may view a graph G selected
uniformly from G(n, d), as if it is created according to the process CP , for any fixed
partition P . It remains to show that with very high probability over the choice of
such a graph, it has more than ε · nd violating edges with respect to the partition P .

By definition, during the process CP , we always try to match a cell that belongs
to a side of the partition having more unmatched cells. Thus, at each step we create
a violating edge with probability at least 1

3 (except the last stage), independent of
the past events. It follows that the expected number of violating edges in the final
resulting graph G, with respect to a particular partition P , is µ ≥ (nd/2−1) · 13 > nd

8 .
Let YP denote the number of violating edges with respect to P . By applying the
Chernoff bound we have that for any constant 0 < α < 1,

Pr[YP < (1− α)µ] < exp(−(1/2)α2µ).

In particular, for α = 1− 8ε (recall that ε ≤ 1/16) we obtain

Pr[YP < εnd] ≤ Pr[YP < 8εµ]

< exp(−(1/2)(1− 8ε)2µ)

≤ exp(−(1− 8ε)2nd/16).

Since the total number of partitions is 2n, if we take a union bound over all
possible partitions, then we can deduce that the probability that G has less than
εnd violating edges with respect to any partition P is bounded from above by 2n ·
exp(−(1− 8ε)2nd/16). Taking ε ≤ 1/16 and d ≥ 64, we get that a graph constructed
according to a distribution G(n, d) is ε-far from being bipartite with probability 1−o(1)
as required.

Let ALG be an algorithm for testing bipartiteness using Q = Q(n) queries.
Namely, ALG is a (possibly probabilistic) mapping from query-answer histories



TESTING BIPARTITENESS IN GENERAL GRAPHS 1475

〈(q1, a1), ·, (qt, at)〉 to qt+1 for every t < Q, and to {accept,reject} for t = Q. Re-
call that a query qt can be of two types: a neighbor query and a vertex-pair query.
A neighbor query qt is a pair (ut, it), where ut ∈ V and it ∈ {1, . . . ,deg(ut)}. Here
the corresponding answer at is a pair (vt, jt), where vt ∈ V and jt ∈ {1, . . . ,deg(vt)}
such that vt is the itth neighbor of ut and ut is the jtth neighbor of vt. A vertex-pair
query qt is a pair (ut, vt), where ut, vt ∈ V , and the corresponding answer is of the
form at = (yt, it, jt). If there is an edge between ut and vt, then yt = 1, and it and jt
are the corresponding labels of the edge. If no such edge exists, then yt = 0, and it
and jt are set arbitrarily, say, to 1. In the former case we shall say that ALG has
detected an edge (by a vertex-pair query). In the latter case we shall say that (ut, vt)
is a nonedge (and that ALG has detected a nonedge).5 Note that the answers to the
queries of ALG contain additional indexing information that does not appear in our
model. We show that even by using the extra information, ALG cannot do better
than the stated lower bound.

We assume that the mapping determined by the algorithm is defined only on
histories that are consistent with some n-vertex graph. Any query-answer history of
length t can be used to define a knowledge graph Gt at time t. The vertex set of Gt

contains all vertices that appear in the history (either in queries or in answers). For
every neighbor query (ut′ , it′) answered by (vt′ , jt′) (t′ ≤ t), the graph Gt contains
the edge (ut′ , vt′ , it′ , jt′), and similarly for every vertex-pair query (vt′ , ut′) that is
answered by (1, it′ , jt′). In addition, for every vertex-pair query (vt′ , ut′) that is an-
swered by (0, 1, 1), the knowledge graph maintains the information that (vt′ , ut′) is a
nonedge. Thus Gt is a subgraph of the graph tested by ALG.

In what follows we describe two random processes, P 1 and P 2, which interact
with an arbitrary algorithm ALG. The process P 1 answers ALG’s queries while
constructing a random graph from G(n, d), and the process P 2 answers ALG’s queries
while constructing a random graph from G(n/2, n/2, d). We assume without loss
of generality that ALG does not ask queries whose answer can be derived from its
knowledge graph, since such queries give it no new information. (For example, ALG
does not ask a vertex-pair query about a pair of vertices which are already known to
be connected by an edge due to a neighbor query.)

For a fixed algorithm ALG that usesQ queries, and for b ∈ {1, 2}, letDb
ALG denote

the distribution on query-answer histories (of length Q) induced by the interaction of
ALG and P b. We show that for any given ALG that uses o(min(

√
n, n/d)) queries, the

statistical distance between D1
ALG and D2

ALG is o(1). Combining this with Lemma 9
(and the fact that m = (nd)/2), Theorem 8 follows.

Definition of P b, b ∈ 1, 2.
• Let R1 be the set of all graphs in the support of G(n, d), and let R2 be the

set of all graphs in the support of G(n/2, n/2, d).
For an edge ek = (u, v, i, j), denote by Rb

ek
⊂ Rb the subset of graphs in Rb

that contain ek. We may refer to Rb
ek

as Rb
(u,v,i,j).

For an edge-pair fk = (u, v), denote by Rb
fk
⊂ Rb the subset of graphs in Rb

that contain an edge between the vertices u, v. Denote by Rb
fk
⊂ Rb the

subset of graphs in Rb that do not contain an edge between the vertices u, v.
• The process P b answers queries as follows. Initialize Rb

0 = Rb (in general,
as is explained in more detail below, for any t ≥ 0, the set Rb

t consists of all
graphs in Rb that are consistent with the first t queries and answers).

5In case multiple edges are allowed, then the answer is of the form (yt, It, Jt), where It and Jt
are sets of labels.
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1. If the tth query is a vertex-pair query qt = (ut, vt), then the answer
at = (yt, it, jt) is selected as follows. Let yt = 1 with probability
|Rb

(ut,vt)
∩ Rb

t−1|/|Rb
t−1|, and let yt = 0 with probability 1 − |Rb

(ut,vt)
∩

Rb
t−1|/|Rb

t−1|. In the former case, for any pair i, j ∈ {1, . . . , d}, the prob-
ability that it = i and jt = j is |Rb

(ut,vt,i,j)
∩ Rb

t−1|/|Rb
t−1|, and we set

Rb
t = Rb

(ut,vt,i,j)
∩Rb

t−1. In the latter case, the values of it and jt can be

selected arbitrarily (say, to 1), and we set Rb
t = Rb

(vt,ut)
∩Rb

t−1.

2. If the tth query is a neighbor query qt = (ut, it), then for each v ∈ V , j ∈
{1, . . . , d}, answer at = (v, j) with probability |Rb

(ut,v,it,j)
∩Rb

t−1|/|Rb
t−1|,

and set Rb
t = Rb

(ut,vt,i,j)
∩Rb

t−1.

• After all queries are answered (that is, after Q queries), uniformly choose a
random graph G from Rb

Q. This is the graph constructed by P b, b ∈ 1, 2.

Lemma 10. For every algorithm ALG, the process P 1, when interacting with
ALG, uniformly generates graphs in G(n, d), and the process P 2, when interacting
with ALG, uniformly generates graphs in G(n/2, n/2, d).

Proof. Consider a specific graph G ∈ Rb
0. Recall that R1

0 = G(n, d), and R2
0 =

G(n/2, n/2, d).
The probability that G is generated by P b, b ∈ 1, 2, is

Pr[G ∈ Rb
1] · Pr[G ∈ Rb

2|G ∈ Rb
1] · · · · · Pr[G ∈ Rb

Q|G ∈ Rb
Q−1] ·

1

|Rb
Q|

=
|Rb

1|
|Rb

0|
· |R

b
2|

|Rb
1|
· · · · · |R

b
Q|

|Rb
Q−1|

· 1

|Rb
Q|

=
1

|Rb
0|
,

and the lemma follows.
We next want to upper-bound the probability that ALG, after performing o(n/d)

queries, gets a positive answer (that is, of the form (1, ∗, ∗)) when it performs a
new vertex-pair query and interacts with either one of the two processes. We first
introduce some more notation. For b ∈ {1, 2} and any set of edges B = {e1, . . . , e�},
let Rb

B
def
= Rb

e1 ∩ · · · ∩ Rb
e�

(where Rb
ej is as defined above in the description of the

processes {P b}b∈{1,2}). Similarly, for any set of edge-pairs D = {f1, . . . , fh}, let

Rb
D

def
= Rf1

∩ · · · ∩Rfh
. Finally, let Rb

B,D
= Rb

B ∩Rb
D

. That is, Rb
B,D

is the subset of

all graphs in Rb that are consistent with a particular set of edges and a particular set
of nonedges. In particular, if B and D correspond to the set of edges and nonedges,
respectively, that were observed by ALG in the course of its first t queries, then
Rb

B,D
= Rb

t .

Lemma 11. Let B = {e1, . . . , e�} be any set of edges, and let D = {f1, . . . , fh}
be any set of edge-pairs such that no edge-pair in D appears in B and such that
|B|, |D| = o(n/d). Then for each b ∈ {1, 2} and for every (u, v, i, j) /∈ B we have

|Rb
(u,v,i,j) ∩Rb

B,D
|

|Rb
B,D
| ≤ 4

dn
.

Proof. Consider first the process P 1 and recall that R1 is the set of graphs
in the support of G(n, d). For the sake of brevity we remove the superscript 1 for
the remaining discussion (until we turn to the process P 2). For each ek ∈ B, let
ek = (uk, vk, ik, jk). For any w ≤ � = |B|, the total number of possible perfect
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matchings in the matching table that match cuk,ik to cvk,jk for 1 ≤ k ≤ w (that is,
the number of matchings that are consistent with the edges e1, . . . , ew) is

(dn− 2w)!

2( dn
2 −w)(dn2 − w)!

.

The argument required for establishing this expression is a slight extension of the one
used in the proof of Lemma 9 (when determining the size of R0). It follows that for
any (u, v, i, j) such that neither cu,i nor cv,j is yet matched,

|R(u,v,i,j) ∩RB |
|RB | =

(dn−2(k+1))!

2( dn
2

−(k+1))( dn
2 −(k+1))!

(dn−2k)!

2( dn
2

−k)( dn
2 −k)!

=
1

dn− 2k − 1
.

For an edge-pair (u, v) we can thus deduce that

|R(u,v) ∩RB |
|RB | =

∣∣∣(⋃1≤i,j≤dR(u,v,i,j)

)
∩RB

∣∣∣
|RB |

≤
∑

1≤i,j≤d |R(u,v,i,j) ∩RB |
|RB |

≤ d2

dn− 2k − 1
= O

(
d

n

)
.(30)

Hence we obtain that

|RB,D|
|RB | =

∣∣∣RB ∩
(⋂

1≤w≤hRfw

)∣∣∣
|RB |

=

∣∣∣RB \
(⋃

1≤w≤hRfw

)∣∣∣
|RB |

≥ 1−
∑

1≤w≤h

|Rfw ∩RB |
|RB |

= 1− o
(n
d

)
·O

(
d

n

)
= 1− o(1),(31)

and so |RB |
|RB,D| = 1 + o(1).

Putting the above together, we get that for every (u, v, i, j) /∈ B
|R(u,v,i,j) ∩RB,D|

|RB,D|
=
|R(u,v,i,j) ∩RB |

|RB | · |R(u,v,i,j) ∩RB,D|
|R(u,v,i,j) ∩RB | ·

|RB |
|RB,D|

≤ 1

dn− 2k − 1
· 1 · (1 + o(1)) ≤ 4

dn
.(32)

We now turn to P b = P 2 and recall that R2 is the support of G(n/2, n/2, d).
Also recall that in order to construct a random graph from G(n/2, n/2, d) we do the
following: we partition the n vertices into two equal parts at random, and we use
two matching tables (one named the odd table and one the even table). We then
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randomly select a perfect matching between cells in the odd table and cells in the
even table. Here too we remove the superscript b = 2 for the sake of brevity.

Let w = o(n/d), and let Mw be the number of possibilities to partition n vertices
into two parts of equal size so that the endpoints of the edges e1, . . . , ew belong to
different sides of the partition. The total number of graphs in R = R2 that contain
the edges e1, . . . , ew ∈ B is Mw · (dn/2 − w)!. To verify this, consider any fixed
equal partition amongst the Mw possible ones (such that the endpoints of the edges
e1, . . . , ew belong to different sides of the partition). For each such partition, consider
the dn/2− w cells in the odd/even tables which are not part of the edges e1, . . . , ew.
A matching between them can be uniquely defined by an arbitrary order on the
unmatched cells in the odd table and a permutation on the unmatched cells in the
even table.

Note that by the definition of Mw we have that Mw+1

Mw
≤ 1. Therefore,

|R(u,v,i,j) ∩RB |
|RB | =

Mk+1 · (dn/2− (k + 1))!

Mk · (dn/2− k)! ≤ 1

dn/2− k .(33)

As in the case of P b = P 1 it follows that

|R(u,v) ∩RB |
|RB | ≤ d2

dn/2− k = O

(
d

n

)
,(34)

from which we can obtain that |RB |
|RB,D| = 1 + o(1).

By combining the above we get that

|R(u,v,i,j) ∩RB,D|
|RB,D|

=
|R(u,v,i,j) ∩RB |

|RB | · |R(u,v,i,j) ∩RB,D|
|R(u,v,i,j) ∩RB | ·

|RB |
|RB,D|

≤ 1

dn/2− k · 1 · (1 + o(1)) ≤ 4

dn
.(35)

The next two lemmas follow as corollaries of Lemma 11.
Lemma 12. Let ALG be an algorithm that interacts with a process P b, b ∈ 1, 2,

and performs o(n/d) queries. The probability that ALG detects an edge by a vertex-
pair query at any step is o(1).

Proof. Consider the interaction of ALG with P b. For each 1 ≤ t ≤ Q, Q = o(n/d),
let Bt−1 be the set of edges in the induced knowledge graph Gt−1, and let Dt−1 be
the set of edge-pairs that are nonedges in the graph. By definition of the process P b,
we know that Rb

t−1 = Rb
Bt−1,Dt−1

. Suppose that the tth query of ALG is a vertex-pair

query (ut, vt) (where, by our assumption, the pair (ut, vt) is neither an edge(-pair)
nor a nonedge in Gt−1, but other than that it may be any vertex-pair). Then by
Lemma 11 (and using the fact that Rb

t−1 = Rb
Bt−1,Dt−1

), for every i, j ∈ {1, . . . , d},
|Rb

(ut,vt,i,j)
∩Rb

t−1|/|Rb
t−1| ≤ 4/(dn). Therefore,∣∣∣Rb

(ut,vt)
∩Rb

t−1

∣∣∣
|Rb

t−1|
=

∣∣∣(⋃i,j∈{1,...,d}R
b
ut,vt,i,j

)
∩Rb

t−1

∣∣∣
|Rb

t−1|

≤
∑d

i,j=1

∣∣(Rb
ut,vt,i,j

∩Rb
t−1

)∣∣
|Rb

t−1|
≤ 4d

n
.(36)

It follows by the definition of P b that the answer at = (yt, it, jt) satisfies yt = 1 with
probability at most 4d/n. Note that the above is true for every step t, for every pair
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of sets Bt−1 and Dt−1, and for every vertex-pair (ut, vt) (that does not already appear
in Bt−1 or in Dt−1). Hence, the probability that yt = 1 in any one of the Q = o(n/d)
queries performed by the algorithm is o(1) as required.

Next we turn to neighbor queries and prove a similar claim.
Lemma 13. Let ALG be an algorithm that interacts with process P b, b ∈ 1, 2, and

performs o(
√
n) queries. Then the probability that ALG, while performing a neighbor

query qt = (ut, it) at any step t of the interaction, receives as an answer at = (vt, jt),
where vt is a vertex that belongs to the knowledge graph Gt−1, is o(1).

Proof. Let t = o(
√
n), and let qt = (ut, it) be a neighbor query. Denote by pt

the probability that following this query ALG reaches a vertex that was previously
visited (i.e., pt is the probability that in the answer at = (vt, jt) we get a vertex vt
that already belongs to the knowledge graph Gt−1). Then by the definition of P b (for
both b = 1 and b = 2),

pt =

∣∣∣⋃v∈Gt−1, 1≤j≤d

(
Rb

(ut,v,it,j)
∩Rb

t−1

)∣∣∣
|Rb

t−1|
.(37)

By Lemma 11 (using the same argument as the one applied in the proof of Lemma 12),
we can deduce that for any specific v and j, v ∈ Gt−1 and 1 ≤ j ≤ d,∣∣∣Rb

(ut,v,it,j)
∩Rb

t−1

∣∣∣ ≤ 4

dn
· ∣∣Rb

t−1

∣∣.(38)

Therefore,∣∣∣∣∣∣
⋃

v∈Gt−1, 1≤j≤d

(
Rb

(ut,v,it,j)
∩Rb

t−1

)∣∣∣∣∣∣ ≤
∑

v∈Gt−1, 1≤j≤d

∣∣∣Rb
(ut,v,it,j)

∩Rb
t−1

∣∣∣
≤ d · 2t · 4

dn
· ∣∣Rb

t−1

∣∣ =
8t

n
· ∣∣Rb

t−1

∣∣.(39)

Since t = o(
√
n), we get that pt = o(1/

√
n). Since this holds for every 1 ≤ t ≤ Q =

o(
√
n), the probability that for some t (in which a neighbor query is performed) the

algorithm reaches a vertex in the knowledge graph is o(1).
In particular, we can obtain the following corollary.
Corollary 9. Let ALG be an algorithm that interacts with process P b and

performs Q = o(min(
√
n, n/d)) queries. Then ALG does not detect a cycle with

probability 1− o(1).
Recall that Db

ALG, b ∈ {1, 2}, denotes the distribution on query-answer histories
(of length Q), induced by the interaction of ALG and P b. We are now ready to show
that the two distributions are indistinguishable if Q is sufficiently small.

Lemma 14. For every algorithm ALG that asks Q = o(min(
√
n, n/d)) queries,

the statistical distance between D1
ALG and D2

ALG is at most o(1). Furthermore, with
probability at least 1− o(1), the knowledge graph at the time of termination of ALG
contains no cycles.

Proof. Recall that GQ, the knowledge graph after Q queries, contains all the
vertices that appeared in one of the queries or answers, all the edges found by queries,
and all the nonedges found by queries.

Recall that we assume without loss of generality that ALG does not ask queries
whose answer can be derived from the knowledge graph, since those give it no new
information. Under this assumption the following hold:
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1. According to Lemma 12, both in D1
ALG and in D2

ALG the total weight of
query-answer histories in which an edge is detected by a vertex-pair query is
o(1). In all other histories (whose weight is 1−o(1) under both distributions),
all answers to vertex-pair queries are of the form (0, 1, 1).

2. According to Lemma 13, both in D1
ALG and in D2

ALG the total weight of
query-answer histories in which any neighbor query qt is answered with a
vertex that belongs to the knowledge graph Gt−1 is o(1). In particular, this
means that, with probability at least 1 − o(1), the knowledge graph at the
time of termination of ALG contains no cycles.

Let Π1 be the set of all possible query-answer histories in which a vertex-pair query
is answered by (1, ∗, ∗), let Π2 be the set of histories in which a neighbor query is
answered with a vertex that appears in the current knowledge graph, and let Π3 be
the set of all remaining histories. Then the statistical distance between D1

ALG and
D2

ALG is upper-bounded by∑
π∈Π1

∣∣D1
ALG(π)−D2

ALG(π)
∣∣+ ∑

π∈Π2

∣∣D1
ALG(π)−D2

ALG(π)
∣∣

+
∑
π∈Π2

∣∣D1
ALG(π)−D2

ALG(π)
∣∣ .(40)

Observe that∑
π∈Π1

∣∣D1
ALG(π)−D2

ALG(π)
∣∣ ≤ ∑

π∈Π1

D1
ALG(π) +

∑
π∈Π1

D2
ALG(π)

= D1
ALG(Π1) +D2

ALG(Π2)

(and similarly for the sum over Π2). Hence the first two terms in (40) contribute o(1).
As for the third term, first note that for every fixed history 〈(q1, a1), . . . ,

(qt−1, at−1)〉, the distribution on the next query qt that ALG performs is the same
no matter which process it interacts with. By definition of Π3, if qt is a vertex-pair
query, then at = (0, 1, 1) for both processes. Finally, if qt = (ut, it), then again by the
definition of Π3 the answer at = (vt, jt) is such that vt /∈ Gt−1. For both processes,
conditioned on vt /∈ Gt−1, the vertex vt is uniformly distributed among all vertices
not in Gt−1, and jt is uniformly distributed over {1, . . . , d}. Therefore, the third term
in (40) is bounded by |D1

ALG(Π3)−D2
ALG(Π3)| which is o(1) as well, and the lemma

follows.
Theorem 8 follows by combining Lemma 14 with Lemma 9.

5.1. Self-loops and multiple edges. The lower-bound proof as stated above
is valid for graphs that may contain multiple edges and self-loops. In both the distri-
bution G(n, d) and the distribution G(n/2, n/2, d) the probability of a multiple edge

between vertices u and v is O( d2

n2 ), and the probability of a self-loop edge incident

to vertex v is O( d
n ). Thus, graphs created according to these distributions contain

self-loops and multiple edges with probability close to 1. However, with probabil-
ity 1 − o(1) there are at most O(d2) loops and multiple edges in the graphs created
according to these distributions.

We have shown in Lemma 9 that graphs created according to the distribution
G(n, d) are ε-far from being bipartite with probability 1− o(1). Hence we can deduce
that by removing self-loops and multiple edges from a graph G constructed accord-
ing to a distribution G(n, d), the resulting graph is ε-far from being bipartite with
probability 1− o(1).
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In addition, an algorithm ALG that interacts with process P b detects a multiple
edge with probability o(1) due to the following reason: ALG does not detect any
edges by sampling steps with probability 1 − o(1). The probability to detect a mul-
tiple edge/self-loop in a neighbor query is at most the probability that such a query
is answered by a vertex in the knowledge graph. This probability was shown (in
Lemma 13) to be o(1).

Thus, P b in the end of the interaction with ALG can delete all the loops and
multiple edges from the resulting graph so that the resulting graph contains no loops
and multiple edges. In the case of P 2 the graph is bipartite as before, and in the case
of P 1 the graph is (still) ε-far from being bipartite.

As a conclusion we get that our lower bound is valid also for graphs with no
multiple edges and loops.

5.2. The necessity of both neighbor queries and vertex-pair queries. As
noted in the introduction, our lower-bound proof implies the necessity of both neighbor
queries and vertex-pair queries in obtaining an upper bound whose dependence on
n and m is Õ(min(

√
n, n2/m)). Specifically, if only neighbor queries are allowed, then

Lemma 13 implies a lower bound of Ω(
√
n) for every m, which is higher than Õ(n2/m)

when m = ω(n1.5). On the other hand, every bipartite tester that uses only vertex-
pair queries has to make Ω(n2/m) since otherwise it will not see any edge. This lower
bound is above the upper bound of Õ(

√
n) when m = o(n1.5).

5.3. A lower bound for testing k-colorability. It is possible to generalize
the lower bound stated for bipartite testers to a lower bound for k-colorability. By
using similar arguments we can get that a graph chosen uniformly from the distri-
bution G(n, d) is ε-far from being k-colorable. In addition, by defining a distribution
G(n/k, n/k, . . . , n/k, d) in an analogous way to the definition of G(n/2, n/2, d) and by
an analogous definition of the processes P b, b ∈ 1, 2, we can get a lower bound for
k-colorability which is Ω(min(

√
n, n2/m)).

Appendix. A formal definition of M�2
�1

(H). For every vertex v in H we have

a state v in M�2
�1

(H) (see Figure 8). For simplicity, we shall continue referring to these
states as vertices. Let the border of H, denoted B(H), be the set of vertices in H that
have at least one neighbor in G that is not in H. Then, for every vertex v ∈ B(H),
we have a set av,1, . . . , av,�1 of auxiliary states. Let pHv,u(t) denote the probability of
a walk of length t that starts at v and ends at u without passing through any other
vertex in H. Namely, it is the sum over all such walks w, of the product, taken over
all steps in w, of the transition probabilities of these steps. In particular, pHv,v(1) ≥ 1

2

(where equality holds in case v has degree d), and for every u ∈ Γ(v), pHv,u(1) = 1
2d

(here we assume that we can choose a random neighbor of a vertex within time which
is O(1)). The transition probabilities, qx,y, in M�2

�1
(H) are defined as follows:

• For every v and u in H, qv,u =
∑�2−1

t=1 pHv,u(t).

Thus, qv,u is a sum of pHv,u(1) and
∑�2−1

t=2 pHv,u(t). The first term implies that

for every v in H, qv,v ≥ 1
2 and for every pair of neighbors v and u, qv,u ≥ 1

2d .
The second term, which we refer to as the excess probability, is due to walks
of length less than �2 (from v to u) passing through vertices outside of H and
can be viewed as a contraction of these walks.
Hence, for every pair of vertices v and u, qv,u = qu,v.
• For every v ∈ B(H), qv,(av,1) =

∑
u∈H

∑
t≥�2

pHv,u(t); for every �, 1 ≤ � < �1,

q(av,�),(av,�+1) = 1; and for every u ∈ H, q(av,�1
),u = 1

qv,(av,1)
·∑t≥�2

pHv,u(t).
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(The parentheses added in the notation above (e.g., q(av,�),(av,�+1)) are only
for the sake of readability.)
In other words, qv,(av,1) is the probability that a random walk in G that starts
from v takes at least �2 steps outside of H before returning to H, and q(av,�1

),u

is the conditional probability of reaching u in such a walk. Thus, the auxiliary
states form auxiliary paths in M�2

�1
(H), where these paths correspond to walks

of length at least �2 outside of H.
We shall restrict our attention to walks of length at most �1 in M�2

�1
(H), and hence

any walk that starts at a vertex of H and enters an auxiliary path never returns to
vertices of H.

For any two states y, z in M�2
�1

(H) let qy,z(t) be the probability that a walk of
length t starting from y ends at z. In particular, qy,z ≡ qy,z(1), and for any two
vertices u and v and any integer t, we have qu,v(t) = qv,u(t). We further let the parity

of the lengths of paths corresponding to walks in G be carried on to M�2
�1

(H). That
is, each transition between vertices v and u that corresponds to walks outside of H
consists of two transitions—one due to even-length paths corresponding to walks from
v to u outside of H and one due to odd-length paths. For any two vertices in H we let
qbv,u(t) denote the probability in M�2

�1
(H) of a walk of length t starting from v, ending

at u, and corresponding to a path whose length has parity b.
In all that follows we assume that G is connected. Our analysis can easily be

modified to deal with the case in which G is not connected, simply by treating sepa-
rately each of its connected components. Under the assumption that G is connected,
for every v and u in H, there exists a t such that qu,v(t) > 0, and hence M�2

�1
(H) is

irreducible. Furthermore, because for each v ∈ H it holds that qv,v ≥ 1
2 , M�2

�1
(H) is

also aperiodic. Thus it has a unique stationary distribution.

v
1/(2d)

1 - | Γ( v)| /(2d)

pu

_

px,y
~

. . . u

x

y

z

1 1 1

u

_
|p z

H1l

Fig. 8. The structure of M�2
�1

(H). The states corresponding to vertices of H are depicted as
black dots, and the auxiliary states are depicted as white ones. Here p̃x,y denotes the transition

probability between any two vertices x, y ∈ B(H), which equals
∑�2−1

t=1 pHx,y(1), p̄u denotes the prob-

ability of entering an auxiliary path starting from u ∈ B(H), which equals
∑

z∈H

∑
t≥�2

pHu,z(t),

and p̄u|z denotes the probability of returning from the last state on this auxiliary path to z ∈ B(H),

which equals 1
p̄u
·∑t≥�2

pHu,z(t).
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Abstract. We study the problem of constructing a sorting network that is tolerant to faults
and whose running time (i.e., depth) is as small as possible. We consider the scenario of worst-case
comparator faults and follow the model of passive comparator failure proposed by Yao and Yao
[SIAM J. Comput., 14 (1985), pp. 120–128], in which a faulty comparator outputs its inputs directly
without comparison. Our main result is the first construction of an N -input k-fault-tolerant sorting
network with an asymptotically optimal depth θ(logN+k). That improves over the result of Leighton
and Ma [Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures,

Velen, Germany, 1993, ACM, New York, pp. 30–41], whose network is of depth O(logN+k log log N
log k

).

Actually, we present a fault-tolerant correction network that can be added after any N -input
sorting network to correct its output in the presence of at most k faulty comparators. Since the
depth of the network is O(logN + k) and the constants hidden behind the “O” notation are small,
the construction can be of practical use.

Developing the techniques necessary to show the main result, we construct a fault-tolerant net-
work for the insertion problem. As a by-product, we get an N -input O(logN)-depth INSERT-network
that is tolerant to random faults, thereby answering a question posed by Ma in his Ph.D. thesis
[Fault-Tolerant Sorting Network, Department of Mathematics, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1994].

The results are based on a new notion of constant delay comparator networks, that is, networks
in which each register is used (compared) only in a period of time of a constant length. Copies of
such networks can be pipelined with only a constant increase in the total depth per copy.

Key words. fault-tolerant sorting, sorting networks, comparators
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1. Introduction. A comparator is a simple device that takes the contents of two
registers and performs a compare-exchange operation on them; that is, the minimum
is put into the first register and the maximum into the second one. Networks built
from comparators are commonly used to perform such tasks as selection, sorting,
and merging. They have also proved to be very useful for a variety of applications,
including circuit switching and packet routing [6]. Therefore, there has been much
research in this area. The most famous constructions are those of Batcher [3], who
introduced two types of sorting networks both of depth (log2N + logN)/2, and of
Ajtai, Komlos, and Szemeredi [1], who showed that there exist sorting networks of
depth O(logN).1 None of these constructions addresses the issue of fault-tolerance.

The study of fault-tolerant sorting networks was initiated by Yao and Yao [13] in
1985. They introduced a fault type in which a faulty comparator does not work at
all: the contents of registers remain unchanged. Later, this type of fault was called
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passive. In [13], the authors consider the use of redundancy to enhance reliability for
sorting and related networks under two alternative fault models. In the random-fault
model, comparators fail independently with probability upper-bounded by a constant
less than 1, and the goal is to construct networks which work correctly with probability
at least 1 − 1

N under this assumption. In the k-fault model (or worst-case model),
the goal is to build k-fault-tolerant networks, that is, networks which work correctly
if any set of at most k comparators is faulty.

Yao and Yao observed that any sorting network could be made random-fault-
tolerant if each of the original comparators was replicated O(logN) times. This
yields a fault-tolerant sorting network with O(log2N) depth. No improvement of
this bound was obtained for several years. In 1993, Leighton and Ma (see [7]) gave
a new analysis of the AKS network [1], which resulted in an improved upper bound
O(logN log logN) on the depth of random-fault-tolerant sorting networks. Later,
Ma [10] presented a new construction of such networks with optimal size O(N logN).
This result resolved the old conjecture of Yao and Yao that the size of random-fault-
tolerant sorting networks is ω(N logN).

Other types of faulty comparators were also studied in [2, 7, 8] in this context.
In the reversal fault model, a faulty comparator outputs its inputs in reversed or-
der. In the destructive fault model, a faulty comparator with inputs x and y may
output any of the pairs (x, y), (y, x), (x, x), or (y, y); thus it can destroy one of the
inputs, replacing it with the other one. In order to tolerate such types of faulty
elements, Assaf and Upfal [2] extended the model of comparator networks by allow-
ing the use of more registers than input items and introducing replicators that are
used to copy the contents of one register to another register. Replicators are as-
sumed to be fault-free. In [2] they gave a general method for converting any sorting
network into a reversal-fault-tolerant or destructive-fault-tolerant sorting network in
the random-fault model. Applying this technique to the AKS network, they obtained
fault-tolerant networks of size O(N log2N). For the destructive fault model the result
is asymptotically optimal—the corresponding lower bound was proved by Leighton
and Ma in [8]. For the reversal fault model, the upper bound was improved in [7] to
O(N loglog2 3N). All the mentioned results concern the random fault model. For the
worst-case model, a construction of a k-reversal-fault-tolerant sorting network of size
O(N(logN + k log logkN + klog2 3)) was also provided in [7].

For the worst-case passive model, Yao and Yao [13] constructed a k-fault-tolerant
sorting network of the optimal size. They did not consider the depth of these networks;
in fact, the increase in the depth was O(kN). Schimmler and Starke [12] gave another
construction of the network, where the depth of an N -input k-fault-tolerant sorting
network was reduced to O(k logN). Further improvement was obtained by Leighton,
Ma, and Plaxton [7], who derived a new upper bound O(logN + k log logN

log k ) on the
depth of the networks in question. In this construction, the constant in the “O”
notation depends on the structure of a modified AKS-network and is quite big. Our
main result closes the gap between this upper bound and the trivial lower bound
Ω(logN + k).

Actually, we present a fault-tolerant correction network that can be added after
any N -input sorting network to correct its output in the presence of at most k faulty
comparators. Since the depth of this additional network is O(logN + k) and the
constants hidden behind the “O” notation are not big, the construction can be of
practical use.

Main Theorem. There exists an explicit construction of N -input k-fault-tolerant
sorting networks of depth O(logN + k).



1486 MAREK PIOTRÓW

Developing the techniques necessary to show the main result, we construct a
fault-tolerant network for the insertion problem. As a by-product, we get an N -input
O(logN)-depth INSERT-network that is tolerant to random faults, thereby answering
a question posed by Ma in his Ph.D. thesis [9].

Theorem 1.1. There exists an explicit construction of an N -input k-fault-
tolerant INSERT-network of depth O(logN + k).

Theorem 1.2. There exists an explicit construction of an N -input random-fault-
tolerant INSERT-network of depth O(logN).

The results are based on a new notion of constant delay comparator networks,
that is, networks in which each register is used (compared) only in a period of time
of a constant length. Copies of such networks can be pipelined with only a constant
increase in the total depth per copy. To look at this method more closely, consider
the case of two copies A1 and A2 of a d-delay network A. Obviously, A1 and A2

have the same pattern of comparators. Therefore, to start performing comparisons
from A2 we do not have to wait until all comparisons from A1 take place. Indeed, an
initial comparator [i : j] from A2 can be applied just after all comparisons from A1

involving registers i and j have been finished. Since a copy of [i : j] is also the first
comparator applied to i and j in A1 and since registers i and j are used only in the
next d− 1 phases of A1, [i : j] can be applied again, this time as a comparator of A2,
just after d phases. The situation is quite similar to the pipelining of data items in
systolic computations.

1.1. Overview of the construction. First, let us recall two well-known facts.
The first one is the zero-one principle: a network sorts all sequences when it sorts all
sequences built from zeroes and ones. The second one is due to Yao and Yao [13]:
when any i comparators from a sorting network are faulty and we input a 0-1 sequence
to the faulty network, then the Hamming distance2 between the output and the sorted
sequence is at most 2i. Assuming that the input contains exactly j zeroes and N − j
ones, the second fact implies that in the output there are at most i ones inside the
initial j items (we will denote them by 1∗s) and at most i zeroes inside the last N − j
items (we will denote them by 0∗s). We can look at this sequence as if it were created
from a sorted one, 0j1N−j , in two phases: (1) exactly i zeroes were replaced by 1∗s,
(2) exactly i ones from the last N − i items were replaced by 0∗s. We would like
to correct results of these phases separately. Therefore, the basic structure of our
network can be presented as follows, where SORT denotes any sorting network:

��
��
��

SORT CORRECT
1∗s

CORRECT
0∗s ��

��
��

Faulty comparators can appear in any part of the network, but their total number
must be at most k. If i of them, 0 < i ≤ k, appear in the SORT part, at most k−i can
appear in the CORRECT 1∗s or CORRECT 0∗s parts. Thus, an A is defined to be a
CORRECT 1

k network (CORRECT 0
k network, respectively) if for all i, 0 < i ≤ k, A is

(k − i)-fault-tolerant and sorts any 0-1 sequence that can be obtained from a sorted
one by changing exactly i zeroes to ones (i ones to zeroes, respectively). Our first
observation is that parts two and three of the network are symmetric: each one can
be obtained from the other by complementing every comparator (recall from [12] that
the complement of a comparator [u : v] is defined to be [u : v] = [N−1−v : N−1−u]).

2The Hamming distance between two binary sequences of equal length is the number of positions
at which the sequences differ.
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The second important observation is that after applying both parts, the output
sequence is sorted. The reasons are the following: the input to the third part starts
with at least j − i zeroes and contains at most i 0∗s among ones; symmetrically, we
can analyze the second part as if its input ended up with N − j ones and contained at
most i 1∗s among zeroes. We can do that while, whenever 1∗ is compared/exchanged
with 0∗, the Hamming distance decreases immediately by 2. Both observations are
formally proved in section 3. Thus, the only difficult part that remains is a construc-
tion of CORRECT1

k networks.
We can look at the correction problem as at the problem of insertion: a certain

number of “displaced” items (1∗s) should be inserted into a sorted sequence. Since
the initial positions of 1∗s are unknown, we split the insertion task into two sub-
tasks: moving 1∗s to certain “well-known” positions and inserting the items from
such positions.

In the construction of Schimmler and Starke [12], we can split the whole k-
correction network into a sequence of k pairs of subnetworks, where the first element
of each pair does the moving subtask and the second element does the insertion. The
goal of the whole sequence is to correct an output of a sorting network with i, i ≤ k,
faults and to be resistant to k − i faulty comparators itself. Since the number of
fault-free pairs of subnetworks is not smaller than the number of displaced items, a
fault-free pair can be assigned to each such item, and the items are corrected one after
another, starting from the innermost in an input. The only problem that remains is
that the pairs of subnetworks cannot be pipelined well—the total depth of the network
is k times the depth of each pair, which yields O(k logN). We would like to solve the
problem by pipelining separately k copies of a modified “moving” subnetwork first,
and then k copies of a modified “inserting” subnetwork.

As far as we know, even in the case of one “displaced” item, no fault-tolerant
insertion network of the optimal depth has been given so far in the literature. We
present such a network in section 4. Then we modify the construction to deal with a
greater number of such items. The problem that must be solved is how to avoid, in
the process of insertion, comparisons between 1∗s. The result of each such comparison
is the same as if the upper 1∗ met a faulty comparator, and there can be up to k/2
such comparisons in each stage of insertion. The solution that we use is to group
each k consecutive registers into a so-called bucket, in each bucket find the minimum
and the maximum, and apply the insertion process on buckets, where a comparison
between buckets u and v means a comparison between the maximum of u and the
minimum of v. Due to the bucket size, the compared items cannot both be 1∗ and,
therefore, comparisons between 1∗s can happen only inside buckets. The last thing
we do after the bucket insertion is to sort items inside buckets (in fact, in one bucket)
using odd-even transposition. Thus the whole structure of CORRECT1

k’s networks
can be drawn as follows:

��
��
�� Bucket

movement
of 1∗s

Bucket
insertion
of 1∗s

Odd-even
transposition��

��
��

The first two parts are of depth O(logN + k); the last one is of depth 3k. The
details of their construction and the analysis of their correctness are given in the
following sections. It should be emphasized that, in order to make our presentation
simpler, we do not force the constants to be optimally small.
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2. Preliminaries. Let N ≥ 2 be an integer and RN be the set of N -element
vectors of reals. For every x ∈ RN , x[i] denotes the ith term of x. Let [N ] denote the
set {0, 1, . . . , N − 1}, and for i, j ∈ [N ] the comparator [i : j] is a mapping from RN

to RN which transforms a vector x into vector x′ = x[i : j] defined as follows:

x′[k] =

⎧⎨⎩
x[k], k �= i, j,
min(x[i], x[j]), k = i,
max(x[i], x[j]), k = j.

Thus [i : j] compares x[i] with x[j] and places the smaller of them in position i and
the larger one in position j. We call [i : j] a standard comparator if i < j. For a
standard comparator [i : j], let j − i be its length, and we will sometimes say that
it is an outgoing comparator from the register i and an incoming comparator to the
register j.

An N -comparator stage S is a set of r comparators {[i1 : j1], [i2 : j2], . . . , [ir : jr]},
where i1, j1, . . . , ir, jr ∈ [N ] are pairwise different. The comparator stage S defines a
mapping from RN to RN , which is a composition of the mappings associated with
[i1 : j1], [i2 : j2], . . . , [ir : jr] applied in arbitrary order. Let support(S) denote the set
{i1, j1, i2, j2, . . . , ir, jr}.

An N -input comparator network A is a sequence S1, S2, . . . , Sd of N -comparator
stages. The N -input network A defines the mapping from RN to RN by successively
applying the mappings induced by S1, S2, . . . , Sd. Let xA denote the result of apply-
ing A to x ∈ RN . A standard network is a network consisting of standard comparators
only. Let depth(A) = d and size(A) =

∑d
i=1 |Si|.

For an N -input network A = S1, S2, . . . , Sd and j ∈ [N ], we define the following
parameters:

fst(j, A) = min{1 ≤ i ≤ d : j ∈ support(Si)},
lst(j, A) = max{1 ≤ i ≤ d : j ∈ support(Si)},

delay(A) = max
j∈[N ]

{lst(j, A)− fst(j, A) + 1}.

We can look at a computation in a comparator network A as the process of syn-
chronous data movement through an array of computation units (i.e., comparators),
where each stage is a column of the array, and rows correspond to registers. We as-
sume that it takes a unit of time to move data items to the next column. In this way,
we can consider the whole process as systolic computation. In this context, fst(j, A)
denotes the first unit of time when the item in register j reaches a computation unit,
and delay(A) is the maximum time required to move any data item through all its
computation units. At time fst(j, A) + delay(A), the contents of register j is fixed
after all computations and can possibly be pipelined to a next copy of A.

All comparator networks presented in this paper are standard, and whenever it is
possible in the constructions we use subnetworks of a constant delay. This allows us
to put copies of such a subnetwork one after another so that the total depth is small.
The following definitions and Proposition 2.1 formalize this technique.

Let A = S1, S2, . . . , Sd and A′ = S′
1, S

′
2, . . . , S

′
d′ be N -input comparator networks

such that for each i, 1 ≤ i ≤ min(d, d′), support(Si) ∩ support(S′
i) = ∅. Then A ∪ A′

is defined to be (S1 ∪ S′
1), (S2 ∪ S′

2), . . . , (Smax(d,d′) ∪ S′
max(d,d′)), where empty stages

are added at the end of the network of smaller depth. Let A⇒D denote the shift of A
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by D stages, that is,

A⇒D = ∅, . . . , ∅︸ ︷︷ ︸
D times

, S1, S2, . . . , Sd.

Proposition 2.1. Let A = S1, S2, . . . , Sd be an N -input comparator network.

Then the network B
def
= A∪A⇒delay(A) is correctly defined, and depth(B) = depth(A)+

delay(A).
Proof. Let D = delay(A). To prove that B is correctly defined, it suffices to check

whether

∀ 0 ≤ j ≤ N − 1, lst(j, A) < fst(j, A⇒D).

Since for each j, 0 ≤ j ≤ N −1, fst(j, A⇒D) = D+ fst(j, A) and lst(j, A)− fst(j, A) <
D, the statement holds and, therefore, B is correctly defined. The second part of the
lemma follows directly from the definition.

Using Proposition 2.1, we can define a network A(i) built from i, i > 0, copies
of the network A, where copies are put one after another, each shifted further by
delay(A) stages. Formally,

A(i) def
=

i−1⋃
j=0

A⇒j·delay(A).

Most of our networks will be defined recursively. To make recursive definitions
precise, the standard set of register indexes {0, 1, . . . , N−1} will sometimes be replaced
by another N -element set of nonnegative integers, and comparators will be redefined
to this set. We will also use a one-to-one order-preserving mapping to replace one
set of indexes by another. For example, if A is a comparator network and s is a
positive integer, then A ⇓ s will denote the network whose registers are indexed by
{s, s+ 1, . . . , s+N − 1}, and each comparator [i : j] in A is replaced by [i+ s : j+ s].

An N -input network A is an INSERT-network if, for every x ∈ RN , the fact that
(x[1], . . . , x[N − 1]) is sorted implies that y = xA is sorted. An N -input network A
is a MAX-network (MINMAX-network) if, for every x ∈ RN , we have (xA)[N − 1] =
max{x[0], . . . , x[N−1]} (respectively, if A is a MAX-network and (xA)[0] = min{x[0],
. . . , x[N − 1]} for every x ∈ RN holds).

We say that B is a j-fault subnetwork of A if B can be obtained from A by
deleting exactly j comparators. By definition of a faulty comparator, instead of
deleting comparators it is equivalent to say that the comparators in question fail.
An N -input SORT-network (MAX-network, MINMAX-network, INSERT-network)
is said to be k-fault-tolerant if every j-fault subnetwork of A, j ≤ k, is also a SORT-
network (MAX-network, MINMAX-network, INSERT-network, respectively).

The following tool is very useful in the studies of comparator networks.
Proposition 2.2 (zero-one principle). If an N -input network sorts all 2N se-

quences of 0’s and 1’s, then it is a SORT-network.
Proof. See [4, 5.3.4, Theorem Z].
The zero-one principle can easily be generalized to the case of INSERT-networks,

MAX-networks, and MINMAX-networks. Using the zero-one principle, we can restrict
our attention to input vectors x ∈ {0, 1}N .

Proposition 2.3 (insert 0-1 principle). If a standard N -input network sorts all
N sequences of the form 10t1N−t−1, 0 ≤ t < N , then it is an INSERT-network.



1490 MAREK PIOTRÓW

Proof. The proof follows the same ideas as the proof of the zero-one principle.
Recall that for any nondecreasing function f , a comparator network A, and an input x,
f(x)A = f(xA). Let A be a standard network that sorts all N sequences of the form
10t1N−t−1, 0 ≤ t < N . To obtain a contradiction, suppose that there is an input
sequence x ⊂ RN such that (x[1], x[2], . . . , x[N − 1]) is sorted but y = xA is not
sorted. Let i be the index such that y[i] > y[i+ 1], and define f(z) to be 1 if z ≥ y[i]
and 0 otherwise. Then f(y) is not sorted. On the other hand, f(x) is of one of the
forms 10t1N−t−1 or 0t1N−t for some t ≥ 0, since f is nondecreasing. Due to the
definition of A, f(x)A is sorted, a contradiction.

3. Basic results. In this section, we formally prove the basic results that were
introduced in section 1, namely, the existence of efficient worst-case fault-tolerant
sorting networks (main theorem) and random-fault-tolerant inserting networks (The-
orem 1.2). The proofs are based on Lemma 3.1 and Theorem 1.1, which describe the
most difficult parts of the whole construction. Actually, the latter theorem is a special
case of the former lemma, but it will be proved separately in section 4, because it is
of independent interest and because a solution to the general case will be given on
the base of a solution to this special case.

Lemma 3.1. There is an explicit construction of a standard N -input CORRECT1
k

network of depth O(logN + k).
This is the key lemma in our paper, and we will proceed towards its proof through

the rest of the paper; thus the proof is postponed to the end of section 6. In the next
lemma we prove that the complement of a standard N -input CORRECT1

k network is
a CORRECT0

k network.
Lemma 3.2. There is an explicit construction of a standard N -input CORRECT0

k

network of depth O(logN + k).
Proof. Let N and k be fixed positive integers. Let A = S1, S2, . . . , Sd, d =

O(logN + k), denote the CORRECT1
k network from Lemma 3.1. We would like to

prove that the complement of A is a CORRECT0
k network. To this end and for the

sake of completeness let us recall from [12] the definition and the basic lemma of a
network complement.

Let c(x) denote the complement of 0-1 sequence x; that is, c(x)[i] = 1−x[N−1−i]
for each i ∈ [N ]. For a comparator [i : j] the complement is defined by

[i : j] = [N − 1− j : N − 1− i].
Clearly, the complement of a standard comparator is standard. Finally, the com-
plement A = S1, S2, . . . , Sd of the network A = S1, S2, . . . , Sd is defined by Si =
{[i : j] : [i : j] ∈ Si}, i = 1, . . . , d.

Lemma 3.3 (after Schimmler and Starke [12, Lemma 4]). For every N -input
network A and every vector x ∈ {0, 1}N , c(c(x)A) = xA.

Let A be the CORRECT1
k network, and let i, j denote nonnegative integers such

that i + j ≤ k. In order to prove that A is a CORRECT0
k network, consider j-fault

subnetwork B of A and an input x obtained from a sorted 0-1 sequence by replacing
exactly i zeroes with ones. Then B is a j-fault subnetwork of A, and c(x) is also
obtained from a sorted sequence by replacing exactly i ones with zeroes. By the
definition of A, c(x)B is sorted. Observe that the complement of a sorted 0-1 sequence
is also sorted. Using this and Lemma 3.3, we finally get that xB = c(c(x)B) is sorted,
which completes the proof.

Using these two lemmas, we are now able to prove our main theorem.
Proof of the main theorem. LetN and k be fixed positive integers. Let S, A, andB
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respectively denote the following N -input networks: the AKS sorting network [1], the
CORRECT1

k network of Lemma 3.1, and the CORRECT0
k network of Lemma 3.2.

We claim that

C = S ∪A⇒depth(S) ∪B⇒depth(S)+depth(A)

is a k-fault-tolerant sorting network of depth O(logN + k). Indeed, consider a j-fault
subnetwork C ′ of C; let S′, A′, and B′ denote parts of C ′ corresponding to S, A,
and B with i, j1, and j2 faults, respectively, where i+ j1 + j2 = j ≤ k. If i = 0, then
C ′ is a sorting network, because S′ = S sorts any input and the following standard
networks A′ and B′ cannot make any change in a sorted sequence.

Now consider i > 0, and fix an input 0-1 sequence x with l zeroes and N − l
ones. Let x′ = xS′, y = x′A′, and z = yB′. The proof is completed by showing that
z is sorted. Due to a lemma of Yao and Yao [13], the Hamming distance between
x′ and 0l1N−l is at most 2i; in particular, there are at most i zeroes in the last N − l
positions of x′. As before, denote these by 0∗s. Let x′′ denote the sequence x′ after
replacing all 0∗s with 1

2 , and let y′′ = x′′A′.
It is well known that for any nondecreasing function f , comparator network A,

and input x, f(x)A = f(xA). We use two such functions f1, f2 : {0, 1
2 , 1} �→ {0, 1}

by f1(0) = f2(0) = 0, f1(1) = f2(1) = 1, f1(
1
2 ) = 0, and f2(

1
2 ) = 1. Observe that

f1(x
′′) = x′, y = x′A′ = f1(x

′′)A′ = f1(y
′′), and f2(x

′′)A′ = f2(y
′′). The sequence

f2(x
′′) contains only ones in the last N − l positions and at most i ones in the first

l positions, and thus it is an appropriate input for a CORRECT1
k network. Since

i+ j1 ≤ k, Lemma 3.1 implies that f2(y
′′) is sorted. Furthermore, y = f1(y

′′) differs
from this sorted sequence in at most i positions where it has zeroes instead of ones;
hence we can apply Lemma 3.2 and finally get that z = yB′ is sorted.

We conclude this section with a proof of Theorem 1.2. To this end we assume
that Theorem 1.1 holds (it is proved in section 4).

Proof of Theorem 1.2. We consider now the case of random faults, where each
comparator fails independently with probability upper-bounded by p < 1. A random-
fault-tolerant INSERT-network should remain an INSERT-network with probability
at least 1 − 1

N in this context. Let us notice that the failure upper bound p can
be decreased to pt by repeating each comparator in a network t times. In this way,
we can choose the value of p as small as we need. For a small enough p we prove
that the k-fault-tolerant INSERT-network from Theorem 1.1 with k = O(logN) is a
random-fault-tolerant INSERT-network.

Let s > 0 be a constant such that s(logN + k) is an upper bound on the depth
of the N -input k-fault-tolerant INSERT-networks. Assuming that p < 1

2s , let us set
k = c logN�, where

c = max

(
2,

16ps

(1− 2ps)2 · log e

)
.

For the constants selected and a fixed N , let A = S1, S2, . . . , Sd, d ≤ s(c+1) logN , be
the c logN�-fault-tolerant INSERT-network. Now apply a random procedure to A,
which fails each comparator in A independently with probability less than p, and let
A′ denote the result. We have to prove that

Pr{A′ is not an INSERT-network} < 1

N
.
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Using the insert 0-1 principle, we can restate this inequality as

Pr{∃ 0 < t < N such that (10t1N−t−1)A′ is not sorted} < 1

N
.

Hence, it suffices to prove that for any fixed t, Pr{(10t1N−t−1)A′ is not sorted} < N−2.
To this end we apply the principle of deferred decisions; that is, we do not assume
that the entire set of random choices is made in advance, but instead we simulate the
network A′ on 10t1N−t−1, and at the beginning of each stage of A′ we fail at random
the outgoing comparator of the register in which the first 1 is currently located (other
comparators cannot change the contents of registers). Let Xt denote the random
variable corresponding to the number of faulty comparators revealed in this procedure.
The variable Xt is easily seen to be the sum of at most s(c + 1) logN independent
Poisson trials, where each trial has the success probability upper-bounded by p. Thus,
a standard Chernoff-type argument [11, Theorem 4.1] implies that for our choice of
the constant c

Pr{Xt > c logN} < 1

N2
.

Since A is a (c logN)-fault-tolerant INSERT-network, we get that the probability that
(10t1N−t−1)A′ is not sorted is less than N−2, which completes the proof.

4. Worst-case fault-tolerant INSERT-network. In this section, we define
an N -input INSERT-network that is resistant to k faults and which is of the asymp-
totically optimal depth O(logN + k). In this way, Theorem 1.1 will be proved.

The simplest way of inserting an item located in register 0 into a sorted sequence
located in registers 1, . . . , N − 1 is to perform compare-exchange operations on pairs
of consecutive registers [0 : 1], [1 : 2], . . . . This algorithm is implemented by an odd-
even transposition network. The nice property of the algorithm is that it can be
easily made fault-tolerant: to tolerate k faults one should add 2k stages. The obvious
disadvantage is its depth: to move an item from register i to register j one needs
j− i+1 stages of the network. Since we would like to have a network of a logarithmic
depth, we can apply odd-even transposition only at the end of the inserting procedure,
when we know that the item is within a logarithmic distance from its final position.

The quickest deterministic way to insert an item is a binary algorithm which is
similar to the binary search: we always try to insert the item in the middle of its
potential final positions. This algorithm is of logarithmic depth and can be imple-
mented on comparator networks (compare [12]), but it is not easily transformable
into an effective fault-tolerant network. The first problem is that we try to move an
item from certain positions logN times; hence a copy of the network could not be
applied before time logN . To tolerate k faults we need k copies, and thus the total
depth would be of Θ(k logN). The second problem is that a simple application of
copies is not enough to recover from certain faults: if an item does not move through
a faulty comparator it would in the fault-free network, it will probably move through
one of the following shorter ones and end up somewhere between its initial and final
positions.

In the construction described below, we solve both problems as follows: (1) we ap-
ply only one step of the binary insert procedure to an item, and if it does not succeed,
we move the item to the next register; (2) we add a set of correcting comparators that
recover an item from its wrong positions. Functionally, the network consists of two
parts. The first part is intended to do approximate insertion in the presence of at most
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Fig. 4.1. The recursive structure of Ih is shown on the left-hand side. All visible comparators,
except those starting at the register 0, are correcting. The I5 network is depicted on the right-hand
side, where the S4 and I4 subnetworks are shadowed. All correcting comparators in I5 are drawn
with a thick line.

k faults, where the end position of an inserted item is at a distance of at most logN
from its correct one. k + 1 copies of the network Ih (to be described below), each of
depth O(logN) and of a constant delay, form this part. By Proposition 2.1, the total
depth of this part is O(logN + k). The second part is simply the O(logN + k)-depth
odd-even transposition network, which adjusts the position of the inserted item to its
correct value.

4.1. Definition of inserting networks. The network Ih, h ≥ 0, contains N =
Nh = 3 · 2h − 1 registers and is defined by induction on h with the help of two
additional networks Sh and S′

h. In all these networks, we distinguish a certain set of
comparators and call them correcting comparators. The correcting comparators play
a special role in the analysis of the networks. (The name derives from the fact that
without correcting comparators, Ih, Sh, and S′

h are all INSERT-networks but do not
possess the fault-tolerance property.)

Before we formally define Ih, let us look for a moment at the sample network I5
in Figure 4.1. It consists of 95 registers numbered 0, 1, . . . , 94. Assume that we put
the sequence 1049145 to them and run a fault-free copy of I5. It moves the 1 initially
located in register 0 into register 49 (it is represented by the second line in the lower
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shadowed area) through comparators [0 : 48] and [48 : 49]. But what would happen
if [0 : 48] were faulty? Assume now that comparators [0 : 48] and [1 : 25] are faulty
and that we have two additional fault-free copies of I5 after the faulty one. In the
faulty I5, the 1 is moved into register 25 using comparators [0 : 1], [1 : 2], [2 : 14],
[14 : 20], [20 : 25]. The last comparator is a correcting one (these are drawn with the
thick line), and it enables the next copy of I5 to recover from the effects of the faulty
[1 : 25]. The first fault-free copy moves the 1 further to register 48 using [25 : 37] and
another correcting comparator [37 : 48]. Finally, in the second fault-free copy of I5,
comparator [48 : 49] recovers from the effects of the faulty comparator [0 : 48], and
we obtain the expected result.

Networks Sh and S′
h contain Nh normal registers and some number of extra

registers denoted by i1, i2, . . . . We assume that Nh ≤ i1 ≤ i2 ≤ · · · and that i1, i2, . . .
are, in fact, parameters of the networks to be specified later, at the next levels of the
recursive definition. In general, there are h extra registers in Sh and h+1 in S′

h. The
only exception is S0, where there is a single extra register. Therefore, we will use the
notation Sh(i1, i2, . . . , ih′) and S′

h(i1, i2, . . . , ih+1), where h′ = max(1, h). By CC(X)
we will denote the set of correcting comparators of X. The definition of the networks
and their sets of correcting comparators follows3 (see also Figure 4.1):

I0
def
= {[0 : 1]}, S0(i1)

def
= S′

0(i1)
def
= {[0 : 1]}{[1 : i1]},

CC(I0)
def
= ∅, CC(S0(i1))

def
= CC(S′

0(i1))
def
= {[1 : i1]}.

Let h ≥ 1, h′′ = max(h− 3, 0), and N ′ = 3 · 2h−1. Then

Ih
def
= {[0 : N ′]}, {[0 : 1]} ∪ (I⇒2

h−1 ⇓ N ′)
∪ (S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1),

Sh(i1, . . . , ih)
def
= {[0 : N ′]}, {[0 : 1]} ∪ (S′⇒2

h−1(i1, . . . , ih) ⇓ N ′)
∪ (S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1),

S′
h(i1, . . . , ih+1)

def
= {[0 : N ′]}, {[0 : 1][N ′ : i1]} ∪ (S′⇒2

h−1(i2, . . . , ih+1) ⇓ N ′)
∪ (S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1).

The rule for finding correcting comparators in the networks Ih, Sh(i1, . . . , ih′),
and S′

h(i1, . . . , ih+1) is that, whenever a comparator is defined to be correcting, it
remains such at the next steps of the recursive definition. Therefore, we should only
say which of the comparators introduced at the step h is the correcting one. In fact,
there is only one new correcting comparator, namely [N ′ : i1], in the definition of
S′
h(i1, . . . , ih+1). Formally, the sets are defined by the following equations:

CC(Ih)
def
= CC(I⇒2

h−1 ⇓ N ′)
∪ CC(S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1),

CC(Sh(i1, . . . , ih))
def
= CC(S′⇒2

h−1(i1, . . . , ih) ⇓ N ′)
∪ CC(S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1),

CC(S′
h(i1, . . . , ih+1))

def
= {[N ′ : i1]} ∪ CC(S′⇒2

h−1(i2, . . . , ih+1) ⇓ N ′)
∪ CC(S⇒2

h−1(N
′, N ′, N ′ + 1, N ′ + 2, . . . , N ′ + h′′) ⇓ 1),

3In the definition we assume that the shift down operation ⇓ is applied only to normal registers;
the transformation of extra registers is given explicitly by assigning new values to parameters.
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where the shift operations preserve the property of being a correcting comparator.
Notice that when we delete extra registers in a network S(i1, . . . , ih′) (or in

S′
h(i1, . . . , ih+1)) and comparators that use them, then the network becomes iden-

tical to Ih.
It is not quite clear whether the stages of the networks defined above consist of

disjoint comparators only. Namely, at the stage h we assign extra registers of Sh−1 to
normal registers, and conflicts could occur between comparators that used those extra
registers and comparators that used the normal registers to which they are assigned.
Lemma 4.1 states that this is not the case.

Lemma 4.1. Let h ≥ 0, h′ = max(1, h), and Xh denote one of the networks
Ih, Sh(i1, . . . , ih′), or S′

h(i1, . . . , ih+1). Then all comparators in any stage of Xh are
pairwise disjoint and delay(Xh) ≤ 8.

Proof. Network X0 is explicitly given, so assume h ≥ 1. Register 0 is connected
to two comparators at stages 1 and 2. Hence fst(0, Xh) = 1 and lst(0, Xh) = 2. Using
induction on h, we shall prove the following facts about Xh, h ≥ 1:

(a) fst(j,Xh) ≥ 2j and lst(j,Xh) ≤ 2j + 2 for 1 ≤ j ≤ h;
(b) fst(ij , S

′
h) = lst(ij , S

′
h) = 2j for j = 1, 2, . . . , h+ 1;

(c) fst(ij , Sh) = lst(ij , Sh) = 2j + 2 for j = 1, 2, . . . , h;
(d) lst(j,Xh)− fst(j,Xh) ≤ 7 for h < j < Nh;
(e) at each stage of Xh a register j is involved in at most one comparison, j =

0, . . . , Nh − 1, i1, i2, . . . .
For h = 1 these properties could be easily checked by drawing the simple networks.
Assume h ≥ 2 and that the facts hold for h− 1. Let N ′

h = 3 · 2h−1.
(a) Look at the layout of comparators in Figure 4.1. Register 1 is compared

directly at stage 2, and it is used as register 0 by Sh−1; thus it is compared also at
stages 3 and 4. It follows that fst(1, Xh) = 2 and lst(0, Xh) = 4. Registers 2, . . . , h are
used by the subnetwork (S⇒2

h−1) ⇓ 1 only, where they correspond to registers 1, . . . , h−1
of Sh−1. By the induction hypothesis, fst(j, Sh−1) ≥ 2j and lst(j, Sh−1) ≤ 2j + 2 for
1 ≤ j ≤ h− 1. Stages of Sh−1 are shifted two positions to the right in Xh, and thus
fst(j,Xh) ≥ 2j and lst(j,Xh) ≤ 2j + 2 for 2 ≤ j ≤ h.

(b) Extra register i1 of S′
h is used only once at stage 2. Thus fst(i1, S

′
h) =

lst(i1, S
′
h) = 2. Extra registers i2, . . . , ih+1 of S′

h are mapped to i1, . . . , ih of (S′⇒2
h−1) ⇓

N ′
h. By induction, fst(ij , S

′
h) = lst(ij , S

′
h) = 2j for j = 1, 2, . . . , h. Since all stages of

S′
h−1 are shifted two positions to the right in Xh and the index j is increased by 1,

fact (b) holds also for i2, . . . , ih + 1.
(c) Extra registers i1, . . . , ih of Sh are mapped to extra registers i1, . . . , ih of

(S′⇒2
h−1) ⇓ N ′

h. Using fact (b) and inductive arguments similar to those above, we get
that fact (c) is also true.

(d) Consider the set of registers {h + 1, . . . , Nh − 1}. Only registers N ′
h, . . . ,

N ′
h + max(h − 3, 0) are involved in new comparisons at the level h of the recursive

definition of Xh. For the others the inductive hypothesis applies. Registers N ′
h + j,

j = 0, . . . ,max(h − 3, 0), are assigned to the extra registers of (S⇒2
h−1) ⇓ 1, which are

used at stages 6, 8, . . . , 2h+2, respectively, by fact (c). (We have taken into account the
shift to the right.) On the other hand, registers N ′

h, . . . , N
′
h+max(h−3, 0) correspond

to the initial registers of the subnetwork Ih−1 or S′
h−1, and thus, by fact (a), they are

used only at stages 2j+2, 2j+3, 2j+4 (with the shift). Combining these, we conclude
that register N ′

h is used only at stages 1, 2, 3, 4, 6, 8 (notice that the first comparator
also uses it, and it is assigned to i1 and i2), and register N ′

h+j, 1 ≤ j ≤ max(h−3, 0),
is used at stages 2j + 2, 2j + 3, 2j + 4, 2j + 8. This proves the claim.
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(e) It follows from the considerations in (a)–(d) and the induction hypothesis that
each register is used at most once in any stage of Xh.

Corollary 4.2. If [i : j] is a correcting comparator at stage l of Xh, then there
does not exist [j : i′] for any i′ at any stage later than l in Xh. Moreover, if [i : j]
is not a correcting comparator at stage l of Xh, then there does not exist [j : i′] for
any i′ at any stage earlier than l in Xh.

Proof. Consider the stage h of the construction of Xh in the inductive proof
above. New correcting comparators of the form [∗ : j], where j is an index of a
normal register, could appear only for j ∈ {N ′, N ′ +1, . . . , N ′ +h− 1}. But it is easy
to notice that such comparators are the last ones in the sequence of comparisons in
which j is involved. To prove the second part of the corollary, observe that (1) j must
be greater than zero, (2) new comparators of the form [j : ∗] are added only to the
first two stages of Xh, and (3) the new comparators are outgoing comparators from
registers 0 or N ′. By (1) and (3), we should consider only j = N ′, and, by (2), there
is only one new comparator of the form [j : ∗], namely [N ′ : i1] at stage 2. The
only noncorrecting comparator [i : N ′] for any i is added in stage 1, thus earlier than
stage 2.

We shall use the insert 0-1 principle to prove that, in the presence of at most
k faulty comparators, k + 1 copies of Ih approximately insert an item initially lo-
cated in register 0 into a nondecreasing sequence of items initially located in registers
1, . . . , Nh − 1. Therefore, we will consider only inputs of the form 10t1N−t−1, where
1 ≤ t ≤ N − 1. To distinguish the 1 that should be inserted, we will denote it by 1∗.

For a given input 10t1N−t−1 with t zeroes we will say that a comparator [i : j]
is active (with respect to t) if j ≤ t. Otherwise it is inactive. Thus, an inactive
comparator (with respect to t) in a standard network never moves any value, when
10t1N−t−1 is initially put to its registers. In the fault-free case, one copy of Ih is
enough to move 1∗ to register t. On the other hand, if there are faults in Ih, we need
additional copies of Ih to recover from a wrong register to which 1∗ could be moved.
In section 4.2, based upon the structure of active comparators in Ih, we will assign
weights to registers in Ih to measure the progress in the recovery procedure from the
effect of faulty comparators, which 1∗ has already met.

From now on, by Xh we will denote one of the networks Ih, Sh(i1, . . . , ih), or
S′
h(i1, . . . , ih+1). Consider the sequence ([i : j0], [i : j1], . . . , [i : jmi

]) of all outgoing
comparators from a register i, 0 ≤ i ≤ N − 1, in a network Xh, where the order of
comparators is the same as the order of stages, to which the stages belong.

Fact 1. The sequence of all outgoing comparators from a register i, 0 ≤ i ≤ N−1,
in Xh is empty or in one of the following forms:

(a) ([i : l], [i : j1], [i : j2]),
(b) ([i : l], [i : j1]),
(c) ([i : l]),
(d) ([i : j0], [i : j1]),
(e) ([i : j0]),

where [i : l] ∈ CC(Xh), [i : j0], [i : j1], [i : j2] /∈ CC(Xh), and i < j2 < j1 < l or
i < j1 < j0.

Remark. Let 10t1Nh−t−1 be an input to Ih, and consider the sequence of active
comparators (with respect to t) outgoing from a register i, 0 ≤ i < Nh. It should
be noticed that each such sequence also fulfills the statement of Fact 1. There are
two reasons for that: (1) active comparators form an end segment of a sequence of all
outgoing comparators, since they are shorter than inactive ones, and (2) sequences in
the cases (a)–(e) represent also all their end segments.
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4.2. Register weights. Assume that 1∗ is now in a register i and that there are
active comparators outgoing from i. In such a situation, 1∗ will move through the first
active comparator that is not faulty. The weight ch(i, t), defined formally below, is
supposed to estimate the number of fault-free copies of Ih that are needed to move 1∗

from the register i close to the register t. The definition depends only on the structure
of Ih (fault-free). However, the definition is formulated in such a way that it will be
used to bound the effects of “wrong” movements of 1∗ due to faulty comparators. In
other words, if we consider the sequence of faulty subnetworks of Ih, then this number
will also describe the difference between the number of faulty comparators that have
blocked 1∗ on the way from the initial register to the register i and the number of
correcting comparators through which 1∗ has moved. Roughly speaking, each faulty
comparator increases the weight by 1, and each correcting comparator decreases it
by 1.

The outline of technical details in this subsection is as follows. In Lemma 4.3,
we consider a single copy of Ih with k faults and give an upper bound on the weight
difference between the output and input registers of 1∗. In Lemma 4.4, we analyze
the number of copies that are required to reduce the weight of the output register to
zero when k is the upper bound on the total number of faults in all copies. Next, in
Fact 2 we prove that registers of weights zero are within logarithmic distance from
the expected final position of 1∗. Finally, in Lemma 4.5 we estimate the weight of
register 0 and the weights of all other registers for all inputs under consideration. We
finish this subsection by proving Theorem 1.1.

Let h ≥ 0 and 0 ≤ t ≤ Nh − 1. Inductively, for i = Nh − 1, Nh − 2, . . . , 0 we
define the weight ch(i, t) of register i in Ih with respect to the goal register t. If i > t

or the sequence of active comparators outgoing from i is empty, then ch(i, t)
def
= 0.

Otherwise, the sequence has to have one of the forms described in Fact 1. Using the
notation from Fact 1, we define

ch(i, t)
def
= max(1, ch(l, t) + 1, ch(j0, t), ch(j1, t)− 1, ch(j2, t)− 2),(4.1)

where any terms that are undefined for a particular case should be replaced by 0.
The basic properties of weights ch(i, t) with respect to the behavior of a faulty

version of Ih are summarized in the following two lemmas.
Lemma 4.3. Let h ≥ 0, Nh = 3 · 2h − 1, and 0 ≤ i < t ≤ Nh − 1. Let I ′h denote

any k-fault subnetwork of Ih, and let xi = 0i10t−i1N−t−1 be an input to I ′h. Then the
output xiI

′
h has a form xj = 0j10t−j1N−t−1, and if ch(j, t) �= 0, then

ch(j, t)− ch(i, t) ≤ k − 1.

Proof. The network I ′h is standard, because all comparators in Ih are standard.
Therefore, the only 1 that can possibly move is the 1 initially located in the register i
(referred to as 1∗ in the following). Thus the output takes the form xj for some j ≥ i.

Since ch(j, t) �= 0 is assumed, the condition ch(i, t) ≥ 1 must be true (otherwise,
since i < t and ch(i, t) = 0, there is no active comparator outgoing from i, and so
j = i, a contradiction). Consider the sequence i = i0 < i1 < · · · < is = j, s ≥ 0, such
that 1∗ moves through comparators [i0 : i1], [i1 : i2], . . . , [is−1 : is] in a given order
(in the faulty network I ′h). Due to Corollary 4.2, only the last comparator could be
a correcting one, and if [im−1 : im], 0 < m ≤ s, is a noncorrecting comparator at
stage lm, then all comparators outgoing from im are at stages later than lm. Consider
now all but the last comparators in the sequence.
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By Fact 1, we know the structure of the sequence of comparators outgoing from
register im, 0 ≤ m < s. At the beginning of the sequence there could be inactive
comparators, followed by zero or more faulty comparators, and then there is the
comparator [im : im+1]. Let km denote the number of active faulty comparators
outgoing from im before [im : im+1]. Then, by the definition of ch(im, t),

ch(im, t) ≥ ch(im+1, t)− km.(4.2)

For the last comparator in the sequence, we have two cases, as follows.
Case [is−1 : is] ∈ CC(Ih). In this case, by Fact 1, ks−1 must be zero, and from

(4.1) we can get a stronger inequality ch(is−1, t) ≥ ch(is, t) + 1. Summing up the
inequality with (4.2) over all m = 0, . . . , s− 2, we get

ch(is, t)− ch(i0, t) ≤ k0 + k1 + · · ·+ ks−2 − 1 ≤ k − 1.

Case [is−1 : is] /∈ CC(Ih). Because ch(is, t) > 0, there is at least one active
comparator outgoing from is. By Corollary 4.2, comparators outgoing from is must
occur at stages later than that of [is−1 : is]. Due to Fact 1 and our definition of is, all
active comparators outgoing from is must be faulty. Therefore k0 + k1 + · · ·+ ks−1 ≤
k − 1. Summing up the inequalities as in the previous case, we get the desired
result.

Lemma 4.4. Let Ls
h

def
= {i ∈ [Nh] : ∀ i ≤ t ≤ Nh − 1, ch(i, t) ≤ s}, where h ≥ 0,

s > 0, and Nh = 3 ·2h−1. Moreover, let k ≥ k′ ≥ 0 and A be any k′-fault subnetwork

of I
(k+s)
h . Then for an input xi = 0i10t−i1Nh−t−1, 0 ≤ i ≤ t ≤ Nh − 1 and i ∈ Ls

h,
the output xiA = 0j10t−j1Nh−t−1 has the property that ch(j, t) = 0.

Proof. Assume to the contrary that there are h, s, k, k′, A, i, t described in the
lemma such that ch(j, t) > 0. Let k1, k2, . . . , kk+s denote the number of faulty com-
parators in the first, the second, . . . , the (k+ s)th copy of Ih. Let i = i0 ≤ i1 ≤ · · · ≤
ik+s = j denote the positions of the first 1 between the corresponding copies. Clearly,
ch(im, t) > 0 for 0 ≤ m ≤ k + s. Using Lemma 4.3 for each km-fault subnetwork of
Ih and summing up the inequalities, we get

ch(ik+s, t)− ch(i0, t) ≤
(

k+s∑
m=1

km

)
− (k + s).

Because
∑k+s

m=1 km ≤ k′ ≤ k and ch(i, t) ≤ s, we have arrived at the contradiction
ch(j, t) ≤ 0.

One can observe that 1∗ has no chance to move when it is in a register i such that
ch(i, t) = 0. Fortunately, in such cases 1∗ is very close to its target position t.

Fact 2. Let h ≥ 0 and 0 ≤ t ≤ Nh − 1. Consider a register i, i < t, such that
ch(i, t) = 0. Then t− i ≤ h.

Proof. By induction on h, we prove that for each register i, 0 ≤ i ≤ Nh−2, in Xh

at least one comparator outgoing from i is of length ≤ h+ 1.
Basis: h = 0. There is only one comparator [0 : 1] outgoing from 0.
Inductive step: h > 0. Let N ′ = 3 ·2h−1. For 1 ≤ i ≤ N ′−2 and N ′ ≤ i ≤ Nh−2

the statement holds due to the inductive assumption about Ih−1, Sh−1, and S′
h−1.

Therefore, we should consider only registers 0 and N ′ − 1. By construction, there is
a comparator of length 1 outgoing from 0. In case of N ′ − 1, there is a correcting
comparator [N ′ − 1 : N ′ + max(h− 3, 0)] in Xh of length not greater than h+ 1, and
we are done.
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Assume now that ch(i, t) = 0 for some i < t. Then each comparator [i : j] is
inactive, particularly those of length ≤ h+ 1. Because j ≥ t+ 1, t− i ≤ h is true and
Fact 2 holds.

To prove Theorem 1.1, we need only to estimate the weight ch(i, t) for i in
particular sets of register indexes. In fact, we are interested in two sets: {0} and
{0, 1, . . . , N − 1}.

Lemma 4.5. Let h ≥ 0 and 0 ≤ t ≤ Nh − 1. Then
(i) ch(0, t) ≤ 1,
(ii) 0 ≤ ch(i, t) ≤ h+ 1 for 0 ≤ i ≤ t.
We postpone the proof of Lemma 4.5 to the next subsection. Now, we can prove

the main result of this section, namely, Theorem 1.1.
Proof of Theorem 1.1. We should prove that for each N > 0 and k ≥ 0 there exists

an explicit construction of an N -input k-fault-tolerant INSERT-network of depth
O(logN + k).

Assume N > 2. (For N = 2 one takes (k + 1)-times the comparator [0 : 1].)
Let h ≥ 1 be such that 3 · 2h−1 − 1 < N ≤ 3 · 2h − 1. Consider the network A that
consists of I

(k+1)
h followed by h+ 2k stages of the odd-even transposition network. A

contains Nh = 3 · 2h − 1 ≥ N registers. To get the N -input network, we delete the
last superfluous registers and comparators that use them. Let the truncated network
be called B. We prove that B has the desired properties.

Since depth(Ih) = 2h + 2, depth(I
(k+1)
h ) = 2h + 2 + 8k, with respect to Proposi-

tion 2.1 and Lemma 4.1. Accordingly, depth(B) ≤ depth(A) = 3h + 10k + 3. Since
h = �log N+1

3 �, the total depth of B is of O(logN + k).
To prove that B is a k-fault-tolerant INSERT-network, we will use the insert

0-1 principle. Therefore, we consider only the behavior of B on inputs of the form

yt
def
= 10t1N−t−1, where 0 ≤ t ≤ N −1. However, the behavior of B is the same as the

behavior of the first N registers of A on the corresponding input y′t
def
= 10t1Nh−t−1,

because the deleted registers contain 1’s in A, and thus the deleted comparators are
inactive.

By Lemma 4.5, ch(0, t) ≤ 1. Using Lemma 4.4 with s = 1 and Ls
h ⊇ {0}, we

get that after I
(k+1)
h , item 1∗ is in a register j such that ch(j, t) = 0. According to

Fact 2, t− j ≤ h. By standard arguments, h+2k stages of an odd-even transposition
will move 1∗ to the register t, even in the presence of k faulty comparators. That
proves that A is a k-fault-tolerant INSERT-network, and, by the arguments above, so
is B.

Remark. Due to Lemma 4.5(ii), the item to be inserted can be given in any register
(i.e., not necessarily in register 0), and such a generalized INSERT-network is still of
depth O(logN + k). To construct the network we should take (h + k) copies of Ih,
followed by (h + k) copies of the symmetric version of Ih (replace each comparator
[i : j] in Ih by [N − j : N − i]), and then the odd-even transposition part. The same
arguments as above prove that the network is correct.

4.3. Estimation of weights. This subsection is devoted to the proof of Lemma
4.5, that is, to an estimation of the values ch(i, t). Since the weights are defined in
a sequential manner and the structure of Ih is described recursively, we need a tool
that allows us to apply induction on the structure of Ih in order to get the estimation.
The weights below are defined recursively based on the structure of the networks,
but they possess sequential properties similar to those of the weights ch(i, t) and, in
consequence, will be used as their upper bounds.



1500 MAREK PIOTRÓW

Weights wh(i) for registers in Sh(i1, . . . , ih) (and similar weights w′
h(i) for registers

in S′
h(i1, . . . , ih+1)) are defined recursively below. Let h > 0, Nh = 3 · 2h − 1, and

N ′
h = 3 · 2h−1. Then

w0(j)
def
= w′

0(j)
def
=

{
2, j = 0, 1,
1, j = i1,

wh(j)
def
=

⎧⎪⎪⎨⎪⎪⎩
2, j = 0,
wh−1(j − 1) + 1, 0 < j < N ′

h,
w′

h−1(j −N ′
h), N ′

h ≤ j < Nh,
l, j = il, l ≤ h,

w′
h(j)

def
=

⎧⎪⎪⎨⎪⎪⎩
2, j ∈ {0, N ′

h},
wh−1(j − 1) + 1, 0 < j < N ′

h,
w′

h−1(j −N ′
h) + 1, N ′

h < j < Nh,
l, j = il, l ≤ h+ 1.

We will need the following properties of the weights.
Fact 3. Let h ≥ 0. Then wh(j) = w′

h(j) = j + 2 for j = 0, 1, . . . , h. Moreover,
wh(j) ≤ h+ 2 and w′

h(j) ≤ h+ 2 for j = 0, 1, . . . , Nh − 1.
Proof. The proof follows from an easy induction.
Fact 4. Let h ≥ 0 and 0 ≤ i ≤ Nh− 1. Consider the sequence of comparators in

Sh (or S′
h) outgoing from the register i, which must be of a form described in Fact 1.

Then, using the notation given there,

wh(i) ≥ max(wh(l) + 1, wh(j0), wh(j1)− 1, wh(j2)− 2),

w′
h(i) ≥ max(w′

h(l) + 1, w′
h(j0), w

′
h(j1)− 1, w′

h(j2)− 2),

where any terms that are undefined for a particular case should be replaced by zero.
Proof. The idea of the proof is to proceed by induction and reduce the inequalities

for h to the corresponding inequalities for h − 1. Separately, we should check only
registers that have new outgoing comparators, that is, the register 0 in Sh and the
registers 0, N ′

h in S′
h. Moreover, it should be verified that, in the process of assigning

extra registers from the level h− 1 to registers from the level h, their weights do not
increase more than the recurrence allows (otherwise, we could not apply induction).
We check only the register 0 in Sh, the register N ′

h in S′
h, and the reassignment of

extra registers in the definition of S′
h. The other cases are left to the reader.

Case 0 in Sh. The sequence of outgoing registers from 0 in Sh is ([0 : N ′
h], [0 : 1]).

Since wh(0) = 2, wh(N ′
h) = w′

h−1(0) = 2, and wh(1) = wh−1(0)+1 = 3, the inequality
wh(0) ≥ max(wh(N ′

h), wh(1)− 1) holds.
Case N ′

h in S′
h. The corresponding sequence for N ′

h in S′
h is ([N ′

h : i1], [N ′
h :

N ′
h + N ′

h−1], [N ′
h : N ′

h + 1]), where the first comparator is a correcting one and
the last one is absent for h = 1. By induction, we know that 2 = w′

h−1(0) ≥
max(w′

h−1(N
′
h−1), w

′
h−1(1) − 1). Since w′

h(N ′
h) = 2, w′

h(i1) = 1, w′
h(N ′

h + N ′
h−1) =

w′
h−1(N

′
h−1) + 1 ≤ 3, and w′

h(N ′
h + 1) = w′

h−1(1) + 1 ≤ 4, the inequality w′
h(N ′

h) ≥
max(w′

h(i1) + 1, w′
h(N ′

h +N ′
h−1)− 1, w′

h(N ′
h + 1)− 2) holds.

Case extra registers in S′
h. For each register j in S′

h, N ′
h < j < Nh, we have

w′
h(j) = w′

h−1(j − N ′
h) + 1. Hence, the weights increase by 1 in this part of the

network. We should check that the weights of extra registers in S′
h−1 do not increase

more that 1 through the reassignment in S′
h. However, a register il, 1 ≤ l ≤ h, in

S′
h−1 is assigned to il+1 in S′

h, and therefore, its weight increases by exactly 1.
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Let h′ = max(h− 1, 1). Consider the subnetwork Sh−1 in S′
h. Its extra registers

i1, . . . , ih′ have weights wh−1(i1) = 1, . . . , wh−1(ih′) = h′ and are assigned to nor-
mal registers N ′, N ′, N ′ + 1, . . . , N ′ + h′ − 2. Since w′

h(N ′) = 2 and w′
h(N ′ + j) =

w′
h−1(j) + 1 = j + 3 for j = 1, . . . , h′ − 2 (the last equality being due to Fact 3), the

weights of the extra registers have increased by at most 1. However, w′
h(j) increases

by exactly 1 with respect to wh−1(j − 1), where 0 < j < N ′
h. Consequently, we can

use induction to prove Fact 4 for all other registers in S′
h.

Proof of Lemma 4.5. We shall prove the lemma by induction on h. To this end
we extend (i) to (i′) and add a new statement (iii).

(i′) ch(i, t) ≤ i+ 1 for 0 ≤ i ≤ min(h, t),
(ii) 0 ≤ ch(i, t) ≤ h+ 1 for 0 ≤ i ≤ t,
(iii) ch(i, t) ≤ wh−1(i− 1) for h ≥ 1 and 1 ≤ i < 3 · 2h−1 ≤ t,

where weights wh(i) for registers in Sh(i1, . . . , ih) have been defined above. In the
following, induction is made on h for all the three inequalities being proved.

Directly from the definition, one can check that (i′), (ii), and (iii) hold for h = 0, 1.
Assume that h > 1. Let Nh = 3 · 2h − 1 and N ′

h = 3 · 2h−1. In the proof, we will use
the following observation concerning weights ch(i, t) in Ih:

ch(i, t) =

{
ch−1(i− 1, t− 1), 1 ≤ i ≤ t < N ′

h,
ch−1(i−N ′

h, t−N ′
h), N ′

h ≤ i ≤ t < Nh.

The first equality is a consequence of the fact that if 1 ≤ t < N ′
h, then all regis-

ters assigned to extra registers of Sh−1 contain 1’s, and therefore, the subnetworks of
Sh−1 and Ih−1 consisting of active comparators only (with respect to t− 1) are iden-
tical. Recall that Ih and Sh are identical after deleting extra registers in Sh and the
comparators that use them. The second equality follows directly from the definitions.

First, we prove (iii) for a fixed t, proceeding by induction backwards on i and
using Fact 4. Assume first that t ≥ N ′

h + h− 3. Then for each register i, 1 ≤ i < N ′
h,

all its outgoing comparators are active. Therefore, the symbols l, j0, j1, and j2 in the
definition of ch(i, t) and in the inequalities of Fact 4 denote the right-hand ends of
the same comparators. If, by induction, (iii) holds for l, j0, j1, and j2, then it holds
for i too. To start the induction, we should check only whether (iii) holds for registers
assigned to the extra registers of Sh−1. A register im, 1 ≤ m < h, has the weight
wh−1(im) = m and is assigned to the register jm = N ′

h + max(0,m− 2) with weight
ch(jm, t) = ch−1(jm −N ′

h, t−N ′
h) ≤ max(1,m− 1) ≤ m, where we use (i′) from the

inductive assumption about Ih−1. By induction, (iii) follows.
If N ′

h ≤ t < N ′
h + h− 3, then there are inactive correcting comparators outgoing

from registers in {1, . . . , N ′
h − 1}. It is not difficult to see that these comparators are

exactly [N ′
h − 1 : N ′

h + h − 3], [N ′
h − N0 : N ′

h + h − 4], [N ′
h − N1 : N ′

h + h − 5], . . . ,
[N ′

h − Nmt
: t + 1], where mt = N ′

h + h − t − 5. Moreover, the structure of active
outgoing comparators for a register i in an interval [N ′

h −Nj , N
′
h − 1], j ≤ mt, is the

same as the structure of all comparators outgoing from i in Ij . Hence, ch(N ′
h−Nj , t) =

cj(0, Nj − 1) ≤ 1. Since wh−1(j) ≥ 2 is true for any j, the inequality (iii) holds for a
register i in the set {N ′

h −Nj : j ≤ mt}. For a register not in the set, all its outgoing
comparators are active, and the inductive arguments from the previous paragraph are
valid.

(ii) Obviously, ch(0, 0) = 0. Assume t > 0. If t < N ′
h, then ch(i, t) = ch−1(i − 1,

t − 1) ≤ h by induction for all i, 1 ≤ i ≤ t. Since [0 : N ′
h] is inactive, ch(0, t) =

ch(1, t) ≤ h. If N ′
h ≤ t < Nh, then ch(i, t) = ch−1(i−N ′

h, t−N ′
h) ≤ h for N ′

h ≤ i ≤ t.
For other values of i we use (iii) and Fact 3. Namely, if 1 ≤ i < N ′

h, then ch(i, t) ≤
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wh−1(i− 1) ≤ h+1. By definition and the inequalities above, ch(0, t) is also bounded
by h+ 1.

(i′) By similar arguments as in (ii), one can get the inequality.

5. Bucket fault-tolerant INSERT-network. In this section, we describe the
second part of the CORRECT1

k network, namely, bucket-insertion of 1∗s. The problem
we will deal with is quite similar to the problem of inserting an item into a sorted
sequence (discussed in the previous section), but instead of one displaced item, there
are s, s ≤ k, such items. As before, we will use a generalized insert 0-1 principle; that
is, we assume that an input to our network consists of a sequence of 0’s with at most
k “displaced” 1∗s spread inside it, followed by a sequence of 1’s.

As we showed in the previous section, in case of one 1∗ to be inserted, there is
a well-defined path in the INSERT-network, along which the item can be moved to
its destination, and only faulty comparators on the path can make the item to switch
to another (wrong) path. In case there are more 1∗s to be inserted, a comparison
between two 1∗s causes the upper one to be blocked on its path by the lower 1∗. We
call such a situation a conflict. For the upper 1∗ the effect of a conflict is the same
as if it met a faulty comparator. Potentially, we can have up to k/2 conflicts at each
stage of the INSERT-network. To avoid this, we group consecutive k registers into
so-called buckets and organize the movement of items between buckets in such a way
that conflicts occur inside buckets only.

The idea is to replace each register in the INSERT-network with a bucket of
registers, and each comparator [i : j] with the comparator [li : uj ], where li is the
lower (last) register in the ith bucket and uj is the upper (first) register in the jth
bucket. To make the construction work, subnetworks based on a MINMAX-network
are put in each bucket so that the MAX-item in one bucket is compared to the MIN-
item in the other bucket. Since the buckets are of size k, this will never cause a
situation where 1∗ in the MAX-register of a bucket is compared to 1∗ in the MIN-
register of another one. Thus, the conflicts outside buckets will be avoided unless
there are faulty comparators.

We start by fixing some definitions. Let k > 1 be an integer. We say that a bucket
of size k is empty (respectively, full) if it contains k zeroes (respectively, k ones). The
register li = i · k and ui = (i + 1) · k − 1 will be called the MIN-register and the
MAX-register, respectively, of the ith bucket.

Constructing the networks for buckets, we would like to achieve the following
three goals in the fault-free case:

1. An incoming 1 is never blocked by another 1 in the MIN-register of a bucket.
2. If a bucket is nonempty, a 1 is moved into the MAX-register before its first

outgoing comparator is used.
3. If a bucket is empty and it has an incoming comparator preceding the first

outgoing one, the incoming 1 is moved directly to the MAX-register before
the first outgoing comparator is used.

If the network contains faulty comparators and some of the goals are not achieved, we
would like to assign a distinct faulty comparator to each such a goal. (Each incoming 1
that has been blocked counts on its own.)

Recall from the previous section that the INSERT-network consists of k + 1
copies of Ih followed by h + 2k stages of an odd-even transposition network (cf. the
proof of Theorem 1.1 in subsection 4.2). First, we present the implementation of
the odd-even transposition on buckets. Then we will deal with Ih. The bucket ver-
sions of both networks are shown in Figure 5.1. A basic component of the net-
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Fig. 5.1. Examples of TN,k and JN,k networks—the bucket versions of odd-even transposition
and the I2 network.
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Fig. 5.2. The recursive structure of Mk and the M14 network.

works inside buckets is a MINMAX-network Mk that is described in Lemma 5.1. The
next two lemmas give the correcting properties of our bucket INSERT-networks. In
Lemma 5.2, we consider a single copy of the bucket version of Ih. This is an ana-
logue of Lemma 4.3. Finally, Lemma 5.3 summarizes the properties of the whole
construction.

Lemma 5.1. For each k ≥ 2 there is an explicit construction of a standard k-input
MINMAX-network Mk such that depth(Mk) ≤ 2 log k and delay(Mk) ≤ 4.

Proof. The recursive construction of Mk that we give is applicable for k ≥ 6
(see also Figure 5.2). The construction of the network for the initial values of
k is straightforward: M2 = {[0 : 1]}, M3 = {[0 : 1]}{[0 : 2]}{[1 : 2]}, M4 =
{[0 : 3], [1 : 2]}{[0 : 1], [2 : 3]}, and M5 = {[0 : 4], [1 : 2]}{[0 : 1], [3 : 4]}{[0 : 3], [2 : 4]}.
Let k ≥ 6. It is easier to give the recurrence for the reversed sequence of stages.
Therefore, assume that rev(A) denotes a network A after reversing the sequence of
stages of A; that is, rev(A) = Sd, Sd−1, . . . , S1 if A = S1, . . . , Sd:

rev(Mk)
def
= ({[0 : 1], [�k/2� − 1 : k − 1]}, {[0 : �k/2�], [k − 2 : k − 1]}, {[0 : k − 1]})
∪ (rev(M�k/2�−1)

⇒1 ⇓ 1) ∪ (rev(M�k/2	−1)
⇒2 ⇓ �k/2�).

Note that in order to obtain delay(Mk) ≤ 4, the upper subnetwork Mk/2−1 is shifted
one position to the right compared to the lower one. The reason is that registers
of the upper subnetwork are used outside it in the last stage only, while registers of
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the lower one are used one stage earlier. Clearly, the network is correctly defined.
Moreover, the depth of Mk is bounded by

max(depth(M�k/2�−1) + 1, depth(M�k/2	−1) + 2),

and this is at most 2 log(k/2)+2 = 2 log k. To see that delay(Mk) is at most 4, notice
that the external registers 0 and k − 1 are used only in the last three stages.

Fact 5. For k > 2 and j > 0 let Nk denote the j-fault subnetwork of Mk. If
for some input x ∈ 1{0, 1}k−20 the output of Nk has the property (xNk)[0] = 1 and
(xNk)[k − 1] = 0, then j ≥ 2.

Proof. Assume to the contrary that the conditions from Fact 5 hold and that
j = 1. Then [0 : k − 1] is the only faulty comparator in Nk. Consider the initial
contents of the register 1, which is different from registers 0 and k − 1, when k > 2.
If x[1] = 0, then the comparator [0 : 1] must also be faulty. If x[1] = 1, then this 1
is moved to the register �k/2� − 1 (or 2 if k = 4), and then also the comparator
[�k/2� − 1 : k − 1] ([2 : 3], respectively) must be faulty—a contradiction.

Informally speaking, Fact 5 says that to destroy both MIN and MAX outputs
of Mk we need at least two faulty comparators if k > 2. For k = 2 we obtain the same
effect when we repeat the network M2 = {[0 : 1]} twice.

To make all our notation simpler, from now on we assume that k > 2 and
N = pk, that is, that the set of registers can be exactly divided into p buckets of
k registers each.4 Thus, we are dealing with the INSERT-network of p inputs. For
m = 0, 1, . . . , p − 1, let lm = mk and um = (m + 1)k − 1. Define transportation
network TN,k (compare Figure 5.1) to be

TN,k
def
= {[um−1 : lm] : 0 < m < p}⇒depth(Mk) ∪

p−1⋃
m=0

(Mk ⇓ lm).

Note that depth(TN,k) ≤ 2 log k+1 and delay(TN,k) ≤ 4. Since TN,k can transport 1∗s
between adjacent buckets, to move s such items by the distance of h + 1 buckets we
need h+1+s copies of TN,k. If, in addition, j comparators can be faulty, the number
of copies increases to h + 1 + s + j. Because, in the case of correction network,
s + j ≤ k, we take h + k + 1 copies of TN,k with the total depth upper-bounded by
2 log k + 1 + 4(h+ k) ≤ 4 logN + 4k.

Now we are going to show how Ih is transformed into the bucket version. Note
that the INSERT-network that we need has exactly p inputs; therefore we choose h
such that 3 · 2h−1 ≤ p ≤ 3 · 2h − 1. If there are superfluous registers in Ih, the last
ones should be deleted (cf. the proof of Theorem 1.1).

To describe the transformation, we need the structure of incoming and outgoing
comparators of each register in Ih. Recall that comparators involving a register i
can only appear at stages Sfst(i,Ih), Sfst(i,Ih)+1, . . . , Slst(i,Ih). By simple induction one
can check that the sequence of comparators for a register i satisfies the following
properties.

Fact 6. For each register i, 1 ≤ i ≤ 3 · 2h− 1, in the network Ih = S1, S2, . . . , Sd

the following hold:
1. if [i : ∗] ∈ Sfst(i,Ih), then lst(i, Ih) ≤ fst(i, Ih) + 1 and [∗ : i] /∈ Sfst(i,Ih)+1;
2. if [∗ : i] ∈ Sfst(i,Ih), then

• [∗ : i] /∈ Sfst(i,Ih)+1 ∪ Sfst(i,Ih)+2,

4In the general case, we can take the first (upper) bucket smaller.
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(iii)

(ii)

(iv)

Fig. 5.3. The four basic cases of a comparator sequence for register i in Ih.
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Fig. 5.4. The structure of buckets in the bucket version of Ih.

• i /∈ support(Sfst(i,Ih)+4),
• [i : ∗] /∈ Sfst(i,Ih)+5 ∪ Sfst(i,Ih)+6 ∪ Sfst(i,Ih)+7,
• if [∗ : i] ∈ Sfst(i,Ih)+3, then lst(i, Ih) = fst(i, Ih) + 3,
• if [∗ : i] ∈ Sfst(i,Ih)+6, then i /∈ support(Sfst(i,Ih)+3 ∪ Sfst(i,Ih)+5 ∪
Sfst(i,Ih)+7),

• if [i : ∗] ∈ Sfst(i,Ih)+3, then i /∈ support(Sfst(i,Ih)+6),
• if [l : i] ∈ Sfst(i,Ih)+j and j ≥ 1, then [l : j] is a correcting comparator.

These properties of the sequence of comparators for a register i are depicted in
Figure 5.3. It shows that the sequence is a subsequence of one of the four basic
sequences.

Our transformation consists of the following steps:
1. replace each comparator [i : j] by [ui : lj ], where ui = i·k+k−1 and lj = j ·k;
2. insert an empty stage after each stage of Ih;
3. put the MINMAX-networks Mk, the MIN-networks M ′

k (to be described
below), and an additional comparator inside buckets, as shown in Figure 5.4.

The M ′
k network is obtained from the Mk network by deleting comparators in-

coming to the last (MAX) register. Let JN,k denote the whole network after the
transformation. For example, J11k,k is depicted in Figure 5.1.

To define JN,k formally, let N = pk and Ap = S1, S2, . . . , Sd denote the network
Ih, 3 · 2h−1 ≤ p ≤ 3 · 2h − 1, after deleting registers p + 1, p + 2, . . . , 3 · 2h − 1
and all comparators that use them. Let BN,k = T1, T2, . . . , T2d denote the network
after transformations 1 and 2; that means that T2 = T4 = · · · = T2d = ∅ and T2l−1 =
{[ui : lj ] : [i : j] ∈ Sl}, l = 1, 2, . . . , d. Moreover, let Ck,m be the network put in bucket
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m, 0 ≤ m < p, that is, Ck,m = Mk ∪ {[0 : k − 1]⇒depth(Mk)+1 : [∗ : m] ∈ Sfst(m,Ap)} ∪⋃{(M ′
k)

⇒2j : [∗ : m] ∈ Sfst(m,Ap)+j ∧ j ≥ 1}. Finally, let

JN,k
def
= (BN,k)

⇒depth(Mk) ∪
p−1⋃
m=0

(Ck,m ⇓ lm)⇒2fst(m,Ap)−2.

Due to Fact 6, the above definition is correct. One can verify that depth(JN,k) ≤
4 logN + 3 and delay(JN,k) ≤ 18.

Furthermore, with respect to Fact 5, one faulty comparator inside a MINMAX-
network cannot cause both MIN and MAX outputs to be faulty. If such a comparator
destroys the MIN output (respectively, MAX output), the effect is as though the next
incoming (respectively, outgoing) comparator had been faulty. This effect leads us,
informally, to an assumption that only comparators between buckets become faulty
and to an analysis of the networks as in the case of INSERT-networks. Formally, we
will prove an analogue of Lemma 4.3 for the bucket version of Ih.

Consider an input x ∈ {0, 1}N that has l 1∗s among zeroes and N − t− l ones at
its end; that is, x = 0j010j110j2 . . . 10jl1N−t−l, where 0 ≤ l ≤ k, j0, j1, . . . , jl−1 ≥ 0,

jl ≥ 1, and
∑l

m=0 jm = t. We say that a comparator [ui : lj ] between buckets i and j
is active with respect to t if lj ≤ t. Since the structure of active comparators outgoing
from a bucket i is the same as in Ih, we can use equality (4.1) to define ch(i, t), the
weight of the bucket i with respect to t. Let i1 = j0/k�, i2 = (j0 + j1 + 1)/k�, . . . ,
il = (j0 + · · ·+ jl−1 + l− 1)/k� denote the indices of buckets that contain 1∗s. Then
the weight of x is defined to be

Ch(x, t)
def
=

l∑
j=1

ch(ij , t).

Lemma 5.2. Let k > 2, N = pk, and h be such that 3 · 2h−1 ≤ p ≤ 3 · 2h − 1.
Let x = 0j010j110j2 . . . 10jl1N−t−l, where 0 ≤ l ≤ k, j0, j1, . . . , jl−1 ≥ 0, jl ≥ 1,

and
∑l

m=0 jm = t. Moreover, let J ′
N,k denote any s-fault subnetwork of JN,k and

y = xJ ′
N,k. If the weight Ch(x, t) is positive, then

Ch(y, t)− Ch(x, t) ≤ s− 1.

Proof. Let JN,k = R1R2 . . . RD and J ′
N,k = R′

1R
′
2 . . . R

′
D, where D = depth(JN,k)

and R′
i ⊆ Ri, i = 1, . . . , D. Let xi = xR′

1R
′
2 . . . R

′
i, i = 0, . . . , D. We say that a

comparator [ui : lj ] ∈ Rm between buckets i and j is an exchanging comparator with
respect to J ′

N,k and x if it really exchanges 0 with 1, that is, if [ui : lj ] ∈ R′
m and

xm−1[ui] = 1 and xm−1[lj ] = 0 (hence xm[ui] = 0 and xm[lj ] = 1). Only exchanging
comparators move ones among buckets and, therefore, can change the weight of the
sequence xi. Let E(J ′

N,k, x) denote the set of all exchanging comparators with respect
to J ′

N,k and x. One can easily observe that

Ch(y, t)− Ch(x, t) =
∑

[ui:lj ]∈E(J′
N,k

,x)

ch(j, t)− ch(i, t).

For each i, there is at most one exchanging comparator [ui : ∗] outgoing from a
bucket i, since all outgoing comparators are applied one after another (cf. Figure 5.4).
To prove the lemma, we would like to assign to each bucket i a set of faulty compara-
tors Fi such that Fi = ∅ if there are no exchanging comparators outgoing from i, or
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else it contains enough elements to get ch(j, t) − ch(i, t) ≤ |Fi|, where [ui : lj ] is the
exchanging comparator. In addition, all these sets should be pairwise disjoint.

Let fi be the number of active comparators outgoing from a bucket i that precede
an exchanging comparator [ui : lj ]. By the definition of ch, ch(i, t) ≥ ch(j, t) − fi.
Therefore, we have only to choose fi faulty comparators for Fi. Since the preceding
comparators do not move the 1 located in the ith MAX-register down, they have to be
faulty or blocked by another 1 in their destination registers. The faulty comparators
are inserted directly into Fi. In case of a blocked comparator, there is a 1 in the MIN-
register of its destination bucket. The bucket cannot be full, because of our definition
of active comparators. That means that there must be a faulty comparator in the
subnetworks Mk or M ′

k which precede the comparator in question in the destination
bucket. We make it also a member of Fi. Sets Fi, i = 0, 1, . . . , p − 1, are pairwise
disjoint, because each faulty active comparator is inserted into at most one set Fi,
and the faulty comparators responsible for blocking 1’s are selected from different
subnetworks.

Summing up the inequalities, we would get Ch(y, t)−Ch(x, t) ≤∑p−1
i=0 fi ≤ s. In

order to get the stronger upper bound s − 1, we will show that at least one of the
following situations always must occur:

(i) there is an exchanging comparator that is also a correcting comparator;
(ii) there is an exchanging comparator that moves a 1 from a bucket with some

positive weight to a bucket with zero weight;
(iii) there exists a faulty comparator outside

⋃p−1
i=0 Fi.

In cases (i) and (ii), for at least one exchanging comparator [ui : lj ] we have a stronger
upper bound ch(j, t) − ch(i, t) ≤ −1. The result follows. In case (iii), obviously,∑p−1

i=0 fi ≤ s− 1. To finish the proof, we assume that (i) and (ii) do not hold, and we
prove (iii).

Consider a bucket with the highest index imax such that ch(imax , t) > 0 and such
that bucket contains at least one 1 at the moment when the sequence y is in the
registers. Such a bucket must exist, because (ii) does not hold and there are buckets
with positive weights at the moment when x is in registers. Since ch(imax , t) > 0,
there are active comparators outgoing from imax , but none of them is an exchanging
comparator, due to our assumption. This can only be caused by one of the following
situations:

1. The bucket imax contained 1’s at the beginning, but no 1 was moved to
the MAX-register due to faulty comparators in the subnetwork Mk. Due to
Fact 5, we can select a faulty comparator which is not in

⋃p−1
i=0 Fi.

2. The bucket imax contained a 1 at the beginning that was moved to the MAX-
register, but all active comparators outgoing from imax were faulty or blocked.
We can select at least one faulty comparator as in the case of Fi. Recall that
Fimax is empty in this case.

3. The bucket imax contained no 1’s at the beginning. The 1 which is in the
bucket at the end could only be moved there by the first incoming comparator
(the second and the third one, if they exist, are correcting and could not be
exchanging due to the assumption that (i) does not hold). The 1 is blocked in
the bucket by the next faulty comparator [limax : uimax ] or by faulty/blocked
outgoing comparators, as in the previous case.

Repeating the further arguments from section 4, we get that if an x with l 1∗s is
given as an input to the bucket INSERT-network and Ch(x, t) ≤ l holds, then k copies
of JN,k are enough to obtain an output y with Ch(y, t) = 0 and to have a network
resistant to k− l faults. Since buckets of weight 0 are at the distance of at most h+1
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buckets from the zero/one border, the previously described network T
(h+k+1)
n,k will

gather all 1∗ in one “border” bucket. To end up with the sorted sequence, we must
only sort the bucket. Thus, the bucket fault-tolerant INSERT-network is defined to
be

LN,k
def
= J

(k)
N,k ∪ (T

(h+k+1)
n,k )⇒depth(J

(k)

N,k
).

The total depth of the network is bounded by 4 logN +3+18(k− 1)+4 logN +4k =
O(logN + k). An output of the network will be sorted by the third part of our
CORRECT 1∗s network, namely, by 3k stages of odd-even transposition. Formally,
we have the following lemma.

Lemma 5.3. Let k > 2, N = pk, and h be such that 3 · 2h−1 ≤ p ≤ 3 · 2h − 1.
Let x = 0j010j110j2 . . . 10jl1N−t−l, where 0 ≤ l ≤ k, j0, j1, . . . , jl−1 ≥ 0, jl ≥ 1, and∑l

m=0 jm = t. Moreover, let 0 ≤ s ≤ k − l, L′
N,k denote any s-fault subnetwork of

LN,k, and y = xL′
N,k. If the weight Ch(x, t) is not greater than l, then the output y

is sorted except for the contents of bucket t′ = t/k�; that is,[
(y[0], . . . , y[kt′ − 1]) = 0kt

′ ∧ (y[k(t′ + 1)], . . . , y[N − 1]) = 1N−k(t′+1)
]
.

Proof. Let si, 0 < i ≤ k, denote the number of faulty comparators in the ith copy
of JN,k, and let s′ = s−∑k

i=1 si. Moreover, let xi be the contents of registers after the
execution of the ith (faulty) copy of JN,k, and let x0 = x. First, we would like to prove
that Ch(xk, t) is zero. To this end, assume to the contrary that Ch(xk, t) > 0. Due
to the definition, all weights Ch(xi, t), 0 ≤ i ≤ k, must be positive. By Lemma 5.2,
for each i, 0 ≤ i ≤ k, we have

Ch(xi, t)− Ch(xi−1, t) ≤ si − 1.

Summing up the inequalities, we get Ch(xk, t) − Ch(x0, t) ≤ (
∑k

i=1 si) − k. Since
Ch(x0, t) ≤ l and s+ l ≤ k, we finally get Ch(xk, t) ≤ 0, which is a contradiction.

Let us define the bucket distance between registers i and j to be j/k� − i/k�.
The bucket length of a comparator [i : j] is the bucket distance between i and j.
Obviously, the bucket length of [ui : lj ] is equal to the length of [i : j]. Due to Fact 2,
the bucket distance between a register i such that i < t and xk[i] = 1 and the register t
is at most h. Since t/k� + 1 is the index of the last bucket that can contain zeroes

in xk, the goal of an s′-fault subnetwork of T
(h+k+1)
N,k is to transport all (at most l) 1∗s

by the bucket distance of at most h+ 1.

In the s′-fault subnetwork of T
(h+k+1)
N,k there are at least h+ k+1− s′ ≥ h+ l+1

fault-free copies of TN,k. The standard analysis of odd-even transposition among
consecutive buckets (cf. [6, pp. 139–144]) shows that this number of transposition
levels is enough to fill up bucket t′ + 1 and gather all other 1∗s in bucket t′.

In the next section, we describe a network that moves 1∗s to buckets whose weights
are bounded by 1 each.

6. The movement network. The aim of the movement network is to place
all 1∗s in buckets with weights at most one. The idea of the movement is the same as
in the construction of Schimmler and Starke [12]. It can be summarized as follows:

(i) comparators between buckets create a forest of binary trees, where the goal
of each tree is to place the maximum of the numbers in its nodes in the root;

(ii) the maximum in a binary tree is sought by applying in each node the fol-
lowing simple procedure: compare-exchange numbers with its children and then with
its parent.
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2-N     < r < 2

r = 2-N

5-N  < r < 2-N

h-1

G’h-1,0

h-1

G’h-1,r+Nh-1

h h-1

G’h-1,0

G’h-1,r-1

Fig. 6.1. The recursive structure of Gh,r and the F5 network in front of I5.

In our case, the structure of binary trees should reflect the structure of Ih defined
in section 4. For example, registers in Ih should be divided into the following groups:
the register number 0 has always the weight at most 1; registers 1, 2, . . . , Nh−1 can
have bigger weights, and therefore we should construct a binary tree on them with
the root in Nh−1 + 1, where the weight is again at most 1; and so on. In general, our
forest is defined on Nh = 3 · 2h − 1 registers as

Fh
def
=

h⋃
i=1

Gh−i,+1 ⇓ (Nh −Nh−i+1 + 1).

Before we formally define the subnetworks of Fh, let us look for a moment at the
sample network F5 in Figure 6.1. It consists of 95 registers numbered 0, 1, . . . , 94.
Assume that we put an input sequence 0i1045−i149, 0 ≤ i < 45, into them. To see
what F5 is doing, let us try first to answer the following question: If F5 were not in
front of I5, what would be the values of i for which the input would be sorted by one
fault-free copy of I5?

For the inputs under consideration, active comparators of I5 are all above the
border between registers 45 and 46. Therefore, we have only one sequence of consecu-
tive active comparators that ends at register 45, namely, the sequence [0 : 1], [1 : 25],
[25 : 37], [37 : 43], [43 : 44], [44 : 45]. Thus the answer is that i should be in the
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set {0, 1, 25, 37, 43, 44, 45}. If i is not in this set, we need F5 in front of I5: the aim
of F5 is to move 1 from any input register i, 0 ≤ i < 45, to the output register in
the set. For example, if 1 ≤ i ≤ 25, then the output is in register 25; if 26 ≤ i ≤ 37,
then the output is in register 37; and so on. Note that for each i in the set we have
c5(i, 45) ≤ 1, where ch is the weight function defined in section 4.

Gh,r is a network corresponding to a binary tree and is defined on Nh+r registers,
where an integer r ≤ 1 can be negative; it is a MAX-network. Since it should reflect
the structure of Ih and, moreover, should have a small delay, the sons of the root
Nh +r−1 are Nh +r−2 and Nh−1 +1. In addition, 0 should be a son of 1. Formally,
we will define Gh,r with the help of another recursively defined MAX-network G′

h,r,
which does not change the contents of register 0 and finds the maximum value in all

other registers. Let G′
0,+1

def
= {[1 : 2]} and G′

0,r
def
= ∅ for r ≤ 0. Then

Gh,r
def
=

⎧⎪⎪⎨⎪⎪⎩
G′

h,r ∪ {[0 : 1]}⇒depth(G′
h,r)−3, 1−Nh−1 < r ≤ 1,

G′
h,r ∪ {[0 : 1]}⇒depth(G′

h,r)−2, 3−Nh < r ≤ 1−Nh−1,

G′
h,r ∪ {[0 : 1]}, r = 3−Nh, 2−Nh,

∅, r < 2−Nh.

As in the case of MINMAX-network Mk, it would be easier to define the sequence
of stages of G′

h,r in reverse order. Let lsth = Nh + r − 1, midh = Nh−1 + 1, and

B1
h

def
= {[midh : lsth]}{[1 : midh], [lsth − 1 : lsth]}{[midh − 1 : midh]},

B2
h

def
= {[lsth − 1 : lsth]}{[1 : lsth − 1]}{[lsth − 2 : lsth − 1]},

B3
h

def
= {[1 : lsth]}{[lsth − 1 : lsth]},

rev(G′
h,r)

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B1
h ∪ rev(G′

h−1,r−1)
⇒2 ⇓ Nh−1 ∪ rev(G′

h−1,0)
⇒3 ⇓ 1,

2−Nh−1 < r ≤ 1,

B2
h ∪ rev(G′

h−1,0)
⇒3 ⇓ 1, r = 2−Nh−1,

B3
h ∪ rev(G′

h−1,Nh−1+r)
⇒2 ⇓ 1, 3−Nh < r ≤ 1−Nh−1,

{[1 : 2]}, r = 3−Nh,

∅, r < 3−Nh.

Both networks Gh,r and G′
h,r have depth not greater than 3h since we add at

most three new stages at each level of the recursive definition. The delay of the net-
works is at most 3, because each register has at most two incoming and one outgoing
comparators at three consecutive stages. Clearly, Gh,r is a MAX-network, and G′

h,r

is a MAX-network of registers 1, . . . , Nh + r − 1. The following lemma states that,
whenever Fh is applied to an input with one 1∗ inside t zeroes, the 1∗ is output in
register j such that ch(j, t) ≤ 1.

Lemma 6.1. Let h ≥ 0, 2− 3 · 2h ≤ r ≤ 1, and let X denote one of the networks
Fh, Gh,+1, or G′

h,r. Moreover, let t ≥ 1 be smaller than the number of registers in X.

Then for each input x = 0i10t−i1∗, 0 ≤ i < t, the output y = xX is of the form
0j10t−j1∗, 0 ≤ j ≤ t, and ch(j, t) ≤ 1.

Proof. The proof is by induction on h. If h = 0, there is at most one active
comparator in X. Therefore, for each register j of X and any admissible t, we have
c0(j, t) ≤ 1 (cf. Definition 4.1).

Assume now that h > 0 and that the lemma holds for h − 1. Observe first that
Fh = Gh−1,+1∪Fh−1 ⇓ Nh−1. If t ≤ Nh−1, then active comparators in Ih are the same
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as in Ih−1. Thus ch(j, t) = ch−1(j, t) for any 1 ≤ j ≤ t, and we can use an inductive
hypothesis about Gh−1,+1. Otherwise, t ≥ Nh−1 + 1, and the network Gh−1,+1 gets
at most one 1 in its registers. Since Gh−1,+1 is a MAX-network, it moves the 1 to the
register N ′

h = Nh−1 + 1. Thus we should prove that in this case ch(N ′
h, t) ≤ 1. To

this end we need the recursive structure of ch observed in the proof of Lemma 4.5—
ch(j, t) = ch−1(j − N ′

h, t − N ′
h) for N ′

h ≤ j ≤ t < Nh—and the first statement from
the lemma: ch(0, t) ≤ 1. Substituting j = N ′

h, we get the result. If there is no 1 in
the first N ′

h +1 registers, the problem is reduced to the network Fh−1 and the lemma
follows from the inductive assumption.

Since quite similar arguments also work for networks Gh,+1 and G′
h,r, we leave

the rest of the proof to the interested reader.
Having the network Fh, we can create its bucket version by applying a transfor-

mation similar to that of section 5. As in the definitions there, assume that N = pk,
where p is an integer, and choose h such that 3 · 2h−1 ≤ p ≤ 3 · 2h − 1. Since
we now need a forest Fh with p registers only, we delete the superfluous registers
p, p+ 1, . . . , 3 · 2h− 1 and the comparators pointing to them. After that the following
transformations are made to the network:

1. replace each comparator [i : j] by [ui : lj ], where ui = i·k+k−1 and lj = j ·k;
2. insert an empty stage after each stage of Fh;
3. put the MINMAX-networks Mk in front of the first comparator in each

bucket j and an additional comparator [lj : uj ] between incoming and outgoing com-
parators of the bucket. (Note that in each bucket there is at most one outgoing
comparator and at most two incoming ones that precede it.)

Let KN,k be the network after the transformations. Its delay is still a constant,
and we can use copies ofKN,k to move all 1∗s to buckets of weight at most 1. Moreover,
we have a network resistant to faulty comparators. Evidently, it is enough to take

k copies, since the sum of the number of faulty comparators in K
(k)
N,k and the number

of 1∗ in an input is not greater than k.
Lemma 6.2. Let k ≥ 2, N = pk, and h be such that 3 · 2h−1 ≤ p ≤ 3 · 2h − 1.

Let x = 0j010j110j2 . . . 10jl1N−t−l, where 0 ≤ l ≤ k, j0, j1, . . . , jl−1 ≥ 0, jl ≥ 1, and∑l
m=0 jm = t. Moreover, let K ′

N,k denote any s-fault subnetwork of K
(k)
N,k, where

s ≤ k − l. Then Ch(xK ′
N,k, t) ≤ l.

Proof. One can observe that there are at least l fault-free copies of KN,k in K ′
N,k.

Each fault-free copy takes a 1∗ from the last nonempty bucket with weight greater
than 1 and moves it to a bucket with weight less than or equal to 1, due to Lemma 6.1.
From its destination bucket there is no active outgoing comparator. Therefore, faulty
copies cannot move such a 1∗ further. After application of all fault-free copies, all
l 1∗s are in buckets with weight upper-bounded by 1. The result follows.

Based on Lemma 6.2, we can choose K
(k)
N,k as our bucket movement network.

Since delay(KN,k) ≤ 9 and depth(KN,k) = O(logN), the total depth of the bucket
movement network is O(log n+ k).

We finish this section by proving Lemma 3.1.
Proof of Lemma 3.1. Our N -input CORRECT1

k-network is a concatenation of
three networks: KN,k described above, LN,k presented in the previous section, and
the standard odd-even transposition network ON,k of depth 3k [6, pp. 139–144]. The
required correcting and fault-tolerance properties of the first two parts follow from
Lemmas 6.2 and 5.3. The aim of ON,k is to sort the remaining unsorted area of
size k. In the fault-free model, k stages of odd-even transposition suffice to sort
such an area (see [6]). In the k-fault model, there could be up to k faulty stages in
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ON,k. Nevertheless, there still remain k alternating fault-free stages of odd-even and
even-odd comparators that will sort the area.

7. Concluding remarks. We have presented a construction of N -input k-fault-
tolerant sorting networks with asymptotically optimal depth O(logN +k). The main
part of the construction is the fault-tolerant correcting network, which consists of two
subnetworks itself: CORRECT1

k and CORRECT0
k. Each subnetwork performs three

tasks in sequence: first, it moves the inserted items into selected buckets, then it inserts
them into the destination bucket, and finally, it sorts all buckets. The part performing
each task has been made fault-tolerant by pipelining a certain number of copies of a
constant-delay network. One can observe that instead of pipelining we can get the
same result by using in cycle a network of constant depth with output recirculated
back as input. Such networks are called constant-periodic. Thus, our correcting net-
works can be implemented as a sequence of constant-periodic networks. An interesting
question is whether the whole network can be made constant-periodic without signif-
icant increase in correction time. For the fault-free case, efficient constant-periodic
sorting networks were presented in [5].

Acknowledgments. The author thanks Yuan Ma for his helpful discussion
about the first version of the construction. Many thanks also to anonymous refer-
ees and Miros�law Kuty�lowski for their comments on the paper.
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Abstract. This paper addresses the problems of counting proof-trees (as introduced by Venkates-
waran and Tompa) and counting proof-circuits, a related but seemingly more natural question. These
problems lead to a common generalization of straight-line programs which we call polynomial re-
placement systems PRSs. We contribute a classification of these systems and we investigate their
complexity. Diverse problems falling within the scope of this study include, for example, counting
proof-circuits and evaluating {∪,+}-circuits over the natural numbers. A number of complexity
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1. Introduction.

1.1. Motivation. When + and × replace ∨ and ∧ in Figure 1, the gate g1
on input x1 = x2 = 1 evaluates to 9. Equivalently, the tree-like Boolean circuit
T obtained from the circuit in Figure 1 has nine proof-trees [24], i.e., nine different
minimal subcircuits witnessing that T outputs 1 (gates replicated to form T are
independent). This relationship between proof-tree counting and monotone arithmetic
circuits was used by Venkateswaran [23] to characterize nondeterministic time classes,
including #P [22], and by Vinay [25] to characterize the counting version of LOGCFL
[20]. The same relationship triggered the investigation of #NC1 by Caussinus et al.
[6] and that of #AC0 by Agrawal, Allender, and Datta [1]. See [4, 14, 2] for further
results and for motivation to study such “small” arithmetic classes.

A recent goal has been to capture small arithmetic classes by counting objects
other than proof-trees, notably paths in graphs. Allender et al. [3] succeeded in
identifying appropriate graphs for #AC0. Given the growing importance of counting
classes, our motivation for the present work was the desire to avoid unwinding circuits
into trees before counting their “proofs.” Define a proof-circuit to be a minimal
subcircuit witnessing that a circuit outputs 1. More precisely, for a Boolean circuit
C and an input x, a proof-circuit is an edge-induced connected subcircuit of C which
evaluates to 1 on x. This subcircuit must contain the output-gate of C, as well as
exactly one C-edge into each ∨-gate and all C-edges into each ∧-gate. The reader
should convince herself that the circuit depicted above, which had nine proof-trees on
input x1 = x2 = 1, has only seven proof-circuits on that input.
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Fig. 1.

What counting classes arise from counting proof-circuits instead of trees? This
question held in stock two surprises, the first of which is the following algorithm.

1. replace ∨ by + and ∧ by × in a negation-free Boolean circuit C,
2. view C as a straight-line program prescribing in the usual way a formal poly-

nomial in the input variables x1, . . . , xn,
3. compute the polynomial top-down, with an important proviso: at each step,

knock any nontrivial exponent down to 1 in the intermediate sum-of-monomials
representation.

We get the number of proof-circuits of C on an input x by evaluating the final polyno-
mial at x! For example, the circuit depicted above had seven proof-circuits on input
x1 = x2 = 1 because

g1 → g2g3(1.1)

→ (x1 + g4)g3(1.2)

→ (x1 + g4)(g4 + x2) → x1g4 + x1x2 + g4 + g4x2(1.3)

→ x1(x1 + x2) + x1x2 + (x1 + x2) + (x1 + x2)x2,(1.4)

where g2
4 became g4 in the middle of step (1.3).

One’s intuition might be that such a simple strategy could be massaged into an
arithmetic circuit or at least into a sublinear parallel algorithm [21]. Our second
surprise was that counting proof-circuits, even for depth-4 semiunbounded circuits,
is #P-complete. Hence, not only is our strategy hard to parallelize, but it likely
genuinely requires exponential time!

Our three-step algorithm above thus counts proof-trees in the absence of the
idempotent rules y2 → y, and it counts proof-circuits in their presence. Moreover,
whereas an arithmetic circuit computing the number of proof-trees of a circuit is
readily available, producing such a circuit to compute proof-circuits seems intractable.
What is special about the idempotent rules? What would the effect of multivariate
rules be? Which nontrivial rules would nonetheless permit expressing the counting in
the form of an arithmetic circuit? What is a general framework in which complexity
questions such as these can be investigated?

1.2. Results. We view our results as forming three main contributions.
Our first contribution is to define and classify polynomial replacement systems

(PRSs). PRSs provide the answer to the framework question. A PRS in its full
generality is a start polynomial q ∈ N[x1, . . . , xm] together with a set of replacement
rules. A replacement rule is a pair of polynomials (p1, p2). Informally, (p1, p2) is
applicable to a polynomial q if q can be written in a form in which p1 appears.
Applying (p1, p2) to q then consists of replacing p1 by p2 (see section 3 for formal
definitions).
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A PRS generally defines a set of polynomials, since the choice and sequencing of
the rules, and the way in which the rules are applied, may generate different polyno-
mials. Computational problems of interest include computing the polynomials them-
selves (poly), evaluating the polynomials at specific points (eval), and testing mem-
bership in their ranges (range). We identify four natural families of PRSs: simple if
the rules replace only variables, deterministic if no two rules have the same left-hand
side, acyclic if no nontrivial infinite sequence of rules is applicable, and idempotent if
the rules (y2, y) are present.

For general PRSs, we obtain canonical forms, we discuss representation, and we
outline broad complexity issues. Our detailed complexity analysis involves simple
PRSs. For instance, we exhibit simple and deterministic PRSs for which range is
NP-complete. When the simple and deterministic PRS is given as part of the input,
poly is P-hard and in coRP, while range is NP-complete and eval is P-complete.

Our second contribution concerns the specific case of proof-trees and proof-circuits.
We prove that, for every Boolean circuit C and input x, there is an easily computable,
idempotent, simple, deterministic, and acyclic PRS S having the property that the
number of proof-trees (resp., proof-circuits) of C on x is the maximum (resp., mini-
mum) value of the eval problem for S on x, and vice versa (see Lemma 5.13). This
offers one viewpoint on the reason why our algorithm from subsection 1.1 counts proof-
circuits correctly. We also prove that computing the minimum of the eval problem
for idempotent, simple, deterministic, and acyclic PRSs is #P-complete, or, equiva-
lently, that counting proof-circuits is #P-complete under Turing reductions (but not
under many-one reductions unless P = NP). This provides a new characterization
of #P which is to be contrasted with Venkateswaran’s (polydegree, polydepth) char-
acterization [23] and with the retarded polynomials characterization of Babai and
Fortnow [5]. We also prove that detecting whether a circuit has more proof-trees than
proof-circuits is NP-complete.

Our third contribution concerns the specific case of a simple and acyclic PRS. We
prove that the eval problem for such a PRS is the evaluation problem for {∪,+,×}-
circuits. These circuits have been considered previously (under the name hierarchical
descriptions) in [28, 29]. They are obtained by generalizing, from trees to general cir-
cuits, the {∪,+,×}-expressions (a.k.a. integer expressions), whose evaluation problem
was shown to be NP-complete by Stockmeyer and Meyer [19]. From a PSPACE upper
bound given in [28] we conclude that evaluation of a simple acyclic PRS has a poly-
nomial space algorithm, and from a PSPACE-hardness result given in [30] we then
conclude that the problem is PSPACE-complete.

1.3. Paper organization. Section 2 defines proof-trees and circuits, and proves
complexity results about them, in a self-contained way independent from PRSs. The
formal definition of a PRS, as well as their canonical forms, are found in section 3.
Section 4 briefly discusses the representation of polynomials and the complexity of
equivalence testing. Section 5 describes the four natural families of PRSs and re-
lates these to straight-line programs, {∪,+,×}-circuits, and the proof-trees vs. proof-
circuits problem. Section 6 investigates the complexity theoretic properties of simple
PRSs in depth.

2. Counting circuits vs. counting trees. We assume that the reader is mini-
mally familiar with the complexity classes TC0, P, ZPP, RP, NP, PSPACE, EXPTIME,
FP, and #P; see, for example, [9, 17, 27].
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2.1. Definition of problems. By a circuit C, in this paper, we will mean a cir-
cuit over the basis {∧,∨} in the usual sense, with 2n inputs labeled x1, x2, . . . , xn,¬x1,
¬x2, . . . ,¬xn.

Fix an input x to C. Unwind C into a tree C ′ by (repeatedly) duplicating gates
with fan-out greater than 1. Define an accepting subtree as a subgraph H of C ′ whose
gates evaluate to 1 and which additionally fulfills the following properties: Subtree
H must contain the output-gate of C. For every ∧-gate v in H, all the input wires
of v must be in H, and for every ∨-gate v in H, exactly one input wire of v must be
in H. Only wires and nodes obtained in this way belong to H. By #C(x) we denote
the number of accepting subtrees of C.

Define an accepting subcircuit as a subcircuit H of C with the same properties
as above (i.e., the only difference is that now we do not start by unwinding C into a
tree). Given an input x, let #cC(x) denote the number of accepting subcircuits of C
on x.

Since an accepting subtree or subcircuit of a circuit C is some form of proof that
C evaluates to 1 on the given input, we will also refer to these as proof-trees and
proof-circuits, respectively. We will consider the following problems:

Problem: PT

Input: circuit C over {∧,∨}, an input x ∈ {0, 1}∗, a number k in unary

Output: #C(x) mod 2k

Problem: PC

Input: circuit C over {∧,∨}, an input x ∈ {0, 1}∗
Output: #cC(x)
Observe that if we unwind a circuit into a tree, there may be an exponential

blowup in size, which has the consequence that the number of accepting subtrees
may be doubly exponential in the size of the original circuit. This is not possible for
the problem PC; the values of this function can be at most exponential in the input
length. In order to achieve a fair comparison of the complexity of the problems, we
therefore count proof-trees only modulo an exponential number.

2.2. Some initial reductions.
Lemma 2.1. PT is complete for FP under ≤log

m .
Proof. By the well-known connection between counting accepting subtrees and

the evaluation of arithmetic circuits [26, 23, 11], PT ∈ FP since it is sufficient to
evaluate such a circuit modulo an exponential number.

Let now f ∈ FP and x ∈ {0, 1}∗. Let f for inputs of length |x| be computed
by the polynomial size circuit C. Let g1, . . . , gm be the output-gates of C, and let
D1, . . . , Dm be those subcircuits of C whose output-gates are the gates g1, . . . , gm.
Say that C is unambiguous if for every circuit Di there is at most one accepting
subtree. We may suppose without loss of generality that C is unambiguous [13]. Now
let Ci be the trivial circuit with 2i accepting subtrees. Then f(x) is equal to the
number of accepting subtrees of the circuit

∨m
i=1(Di ∧ Ci).

Lemma 2.2.

1. The following problem is NP-complete under ≤log
m : Given a circuit C, is there

an input x such that #C(x) �= #cC(x)?
2. The following problem is P-complete under ≤log

m : Given a circuit C and an
input x ∈ {0, 1}∗, is #C(x) �= #cC(x)?

Proof. 1. Containment in NP is obtained by the following algorithm: On input
C, guess an input x and evaluate every gate in C. Check if there is an ∨-gate g such
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that both its inputs evaluate to 1, and there are at least 2 different paths from g to
the output of C which are simultaneously contained in some accepting subtree. This
latter problem is essentially the directed graph accessibility problem, since we have
only to check that there are two paths from g to C’s output-gate which join at some
∧-gate in C, such that all gates on these paths evaluate to 1.

To prove completeness, we give a reduction from 3-SAT: Given a 3-CNF formula
F , we construct an {∧,∨} circuit CF with the same structure (that is, CF actually is
a formula). Let C ′ be some fixed circuit with differing numbers of accepting subtrees
and subcircuits. Then the circuit C =def CF ∧ C ′ will have #C(x) �= #cC(x) for
some input x if and only if F is satisfiable.

2. Observe that the algorithm given in the proof of case 1 is deterministic, once
the input x is guessed. Hence the problem examined here is in P. Completeness is
also shown along the lines above, this time using the P-complete circuit value
problem.

Remark 2.3. If we restrict our attention to circuits of depth d, then the problem in
case 2 of the above lemma is in DSPACE(d); this is witnessed by the well-known depth-
first search circuit evaluation algorithm which is used to show (uniform-)DEPTH(s) ⊆
DSPACE(s).

2.3. Counting proof-circuits is #P-complete. For functions f, h, we say
that f ≤log

1-T h if there are functions g1, g2 computable in logarithmic space such that,
for all x, f(x) = g1

(
x, h(g2(x))

)
.

Theorem 2.4. PC is complete for #P under ≤log
1-T but not under ≤p

m unless
P = NP.

Proof. For a conjunctive normal form formula H with three literals per clause,
define SA(H) to be the number of satisfying assignments to the variables of H. It is

known (see [22]) that SA is ≤p
m-complete for #P. We describe a ≤log

1-T-reduction from
SA to PC. Let PC(C, x) denote the number of accepting subcircuits of circuit C with
input x.

Let H(x1, . . . , xn) =
∧m

i=1 Ci be a conjunctive normal form formula with three
literals per clause. We define a {∨,∧}-circuit CH , all of whose inputs are set to 1,
which has six levels and is stratified; i.e., the edges are only between gates of adjacent
levels. The levels are as follows:

1. Level 1 consists of the input-gates vikl for i = 1, . . . ,m, k = 0, . . . , n, and
l = 0, 1. In the application below, all these will be set to 1.

2. Level 2 consists of the ∨-gates vik for i = 1, . . . ,m and k = 0, . . . , n. Gate
vik has incoming edges from vik0 and vik1.

3. Level 3 consists of the ∧-gates vi for i = 1, . . . ,m. Gate vi has incoming
edges from vi0, vi1, . . . , vin.

4. Level 4 consists of the ∧-gates w1, . . . , wn, w
′
1, . . . , w

′
n. Gate wj has incoming

edges from all gates vi such that xj appears in the clause Ci. Gate w′
j has incoming

edges from all gates vi such that ¬xj appears in the clause Ci. Here, we stipulate
that an ∧-gate with no input wires computes the constant 1.

5. Level 5 consists of the ∨-gates u1, . . . , un. Gate uj has incoming edges from
the gates wj and w′

j .
6. Level 6 consists of the output-gate which is an ∧-gate. It has incoming edges

from the gates u1, . . . , un.

Now let a1, . . . , an ∈ {0, 1}. We define the circuit C
[a1···an]
H to be that subcircuit

of CH which results from cutting the edge between w′
j and uj if aj = 1 and between

wj and uj if aj = 0 (j = 1, . . . , n). The following facts are easy to see:
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(i) PC(CH , (1 · · · 1)) =
∑

a1,...,an∈{0,1} PC(C
[a1···an]
H , (1 · · · 1)).

(ii) (a1, . . . , an) satisfies exactly k clauses of H if and only if PC(C
[a1···an]
H ,

(1 · · · 1)) = 2k·(n+1).

(iii) If (a1, . . . , an) satisfies H, then PC(C
[a1···an]
H , (1 · · · 1)) = 2m·(n+1), and if

(a1, . . . , an) does not satisfy H, then PC(C
[a1···an]
H , (1 · · · 1)) ≤ 2(m−1)·(n+1).

(iv) SA(H) · 2m·(n+1) ≤ PC(CH , (1 · · · 1)) < (SA(H) + 1) · 2m·(n+1).

Hence SA(H) can easily be computed from PC(CH , (1 · · · 1)), i.e., SA ≤log
1-T PC.

Now, assume PC is complete for #P under ≤p
m reductions. Let A ∈ NP; then

there is a function f ∈ #P such that for all x, x ∈ A ⇐⇒ f(x) > 0. Under
our assumption, there is a many-one reduction g from f to PC; hence x ∈ A ⇐⇒
PC
(
g(x)

)
> 0. This latter condition, however, can be checked in polynomial time

since the underlying Boolean circuit has a positive number of proof-circuits if and
only if it evaluates to 1 (over the Boolean semiring).

3. How to generate polynomials. A straight-line program P over variables
x1, . . . , xm is a sequence of instructions of one of the following types: xi ← xj + xk,
xi ← xj · xk, xi ← 0, xi ← 1, where j, k < i. Every variable appears at most once on
the left-hand side of the←. Those variables that never appear on the left-hand side of
the← are the input variables. The variable xm is the output variable. Given values for
the input variables, the values of all other variables are computed in the obvious way.
The value computed by P is the value of the output variable. Let pP : N

r → N denote
the function computed in this way by P , where r is the number of input variables.

A straight-line program hence is just another way of looking at an arithmetic
circuit. By the connection mentioned above between the problem of counting proof-
trees and the evaluation of arithmetic circuits, we see that an obvious algorithm to
determine the number of proof-trees of a circuit consists of producing the appropriate
straight-line program and evaluating it in the order of its variables.

In section 1.1 we sketched an algorithm to count proof-circuits. We now give a
more precise description of this algorithm: Given circuit C with input-gates x1, . . . , xn
and inputs a1, . . . , an ∈ {0, 1}, let g1, . . . , gs be the non–input-gates of C in topological
order (i.e., a total order on the gates of C which is consistent with the partial order
given by the wires; hence u < v whenever there is a wire from u to v).

1. Transform C into a straight-line program P as above.
2. In the following, we manipulate a polynomial p, which has variables g1, . . . , gs,
x1, . . . , xn. Initially we set p to gs.

3. for i = s, s− 1, . . . , 1, do

1. Replace variable gi in p by the right-hand side of that instruction in P , whose
left-hand side is gi.

2. Transform p into the “sum-of-monomials” form.
3. Reduce all powers of variables in p to 1; i.e., replace all z2 by z, where z is a

variable. At the end of this step, p will be a multilinear polynomial.
4. Substitute the values of a1, . . . , an for x1, . . . , xn and evaluate the resulting

expression.

To see why this algorithm correctly counts proof-circuits, let M(C) be the following
nondeterministic Turing machine. On input x, M(C) first evaluates all the gates of
C on input x and prunes away any zero-gate. Unless the output-gate gs of C was
pruned away, M(C) starts at gs in the pruned circuit and implements a recursive
procedure evaluate. At an ∧-gate g, evaluate triggers consecutive recursive calls, one
for each predecessor of g. At an ∨-gate, evaluate triggers a single recursive call for a
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predecessor of g chosen nondeterministically. At a gate with no predecessor, evaluate
simply accepts. It is well known that M(C) has #C(x) accepting paths (see, e.g.,
[6]). But how can M(C) be made to have #cC(x) accepting paths instead? Simply by
making sure that, whenever evaluate encounters a gate g a second time, g is treated as
the constant gate 1: this will reflect the fact that the choice of an accepting subcircuit
rooted at g was already made, on the first encounter! Let Mc(C) be the machine
M(C) modified in this way. The algorithm of section 1.1, formalized above, precisely
computes the number of accepting paths ofMc(C). Encountering a gate g twice means
that different paths out of g meet at an ∧-gate (recall the proof of Lemma 2.2). This
is equivalent, in the straight-line arithmetic program point of view, to obtaining a
monomial in which g2 appears. Replacing g2 by g thus precisely models counting the
number of accepting paths of Mc(C), and thus the number of proof-circuits of C on
input x.

To summarize, the algorithm to compute proof-circuits produces a polynomial
(computing for argument (x1, . . . , xn) the number of proof-trees of circuit C on input
x1 · · ·xn), which is obtained by evaluating the straight-line program given by C, but
whenever possible during the computation we replace a power x2 by x. This is only
one type of a general class of polynomial replacement systems (PRSs), which we define
below. PRSs will produce sets of polynomials from a given start polynomial, using
rules replacing certain polynomials by other polynomials. This will be very similar
to the way formal grammars produce sets of words from a start symbol, applying
production rules.

In this paper we almost exclusively consider polynomials with nonnegative integer
coefficients. This is motivated by the application to proof-trees and proof-circuits
discussed above. We write p(z1, . . . , zs) to denote that p is such a polynomial in
variables z1, . . . , zs.

Below, the variable vector x will always be defined to consist of x = (x1, . . . , xm).
A variable xi is fictive (or, inessential) in the polynomial p(x) if for all a1, . . . , am, a

′
i ∈

N we have p(a1, . . . , ai−1, ai, ai+1, . . . , am) = p(a1, . . . , ai−1, a
′
i, ai+1, . . . , am). This

means that xi is fictive in p if and only if p can be written as a term in which xi does
not appear.

Definition 3.1. A polynomial replacement system (PRS) is defined as a quadru-
ple S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)
, where

(i) {x1, . . . , xn} is the set of terminal variables,
(ii) {xn+1, . . . , xm} is the set of nonterminal variables,
(iii) q is a polynomial in the variables x1, . . . , xm, the start polynomial, and
(iv) R is a finite set of replacement rules, i.e., a finite set of pairs of polynomials

in the variables x1, . . . , xm.
How does such a system generate polynomials?
Definition 3.2. Let S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)

be a PRS, and let
p1, p2 be polynomials in the variables x.

p1 =⇒
S

p2 ⇐⇒def there exist (p3, p4) ∈ R and a polynomial p5(x, y) such that

p1(x) = p5(x, p3(x)) and p2(x) = p5(x, p4(x)).

Let
∗

=⇒
S

be the reflexive and transitive closure of =⇒
S

, i.e., p1
∗

=⇒
S

p2, if and only if

there exist t ≥ 0 and polynomials q0(x), q1, (x) . . . , qt(x) such that p1 = q0 =⇒
S

q1 =⇒
S· · · =⇒

S
qt = p2.

It turns out that the above form for derivations can be simplified as follows.
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Definition 3.3. Let S, p1, p2 be as above.

p1 →
S
p2 ⇐⇒def there exist (p3, p4) ∈ R and polynomials p5(x), p6(x) such that

p1(x) = p5(x) · p3(x) + p6(x) and p2(x) = p5(x) · p4(x) + p6(x).

Let
∗→
S

be the reflexive and transitive closure of →
S

.

Lemma 3.4 (normal form of replacement). For any PRS S =
({x1, . . . , xn},

{xn+1, . . . , xm}, q, R
)

and any polynomials p1(x), p2(x), we have

p1
∗

=⇒
S

p2 if and only if p1
∗→
S
p2.

Proof. Clearly, p1 →
S
p2 implies p1 =⇒

S
p2. We prove that p1 =⇒

S
p2 implies

p1
∗→
S
p2. Let (p3, p4) ∈ R, and let p5 be a polynomial such that p1(x) = p5(x, p3(x))

and p2(x) = p5(x, p4(x)). We can represent p5 as p5(x, y) =
∑k

i=0 qi(x) · yi with

suitable k ≥ 0 and polynomials q0, q1, . . . , qk. Hence p1(x) =
∑k

i=0 qi(x) · p3(x)
i and

p2(x) =
∑k

i=0 qi(x) · p4(x)
i. Defining the polynomials

rm(x, y) =def

m−1∑
i=0

qi(x) · p4(x)
i +

k∑
i=m

qi(x) · p4(x)
m−1 · p3(x)

i−m · y

for m = 1, . . . , k, and

tm(x) =def

m−1∑
i=0

qi(x) · p4(x)
i +

k∑
i=m

qi(x) · p4(x)
m−1 · p3(x)

i−m+1

for m = 1, . . . , k + 1, we get rm(x, p3(x)) = tm(x) and rm(x, p4(x)) = tm+1(x) for
m = 1, . . . , k, and moreover, t1(x) = p1(x) and tk+1(x) = p2(x).

Consequently, p1 = t1 →
S
t2 →

S
· · · →

S
tk →

S
tk+1 = p2 and thus p1

∗→
S
p2.

A PRS thus generates a set of polynomials; hence we have the following definition.
Definition 3.5. For a PRS S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)
, let

poly(S) =
{
p(x1, . . . , xn)

∣∣ there exists p′(x) such that q
∗

=⇒
S

p′ and

p(x1, . . . , xn) = p′(x1, . . . , xn, an+1, . . . , am)
for all an+1, . . . , am ∈ N

}
.

From the set poly(S) of polynomials we derive several sets of natural numbers,
whose complexities we will determine in the upcoming sections.

Definition 3.6. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a PRS. Define

(i) range(S) =def

{
p(a)

∣∣ p ∈ poly(S) ∧ a ∈ N
n
}
;

(ii) eval(S) =def

{
(a, p(a))

∣∣ p ∈ poly(S) and a ∈ N
n
}
.

Observe that if we also allow negative numbers as coefficients for our polynomials,
then there are PRSs S such that range(S) is not decidable. This is seen as follows.
By the Robinson–Matiyasevich result (see [15]), every recursively enumerable set can
be represented in the form

{
p(a)

∣∣ a ∈ N
n
}
, where p is a suitable n-ary polynomial

with integer coefficients. Now let p be such an n-ary polynomial such that
{
p(a)

∣∣
a ∈ N

n
}

is not decidable. Defining the PRS Sp =def ({x1, . . . , xn}, ∅, p, ∅), we obtain

poly(Sp) = {p} and range(Sp) =
{
p(a)

∣∣ a ∈ N
n
}
.
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Besides the membership problems poly(S), range(S), and eval(S), we also
consider the corresponding variable membership problems.

Definition 3.7.

(i) poly(·) =def {(S, p)| S PRS and p ∈ poly(S)};
(ii) range(·) =def {(S, a)| S PRS and a ∈ range(S)};
(iii) eval(·) =def {(S, a, p(a))| S PRS, p ∈ poly(S), and a ∈ N

∗}.
4. Representations of polynomials and equivalence test. To discuss the

complexity of the sets defined above we have to talk about representations of polyno-
mials. We distinguish different kinds of representations.

Definition 4.1. Let p(x) be a polynomial.

1. The full representation of p is its sum-of-monomials form. That is, we de-
scribe p as a sequence of vectors (c, e1, . . . , em), each consisting of m+ 1 nonnegative
integers, where c, e1, . . . , em are given in unary. Such a vector stands for the monomial
c ·∏m

i=1 x
ei
i .

2. In the extended full representation (ef representation), we describe p as a
sequence of vectors as above, but this time c is given in binary while all numbers
e1, . . . , em are given in unary.

3. In the formula representation, p is described by a formula involving the vari-
ables x. More precisely, the set of formulas in variables x is defined inductively by the
following rules:

1. x1, . . . , xm, 0, 1 are formulas.
2. If F,G are formulas, then so are (F +G) and (F ×G).
3. In the straight-line program representation (slp representation), we describe

p by a straight-line program with input variables x that computes p.

If Φ is a representation of a polynomial of one of the above types, then we denote
the polynomial represented by Φ by pΦ.

It is easy to see that the above definition introduces a chain of representations
with increasing succinctness. For every representation of type (i) of a polynomial,
equivalent representations of types (j) for j > i can be computed in logarithmic
space. Moreover, if p has a full or ef or formula representation of size n, then the
degree of p is bounded by n, and if p has an slp representation of size n, then the
degree of p is at most exponential in n.

The idea to use slp representations as a data structure for polynomials was intro-
duced and promoted by Erich Kaltofen (see, e.g., [12]).

In the upcoming sections we will have to determine if two representations stand
for the same polynomial. This gives rise to the equivalence problem{ 〈Φ1,Φ2〉

∣∣ Φ1 and Φ2 are representations of polynomials such that pΦ1 = pΦ2

}
for the various types of representations. A result similar to the next theorem was
obtained in [10].

Theorem 4.2. The equivalence problem is

1. in P for full and ef representation;
2. in coRP for formula and slp representation.

The proof will make instrumental use of the following well-known result [18, 31]
(see also [16, p. 165f]).

Proposition 4.3 (Schwartz–Zippel). Let p(x1, . . . , xn) be a polynomial of degree
d over some field F that is not the zero polynomial. Let S ⊆ F be a finite set, and let
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a1, . . . , an be chosen independently and uniformly at random from S. Then

prob [p(a1, . . . , an) = 0] ≤ d

|S| .

Proof of Theorem 4.2. Two polynomials in (extended) full representation are
equivalent if and only if they have the same monomials. This can be checked in
polynomial time.

Given now two formulas F1 and F2, we know that the degree d of the two repre-
sented polynomials is at most linear in the length of F1 and F2. Hence by Proposi-
tion 4.3 it suffices to evaluate F1 and F2 for a random input drawn from an exponential
number of possible input vectors. The actual evaluation of the formulas is in P.

Finally, we are given two straight-line programs P1 and P2. Compared with the
above, we now have to deal with the fact the degree of the represented polynomial
can be exponential; hence the numbers we operate with can be double exponential in
n =def |P1|+ |P2|. Therefore, we cannot carry out the necessary arithmetic operations
in polynomial time. Instead we proceed as follows (see also [16, p. 169]).

Suppose the two numbers a, b < 22n

are different; then |a − b| can have at most
2n different prime divisors. Let π(m) denote the number of primes smaller than or
equal to m. Hence for a random prime smaller than k2n log(k2n), the probability that
a ≡ b (mod p) is at most 2n

π(k2n log(k2n)) ≤ O( 1
k ). Thus if two numbers are different,

then they are different modulo most primes having a polynomial number of bits.
Hence P1 and P2 are not equivalent if and only if for most inputs within an

exponential range we get inequality if and only if for most inputs within an expo-
nential range we get inequivalence modulo most primes having a polynomial number
of bits. Since the set of prime numbers is in ZPP, the resulting algorithm is an RP
algorithm.

5. Different types of replacement systems. The definition of PRSs we pre-
sented above is very general. Here, we introduce a number of natural restrictions.
Our approach is similar to the way different restrictions of grammar types were in-
troduced, e.g., in the definition of the classes of the Chomsky hierarchy. We will later
view the problems of counting proof-trees and proof-circuits as two instances of a
problem about these restricted PRS types.

5.1. Simple polynomial replacement systems.
Definition 5.1. A PRS S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)

is simple (or
context-free), if the polynomials in the left-hand sides of the rules of R are variables
from {xn+1, . . . , xm}.

All definitions made in the preceding section for general PRSs carry over to the
special cases of simple systems. However, for a simple PRS we additionally define a
particular type of replacement, where the application of a rule (z, q) results in the
replacement of all occurrences of z with q. This latter form is denoted by |=⇒

S
, in

contrast to the notation =⇒
S

for the derivations defined so far. Formally, we have the

following.
Definition 5.2. Let S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)

be a simple PRS.

p1 |=⇒
S
p2 ⇐⇒def there exist (xi, p3) ∈ R such that

p2(x) = p1(x1, . . . , xi−1, p3(x), xi+1, . . . , xm).

Let
∗|=⇒
S

be the reflexive and transitive closure of |=⇒
S

.
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For the sets of polynomials and numbers derived from simple systems using our
new derivation type, we use the same names as before but now use square brackets
[· · · ] instead of parentheses (· · · ); formally we have the following.

Definition 5.3. For a simple PRS S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
, let

poly[S] =
{
p(x1, . . . , xn)

∣∣ there exists p′(x) such that q
∗|=⇒
S
p′ and

p(x1, . . . , xn) = p′(x1, . . . , xn, an+1, . . . , am)
for all an+1, . . . , am ∈ N

}
.

As in the case of poly(S), we have the following definition.
Definition 5.4. Let S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)

be a simple PRS.
Define

(i) range[S] =def

{
p(a)

∣∣ p ∈ poly[S] ∧ a ∈ N
n
}
;

(ii) eval[S] =def

{
(a, p(a))

∣∣ p ∈ poly[S] and a ∈ N
n
}
.

We also define the following variable membership problems:
(i) poly[·] =def

{
(S, p)

∣∣ S simple PRS and p ∈ poly[S]
}
;

(ii) range[·] =def

{
(S, a)

∣∣ S simple PRS and a ∈ range[S]
}
;

(iii) eval[·] =def

{
(S, a, p(a))

∣∣ S simple PRS, p ∈ poly[S] and a ∈ N
∗ }.

It is clear that for any simple PRS S, we have poly[S] ⊆ poly(S); hence we also
obtain range[S] ⊆ range(S), eval[S] ⊆ eval(S), poly[·] ⊆ poly(·), range[·] ⊆
range(·), and eval[·] ⊆ eval(·).

5.2. Simple deterministic or acyclic PRSs.
Definition 5.5. A PRS S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)

is said to be
deterministic if no two different rules in R have the same left-hand side.

Definition 5.6. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a PRS. The

dependency graph GS of S is the directed graph GS =
({1, . . . ,m}, ES

)
, where ES

consists of all edges (j, i) for which there exists a rule (p1, p2) ∈ R such that xi is
essential in p1 and xj is essential in p2. The PRS S is said to be acyclic if its
dependency graph GS is acyclic.

Lemma 5.7. For every simple and deterministic PRS S, there exists a simple,
deterministic, and acyclic PRS S′ such that poly(S) = poly(S′) and poly[S] =
poly[S′]. The system S′ can be obtained from S in polynomial time.

Proof. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a simple and determin-

istic PRS. If S is not acyclic, then there exist k ≥ 1, i1, . . . , ik ∈ {n + 1, . . . ,m},
and polynomials p1(x), . . . , pk(x) such that (xi1 , p1), (xi2 , p2), . . . , (xik , pk) ∈ R and
xir+1 is essential in pr for r = 1, . . . , k (where we set ik+1 = i1). Since xi1 , . . . , xik
are nonterminal variables, we claim that they have to be fictive in every polyno-
mial p such that q

∗
=⇒
S

p
∗

=⇒
S

p′ and p′ ∈ poly(S). Indeed, S is deterministic,

and hence such a replacement would necessarily run along the cycle described by
the rules (xi1 , p1), (xi2 , p2), . . . , (xik , pk). Hence, if p has a nonfictive variable from

{xi1 , . . . , xik}, then every p′ such that p
∗

=⇒
S

p′ will have a nonfictive variable from

{xi1 , . . . , xik}. Thus we have poly(S) = poly(S′) and poly[S] = poly[S′], where

S′ =def

({x1, . . . , xn}, {xn+1, . . . , xm} \ {xi1 , . . . , xik}, q, R′) and

R′ =def R \ { (xi, p)
∣∣ xi or an essential variable in p is from {xi1 , . . . , xik}

}
.

Now we repeat this cycle removement step as long as the PRS still has cycles. Since
in every step at least one nonterminal variable is removed, we get after a polynomial
number of steps a PRS which is simple, deterministic, and acyclic.
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We also obtain the following easy properties.

Lemma 5.8.

1. If S is a simple and deterministic PRS, then poly(S) = poly[S], and this
set consists of at most one polynomial.

2. If S is a simple and acyclic PRS, then poly(S) and poly[S] are finite.

Proof. If S is simple, deterministic, and without loss of generality, moreover,
acyclic, then the rules replace every variable by a unique polynomial. Since S is
simple, we always have to replace all occurrences of each nonterminal variable sooner
or later. Hence the result of the whole derivation process is unique.

If S is acyclic, then every nonterminal variable can only be replaced in a bounded
number of ways, and hence we can only obtain finitely many polynomials.

Note that there are simple and acyclic PRSs S such that poly[S] � poly(S).
For example take S = ({x}, {z}, 2z, {(z, x), (z, 2x)}), where poly[S] = {2x, 4x} and
poly(S) = {2x, 3x, 4x}. Thus, the requirement that S is deterministic is necessary
in Lemma 5.8.1.

In the remainder of this subsection, we relate simple deterministic and simple
acyclic PRSs to different forms of circuits operating over the natural numbers.

First, it is intuitively clear that there is some connection between simple, deter-
ministic, and acyclic systems and straight-line programs. This is made precise in the
following lemma.

Lemma 5.9.

1. If S is a simple, deterministic, and acyclic PRS such that poly(S) �= ∅, then
there exists a straight-line program P such that poly(S) = {pP }.

2. If P is a straight-line program, then there exists a simple, deterministic, and
acyclic PRS S such that {pP } = poly(S).

3. The transformations from a simple, deterministic, and acyclic PRS to the
corresponding straight-line program and vice-versa can be computed in logarithmic
space.

Proof. The program P is obtained from S by transforming every single replace-
ment rule into a sequence of straight-line program instructions and then ordering these
according to a topological order of GS . Statement 2 is proved similarly. Statement 3 is
obvious.

Next we show that acyclic systems are strongly related to a new type of arith-
metic circuit we now define. These circuits are immediate generalizations of integer
expressions, introduced by Stockmeyer and Meyer [19]. Therefore, we call our circuits
integer circuits (not to be confused with ordinary arithmetic circuits), or, referring to
the operations allowed, (∪,+,×)-circuits.

An integer circuit with n inputs is a circuit C where the inner nodes compute
one of the operations ∪,+,×. Such a circuit C has a specified output-gate gs. It
computes a function fC : N

n → 2N as follows: We first define for every gate g ∈ C the
function fg computed by g.

1. If g is an input-gate xi, then fg(a1, . . . , an) = {ai} for all a1, . . . , an ∈ N.
2. If g is a +-gate with predecessors gl, gr, then fg(a1, . . . , an) =

{
k +m

∣∣ k ∈
fgl(a1, . . . , an),m ∈ fgr (a1, . . . , an)

}
. The function computed by a ×-gate is

defined analogously.
3. If g is a ∪-gate with predecessors gl, gr, then fg(a1, . . . , an) = fgl(a1, . . . , an)∪
fgr (a1, . . . , an).

Finally, the function computed by C is fC =def fgs .

The following relation between simple, acyclic replacement systems and integer
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circuits is obtained by an easy induction.
Lemma 5.10.

1. For every simple, acyclic PRS S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
, there

is an integer circuit C with n inputs such that fC(a) =
{
b
∣∣ (a, b) ∈ eval(S)

}
for all

a ∈ N
n.
2. For every integer circuit C with n inputs, there is a simple, acyclic PRS S

such that
{
b
∣∣ (a, b) ∈ eval(S)

}
= fC(a) for all a ∈ N

n.
3. The transformations from a simple, acyclic PRS to the corresponding integer

circuit and vice-versa can be computed in logarithmic space.
We consider the following problems:

N-MEMBER(∪,+,×) =def

{
(C, a1, . . . , an, b)

∣∣ C is an integer circuit with n inputs,
a1, . . . , an, b ∈ N and b ∈ fC(a1, . . . , an)

}
,

N-RANGE(∪,+,×) =def

{
(C, b)

∣∣ C is an integer circuit with n inputs,
b ∈ N and (∃a1, . . . , an)b ∈ fC(a1, . . . , an)

}
.

Analogous notation will be used when we restrict the gate types allowed.
The following lemma is immediate from Lemma 5.10.
Lemma 5.11. For all representations, the following hold:

1. N-MEMBER(∪,+,×) ≡log
m eval(·).

2. N-RANGE(∪,+,×) ≡log
m range(·).

5.3. Idempotent polynomial replacement systems.
Definition 5.12. For a PRS S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)
, let Sidem

=def

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R ∪
{

(x2
i , xi)

∣∣ 1 ≤ i ≤ m}) be the idempotent
PRS derived from S.

In the case that S is simple (deterministic, acyclic, respectively), we will say
that Sidem is an idempotent simple (idempotent deterministic, idempotent acyclic,
respectively) PRS. Note that if Sidem is idempotent simple, we mean that it is an
idempotent PRS that originates from a simple PRS, not that Sidem itself is simple
(similarly for deterministic and acyclic systems).

For a PRS S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
and a ∈ N

n, we use the

notation mineval(S, a) as shorthand for min
{
p(a)

∣∣ p ∈ poly(S)
}

(analogously, we
use maxeval(S, a)).

Lemma 5.13.

1. For every Boolean circuit C, input x, and k ∈ N, there exists a simple,
deterministic, and acyclic PRS S such that

mineval

(
Sidem, (1, . . . , 1)

)
= #cC(x), and maxeval

(
Sidem, (1, . . . , 1)

)
= #C(x).

2. For every simple, deterministic, and acyclic PRS Sidem, there exists a Boolean
circuit C such that

mineval

(
Sidem, (1, . . . , 1)

)
= #cC(x), and maxeval

(
Sidem, (1, . . . , 1)

)
= #C(x).

3. The transformations from an idempotent simple, deterministic, and acyclic
PRS to the corresponding circuit and vice-versa can be computed in logarithmic space.

Proof. Arithmetic circuits and straight-line programs are only two different views
of the same concept. Hence we go from circuit C to system S and vice versa exactly
as in Lemma 5.9. Clearly the simple, deterministic, and acyclic system S computes
#C(x) as explained in the discussion in the beginning of section 3.
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Now convert S into the idempotent system Sidem. That the number of proof-
circuits coincides with the minimal element in eval

(
Sidem, (1, . . . , 1)

)
is a consequence

of the algorithm given at the beginning of section 3. The minimal element is obtained
if and only if during the derivation of a polynomial all rules (x2

i , xi) are applied
whenever possible. The maximal element is obtained if and only if we never pick such
a rule, i.e., if we use only rules from S.

6. Complexity results for simple replacement systems.

6.1. Deterministic systems. In this section, we consider the complexity of the
above defined sets for simple replacement systems. Let us start with the complexity
of fixed membership problems.

Theorem 6.1. Let S be simple and deterministic.
1. poly(S),poly[S] ∈ P for all representations, and poly(S),poly[S] are P-

complete for the slp representation.
2. range(S),range[S] ∈ NP for all representations. In fact, for all repre-

sentations there are systems S such that the problems range(S) and range[S] are
NP-complete.

3. eval(S),eval[S] ∈ TC0 for all representations.
Proof. First we recall that poly(S) and poly[S] consist of at most one polynomial

p. In full and ef representation, p has only finitely many representations; hence the
complexity of poly(S),poly[S] is trivial. However, in formula and slp representation,
p may have infinitely many representations. That is, we face the following problem:
Given a straight-line program P (the case of formulas is even easier), does pP = p
(where p is fixed)?

Say that P is reduced if the following holds: P has no instructions of the form
xj ← · · · , where the xj never appears on the right-hand side of any other instructions
(unless xj is the output variable). Additionally, if xj ← xi + xk is an instruction
in P , then the polynomials computed by xi and xk are both not the constant zero
polynomial (otherwise, the instruction is useless, for, e.g., if xi ≡ 0, then xj ≡ xk,
and hence we do not compute anything new; we might delete the above instruction
and in further instructions we use xk instead of xj). Similarly, for xj ← xi · xk we
require that xi and xk are not constant one.

Now the following holds: Every polynomial p has only finitely many representa-
tions by reduced straight-line programs (except for an isomorphic renumbering of the
variables). Moreover, a program P can be transformed into reduced form as follows:
Inductively, determine the sets of variables that compute the constant zero or con-
stant one polynomial. Then remove those instructions that do not compute a new
polynomial, and change the variables in the other instructions as described above.
This shows that poly(S),poly[S] ∈ P.

Hardness follows from a reduction from the circuit value problem as follows: Let
C be a Boolean circuit. Let p be the polynomial that gives the number of proof-trees
of C. Let poly(S) = poly[S] = {p′}; then p + p′ ∈ poly(S) = poly[S] iff C does
not evaluate to 1 and if and only if C is not in CVP.

For statement 2 we have to decide the range of a multivariate polynomial with
nonnegative coefficients. This is clearly in NP by the obvious guessing algorithm. For
the hardness proof, we give a reduction from the quadratic Diophantine equations
problem (problem AN8 in [7, p. 250]) as follows: This problem consists of all triples
(a, b, c) such that the quadratic equation ax2 + by = c has a solution in positive
integers. Define 〈x, y, z〉 =def z+(y+z)2 +(x+y+z)3. Observe that 〈· · · 〉 is one-one.
Now, define the four-variable polynomial p(u, v, x, y) =def ux

2 + vy. Then for all
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a, b, c ∈ N, the equation ax2 + by = c has a solution if and only if there are x, y such
that p(a, b, x, y) = c, if and only if there are x, y such that

〈
a, b, p(a, b, x, y)

〉
= 〈a, b, c〉,

and if and only if there are u, v, x, y such that
〈
u, v, p(u, v, x, y)

〉
= 〈a, b, c〉. Hence

we see that the quadratic Diophantine equations problem reduces to the range of the
polynomial q(u, v, x, z) =def

〈
u, v, p(u, v, x, y)

〉
.

For statement 3 observe that we have to evaluate a fixed polynomial; hence the
result follows since addition and multiplication are in TC0.

Concerning variable membership problems of simple, deterministic systems, we
obtain the following theorem.

Theorem 6.2. For simple and deterministic PRSs and for all representations,
1. poly(·) and poly[·] are in coRP and P-hard under ≤log

m (in fact P-complete
for full and ef representations);

2. range(·) and range[·] are NP-complete under ≤log
m ;

3. eval(·) and eval[·] are P-complete under ≤log
m .

Proof. Containment. In all cases, given the simple and deterministic PRS S,
first construct in polynomial time the slp representation of the unique polynomial p
(if any) in poly(S) = poly[S] by Lemmas 5.7 and 5.8. Statement 1 then follows
by equivalence test (Theorem 4.2). For statement 2, guess suitable input values and
evaluate p; for statement 3, just evaluate p (until finished or until the bounds are
exceeded, as above).

Hardness: Statement 3. We give a reduction from the circuit value problem
CVP as follows: Given a circuit C and an input a to C, produce the replacement
system S which computes the number of proof-trees of C on input a. S is simple and
deterministic (see section3), and if we “hardwire” the input a of C directly into S, the
resulting polynomial has only fictive variables, i.e., is essentially a natural number.
Now C accepts a if and only if this number is greater than 0; hence (C, a) ∈ CVP if
and only if (S, a, 0) �∈ eval[·] = eval(·). Statement 1: Proceeding as above, we obtain
(C, a) ∈ CVP if and only if the constant 0 polynomial is not in poly(S) = poly[S].
Statement 2: This follows from Theorem 6.1.2.

6.2. Acyclic systems. Let us next deal with simple, acyclic, but not necessarily
deterministic systems. For such systems S the sets poly(S) and poly[S] are finite
(by Lemma 5.8); hence we obtain the following analogous to Theorem 6.1.

Theorem 6.3. Let S be simple and acyclic. For all representations the following
hold:

1. poly(S),poly[S] ∈ P.
2. range(S),range[S] ∈ NP, and there are systems S such that the problems

range(S) and range[S] are NP-complete.
3. eval(S),eval[S] ∈ TC0.

Again, interesting questions arise when we examine variable membership prob-
lems.

Theorem 6.4. For simple and acyclic PRSs and for all representations,
1. poly[·] is contained in MA and is NP-hard under ≤log

m ,
2. range[·] and eval[·] are NP-complete under ≤log

m .
Proof. The containment proofs are similar to that of Theorem 6.2, but before

applying Lemma 5.7 we select nondeterministically a deterministic PRS by deleting
some of the rules of the originally given PRS. The claim follows since MA = ∃ · coRP
[8].

Hardness for poly[·] is proven by giving a logspace many-one reduction from the
sum-of-subset problem SOS (problem SP13 in [7, p. 223]) to poly[·] as follows: Let
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m, b1, . . . , bm, c ∈ N \ {0}. Define the PRS S by

S =def

({x1, . . . , xn}, {xn+1, . . . , xn+m}, xn+m, R
)
, where

R =def

{
(xn+1, 0), (xn+1, b1)

} ∪⋃m
i=2

{
(xn+i, xn+i−1), (xn+i, xn+i−1 + bi)

}
.

Note that S is acyclic and simple, and poly[S] consists only of polynomials without
essential variables. For c ∈ N, define pc(x1, . . . , xn) =def c. Now we obtain

(b1, . . . , bm, c) ∈ SOS ⇐⇒ pc ∈ poly[S] ⇐⇒ (S, pc) ∈ poly[·].
Since a deterministic PRS can (by Lemma 5.7) be assumed to be acyclic; hardness

for range[·] follows as in Theorem 6.2.
We next prove hardness for eval[·] by giving a logspace many-one reduction from

the SOS problem: Given m, b1, . . . , bm, c > 0, define S as in the proof of poly[·] above.
Then we obtain (b1, . . . , bm, c) ∈ SOS ⇐⇒ (S, a, c) ∈ eval[·] for any a ∈ N

n.
Next, we turn to different variable membership problems for simple, acyclic sys-

tems under “=⇒” derivations.
Stockmeyer and Meyer considered integer expressions (in our terminology, these

are integer circuits with fan-out of non–input-gates at most 1) where the only opera-
tions allowed are ∪ and +. They proved that the membership problem in that case is
NP-complete. It is easy to see that their result carries over to the case in which we also
allow multiplication; i.e., the problems N-MEMBER(∪,+) and N-MEMBER(∪,+,×)
for expressions are NP-complete. The corresponding problems for circuits were not
considered in their paper but in later papers by Wagner [28, 29] (under the name
hierarchical descriptions). Only PSPACE as an upper bound is known from there,
but recently it was shown by Ke Yang that N-MEMBER(∪,+,×) is PSPACE-hard
[30]. (We remark that the problem N-MEMBER(∪,+), which is not so interesting
from a PRS point of view, can be shown to be NP-complete also in the circuit case.)

By Lemma 5.11 the member and range problems for these circuits are equivalent
to the eval(·) and range(·) problems for simple acyclic PRSs. Since eval(·) clearly
reduces to range(·) in this case, we conclude the following.

Theorem 6.5. For simple and acyclic PRSs and for all representations,
1. poly(·) ∈ EXPTIME,
2. range(·),eval(·) are PSPACE-complete.

6.3. Idempotent systems. Note that, if S is simple and deterministic, then
poly(Sidem) and poly[Sidem] are finite, and we obtain results analogous to Theo-
rem 6.1.

Theorem 6.6. Let S be simple, deterministic, and acyclic. For all representa-
tions the following hold:

1. poly(Sidem) ∈ P.
2. range(Sidem) ∈ NP. In fact, there are systems S such that the problem

range(Sidem) is NP-complete.
3. eval(Sidem) ∈ TC0.

For the variable membership problems the following can be said.
Theorem 6.7. For idempotent, simple, deterministic, and acyclic PRSs and for

all representations, poly(·),range(·),eval(·) ∈ EXPTIME.
Proof. The proof follows by the trivial evaluation of the system.
Lemma 5.13 shows the importance of the minimization and maximization opera-

tions in the case of idempotent systems.
Theorem 6.8. For idempotent, simple, deterministic, and acyclic replacement

systems and for all representations,
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1. the functions mineval(·) and mineval[·] are #P-complete under ≤log
1-T-re-

ductions;
2. the functions maxeval(·) and maxeval[·] are FP-complete under ≤p

m.
Proof. The proof is an immediate consequence of Lemma 2.1, Theorem 2.4, and

Lemma 5.13.
For completeness, we note the following.
Remark 6.9. For simple deterministic and for simple acyclic PRSs and for all

representations, the functions mineval(·), mineval[·],maxeval(·),maxeval[·] are
FP-complete.

Proof. For simple deterministic S and a ∈ N
∗, obtain from Lemmas 5.7 and

6.1 the slp representation of the unique polynomial p in poly(S) (if there is one).
Then compute p(a) which hence is the minimum and maximum. This element can be
computed as in Theorem 6.2, showing that the functions are in FP. Hardness follows
immediately from Lemma 2.1.

For simple acyclic S, we evaluate S according to a topological order of GS . The
minimal element is obtained if for every variable x we consider only those rules with
left-hand side x, whose right-hand side is minimal. Hence we essentially deal with
a deterministic system, and the upper bound follows from the above. The case of
maximization is treated similarly. Hardness follows from hardness of the problem in
the deterministic case.

7. Conclusion. It may be of interest to consider the complexity of the proof-
circuit problem PC (see section 2) for circuits of restricted depth. The circuit con-
structed in the proof of Theorem 2.4 has depth 5. Simply merging the ∧-gates on
levels 3 and 4 makes it depth-4. Furthermore, it is easy to see that for depth d + 1
circuits with an ∨ output-gate the problem is as hard as for depth-d circuits with an
∧ output-gate. Next observe that the problem is easy (i.e., in FP) for depth-2 circuits
with an ∧ output-gate (and hence also for depth-3 circuits with an ∨ output-gate).

This means that the complexity of PC is not known only in the case of depth-3
circuits with an ∧ output-gate (or, equivalently, for depth-4 circuits with an ∨ output-
gate). It is not hard to see that this reduces to the case of four-level stratified circuits
with

(i) level 1: 1 gate,
(ii) level 2: ∨ gates,
(iii) level 3: ∨ gates,
(iv) level 4: ∧ gate (output-gate).

This problem in its turn is equivalent to the following problem: Given natural numbers
b1, . . . , bm and the polynomial f(x1, . . . , xm) =

∏
k=1,...,n

∑
i=1,...,m aki · xi with aki ∈

{0, 1}, exploit distributivity to re-express this polynomial as a sum of monomials, and
replace every xri , r > 1, with xi. Let f∗(x1, . . . , xm) be this new polynomial. Goal:
Compute f∗(b1, . . . , bm). (The complexity is measured in the value—i.e., unary—of
n+ b1 + · · ·+ bm.)

It is interesting to see that the problem of computing the permanent can be
formulated in a way similar to the above problem, only substituting “replace every
xri , r > 1, with xi” by “replace every xri , r ≥ 1, with 0.” Nevertheless, it is not clear
how to use this idea to reduce the problem of computing the permanent to the above
problem.

Determining the complexity of the sets range(S),range[S] for fixed S is often
equivalent to determining the complexity of the range of a multivariate polynomial
with nonnegative integer coefficients. While this is always in NP, we showed that
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there is a four-variable polynomial of degree 6 whose range is NP-complete. Can this
be improved?

From a complexity-theoretic point of view, further obvious open questions are
whether the gaps between lower and upper bounds in Theorems 6.5 and 6.7 can be
closed.

Many other questions about PRSs remain open. Returning to some of the prob-
lems posed in subsection 1.1, we did not study multivariate rules at all. Also, it may
be worth examining if PRS families other than idempotent systems can be related to
counting problems involving arithmetic or Boolean circuits.
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